
MONADIC AND SUBSTRUCTURAL TYPE SYSTEMS

FOR REGION-BASED MEMORY MANAGEMENT

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Matthew Thomas Fluet

January 2007

c© 2007 Matthew Thomas Fluet

ALL RIGHTS RESERVED

MONADIC AND SUBSTRUCTURAL TYPE SYSTEMS FOR

REGION-BASED MEMORY MANAGEMENT

Matthew Thomas Fluet, Ph.D.

Cornell University 2007

Region-based memory management is a scheme for managing dynamically allo-

cated data. A defining characteristic of region-based memory management is the

bulk deallocation of data, which avoids both the tedium of malloc/free and the

overheads of a garbage collector. Type systems for region-based memory manage-

ment enhance the utility of this scheme by statically determining when a program

is guaranteed to not perform any erroneous region operations.

We describe three type systems for region-based memory management:

• a type-and-effect system (à la the Tofte-Talpin region calculus);

• a novel monadic type system;

• a novel substructural type system.

We demonstrate how to successively encode the type-and-effect system into the

monadic type system and the monadic type system into the substructural type

system. These type systems and encodings support the argument that the type-

and-effect systems that have traditionally been used to ensure the safety of region-

based memory management are neither the simplest nor the most expressive type

systems for this purpose.

The monadic type system generalizes the state monad of Launchbury and Pey-

ton Jones and demonstrates that the well-understood parametric polymorphism

of System F provides sufficient encapsulation to ensure the safety of region-based

memory management. The essence of the first encoding is to translate effects to an

indexed monad, trading the subtleties of a type-and-effect system for the simplicity

of a monadic type system.

However, both the type-and-effect system and the monadic type system re-

quire that regions have nested lifetimes, following the lexical scope of the program,

restricting when data may be effectively reclaimed. Hence, we introduce a sub-

structural type system that eliminates the nested-lifetimes requirement. The key

idea is to introduce first-class capabilities that mediate access to a region and

to provide separate primitives for creating and destroying regions. The essence

of the second encoding is to “break open” the monad to reveal its store-passing

implementation.

Finally, we show that the substructural type system is expressive enough to

faithfully encode other advanced memory-management features.

BIOGRAPHICAL SKETCH

Matthew Fluet graduated from Harvey Mudd College (Claremont, CA) in 1999

with a Bachelor’s of Science degree. At Harvey Mudd, he majored in Mathematics

and his humanities concentration was in Medieval Studies. Dr. Arthur Benjamin

oversaw his senior thesis work. In the fall of 1999, Matthew began graduate studies

at Cornell University (Ithaca, NY), where his major field is Computer Science and

his minor field is English and Medieval Studies. Dr. Greg Morrisett advised his

doctoral research in Computer Science, with a research focus on programming

languages. Matthew is completing the requirements for the degree of Doctor of

Philosophy in the summer and fall of 2006. In the fall of 2006, he will begin

a position as Research Assistant Professor at the Toyota Technological Institute

(Chicago, IL).

iii

ACKNOWLEDGEMENTS

Portions of this material is based upon work supported by National Sci-

ence Foundation under Grant No. 0204193 and Grant No. 9875536, by the

Air Force Office of Scientific Research under Award No. F49620-03-1-0156 and

Award No. F49620-01-1-0298, and by the Office of Naval Research under Award

No. N00014-01-1-0968. Any opinions, findings, and conclusions or recommenda-

tions expressed in this dissertation are those of the author and do not necessarily

reflect the views of these organizations or the U.S. Government.

First and foremost, thanks and acknowledgments are extended to my advisor,

Dr. Greg Morrisett, for direction, guidance, and collaboration during my graduate

studies. Thanks and acknowledgments are also extended to Amal Ahmed and

Dan Wang, with whom I collaborated on portions of the work appearing in this

dissertation.

I would also like to extend my thanks and acknowledgments to Stephen Weeks,

Suresh Jagannathan, Henry Cejtin, Riccardo Pucella, Christoph Kreitz, Robert

Constable, Stuart Allen, and Kevin Donnelly, with whom I have had the pleasure

of collaborating on other projects during my graduate studies.

Many thanks go to the Division of Engineering and Applied Sciences at Harvard

University; I am grateful for the opportunity to have spent time there with the

members of the Computer Science program and to have been warmly welcomed

as a visiting student/researcher. Dr. Norman Ramsey, especially, has been a great

source of inspiration and advice.

My office mates and fellow students at Cornell and Harvard have been, with-

out exception, the finest of companions on this journey: Amal Ahmed, Michael

Clarkson, João Dias, Paul Govereau, Kim Hazelwood, Kelly Heffner, David Malan,

iv

Aleksander Nanevski, Nate Nystrom, Riccardo Pucella, Kevin Redwine, Yanling

Wang, Vicky Weissman.

The Cornell Catholic Community and the Cornell Catholic Grads group pro-

vided much appreciated spiritual guidance and support throughout my time at

Cornell. They will always hold a special place in my memories of Cornell.

Finally, I am forever grateful for all the support and encouragement from my

fiancée, Kimberly, and my parents, Marcia and Thomas. Thank you so much for

being there for me when there were difficult times.

v

TABLE OF CONTENTS

1 Introduction 1
1.1 Summary . 9
1.2 Outline . 13

2 Type-and-Effect Systems for Region-Based Memory Management 17
2.1 Background: Type-and-Effect Systems 19
2.2 Region and Effect Calculi . 29

2.2.1 Syntax of the Untyped Region Calculus 30
2.2.2 Dynamic Semantics of the Untyped Region Calculus 35
2.2.3 Static Semantics of the Traditional Region Calculus 39
2.2.4 Static Semantics of the Bounded Region Calculus 43
2.2.5 Static Semantics of the Single Effect Calculus 51

2.3 Summary . 62

3 A Monadic Type System for Region-Based Memory Management 64
3.1 Background: From ST to RGN . 66
3.2 The FRGN Language . 73

3.2.1 Syntax of FRGN . 74
3.2.2 Dynamic Semantics of FRGN 80
3.2.3 Static Semantics of FRGN . 87

3.3 Translation: From SEC to FRGN . 96
3.3.1 Translation Properties . 110

3.4 Related Work . 112
3.5 Summary and Future Work . 115

4 A Substructural Type System for Region-Based Memory Man-
agement 118
4.1 Background: A Substructural λ-Calculus 122
4.2 The rgnURAL Language . 130

4.2.1 Syntax of rgnURAL . 131
4.2.2 Dynamic Semantics of rgnURAL 138
4.2.3 Static Semantics of rgnURAL 146

4.3 Translation: From FRGN to rgnURAL 163
4.3.1 Translation Properties . 183

4.4 Related Work . 185
4.5 Summary and Future Work . 189

5 Expressiveness and Applications 191
5.1 Region Polymorphism . 192
5.2 General Recursion and Region Polymorphic Recursion 193

5.2.1 The Single Effect Calculus 193
5.2.2 The FRGN Language . 195

vi

5.2.3 The rgnURAL Language . 198
5.3 Region Reference Subtyping . 199

5.3.1 The Single Effect Calculus 200
5.3.2 The FRGN Language . 200
5.3.3 The rgnURAL Language . 204

5.4 Effect Polymorphism . 209
5.5 High-Level Language Features of Cyclone 212

5.5.1 Key Features of Cyclone . 213
5.5.2 The Cyc Language . 217
5.5.3 Translation: From Cyc to rgnURAL 228
5.5.4 Fused Regions . 233

5.6 A Type-Safe Copying Garbage Collector 236

6 Conclusion 246
6.1 Future Directions . 254

A Type-and-Effect Systems: Technical Details 258
A.1 The Single Effect Calculus . 258

A.1.1 Static Semantics of SEC . 258
A.2 Type Soundness for SEC . 270

B A Monadic Type System: Technical Details 272
B.1 The FRGN Language . 273

B.1.1 Natural Transition Semantics of FRGN 273
B.1.2 Static Semantics of FRGN . 279

B.2 Type Soundness for FRGN . 288
B.3 Translation from SEC to FRGN . 293

B.3.1 Translation Properties . 298

C A Substructural Type System: Technical Details 304
C.1 The rgnURAL Language . 304

C.1.1 Allocation Semantics of rgnURAL 304
C.1.2 Static Semantics of rgnURAL 318

C.2 Type Soundness for rgnURAL . 342

Bibliography 357

vii

LIST OF FIGURES

1.1 Region-based memory management example 4

2.1 Syntax of λFX . 21
2.2 Static semantics of λFX (expressions) 22
2.3 Surface syntax of URC (I) . 30
2.4 Surface syntax of URC (II) . 31
2.5 Abstract machine syntax of URC (I) 33
2.6 Abstract machine syntax of URC (II) 34
2.7 Dynamic semantics of URC (I) . 36
2.8 Dynamic semantics of URC (II) . 37
2.9 Dynamic semantics of URC (programs) 39
2.10 Surface syntax of TRC . 40
2.11 Static semantics of TRC (definitions) 41
2.12 Static semantics of TRC (abbreviated) 42
2.13 Surface syntax of BRC . 44
2.14 Static semantics of BRC (definitions) 45
2.15 Static semantics of BRC (outlives judgments) 46
2.16 Static semantics of BRC (abbreviated (I)) 47
2.17 Static semantics of BRC (abbreviated (II)) 48
2.18 Translation from TRC to BRC (abbreviated) 50
2.19 Surface syntax of SEC . 51
2.20 Static semantics of SEC (definitions) 52
2.21 Static semantics of SEC (outlives judgments) 53
2.22 Static semantics of SEC (expressions (I)) 54
2.23 Static semantics of SEC (expressions (II)) 55
2.24 Static semantics of SEC (expressions (III)) 56
2.25 Static semantics of SEC (regions and effects) 58
2.26 Static semantics of SEC (boxed types and types) 59
2.27 Static semantics of SEC (programs) 60
2.28 Translation from BRC to SEC (abbreviated) 61

3.1 Surface syntax of FRGN (I) . 75
3.2 Surface syntax of FRGN (II) . 76
3.3 Abstract machine syntax of FRGN (I) 78
3.4 Abstract machine syntax of FRGN (II) 79
3.5 Dynamic semantics of FRGN (expressions (I)) 81
3.6 Dynamic semantics of FRGN (expressions (II)) 82
3.7 Dynamic semantics of FRGN (expressions (III)) 83
3.8 Dynamic semantics of FRGN (commands) 84
3.9 Static semantics of FRGN (definitions) 87
3.10 Static semantics of FRGN (expressions (I)) 88
3.11 Static semantics of FRGN (expressions (II)) 89

viii

3.12 Static semantics of FRGN (expressions (III)) 90
3.13 Static semantics of FRGN (commands (I)) 91
3.14 Static semantics of FRGN (commands (II)) 92
3.15 Static semantics of FRGN (types and indices) 94
3.16 Static semantics of FRGN (contexts) 95
3.17 Translation from SEC to FRGN (regions (I)) 98
3.18 Translation from SEC to FRGN (types and boxed types) 99
3.19 Translation from SEC to FRGN (outlives relations (I)) 100
3.20 Translation from SEC to FRGN (contexts) 101
3.21 Translation from SEC to FRGN (outlives relations (II)) 102
3.22 Translation from SEC to FRGN (regions (II)) 103
3.23 Translation from SEC to FRGN (terms (I)) 104
3.24 Translation from SEC to FRGN (terms (II)) 105
3.25 Translation from SEC to FRGN (terms (III)) 106
3.26 Translation from SEC to FRGN (terms (IV)) 107
3.27 Translation from SEC to FRGN (terms (V)) 108
3.28 Translation from SEC to FRGN (programs) 109

4.1 Syntax of λURAL . 125
4.2 Static semantics of λURAL (v) . 127
4.3 Static semantics of λURAL (�) . 128
4.4 Static semantics of λURAL (expressions) 129
4.5 Surface syntax of rgnURAL (I) . 132
4.6 Surface syntax of rgnURAL (II) . 133
4.7 Abstract machine syntax of rgnURAL (I) 135
4.8 Abstract machine syntax of rgnURAL (II) 137
4.9 Dynamic semantics of rgnURAL (expressions (I)) 138
4.10 Dynamic semantics of rgnURAL (expressions (II)) 139
4.11 Dynamic semantics of rgnURAL (contexts) 140
4.12 Dynamic semantics of rgnURAL (expressions (III)) 141
4.13 Dynamic semantics of rgnURAL (expressions (IV)) 142
4.14 Static semantics of rgnURAL (definitions) 146
4.15 Static semantics of rgnURAL (�) 147
4.16 Static semantics of rgnURAL (�) 148
4.17 Static semantics of rgnURAL (expressions (I)) 149
4.18 Static semantics of rgnURAL (expressions (II)) 150
4.19 Static semantics of rgnURAL (expressions (III)) 151
4.20 Static semantics of rgnURAL (expressions (IV)) 152
4.21 Static semantics of rgnURAL (expressions (V)) 153
4.22 Reference primitives for rgnURAL 155
4.23 Static semantics of rgnURAL (expressions (VI)) 157
4.24 Static semantics of rgnURAL (expressions (VII)) 158
4.25 Static semantics of rgnURAL (qualifiers, pre-types, types, and regions)160
4.26 Translation from FRGN to rgnURAL (indices and types (I)) 165

ix

4.27 Translation from FRGN to rgnURAL (types (II)) 166
4.28 Translation from FRGN to rgnURAL (types (III)) 167
4.29 Translation from FRGN to rgnURAL (contexts) 169
4.30 Translation from FRGN to rgnURAL (terms (I)) 170
4.31 Translation from FRGN to rgnURAL (terms (II)) 171
4.32 Translation from FRGN to rgnURAL (terms (III)) 172
4.33 Translation from FRGN to rgnURAL (commands (I)) 175
4.34 Translation from FRGN to rgnURAL (commands (II)) 176
4.35 Translation from FRGN to rgnURAL (commands (III)) 178
4.36 Translation from FRGN to rgnURAL (commands (IV)) 179
4.37 Translation from FRGN to rgnURAL (terms (IV)) 181
4.38 Translation from FRGN to rgnURAL (terms (V)) 182

5.1 Extensions to SEC for fix . 194
5.2 Extensions to FRGN for fix . 196
5.3 Translation from SEC to FRGN (fix) 197
5.4 Extensions to rgnURAL for fix . 198
5.5 Translation from FRGN to rgnURAL (fix) 199
5.6 Static semantics of SEC (region reference subtyping) 200
5.7 Static semantics of FRGN (region reference subtyping) 202
5.8 Translation from SEC to FRGN (region reference subtyping) 203
5.9 Translation from FRGN to rgnURAL (region reference subtyping (I)) 206
5.10 Translation from FRGN to rgnURAL (region reference subtyping (II)) 207
5.11 Translation from FRGN to rgnURAL (region reference subtyping (III))208
5.12 Translation from FRGN to rgnURAL (region reference subtyping (IV))210
5.13 Syntax of Cyc (I) . 219
5.14 Syntax of Cyc (II) . 220
5.15 Static semantics of Cyc (expressions (I)) 222
5.16 Static semantics of Cyc (expressions (II)) 223
5.17 Static semantics of Cyc (expressions (III)) 224
5.18 Static semantics of Cyc (expressions (IV)) 226
5.19 Translation from Cyc to Cyc (letRGN) 229
5.20 Translation from FRGN to Cyc (I) 230
5.21 Translation from FRGN to Cyc (II) 231
5.22 Translation from FRGN to Cyc (III) 232
5.23 Copying garbage collector example 237
5.24 Simple copying garbage collector in rgnURAL 239
5.25 Static semantics for rgnURAL with region sequences 243
5.26 Simple copying garbage collector in rgnURAL with region sequences 244

6.1 Translation from TRC/BRC to rgnURAL (function type) 250
6.2 Relationships among three “flavors” of type systems 255

A.1 Static semantics of SEC (definitions) 259

x

A.2 Static semantics of SEC (outlives judgments) 260
A.3 Static semantics of SEC (expressions (I)) 262
A.4 Static semantics of SEC (expressions (II)) 263
A.5 Static semantics of SEC (expressions (III)) 264
A.6 Static semantics of SEC (expressions (IV)) 264
A.7 Static semantics of SEC (values) 265
A.8 Static semantics of SEC (storable values) 265
A.9 Static semantics of SEC (stack types) 266
A.10 Static semantics of SEC (stacks) 266
A.11 Static semantics of SEC (regions and effects) 267
A.12 Static semantics of SEC (boxed types and types) 268
A.13 Static semantics of SEC (contexts) 269
A.14 Static semantics of SEC (programs) 269

B.1 Natural transition semantics of FRGN (abbreviated (I)) 276
B.2 Natural transition semantics of FRGN (abbreviated (II)) 277
B.3 Natural transition semantics of FRGN (congruence) 277
B.4 Static semantics of FRGN (definitions) 280
B.5 Static semantics of FRGN (expressions (II revised)) 281
B.6 Static semantics of FRGN (commands (I revised)) 282
B.7 Static semantics of FRGN (references and handles) 283
B.8 Static semantics of FRGN (commands (witness)) 284
B.9 Static semantics of FRGN (casts) . 284
B.10 Static semantics of FRGN (tower types) 285
B.11 Static semantics of FRGN (towers) 285
B.12 Static semantics of FRGN (types and indices) 287
B.13 Static semantics of FRGN (contexts) 288
B.14 Translation from SEC to FRGN (closed values) 294
B.15 Translation from SEC to FRGN (storable values) 294
B.16 Translation from SEC to FRGN (stack domains and stack types) . . 295
B.17 Translation from SEC to FRGN (stacks) 296
B.18 Translation from SEC to FRGN (references) 297
B.19 Translation from SEC to FRGN (regions (I)) 297
B.20 Translation from SEC to FRGN (regions (II)) 298
B.21 Translation from SEC to FRGN (outlives relations (II)) 299

C.1 Abstract machine syntax of rgnURAL (I) 306
C.2 Abstract machine syntax of rgnURAL (II) 307
C.3 Dynamic semantics of rgnURAL (store) 309
C.4 Dynamic semantics of rgnURAL (heap (I)) 309
C.5 Dynamic semantics of rgnURAL (heap (II)) 310
C.6 Dynamic semantics of rgnURAL (expressions (I)) 312
C.7 Dynamic semantics of rgnURAL (expressions (II)) 313
C.8 Dynamic semantics of rgnURAL (expressions (III)) 314

xi

C.9 Dynamic semantics of rgnURAL (contexts) 315
C.10 Dynamic semantics of rgnURAL (expressions (IV)) 316
C.11 Dynamic semantics of rgnURAL (expressions (V)) 317
C.12 Dynamic semantics of rgnURAL (expressions (VI)) 318
C.13 Static semantics of rgnURAL (definitions) 319
C.14 Static semantics of rgnURAL (� (I)) 320
C.15 Static semantics of rgnURAL (� (II)) 320
C.16 Static semantics of rgnURAL (v (III)) 321
C.17 Static semantics of rgnURAL (� (I)) 322
C.18 Static semantics of rgnURAL (� (II)) 322
C.19 Static semantics of rgnURAL (� (III)) 323
C.20 Static semantics of rgnURAL (qualifiers, pre-types, types, and regions)325
C.21 Static semantics of rgnURAL (expressions (I)) 326
C.22 Static semantics of rgnURAL (expressions (II)) 327
C.23 Static semantics of rgnURAL (expressions (III)) 328
C.24 Static semantics of rgnURAL (expressions (IV)) 329
C.25 Static semantics of rgnURAL (expressions (V)) 330
C.26 Static semantics of rgnURAL (expressions (VI)) 331
C.27 Static semantics of rgnURAL (expressions (VII)) 332
C.28 Static semantics of rgnURAL (expressions (VIII)) 333
C.29 Static semantics of rgnURAL (values (I)) 334
C.30 Static semantics of rgnURAL (values (II)) 335
C.31 Static semantics of rgnURAL (program state) 337
C.32 Static semantics of rgnURAL (heap) 339
C.33 Static semantics of rgnURAL (store) 340

xii

Chapter 1

Introduction
Memory is an essential resource used by computer programs to carry out compu-

tations. Almost all data manipulated by a computer program must be represented

(in some fashion) in memory. While today’s desktop computers come equipped

with more memory than ever before, memory remains a finite resource. In or-

der to achieve good overall system performance, a program should acquire and

release memory as needed, thereby leaving excess memory available to other pro-

grams. In today’s embedded computer systems (cell-phones, media players, etc.),

the finiteness of memory is felt more acutely, as these systems come equipped with

significantly less memory than a typical desktop computer system; correspondingly,

in these systems, it is even more desirable that a program not retain memory for

data it no longer needs.

We refer to the process of acquiring memory for data as allocation and the

process of releasing memory for data as deallocation. Typically, a program will

dynamically allocate and deallocate data, ideally retaining only the memory it

needs for future computation. Conceptually, both allocation and deallocation are

straightforward: acquire memory when new a data object is needed, release mem-

ory when an old data object is no longer needed. In practice, though, it can be

difficult to know precisely when data are not needed for future computation. Fur-

thermore, accessing memory after it has been released (equivalently, accessing a

data object after it has been deallocated) is a program error. This kind of program

error may manifest itself in an obvious manner as the abnormal termination of the

program or in a more subtle manner as the corruption of data; the latter occurs

1

when the program accesses memory that has been released but then reacquired for

the allocation of a new data object.

In order to structure the allocation and deallocation of data in a program,

a variety of memory-management schemes have been developed. For example, in

the C programming language, a programmer explicitly manages memory, using the

functions malloc to allocate new data and free to deallocate old data. Releasing

memory in this scheme can be both tedious and error prone; failure to deallocate

a data object that is no longer needed may lead to a memory leak, whereby a

program retains more memory than necessary; accidentally deallocating a data

object that is needed may lead to a program error.

Another common memory-management scheme is to use a garbage collector to

automatically deallocate data during the execution of a program. In this scheme, a

programmer allocates new data, but never explicitly deallocates old data. Rather,

the garbage collector periodically makes a conservative estimate of the data needed

by the program, and deallocates any data determined to be no longer needed. Re-

leasing memory in this scheme is convenient and safe (because the garbage collec-

tor’s conservative estimate of data needed by the program ensures that the program

never accesses data after it has been deallocated); however, using a garbage col-

lector incurs some overheads. Additional execution time is required to estimate

the data needed by a program; additional memory is required to represent data

managed by the garbage collector; finally, the conservative nature of the garbage

collector’s estimate of data needed by the program means that the garbage collector

may retain more memory than necessary (i.e., a memory leak).

Since both explicit memory management and automatic memory management

have different advantages and disadvantages, a better situation would be one where

2

a programmer may freely choose among memory management schemes. The best

situation would be one that additionally avoids memory leaks, by ensuring that

memory for data is eventually deallocated, and avoids program errors, by ensuring

that deallocated memory for data is not accessed. A compile-time static analysis

is a convenient way to inform a programmer about potential memory leaks and

program errors. While there are a variety of possible static analyses, the use of

a static type system has a number of advantages. A type system is naturally

compositional, leading to checking of programs in a modular fashion. A type

system ensures that a well-typed program is necessarily error free, rather than

detecting only some of the potential errors. Finally, a type system integrates

program properties into the programming language, rather than leaving program

analysis to a separate, extra-linguistic mechanism.

The work in this dissertation has been motivated by the desire to realize this

combination of flexible memory management along with strong static guaran-

tees enforced by type systems. We take as our starting point a third memory-

management scheme: region-based memory management. It stands in contrast to

explicit memory management using operations like malloc and free and to fully

automatic memory management using a garbage collector. In a program using

region-based memory management, a region is a collection of allocated data and

the corresponding acquired memory. During the program’s execution, it creates

and destroys regions in order to acquire and release memory. A region is created

empty; once a region is created, data may be allocated in and read from the region.

When a region is destroyed, all data in the region are deallocated and the corre-

sponding memory is released. Hence, the program’s acquired memory corresponds

to a collection of regions.

3

R2R1 R3R1 R2

(a) (b)

R3R1 R2 R3R1

(c) (d)

Figure 1.1: Region-based memory management example

Figure 1.1 shows the progression of a typical program’s memory when us-

ing region-based memory management. Each large box represents a region; each

smaller box represents a data object allocated in a region; each arrow represents

a pointer (or reference) from one data object to another. Note that there may be

both pointers from data in one region to data in another region and pointers from

data in one region to data in the same region.

Figure 1.1(a) shows an initial allocation of data in regions. In Figure 1.1(b), a

new, empty region R3 is created. In Figure 1.1(c), the program has allocated more

data in the three regions. In Figure 1.1(d), the program has destroyed the region

R2, deallocating all of the data in the region. Note that destroying R2 has led to

dangling pointers : pointers to data that has been deallocated. While the existence

of dangling pointers during a program’s execution is not an error, dereferencing

such pointers (that is, attempting to access the deallocated data) is an error.

4

Region-based memory management comes with both advantages and disadvan-

tages. The performance of region-based memory management has been shown to

be competitive with (or better than) other memory-management schemes for cer-

tain classes of programs [24, 6, 44]. This follows from the fact that the operations

for memory management (create a region, destroy a region, and allocate a data

object in a region) can be implemented efficiently. Regions provide a compelling

alternative to garbage collection, by avoiding some of the overheads incurred by

garbage collection. It has the advantage of supporting bulk deallocation of data,

which avoids the tedium of using free to deallocate individual units of data; bulk

deallocation may also be more efficient than individual deallocation. Region-based

memory management also has the advantage of allowing dangling pointers, which

can lead to better memory usage than that achieved by using a garbage collector,

which does not allow dangling pointers. However, dangling pointers also present

a disadvantage: a programmer must be careful to never dereference a dangling

pointer, since doing so would be an error; it corresponds to an attempt to access

deallocated data. A programmer must also avoid other, less obvious, errors, such

as allocating in a destroyed region and destroying a region more than once.

We say that a region which has been created and not yet destroyed is live.

Correspondingly, we say that a region which has been destroyed is dead. A region’s

lifetime refers to the time starting when the region is created and ending when the

region is destroyed. Note that in order to dereference a pointer without errors, the

region in which the pointed-to unit of data is allocated must be live. Similarly, in

order to destroy a region without errors, the region must be live.

Type systems for programming languages have proven to be extremely effective

at statically determining when a program is guaranteed not to perform erroneous

5

operations. Therefore, it comes at no surprise that researchers have proposed type

systems for region-based memory management. Such type systems are designed

to ensure region safety, which guarantees that there is no access to a region (for

allocating in or reading from the region) before it is created or after it is destroyed.

The Tofte-Talpin region calculus [79, 80] introduced one of the first type systems

for region-based memory management. In their calculus, regions are created and

destroyed with a lexically-scoped construct:

letregion ρ in e

In this construct, a region corresponding to ρ is created when the expression starts

evaluating; while the expression evaluates (in particular, during the evaluation

of the sub-expression e), data can be allocated in and read from the region ρ;

when e has been evaluated to a value, the region ρ is destroyed and the value is

returned. Note that the Tofte-Talpin region calculus restricts region-based memory

management in the following manner: when a region is destroyed, it must be the

most recently created (and not yet destroyed) region. Hence, the collection of

live regions may be organized as a stack, with the most recently created region

at the top; furthermore, regions must have nested lifetimes: if two regions have

overlapping lifetimes, then the lifetime of one must encompass the lifetime of the

other. Nonetheless, the Tofte-Talpin region calculus does allow dangling pointers.

The key contribution of the Tofte-Talpin region calculus was a type-and-effect

system that ensures the region safety of the language; in particular, it statically

detects and rejects programs that would dereference dangling pointers. The type-

and-effect system introduces a typing judgment Γ ` e : τ, φ, which reads “in the

environment Γ, the expression e has the type τ and the effect φ.” The effect φ

describes the regions that may be allocated in and read from when the expression

6

is evaluated; hence, it describes those regions that must be live in order to evaluate

the expression without errors.

Variations on the Tofte-Talpin region calculus and type-and-effect system have

been used in a number of projects. The ML-Kit compiler [78] uses automatic

region inference to translate Standard ML programs into executables that use

region-based memory management instead of a garbage collector.

The Cyclone language [29], a type-safe dialect of C, uses regions as an organizing

principle for memory management. The initial design of Cyclone was based up on

the region calculus and type-and-effect system of Tofte-Talpin. This initial design

included various kinds of regions, including: lexical regions, corresponding to the

Tofte-Talpin letregion ρ in e construct, and a heap region, which is created when

the program starts and is never destroyed, but data allocated in this region is

garbage collected. Furthermore, the type-and-effects system of Cyclone extends

that of the Tofte-Talpin region calculus with a form of region pointer subtyping —

pointers into a region whose lifetime encompasses the lifetime of a second region

can be safely treated as pointers into the second region.

Unfortunately, the nested lifetimes of lexically-scoped regions place severe re-

strictions on when data and memory can be effectively reclaimed. Many programs

using the lexical regions available in Cyclone result in (unbounded) memory leaks

when compared to the same programs using a garbage collector. For example,

a loop that allocates data each iteration and uses that data only in the next it-

eration cannot be executed with a fixed amount of acquired memory under the

nested-lifetimes regime.

To address these concerns, later versions of Cyclone have added a number of new

memory management features [77], including dynamic regions and unique point-

7

ers that provide more control over memory. Dynamic regions are not restricted

to nested lifetimes and can be treated as first-class objects; essentially, dynamic

regions may be created and destroyed by a program in an arbitrary order. They

are particularly well suited for iterative computations, continuation-passing style

computations, and event-based servers where lexical regions do not suffice. Unique

pointers are essentially lightweight, dynamic regions that hold exactly one object.

The efficacy of these new memory management features has been justified [44],

by analyzing a range of applications, including a streaming media server and a

space-conscious web server.

Unfortunately, the type-and-effect system of the Tofte-Talpin region calculus

is relatively complicated. At the type level, it introduces new syntactic classes for

regions and effects. Effects are meant to be treated as sets of regions, so standard

term equality no longer suffices for type checking. Finally, the typing rule for

letregion is extremely subtle because of the interplay of dangling pointers and

effects. Indeed, over the past few years, a number of papers have been published

attempting to simplify or at least clarify the soundness of the construct [16, 5, 39,

10, 11, 41].

All of these problems are amplified in Cyclone because the additional features

make the meta-theory considerably more complicated. Indeed, while the soundness

of Cyclone’s initial design (with lexical regions and region pointer subtyping) has

been established [30], an argument that justifies the soundness of the new memory

management features has proved elusive, due to sheer complexity. Much of the

complexity arises from the presence of related, but subtly different, features.

Thus, we may identify two major disadvantages in the present state of type sys-

tems for region-based memory management. First, the traditional type-and-effect

8

systems are complicated, both from the perspective of a programmer (who must

understand the meaning of the type-and-effect system) and from the perspective of

a language designer (who must prove the soundness of the type-and-effect system).

Second, the traditional limitation to lexically-scoped regions with nested lifetimes

restricts the applications that may effectively use region-based memory manage-

ment; furthermore, generalizing a type-and-effect system to handle non-lexically-

scoped regions results in an even more complicated type-and-effect system.

Therefore, the goal of this work is to find simpler and more expressive accounts

of type systems for region-based memory management. In particular, we wish

to explain the type soundness of languages like the Tofte-Talpin region calculus

and Cyclone via translation to target languages with simpler type systems that

nonetheless provide all of the power and safety of region-based memory manage-

ment with type-and-effect systems.

1.1 Summary

The central thesis of this dissertation, then, is that the type-and-effect systems

that have traditionally been used to ensure the safety of region-based memory

management are neither the only nor the simplest systems for this purpose. We

propose that monadic and substructural type systems give rise to simpler, more

expressive, and more uniform languages that continue to provide the power and

safety of region-based memory management.

In order to substantiate this claim, we define two languages with novel type

systems that ensure the safety of region-based memory management:

• the FRGN language, with a monadic type system, in which monadic encapsu-

lation ensures the safety of region-based memory management operations;

9

• the rgnURAL language, with a substructural type system, in which linear ca-

pabilities ensure the safety of region-based memory management operations.

The first major technical contribution of this work is the design of these lan-

guages and their respective monadic and substructural type systems; we believe

that the type systems for these languages are simpler than the type-and-effect

systems previously proposed. We have proven the soundness of these type sys-

tems, thereby establishing that these languages ensure the safety of their respective

region-based memory management operations.

The monadic language (FRGN) is inspired by the design of the ST monad of

Launchbury and Peyton Jones [56, 55], which is used to encapsulate a “stateful”

computation within a pure functional language. We introduce a monadic type,

RGN θ τ , as the type of a computation which transforms a stack of regions indexed

by θ and delivers a value of type τ ; the index θ denotes the stack of regions

which are live during the computation. The key element in the design of FRGN

is the introduction of terms that witness the relationship between the lifetimes of

lexically-scoped regions. These terms provide the evidence needed to safely “shift”

computations between regions with nested lifetimes. The safety of the language

relies upon the familiar parametric polymorphism of System F.

The ideas of the monadic type system for FRGN have been adapted by other

to manage file handles and database resources in the Haskell programming lan-

guage [51].

The substructural language (rgnURAL) is inspired by the design of linear type

systems [85, 65], the Calculus of Capabilities [90], and Alias Types [75, 91], each

of which is concerned with the ways in which resources are used in programs. We

introduce primitives for separately creating and destroying regions; these primitives

10

allow regions to have non-nested lifetimes and, hence, they are more powerful than

lexically-scoped regions alone. The key element in the design of rgnURAL is the

introduction of a type, Cap ρ, as the type of a capability that mediates access to a

region (for allocating data in and reading data from the region and for destroying

the region). A capability provides evidence that its corresponding region is live.

The safety of the language relies upon a substructural type system that ensures

that all capabilities for a region are consumed when the region is destroyed.

Many of the ideas of the substructural type system for rgnURAL have been

adapted in the advanced memory management features of the Cyclone language

(see Chapter 5). Similar ideas have been exploited in other systems that are

concerned with the ways in which resources are used in programs, particular in

the Vault language [18, 20], the Singularity project [46, 19], and for certified inline

reference monitoring [33, 34].

We believe that the descriptions of FRGN and rgnURAL to be given in subse-

quent chapters will develop sufficient intuition to reasonably establish our goal of

finding simpler accounts of type systems for region-based memory management.

However, while FRGN and rgnURAL will share many operational similarities with

other languages providing region-based memory management (e.g., evaluation with

a collection of regions), their type systems will appear to be quite different from

type-and-effect systems. Hence, we may wonder if the simplicity of the FRGN and

rgnURAL type systems point to some deficiency, failing to capture all of the idioms

available in type-and-effect systems for region-based memory management.

The second major technical contribution of this work is to demonstrate that we

have lost no expressive power by adopting the type systems of FRGN and rgnURAL.

To justify this claim, we define a language with a traditional type-and-effect system

11

and we show how this language may be translated to the FRGN language and we

show how the FRGN language may be translated to the rgnURAL language. The first

translation shows how monadic encapsulation may be used to eliminate the com-

plexity of type-and-effect systems, while the second translation shows how linear

capabilities may be used to eliminate the nested lifetimes of monadic encapsula-

tion. We also sketch the definition of a hybrid monadic and substructural language

that captures key features of the Cyclone language and discuss a translation from

this hybrid language to rgnURAL. This translation shows that Cyclone’s advanced

memory management features may be explained in terms of the rgnURAL language.

Throughout this dissertation, we only focus on core languages, suitable for

service as a compiler intermediate language or as a vehicle for formal reasoning.

These languages are not suitable for service as high-level programming languages,

as they lack many features that one would expect from such a programming lan-

guage. Nonetheless, the FRGN and rgnURAL languages serve to isolate the essential

aspects of region-based memory management that must be handled by a type

system that ensures region safety. Hence, this work furthers the general under-

standing of type systems in the context of region-based memory management and

serves as a useful starting point in the design of future, high-level programming

languages that wish to offer region-based memory management as a powerful and

safe memory-management scheme.

Furthermore, we may note that the issues that arise with the management of

memory using regions also arise in the management of any scarce resource that

is used during a computation. There are many sorts of resources that may be

acquired and released during the execution of a program: file handles, database

connections, concurrency locks, graphics processor texture and shader units, etc.

12

There are also less tangible, but equally important, “resources” that are used by

a program, such as the current state within a network or cryptographic protocol.

The techniques developed in this dissertation will be applicable to many resource

management problems.

1.2 Outline

Because one of our main goals in this dissertation is to demonstrate that the

monadic type system of FRGN and the substructural type system of rgnURAL are

suitable for encoding traditional type-and-effect systems for region-based memory

management, we structure the main body of this dissertation (Chapters 2, 3, and

4) as a sequence of languages and companion type systems; for each language and

type system in this sequence, we present a type- and meaning-preserving transla-

tion from the previous language in the sequence. These translations demonstrate

that each language is at least as expressive as the previous language; hence, they

validate the claim that our monadic and substructural type systems may express

all of the idioms available in type-and-effect systems for region-based memory

management. While the soundness of the type systems for each language is an

important consideration, we believe that the central thesis of this dissertation is

best addressed by focusing on the definitions of the languages and type systems

and the translations. Hence, the main body of this dissertation is supplemented by

a series of appendices (Appendices A, B, and C), which include technical details

(including arguments for the soundness of the type systems) that would otherwise

detract from the main focus.

In Chapters 2, 3, and 4, we present the three “flavors” of type systems for

region-based memory management introduced above: a type-and-effect system, a

13

monadic type system, and a substructural type system. Each chapter begins with

an overview, followed by a section of background material. This background ma-

terial reviews the relevant history and nature of the “flavor” of type system under

consideration. This motivates the definition of a language and type system, which

is presented formally by giving syntax, dynamic semantics (a formal description of

the execution of the language), and static semantics (a formal description of the

type system). Chapters 3 and 4 also give formal type- and meaning-preserving

translations: in Chapter 3, from a type-and-effect system to the monadic language

FRGN; in Chapter 4, from FRGN to the substructural language rgnURAL. These

chapters also review the relevant related work, before concluding with a chapter

summary.

Thus, the remainder of this dissertation is structured as follows.

In Chapter 2, we consider type-and-effect systems for region-based manage-

ment. We review the history and nature of type-and-effect systems, and informally

introduce the key aspects of the Tofte-Talpin region calculus. This motivates the

definition of the Single Effect Calculus, a variation of the Tofte-Talpin region cal-

culus with a novel type-and-effect system. The design of the Single Effect Calculus

builds on the following insight: in languages with lexically-scoped regions, only the

most-recently allocated region can be deallocated. This constraint can be lever-

aged to reduce the effect of a computation from a set of regions to a single region.

We also demonstrate that the Single Effect Calculus is sufficient to encode a Tra-

ditional Region Calculus, which corresponds directly to type-and-effect systems

given in the literature.

In Chapter 3, we introduce a monadic type system for region-based memory

management. We review a closely related monadic type system that served as

14

inspiration: the ST monad of Launchbury and Peyton Jones, which is used to

encapsulate “stateful” computations within a pure functional language. We show

why the ST monad and its variants are insufficient for encoding a the Tofte-Talpin

region calculus. This motivates the definition of the FRGN language, a monadic

extension of the the familiar System F. The design of FRGN builds on two insights:

1) explicit terms may be used to witness the relationships between the lifetimes

of lexically-scoped regions and to provide the evidence needed to safely “shift”

computations between regions with nested lifetimes; 2) the familiar parametric

polymorphism of System F may be used to ensure that dangling pointers are never

dereferenced. We demonstrate that FRGN is sufficient for encoding type-and-effect

systems for region-based memory management by giving a type- and meaning-

preserving translation from the Single Effect Calculus to FRGN.

In Chapter 4, we introduce a substructural type system for region-based mem-

ory management. We review the nature of substructural type systems, which may

be used to limit the number of uses of data and operations in a program. For

example, data may be annotated in ways that ensure that the data is used either

exactly once, at most once, at least once, or an arbitrary number of times. This

motivates the definition of the rgnURAL language, an extension of a substructural

λ-calculus. We introduce primitives for separately creating and destroying regions;

these primitives allow regions to have non-nested lifetimes, which gives rise to a

more expressive language than those previously considered, which only support

lexically-scoped regions. The design of rgnURAL builds on two insights: 1) sepa-

rating the name of a region from the property that the region is live allows more

flexible region lifetimes; 2) representing the property that a region is live by a

capability that mediates access to the region and limiting the number of uses of a

15

capability allows a substructural type system to ensure region safety. We demon-

strate that FRGN is sufficient for encoding monadic type systems for region-based

memory management by giving a type- and meaning-preserving translation from

FRGN to rgnURAL.

In Chapter 5, we consider the expressiveness of the various type-and-effect,

monadic, and substructural languages presented in the previous chapters, consider

extensions that provide support for additional programming features, and con-

sider an advanced application of region-based memory management. This short

investigation, along with the translations from the Single Effect Calculus to FRGN

(Section 3.3) and from FRGN to rgnURAL (Section 4.3), helps to justify FRGN and

rgnURAL as realistic formal languages that capture the essential aspects of region-

based memory management. We present a high-level overview of the Cyclone

language, introduce a hybrid monadic and substructural language that captures

the key features of Cyclone, and sketch a translation from this hybrid language to

rgnURAL. Finally, we consider an advanced application of region-based memory

management: expressing a type-safe copying garbage collector.

Chapter 6 concludes by reviewing the technical developments in this disserta-

tion and considering avenues for future work. As noted above, Appendices A, B,

and C supplement Chapters 2, 3, and 4, respectively, with technical details that

would otherwise detract from the main focus on the definitions of the languages

and type systems and the translations from one language to the next.

16

Chapter 2

Type-and-Effect Systems for

Region-Based Memory Management
In this chapter, we consider a variation of the Tofte-Talpin region calculus and three

type-and-effect systems for this region calculus. The reason for presenting multiple

type-and-effect systems arises from our goal of demonstrating that the monadic and

substructural type systems presented in Chapters 3 and 4 are suitable for encoding

region calculi; recall that our method for accomplishing this goal will be to give

type- and meaning-preserving translations from a source language with a type-

and-effect system to a target language with a monadic type system (Chapter 3)

and to a target language with a substructural type system (Chapter 4). As should

become clear, there is a large “semantic gap” between the type-and-effect system

for a typical region calculus and the monadic and substructural type systems. Our

conclusion is that the gap is too large to be bridged by a single translation. Instead,

we give three type-and-effect systems, which successively close the gap.

The key insight that drives this progression of type-and-effect systems is that

a LIFO stack of regions, such as that found in the Tofte-Talpin region calculus,

imposes a partial order on live (that is, created and not yet destroyed) regions.

Older regions (lower on the stack) outlive younger regions (higher on the stack).

Hence, the liveness of a region implies the liveness of all regions below it on the

stack.

The remainder of this chapter is structured as follows. In the following section,

we examine more closely the history and nature of type-and-effect systems and

informally introduce the key aspects of the Tofte-Talpin region calculus. This

17

motivates the definition of the Untyped Region Calculus, which is presented more

formally in Sections 2.2.1 and 2.2.2. The Untyped Region Calculus provides a core

syntax and dynamic semantics for a typical region calculus in the style of the Tofte-

Talpin region calculus. Sections 2.2.3, 2.2.4, and 2.2.5 present three type-and-effect

systems for the Untyped Region Calculus.

The first is a Traditional Region Calculus (Section 2.2.3), which corresponds di-

rectly to type-and-effect systems for region-based memory management given in the

literature [39, 10, 11]. The second is the Bounded Region Calculus (Section 2.2.4),

which augments the Traditional Region Calculus with a form of bounded region

polymorphism. The Bounded Region Calculus can be seen as a core model of early

designs for the Cyclone language [30, 29]. The third is the Single Effect Calculus

(Section 2.2.5), which restricts the Bounded Region Calculus by admitting only a

single region as the latent effect of an expression.

Type- and meaning-preserving translations from the Traditional Region Cal-

culus to the Bounded Region Calculus and from the Bounded Region Calculus

to the Single Effect Calculus are relatively straightforward (meaning-preservation

following directly from the shared dynamic semantics) and will presented as suc-

cinctly as possible. Because the Single Effect Calculus will be the source language

for our translation to the monadic type system of Chapter 3, we present the type-

and-effect system for the Single Effect Calculus in somewhat more detail than the

other two type-and-effect systems.

Appendix A compliments this chapter by including technical details that would

otherwise detract from the focus on the definition of the Single Effect Calculus.

18

2.1 Background: Type-and-Effect Systems

Computational effects abound in realistic programs; they correspond to communi-

cation though IO, manipulation of mutable state, and execution of irregular control

flow. Identifying the various computational effects in a program can yield insight

into the ways in which the various components of a program interact. For example,

by identifying that two expressions in a program manipulate disjoint portions of

the program’s mutable state, we may conclude that the two expressions could be

evaluated in parallel, without changing the observable behavior of the program.

A type-and-effect system provides the core mechanisms necessary to describe

the computational effects of a program. A conventional type system, such as that

employed by the simply-typed λ-calculus, with a typing judgment like Γ ` e : τ ,

describes only a property of the final value (if any) that is produced by the eval-

uation of e; for example, · ` e : Int asserts that the evaluation of e produces a

final value that is an integer. Note that it does not describe anything about the

computational effects that might occur during the evaluation of e.

In contrast, a type-and-effect system is designed so that the typing judgment

both describes the type of the final value and describes the important computa-

tional effects that occur during the evaluation of e. Type-and-effect systems use

a unified judgment to simultaneously derive both the type and the effect of an

expression. The basic type-and-effect judgment is Γ ` e : τ, φ, where φ is an effect

expression and τ, φ together form the type and effect. Informally, the judgment is

read “in the environment Γ, the evaluation of the expression e may have the ob-

servable effect φ and eventually yields a value of type τ , if any.” Variation amongst

type-and-effect systems largely arises from the choice of effect expressions and the

choice of auxiliary judgments that prove when one effect expression is equivalent

19

or subsumed by another effect expression. Every type-and-effect system includes

a number of atomic effects and a number of operations for combining effects.

Another defining characteristic of type-and-effect systems is the form of the

function type: τ1
φ−→ τ2. Note that the function type describes not only the types

of the argument and result, but also the latent (or delayed) effect of the function.

This latent effect describes the computational effect that occurs when the function

is applied to an argument.

The FX language [25, 26] was the first programming language to incorporate

a type-and-effect system. In the FX language, the effects are used to discover

scheduling constraints for a parallel implementation of FX programs [35]: for

example, two expressions that write to a mutable reference cannot be executed

in parallel, whereas two expressions that read from a mutable reference can be

executed in parallel. Hence, the type-and-effect system of FX tracks the allocating,

reading, and writing of shared, mutable references. This gives rise to the following

structure for effects:

Atomic effects

a ::= new | read | write

Effects

φ ::= {a1, . . . , an}

The main operation for combining effects is the union of two sets of atomic effects.

In order to more formally introduce type-and-effect systems, we consider a

very simple λ-calculus with shared, mutable references, dubbed λFX (since it is a

simplification of the FX language), whose syntax is given in Figure 2.1. The type

Ref τ denotes a shared, mutable reference, containing a value of type τ ; there is

an expression form to allocate (new) references, as well as expression forms to read

(read) and write (write) their contents.

20

Atomic effects

a ::= new | read | write

Effects

φ ::= {a1, . . . , an}

Types

τ ::= Bool | τ1
φ−→ τ2 | τ1 × · · · × τn | Ref τ

Boolean constants

b ∈ {true, false}

Value variables

f, x ∈ VVars

Terms

e ::= b | if eb then et else ef |

x | λx. e | e1 e2 |

〈e1, . . . , en〉 | seli e |

let x = ea in eb |

new e | read e | write e1 e2

Figure 2.1: Syntax of λFX

21

Γ `exp e : τ

Γ `exp b : Bool, {}

Γ `exp eb : Bool, φb Γ `exp et : τ, φt Γ `exp ef : τ, φf

Γ `exp if eb then et else ef : τ, eb ∪ φt ∪ φf

x ∈ dom(Γ) Γ(x) = τ

Γ `exp x : τ, {}

Γ, x:τx `exp e : τ, φ′

Γ `exp λx. e : τx
φ′
−→ τ, {}

Γf `exp ef : τx
φ′
−→ τ, φf Γa `exp ea : τx, φa

Γ `exp ef ea : τ, φf ∪ φa ∪ φ′

Γ `exp ei : τi, φi
i∈1...n

Γ `exp 〈e1, . . . , en〉 : τ1 × · · · × τn, φ1 ∪ · · · ∪ φn

Γ `exp e : τ1 × · · · × τn, φ 0 ≤ i ≤ n

∆; Γ `exp seli e : τi, φ

Γ `exp ea : τx, φa Γ, x:τx ` eb : τ, φb

Γ `exp let x = ea in eb : τ, φa ∪ φb

Γ `exp e : τ, φ

Γ `exp new e : Ref τ, φ ∪ {new}

Γ `exp e : Ref τ, φ

Γ `exp read e : τ, φ ∪ {read}

Γ `exp e : Ref τ, φ Γ `exp e? : τ, φ?

Γ `exp write e e? : 1, φ ∪ φ? ∪ {write}

Figure 2.2: Static semantics of λFX (expressions)

22

Figure 2.2 presents the type-and-effect for λFX ; as expected, type-and-effect

judgments have the form Γ `exp e : τ, φ. The rule for a boolean constant has the

empty effect ({}), as its evaluation has no computational effect. The rule for

if eb then et else ef combines the effects for eb, et, and ef . We may see that the

judgment derives a conservative approximation of the effect of an expression, since,

at run time, either et will be evaluated (and the effects denoted by φt will occur)

or ef will be evaluated (and the effects denoted by φf will occur), but not both.

In the rule for function abstraction, we may see that the effect of the function

body becomes the latent effect, while the function abstraction itself has the empty

effect. Since the body of the function is evaluated when the function is applied,

the rule for function application adds the latent effect to the effect of the entire

expression. In general, the rules combine the effects evaluated sub-expressions into

the effect of the entire expression (e.g., the rule for tuple introduction).

Finally, the rules for new, read, and write each introduce their respective

atomic effect.

Note that the type-and-effect system for λFX is very conservative and coarse.

For example, two expressions with the effects {read} and {} must not manipu-

late the same mutable state, while two expressions with the effects {read} and

{new, read, write} may manipulate the same mutable state. Furthermore, the ef-

fects derived by the type-and-effect system never decrease; they always accumulate

more effects, saturating with the effect {new, read, write}.

Consider the following λFX expression:

let r = new true in

let u = write r false in

read r

23

This expression has the type Bool and the effect {new, read, write}. Yet, it is

clear that this expression must not manipulate the same mutable state as any

other expression, since the only mutable state it manipulates is freshly allocated

in the expression itself (and, hence, must be disjoint from any other allocated

mutable state). Since the mutable state manipulated by the expression is private

to the expression, we might like to assign it the empty effect {}. Intuitively, this

corresponds to the fact that the side-effects of this expression cannot be observed

outside of the expression, and, hence, need not be reported in the effect of the

expression.

To handle these ideas, the base FX language was extended with regions [58],

which describe the portion of the mutable state in which side-effects may occur.1

We may incorporate this extension into λFX in the following manner:

Region names

r ∈ RNames

Atomic effects

a ::= new r | read r | write r

Effects

φ ::= {a1, . . . , an}

Types

τ ::= · · · | Ref r τ

Terms

e ::= · · · | new r e

Note that the atomic effects, the reference type, and the new expression are pa-

rameterized by a region. We may reconsider the λFX expression given above,

1In the FX language, regions were not used for memory management. Rather,
they were used to improve the precision of the effect system.

24

incorporating a region name:

let r = new r1 true in

let u = write r false in

read r

Now, this expression has the effect {new r1, read r1, write r1}. Furthermore, this

expression must not manipulate the same mutable state as any other expression

that has an effect which does not mention r1.

This refinement with regions allows, under certain circumstances, side-effects

that cannot be observed outside a given expression to be masked by the effect

system. However, this effect masking comes with a restriction to lexical scopes. In

particular, effect masking in FX is accomplished through the private expression

form, which declares a private region for local use. Side-effects on this region cannot

be observed outside of the expression and need not be reported in the effect of the

expression. We may incorporate this extension into λFX in the following manner:

Terms

e ::= · · · | private r in e

The type-and-effect rule for the private r in e expression is as follows:

Γ `exp e : τ, φ r /∈ RN(Γ) r /∈ RN(τ)

Γ `exp private r in e : τ, φ \ {new r, read r, write r}

where RN(Γ) and RN(τ) denote the set of region names in the context Γ and in

the type τ , respectively. Note that the type and effect of the entire expression is

the same as the type and effect of e, except that the effects on the private region r

are masked (i.e., removed from the effect). The rule also ensures that the private

region does not appear in either the (types of the) free variables of or the type of

25

e; this ensures that the region is private to the evaluation of e. We may reconsider

the λFX expression given above, incorporating a private region name:

private r1 in

let r = new r1 true in

let u = write r false in

read r

Now, this expression has the type Bool and the effect {}.

Tofte and Talpin recognized that this combination of regions denoting portions

of the program’s state, private regions, and effect masking in a type-and-effect

system could be used to account for the allocation and deallocation of values in a

program [79, 80]. One particular insight is that, if an expression has the type Bool

(as in the example λFX expression above), then all memory allocated during the

computation of the boolean could be deallocated at the end of the computation.

In order to realize this memory behavior, they introduced the concept of region-

based memory management. In their calculus, regions are areas of memory holding

heap allocated data. Expression forms that correspond to heap allocated values

(e.g., constant expressions, λ-abstractions, and tuple introductions) are annotated

with a region:

b at ρ

λx. e at ρ

〈e1, . . . , en〉 at ρ

The annotation at ρ indicates that the value should be allocated in the region

bound to the region variable ρ.2

2The at ρ annotation is analogous to the new r e expression form in λFX .

26

Regions are introduced and eliminated with a lexically-scoped construct:

letregion ρ in e

and thus have last-in-first-out (LIFO) lifetimes following the block structure of the

program. The collection of regions in a program may be organized as a stack. In the

construct above, a region corresponding to ρ is created when the expression starts

evaluating; while the expression evaluates (in particular, during the evaluation of

the sub-expression e), data can be allocated in and read from the region; when e

has been evaluated to a value, the region is destroyed and the value is returned.3

Tofte and Talpin designed a type-and-effects system that ensures the safety of

this allocation and deallocation scheme. The types of allocated data values are

augmented with the region in which they are allocated. For example the type:

((Int, ρ1)× (Int, ρ2), ρ1)

describes pairs of integers where the pair and integer in the first component are

allocated in region ρ1 and the integer in the second component is allocated in

region ρ2.
4

In the Tofte-Talpin region calculus, the atomic effects are regions (ρ) and ef-

fects are finite sets of regions (φ). Hence, in the type-and-effect system, the effect

denotes the set of regions that may be accessed during the evaluation of the ex-

pression; alternatively, it denotes the set of regions that must still be allocated

(live) in order to safely evaluate the expression. In general, any expression that

needs to read a value allocated in a region will require that region to be in the

effect of the expression; alternatively, it will require that the region be live.

3The letregion expression form is analogous to the private expression form
in λFX .

4The (τ, ρ) type is analogous to the Ref r τ type in λFX .

27

Region polymorphism makes it possible to abstract over the regions a compu-

tation manipulates. For example, a function fst that takes in a pair of integers

and returns the first component without examining it could have a type of the

form:

fst :: ∀ρ1, ρ2, ρ3.((Int, ρ1)× (Int, ρ2), ρ3)
{ρ3}−−→ (Int, ρ1)

Such a function is polymorphic over regions ρ1, ρ2, and ρ3; the caller can effectively

re-use the function regardless of where the data are allocated. However, the latent

effect {ρ3} on the function type indicates that whatever region instantiates ρ3 needs

to still be allocated when fst is called. In principle, neither of the other regions

needs to be live across the call since the function does not examine the integer

values. In practice, ρ1 will be live assuming the caller wishes to use the result.

As we noted earlier, region-based memory management allows evaluation to

lead to values with dangling pointers : pointers to data in some region that has

been deallocated. For some programs, this allows a region-based memory manager

to reclaim strictly more objects than a trace-based garbage collector. Consider,

for example, the following program:

letregion ρa in

let g = letregion ρb in

let p = (3 at ρa, 4 at ρb) at ρa

in λz:1. fst [ρa, ρb, ρa] p

in g 〈〉

The pair p and its first component are allocated in the outer (older) region ρa

whereas p’s second component is allocated in an inner (younger) region ρb. The

closure bound to g is a thunk that calls fst on p. Note that the region ρb is

deallocated before the thunk is run, and thus g ’s closure contains a dangling pointer

28

to an object that is never dereferenced. The Tofte-Talpin type-and-effect system

is strong enough to show that the code is safe.

2.2 Region and Effect Calculi

The Untyped Region Calculus is a variation of the Tofte-Talpin region calculus,

given as a language with syntax and dynamic semantics, but no type-and-effect

system. The Traditional Region Calculus, the Bounded Region Calculus, and the

Single Effect Calculus are a succession of type-and-effect systems for the Untyped

Region Calculus that ensure the region safety of the language; that is, they ensure

that there is no access to a region (for allocating in or reading from) before it is

created or after it is destroyed.

In this section, we present the Untyped Region Calculus and the three type-

and-effect systems in sufficient detail to establish the Single Effect Calculus as

a reasonable source language for the translation into a target language with a

monadic type system (Chapter 3) and to a language with a substructural type

system (Chapter 4). To this end, we include the syntax for both the surface

language of and abstract machine configurations for the Untyped Region Calculus,

dynamic semantics for the abstract machine configurations for the Untyped Region

Calculus, and static semantics for the surface languages of the Traditional Region

Calculus, the Bounded Region Calculus,a nd the Single Effect Calculus.

The dynamic semantics defines a large-step (or natural) semantics, which de-

fines an evaluation relation from stacks of regions and expressions to values. Our

main reason for adopting a large-step operational semantics is to simplify the the-

orems and proofs of Section 3.3 and Appendix B.3; establishing the correctness

of the translation from the Single Effect Calculus to the monadic language would

29

Region variables

%, $ ∈ RVars where H ∈ RVars

Surface regions

ρ, π ::= %

Effects

φ ::= {ρ1, . . . , ρn}

Figure 2.3: Surface syntax of URC (I)

be more difficult using small-step operational semantics, due to differing num-

bers of intermediate small-steps. Nonetheless, there is a straightforward mech-

anism for distinguishing divergent computations from stuck configurations; see

Appendix B.1.1.

We purposefully omit the static semantics for the abstract machine configu-

rations (normally included for a syntactic proof of type soundness), since it re-

quires a number of technical details that detract from the focus on the translation.

Appendix A.1 includes additional technical details for the Single Effect Calculus

language and (sketches) a syntactic proof of type soundness.

2.2.1 Syntax of the Untyped Region Calculus

Our first region calculus is the Untyped Region Calculus (URC), which is a variation

of the region calculus of Tofte and Talpin [79, 80], in the spirit of more recent direct

presentations of region calculi [39, 10, 11, 41]. This calculus will provide core syntax

and dynamic semantics for the subsequent type systems.

30

Integer constants

i ∈ Z

Boolean constants

b ∈ {true, false}

Value variables

f, x ∈ VVars

Surface terms

e ::= i at ρ | e1 ⊕ e2 at ρ | e1 < e2 | b | if eb then et else ef |

x | λx. e at ρ | e1 e2 | (e1, . . . , en) at ρ | seli e |

letregion % in e | Λ%. u at ρ | e [ρ] |

Abstractions

u ::= λx. e at ρ | Λ%. u at ρ

Figure 2.4: Surface syntax of URC (II)

31

Surface Syntax of URC

Figures 2.3 and 2.4 presents the syntax of “surface programs” (that is, excluding

syntax and semantic objects that will appear in the dynamic semantics) of URC.

In the following sections, we explain and motivate the main constructs of URC.

Terms Terms are similar to those found in the λ-calculus. One major difference

is that introduction forms corresponding to heap allocated values carry a region

annotation at ρ, which indicates in which region the value is to be allocated. We

assume that integers, tuples, and function closures, and region abstractions require

heap allocated storage, while booleans do not. New regions are introduced (and

implicitly created and destroyed) by the letregion % in e term. The region vari-

able % is bound within e, demarcating the scope of the region. Within e, values may

be read from or allocated in the region %. Executing letregion % in e allocates a

new region of memory, then executes e, and finally deallocates the region.

The term λ%. u at ρ introduces a region abstraction (allocated in the region ρ),

where the term u is polymorphic in the region %.5 Such region polymorphism is

particularly useful in the definition of functions, in which we parameterize over the

regions necessary for the evaluation of the function. The term e [ρ] eliminates a

region abstraction; operationally, it substitutes the region ρ for the region variable

% in a region abstraction body and evaluates the resulting term.

Regions and effects We will discuss the meaning of regions and effects in more

detail in the subsequent sections that introduce type-and-effect systems for URC.

At this point, we simply note that we introduce syntactic classes for regions and

5Limiting the body of a region abstraction to abstractions ensures that an
erasure function that removes region annotations and produces a λ-calculus term
is meaning preserving.

32

Region names

r ∈ RNames where H ∈ RNames

Constant regions

r ::= r | •

Pointer names

p ∈ PNames

Abstract machine regions

ρ, π ::= . . . | r

Abstract machine terms

e ::= . . . | ref r p

Values

v ::= b | ref r p

Figure 2.5: Abstract machine syntax of URC (I)

effects. Effects are simply finite sets of regions. In the surface syntax, it suffices to

allow regions to range over region variables (RVars), which include a distinguished

member H, corresponding to a global region that remains allocated throughout

the execution of the program.

Abstract Machine Configurations for URC

Figures 2.5 and 2.6 presents the syntax of abstract machine configurations for URC,

which extends the syntax of the previous section with semantic objects that appear

in the operational semantics.

33

Storable values

w ::= i | λx. e | (v1, . . . , vn) | Λ%. u

Regions

R ::= {p1 7→ w1, . . . , pn 7→ wn}

Stacks

S ::= · | S, r 7→ R (ordered domain)

Abstract machine configurations

(S; e)

Figure 2.6: Abstract machine syntax of URC (II)

Region names and pointers are used to represent references to region allocated

values. Region constants distinguish between live and dead regions; a dead region

(•) corresponds to a deallocated region. There is a distinguished region name H,

corresponding to a global region that remains allocated throughout the execution

of the program.

The abstract machine syntax adds one new region form and one new expres-

sion form. The region r is the instantiated form of a region variables (hence, •

corresponds to a dead region). The expression ref r p is the (live) pointer associ-

ated with a region allocated value. Likewise, the expression ref • p is the is the

(dangling) pointer associated with a region deallocated value.

Thus far, we have talked about region allocated data without discussing where

such data is stored. Because the introduction forms for region allocated values are

not themselves values, we formalize the syntactic class of storable values. Storable

34

values are associated with pointers in regions R and regions are ordered into stacks

S. Intuitively, evaluating a letregion expression adds a new region to the top of

the stack (the new region is deallocated upon completing the letregion body).

These intuitions are formalized in the dynamic semantics of the next section.

2.2.2 Dynamic Semantics of the Untyped Region Calculus

An inductive judgment (Figures 2.7 and 2.8) defines the dynamic semantics of URC.

We state without proof that the dynamic semantics is deterministic; it is syntax

directed, taking (S; e) configurations modulo α-conversion, including conversion of

region names and pointers, which are (uniquely) bound in the stack S.

We use the notation S(r) for the lookup of regions in stacks and the nota-

tion S(r, p) for the iterated lookup of storable values in stacks. These are partial

functions, defined as follows:

S(r) = undefined if r /∈ dom(S)

S(r) = R if r ∈ dom(S) and S ≡ . . . , r 7→ R, . . .

S(r, p) = undefined if S(r) = undefined

S(r, p) = undefined if S(r) = R and p /∈ dom(R)

S(r, p) = R if S(r) = R and p ∈ dom(R) and R ≡ {. . . , p 7→ w, . . .}

We also use the notation S{(r, p) 7→ w} to denote the stack S ′ which extends the

stack S with a mapping from p to w in the region S(r). This function is defined

when r ∈ dom(S) and S(r) = R and p /∈ dom(R).

The judgment (S; e) ⇓ (S ′; v′) asserts that evaluating the closed expression e

in stack S results in a new stack S ′ and a value v′. Note that the rules for

(S; e) ⇓ (S ′; v′) thread the modified stack through each expression evaluation, im-

35

(S; e) ⇓ (S ′; v′)

r ∈ dom(S) p /∈ dom(S(r))

(S; i at r) ⇓ (S{(r, p) 7→ i}; ref r p)

(S; e1) ⇓ (S1; ref r1 p1) S1(r1, p2) = i1

(S1; e2) ⇓ (S2; ref r2 p2) S2(r2, p2) = i2

r ∈ dom(S) p /∈ dom(S(r)) i1 ⊕ i2 = i

(S; e1 ⊕ e2 at r) ⇓ (S2{(r, p) 7→ i}; ref r p)

(S; e1) ⇓ (S1; ref r1 p1) S1(r1, p2) = i1

(S1; e2) ⇓ (S2; ref r2 p2) S2(r2, p2) = i2

i1 < i2 = b

(S; e1 < e2) ⇓ (S2; b) (S; b) ⇓ (S; b)

(S; eb) ⇓ (S ′; true) (S ′; et) ⇓ (S ′′; v′′)

(S; if eb then et else ef) ⇓ (S ′′; v′′)

(S; eb) ⇓ (S ′; false) (S ′; ef) ⇓ (S ′′; v′′)

(S; if eb then et else ef) ⇓ (S ′′; v′′)

Figure 2.7: Dynamic semantics of URC (I)

36

(S; e) ⇓ (S ′; v′)

r ∈ dom(S) p /∈ dom(S(r))

(S; λx. e at r) ⇓ (S{(r, p) 7→ λx. e}; ref r p)

(S; ef) ⇓ (Sf ; ref rf pf) Sf (rf , pf) = λx. eb

(Sf ; ea) ⇓ (Sa; va) (Sa; eb[va/x]) ⇓ (S ′; v′)

(S; ef ea) ⇓ (S ′; v′)

(S; e1) ⇓ (S1; v1) . . . (Sn−1; en) ⇓ (Sn; vn)

r ∈ dom(Sn) p /∈ dom(Sn(r))

(S; (e1, . . . , en) at r) ⇓ (S2{(r, p) 7→ (v1, . . . , vn)}; ref r p)

(S; e) ⇓ (S ′; ref r p)

S ′(r, p) = (v1, . . . , v2) 1 ≤ i ≤ n

(S; seli e) ⇓ (S ′; vi)

r ∈ dom(S) p /∈ dom(S(r))

(S; Λ%. u at r) ⇓ (S{(r, p) 7→ Λ%. u}; ref r p)

(S; ef) ⇓ (Sf ; ref rf pf) Sf (rf , pf) = Λ%. ub

(Sf ; u[ρa/%]) ⇓ (S ′; v′)

(S; ef [ρa]) ⇓ (S ′; v′)

r /∈ dom(S) (S, r 7→ {}; e[r/%]) ⇓ (S ′, r 7→ R′; v′)

(S; letregion % in e) ⇓ (S ′[•/r]; v′[•/r])

Figure 2.8: Dynamic semantics of URC (II)

37

posing a left-to-right evaluation order. Consider, for example, the following rule:

(S; e1) ⇓ (S1; ref r1 p1) S1(r1, p2) = i1

(S1; e2) ⇓ (S2; ref r2 p2) S2(r2, p2) = i2

r ∈ dom(S) p /∈ dom(S(r)) i1 ⊕ i2 = i

(S; e1 ⊕ e2 at r) ⇓ (S2{(r, p) 7→ i}; ref r p)

The first line evaluates e1 to a live reference (ref r1 p1) and reads out the integer

stored at p1 in the region r1. Likewise, the second line evaluates e2 to a live reference

(ref r2 p2) and reads out the integer stored at p2 in the region r2. Finally, a fresh

pointer in the region r is chosen, and the final stack with the computed integer

stored at the freshly chosen location and the location are returned. The other rules

work in much the same manner.

The rule for letregion introduces (and subsequently eliminates) a new region.

The rule executes in the following manner. First, a fresh region name r is chosen.

Next, the region r is substituted for the region variable % in the body of the

letregion expression. The expression is then evaluated under the extended stack

S, r 7→ {} (that is, the stack S extended with an empty region (bound to r)),

yielding a modified stack (of the form S ′, r 7→ R′) and a value v′. The modified top

region is discarded, while occurrences of r are replaced by • in the modified stack

S ′ and value v′. This replacement ensures that any occurrences of ref terms in S ′

or v′ are marked as dead, since the region has been deallocated and is no longer

accessible.

It is important to note that the execution of any expression that allocates or

reads a region allocated value is predicated upon having a live region in the stack.

While it will be possible to have expressions that reference deallocated regions,

it will not be possible to evaluate them. The type-and-effect systems of the next

38

e ⇓prog v

(·, H 7→ {}; e[H/H]) ⇓ (·; H 7→ R′; v′)

e ⇓prog v′[•/H]

Figure 2.9: Dynamic semantics of URC (programs)

sections ensure that these invariants are preserved during the execution of well-

typed programs.

Finally, there is a special rule for the evaluation of surface programs (Fig-

ure 2.9). Programs in the Untyped Region Calculus are simply terms. We distin-

guish programs because the type-and-effect systems presented in the next sections

have special judgments for top-level programs. Essentially, this judgment estab-

lishes reasonable “boundary conditions” for a program’s execution, an aspect that

is often overlooked in other descriptions of region calculi. Programs are evaluated

under a stack with a distinguished region H, which is substituted for the region

variable H during the evaluation of the program. Essentially, one can consider the

evaluation of a program e as being equivalent to the evaluation of the expression

letregion H in e, where the final stack is discarded.

2.2.3 Static Semantics of the Traditional Region Calculus

Our first type-and-effect system for URC is the Traditional Region Calculus (TRC),

which corresponds to type-and-effect systems given in the literature [39, 10, 11].

The static semantics of TRC modifies the surface syntax of URC by adding

the syntactic classes of boxed types and types and adding effect annotations to

functions and region abstractions (Figure 2.10).

39

Boxed types

ω ::= Int | τ1
φ′
−→ τ2 | τ1 × · · · × τn | | ∀%.φ

′
τ

Types

τ ::= Bool | (ω, ρ)

Surface expressions

e ::= · · · | λx:τ.φ
′
e at ρ | Λ%.φ

′
u at ρ

Figure 2.10: Surface syntax of TRC

As noted before, a region is associated with every value that requires heap

allocated storage. This is reflected in the syntax of types. The type (ω, ρ) pairs

together a boxed type (a type requiring heap allocated storage) and a region place-

holder; we interpret (ω, ρ) as the type of values of boxed type ω allocated in region

ρ. The forms of the function boxed type (τ1
φ′
−→ τ2) and the region-abstraction

boxed type (∀%.φ
′
τ) are defining characteristics of “traditional” type-and-effect

systems. Recall that an effect φ is a finite set of regions. In the function and

region-abstraction types, the effect φ′ is a latent effect : a (super)set of those re-

gions allocated in or read from when the function or region abstraction is applied

and evaluated.

Definitions Figure 2.11 presents additional definitions for syntactic objects that

appear in the static semantics. Contexts ∆ are ordered lists of region variables

and contexts Γ are ordered lists of variables with types. We tacitly assume that

all contexts are well-formed: ∆ contains distinct region variables and Γ contains

distinct value variables.

40

Region contexts ∆ ::= · | ∆, %

Value contexts Γ ::= · | Γ, x:τ

Figure 2.11: Static semantics of TRC (definitions)

Terms Figure 2.12 gives an abbreviated static semantics for TRC; we omit some

of the auxiliary judgments and some typing rules for expressions, as they are similar

to the ones presented in full for the Single Effect Calculus in Section 2.2.5.

The judgment ∆; Γ `exp e : τ, φ asserts that under the region context ∆ and

the value context Γ, the expression e has the type τ and the effect φ. The effect φ

describes the regions that may be accessed when the expression is evaluated.

The rules for constants, arithmetic and boolean operations, function abstrac-

tion and application, tuple introduction and selection, and region abstraction and

instantiation all have similar forms. Rules for those expression introduction forms

with a region annotation at ρ add {ρ} to the effect of the entire expression, in-

dicating that ρ is accessed in order to allocate a value during evaluation. Rules

for expression elimination forms for region allocated values also add {ρ} to the

effect of the entire expression, indicating that {ρ} is accessed in order to read the

value during evaluation. The rules for function and region abstraction check that

the bodies have the correct latent effect, while the rules for application and region

instantiation add the latent effect to the effect of the entire expression. Finally,

the rules generally accumulate the effect of sub-expressions (e.g., the rule for tuple

introduction).

The key rule in region calculi is the typing rule for letregion:

∆ `type τ `ctxt ∆; Γ; (φ \ %) ∆, %; Γ `exp e : τ, φ

∆; Γ `exp letregion % in e : τ, φ \ %

41

∆; Γ `exp e : τ, φ

∆; Γ `exp e1 : τ1, φ1 · · · ∆; Γ `exp en : τn, φn ∆ `region ρ

∆; Γ `exp 〈e1, . . . , en〉 at ρ : (τ1 × · · · × τn, ρ), φ1 ∪ · · · ∪ φn ∪ {ρ}

∆; Γ `exp e : (τ1 × · · · × τn, ρ), φ 0 ≤ i ≤ n

∆; Γ `exp seli e : τi, φ ∪ {ρ}

∆; Γ, x : τx `exp e : τ, φ′ ∆ `region ρ

∆; Γ `exp λx : τx.
φ′

e at ρ : (τx
φ′
−→ τ, ρ), {ρ}

∆; Γ `exp ef : (τx

φ′
f−→ τ, ρf), φf ∆; Γ `exp ea : τx, φa

∆; Γ `exp ef ea : τ, φf ∪ φa ∪ {ρf} ∪ φ′f

∆ `type τ `ctxt ∆; Γ; (φ \ %) ∆, %; Γ `exp e : τ, φ

∆; Γ `exp letregion % in e : τ, φ \ %

∆, %; Γ `exp u : τ, φ′ ∆ `region ρ

∆; Γ `exp Λ%.φ
′
u at ρ : (∀%.φ

′
τ, ρ), {ρ}

∆; Γ `exp ef : (∀%.φ
′
f τ, ρf), φf ∆ `region ρa

∆; Γ `exp ef [ρa] : τ [ρa/%], φf ∪ {ρf} ∪ φ′f [ρa/%]

`prog e

·,H; · `exp e : Bool, φ φ ⊆ {H}

`prog e

Figure 2.12: Static semantics of TRC (abbreviated)

42

The antecedent ∆ `type τ asserts that the new region variable % does not appear

in the result type; in particular, it does not appear in any effects occurring in

function or region abstraction types that appear in the result. Note further that

the implicit antecedent % /∈ dom(∆) and the explicit antecedent `ctxt ∆; Γ; (φ \ %)

ensure that % does not appear in the types of the value environment nor in the

effect of the entire expression. Together, these facts guarantee that the region % is

not needed before the evaluation of e, nor is it needed after, corresponding to the

allocation and deallocation of a new region. Nonetheless, the region % may appear

in the effect of the body (∆, %; Γ `exp e : τ, φ).

Note that the typing rules rely upon set theoretic operations (∈, ∪, and \) to

check and synthesize effects. As the translation in Chapter 3 will require witnessing

effect subsumption by explicit coercions, the Bounded Region Calculus and the

Single Effect Calculus of the next sections will formalize these relations as separate

judgments.

2.2.4 Static Semantics of the Bounded Region Calculus

Our second type-and-effect system for URC is the Bounded Region Calculus (BRC),

which augments TRC with a form of bounded region polymorphism. The Bounded

Region Calculus can be seen as a core model of early versions of Cyclone [30,

29]. One key difference (among many) between Cyclone and the Tofte-Talpin

region calculus is that the type-and-effects system of Cyclone extends that of Tofte-

Talpin’s with a form of bounded region polymorphism. The abstraction of a region

variable % may be bounded by a set of regions φ. At the instantiation of a region

variable % by a region r, we must show that the liveness of the region r implies the

liveness of all the regions in φ. Within the body of the abstraction, we may assume

43

Boxed types

ω ::= Int | τ1
φ′
−→ τ2 | τ1 × · · · × τn | | ∀% � φ.φ

′
τ

Types

τ ::= Bool | (ω, ρ)

Surface expressions

e ::= · · · | λx:τ.φ
′
e at ρ | Λ% � φ.φ

′
u at ρ

Figure 2.13: Surface syntax of BRC

that % is an upper bound on the set of regions φ. However, like the Tofte-Talpin

region calculus, Cyclone treats effects as sets of regions affected by the evaluation

of an expression.

The static semantics of TRC modifies the surface syntax of URC by adding

the syntactic classes of boxed types and types, adding effect annotations to func-

tions and region abstractions, and adding an effect bound to region abstractions

(Figure 2.13).

In a region-abstraction type ∀% � φ.φ
′
τ , the effect φ serves as a lower bound

on the lifetime of the region variable %. (Note that the region variable % is bound

within φ′ and τ , but not φ.) The abstraction can only be instantiated by a region

ρ that has been pushed on the stack more recently than those regions in φ. Within

the body of the abstraction, we may safely assume that % is outlived by all of the

regions in φ. Put another way, if % is live, then all of the regions in φ must be live.

Definitions Figure 2.14 presents additional definitions for syntactic objects that

appear in the static semantics. Contexts ∆ are ordered lists of region variables

bounded by effects (finite sets of regions) and contexts Γ are ordered lists of vari-

44

Region contexts ∆ ::= · | ∆, % � φ

Value contexts Γ ::= · | Γ, x:τ

Figure 2.14: Static semantics of BRC (definitions)

ables with types. We tacitly assume that all contexts are well-formed: ∆ contains

distinct region variables and Γ contains distinct value variables.

Outlives judgments Figure 2.15 gives the judgments that formalize the liveness

relationships between regions and effects. We summarize these judgments in the

following table:

Judgment Meaning

∆ `rr ρ2 � ρ1 If region ρ2 is live, then region ρ1 is live.

(Alt.: region ρ1 outlives region ρ2.)

∆ `re ρ � φ If region ρ is live, then all regions in φ are live.

(Alt.: all regions in φ outlive region ρ.)

∆ `er φ 3 ρ Region ρ is a region in φ.

∆ `ee φ ⊇ φ′ All region in φ′ are regions in φ.

We note that the typing rules for the judgments `rr and `re simply formalize the

reflexive, transitive closure of the syntactic constraints in ∆, each of which asserts

a particular “outlived by” relation between a region variable and an effect set.

Likewise, the judgments `er and `rr formalize the set theoretic operations used

by the Traditional Region Calculus. The ∆ `region ρ and ∆ `eff φ judgments check

that ρ and φ, respectively, are well-formed in the region context ∆ (see Figure 2.25).

Terms Figures 2.16 and 2.17 give an abbreviated static semantics for BRC; we

omit some of the auxiliary judgments and some typing rules for expressions, as

45

∆ `rr ρ2 � ρ1

(% � {ρ1, . . . , ρi, . . . , ρn}) ∈ ∆

∆ `rr % � ρi

∆ `region ρ

∆ `rr ρ � ρ

∆ `rr ρ2 � ρ′ ∆ `rr ρ′ � ρ1

∆ `rr ρ2 � ρ1

∆ `re ρ � φ

∆ `rr ρ � ρi
i∈1...n

∆ `re ρ � {ρ1, . . . , ρn}

∆ `er φ 3 ρ

∆ `eff {ρ1, . . . , ρn}

∆ `er {ρ1, . . . , ρn} 3 ρi

∆ `ee φ ⊇ φ′

∆ `eff φ ∆ `er φ 3 ρi
i∈1...n

∆ `ee φ ⊇ {ρ1, . . . , ρn}

Figure 2.15: Static semantics of BRC (outlives judgments)

46

∆; Γ `exp e : τ, φ

∆; Γ `exp e1 : τ1, φ · · · ∆; Γ `exp en : τn, φ ∆ `region ρ ∆ `er φ 3 ρ

∆; Γ `exp 〈e1, . . . , en〉 at ρ : (τ1 × · · · × τn, ρ), φ

∆; Γ `exp e : (τ1 × · · · × τn, ρ), φ ∆ `er ρ 3 φ 0 ≤ i ≤ n

∆; Γ `exp seli e : τi, φ

∆; Γ, x : τx `exp e : τ, φ′ ∆ `region ρ ∆ `er φ 3 ρ

∆; Γ `exp λx:τx.
φ′

e at ρ : (τx
φ′
−→ τ, ρ), φ

∆; Γ `exp ef : (τx

φ′
f−→ τ, ρf), φ ∆ `er φ 3 ρf

∆; Γ `exp ea : τx, φ ∆ `ee φ ⊇ φ′f

∆; Γ `exp ef ea : τ, φ

∆ `type τ `ctxt ∆; Γ; {ρ1, . . . , ρn}

∆, % � {ρ1, . . . , ρn}; Γ `exp e : τ, {ρ1, . . . , ρn, %}

∆; Γ `exp letregion % in e : τ, {ρ1, . . . , ρn}

∆, % � φb; Γ `exp u : τ, φ′ ∆ `region ρ ∆ `er φ 3 ρ

∆; Γ `exp Λ% � φb.
φ′

u at ρ : (∀% � φb.
φ′

τ, ρ), φ

∆; Γ `exp ef : (∀% � φb.
φ′

f τ, ρf), φ ∆ `er φ 3 ρf

∆ `region ρa ∆ `re ρa � φb ∆ `ee φ ⊇ φ′f [ρa/%]

∆; Γ `exp ef [ρa] : τ [ρa/%], φ

Figure 2.16: Static semantics of BRC (abbreviated (I))

47

`prog e

·,H � {}; · `exp e : Bool, {H}

`prog e

Figure 2.17: Static semantics of BRC (abbreviated (II))

they are similar to the ones presented in full for the Single Effect Calculus in

Section 2.2.5.

As in TRC, the judgment ∆; Γ `exp e : τ, φ asserts that under the region context

∆ and the value context Γ, the expression e has the type τ and the effect φ, which

describes the regions that may be accessed when the expression is evaluated.

The rules for constants, arithmetic and boolean operations, function abstrac-

tion and application, tuple introduction and selection, and region abstraction and

instantiation all have similar forms. Rules for those expression introduction forms

with a region annotation at ρ check that ρ is in the effect of the entire expression

(∆ `er φ 3 ρ), since ρ is accessed in order to allocate a value during evaluation.

Rules for expression elimination forms for region allocated values also check that

ρ is in the effect of the entire expression, since ρ is accessed in order to read the

value during evaluation. The rule for function abstraction checks that the body

has the correct latent effect, while the rule for function application checks that the

latent effect is in the effect of the entire expression (∆ `ee φ ⊇ φ′f).

The rules for region abstraction and instantiation are similar, except that the

rule for region instantiation requires that we be able to show that the region

argument ρa is outlived by all of the regions in the region abstraction bound φb; it

further checks that the latent effect (with the region argument ρa substituted for

the region variable %) is in the effect of the entire expression (∆ `ee φ ⊇ φ′[ρa/%]).

48

Finally, the rules generally require sub-expressions to have the same effect as

the entire expression (e.g., the rule for tuple introduction).

As always, the key rule is the typing rule for letregion:

∆ `type τ `ctxt ∆; Γ; {ρ1, . . . , ρn}

∆, % � {ρ1, . . . , ρn}; Γ `exp e : τ, {ρ1, . . . , ρn, %}

∆; Γ `exp letregion % in e : τ, {ρ1, . . . , ρn}

As before, the rule ensures that the new region % is not needed before the evaluation

of e, nor is it needed after, corresponding to the allocation and deallocation of a

new region. Furthermore, the rule relates the new region to the currently live

regions by introducing % into the region context with an appropriate bound: while

% is live, all regions in {ρ1, . . . , ρn} are live.

Note that the typing rules have replaced the set theoretic operations used in

TRC with separate judgments.

Translation of TRC to BRC

There is a trivial translation from the Traditional Region Calculus to the Bounded

Region Calculus, whereby every region abstraction becomes a region abstraction

with an empty bound; Figure 2.18 gives an abbreviated translation (the translation

is homomorphic in the other syntactic forms).

Type preservation corresponds to the validity of effect enlargement.

Lemma 2.1 (Translation Preserves Types)

(1) If ∆; Γ `TRC
exp e : τ, φ, then forall φ′, if `BRC

ctxt D̃J∆K ; G̃JΓK ; φ′ and

D̃J∆K `BRC
ee φ′ ⊇ φ, then D̃J∆K ; G̃JΓK `BRC

exp ẼJeK : T̃JτK , φ′.

(2) If `TRC
prog e, then `BRC

prog ẼJeK.

49

Boxed types

T̃
r
τ1

φ′
−→ τ2

z
= T̃Jτ1K

φ′
−→ T̃Jτ2K

T̃
q
∀%.φ

′
τ
y

= ∀% � {}.φ′ T̃JτK

Types

T̃J(ω, ρ)K = (T̃JωK , ρ)

Expressions

Ẽ
q
λx:τ.φ

′
e at ρ

y
π

= λx:T̃JτK .φ
′ ẼJeK at ρ)

ẼJe1 e2K = ẼJe1K ẼJe2K

ẼJletregion % in eK = letregion % in ẼJeK

Ẽ
q
λ%.φ

′
u at ρ

y
= λ% � {}.φ′ ẼJuK at ρ

ẼJe [ρ]K = ẼJeK [ρ]

Programs

ẼJeK = ẼJeK

Figure 2.18: Translation from TRC to BRC (abbreviated)

50

Boxed types

ω ::= Int | τ1
π′
−→ τ2 | τ1 × · · · × τn | | ∀% � φ.π

′
τ

Types

τ ::= Bool | (ω, ρ)

Surface expressions

e ::= · · · | λx:τ.π
′
e at ρ | Λ% � φ.π

′
u at ρ

Figure 2.19: Surface syntax of SEC

Meaning preservation is trivial, as the languages share the same dynamic se-

mantics.

Lemma 2.2 (Translation Correctness (Programs))

If `TRC
prog e and e ⇓prog b and ẼJeK = e†,

then e† ⇓prog b.

2.2.5 Static Semantics of the Single Effect Calculus

Our third type-and-effect system for URC is the Single Effect Calculus (SEC), which

is a restricted form of BRC, where latent effects consist of a single region instead

of a finite set of regions. As convention, we will use π to represent regions that

correspond to such effects and we will use $ to represent region variables that

correspond to such effects.

Because SEC will be the source of our translation into the monadic type sys-

tem of Chapter 3, we present the static semantics in somewhat more detail than

previous systems.

51

Region contexts ∆ ::= · | ∆, % � φ

Expression contexts Γ ::= · | Γ, x:τ

Figure 2.20: Static semantics of SEC (definitions)

The static semantics of SEC modifies the syntax of URC by adding the syntactic

classes of boxed types and types, adding effect annotations to functions and region

abstractions, and adding an effect bound to region abstractions (Figure 2.13).

In SEC, the latent effect π′ of functions and region abstractions denotes an

upper bound (in the ordering of live regions) on the set of regions affected when

the function or region abstraction is applied and evaluated.

Definitions Figure 2.20 presents additional definitions for syntactic objects that

appear in the static semantics. Contexts ∆ are ordered lists of region variables

bounded by effects (finite sets of regions) and contexts Γ are ordered lists of vari-

ables with types. We tacitly assume that all contexts are well-formed: ∆ contains

distinct region variables and Γ contains distinct value variables.

Outlives judgments Figure 2.21 reproduces the judgments ∆ `rr ρ2 � ρ1 and

∆ `re ρ � φ from BRC. Note that for SEC, we do not require the other judgments

(∆ `er φ 3 ρ and ∆ `ee φ ⊇ φ′).

Terms Figures 2.22, 2.23, and 2.24 present the typing rules for the judgment

∆; Γ;`exp e : τ, π, which asserts that under region context ∆ and value context

Γ, the expression e has type τ and effects bounded by the region π. In practice,

and as suggested by the typing rules, π usually corresponds to the most recently

allocated region (also referred to as the top or current region).

52

∆ `rr ρ2 � ρ1

`rctxt ∆ (% � {ρ1, . . . , ρi, . . . , ρn}) ∈ ∆

∆ `rr % � ρi

∆ `region ρ

∆ `rr ρ � ρ

∆ `rr ρ2 � ρ′ ∆ `rr ρ′ � ρ1

∆ `rr ρ2 � ρ1

∆ `re ρ � φ

`rctxt ∆ ∆ `rr ρ � ρi
i∈1...n

∆ `re ρ � {ρ1, . . . , ρn}

Figure 2.21: Static semantics of SEC (outlives judgments)

The rules for constants, arithmetic and boolean operations, function abstrac-

tion and application, tuple introduction and selection, and region abstraction and

instantiation all have similar forms. Rules for those expression introduction forms

with a region annotation at ρ check that the liveness of ρ is implied by the live-

ness of the single region bounding the effect for the entire expression (∆ `rr π � ρ),

since ρ is accessed in order to allocate a value during evaluation. Rules for expres-

sion elimination forms for region allocated values also check that the liveness of ρ

is implied by the single region bounding the effect of the entire expression, since

ρ is accessed in order to read the value during evaluation. The rule for function

abstraction checks that the body has the correct single region bounding the latent

effect, while the rule for function application checks that the liveness of single re-

gion is implied by the liveness of the single region bounding the effect of the entire

expression (∆ `rr π � πf).

53

∆; Γ `exp e : τ, π

`ctxt ∆; Γ; π ∆ `region ρ ∆ `rr π � ρ

∆; Γ `exp i at ρ : (Int, ρ), π

∆; Γ `exp e1 : (Int, ρ1), π ∆ `rr π � ρ1

∆; Γ `exp e2 : (Int, ρ2), π ∆ `rr π � ρ2

∆ `region ρ ∆ `rr π � ρ

∆; Γ `exp e1 ⊕ e2 at ρ : (Int, ρ), π

∆; Γ `exp e1 : (Int, ρ1), π ∆ `rr π � ρ1

∆; Γ `exp e2 : (Int, ρ2), π ∆ `rr π � ρ2

∆; Γ `exp e1 < e2 : Bool, π

`ctxt ∆; Γ; π

∆; Γ `exp b : Bool, π

∆; Γ `exp eb : Bool, π

∆; Γ `exp et : τ, π ∆; Γ `exp ef : τ, π

∆; Γ `exp if eb then et else ef : τ, π

Figure 2.22: Static semantics of SEC (expressions (I))

54

∆; Γ `exp e : τ, π

`ctxt ∆; Γ; π x ∈ dom(Γ) Γ(x) = τ

∆; Γ `exp x : τ, π

∆; Γ, x:τx `exp e : τ, π′ ∆ `region ρ ∆ `rr π � ρ

∆; Γ `exp λx : τx.
π′

e at ρ : (τx
π′
−→ τ, ρ), π

∆; Γ `exp ef : (τx

π′
f−→ τ, ρf), π ∆ `rr π � ρf

∆; Γ `exp ea : τx, π ∆ `rr π � π′f

∆; Γ `exp ef ea : τ, π

∆; Γ `exp e1 : τ1, π · · · ∆; Γ `exp en : τn, π

∆ `region ρ ∆ `rr π � ρ

∆; Γ `exp 〈e1, . . . , en〉 at ρ : (τ1 × · · · × τn, ρ), π

∆; Γ `exp e : (τ1 × · · · × τn, ρ), π

∆ `rr π � ρ 0 ≤ i ≤ n

∆; Γ `exp seli e : τi, π

Figure 2.23: Static semantics of SEC (expressions (II))

55

∆; Γ `exp e : τ, π

∆ `type τ `ctxt ∆; Γ; π

∆, % � {π}; Γ `exp eb : τ, %

∆; Γ `exp letregion % in eb : τ, π

∆, % � φ; Γ `exp u : τ, π′ ∆ `region ρ ∆ `rr π � ρ

∆; Γ `exp Λ% � φ.π
′
u at ρ : (∀% � φ.π

′
τ, ρ), π

∆; Γ `exp ef : (∀% � φ.π
′
f τ, ρf), π ∆ `rr π � ρf

∆ `region ρa ∆ `re ρa � φ ∆ `rr π � π′f [ρa/%]

∆; Γ `exp ef [ρa] : τ [ρa/%], π

Figure 2.24: Static semantics of SEC (expressions (III))

The rules for region abstraction and instantiation are similar, except that the

rule for region instantiation requires that we be able to show that the region

argument ρa is outlived by all of the regions in the region abstraction bound φb;

it further checks that single region bounding the latent effect (with the region

argument ρa substituted for the region variable %) is in the effect of the entire

expression (∆ `rr π � πf [ρa/%]).

Finally, the rules generally require sub-expressions to have the same single

region effect as the entire expression (e.g., the rule for tuple introduction).

As always, the key rule is the typing rule for letregion:

∆ `type τ `ctxt ∆; Γ; π

∆, % � {π}; Γ `exp eb : τ, %

∆; Γ `exp letregion % in eb : τ, π

56

The antecedent ∆ `type τ asserts that the new region variable % does not appear

in the result type; in particular, it does not appear in any latent single region

effects or in any effect bounds occurring in function or region abstraction types

that appear in the result. Note further that the implicit antecedent % /∈ dom(∆)

and the explicit antecedent `ctxt ∆; Γ; π ensure that % does not appear in the types

of the value environment. Together, these facts guarantee that the region % is

not needed before the evaluation of e, nor is it needed after, corresponding to the

allocation and deallocation of a new region. This new region is clearly related to

the current region π — it is outlived by the “old” current region and becomes the

“new” current region for the evaluation of e. These facts are captured by the final

antecedent ∆, % � {π}; Γ `exp e : τ, %.

It is worth comparing the treatment of latent effects in the Single Effect Cal-

culus with their treatment in the other two type systems:

∆; Γ `exp ef : (τx

φ′
f−→ τ, ρf), φf ∆; Γ `exp ea : τx, φa

∆; Γ `exp ef ea : τ, φf ∪ φa ∪ {ρf} ∪ φ′f

TRC

∆; Γ `exp ef : (τx

φ′
f−→ τ, ρf), φ ∆ `er φ 3 ρf

∆; Γ `exp ea : τx, φ ∆ `ee φ ⊇ φ′f

∆; Γ `exp ef ea : τ, φ

BRC

∆; Γ `exp ef : (τx

π′
f−→ τ, ρf), π ∆ `rr π � ρf

∆; Γ `exp ea : τx, π ∆ `rr π � π′f

∆; Γ `exp ef ea : τ, π

SEC

In the Single Effect Calculus, the composite effect φf ∪ φa ∪ {ρf} ∪ φ′f is wit-

nessed by a single region π that subsumes the effect of the entire expression. We

interpret π as an upper bound on the composite effect; hence, π is an upper bound

57

∆ `region ρ

`rctxt ∆ % ∈ dom(∆)

∆ `region %

∆ `eff ϕ

`rctxt ∆ ∆ `region ρi
i∈1...n

∆ `eff {ρ1, . . . , ρn}

Figure 2.25: Static semantics of SEC (regions and effects)

on each of the effect sets φf and φa, which explains why π is used in the antecedents

that type-check the sub-expressions ef and ea. We require ρf to outlive the cur-

rent region π by the antecedent ∆ `rr π � ρf . Finally, we require the latent single

effect π′, which is an upper bound on the set of regions affected by executing the

function (φ′f), to outlive the current region, which ensures that π is also an upper

bound on the set of regions affected by executing the function.

In the Bounded Region Calculus, the effect for which π is an upper bound is

manifest as φ. The antecedents ∆ `er φ 3 ρf and ∆ `ee φ ⊇ φ′f serve the same

purpose as ∆ `rr π � ρ′1 and ∆ `rr π � π′, namely to ensure that the region of the

function closure and the latent effect are subsumed by the effect of the application.

Regions, effects, boxed types, types, and contexts Figures 2.25 and 2.26

contain additional (completely standard) judgments for ensuring that regions ρ,

effects φ, boxed types ω, types τ , region contexts ∆, and value contexts Γ are well-

formed. These judgments simply enforce the invariant that no type or expression

may depend upon unbound region variables.

58

∆ `btype ω

`rctxt ∆

∆ `btype Int

∆ `type τ1 ∆ `region π′ ∆ `type τ2

∆ `btype τ1
π′
−→ τ2

∆ `type τ1 · · · ∆ `type τn

∆ `btype τ1 × · · · × τn

∆ `eff φ ∆, % � φ `region π′ ∆, % � φ `type τ

∆ `btype ∀% � φ.π
′
τ

∆ `type τ

`rctxt ∆

∆ `type Bool

∆ `btype ω ∆ `region ρ

∆ `type (ω, ρ)

Figure 2.26: Static semantics of SEC (boxed types and types)

59

`prog e

·,H � {}; · `exp e : Bool,H

`prog e

Figure 2.27: Static semantics of SEC (programs)

Surface programs Since surface programs have a distinguished evaluation rule,

we adopt the judgment `prog e given in Figure 2.27. The rule for top-level surface

programs requires that an expression evaluate to a boolean value in the context of

distinguished region H that remains live throughout the execution of the program.

It also serves as the single effect that bounds the effects of the entire program.

Alternative formulations of these “boundary conditions” exist; we have adopted

these to simplify the translation in Chapter 3.

Translation of BRC to SEC

We can give a straightforward translation from the Bounded Region Calculus into

the Single Effect Calculus.

At the type level, this translation expands every function type into a region

abstraction and function type:

T̂
r
(τ1

φ−→ τ2, ρ)
z

= (∀$ � φ.ρ (T̂Jτ1K
$−→ T̂Jτ2K , ρ), ρ)

At the term level, source functions become region abstractions and functions, and

applications become region instantiations and applications. A similar approach

deals with region abstractions in the source language. Essentially, this translation

works by looking for the places where region sets are used in BRC and simply

replacing them by an abstraction bounded by that set. Clearly, this is not the

60

Boxed types

T̂
r
τ1

φ′
−→ τ2

z

ρ
= ∀$ � φ′.ρ (T̂Jτ1K

$−→ T̂Jτ2K , ρ)

T̂
q
∀% � φ.φ

′
τ
y

ρ
= ∀% � φ.ρ (∀$ � φ′.$ T̂JτK , ρ)

Types

T̂J(ω, ρ)K = (T̂JωKρ , ρ)

Expressions

Ê
q
λx:τ.φ

′
e at ρ

y
π

= λ$ � φ′.ρ (λx:T̂JτK .$ ÊJeK$ at ρ) at ρ

ÊJe1 e2Kπ = ÊJe1Kπ [π] ÊJe2Kπ

ÊJletregion % in eKπ = letregion % in ÊJeK%

Ê
q
λ% � φ.φ

′
u at ρ

y
π

= λ% � φ.ρ (λ$ � φ′.$ ÊJuK$ at ρ) at ρ

ÊJe [ρ]Kπ = ÊJeKπ [ρ] [π]

Programs

ÊJeK = ÊJeKH

Figure 2.28: Translation from BRC to SEC (abbreviated)

61

most efficient translation. For example, in places where we could statically identify

an upper bound on the region set (e.g., a singleton region set), we could elide the

abstraction and simply use the upper bound.

Figure 2.28 gives an abbreviated translation from the Bounded Effect Calculus

to the Single Effect Calculus (the translation is homomorphic on the other syntactic

forms). The translation witnesses each introduced bounded abstraction with the

current region, which is threaded through the translation by the π component of

ÊJeKπ. We can prove that the translation is type- and meaning-preserving.

Lemma 2.3 (Translation Preserves Types)

(1) If ∆; Γ `BRC
exp e : τ, φ, then forall ∆′ and π, if `SEC

ctxt D̂J∆K , ∆′; ĜJΓK ; π

and D̂J∆K , ∆′ `SEC
re π � φ, then D̂J∆K , ∆′; ĜJΓK `SEC

exp ÊJeKπ : T̂JτK , π.

(2) If `BRC
prog e, then `SEC

prog ÊJeK.

Lemma 2.4 (Translation Correctness (Programs))

If `BRC
prog e and e ⇓prog b and ÊJeK = e†,

then e† ⇓prog b.

2.3 Summary

We have given three type-and-effect systems for a language in the spirit of the

Tofte-Talpin region calculus. The Traditional Region Calculus (TRC) corresponds

directly to type-and-effect systems for region calculi given in the literature [39,

10, 11]. Its defining characteristics are the form of the function type, the region

abstraction type, and the type-and-effect judgment for expressions:

τ1
φ−→ τ2 ∀%.φ τ ∆; Γ `exp e : τ, φ

62

where the effect φ is a finite set of regions, which denote a (super)set of those

regions allocated in or read from when the function or region abstraction is applied

or when the expression is evaluated.

The Bounded Region Calculus (BRC) takes inspiration from Cyclone [30, 29]

and the Calculus of Capabilities [16, 90], where the “outlives” relationship between

regions is recognized as an important component of type systems for region cal-

culi. The Bounded Region Calculus extends TRC with a form of bounded region

polymorphism. Hence, the form of the function type, the region abstraction type,

and the type-and-effect judgment for expressions are given as follows:

τ1
φ−→ τ2 ∀% � φ′.φ τ ∆; Γ `exp e : τ, φ

where the effect φ′ serves as a lower bound on the lifetime of any region that

instantiates %. The partial order on regions is given by the LIFO stack of regions.

Older regions (lower on the stack) outlive younger regions (higher on the stack).

The liveness of a region implies the liveness of all regions below it on the stack.

Finally, the Single Effect Calculus (SEC) makes further use of the partial order

on regions. We note that, in any finite set of regions (which are all live), there

must be a youngest region, whose liveness implies the liveness of all. This youngest

region can serve as a witness for the set of regions; the region appears as a single

effect in place of the set. The form of the function type, the region abstraction

type, and the type-and-effect judgment for expressions are given as follows:

τ1
π−→ τ2 ∀% � φ′.π τ ∆; Γ `exp e : τ, π

where π denotes a single region. We will shortly see that SEC may be translated

into the monadic type system of Chapter 3 and the substructural type system of

Chapter 4.

63

Chapter 3

A Monadic Type System for

Region-Based Memory Management
The region calculi of the previous chapter captured the essence of type-and-effect

systems for region-based memory management. However, the type-and-effect sys-

tems that they introduce are relatively complicated, both from the perspective of

a programmer (who must understand the meaning of the type-and-effect system)

and from the perspective of a language designer (who must prove the soundness

of the type-and-effect system). In particular, effects and their propagation appear

in every typing rule, even those that do not manipulate regions. Furthermore,

the typing rule for letregion is extremely subtle, sue to the interplay of dangling

pointers and effects.

However, we can encode the (complicated) type-and-effect system of the Single

Effect Calculus using nothing more than the parametric polymorphism granted by

the (simple) type system of System F. This chapter demonstrates that parametric

polymorphism and the technique of monadic encapsulation give rise to a simpler

and more uniform language that continues to provide the power and safety of

region-based memory management.

The work in this chapter was inspired by the ST monad of Launchbury and

Peyton Jones [56, 55], which is used to encapsulate a “stateful” computation within

a pure functional language such as Haskell. Indeed, the runST primitive of the ST

monad turns out to be a good approximation of letregion: it creates a new store,

allows one to allocate values in the store, and upon completion, deallocates the

store and returns a value that may have dangling pointers. The runST primitive

64

can be assigned a conventional polymorphic type, which, via the parametricity

of the type, ensures that dangling pointers are never dereferenced. Unfortunately,

runST is not sufficient to encode region-based languages since there is no support for

nested stores. In particular, a nested application of runST cannot allocate or touch

data in an outer store. An extension to ST that admits a limited form of nested

stores was proposed by Launchbury and Sabry [57] but, as we discuss in Section 3.1,

it does not provide enough flexibility to encode the region polymorphism of the

Tofte-Talpin region calculus or Cyclone.

In this chapter, we consider a monad family, called RGN, which does provide the

necessary power to encode region calculi and back this claim by giving a translation

from the Single Effect Calculus of the previous chapter to a monadic extension

of System F, which we dub FRGN. The central element of the translation is the

presence of terms that witness the outlives relation and region subtyping of SEC.

These terms provide the evidence needed to safely “shift” computations from one

store to another. We believe that this translation sheds new light on both region

calculi as well as Haskell’s ST monad. In particular, it shows that the notion of

region subtyping is in some sense central for supporting nested stores.

The remainder of this chapter is structured as follows. In the following section,

we examine more closely why the ST monad and its variants are insufficient for

encoding region-based languages. This motivates the design for FRGN, which is

presented more formally in Section 3.2. A key aspect of FRGN is that it adopts the

type system of System F with no (significant) extensions. Encapsulation of region

computations in FRGN is ensured by the type system, using parametric polymor-

phism. We feel that Sections 3.1 and 3.2 develop sufficient intuition to reasonably

establish our goal of finding a simpler account of region-based type systems.

65

However, the skeptical reader may well wonder if the simplicity of the FRGN type

system points to some deficiency, failing to capture all of the idioms available in

type-and-effect systems for region calculi. Hence, in Section 3.3, we show how the

Single Effect Calculus can be translated to FRGN in a type- and meaning-preserving

fashion, thereby establishing our claim that a monadic type system is sufficient for

encoding the type-and-effects systems of region calculi.

In Sections 3.4 and 3.5, we consider related work and summarize and note

directions for future work. Appendix B compliments this chapter by including

technical details that would otherwise detract from the focus on the translation.

3.1 Background: From ST to RGN

Launchbury and Peyton Jones [56, 55] introduced the ST monad to encapsulate

stateful computations within the pure functional language Haskell. Three key

insights give rise to a safe and efficient implementation of stateful computations.

First, a stateful computation is represented as a store transformer, a description

of commands to be applied to an initial store to yield a final store. Second, the

store can not be duplicated, because the state type is opaque and all primitive

store transformers use the store in a single-threaded manner; hence, a stateful

computation can update the store in place. Third, parametric polymorphism can

be used to safely encapsulate and run a stateful computation.

The types and operations associated with the ST monad are the following:

τ ::= . . . | ST τs τ | STRef τs τ

returnST :: ∀s. ∀α. α→ ST s α

thenST :: ∀s. ∀α, β. ST s α→ (α→ ST s β)→ ST s β

66

newSTRef :: ∀s. ∀α. α→ ST s (STRef s α)

readSTRef :: ∀s. ∀α. STRef s α→ ST s α

writeSTRef :: ∀s. ∀α. STRef s α→ α→ ST s ()

runST :: ∀α. (∀s. ST s α)→ α

The type ST s τ is the type of computations which operate on a store and deliver a

value of type τ . The type s behaves like an index (or name) for the store and serves

to distinguish computations operating on one store from computations operating

on another store. The type STRef s τ is the type of references allocated from a

store indexed by s and containing a value of type τ .

The operations returnST and thenST are the unit and bind operations of

the ST monad. The former yields the trivial store transformer that delivers its

argument without affecting the store. The latter composes store transformers in

sequence, passing the result and final store of the first computation to the second;

notice that the two computations must manipulate stores indexed by the same

type.

The next three operations are primitive store transformers that operate on

the store. newSTRef takes an initial value and yields a store transformer, which,

when applied to a store, allocates a fresh reference, and delivers the reference and

the store augmented with the reference mapping to the initial value. Similarly,

readSTRef and writeSTRef yield computations that respectively query and update

the mappings of references to values in the current store. Note that all of these

operations require the store index types of ST and STRef to be equal.

In this section, we will write short code examples in pseudo-Haskell syntax

using the do notation, which provides a more conventional syntax for monadic

67

programming.1 Here is a function yielding a computation that adds the contents

of two references into a new reference:

add :: ∀s. STRef s Int→ STRef s Int→ ST s Int

add v w = do a← readSTRef v;

b← readSTRef w;

newSTRef (a + b)

Finally, the operation runST encapsulates a stateful computation. To do so,

it takes a store transformer as its argument, applies it to an initial empty store,

and returns the result while discarding the final store. Note that to apply runST,

we instantiate α with the type of the result to be returned, and then supply a

store transformer, which is polymorphic in the store index type. The effect of this

universal quantification is that the store transformer makes no assumptions about

the initial store (e.g., the existence of pre-allocated references). Furthermore, the

instantiation of the type variable α occurs outside the scope of the type variable

s; this prevents the store transformer from delivering a value whose type mentions

s. Thus, references or computations depending on the final store cannot escape

beyond the encapsulation of runST.

All of these observations can be carried over to the region case, where we inter-

pret stores as regions. We introduce the type RGN r τ as the type of a computation

which transforms a region indexed by r and delivers a value of type τ . Likewise,

the type RGNRef r τ is the type of (mutable) references allocated in a region in-

dexed by r and containing a value of type τ . Each of the operations in the ST

1This notation allows “do x← e; stmts” as shorthand for
“thenST e (λx. do stmts)” and “do e” as shorthand for “e”. We use Haskell
as a convenient and familiar notation, but the correspondence is somewhat weak.
In particular, all of the calculi presented in this dissertation will evaluate under a
call-by-value semantics.

68

monad has an analogue in the RGN monad:

returnRGN :: ∀r.∀α. α→ RGN r α

thenRGN :: ∀r.∀α, β. RGN r α→ (α→ RGN r β)→ RGN r β

newRGNRef :: ∀r.∀α. α→ RGN r (RGNRef r α)

readRGNRef :: ∀r.∀α. RGNRef r α→ RGN r α

writeRGNRef :: ∀r.∀α. RGNRef r α→ α→ RGN r α

runRGN :: ∀α. (∀r. RGN r α)→ α

Does this suffice to encode region-based languages, where runRGN corresponds to

letregion? In short, it does not. In a region-based language, it is critical to

allocate locations in and read locations from an outer region while in the scope

of an inner region. For example, an essential idiom in region-based languages is

to enter a letregion in which temporary data is allocated, while reading input

from and allocating output in an outer region; upon leaving the letregion, the

temporary data is reclaimed, but the input and output data are still available.

Unfortunately, this idiom cannot be accommodated in the framework presented

thus far. For example, consider this canonical example of region-based memory

management usage:

letregion ρ1 in

let a = 1 at ρ1 in

let c = letregion ρ2 in

let b = 7 at ρ2 in

let z = a + b at ρ1

in z

in . . . c . . .

where we think of a as an input, b as a temporary, and c as an output. A näıve

69

translation fails to type-check:

runRGN (Λr1.

do a← newRGNRef [r1] 1;

c← runRGN (Λr2.

do b← newRGNRef [r2] 7;

z ← a + b;

newRGNRef [r1] z);

. . . c . . .)

The error arises from the fact that allocating a temporary in the younger region

(newRGNRef [r2] 7) yields a computation of type RGN r2 (RGNRef r2 Int), while

allocating the result in the older region (newRGNRef [r1] z) yields a computation

of type RGN r1 (RGNRef r1 Int). These computations cannot be sequenced, since

their region indices differ.

Launchbury and Sabry [57] argue that the principle behind runST can be gen-

eralized to provide nested scope. They introduce two additional operations

blockST :: ∀s. ∀α. (∀r. ST (s× r) α)→ ST s α

importSTRef :: ∀s, r.∀α. STRef s α→ STRef (s× r) α

where blockST encapsulates a nested scope and importSTRef explicitly allows

references from an enclosing scope to be manipulated by the inner scope. Similarly,

Peyton Jones2 suggests introducing the constant

liftST :: ∀s, r.∀α. ST s α→ ST (s× r) α

in lieu of importSTRef, with the same intention of importing computations from

an outer scope into the inner scope. In essence, liftST encodes the stack of stores

using a tuple type for the index of the ST monad.

2private communication

70

Should we adopt blockST and liftST in the RGN monad as letRGN and

liftRGN? At first glance, doing so would appear to provide sufficient expres-

siveness to encode region-based languages. We can “fix” our previous translation

as follows:

runRGN (Λr1.

do a← newRGNRef [r1] 1;

c← runRGN (Λr2.

do b← newRGNRef [r2] 7;

z ← a + b;

liftRGN [r1] [r2] (newRGNRef [r1] z));

. . . c . . .)

However, another critical aspect of region-based languages is region polymorphism.

For example, consider a generalization of the add function above, where each of

the two input references is allocated in a different region, the output reference is

to be allocated in a third region, and the result computation is to be indexed by a

fourth region; such a function would have the type:

gadd :: ∀r1, r2, r3, r4.

RGNRef r1 Int→

RGNRef r2 Int→

RGN r4 (RGNRef r3 Int)

However, there is no way to write gadd with liftRGN terms alone that will result

in sufficient polymorphism over regions. For example, if we write

gadd v w = liftRGN (do a← readRGNRef v;

b← liftRGN (readRGNRef w);

liftRGN (liftRGN (newRGNRef (a + b))))

71

then we produce a function with the type:

gadd :: ∀r1, r2, r3, r4.

RGNRef ((r1 × r2)× r3) Int→

RGNRef (r1 × r2) Int→

RGN (((r1 × r2)× r3)× r4) (RGNRef r1 Int)

The problem is that the explicit connection between the outer and inner regions

in the product type enforces a total order on regions, which leaks into the types of

region allocated values. The function above only works when the four regions are

consecutive and the output reference is allocated in the outermost region, the input

references are allocated in the next two regions, and the computation is indexed

by the innermost region.

However, the order of the regions should not matter. The only requirement is

that if the final computation (indexed by r4) is ever run, then each of the regions

r1, r2, and r3 must be live. To put it another way, the three regions are older than

(i.e., subtypes of) region r4. Hence, we adopt a simple solution, one that enables

the translation given in Section 3.3, whereby we abstract the liftRGN applications

and pass evidence that witnesses the region subtyping.

gadd :: ∀r1, r2, r3, r4.

(∀β. RGN r1 β → RGN r4 β)→

(∀β. RGN r2 β → RGN r4 β)→

(∀β. RGN r3 β → RGN r4 β)→

RGNRef r1 Int→ RGNRef r2 Int→ RGN r4 (RGNRef r3 Int)

gadd ev 1 ev 2 ev 3 v w = do a← ev 1 (readRGNRef v);

b← ev 2 (readRGNRef w);

ev 3 (newRGNRef (a + b))

72

While this evidence can be assembled from liftRGN terms, we find that the

key notion is subtyping on regions and evidence that witnesses the subtyping. The

product type used in blockST is one way of connecting the outer and inner stores,

but all the “magic” happens with liftST. Therefore, we adopt an approach that

fuses the two operations together in the letRGN operation:

RGNPf(r1 � r2) ≡ ∀β. RGN r1 β → RGN r2 β

letRGN :: ∀r1.∀α. (∀r2. RGNPf(r1 � r2)→ RGN r2 α)→ RGN r1 α

The function argument to letRGN is given evidence, of type RGNPf(r1 � r2), that

the outer (older) region (denoted by r1) is a subtype of the inner (younger) region

(denoted by r2), which it can use in the region computation. The same parametric-

ity argument that applied to runST applies here: references and computations from

the inner region cannot escape beyond the encapsulation of letRGN. We no longer

need a product type connecting the outer and inner regions, as this relationship is

given by the witness function.

3.2 The FRGN Language

The FRGN language is an extension of System F [68, 28] (also referred to as the

polymorphic lambda calculus), adding the types and operations from the RGN

monad. As described in the previous section, the design of FRGN takes inspiration

from the work on monadic state [56, 55, 57, 4, 72, 63]. Essentially, FRGN uses an

explicit region monad to enforce the locality of region allocated values.

In this section, we present the FRGN language in sufficient detail to describe

the translation from the Single Effect Calculus to FRGN in Section 3.3. To this

end, we include the syntax for both the surface language and abstract machine

73

configurations, dynamic semantics for the abstract machine configurations, and

static semantics for the surface language.

The dynamic semantics defines a large-step (or natural) semantics, which de-

fines an evaluation relation from towers of stacks of regions and expressions to

values. Our main reason for adopting a large-step operational semantics is to sim-

plify the theorems and proofs of Section 3.3 and Appendix B.3; establishing the

correctness of the translation would be more difficult using small-step operational

semantics, due to differing numbers of intermediate small-steps.

We purposefully omit the static semantics for the abstract machine configu-

rations (normally included for a syntactic proof of type soundness), since it re-

quires a number of technical details that detract from the focus on the transla-

tion. Appendix B.1 includes additional technical details for the FRGN language and

(sketches) a syntactic proof of type soundness.

3.2.1 Syntax of FRGN

Surface Syntax of FRGN

Figures 3.1 and 3.2 present the syntax of “surface programs” (that is, excluding

syntax and semantic objects that will appear in the dynamic semantics) of FRGN.

In the following sections, we explain and motivate the main constructs of FRGN.

Types and indices Types in FRGN include those found in System F (function

and product types and type abstractions) along with the primitive types Int and

Bool. The RGN θ τ , RGNRef θ τ , and RGNPf(θ1 � θ2) types were introduced in

the previous section. We introduce RGN indices θ as a distinguished syntactic

object, distinct from types τ , since doing so simplifies the presentation and does

74

Type variables

α ∈ TVars

Surface types

τ ::= Int | Bool | τ1 → τ2 | τ1 × · · · × τn | α | ∀α. τ |

RGN θ τ | RGNRef θ τ | RGNHnd θ | RGNPf(θ1 � θ2) | ∀ϑ. τ

RGN index variables

ϑ ∈ IVars

Surface RGN indices

θ ::= ϑ

Figure 3.1: Surface syntax of FRGN (I)

not unnecessarily complicate the type system. 3 Note that surface programs never

require a region index to be represented by anything other than an index variable.

RGN index polymorphism is available through the index abstraction type ∀ϑ. τ .4

Finally, we add the type RGNHnd θ as the type of handles for the region indexed

by θ. A value of this type is a region handle – a run-time value holding the data

necessary to allocate values within a region. RGN indices (static objects) and

region handles (dynamic objects) are distinguished in order to maintain a phase

distinction between compile-time and run-time expressions and to more accurately

reflect implementations of regions. Recall that in the region calculi of Chapter 2,

3The choice of “θ” as the meta-variable for a region index, as opposed to “ρ”, is
motivated by the fact that the index identifies both the stack and region in which
a monadic region computation is executing, rather than just the region.

4There are a variety of other ways to handle both types and indices. We could
introduce two kinds, say Type and Index, and collapse the syntactic classes of types
and indices. Noting that surface programs do not admit indices that are not region
indices, one can simply represent a Index variable as a Type variable, and eliminate
the Index kind. This has the advantage that the type system can be encoded in
standard System F (e.g., in Haskell).

75

Integer constants

i ∈ Z

Boolean constants

b ∈ {true, false}

Value variables

f, x ∈ VVars

Surface terms

e ::= i | e1 ⊕ e2 | e1 < e3 | b | if eb then et else ef |

x | λx:τ. e | e1 e2 | 〈e1, . . . , en〉 | seli e | Λα. e | e [τ] |

let x = ea in eb | runRGN [τ] v | κ | Λϑ. e | e [θ]

Surface RGN commands

κ ::= returnRGN [θ] [τ] v | thenRGN [θ] [τa] [τb] va vf |

letRGN [θ] [τ] v | newRGNRef [θ] [τa] vh v? |

readRGNRef [θ] [τa] vr | writeRGNRef [θ] [τa] vr v?

Surface values

v ::= i | b | x | λx:τ. e | 〈v1, . . . , vn〉 | Λα. e | κ | Λϑ. e

Figure 3.2: Surface syntax of FRGN (II)

76

the introduction forms for region allocated values carried a region annotation at ρ,

which indicated the region in which the value is to be allocated, while the expression

form ref r p was the (live) pointer associated with a region allocated value. A

region handle is required to “name” the region into which a value is to be allocated;

on the other hand, reading through a pointer to a region allocated value does not

require a handle, since the pointer itself “names” the region. This ensures that

indices, like types, have no run-time significance and may be erased from compiled

code. On the other hand, region handles are necessary at run-time to allocate

values within a region.

Terms As with types, FRGN adopts terms found in System F; constants, arith-

metic and boolean operations, function abstraction and application, tuple intro-

duction and elimination, and type abstraction and instantiation are all standard.

We let κ range over the syntactic class of RGN monad commands. (Equiva-

lently, and as suggested by the explicit type annotations and the restriction of sub-

expressions to values, we can consider the monadic commands as constants with

polymorphic types in a call-by-value interpretation of FRGN. Presenting monadic

commands in this fashion avoids intermediate terms in the operational semantics

corresponding to partial application.) Each of the commands has been described

previously. Finally, we include RGN index abstraction and instantiation, analogous

to type abstraction and instantiation.

Abstract Machine Configurations for FRGN

Figures 3.3 and 3.4 present abstract machine configurations for FRGN, which ex-

tend the syntax of the previous section with semantic objects that appear in the

operational semantics.

77

Stack names

s ∈ SNames

Constant stacks

s ::= s | ◦

Region names

r ∈ RNames

Constant regions

r ::= r | •

Pointer names

p ∈ PNames

Abstract machine RGN indices

θ ::= . . . | s]r

Abstract machine terms

e ::= . . . | ref s]r p | hnd s]r

Abstract machine RGN commands

κ ::= . . . | witnessRGN s]r1 s]r2 [τ] vκ

Abstract machine values

v ::= . . . | ref s]r p | hnd s]r

Figure 3.3: Abstract machine syntax of FRGN (I)

78

Regions

R ::= {p1 7→ v1, . . . , pn 7→ vn}

Stacks

S ::= · | S, r 7→ R (ordered domain)

Towers

T ::= · | T, s 7→ S (ordered domain)

Abstract machine configurations

(T ; e)

Figure 3.4: Abstract machine syntax of FRGN (II)

Stack names, region names, and pointers are used to represent references to re-

gion allocated data. Because runRGN computations can be nested, we need a means

to distinguish data allocated in regions from different runRGN computations; stack

names serve this purpose. Each runRGN computation is associated with a unique

stack, which collects and identifies all regions belonging to that computation. Stack

and region constants distinguish between live and dead stacks and regions; a dead

stack (◦) or region (•) corresponds to a deallocated stack or region.

The abstract machine syntax adds one new region index form and two new

expression forms. The index s]r is the instantiated form of a region index variable

(hence, ◦]• corresponds to a dead region in a dead stack). Such an index identifies

the stack and region in which a monadic region computation is executing. The

expression ref s]r p is the run-time representation of a RGNRef s]r τ ; that is, it

is the pointer reference associated with a region allocated value. Likewise, the

expression hnd s]r is the run-time representation of a RGNHnd s]r .

79

The abstract machine syntax also adds a new command form. The com-

mand witnessRGN s]r1 s]r2 [τ] vκ casts a computation from the type RGN s]r1 τ

to the type RGN s]r2 τ . (This command is used to construct terms of the type

RGNPf(θ1 � θ2) ≡ ∀β. RGN θ1 β → RGN θ2 β introduced in Section 3.1.) Opera-

tionally, such a command is the identity function, so long as the cast is valid. The

static semantics of the next section and Appendix B.1.2 ensure that all such casts

in a well-typed program are valid.

Thus far, we have talked about region allocated data without discussing where

such data is stored. Storable (i.e., closed) values are associated with pointers in

regions R; regions are ordered into stacks S; finally, stacks are ordered into tow-

ers T . We use the notation S(r, p) and T (s, r, p) for iterated lookups of values in

stacks and towers, respectively. Again, towers are a technical device that serve to

distinguish nested runRGN computations from one another. Intuitively, executing a

runRGN computation adds a new stack to the top of the tower (the new stack is deal-

located upon completing the computation), while executing a letRGN command

adds a new region to the top of the topmost stack (the new region is deallocated

upon completing the nested computation). These intuitions are formalized in the

dynamic semantics of the next section.

3.2.2 Dynamic Semantics of FRGN

Two mutually inductive judgments (for pure expressions (Figures 3.5, 3.6, and 3.7)

and for monadic commands (Figure 3.8)) define the dynamic semantics. We state

without proof that the dynamic semantics is deterministic; it is syntax-directed,

taking (T ; e) configurations modulo α-conversion, including conversion of stack

names, region names, and pointers, which are (uniquely) bound in the tower T .

80

(T ; e) ⇓ v

(T ; i) ⇓ i

(T ; e1) ⇓ v1 v1 ≡ i1 (T ; e2) ⇓ v2 v2 ≡ i2 i1 ⊕ i2 = i

(T ; e1 ⊕ e2) ⇓ i

(T ; e1) ⇓ v1 v1 ≡ i1 (T ; e2) ⇓ v2 v2 ≡ i2 i1 < i2 = b

(T ; e1 < e2) ⇓ b (T ; b) ⇓ b

(T ; eb) ⇓ vb vb ≡ true (T ; et) ⇓ v

(T ; if eb then et else ef) ⇓ v

(T ; eb) ⇓ vb vb ≡ false (T ; ef) ⇓ v

(T ; if eb then etelse ef) ⇓ v

Figure 3.5: Dynamic semantics of FRGN (expressions (I))

81

(T ; e) ⇓ v

(T ; λx:τ. e) ⇓ λx:τ. e

(T ; ef) ⇓ vf vf ≡ λx:τx. eb (T ; ea) ⇓ va (T ; eb[va/x]) ⇓ v

(T ; ef ea) ⇓ v

(T ; e1) ⇓ v1 . . . (T ; en) ⇓ vn

(T ; 〈e1, . . . , en〉) ⇓ 〈v1, . . . , vn〉

(T ; e) ⇓ v v ≡ 〈v1, . . . , vn〉 1 ≤ i ≤ n

(T ; seli e) ⇓ vi (T ; Λα. e) ⇓ Λα. e

(T ; ef) ⇓ vf vf ≡ Λα. eb (T ; eb[τa/α]) ⇓ v

(T ; ef [τa]) ⇓ v

(T ; ea) ⇓ va (T ; eb[va/x]) ⇓ v

(T ; let x = ea in eb) ⇓ v

Figure 3.6: Dynamic semantics of FRGN (expressions (II))

82

(T ; e) ⇓ v

s /∈ dom(T) r /∈ dom(·)

(T, s 7→ (·, r 7→ {}); v [s]r] (hnd s]r)) ⇓ v′

v′ ≡ κ′ (T, s 7→ (·, r 7→ {}); κ′) ⇓κ S ′′; v′′ S ′′ ≡ ·, r 7→ R′′

(T ; runRGN [τ] v) ⇓ v′′[◦]•/s]r] (T ; κ) ⇓ κ

(T ; Λϑ. e) ⇓ Λϑ. e

(T ; ef) ⇓ vf vf ≡ Λϑ. eb (T ; eb[θa/ϑ]) ⇓ v

(T ; ef [θa]) ⇓ v

(T ; ref s]r p) ⇓ ref s]r p (T ; hnd s]r) ⇓ hnd s]r

Figure 3.7: Dynamic semantics of FRGN (expressions (III))

We use the notation S(r) for the lookup of regions in stacks and the nota-

tion S(r, p) for the iterated lookup of storable values in stacks. These are partial

functions, defined as follows:

S(r) = undefined if r /∈ dom(S)

S(r) = R if r ∈ dom(S) and S ≡ . . . , r 7→ R, . . .

S(r, p) = undefined if S(r) = undefined

S(r, p) = undefined if S(r) = R and p /∈ dom(R)

S(r, p) = R if S(r) = R and p ∈ dom(R) and R ≡ {. . . , p 7→ w, . . .}

We also use the notation S{(r, p) 7→ v} to denote the stack S ′ which extends the

stack S with a mapping from p to v in the region S(r). This function is defined

when r ∈ dom(S) and S(r) = R and p /∈ dom(R).

83

(T, s 7→ S; κ) ⇓κ (S ′; v)

θ ≡ s]r

(T, s 7→ S; returnRGN [θ] [τ] v) ⇓κ (S; v)

θ ≡ s]r va ≡ κa (T, s 7→ S;κa) ⇓κ (S′; v′a)

(T, s 7→ S′; vf v′a) ⇓ v′′ v′′ ≡ κ′′ (T, s 7→ S′;κ′′) ⇓κ (S′′′; v′′′)

(T, s 7→ S; thenRGN [θ] [τa] [τb] va vf) ⇓κ (S′′′; v′′′)

θ ≡ s]r1

r1 ∈ dom(S) r2 /∈ dom(S) (T, s 7→ (S, r2 7→ {}); v [s]r2] w (hnd s]r2)) ⇓ v′

v′ ≡ κ′ (T, s 7→ (S, r2 7→ {});κ′) ⇓κ (S′′′; v′′) S′′′ ≡ S′′, r2 7→ R′′
2

(T, s 7→ S; letRGN [θ] [τ] v) ⇓κ (S′′[s]•/s]r2]; v′′[s]•/s]r2])

where w = (Λβ. λk:RGN s]r1 β. witnessRGN s]r1 s]r2 [β] k)

s]r1 ≡ s]r1

s]r2 ≡ s]r2 v ≡ κ S ≡ S1, r1 7→ R1, S2, r2 7→ R2, S3 (T, s 7→ S;κ) ⇓κ (S′; v′)

(T, s 7→ S; witnessRGN s]r1 s]r2 [τ] v) ⇓κ (S′; v′)

θ ≡ s]r vh ≡ hnd s]r r ∈ dom(S) p /∈ dom(S(r))

(T, s 7→ S; newRGNRef [θ] [τ] vh v?) ⇓κ (S{(r, p) 7→ v?}; ref s]r p)

θ ≡ s]r vr ≡ ref s]r p r ∈ dom(S) p ∈ dom(S(r)) S(r, p) = v

(T, s 7→ S; readRGNRef [θ] [τ] vr) ⇓κ (S; v′)

θ ≡ s]r vr ≡ ref s]r p r ∈ dom(S) p ∈ dom(S(r))

(T, s 7→ S; writeRGNRef [θ] [τ] vr v?) ⇓κ (S{(r, p) 7→ v?}; 〈〉)

Figure 3.8: Dynamic semantics of FRGN (commands)

84

The judgment (T ; e) ⇓ v asserts that evaluating the closed expression e in tower

T results in a value v. Likewise, the judgment (T, s 7→ S; κ) ⇓κ (S ′; v) asserts that

evaluating the closed monadic command κ in a non-empty tower whose top stack

is S results in a new top stack S ′ and a value v. Note that the existence of towers

of stacks of regions (to accommodate nested runRGN commands) and the division

of evaluation into pure expressions and monadic commands precludes re-using the

abstract machine and operational semantics from Chapter 2.

The rules for (T ; e) ⇓ v for expression forms other than runRGN are completely

standard. The tower T is passed unchanged to sub-evaluations. The rule for

runRGN [τ] v runs a monadic computation and executes in the following manner.

First, fresh stack and region names s and r are chosen. Next, the argument v

is applied to the region index s]r and the region handle hnd s]r and evaluated

in the extended tower T, s 7→ (·, r 7→ {}) (that is, the tower T extended with a

stack (bound to s) consisting of a single empty region (bound to r)) to a monadic

command κ′. This command is evaluated under the extended tower to a modified

stack (of the form ·, r 7→ R′′) and a value v′′. The modified stack is discarded,

while occurrences of s]r are replaced by ◦]• in v′′; this replacement ensures that

any occurrences of ref or hnd terms in v′′ are marked as dead, since the stack and

region have been deallocated and are no longer accessible.

The rules for (T, s 7→ S; κ) ⇓κ (S ′; v) perform monadic operations that side-

effect the top stack in the tower. The monadic unit and bind operations are

standard; in particular, note the manner in which the rule for thenRGN threads the

modified top stack through the computation.

The rule for letRGN [s]r1] τ v executes in much the same way as the rule for

runRGN. First, a fresh region name r2 is chosen. Next, the argument v is applied

85

to the region index s]r2, a witness function, and the region handle hnd s]r2 and

evaluated under an extended tower that adds an empty region (bound to r2) to

the top of the stack. This evaluation yields a monadic command κ′, which is also

evaluated under the extended tower to a modified top stack and value v′′. The

modified top region (still bound to r) is discarded, while occurrences of s]r2 are

replaced by s]• in the modified top stack S ′′ and value v′′; again, this replacement

ensures that any occurrences of ref or hnd terms in S ′′ or v′′ are marked as dead.

The rule for witnessRGN permits a monadic computation to occur when the

region names r1 and r2 appear in order in the top stack.

The rules for newRGNRef, readRGNRef, and writeRGNRef respectively allocate,

read, and write region allocated data. The rule for newRGNRef requires a region

handle for a region in the top stack, chooses a fresh pointer in the region, and

returns a modified top stack (with the value stored at the freshly chosen pointer)

and the reference. The rule for readRGNRef requires a reference into a region in

the top stack, and returns the value stored in the reference. Finally, the rule for

writeRGNRef requires a reference into a region in the top stack and a new value,

and returns a modified to stack (with the new values stored a the pointer).

It is important to note that the execution of a monadic command is predicated

upon the command’s region index corresponding to a live region in the top stack.

While it will be possible to have commands that reference deallocated stacks and

regions, it will not be possible to execute them. Furthermore, the restriction to the

top stack corresponds to the fact that while runRGN computations can be nested,

the inner computation must complete before executing a command in the outer

computation. The type system of the next section and Appendix B.1 ensures that

these invariants are preserved during the execution of well-typed programs.

86

Type and index contexts ∆ ::= · | ∆, α | ∆, ϑ

Value contexts Γ ::= · | Γ, x:τ

RGNPf(θ1 � θ2) ≡ ∀β. RGN θ1 β → RGN θ2 β

Figure 3.9: Static semantics of FRGN (definitions)

3.2.3 Static Semantics of FRGN

As noted above, well-typed programs obey several invariants, which are enforced

with typing judgments. In particular, the typing judgments for an FRGN expression

must ensure that the evaluation of the expression does not attempt to access a

dead stack or region. For the surface syntax of FRGN, it suffices to include typing

judgments for expressions and various well-formedness judgments for types, indices,

and contexts. As was stated previously, we purposefully omit judgments for the

additional semantic objects introduced by the abstract machine configurations for

FRGN (for example, typing judgments for towers), but these additional technical

details and a (sketch of a) syntactic proof of type soundness for FRGN may be

found in Appendix B.1.

Definitions Figure 3.9 presents additional definitions for syntactic objects that

appear in the static semantics. Contexts ∆ are ordered lists of type and index

variables and contexts Γ are ordered lists of variables with types. We tacitly assume

that all contexts are well-formed: ∆ contains distinct type and index variables and

Γ contains distinct value variables.

We recall the abbreviation RGNPf(θ1 � θ2) for the type of a function that co-

erces any computation taking place in the region indexed by θ1 into a computation

taking place in the region indexed by θ2.

87

∆; Γ `exp e : τ

`ctxt ∆; Γ

∆; Γ `exp i : Int

∆; Γ `exp e1 : Int

∆; Γ `exp e2 : Int

∆; Γ `exp e1 ⊕ e2 : Int

∆; Γ `exp e1 : Int

∆; Γ `exp e2 : Int

∆; Γ `exp e1 < e2 : Bool

`ctxt ∆; Γ

∆; Γ `exp b : Bool

∆; Γ `exp eb : Bool

∆; Γ `exp et : τ ∆; Γ `exp ef : τ

∆; Γ `exp if eb then et else ef : τ

Figure 3.10: Static semantics of FRGN (expressions (I))

Terms Figures 3.10–3.14 present the typing rules for the judgment

∆; Γ `exp e : τ , which asserts that under the type and index context ∆ and the

value context Γ, the expression e has the type τ .

The rules for constants, arithmetic and boolean operations, function abstrac-

tion and application, tuple introduction and selection, and type abstraction and

instantiation are all completely standard. As expected in a monadic language, each

command expression is given the monadic type RGN θ τ the appropriate region in-

dex and result type. The typing rules for returnRGN and thenRGN correspond to

the standard typing rules for monadic unit and bind operations. The typing rules

for newRGNRef, readRGNRef, and writeRGNRef are straight-forward.

The key rules are those relating to the creation of new regions. Recall that we

would like to consider a value of type RGN θ τ as a region-transformer – that is, it

accepts a region (indexed by θ), performs some operations (such as allocating into

the region), and returns a value and the modified region. However, this is slightly

inaccurate, owing to the fact that the ⇓κ judgment takes a stack S and returns a

88

∆; Γ `exp e : τ

`ctxt ∆; Γ x ∈ dom(Γ) Γ(x) = τ

∆; Γ `exp x : τ

∆; Γ, x:τx `exp e : τ

∆; Γ `exp λx:τx. e : τx → τ

∆; Γ `exp ef : τx → τ

∆; Γ `exp ea : τx

∆; Γ `exp ef ea : τ

`ctxt ∆; Γ

∆; Γ `exp ei : τi
i∈1...n

∆; Γ `exp 〈e1, . . . , en〉 : τ1 × · · · × τn

∆; Γ `exp e : τ1 × · · · × τn

1 ≤ i ≤ n

∆; Γ `exp seli e : τi

`ctxt ∆; Γ

∆, α; Γ `exp e : τ

∆; Γ `exp Λα. e : ∀α. τ

∆; Γ `exp ef : ∀α. τ

∆ `type τa

∆; Γ `exp ef [τa] : τ [τa/α]

∆; Γ `exp ea : τx

∆; Γ, x:τx `exp eb : τ

∆; Γ `exp let x = ea in eb : τ

Figure 3.11: Static semantics of FRGN (expressions (II))

89

∆; Γ `exp e : τ

∆ `type τ ∆; Γ `exp v : ∀ϑ. RGNHnd ϑ→ RGN ϑ τ

∆; Γ `exp runRGN [τ] v : τ

`ctxt ∆; Γ

∆, ϑ; Γ `exp e : τ

∆; Γ `exp Λϑ. e : ∀ϑ. τ

∆; Γ `exp ef : ∀ϑ. τ

∆ `index θa

∆; Γ `exp ef [θa] : τ [θa/ϑ]

Figure 3.12: Static semantics of FRGN (expressions (III))

new stack S ′; furthermore, a stack of regions admits a region outlives relationship.

Hence, we should consider a value of type RGN θ τ as a region-stack-transformer

– that is, it accepts a stack of regions (indexed by θ, corresponding to a particular

member of the region stack), performs some operations (such as allocating into

the regions), and returns a value and the modified stack of regions. Note that the

actual stack of regions passed at runtime may include regions younger than the

region to which θ corresponds; θ simply ensures the liveness of a particular region

(and all regions older than it), without excluding the liveness of younger regions.

We first examine the typing rule for the runRGN expression:

∆ `type τ ∆; Γ `exp v : ∀ϑ. RGNHnd ϑ→ RGN ϑ τ

∆; Γ `exp runRGN [τ] v : τ

As stated above, the argument to runRGN should describe a region computation.

In fact, we require v to be an index polymorphic function that yields a region

computation after being applied to a (fresh) region handle. The effect of uni-

versally quantifying over the index in the type of v is to require v to make no

assumptions about the input stack of regions (e.g., the existence of pre-allocated

90

∆; Γ `exp e : τ

∆ `index θ ∆ `type τ

∆; Γ `exp v : τ

∆; Γ `exp returnRGN [θ] [τ] v : RGN θ τ

∆ `index θ ∆ `type τa ∆ `type τb

∆; Γ `exp va : RGN θ τa

∆; Γ `exp vf : τa → RGN θ τb

∆; Γ `exp thenRGN [θ] [τa] [τb] va vf : RGN θ τb

∆ `index θ1 ∆ `type τ

∆; Γ `exp v : ∀ϑ. RGNPf(θ1 � ϑ2)→ RGNHnd ϑ2 → RGN ϑ2 τ

∆; Γ `exp letRGN [θ1] [τ] v : RGN θ1 τ

Figure 3.13: Static semantics of FRGN (commands (I))

91

∆; Γ `exp e : τ

∆ `index θ ∆ `type τ

∆; Γ `exp vh : RGNHnd θ ∆; Γ `exp v? : τ

∆; Γ `exp newRGNRef [θ] [τ] vh v? : RGN θ (RGNRef θ τ)

∆ `index θ ∆ `type τ

∆; Γ `exp vr : RGNRef θ τ

∆; Γ `exp readRGNRef [θ] [τ] vr : RGN θ τ

∆ `index θ ∆ `type τ

∆; Γ `exp vr : RGNRef θ τ ∆; Γ `exp v? : τ

∆; Γ `exp writeRGNRef [θ] [τ] vr v? : 1×

Figure 3.14: Static semantics of FRGN (commands (II))

92

references). Furthermore, all region-transformer operations are “infected” with the

index: when combining operations, the rule for thenRGN requires the indices in the

RGN computations to be the same; references allocated, read, and written using

newRGNRef, readRGNRef, and writeRGNRef require the index of the RGNRef to be

the same as the computation in which the operation occurs. While witness func-

tions (discussed in more detail below) may coerce a region computation indexed

by θ to a region computation indexed by θ′ for a younger index θ′, this coercion

simply “infects” the computation with a younger index whose liveness implies the

liveness of the older index. Thus, if a region computation RGN θ τ were to return

a value that depended upon the region indexed by θ, then θ (or some younger,

as of yet unintroduced, index θ′) would appear in the type τ . Since the type τ

appears outside the scope of the type variable θ in the typing rule for runRGN, it

follows that θ cannot appear in the type τ . Therefore, it must be the case that

the value returned by the computation described by v does not depend upon the

index which will instantiate θ. Taken together, these facts ensure that an arbi-

trary new stack and region can be supplied to the computation and that the value

returned will not leak any means of accessing the region or values allocated within

it; hence, the region can be deallocated at the end of the computation. Finally,

because we require region handles for allocating within regions, we provide the re-

gion handle for the newly created region as the argument to a function that yields

the computation to be executed.

The typing rule for letRGN is very similar:

∆ `index θ1 ∆ `type τ

∆; Γ `exp v : ∀ϑ. RGNPf(θ1 � ϑ2)→ RGNHnd ϑ2 → RGN ϑ2 τ

∆; Γ `exp letRGN [θ1] [τ] v : RGN θ1 τ

93

∆ `type τ

α ∈ dom(∆)

∆ `type α ∆ `type Int ∆ `type Bool

∆ `type τ1 ∆ `type τ2

∆ `type τ1 → τ2

∆ `type τi
i∈1...n

∆ `type τ1 × · · · × τn

∆, α `type τ

∆ `type ∀α. τ

∆ `index θ ∆ `type τ

∆ `type RGN θ τ

∆ `index θ ∆ `type τ

∆ `type RGNRef θ τ

∆ `index θ

∆ `type RGNHnd θ

∆, ϑ `type τ

∆ `type ∀ϑ. τ

∆ `index θ

ϑ ∈ dom(∆)

∆ `index ϑ

Figure 3.15: Static semantics of FRGN (types and indices)

Exactly the same argument as above applies, except that we additionally have a

witness argument of type RGNPf(θ1 � ϑ2). The operational behavior of letRGN

ensures that the newly allocated region is related to previously allocated regions

according to the stack discipline. The witness argument is provided to the compu-

tation taking place in the stack with the inner/younger region allocated in order to

coerce computations (such as allocating a new value in some outer/older region)

from a computation indexed by the outer region to a computation indexed by the

the inner region. This coercion is safe because every region in the stack denoted by

θ1 outlives every region in the stack denoted by ϑ2. Operationally, such a witness

function acts as the identity function.

94

∆ `vctxt Γ

∆ `vctxt ·

∆ `vctxt Γ x /∈ dom(Γ) ∆ `type τ

∆ `vctxt Γ, x:τ

`ctxt ∆; Γ

∆ `vctxt Γ

`ctxt ∆; Γ

Figure 3.16: Static semantics of FRGN (contexts)

Types, indices, and contexts Figures 3.15 and 3.16 contain additional (com-

pletely standard) judgments for ensuring that types τ , indices θ, and value contexts

Γ are well-formed. These judgments simply enforce the invariant that no type or

expression may depend upon unbound type or index variables.

Remarks

We may simplify the static semantics by noting that the typing judgments for each

of the monadic commands are equivalent to the following type assignment:

runRGN :: ∀α. (∀ϑ. RGNHnd ϑ→ RGN ϑ α)→ α

returnRGN :: ∀ϑ.∀α.α→ RGN ϑ α

thenRGN :: ∀ϑ.∀α, β. RGN ϑ α→ (α→ RGN ϑ β)→ RGN ϑ β

letRGN ::

∀ϑ1.∀α. (∀ϑ2. RGNPf(ϑ1 � ϑ2)→ RGNHnd ϑ2 → RGN ϑ2 α)→ RGN ϑ1 α

newRGNRef :: ∀ϑ.∀α. RGNHnd ϑ→ α→ RGN ϑ (RGNRef ϑ α)

readRGNRef :: ∀ϑ.∀α. RGNRef ϑ α→ RGN ϑ α

writeRGNRef :: ∀ϑ.∀α. RGNRef ϑ α→ α→ RGN ϑ 1×

95

Treating the monadic commands as syntactic forms simplifies the dynamic seman-

tics and proofs, as there is no need to consider partially applied forms.

Finally, it is easy to see that the typing rules prevent running a computation

that would dereference a dangling pointer. Consider the following code fragment:

letRGN [θ1] [?]

(Λϑ2.

λw :RGNPf(θ1 � ϑ2).

λh:RGNHnd ϑ1.

thenRGN [ϑ2] [RGNRef ϑ2 Int] [Bool→ RGN ϑ2 Int]

(newRGNRef [ϑ2] [Int] h 42)

(λr :RGNRef ϑ2 Int.

returnRGN [ϑ2] [Bool→ RGN ϑ2 Int]

(λb:Bool. readRGNRef [ϑ2] [Int] r)))

This fragment creates a new region, allocates an integer reference in the newly

created region, and finally returns a function and destroys the region. The returned

function, when applied, yields a computation which attempts to reads from the

reference (in the now destroyed region). Note that there is no type for ? that allows

the code fragment to be accepted by the typing rules. The only possible type for

? is Bool→ RGN ϑ2 Int, but this type cannot be used outside the scope of ϑ2. It is

this use of parametric polymorphism that prevents dangling pointers from being

dereferenced.

3.3 Translation: From SEC to FRGN

In this section we present a type- and semantics-preserving translation from the

Single Effect Calculus to FRGN. Many of the key components of the translation

96

should be obvious from the suggestive naming of the previous sections. We clearly

intend letregion to be translated (in some fashion) to letRGN. Likewise, we can

expect types of the form (ω, ρ) to be translated to types of the form RGNRef θ τ .

It further seems likely that the outlives relation ρ2 � ρ1 should be related to the

witness functions RGNPf(θ1 � θ2). We present the translation in stages, as there

are some subtleties that require explanation.

We start with a few preliminaries. We assume an injection from the set

VVarsSEC to the set VVarsFRGN
respectively. In the translation, applications of

such injections will be clear from context and we freely use source value variables

as target value variables. We also assume an injection from the set RVarsSEC to

the set IVarsFRGN
; this injection, written ϑ%, will denote the RGN index for the

region %. We further assume two additional injections from the set RVarsSEC to

the set VVarsFRGN
; the first, written h%, will denote the handle for the region %,

while the second, written w%, will denote the witnesses which coerce the region %

to its bounding regions.

The translation is a typed call-by-value monad translation, similar to the stan-

dard translation given by Sabry and Wadler [70]. We have not attempted to op-

timize the translation to avoid the introduction of “administrative” redexes. We

feel that this simplifies the translation, and it does not significantly complicate the

proof that the translation preserves the semantics, owing to the fact that only three

expression forms in the source calculus are value forms. The translation is given by

a number of functions: IJ·K translates into indices, TJ·K translates into types, DJ·K

translates into type and index contexts, GJ·K translates into value contexts, and

EJ·K translates into expressions. Technically, there are separate functions for each

syntactic class in the source calculus, but we elide this detail as it is always clear

97

Translations yielding indices

Regions

I

u

w
v
`rctxt ∆ % ∈ dom(∆)

∆ `region %

}

�
~ = ϑ%

Figure 3.17: Translation from SEC to FRGN (regions (I))

from context. Additionally, to reduce notational clutter, translations from judg-

ments are often written in an abbreviated form giving only the main component;

the corresponding judgment should be clear from context.

Regions, boxed types, types, and outlives relations Figures 3.17, 3.18,

and 3.19 shows the translation of regions, types and boxed types, and the out-

lives relations and Figure 3.20 gives the extension of the translation to contexts.

As expected, the type (ω, ρ) is translated to RGNRef IJρK TJωK, whereby region

allocated values in the source are also region allocated in the target. The trans-

lations of primitive types and product types are trivial. More interesting are the

translations of function types and region abstraction types. Functions with effects

bounded by the region π are translated into pure functions that yield computations

in the RGN monad indexed by π, whereas region abstractions are translated into

RGN index abstractions. Because the target calculus requires explicit region han-

dles for allocation, each time a region is in scope in the source calculus, the region

handle must be in scope in the target calculus. This explains the appearance of

the RGNHnd % type in the translation. Likewise, the target calculus makes witness

functions explicit, whereas in the source calculus such coercions are implied by �

related regions. Hence, we interpret % � {ρ1, . . . , ρn} as an n-tuple of functions,

98

Translations yielding types

Types

T

u

w
v
`rctxt ∆

∆ `type Bool

}

�
~ = Bool

T

u

w
v

∆ `btype ω ∆ `region ρ

∆ `type (ω, ρ)

}

�
~ = RGNRef IJρK TJωK

Boxed types

T

u

w
v
`rctxt ∆

∆ `btype Int

}

�
~ = Int

T

u

w
v

∆ `type τ1 ∆ `region π′ ∆ `type τ2

∆ `btype τ1
π′
−→ τ2

}

�
~ =

TJτ1K→ RGN IJπ′K TJτ2K

T

u

w
v

∆ `type τ1 · · · ∆ `type τn

∆ `btype τ1 × · · · × τn

}

�
~ = TJτ1K× · · · × TJτnK

T

u

w
v

∆ `eff φ ∆, % � φ `region π′ ∆, % � φ `type τ

∆ `btype ∀% � φ.π
′
τ

}

�
~ =

∀ϑ%. TJ% � φK→ RGNHnd ϑ% → RGN IJπ′K TJτK

Figure 3.18: Translation from SEC to FRGN (types and boxed types)

99

Translations yielding types

Outlives relations

TJ∆ `rr ρ2 � ρ1K =

RGNPf(IJρ1K � IJρ2K) = ∀β. RGN IJρ1K β → RGN IJρ2K β

T

u

w
v
`rctxt ∆ ∆ `rr ρ � ρi

i∈1...n

∆ `re ρ � {ρ1, . . . , ρn}

}

�
~ = (TJρ � ρ1K× · · · × TJρ � ρnK)

Figure 3.19: Translation from SEC to FRGN (outlives relations (I))

each witnessing a coercion from region ρi to %. This interpretation is formalized

by the TJ% � {ρ1, . . . ρn}K translation.5

Contexts We extend the region and type translations to contexts in the obvious

manner. In addition to translating region variables to type variables and translat-

ing the types of variables in value contexts, we have additional translations from

region contexts to value contexts. As explained above, region handles and witness

functions are explicit values in the target calculus. Hence, our translation main-

tains the invariant that whenever a region variable % � φ is in scope in the source

calculus, the variables h% and w% are in scope in the target calculus. The variable

h% (of type RGNHnd IJ%K) is the handle for the region % and the variable w% (of

type TJ% � φK) is the tuple holding the witness functions that coerce to region %.

5Note that in the Single Effect Calculus, we only substitute regions for region
variables. This means that the sets of regions that appear in the program never
change size (although they may change elements as a result of substitution). The
TJ∆ `re ρ � {ρ1, . . . ρn}K translations require keeping the ordering of regions in a
set {ρ1, . . . , ρn} constant. It does not require a global ordering on region variables;
such an ordering would not suffice for our purposes, because the ordering of ele-
ments in a set might change after substitution. Instead, we take {ρ1, . . . , ρn} as a
list with fixed order, where substitution preserves the order. Hence, we can realize
the witness with an ordered tuple.

100

Translations yielding type contexts

Region contexts

D

t

`rctxt ·

|

= ·

D

u

w
v
`rctxt ∆ % /∈ dom(∆) `eff φ

`rctxt ∆, % � φ

}

�
~ = DJ∆K , ϑ%

Translations yielding value contexts

Region contexts

G

t

`rctxt ·

|

= ·

G

u

w
v
`rctxt ∆ % /∈ dom(∆) `eff φ

`rctxt ∆, % � φ

}

�
~ =

GJ∆K , h%:RGNHnd ϑ%, w%:TJ% � φK

Value contexts

G

u

w
v
`rctxt ∆

∆ `vctxt ·

}

�
~ = ·

G

u

w
v

∆ `vctxt Γ x /∈ dom(Γ) ∆ `type τ

∆ `vctxt Γ, x:τ

}

�
~ = GJΓK , x:TJτK

Figure 3.20: Translation from SEC to FRGN (contexts)

101

Translations yielding expressions

Witnesses

E

u

w
v
`rctxt ∆ (% � {ρ1, . . . , ρi, . . . , ρn}) ∈ ∆

∆ `rr % � ρi

}

�
~ =

Λβ. λk:RGN IJρiK β. let w = seli w% in w [β] k

E

u

w
v

∆ `region ρ

∆ `rr ρ � ρ

}

�
~ = Λβ. λk:RGN IJρK β. k

E

u

w
v

∆ `rr ρ2 � ρ′ ∆ `rr ρ′ � ρ1

∆ `rr ρ2 � ρ1

}

�
~ =

Λβ. λk:RGN IJρ1K β. let k′ = EJρ′ � ρ1K [β] k in EJρ2 � ρ′K [β] k′

E

u

w
v
`rctxt ∆ ∆ `rr ρ � ρi

i∈1...n

∆ `re ρ � {ρ1, . . . , ρn}

}

�
~ = (EJρ � ρ1K , . . . , EJρ � ρnK)

Figure 3.21: Translation from SEC to FRGN (outlives relations (II))

Outlives relations Figure 3.21 shows the translation from SEC outlives relations

to FRGN witness terms. The first three translations map the reflexive, transitive

closure of the syntactic constraints in the source ∆ into an appropriate coercion

function. The final translation collects a set of coercion functions into a tuple;

such a term is suitable as an argument to the translation of a region abstraction.

Figure 3.22 translates a single region variable to its corresponding region handle

(as a value variable).

Terms Figures 3.23–3.27 give the translation of terms. In order to make the

translation easier to read, we introduce the following notation, reminiscent of

102

Translations yielding expressions

Regions

E

u

w
v
`rctxt ∆ % ∈ dom(∆)

∆ `region %

}

�
~ = h%

Figure 3.22: Translation from SEC to FRGN (regions (II))

Haskell’s do notation:

bindRGN x:τa ⇐ ea ; eb ≡ let k = ea in thenRGN [θ] [τa] [τb] k (λx:τa. eb)

where k fresh

where θ and τb are inferred from context. Note that this induces the following

derived rules:

(T ; ea) ⇓ v

(T ; bindRGN x:τa ⇐ ea ; eb) ⇓ (thenRGN [θ] [τa] [τb] v (λx:τa. eb))

∆ `index θ ∆ `type τa ∆ `type τb

∆; Γ `exp ea : RGN θ τa ∆; Γ, x:τa `exp eb : RGN θ τb

∆; Γ `exp bindRGN x:τa ⇐ e1 ; e2 : RGN θ τb

The translation of an integer constant is a canonical example of allocation in

the target calculus. The allocation is accomplished by the newRGNRef command,

applied to the appropriate region handle and value. However, the resulting com-

mand has type RGN IJρK (RGNRef IJρK Int), whereas the source typing judgment

requires the computation to be expressed relative to the region π. We coerce the

computation using a witness function, whose existence is implied by the judg-

ment ∆ `rr π � ρ. Allocation of a function proceeds in exactly the same manner.

103

Translations yielding expressions

Expressions

E

u

w
v
`ctxt ∆; Γ; π ∆ `region ρ ∆ `rr π � ρ

∆; Γ `exp i at ρ : (Int, ρ), π

}

�
~ =

EJπ � ρK [TJ(Int, ρ)K] (newRGNRef [IJρK] [TJIntK] EJρK i)

E

u

wwwwwwww
v

∆; Γ `exp e1 : (Int, ρ1), π ∆ `rr π � ρ1

∆; Γ `exp e2 : (Int, ρ2), π ∆ `rr π � ρ2

∆ `region ρ ∆ `rr π � ρ

∆; Γ `exp e1 ⊕ e2 at ρ : (Int, ρ), π

}

��������
~

=

bindRGN a:TJ(Int, ρ1)K⇐ EJe1K ;

bindRGN a′:TJIntK⇐ EJπ � ρ1K [TJIntK] (readRGNRef [IJρ1K] [TJIntK] a) ;

bindRGN b:TJ(Int, ρ2)K⇐ EJe2K ;

bindRGN b′:TJIntK⇐ EJπ � ρ2K [TJIntK] (readRGNRef [IJρ2K] [TJIntK] b) ;

let z = a′ ⊕ b′ in

EJπ � ρK [TJ(Int, ρ)K] (newRGNRef [IJρK] [TJIntK] EJρK z)

where a, a′, b, b′, z fresh

Figure 3.23: Translation from SEC to FRGN (terms (I))

104

Translations yielding expressions

Expressions

E

u

wwwww
v

∆; Γ `exp e1 : (Int, ρ1), π ∆ `rr π � ρ1

∆; Γ `exp e2 : (Int, ρ2), π ∆ `rr π � ρ2

∆; Γ `exp e1 < e2 : Bool, π

}

�����
~

=

bindRGN a:TJ(Int, ρ1)K⇐ EJe1K ;

bindRGN a′:TJIntK⇐ EJπ � ρ1K [TJIntK] (readRGNRef [IJρ1K] [TJIntK] a) ;

bindRGN b:TJ(Int, ρ2)K⇐ EJe2K ;

bindRGN b′:TJIntK⇐ EJπ � ρ2K [TJIntK] (readRGNRef [IJρ2K] [TJIntK] b) ;

let z = a′ < b′ in

returnRGN [IJπK] [TJBoolK] z

where a, a′, b, b′, z fresh

E

u

w
v

`ctxt ∆; Γ; π

∆; Γ `exp b : Bool, π

}

�
~ = returnRGN [IJπK] [TJBoolK] b

E

u

wwwww
v

∆; Γ `exp eb : Bool, π

∆; Γ `exp et : τ, π ∆; Γ `exp ef : τ, π

∆; Γ `exp if eb then et else ef : τ, π

}

�����
~

=

bindRGN z:TJBoolK⇐ EJebK ; if z then EJetK else EJefK

where z fresh

Figure 3.24: Translation from SEC to FRGN (terms (II))

105

Translations yielding expressions

Expressions

E

u

w
v
`ctxt ∆; Γ; π x ∈ dom(Γ) Γ(x) = τ

∆; Γ `exp x : τ, π

}

�
~ =

returnRGN [IJπK] [TJτK] x

E

u

w
v

∆; Γ, x:τx `exp e : τ, π′ ∆ `region ρ ∆ `rr π � ρ

∆; Γ `exp λx : τx.
π′

e at ρ : (τx
π′
−→ τ, ρ), π

}

�
~ =

EJπ � ρK [T
r
(τx

π′
−→ τ, ρ)

z
]

(newRGNRef [IJρK] [T
r
τx

π′
−→ τ

z
] EJρK (λx:TJτxK . EJeK))

E

u

wwwww
v

∆; Γ `exp ef : (τx

π′
f−→ τ, ρf), π ∆ `rr π � ρf

∆; Γ `exp ea : τx, π ∆ `rr π � π′f

∆; Γ `exp ef ea : τ, π

}

�����
~

=

bindRGN f :T
r
(τx

πf−→ τ, ρf)
z
⇐ EJefK ;

bindRGN g:T
s
τx

π′
f−→ τ

{

⇐ EJπ � ρfK [T
s
τx

π′
f−→ τ

{
]

(readRGNRef [IJρfK] [T
s
τx

π′
f−→ τ

{
] f) ;

bindRGN a:TJτxK⇐ EJeaK ;

E
q
π � π′f

y
[TJτK] (g a)

where f, g, a fresh

Figure 3.25: Translation from SEC to FRGN (terms (III))

106

Translations yielding expressions

Expressions

E

u

wwwww
v

∆; Γ `exp e1 : τ1, π · · · ∆; Γ `exp en : τn, π

∆ `region ρ ∆ `rr π � ρ

∆; Γ `exp 〈e1, . . . , en〉 at ρ : (τ1 × · · · × τn, ρ), π

}

�����
~

=

bindRGN x1:TJτ1K⇐ EJe1K ;

· · ·

bindRGN xn:TJτ2K⇐ EJe2K ;

EJπ � ρK [TJ(τ1 × · · · × τn, ρ)K]

(newRGNRef [IJρK] [TJτ1 × · · · × τnK] EJρK 〈x1, . . . , xn〉)

where xi fresh

E

u

wwwww
v

∆; Γ `exp e : (τ1 × · · · × τn, ρ), π

∆ `rr π � ρ 0 ≤ i ≤ n

∆; Γ `exp seli e : τi, π

}

�����
~

=

bindRGN x:TJ(τ1 × · · · × τ2, ρ)K⇐ EJeK ;

bindRGN y:TJτ1 × · · · × τ2K

⇐ EJπ � ρK [TJτ1 × · · · × τ2K]

(readRGNRef [IJρK] [TJτ1 × · · · × τnK] x) ;

returnRGN [IJπK] [TJτiK] (seli y)

where x, y, z fresh

E

u

w
v

∆; Γ `exp ea : τx, π ∆; Γ, x:τx `exp eb : τ, π

∆; Γ `exp let x = ea in eb : τ, π

}

�
~ =

bindRGN x:TJτxK⇐ EJeaK ; EJebK

Figure 3.26: Translation from SEC to FRGN (terms (IV))

107

Translations yielding expressions

Expressions

E

u

wwwww
v

∆ `type τ `ctxt ∆; Γ; π

∆, % � {π}; Γ `exp eb : τ, %

∆; Γ `exp letregion % in eb : τ, π

}

�����
~

=

letRGN [IJπK] [TJτK] (Λϑ%. λw%:TJ% � {π}K . λh%:RGNHnd ϑ%. EJebK)

E

u

w
v

∆, % � φ; Γ `exp u : τ, π′ ∆ `region ρ ∆ `rr π � ρ

∆; Γ `exp Λ% � φ.π
′
u at ρ : (∀% � φ.π

′
τ, ρ), π

}

�
~ =

EJπ � ρK [T
q
(∀% � φ.π

′
τ, ρ)

y
]

(newRGNRef [IJρK] [T
q
∀% � φ.π

′
τ
y
]

EJρK (Λϑ%. λw%:TJ% � φK . λh%:RGNHnd ϑ%. EJuK))

E

u

wwwww
v

∆; Γ `exp ef : (∀% � φ.π
′
f τ, ρf), π ∆ `rr π � ρf

∆ `region ρa ∆ `re ρa � φ ∆ `rr π � π′f [ρa/%]

∆; Γ `exp ef [ρa] : τ [ρa/%], π

}

�����
~

=

bindRGN f :T
r
(∀% � φ.π

′
f τ, ρf)

z
⇐ EJefK ;

bindRGN g:T
r
∀% � φ.π

′
f τ

z

⇐ EJπ � ρfK [T
r
∀% � φ.π

′
f τ

z
]

(readRGNRef [IJρfK] [T
r
∀% � φ.π

′
f τ

z
] f) ;

E
q
π � π′f [ρa/%]

y
[TJτ [ρa/%]K] (g [IJρaK] EJρa � φK EJρaK)

where f, g fresh

Figure 3.27: Translation from SEC to FRGN (terms (V))

108

Translations yielding terms

Programs

E

u

w
v
·,H � {}; · `exp e : Bool,H

`prog e

}

�
~ =

runRGN [TJ·,H � {}; · `type BoolK]

(ΛϑH. λhH:RGNHnd ϑH.

let wH = 〈〉 in

EJ·,H � {}; · `exp p : Bool,HK)

Figure 3.28: Translation from SEC to FRGN (programs)

Function application, while notationally heavy, is simple. The thenRGN commands

(implicit in the bindRGN expressions) sequence the evaluation of the function to

a reference, the reading of the reference, the evaluation of the argument, and the

application of the function to the argument.

The translation of letregion % in e is pleasantly direct. We introduce ϑ%, h%,

and w% through Λ- and λ-abstractions. The region handle and coercion function

are supplied by the letRGN command when the computation is executed.

The translation of region abstraction is similar to the translation of functions.

Once again, region handles and witness functions are λ-bound in accordance to

the invariants described above. During the translation of region applications, the

appropriate tuple of witness functions (constructed by EJ∆ `re ρ2 � φK) and region

handle are supplied as arguments.

Programs Figure 3.28 shows the translation of SEC programs to FRGN expres-

sions. An entire region computation is encapsulated and run by the runRGN ex-

109

pression. We bind wH to an empty tuple, which corresponds to the absence of any

coercion functions to the region H.

3.3.1 Translation Properties

The translation is type preserving, as formalized by the following lemma. The

proof is by (mutual) induction on the structure of the typing judgments, making

frequent appeals to various well-formedness lemmas.

Lemma 3.1 (Translation Preserves Types)

(1) If `SEC
rctxt ∆, then DJ∆K is well-formed.

(2) If ∆ `SEC
region ρ, then D

q
`SEC

rctxt ∆
y
`FRGN

index I
q
∆ `SEC

region ρ
y
.

(3) If `SEC
rctxt ∆, then D

q
`SEC

rctxt ∆
y
`FRGN

vctxt G
q
`SEC

rctxt ∆
y
.

(4) If ∆ `SEC
btype ω, then D

q
`SEC

rctxt ∆
y
`FRGN

type T
q
∆ `SEC

btype ω
y
.

(5) If ∆ `SEC
type τ , then T

q
`SEC

rctxt ∆
y
`FRGN

type T
q
∆ `SEC

type τ
y
.

(6) If ∆ `SEC
vctxt Γ, then D

q
`SEC

rctxt ∆
y
`FRGN

vctxt G
q
∆ `SEC

vctxt Γ
y
.

(7) If ∆ `SEC
vctxt Γ, then D

q
`SEC

rctxt ∆
y
`FRGN

vctxt G
q
`SEC

rctxt ∆
y

, G
q
∆ `SEC

vctxt Γ
y
.

(8) If ∆ `SEC
rr ρ2 � ρ1, then D

q
`SEC

rctxt ∆
y
`FRGN

type T
q
∆ `SEC

rr ρ2 � ρ1

y
.

(9) If ∆ `SEC
re ρ � φ, then D

q
`SEC

rctxt ∆
y
`FRGN

type T
q
∆ `SEC

re ρ � φ
y
.

(10) If ∆ `SEC
rr ρ2 � ρ1, then

D
q
`SEC

rctxt ∆
y

; G
q
`SEC

rctxt ∆
y

`FRGN

exp E
q
∆ `SEC

rr ρ2 � ρ1

y
: T

q
∆ `SEC

rr ρ2 � ρ1

y
.

(11) If ∆ `SEC
re ρ � φ, then

D
q
`SEC

rctxt ∆
y

; G
q
`SEC

rctxt ∆
y

`FRGN

type E
q
∆ `SEC

re ρ � φ
y

: T
q
∆ `SEC

re ρ � φ
y
.

110

(12) If ∆ `SEC
region ρ, then

D
q
`SEC

rctxt ∆
y

; G
q
`SEC

rctxt ∆
y

`FRGN

exp E
q
∆ `SEC

region ρ
y

: RGNHnd I
q
∆ `SEC

region ρ
y
.

(13) If ∆; Γ `SEC
exp e : τ, π, then

D
q
`SEC

rctxt ∆
y

; G
q
`SEC

rctxt ∆
y

, G
q
∆ `SEC

vctxt Γ
y

`FRGN

exp E
q
∆; Γ `SEC

exp e : τ, π
y

: RGN I
q
∆ `SEC

region π
y

T
q
∆ `SEC

type τ
y
.

(14) If `SEC
prog p, then ·; · `FRGN

exp E
q
`SEC

prog p
y

: Bool.

Furthermore, the translation is meaning preserving, with respect to the dy-

namic semantics of SEC and FRGN, as formalized by the following theorem:

Theorem 3.2 (Translation Correctness (Programs))

If `SEC
prog e and e ⇓SEC

prog b and E
q
`SEC

prog e
y

= e†,

then (·; e†) ⇓FRGN
b.

The essence of this proof relies on a coherence lemma stating that the trans-

lation of SEC outlives relations to FRGN witness terms yields functions that are

operationally equivalent to the identity function. Coherence is used throughout

the proof of correctness to show that every evaluation derivation for the source can

be simulated by a derivation involving the translation of the source.

We note that the proof is greatly simplified by using large-step operational se-

mantics for both the source and target languages, since for many expression forms,

a single operational step in the source language is expanded to many operational

steps in the target language. Additional details concerning the translation from

SEC to FRGN and the proof of correctness may be found in Appendix B.1.

111

3.4 Related Work

The work in this chapter draws heavily from two distinct lines of research. The

first is the work done in type-and-effect systems for region-based memory manage-

ment, introduced by Tofte and Talpin [79, 80] and explored by others [39, 10, 11],

discussed in detail in the previous chapter.

The work of Banerjee, Heintze, and Riecke [5] deserves special mention. They

show how to translate the Tofte-Talpin region calculus into an extension of the

polymorphic λ-calculus called F#. A new type operator # is used as a mech-

anism to hide and reveal the structure of types. Capabilities to allocate and

read values from a region are explicitly passed as polymorphic functions of types

∀α.α→ (α#ρ) and ∀α.(α#ρ)→ α; however, regions have no run-time significance

in F# and there is no notion of deallocation upon exiting a region. The equality

theory of types in F# is nontrivial, due to the treatment of #; in contrast, type

equality on FRGN types is purely syntactic. Furthermore, their proof of soundness

is based on denotational techniques, whereas ours are based on syntactic tech-

niques which tend to scale more easily to other linguistic features. Finally, it is

worth noting that there is almost certainly a connection between the F# lift and

seq expressions and the monadic return and bind operations, although it is not

mentioned or explored in their paper.

The second line of research on which we draw is the work done in monadic

encapsulation of effects [61, 62, 69, 56, 87, 55, 57, 70, 4, 50, 72, 63, 88]. The majority

of this work has focused on effects arising from reading and writing mutable state,

which we reviewed in Section 3.1. While recent work [87, 63, 88] has considered

more general combinations of effects and monads, only a small amount of work

has examined the combination of regions and monads [48, 49, 23].

112

We note that Wadler and Thiemann [88] advocate marrying effects and monads

by translating a type τ1
σ−→ τ2 to the type TJτ1K→ Tσ TJτ2K, where Tσ τ represents

a computation that yields a value of type τ and has effects delimited by (the set)

σ. As with the work of Banerjee et al.described above, this introduces a nontrivial

theory of equality (and subtyping) on types; the types Tσ τ and Tσ′
τ are equal so

long as σ and σ′ are equivalent sets. However, few programming languages allow

one to express such nontrivial equalities between types.

Kagawa [48, 49] anticipates a number of themes from this work, although a for-

mal treatment is left to future work. As a means of bridging the work of Wadler [86]

and Launchbury and Peyton Jones [56], Kagawa [48] suggests extending the ST

monad with the following type and operations:

τ ::= . . . | Mutable τs τt

appR :: ∀s, t.∀α.Mutable s t→ ST t α→ ST s α

cmpR :: ∀s, t, u.Mutable s t→ Mutable t u→ Mutable s u

extendST :: ∀t.∀α.(∀s.Mutable s t→ ST t α)→ ST t α

The intention is that the type Mutable s t is equivalent to the type

(s→ t)× (s→ t→ s); hence, it serves as a witness to the embedding of the state t

into a larger state s. extendST generalizes blockST of Section 3.1 in the same man-

ner as our letRGN. appR coerces a state transformer, given the appropriate witness,

while cmpR composes witnesses; hence, the latter is a “proof” of the transitivity

of the state embedding. In our setting, the transparency of the RGNPf(θ1 � θ2)

type obviates the need for these explicit operations. The lack of formal dynamic

and static semantics makes a thorough evaluation difficult; in particular, the re-

lationship between the global state “conjured up” by runST and an individual

mutable object is rather ad hoc. In the abstract machine configurations for FRGN,

113

a witnessRGN term concretely captures the relationship between an older and a

younger region.

In later work, Kagawa [49] argues that these techniques can be extended to

accommodate region-based memory management. In spite of the title and notation,

the paper does not present an explicitly monadic language. Rather, the language is

presented with a type-and-effect system, and the connection to a monadic setting

is left (vaguely) implicit in the choice of notation and reference to the previous

work. A dynamic semantics and type system, along with a proof that the new

letextend operator can safely deallocate the extended region, is left to future work.

Our present work addresses all these deficiencies by giving clear descriptions of

both the Single Effect Calculus and FRGN, proving the soundness of the FRGN type

system, and giving a type- and meaning-preserving translation between the two

languages. On the other hand, Kagawa presents a type inference algorithm for

the language, which may suggest a means of reducing the notational overhead of

passing witnesses and handles.

Ganz [23] relates the type-and-effect system of Tofte and Talpin to monad

transformers. Ganz distinguishes among encapsulation with a single monad, en-

capsulation with a monad per region, and encapsulation with a monad transformer

per region. He concludes that only a monad transformer per region is expressive

enough to encode nested regions. This corresponds to our presentation where

runRGN introduces a monad per stack of regions and letRGN introduces a monad

transformer per region. Ganz imposes a peculiar restriction: upward references

(i.e., allocating a reference to an inner region at an outer region) are not allowed.

This is a severe restriction for a region-based language; it appears to arise from

a failure to distinguish encapsulation of a stack of regions from encapsulation of

114

a single region. Recall that while runRGN computations may be nested, it is not

possible for the outer computation to have references to the inner computation;

on the other hand, there may be arbitrary references among regions of a single

stack. Finally, Ganz claims to support early deallocation of regions, a facet of

region-based memory management that is not available in FRGN. However, in the

following chapters, we will demonstrate how a substructural type system may be

used to eliminate the restriction to lexically-scoped regions, thereby supporting

the early deallocation of regions.

Finally, other researchers have utilized the power of System F as a target

language. For example, Washburn and Weirich [95] demonstrate how to en-

code higher-order abstract syntax using parametric polymorphism, while Tse and

Zdancewic [81] show how to encode the dependency core calculus.

3.5 Summary and Future Work

We have given a type- and meaning-preserving translation from the Single Effect

Calculus to FRGN. Both the source and the target languages use static type systems

to delimit the effects of allocating in and reading from regions. The Single Effect

Calculus uses the partial order implied by the “outlives” relation on regions to

use single regions as bounds for sets of effects. We feel that this is an important

insight that leads to a relatively straight-forward translation into the monadic

setting. FRGN draws inspiration from the work on monadic encapsulation of state to

give parametric types to runRGN and letRGN that prevent access of regions beyond

their lifetimes. Explicit functions witness the outlives relationship between regions,

enabling computations from outer regions to be cast to computations in inner

regions. These witnesses cannot be forged and are only introduced via letRGN.

115

Recall that in Section 3.1, we briefly considered supporting region-based mem-

ory management using the operators letRGN and liftRGN with types analogous to

blockST and liftST (i.e., using a product type). Pursuing this approach would

require appropriately assembling evidence from liftRGN terms. While much of

the development in this chapter could be accomplished using this alternative ap-

proach, we have presented an approach that fuses the two operations together in

the letRGN operation, whereby witness functions are only introduced via letRGN.

There are a number of reasons for this choice. First, the types are smaller than

under the alternative scheme. Looking at Section 3.3, we trade the number of

terms in scope for the size of the types in scope. Second, one is encouraged to

write region polymorphic functions with the fused letRGN, whereas one can write

region constrained functions with liftRGN. Third, letRGN makes it clear that the

only witness functions are those that arise from entering a new region. Finally,

although we have made the type RGNPf(r1 � r2) a synonym for a witness func-

tion, we can imagine a scheme in which this primitive evidence is abstract and

we provide additional operations for combining evidence and operations for taking

evidence to functions for importing RGN computations or RGNRef references. The

latter corresponds to pointer subtyping in Cyclone, where a pointer to region r1

may be coerced to a pointer to region r2 when r1 outlives r2. We explore this

scheme further in Chapter 5.

There are numerous directions for future work. One idea is to provide the RGN

monad to Haskell programmers and to try to leverage type classes so that witnesses

and handles can be passed implicitly, thereby reducing the notational overhead of

programming with nested stores. While a direct encoding of subtyping leads to

undecidable and overlapping instances, the use of type-indexed products [52] may

116

provide a partial solution, at the expense of reintroducing a product type (see

comments at the end of Section 3.1). Obviously, a language that incorporates

subtyping directly, such as System F≤, would simplify the encoding.

Finally, as is well known, Tofte and Talpin’s original region calculus can lead

to inefficient memory usage for some programs. In particular, the nested lifetimes

of lexically-scoped regions make it impossible to destroy a region before the end

of its lexical scope, even if the values in the region could be reclaimed without

introducing program errors. We will shortly see that FRGN may be translated into

the substructural type system of Chapter 4, which will eliminate the restriction of

lexically-scoped regions.

117

Chapter 4

A Substructural Type System for

Region-Based Memory Management
The FRGN language of the previous chapter demonstrated that parametric poly-

morphism and the technique of monadic encapsulation give rise to a simpler and

more uniform language, as compared to the region calculi with type-and-effect sys-

tems, that nonetheless continues to provide the power and safety of region-based

memory management. However, the nested lifetimes of lexically-scoped regions

make it impossible to destroy a region before the end of its lexical scope. This can

lead to inefficient memory usage for some programs.

Consider, for example, the following pseudo-code:

let fun loop (rold , dold) =

let rnew = newrgn () in

let dnew = copyData (rnew , dold) in

freergn (rold);

loop (rnew , dnew) in

let r0 = newrgn () in

let d0 = initData (r0) in

loop (r0 , d0)

Our intention is to define a function loop, which accepts a region rold and some

data dold allocated in the region and copies the data into a new region rnew . After

copying the data, neither the old data nor the old region are needed, so we would

like to destroy the old region. Notice that this pseudo-code has introduced separate

118

operations for creating and destroying a region. It is not possible to translate this

pseudo-code into a language with lexically-scoped regions, since the regions rold

and rnew do not have nested lifetimes.

A language that supports the explicit creation and destruction of regions has

some distinct advantages. The ability to dispense with nested lifetimes means that

we can write programs that are more space efficient: such programs can destroy a

region as soon as the region is no longer needed. However, as noted in Chapter 1,

a programmer must be careful to never dereference a pointer into a region after

the region has been destroyed; similarly, a programmer must be careful to avoid

allocating in a destroyed region and destroying a region more than once. A type

system that supports the explicit creation and destruction of regions, but rules out

the various errors described above, would give rise to a more expressive language

with (safe) region-based memory management. This chapter demonstrates that

substructural type systems may be used to define just such a language.

The key insight is to revise the pseudo-code above into the following:

let fun loop (rold , dold) =

let rnew = newrgn () in

let (rold , rnew , dnew) = copyData (rold , rnew , dold) in

freergn (rold ′);

loop (rnew ′, dnew) in

let r0 = newrgn () in

let (r0 ′, d0) = initData (r0) in

loop (r0 ′, d0)

We now require that the regions (rold , rnew , r0 , etc.) serve as region capabili-

ties. These region capabilities must be presented at each use of the region: for

119

allocating in the region, for reading from the region, and for destroying the region.

Furthermore, we require that a region capability be used exactly once in the pro-

gram. For operations that access, but don’t destroy a region, like allocating in a

region or reading from a region, a new capability is returned. Since our intention

is that initData and copyData allocate in and read from (but do not destroy) re-

gions, they also take region capabilities and return new region capabilities. On the

other hand, freergn takes a region capability but returns no new capability. This

ensures that the region may not be accessed after it is destroyed; in essence, the

capability serves as a proof that the region is live. The simple “must use exactly

once” constraint on region capabilities ensures the safety of the region operations.

The substructural type system presented in this chapter naturally enforces this

sort of constraint.

The work in this chapter was inspired by the work on linear type systems [85,

65], the Calculus of Capabilities [90], and Alias Types [75, 91]. At a high-level,

each of these lines of research is concerned with the ways in which resources may

be precisely accounted for in programs. We turn to these systems because they are

designed to handle a broad range of resource usage scenarios; in particular, they

accommodate acquiring, using, and releasing resources in non-LIFO order. By

viewing a region as a managed resource, we are able to overcome the limitations

of lexically-scoped regions. Two key insights contribute to the ability to view a

region as a managed resource. First, from the work on the Calculus of Capabilities

and Alias Types, we adopt the flexibility of separating the name of a region from

the property that the region is allocated.1 Second, from the work on linear types,

1Recall that in SEC and FRGN, the lexically-scoped regions were allocated for pre-
cisely the scope of the corresponding region variable (% introduced by letregion

in SEC) or the corresponding index variable (ϑ introduced by letRGN in FRGN).

120

we adopt a straightforward type system for controlling how the property that a

region is live is used in the program.

In this chapter, we consider a substructural type system, which provides the

necessary power to encode region calculi (and more) and back this claim by giving

a translation from the FRGN language of the previous chapter to a region extension

of a substructural lambda calculus, which we dub rgnURAL. The central element of

the translation is to “break open” the RGN monad, exposing its interpretation as

a region-stack transformer. In addition, a substructural type system turns out to

be an effective means of managing individual references as independent resources;

hence, rgnURAL provides a richer collection of reference primitives than that pro-

vided by SEC or FRGN. In the subsequent chapter, we demonstrate that rgnURAL

is a versatile target language by showing how to encode Cyclone’s dynamic regions

and unique pointers, as well as their interactions with lexically-scoped regions.

The remainder of this chapter is structured as follows. In the following section,

we examine more closely the nature of substructural type systems. This motivates

the design for rgnURAL, which is presented more formally in Section 4.2. Instead

of a lexically-scoped region primitive, the primitives of rgnURAL include newrgn

and freergn for separately creating and destroying a region. All access to a region

(for allocating, reading, and writing references) is mediated by a capability that

is produced by newrgn and consumed by freergn. In addition, the primitives

of rgnURAL include free for deallocating an individual reference and write and

swap for strong (type-varying) updates. Furthermore, rgnURAL adopts a relatively

simple type system.2

2While the type system of rgnURAL is more complicated than that of FRGN,
we believe that it is simpler (that is, more intuitive) than that of SEC and other
type-and-effect systems.

121

In Section 4.3, we show how FRGN can be translated to rgnURAL in a type- and

meaning-preserving fashion, thereby establishing our claim that a substructural

type system is sufficient for encoding the type-and-effects systems of region calculi.

In Sections 4.4 and 4.5, we consider related work and summarize and note

directions for future work. Appendix C compliments this chapter by including

technical details that would otherwise detract from the focus on the translation.

4.1 Background: A Substructural λ-Calculus

Advanced type systems for resources limit the order and number of uses of data

and operations to ensure that resources are handled in a safe manner. For example,

(safely) deallocating a data structure requires that the data structure is never used

in the future.3 In order to conservatively establish this property, a type system

may ensure that the data structure is used at most once; after one use, the data

structure may be safely deallocated, since there can be no further uses.4

A substructural type system provides the core mechanisms necessary to restrict

the number and order of uses of data and operations. A conventional type system,

such as that used by the simply-typed λ-calculus (and those used by SEC and

FRGN), with a typing judgment like Γ ` e : τ , satisfies three structural properties:

Exchange If Γ1, x:τx, y:τy, Γ2 ` e : τ , then Γ1, y:τy, x:τx, Γ2 ` e : τ .

Contraction If Γ1, x:τz, y:τz, Γ2 ` e : τ , then Γ1, z:τz, Γ2 ` e[z/x][z/y] : τ .

Weakening If Γ ` e : τ , then Γ, x:τx ` e : τ .

3Similarly, and of particular importance in our setting, (safely) deallocating a
region requires that the region is never accessed in the future.

4While safe, ensuring that a region is accessed at most once would be too
limiting. In the next section, we show how a variation on this idea yields an
expressive language.

122

The Exchange property asserts that the order of variables in the context does

not affect the type checking of a term. The Contraction property asserts that

if we can type check a term with multiple assumptions about variables of the

same type, then we may also type check the same term with a single assumption

about a variable of the type.5 Finally, the Weakening property asserts that extra

assumptions do not affect the type checking of a term.

In contrast, a substructural type system is designed so that one or more of

these structural properties does not hold in general. Among the most widely

studied substructural type systems are the linear type systems [85, 65], derived

from Girard’s linear logic [27], in which all variables satisfy Exchange, but linearly

typed variables satisfy neither Contraction nor Weakening.

In this section, we informally present a substructural λ-calculus, similar to

Walker’s linear λ-calculus [89]. In our calculus, types are qualified as unrestricted

(U), relevant (R), affine (A), or linear (L). All variables will satisfy Exchange,

while only unrestricted variables will satisfy both Contraction and Weakening,

allowing such variables to be used an arbitrary number of times. We will require

• linear variables to satisfy neither Contraction nor Weakening, ensuring

that such variables are used exactly once,

• affine variables to satisfy Weakening (but not Contraction), ensuring that

such variables are used at most once, and

• relevant variables to satisfy Contraction (but not Weakening), ensuring

that such variables are used at least once.6

5Note, however, that while the two terms (e and e[z/x][y/x]) have the same
type, they do not necessarily have the same behavior.

6In the logic community, it is perhaps more accurate to use the qualifier “strict”

123

The diagram below demonstrates the relationship between these qualifiers, induc-

ing a partial order v:

L
��� >>>

A
??
v R

��

U

We integrate qualifiers into the simply-typed λ-calculus to yield a substructural

λ-calculus, dubbed the λURAL-calculus, whose syntax is given in Figure 4.1.

Note that we structure our types τ as a qualifier q applied to a pre-type τ ,

yielding the four sorts of types noted above. The qualifier of a type dictates the

(implicit) structural operations that may be applied to values of the type, while the

pre-type dictates the (explicit) introduction and elimination forms. The pre-types

τ1 � · · ·� τn and τ1 (τ2 correspond to the tuple and function types of the simply-

typed λ-calculus. The types U(Uτ1 � Uτ2) and U(Uτ1 (Uτ2) directly correspond to

the more familiar τ1 × τ2 and τ1 → τ2; see the discussion in Section 4.3.

This structuring of types as a qualifier applied to a pre-type follows that of

Walker [89], but differs from other presentations of linear lambda calculi that use

exactly one modality (!τ) to distinguish unrestricted from linear types. While

it seems possible to introduce alternative modalities (e.g, −τ for affine and +τ

for relevant), we would have to consider their interaction (e.g., what does −!+τ

denote?). Also, with four distinct qualifiers, it is natural to introduce qualifier

polymorphism (as we do so in the next section), which is best formulated by

separating qualifiers from pre-types.

Each pre-type has an associated introduction form; note, that a qualifier an-

notates the introduction form for all data structures. The qualifier annotation

for such variables. However, “strict” is already an overloaded term in the functional
programming community; so, like Walker [89], we use “relevant.”

124

Constant Qualifiers

q ∈ CQuals = {U, R, A, L}

Pre-types

τ ::= Bool | τ1 (τ2 | τ1 � · · ·� τn

Types

τ ::= qτ

Boolean constants

b ∈ {true, false}

Value variables

f, x ∈ VVars

Terms

e ::= qb | if eb then et else ef |

x | qλx:τ. e | e1 e2 |

q〈e1, . . . , en〉 | let 〈x1, . . . , xn〉 = ea in eb |

let x = ea in eb

Figure 4.1: Syntax of λURAL

125

indicates the number of times that the data structure will be used (i.e., appear in

an appropriate elimination form) during the evaluation of the program; a linear

(L) qualified data structure will be used exactly once, an affine (A) at most once,

a relevant (R) at least once, and an unrestricted (U) an arbitrary number of times.

A boolean is eliminated by the if eb then et else ef expression. The pattern

matching expression form let 〈x1, . . . , xn〉 = e in eb is used to eliminate tuples

(�).7 Finally, a function with pre-type τ1 (τ2 is eliminated via application e1 e2.

While we present an operational semantics for (an extension of) λURAL in the

next section and in Appendix C.1.1, it is important to note how the evaluation

of a program may implicitly copy and/or drop values. Consider, for example, the

following two terms:

U(λx:Lτ . L〈x, x〉) Lv

U(λx:Lτ . U〈〉) Lv

The substitution of Lv for x in the evaluation of the first term will duplicated the

Lv value; if this term were embedded in a larger program, further evaluation might

deconstruct the result pair and subsequently use the Lv value more than once –

violating the exactly one use of a linear value. Similarly, the substitution of Lv for

x in the second term will discard the Lv value; no further evaluation will ever use

the Lv value – again, violating the exactly one use of a linear value.

Hence, the type system for λURAL should ensure that only unrestricted and

relevant values are duplicated and only unrestricted and affine values are discarded.

To prevent values from being implicitly copied or dropped when their containing

value is duplicated or discarded, the type system must also ensure that a value with

7Note that this form of tuple elimination extracts all components of the tuple,
while only counting as a single use of the tuple.

126

` τ v q′

q � q′

` qτ v q′

` Γ v q′

` · v q′

` Γ v q′ ` τ v q′

` Γ, x:τ v q′

Figure 4.2: Static semantics of λURAL (v)

a qualifier lower in the partial order may not contain values with qualifiers higher

in the partial order. For example, an affine (A) pair may not contain linear (L)

components, since we could end up dropping the linear components by dropping

the pair; hence, the type system must rule out expressions of type A(Lτ 1 � Lτ 2).

Despite these requirements, the type system for λURAL is relatively simple.

λURAL typing judgments have the form Γ ` e : τ and Figure 4.4 presents the λURAL

typing rules. In order to ensure the correct relationship between a data structure

and its components, we extend the partial order on constant qualifiers to types

and contexts (see Figure 4.2).

As is usual in a substructural setting, the type system relies upon a judgment

` Γ; Γ1 � Γ2 that splits the assumptions in Γ between the contexts Γ1 and Γ2

(see Figure 4.3). Splitting the context is necessary to ensure that variables are used

appropriately by sub-expressions. Note that � ensures that an A or L assumption

appears in exactly one sub-context. On the other hand, U and R assumptions may

appear in both sub-contexts (via the Contr), corresponding to implicit duplica-

tion of the variables.

127

` Γ; Γ1 � Γ2

` ·; ·� ·

` Γ; Γ1 � Γ2

` Γ, x:τ ; Γ1, x:τ � Γ2

` Γ; Γ1 � Γ2

` Γ, x:τ ; Γ1 � Γ2, x:τ

Contr

` Γ; Γ1 � Γ2 ` τ v R

` Γ, x:τ ; Γ1, x:τ � Γ2, x:τ

Figure 4.3: Static semantics of λURAL (�)

The rule for tuples is representative: the context is split by � to type each

of the tuple components, and the types of each component are bounded by the

qualifier assigned to the tuple. Intuitively, each of the the L and A assumptions

in the context is exclusively “owned” by exactly one of the tuple components.

Likewise, in the rule for abstractions, the types of the free variables of Γ, which

constitute the closure of the function, must be bounded by the qualifier assigned

to the function. Note that the qualifier assigned to a function type is unrelated

to the types of the argument and result; rather, it is related to the abstracted

components that are used when the function is executed.

The Weak rule splits the context into a sub-context used to type the expres-

sion e and a discardable sub-context, consisting of U and A variables, that are not

required to type the expression. Note that the rule Weak acts as a strengthened

Weakening property, allowing an arbitrary number of U and A variables to be

dropped at once. The corresponding strengthened Contraction property is in-

corporated into the judgment ` Γ; Γ1 � Γ2 (via the Contr rule), which allows

an arbitrary number of U and R variables to be copied at once.

128

Γ `exp e : τ

· `exp
qb : qBool

` Γ; Γ1 � Γ2 Γ1 `exp eb : qBool Γ2 `exp et : τ Γ2 `exp ef : τ

Γ `exp if eb then et else ef : τ

·, x:τ `exp x : τ

` Γ v q Γ, x:τx `exp e : τ

Γ `exp
q(λx:τx. e) : q(τx (τ)

` Γ; Γf � Γa Γf `exp ef : q(τx (τ) Γa `exp ea : τx

Γ `exp ef ea : τ

` Γ; Γ1 � · · ·� Γn Γi `exp ei : τi
i∈1...n ` τi v q i∈1...n

Γ `exp
q〈e1, . . . , en〉 : q(τ1 � · · ·� τn)

` Γ; Γa � Γb Γa ` ea : q(τ1 � · · ·� τn) Γb, x1:τ1, . . . , xn:τn `exp eb : τ

Γ `exp let 〈x1, . . . , xn〉 = ea in eb : τ

` Γ; Γa � Γb Γa `exp ea : τx Γb, x:τx ` eb : τ

Γ `exp let x = ea in eb : τ

Weak

` Γ; Γ1 � Γ2 ` Γ1 v A Γ2 ` e : τ

Γ `exp e : τ

Figure 4.4: Static semantics of λURAL (expressions)

129

Finally, note that the rules for constants require the value context to be empty;

this ensures that every variable is either explicitly used by an expression or implic-

itly dropped by the Weak rule.

One may easily verify that the substructural type system for λURAL satisfies

these variations of the structural properties:

λURAL Exchange If Γ1, x:τx, y:τy, Γ2 ` e : τ , then Γ1, y:τy, x:τx, Γ2 ` e : τ .

λURAL Contraction If Γ1, x:qzτ z, y:qzτ z, Γ2 ` e : τ and qz v R,

then Γ1, z:qzτ z, Γ2 ` e[z/x][z/y] : τ .

λURAL Weakening If Γ ` e : τ and qx v A, then Γ, x:qxτx ` e : τ .

4.2 The rgnURAL Language

The rgnURAL language is an extension of the λURAL-calculus of the previous section,

adding universal and existential quantification and adding pre-types and operations

for regions, handles, and references. As described in the previous section, the

design of rgnURAL takes inspiration from the work on linear and substructural type

systems [85, 65, 89], the Calculus of Capabilities [90], and Alias Types [75, 91].

Essentially, rgnURAL uses an explicit (linear) capability to mediate all access to a

region (for allocating, reading, writing, swapping, and deallocating references).

In this section, we present the rgnURAL language in sufficient detail to describe

the translation from FRGN to rgnURAL in Section 4.3. To this end, we include

the syntax for both the surface language and abstract machine configurations,

dynamic semantics for the abstract machine configurations, and static semantics

for the surface language.

130

The dynamic semantics defines a small-step semantics, which defines an evalua-

tion relation from heaps of regions and expressions to heaps of regions and expres-

sions. In Section 4.2.2, we will discuss why it is convenient to adopt a small-step

operational semantics for rgnURAL

We purposefully omit the static semantics for the abstract machine configura-

tions (normally included for a syntactic proof of type soundness), since it requires

a number of technical details that detract from the focus on the translation. Ap-

pendix C.1 includes additional technical details for the rgnURAL language and

discusses a mechanically verified proof of type soundness.

4.2.1 Syntax of rgnURAL

Surface Syntax of rgnURAL

Figures 4.5 and 4.6 present the syntax of “surface programs” (that is, exclud-

ing syntax and semantic objects that will appear in the dynamic semantics) of

rgnURAL. In the following sections, we explain and motivate the main constructs

of rgnURAL.

Qualifiers, pre-types, types, and regions Types in rgnURAL are structured

as a qualifier applied to a pre-type, just as in the λURAL-calculus. However, rgnURAL

enriches the type structure by introducing qualifier variables, pre-type variables,

and type variables, as well as pre-types for universal and existential quantification

over each of these kinds of variables.8

8As an alternative to introducing separate pre-types for quantification over each
of these kinds of variables, we could introduce multiple kinds, say Qual, PreType,
and Type, and collapse the syntactic classes of qualifiers, types, and indices. How-
ever, while this simplifies the syntax of the language, it does not significantly
simplify the meta-theory.

131

Constant Qualifiers

q ∈ CQuals = {U, R, A, L}
L

��� >>>

A
??
v R

��

U

Qualifier variables

ξ ∈ QVars

Qualifiers

q ::= ξ | q

Pre-type variables

α ∈ PTVars

Pre-types

τ ::= α | Int | Bool | τ1 (τ2 | τ1 � · · ·� τn |

∀ξ. τ | ∃ξ. τ | ∀α. τ | ∃α. τ | ∀α. τ | ∃α. τ |

Ref ρ τ | Hnd ρ | Cap ρ | ∀%. τ | ∃%. τ

Type variables

α ∈ TVars

Types

τ ::= α | qτ

Region variables

% ∈ RVars

Surface regions

ρ ::= %

Figure 4.5: Surface syntax of rgnURAL (I)

132

Integer constants

i ∈ Z

Boolean constants

b ∈ {true, false}

Value variables

f, x ∈ VVars

Surface terms

e ::= qi | q(e1 ⊕ e2) | q(e1 < e2) | qb | if eb then et else ef |

x | qλx:τ. e | e1 e2 |

q〈e1, . . . , en〉 | let 〈x1, . . . , xn〉 = ea in eb |

qΛξ. e | e [q] | qpack(q, e) | let pack(ξ, x) = ea in eb |

qΛα. e | e [τ] | qpack(τ , e) | let pack(α, x) = ea in eb |

qΛα. e | e [τ] | qpack(τ, e) | let pack(α, x) = ea in eb |

let x = ea in eb |

qc,qhnewrgn | freergn ec eh |

qrnew ec eh e? | free ec er |

read ec er | write ec er e? | swap ec eh e? |

qΛ%. e | e [ρ] | qpack(ρ, e) | let pack(%, x) = ea in eb

Figure 4.6: Surface syntax of rgnURAL (II)

133

As was done in our previous languages, we introduce regions ρ as a distinguished

syntactic object.9 Universal and existential quantification over regions is provided

by the pre-types ∀%. τ and ∃%. τ .

The pre-types Ref ρ τ and Hnd ρ are similar to the corresponding types in

FRGN; the former is the type of mutable references allocated in the region ρ and

the latter is the type of handles for the region ρ. Finally, the pre-type Cap ρ is the

type of capabilities for accessing the region ρ. We shall shortly see how (linear)

capabilities effectively mediate access to a region.

Terms As with types, terms in rgnURAL include those found in the λURAL-

calculus; constants, arithmetic and boolean operations, function abstraction and

application, tuple introduction and elimination, and the various forms of quantifier

introduction and elimination are completely standard.

There are seven primitives that deal with regions and references. Instead of a

lexically-scoped region primitive, the newrgn and freergn primitives separate the

creation and destruction of a region. The newrgn is the introduction form for both

Hnd and Cap values; hence, it is annotated with two qualifiers.

We also introduce primitives to allocate (new) and deallocate (free) references,

as well as to read (read), write (write), and swap (swap) their contents. Not all of

these operations can be safely performed with all sorts of references, as we discuss

in Section 4.2.3. Finally, note that new is the introduction form for Ref values;

hence, it is annotated with a qualifier.

134

Pointer names

p ∈ PNames

Region names

r ∈ RNames

Regions

ρ ::= . . . | r

Abstract machine terms

e ::= . . . | qr(ref r p) | qh(hnd r) | qc(cap)

Abstract machine values

v ::= qv

Abstract machine pre-values

v ::= i | b | λx:τ. e | 〈v1, . . . , vn〉 |

Λξ. e | pack(q, v) | Λα. e | pack(τ , v) | Λα. e | pack(τ, v) |

ref r p | hnd r | cap | Λ%. e | pack(ρ, v)

Figure 4.7: Abstract machine syntax of rgnURAL (I)

135

Abstract Machine Configurations for rgnURAL

Figures 4.7 and 4.8 present abstract machines configurations for rgnURAL, which

extend the syntax of the previous section with semantic objects that appear in the

operational semantics.

Region names and pointers are used to represent references to region allocated

data. Unlike the SEC and FRGN languages, terms in rgnURAL do not distinguish

references and handles to live regions from references and handles to dead regions;

hence, there is no dead region (•) syntactic form. We discuss the reasons for this

formulation in more detail when we consider the dynamic semantics of rgnURAL

in Section 4.2.2.

The abstract machine syntax adds three new expression forms. The expres-

sion qr(ref r p) is the run-time representation of a qr(Ref r τ); that is, it is the

pointer reference associated with a region allocated value. Likewise, the expres-

sion qh(hnd r) is the run-time representation of a qh(Hnd r). Finally, the expression

qc(cap) is the run-time representation of a qc(Cap r). Note that the expression

form of a capability does not name the region; as will be seen in the next section,

a capability has no run-time significance.10

Value forms in rgnURAL are structured as a qualifier applied to a pre-value,

which mirrors the structuring of types.

Thus far, we have talked about region allocated data without discussing where

such data is stored. Storable (i.e., closed) values are associated with regions R;

regions are collected into heaps H. In order to support a syntactic proof of type

soundness, the structure of regions and heaps includes some additional instrumen-

9Note that surface programs never require a region to be represented by any-
thing other than a region variable.

10That is, they could be erased without affecting the evaluation of a program.

136

Regions

R ::= {p1 7→ (q1, v1), . . . , pn 7→ (qn, vn)}

Region mark

υ ::= qlive | dead

Heaps

H ::= {r1 7→ (υ1, R1), . . . , rn 7→ (υn, Rn)}

Abstract machine configurations

(H; e)

Figure 4.8: Abstract machine syntax of rgnURAL (II)

tation. A region R maps pointers p to a pair of a qualifier q and a value; the

qualifier records the qualifier that annotated the new primitive that allocated the

corresponding reference. A heap H maps region names r to a pair of a region mark

ν and a region; the region mark records whether the named region is allocated

(qclive) or deallocated (dead). The operational semantics of the next section will

not allow the evaluation of a rgnURAL program to access a deallocated region.

When a region is allocated, the region mark qclive records the qualifier of the

capability associated with the region.

The notation H1]H2 (respectively, R1]R2) denotes the disjoint union of the

heaps H1 and H2 (respectively, the regions R1 and R2); the operation is undefined

if the domains of H1 and H2 (respectively, R1 and R2) are not disjoint.

137

(H; e) 7−→ (H ′; e′)

i1 ⊕ i2 = i

(H; q(i1 ⊕ i2)) 7−→ (H; qi)

i1 < i2 = b

(H; q(i1 < i2)) 7−→ (H; qb)

(H; if true then et else ef) 7−→ (H; et)

(H; if false then et else ef) 7−→ (H; ef)

(H; (λx:τx. eb) va) 7−→ (H; eb[va/x])

(H; let 〈x1, . . . , xn〉 = 〈v1, . . . , vn〉 in eb) 7−→ (H; eb[v1/x1] · · ·[vn/xn])

Figure 4.9: Dynamic semantics of rgnURAL (expressions (I))

4.2.2 Dynamic Semantics of rgnURAL

An inductive judgment (Figures 4.9–4.13) defines the dynamic semantics. We state

without proof that the dynamic semantics is deterministic; it is syntax-directed,

taking (H; e) configurations modulo α-conversion, including conversion of region

names and pointers, which are (uniquely) bound in the heap H.

The judgment (H; e) 7−→ (H ′; e′) asserts that one step of evaluation of the

closed expression e in heap H results in a new heap H ′ and new expression e′.

The rules for (H; e) 7−→ (H ′; e′) for expression forms other than the region and

reference primitives are completely standard. Note that in each of these rules, the

heap H is returned unchanged. We use evaluation contexts E (Figure 4.11) to

lift the base rewriting rules to a standard, left-to-right, innermost-to-outermost,

call-by-value interpretation of the language.

138

(H; e) 7−→ (H ′; e′)

(H; (λξ. eb) [qa]) 7−→ (H; eb[qa/ξ])

(H; let pack(ξ, x) = pack(q, vx) in eb) 7−→ (H; eb[q/ξ][vx/x])

(H; q(λα. eb) [τa]) 7−→ (H; eb[τa/α])

(H; let pack(α, x) = pack(τ , vx) in eb) 7−→ (H; eb[τ/α][lx/x])

(H; (λα. eb) [τa]) 7−→ (H; eb[τa/α])

(H; let pack(α, x) = pack(τ, vx) in eb) 7−→ (H; eb[τ/α][vx/x])

(H; let x = vx in eb) 7−→ (H; eb[vx/x])

(H; (λ%. eb) [ρa]) 7−→ (H; eb[ρa/%])

(H; let pack(%, x) = pack(ρ, vx) in eb) 7−→ (H; e[ρ/%][lx/x])

Figure 4.10: Dynamic semantics of rgnURAL (expressions (II))

139

(H; e) 7−→ (H ′; e′)

Evaluation contexts

E ::= [·] | q(E1 ⊕ e2) | q(v1 ⊕ E2) | q(E1 < e2) | q(v1 < E2) |

if Eb then et else ef |

Ef ea | vf Ea |

q〈v1, . . . , Ei, . . . , en〉 | let 〈x1, . . . , xn〉 = E1 in e2 |

Ef [qa] | qpack(q, E) | let pack(ξ, x) = Ea in eb |

Ef [τa] | qpack(τ , E) | let pack(α, x) = Ea in eb |

Ef [τa] | qpack(τ, E) | let pack(α, x) = Ef in ea |

let x = Ea in eb |

freergn Ec eh | freergn vc Eh |

qnew Ec eh ea | qnew vc Eh ea | qnew vc vh Ea |

free Ec er | free vc Er |

read Ec er | read vc Er |

write Ec er ea | write vc Er ea | write vc vr Ea |

swap Ec er ea | swap vc Er ea | swap vc vr Ea |

Ef [ρa] | qpack(ρ, E) | let pack(%, x) = Ea in eb

(H; e) 7−→ (H ′; e′)

(H; E[e]) 7−→ (H ′; E[e′])

Figure 4.11: Dynamic semantics of rgnURAL (contexts)

140

(H; e) 7−→ (H ′; e′)

r /∈ dom(H)

(H; qc,qhnewrgn) 7−→

(H] {r 7→ (qclive, {})}; Lpack(r, L〈qc(cap), qh(hnd r)〉))

(H] {r 7→ (qclive, R)}; freergn qc(cap) qh(hnd r)) 7−→

(H] {r 7→ (dead, R)}; L〈〉)

Figure 4.12: Dynamic semantics of rgnURAL (expressions (III))

The rules for (H; e) 7−→ (H ′; e′) for the region and reference primitives perform

operations that side-effect the heap of regions. The rule for qc,qhnewrgn allocates a

new region in the heap by choosing a fresh region name r, extending the heap with

an empty region (bound to r), and returning an existential package (that hides the

name of the fresh region) containing the capability and a handle for the region. The

rule for freergn “deallocates” a region in the heap by changing the region mark

from qclive to dead. Note that freergn requires both a capability and a handle,

though only the handle is required to name the region to be deallocated. (Hence,

the capability could be erased without affecting the evaluation of the freergn

primitive.)

The rules for new, free, read, write, and swap all access a region to manipulate

references. For the most part, new, read, and write behave as their counterparts

in FRGN. The major differences are (1) that each of the operations threads a

qc(cap) value through the evaluation and (2) that the read, write, and swap

operations return the qr(ref r p) argument. The capability is simply presented at

each access of a region and returned to allow future access. (Note that, as with

141

(H; e) 7−→ (H ′; e′)

p /∈ dom(R)

(H] {r 7→ (qclive, R)}; qrnew qc(cap) qh(hnd r) va) 7−→

(H] {r 7→ (qclive, R] {p 7→ (qr, v))}; L〈qc(cap), qr(ref r p)〉)

(H] {r 7→ (qclive, R] {p 7→ (qr, v)})}; free qc(cap) qr(ref r p)) 7−→

(H] {r 7→ (qclive, R)}; L〈qc(cap), v〉)

(H] {r 7→ (qclive, R] {p 7→ (qr, v)})}; read qc(cap) qr(ref r p)) 7−→

(H] {r 7→ (qclive, R] {p 7→ (qr, v)})}; L〈qc(cap), v〉)

(H] {r 7→ (qclive, R] {p 7→ (qr, v)})}; write qc(cap) qr(ref r p) v?) 7−→

(H] {r 7→ (qclive, R] {p 7→ (qr, v?)})}; L〈qc(cap), qr(ref r p)〉)

(H] {r 7→ (qclive, R] {p 7→ (qr, v)})}; swap qc(cap) qr(ref r p) v?) 7−→

(H] {r 7→ (qclive, R] {p 7→ (qr, v?)})}; L〈qc(cap), qr(ref r p), v〉)

Figure 4.13: Dynamic semantics of rgnURAL (expressions (IV))

142

freergn, the capability could be erased without affecting the evaluation of the

reference primitives.) Similarly, we do not wish to consider reading or writing a

linear (respectively, affine) reference as the exactly one use (respectively, at least

one use) of the reference. Therefore, the primitives return the reference that was

accessed, so that it remains available for future use.

The rules for qr(new ec eh e?) and free ec er perform the complementary ac-

tions of allocating and deallocating a mutable reference in a region in the heap.

The rule for new requires a handle as a run-time value holding the data necessary

to allocate values within a region. The rule for free deallocates a reference by

removing the pointer p mapping from the region; note that free returns the value

previously stored at p.

The primitives for reading and writing a mutable reference implicitly duplicate

and discard (respectively) the contents of the reference. Note that the rule for

read duplicates the value stored at p, by returning v, but also leaving the value

stored at p unchanged. Meanwhile, the rule for write discards the value stored at

p, by replacing the value stored at p with a new value.

The rule for swap combines the operations of dereferencing and updating a

mutable reference, but has the attractive property that it neither duplicates nor

discards a value. Note that performing a write or swap operation on a reference may

change the type of the reference’s contents. The static semantics of the next section

will permit weak (type-invariant) updates on all references (with some additional

caveats), but will restrict strong (type-varying) updates to unique references.

It is important to note that the execution of freergn and the reference primi-

tives is predicated upon the primitive’s capability and arguments corresponding to

a live region in the heap. While it will be possible to have (suspended) primitives

143

that reference deallocated regions, it will not be possible to execute them. The

type system of the next section and Appendix C.1.2 ensures that these invariants

are preserved during the execution of well-typed programs.

Remarks

Before turning to the substructural type system for rgnURAL, it is worth consider-

ing in more detail one of the major differences in the abstract machine configura-

tions and dynamic semantics of rgnURAL as compared to those of SEC and FRGN.

In particular, rgnURAL “deallocates” a region in the heap by changing the region

mark from qclive to dead, while SEC and FRGN deallocate a region by removing it

from the stack of regions. SEC and FRGN also replace occurrences of the deallocated

region name with • in the stack and result value; this replacement ensured that

any occurrences of ref or hnd terms in the stack or result are marked as dead.

The reason that we must adopt a different strategy for dealing with terms that

mention the deallocated region is simple: in rgnURAL, occurrences of the region

name need not be local to the primitive that deallocates the region. This is in

contrast to a language that provides lexically-scoped regions, such as FRGN, in

which occurrences of the region name are limited to the stack of regions and the

result value of the letRGN command.

In moving to a language that provides separate primitives for allocating and

deallocating a region, we gain flexibility, but it is significantly more difficult to track

down occurrences of the region name in the rgnURAL program under evaluation.

Consider, for example, the following program, which is well-typed according to the

144

static semantics of the next section:

let pack(%, ch) = L,Unewrgn in

let 〈cap, hnd〉 = ch in

let 〈cap, r1〉 = U(ref cap hnd U1) in

let 〈cap, r2〉 = U(ref cap hnd U2) in

let 〈〉 = freergn cap hnd in

let p = U〈r1, r2 〉 in U7

After seven steps of evaluation, the program will be in the following configuration:

({r 7→ (Llive, {p1 7→ (U, U1), p2 7→ (U, U2)})};

let 〈〉 = freergn L(cap) U(hnd r) in

let p = U〈U(ref r p1),
U(ref r p2)〉 in U7)

In order to maintain a compositional evaluation strategy, the rule that evaluates

the freergn primitive must focus on exactly the freergn term and leave the re-

mainder of the program unchanged. Hence, the occurrences of r in the let p = . . .

expression cannot be modified by the freergn rule. (The same holds true even if

we were to adopt a large-step operational semantics.)

After two more steps of evaluation, the program will be in the following con-

figuration:

({r 7→ (dead, {p1 7→ (U, U1), p2 7→ (U, U2)})};

let p = U〈U(ref r p1),
U(ref r p2)〉 in U7)

We may consider the references in the let p = . . . expression to be dangling point-

ers, since their corresponding region has been “deallocated.” We leave the region r

mapping in the heap (but marked as dead) to prevent such dangling pointers from

becoming associated with a later allocated region, one that happens to choose the

same region name.

145

Qualifier, pre-type, type, region contexts

∆ ::= · | ∆, ξ | ∆, α | ∆, α | ∆, %

Value contexts Γ ::= · | Γ, x:τ

Figure 4.14: Static semantics of rgnURAL (definitions)

4.2.3 Static Semantics of rgnURAL

As noted above, well-typed programs obey several invariants, which are enforced

with typing judgments. In particular, the typing judgments for an rgnURAL ex-

pression must ensure that the evaluation of the expression does not attempt to

access a deallocated region. For the surface syntax of rgnURAL, it suffices to in-

clude typing judgments for expressions and various well-formedness judgments for

qualifiers, pre-types, types, regions, and contexts. As was stated previously, we

purposefully omit judgments for the additional semantic objects introduced by

the abstract machine configurations for rgnURAL (for example, typing judgments

for heaps), but these additional technical details and a syntactic proof of type

soundness for rgnURAL may be found in Appendix C.1.

Definitions Figure 4.14 presents additional definitions for syntactic objects that

appear in the static semantics. Contexts ∆ are ordered lists of qualifier, pre-type,

type, and region variables and contexts Γ are ordered lists of variables with types.

We tacitly assume that all contexts are well-formed: ∆ contains distinct qualifier,

pre-type, type, and region variables and Γ contains distinct value variables.

Qualifier order As in the λURAL-calculus, in order to ensure the correct rela-

tionship between a data structure and its components, we extend the partial order

on constant qualifiers to arbitrary qualifiers, types, and value contexts (see Fig-

146

∆ ` q � q′

∆ `qual q

∆ ` U � q

q1 v q2

∆ ` q1 � q2

∆ `qual q

∆ ` q � L

∆ `qual q

∆ ` q � q

∆ ` q1 � q2 ∆ ` q2 � q3

∆ ` q1 � q2

∆ ` τ � q′

∆ `type τ

∆ ` τ � L

∆ ` q � q′ ∆ `ptype τ

∆ ` qτ � q′

∆ ` Γ � q′

∆ `qual q′

∆ ` · � q′

∆ ` τ � q′ ∆ ` Γ � q′

∆ ` Γ, x:τ � q′

Figure 4.15: Static semantics of rgnURAL (�)

147

∆ ` Γ; Γ1 � Γ2

∆ ` ·; ·� ·

∆ ` Γ; Γ1 � Γ2

∆ ` Γ, x:τ ; Γ1, x:τ � Γ2

∆ ` Γ; Γ1 � Γ2

∆ ` Γ, x:τ ; Γ1 � Γ2, x:τ

Contr

∆ ` Γ; Γ1 � Γ2 ∆ ` τ � R

∆ ` Γ, x:τ ; Γ1, x:τ � Γ2, x:τ

Figure 4.16: Static semantics of rgnURAL (�)

ure 4.15). In the presence of qualifier and type quantification, we include the rules

∆ ` U � q, ∆ ` q � L, and ∆ ` τ � L, a conservative extension, since U and L are

the bottom and top of the lattice. These extensions are useful, since they admit

the derivation of ∆ ` α � L, which, for example, allows one to always make a linear

pair of polymorphic values. A more general approach would incorporate bounded

qualifier constraints, which we believe is straightforward, but doing so does not

add to the discussion at hand.

Context splitting Figure 4.16 recalls the context splitting judgment of the

λURAL-calculus, extending it in the presence of qualifier and type quantification.

Terms Figures 4.17–4.24 present the typing rules for the judgment

∆; Γ `exp e : τ , which asserts that under the qualifier, pre-type, type, and region

context ∆ and the value context Γ, the expression e has the type τ .

The rules for constants, arithmetic and boolean operations, function abstrac-

tion and application, tuple introduction and projection, and the various forms of

quantifier introduction and elimination are all straightforward, following directly

148

∆; Γ `exp e : τ

∆ `qual q

∆; · `exp
qi : qInt

∆ `qual q ∆ ` Γ; Γ1 � Γ2

∆; Γ1 `exp e1 : q1 Int ∆; Γ2 `exp e2 : q2 Int

∆; Γ `exp
q(e1 ⊕ e2) : qInt

∆ `qual q ∆ ` Γ; Γ1 � Γ2

∆; Γ1 `exp e1 : q1 Int ∆; Γ2 `exp e2 : q2 Int

∆; Γ `exp
q(e1 < e2) : qBool

∆ `qual q

∆; · `exp
qb : qBool

∆ ` Γ; Γ1 � Γ2

∆; Γ1 `exp eb : qBool ∆; Γ2 `exp et : τ ∆; Γ2 `exp ef : τ

∆; Γ `exp if eb then et else ef : τ

Figure 4.17: Static semantics of rgnURAL (expressions (I))

149

∆; Γ `exp e : τ

∆ `type τ

∆; ·, x:τ `exp x : τ

Weak

∆ ` Γ; Γ1 � Γ2 ∆ ` Γ1 � A ∆; Γ2 ` e : τ

∆; Γ `exp e : τ

∆ `qual q ∆ ` Γ � q ∆; Γ, x:τx `exp e : τ

∆; Γ `exp
qλx:τx. e : q(τx (τ)

∆ ` Γ; Γf � Γa

∆; Γf `exp ef : q(τx (τ) ∆; Γa `exp ea : τx

∆; Γ `exp ef ea : τ

∆ `qual q ∆ ` Γ; Γ1 � · · ·� Γn

∆; Γi `exp ei : τi
i∈1...n ∆ ` τi � q i∈1...n

∆; Γ `exp
q〈e1, . . . , en〉 : q(τ1 � · · ·� τn)

∆ ` Γ; Γa � Γb

∆; Γa ` ea : q(τ1 � · · ·� τn) ∆; Γb, x1:τ1, . . . , xn:τn `exp eb : τ

∆; Γ `exp let 〈x1, . . . , xn〉 = ea in eb : τ

Figure 4.18: Static semantics of rgnURAL (expressions (II))

150

∆; Γ `exp e : τ

∆ `qual q ∆ ` Γ � q

∆, ξ; Γ `exp e : τ

∆; Γ `exp
qΛξ. e : q(∀ξ. τ)

∆; Γ `exp ef : q(∀ξ. τ) ∆ `qual qa

∆; Γ `exp ef [qa] : τ [qa/ξ]

∆ `qual q ∆; Γ `exp e2 : τ [q1/ξ] ∆ ` τ [q1/ξ] � q

∆; Γ `exp
qpack(q1, e2) : q(∃ξ. τ)

∆ ` Γ; Γa � Γb ∆ `type τ ∆; Γa ` ea : q(∃ξ. τx) ∆, ξ; Γb, x:τx ` eb : τ

∆; Γ `exp let pack(ξ, x) = ea in eb : τ

∆ `qual q ∆ ` Γ � q

∆, α; Γ `exp e : τ

∆; Γ `exp
qΛα. e : q(∀α. τ)

∆; Γ `exp ef : q(∀α. τ) ∆ `ptype τa

∆; Γ `exp ef [τa] : τ [τa/α]

∆ `qual q ∆; Γ `exp e2 : τ [τ 1/α] ∆ ` τ [τ 1/α] � q

∆; Γ `exp
qpack(τ 1, e2) : q(∃α. τ)

∆ ` Γ; Γa � Γb

∆; Γa ` ea : q(∃α. τx) ∆ `type τ ∆, α; Γb, x:τx ` eb : τ

∆; Γ `exp let pack(α, x) = ea in eb : τ

Figure 4.19: Static semantics of rgnURAL (expressions (III))

151

∆; Γ `exp e : τ

∆ `qual q ∆ ` Γ � q

∆, α; Γ `exp e : τ

∆; Γ `exp
qΛα. e : q(∀α. τ)

∆; Γ `exp ef : q(∀α. τ) ∆ `type τa

∆; Γ `exp ef [τa] : τ [τa/α]

∆ `qual q ∆; Γ `exp e2 : τ [τ1/α] ∆ ` τ [τ1/α] � q

∆; Γ `exp
qpack(τ1, e2) : q(∃α. τ)

∆ ` Γ; Γa � Γb

∆; Γa `exp ea : q(∃α. τx) ∆ `type τ ∆, α; Γb, x:τx ` eb : τ

∆; Γ `exp let pack(α, x) = ea in eb : τ

∆ ` Γ; Γa � Γb ∆; Γa `exp ea : τx ∆; Γb, x:τx ` eb : τ

∆; Γ `exp let x = ea in eb : τ

Figure 4.20: Static semantics of rgnURAL (expressions (IV))

152

∆; Γ `exp e : τ

∆ `qual qc ∆ `qual qh

∆; · `exp
qc,qhnewrgn : L(∃%. L(qc(Cap %) � qh(Hnd %)))

∆ ` Γ; Γc � Γh

∆; Γc `exp ec : qc(Cap ρ) ∆ ` A � qc ∆; Γh `exp eh : qh(Hnd ρ)

∆; Γ `exp freergn ec eh : L1�

Figure 4.21: Static semantics of rgnURAL (expressions (V))

from the corresponding rules in the λURAL-calculus. Note that the rules for quali-

fier, pre-type and type abstraction are similar to the rule for function abstraction:

the free variables of Γ, which constitute the closure of the abstraction, must be

bounded by the qualifier assigned to the abstraction. Meanwhile, the rules for

qualifier, pre-type, and type existential packages are similar to the rule for tuple

introduction: the type of the packaged component is bounded by the qualifier

assigned to the package.

The key rules are those relating to regions and references. Figure 4.21 presents

the typing rules for the newrgn and freergn primitives. Given the operational

behavior of the primitives, the typing rules follow naturally. The rule for newrgn

specifies that it yields an existential package (that hides the name of a fresh re-

gion) containing the capability and a handle for the region. The qualifiers for

the capability and handle are taken from the newrgn annotations. The rule for

freergn specifies that it takes a capability and a handle for the same region; cru-

cially, the rule for freergn requires that the capability’s qualifier is either A or L

153

(∆ ` A � qc). This ensures that there is exactly one capability for ρ in the program

state. (If there were more than one copy of the capability for ρ in the program

state, this would violate the at least one use and exactly one use requirements

for A and L qualified values.) Since a capability is required for every access of a

region, consuming the capability for ρ when the region is deallocated guarantees

that the program may not access the region in the future. Conversely, a region for

which the capability’s qualifier is either U or R may never be deallocated. Since

there may be many copies of the capability in the program state, all of which grant

access to the region, there is no guarantee that the program will not access the

region in the future.

As was noted in Section 4.2.2, each of the reference primitives take a capability

as an argument (“proving” that the region is allocated) and return the capability

for future use. Likewise, the read, write, and swap primitives take a reference as

an argument and return the reference for future use. Finally, it is clear that new

returns a reference, while free takes a reference (without returning it). Hence,

the typing rules for the reference primitives must approximate the following types

(where we replace multiple arguments by a single linear tuple argument):

qrnew :: U(L(qc(Cap ρ) � qh(Hnd ρ) � τ) (L(qc(Cap ρ) � qr(Ref ρ τ)))

free :: U(L(qc(Cap ρ) � qr(Ref ρ τ)) (L(qc(Cap ρ) � τ))

read :: U(L(qc(Cap ρ) � qr(Ref ρ τ)) (L(qc(Cap ρ) � qr(Ref ρ τ) � τ))

write :: U(L(qc(Cap ρ) � qr(Ref ρ τ) � τ?) (L(qc(Cap ρ) � qr(Ref ρ τ?)))

swap :: U(L(qc(Cap ρ) � qr(Ref ρ τ) � τ?) (L(qc(Cap ρ) � qr(Ref ρ τ?) � τ))

It remains to answer (and to understand the answers to) the following questions:

What primitives may safely operate on the different sorts of qualified references?

What combinations of qualifiers for a reference and qualifiers for its contents are

154

qr(Ref ρ qτ)

shared



unique



Prims Contents and Prims

AAA
q

qr
U R A L

U
Unew

(weak updates)

read

write

swap

"
write

swap

"

R
Rnew

(weak updates)

read

write

swap

read

swap

write

swap
swap

A

Anew

free

(strong updates)

read

write

swap

"
write

swap

"

L

Lnew

free

(strong updates)

read

write

swap

read

swap

write

swap
swap

Figure 4.22: Reference primitives for rgnURAL

safe (that is, how are qr and τ related in the type qr(Ref ρ τ))? The answers to

these questions are summarized in Figure 4.22.

First, consider what it means to duplicate a reference. Operationally, a refer-

ence is a pointer in the global heap of regions. Therefore, duplicating an unre-

stricted or relevant reference Ref r p, simply yields two copies of Ref r p — while

the value stored at pointer p in region r is not duplicated. Since duplicating a

shared reference does not alter the uniqueness of its contents, it is both reason-

able and extremely useful to allow shared references to store unique values. This

permits the sharing of (large) unique data structures without expensive copying.

155

On the other hand, dropping an unrestricted or affine reference Ref r p effec-

tively drops its contents, since this reference may (must, in the case of affine) have

been the only copy of Ref r p in the program state. If the contents were a linear

or relevant value, then the exactly one use and at least one use invariants (re-

spectively) would be violated. Hence, we cannot allow linear and relevant values

(which cannot be discarded) to be stored in unrestricted or affine references (which

can be discarded).

Consider yet another axis. Recall that linear and affine references must be

unique (in the program state), while relevant and unrestricted references may be

shared (in the program state). Hence, uniquene references can be deallocated

(free) and can support strong (type-varing) updates. On the other hand, shared

references can never be deallocated and can only support weak updates.

As we noted above, the read operator induces an implicit copy while the write

operator induces an implicit drop. Therefore, whether we can read from or write

to a reference depends entirely on the qualifier of its contents: read is permitted

if the contents are unrestricted or relevant (i.e., duplicable), write is permitted if

the contents are unrestricted or affine (i.e., discardable). The operation swap is

permitted on any sort of reference, regardless of the qualifier of its contents. As

noted above, strong writes and strong swaps, which change the type of the contents

of the location, are only permitted on unique references.

Figures 4.23 and 4.24 presents the typing rules for the reference primitives.

Note that the invariant that a U or A qualified reference may not contain an

R or L qualified value is established by the New(Any) rule and is maintained

(implicitly) by the Write(Weak) and Swap(weak) rules and (explicitly) by

the Write(Strong) and Swap(Strong) rules.

156

∆; Γ `exp e : τ

New(Any)

∆ `qual qr ∆ ` Γ; Γc � Γh � Γa ∆; Γc `exp ec : qc(Cap ρ)

∆; Γh `exp eh : qh(Hnd ρ) ∆; Γa `exp e? : τ ∆ ` τ � A

∆; Γ `exp
qrnew ec eh e? : L(qc(Cap ρ) � qr(Ref ρ τ))

New(R,L)

∆ `qual qr ∆ ` Γ; Γc � Γh � Γa ∆; Γc `exp ec : qc(Cap ρ)

∆; Γh `exp eh : qh(Hnd ρ) ∆; Γa `exp e? : τ ∆ ` R � qr

∆; Γ `exp
qrnew ec eh e? : L(qc(Cap ρ) � qr(Ref ρ τ))

∆ ` Γ; Γc � Γr

∆; Γc `exp ec : qc(Cap ρ) ∆; Γr `exp er : qr(Ref ρ τ) ∆ ` A � qr

∆; Γ `exp free ec er : L(qc(Cap ρ) � τ)

Figure 4.23: Static semantics of rgnURAL (expressions (VI))

157

∆; Γ `exp e : τ

∆ ` Γ; Γc � Γr

∆; Γc `exp ec : qc(Cap ρ) ∆; Γr `exp er : qr(Ref ρ τ) ∆ ` τ � R

∆; Γ `exp read ec er : L(qc(Cap ρ) � qr(Ref ρ τ) � τ)

Write(Weak)

∆ ` Γ; Γc � Γr � Γ? ∆; Γc `exp ec : qc(Cap ρ)

∆; Γr `exp er : qr(Ref ρ τ) ∆ ` τ � A ∆; Γ? `exp e? : τ

∆; Γ `exp write ec er e? : L(qc(Cap ρ) � qr(Ref ρ τ))

Write(Strong)

∆ ` Γ; Γc � Γr � Γ? ∆; Γc `exp ec : qc(Cap ρ) ∆; Γr `exp er : qr(Ref ρ τ)

∆ ` τ � A ∆; Γ? `exp e? : τ? ∆ ` A � qr ∆ ` τ? � qr

∆; Γ `exp write ec er e? : L(qc(Cap ρ) � qr(Ref ρ τ?))

Swap(Weak)

∆ ` Γ; Γc � Γr � Γ?

∆; Γc `exp ec : qc(Cap ρ) ∆; Γr `exp er : qr(Ref ρ τ) ∆; Γ? `exp e? : τ

∆; Γ `exp swap ec er e? : L(qc(Cap ρ) � qr(Ref ρ τ) � τ)

Swap(Strong)

∆ ` Γ; Γc � Γr � Γ? ∆; Γc `exp ec : qc(Cap ρ)

∆; Γr `exp er : qr(Ref ρ τ) ∆; Γ? `exp e? : τ? ∆ ` A � qr ∆ ` τ? � qr

∆; Γ `exp swap ec er e? : L(qc(Cap ρ) � qr(Ref ρ τ?) � τ)

Figure 4.24: Static semantics of rgnURAL (expressions (VII))

158

Finally, we note that write may be encoded using an explicit swap and an

implicit drop:11

Write(Weak)

∆ ` Γ; Γc � Γr � Γ? ∆; Γc `exp ec : qc(Cap ρ)

∆; Γr `exp er : qr(Ref ρ τ) ∆ ` τ � A ∆; Γ? `exp e? : τ

∆; Γ `exp write ec er e? : L(qc(Cap ρ) � qr(Ref ρ τ))

≡ // using Swap(Weak) and ∆; Γ `exp e? : τ

let 〈c, r, x〉 = swap ec er e? in

// using Weak and ∆ ` τ � A, drop x:τ

L〈c, r〉

However, read may not be encoded using an explicit swap and an implicit copy,

as a suitable (discardable) dummy value cannot in general be synthesized:

∆ ` Γ; Γc � Γr

∆; Γc `exp ec : qc(Cap ρ) ∆; Γr `exp er : qr(Ref ρ τ) ∆ ` τ � R

∆; Γ `exp read ec er : L(qc(Cap ρ) � qr(Ref ρ τ) � τ)

≡ // using Swap(Weak) and ∆; Γ `exp ? : τ

let 〈c, r, x〉 = swap ec er ? in

// using Contr and ∆ ` τ � R, copy x:τ

let 〈c, r, y〉 = swap c r x in // using Swap(Weak)

// using Weak and ∆ ` τ � A , drop y:τ

〈c, r, x〉

The shaded expression and antecedents, which would be necessary for the implied

typing derivation, cannot be satisfied by the antecedents of the rule for read.

11The encoding of a write typed by the Write(Strong) rule makes use of the
same term, but an alternate typing derivation.

159

∆ `qual q

ξ ∈ dom(∆)

∆ `qual ξ ∆ `qual q

∆ `ptype τ

α ∈ dom(∆)

∆ `ptype α ∆ `ptype Int ∆ `ptype Bool

∆ `type τ1 ∆ `type τ2

∆ `ptype τ1 (τ2

∆ `type τi
i∈1...n

∆ `ptype τ1 � · · ·� τn

∆, ξ `type τ

∆ `ptype ∀ξ. τ

∆, ξ `type τ

∆ `ptype ∃ξ. τ

∆, α `type τ

∆ `ptype ∀α. τ

∆, α `type τ

∆ `ptype ∃α. τ

∆, α `type τ

∆ `ptype ∀α. τ

∆, α `type τ

∆ `ptype ∃α. τ

∆ `region ρ ∆ `type τ

∆ `ptype Ref ρ τ

∆ `region ρ

∆ `ptype Hnd ρ

∆ `region ρ

∆ `ptype Cap ρ

∆, % `type τ

∆ `ptype ∀%. τ

∆, % `type τ

∆ `ptype ∃%. τ

∆ `type τ

α ∈ dom(∆)

∆ `type α

∆ `qual q ∆ `ptype τ

∆ `type
qτ

∆ `region ρ

% ∈ dom(∆)

∆ `region %

Figure 4.25: Static semantics of rgnURAL (qualifiers, pre-types, types, and regions)

160

Qualifiers, pre-types, types, and regions Figure 4.25 contains additional

(completely standard) judgments for ensuring that qualifiers q, pre-types τ , types

τ , and regions ρ are well-formed. These judgments simply enforce the invariant

that no type or expression may depend upon unbound qualifier, pre-type, type, or

region variables.

Type Soundness

As expected, the type system for rgnURAL is sound with respect to its operational

semantics:

Theorem 4.1 (rgnURAL Soundness)

If ·; · ` e1 : τ and ({}; e1) 7−→∗ (H2; e2), then either there exists v such that

e2 ≡ v or there exists H3 and e3 such that (H2; e2) 7−→ (H3; e3).

We have formally verified this result (for a rich superset of rgnURAL) in the Twelf

system [66] using its metatheorem checker [71]. See Appendix C.2 for more details.

Remarks

An interesting corollary of the type soundness of rgnURAL is that if a closed,

well-typed program of base type (e.g., UBool) is evaluated to a value, then the

resulting heap will have no Llive regions and no L(ref r p) values. That is, any

region introduced by L,qhnewrgn and any reference introduced by Lnew will be freed

during the evaluation of the program, by either freergn or free.

We argue that every linear region is deallocated in the following manner. First,

we note that the evaluation of L,qhnewrgn introduces a L(cap) value of type L(Cap r)

into the program; it simultaneously allocates the corresponding region, initializing

161

its mark to Llive. Next, we note that the reference primitives of rgnURAL all

take a capability as an argument, but also return a capability as a result. Hence,

they neither duplicate nor discard the capability. Furthermore, such a linear value

may not be implicitly duplicated or discarded. Only the freergn primitive uses a

capability in a manner that removes it from the program state; it simultaneously

“deallocates” the corresponding region, by transitioning its mark from Llive to

dead. In a fully evaluated program of type UBool, every linear value must be used

exactly once – hence, every L(cap) must be used to deallocate the corresponding

region.

Similar reasoning shows that every linear reference is deallocated. At first, one

might be worried about allocating linear references in a region, because deallocating

the region would implicitly discard the linear reference (hence, implicitly discarding

the contents of the reference). Initially, one might be concerned how one could

ensure that at a freergn, every linear reference in the region had already been

reclaimed by free.

However, note that the evaluation of Lnew introduces a L(ref r p) value of type

L(Ref r τ) into the program. The read, write, and swap primitives all take a

reference as an argument and return a reference as a result. Hence, they neither

duplicate nor discard the reference. Only the free primitive uses a reference in a

manner that removes it from the program state.

Now, suppose that the region r is deallocated before the reference L(ref r p)

is freed. Deallocating the region removes the capability for the region from the

program state. Since every reference primitive requires the region capability, the

reference L(ref r p) remains in the program, but may not be accessed. Further-

more, the type of the reference must ultimately manifest itself in some manner in

162

the type of the program; while the reference may be hidden in a closure or exis-

tential package, the containing data structure will necessarily have a linear type.

Since the final type of the program is UBool, there can’t be any linear values (of

any type) in the program state. Furthermore, since the region capability is needed

to both free a reference and to deallocate a region, it must be the case that every

linear reference is freed before deallocating its region.

4.3 Translation: From FRGN to rgnURAL

In this section, we present a type- and meaning-preserving translation from FRGN

to rgnURAL. Before giving the details, we discuss a few of the high-level issues.

First, we note that FRGN has no notion of linearity in the syntax or type sys-

tem. Rather, all types (and, therefore, all expressions) are implicitly considered

unrestricted. Hence, we can expect that the translation of all FRGN expressions will

yield rgnURAL expressions with a U qualified pre-type.

On the other hand, we claimed that a stateful region computation could be

interpreted as a region-stack transformer. Recall that the type RGN θ τ is the

type of a computation which transforms a region stack indexed by θ and delivers

a value of type τ . A key characteristic of FRGN is that all primitive region-stack

transformers are meant to use the region stack in a single-threaded manner; hence,

a stateful computation can update the region stack in place. This single-threaded

behavior is precisely the sort of resource management that may be captured by a

substructural type system. Hence, we can expect that the representation of a stack

of regions in rgnURAL will be a value with L qualified pre-type. In particular, we

will represent a stack of regions as a sequence of linear capabilities, formed out of

nested linear tuples.

163

Third, we must be mindful of a slight mismatch between the RGNHnd and

RGNRef types in FRGN and the Hnd and Ref pre-types in rgnURAL. Recall that,

in FRGN, RGNHnd θ and RGNRef θ τ are handles for and references allocated in

the region at the top of the stack indexed by θ. Whereas, in rgnURAL, Hnd ρ

and Ref ρ τ explicitly name the region of the handle or reference. This subtle

distinction (whether the region is implicit or explicit) will need to be handled by

the translation.

We start with a few preliminaries. We assume an injection from the set

VVarsFRGN
to the set VVars rgnURAL. In the translation, applications of this in-

jection will be clear from context and we freely use source value variables as target

value variables. We also assume an injection from the set TVarsFRGN
to the set

PTVars rgnURAL; this injection, written αα, will denote the rgnURAL pre-type vari-

able for the FRGN type variable α. Similarly,we assume an injection from the set

IVarsFRGN
to the set TVarsFRGN

; this injection, written αϑ, will denote the rgnURAL

type variable for the FRGN index variable ϑ.

The translation is a typed call-by-value translation, given by a number of func-

tions: TJ·K translates into types, PJ·K translates into pre-types, DJ·K translates into

qualifier, pre-type, type, and region contexts, GJ·K translates into value contexts,

and EJ·K translates into expressions. Technically, there are separate functions for

each syntactic class in the source calculus, but we elide this detail as it is always

clear from context. Additionally, to reduce notational clutter, translations from

judgments are often written in an abbreviated form giving only the main compo-

nent; the corresponding judgment should be clear from context.

164

Translations yielding types

Indices

T

u

w
v

ϑ ∈ dom(∆)

∆ `index ϑ

}

�
~ = αϑ

Translations yielding types

Types

TJ∆ `type τK = UPJτK

Figure 4.26: Translation from FRGN to rgnURAL (indices and types (I))

Indices and types Figure 4.26 shows the translations of FRGN indices and types

to rgnURAL types, while Figures 4.27 and 4.28 show the translation of FRGN types

to rgnURAL pre-types. Since the surface syntax of FRGN admits only index variables

as index terms, the index variable ϑ is translated to the rgnURAL type variable αϑ.

TJ∆ `type τK and PJ∆ `type τK translate a FRGN type to a rgnURAL type and

pre-type, respectively. As was observed above, when we translate a FRGN type to a

rgnURAL type, we ensure that the result is a U qualified pre-type. The PJ∆ `type τK

translation is straightforward on the functional types in Figure 4.27. However, note

that a FRGN type variable α is translated to a rgnURAL pre-type variable αα; this

ensures that every type corresponding to a FRGN type is manifestly qualified with

U. We discuss this issue more when we consider the translation of FRGN expressions.

More interesting are the translations of the types associated with the RGN

monad (Figure 4.28). In the translation of the RGN θ τ type, we see the familiar

store (or, in this case, stack) passing interpretation of computations: RGN θ τ

is translated to a function taking (the representation of) a stack of regions and

165

Translations yielding pre-types

Types

P

u

w
v

α ∈ dom(∆)

∆ `type α

}

�
~ = αα

P

t

∆ `type Int

|

= Int

P

t

∆ `type Bool

|

= Bool

P

u

w
v

∆ `type τ1 ∆ `type τ2

∆ `type τ1 → τ2

}

�
~ = TJτ1K (TJτ2K

P

u

w
v

∆ `type τi
i∈1...n

∆ `type τ1 × · · · × τn

}

�
~ = TJτ1K � · · ·� TJτnK

P

u

w
v

∆, α `type τ

∆ `type ∀α. τ

}

�
~ = ∀αα. TJτK

Figure 4.27: Translation from FRGN to rgnURAL (types (II))

166

Translations yielding pre-types

Types

P

u

w
v

∆ `index θ ∆ `type τ

∆ `type RGN θ τ

}

�
~ = TJθK (L(TJθK � TJτK)

P

u

w
v

∆ `index θ ∆ `type τ

∆ `type RGNRef θ τ

}

�
~ =

∃%r.
U(U(∃β. Iso(TJθK , L(β � L(Cap %r)))) � U(Ref %r TJτK))

P

u

w
v

∆ `index θ

∆ `type RGNHnd θ

}

�
~ =

∃%r.
U(U(∃β. Iso(TJθK , L(β � L(Cap %r)))) � U(Hnd %r))

P

u

w
v

∆, ϑ `type τ

∆ `type ∀ϑ. τ

}

�
~ = ∀αϑ. TJτK

Isomorphism Macro

Iso(τ1, τ2) = U(U(τ1 (τ2) � U(τ2 (τ1))

Figure 4.28: Translation from FRGN to rgnURAL (types (III))

returning the pair of a stack of regions and a result value. Since the representation

of a stack of regions is linear, the resulting stack/value pair is qualified with L.

Next, consider the translation of the RGNRef θ τ type. Recall that this is

the type of references allocated in the (top-most region of the) region-stack in-

dexed by θ. Since the type does not directly name the region in which the refer-

ence is allocated, the translation must both explicitly name the region and relate

the region to the (translation of the) index. In the translation, an existentially

167

bound region name %r fixes the region for the rgnURAL reference, while an isomor-

phism witnesses the fact that (the capability for) %r may be found within the stack

TJθK. The isomorphism expresses the fact that TJθK may be coerced to and from

L(β � L(Cap %r)), for some “slack” β. Note that while the types TJθK, L(Cap %r),

and β may be linear, the pair of functions witnessing the isomorphism is unre-

stricted. This corresponds to the fact that the proof that the capability L(Cap %r)

is a member of the stack TJθK is persistent, while the existence of the the capability

L(Cap %r) and the stack TJθK are ephemeral.

The translation of the RGNHnd θ type is similar.

At this time, we recall the FRGN abbreviation RGNPf(θ1 � θ2) for the type of

a function that coerces any computation transforming the region stack indexed by

θ1 into a computation transforming the region stack indexed by θ2, and consider

its translation:

TJRGNPf(θ1 � θ2)K

= TJ∀β. RGN θ1 β → RGN θ2 βK

= U(∀αβ. TJRGN θ1 β → RGN θ2 βK)

= U(∀αβ. U(TJRGN θ1 βK (TJRGN θ2 βK))

= U(∀αβ. U(U(TJθ1K (L(TJθ1K � TJβK)) (U(U(TJθ2K (L(TJθ2K � TJβK)))))

= U(∀αβ. U(U(TJθ1K (L(TJθ1K � Uαβ)) (U(U(TJθ2K (L(TJθ2K � Uαβ)))))

≡α
U(∀β. U(U(TJθ1K (L(TJθ1K � Uβ)) (U(U(TJθ2K (L(TJθ2K � Uβ)))))

While the type is rather verbose, we will see that it is quite easy to construct

a value of this type given a value of the type ∃β. Iso(TJθ2K , L(TJθ1K � β)). This

latter type may be seen to be an isomorphism that witnesses the fact that the

stack indexed by θ1 is a substack of the stack indexed by θ2. This correspondence

will be made more precise in the translation of the letRGN operation.

168

Translations yielding qualifier, pre-type, type, and region contexts

Type and index contexts

DJ·K = ·

DJ∆, αK = DJ∆K , αα

DJ∆, ϑK = DJ∆K , αϑ

Translations yielding value contexts

Value contexts

G

t

∆ `vctxt ·

|

= ·

G

u

w
v

∆ `vctxt Γ x /∈ dom(Γ) ∆ `type τ

∆ `vctxt Γ, x:τ

}

�
~ = GJΓK , x:TJτK

Figure 4.29: Translation from FRGN to rgnURAL (contexts)

Contexts Figure 4.29 extends the index and type translations to contexts in the

obvious manner.

Functional terms With the translation of FRGN indices, types, and contexts in

place, the translation of FRGN expressions follows almost directly. Figures 4.30,

4.31, and 4.32 give the straightforward translation of the introduction and elimi-

nation forms for the functional types in FRGN. Note that every introduction form

qualifies the introduced expression with the U qualifier.

Before turning to the translation of the RGN operations, it is useful to further

explain how the type polymorphism in FRGN is handled under the translation to

rgnURAL. One might ask: “Why is it necessary to translate FRGN type variables

to rgnURAL pre-type variables?” To answer this question, consider the following

169

Translations yielding expressions

Expressions

E

u

w
v

`ctxt ∆; Γ

∆; Γ `exp i : Int

}

�
~ = Ui

E

u

wwwww
v

∆; Γ `exp e1 : Int

∆; Γ `exp e2 : Int

∆; Γ `exp e1 ⊕ e2 : Int

}

�����
~

= U(EJe1K⊕ EJe2K)

E

u

wwwww
v

∆; Γ `exp e1 : Int

∆; Γ `exp e2 : Int

∆; Γ `exp e1 ⊕ e2 : Int

}

�����
~

= U(EJe1K < EJe2K)

E

u

w
v

`ctxt ∆; Γ

∆; Γ `exp b : Bool

}

�
~ = Ub

E

u

wwwww
v

∆; Γ `exp eb : Bool

∆; Γ `exp et : τ ∆; Γ `exp ef : τ

∆; Γ `exp if eb then et else ef : τ

}

�����
~

= if EJebK then EJetK else EJefK

Figure 4.30: Translation from FRGN to rgnURAL (terms (I))

170

Translations yielding expressions

Expressions

E

u

w
v
`ctxt ∆; Γ x ∈ dom(Γ) Γ(x) = τ

∆; Γ `exp x : τ

}

�
~ = x

E

u

w
v

∆; Γ, x:τx `exp e : τ

∆; Γ `exp λx:τx. e : τx → τ

}

�
~ = U(λx:TJτK . EJeK)

E

u

wwwww
v

∆; Γ `exp ef : τx → τ

∆; Γ `exp ea : τx

∆; Γ `exp ef ea : τ

}

�����
~

= EJefK EJeaK

E

u

wwwww
v

`ctxt ∆; Γ

∆; Γ `exp ei : τi
i∈1...n

∆; Γ `exp 〈e1, . . . , en〉 : τ1 × · · · × τn

}

�����
~

= U〈EJe1K , . . . , EJenK〉

E

u

wwwww
v

∆; Γ `exp e : τ1 × · · · × τn

1 ≤ i ≤ n

∆; Γ `exp seli e : τi

}

�����
~

= let 〈x1, . . . , xn〉 = EJeK in xi

where x1, . . . , xn fresh

Figure 4.31: Translation from FRGN to rgnURAL (terms (II))

171

Translations yielding expressions

Expressions

E

u

wwwww
v

`ctxt ∆; Γ

∆, α; Γ `exp e : τ

∆; Γ `exp Λα. e : ∀α. τ

}

�����
~

= U(Λαα. EJeK)

E

u

wwwww
v

∆; Γ `exp ef : ∀α. τ

∆ `type τa

∆; Γ `exp ef [τa] : τ [τa/α]

}

�����
~

= EJefK [PJτaK]

E

u

wwwww
v

∆; Γ `exp ea : τx

∆; Γ, x:τx `exp eb : τ

∆; Γ `exp let x = ea in eb : τ

}

�����
~

= let x = EJeaK in EJebK

Figure 4.32: Translation from FRGN to rgnURAL (terms (III))

172

polymorphic function in FRGN:

Λα. λx:α. 〈x, x〉

with the type

∀α. α→ (α× α).

Note that this function duplicates the argument x of type α. If we were to translate

FRGN type variables to FRGN type variables, then we would expect the translation

of the function above to be:

U(Λα. U(λx:α. U〈x, x〉)).

However, it is not possible to construct a typing derivation for this rgnURAL ex-

pression; in particular, it is not possible to show that this expression has the type

U(∀α. U(α (U(α � α)).

The reason that there is no typing derivation for this rgnURAL expression is

that the variable x, with type α, is used in two sub-expressions in the body of the

function. Hence, the value context ·, x:α must be split into two contexts, each of

the form ·, x:α; more precisely, any typing derivation would require a sub-derivation

of the judgment

·, α ` ·, x:α; ·, x:α � ·, x:α.

Such a derivation would, in turn, require a sub-derivation of the judgment

·, α ` α � R.

From the static semantics of rgnURAL given in the previous section, we recall

the rules in Figure 4.15 for the judgment ∆ ` τ � q′, which judges that a type is

173

bounded by a qualifier. Note that we include the rule

∆ `type τ

∆ ` τ � L

which may be instantiated as

∆ `type α

∆ ` α � L.

This rule conservatively judges that a type variable is bounded by the L qualifier;

this is sound, as L is the top of the qualifier lattice. Furthermore, note that this is

the only way to judge that a type variable is bounded by a qualifier. It would be

unsound to include the rule:

∆ `type α

∆ ` α � R,

since α might later be instantiated with an L-qualified pre-type, which can’t be

bounded by R.

Returning to the translation of the polymorphic function, we must ensure that

the type of the variable x is translated to a type which may be judged to be bounded

by R. To do so, we translate from FRGN type abstraction and instantiation to

rgnURAL pre-type abstraction and instantiation, while the TJ∆ `type τK translation

ensures that the translation of every FRGN type is a U qualified pre-type. Hence,

the translation of the polymorphic function above is:

U(Λα. U(λx:Uα. U〈x, x〉)).

We may easily construct a typing derivation for this rgnURAL expression, showing

that it has the type

U(∀α. U(Uα (U(Uα � Uα)),

174

Translations yielding expressions

Expressions

E

u

wwwww
v

∆ `index θ ∆ `type τ

∆; Γ `exp v : τ

∆; Γ `exp returnRGN [θ] [τ] v : RGN θ τ

}

�����
~

=

let resv:TJτK = EJvK in

U(λstk :TJθK . L〈stk , resv〉)

E

u

wwwwwwww
v

∆ `index θ ∆ `type τa ∆ `type τb

∆; Γ `exp va : RGN θ τa

∆; Γ `exp vf : τa → RGN θ τb

∆; Γ `exp thenRGN [θ] [τa] [τb] va vf : RGN θ τb

}

��������
~

=

let fa:TJRGN θ τK = EJvaK in

let ff :TJτ → RGN θ τK = EJvfK in

U(λstk :TJθK . let 〈stk , resa〉 = fa stk in ff resa stk)

Figure 4.33: Translation from FRGN to rgnURAL (commands (I))

since

·, α ` Uα � R

may be shown directly.

RGN monad commands Next, we turn to the translation of the RGN monad

commands, given in Figures 4.33–4.37. The only interesting decision left to be

made is to choose the representation of a stack of regions in rgnURAL. As we

noted above, there is an obvious representation that suffices: a sequence of region

capabilities formed out of nested tuples.

175

Translations yielding expressions

Expressions

E

u

wwwww
v

∆ `index θ ∆ `type τ

∆; Γ `exp vh : RGNHnd θ ∆; Γ `exp v? : τ

∆; Γ `exp newRGNRef [θ] [τ] vh v? : RGN θ (RGNRef θ τ)

}

�����
~

=

let phnd :TJRGNHnd θK = EJvhK in

let x?:TJτK = EJv?K in

U(λstk :TJθK . let pack(%, 〈iso, hnd〉) = phnd in

let pack(α, 〈prj , inj 〉) = iso in

let 〈stkα, cap〉 = prj stk in

let 〈cap, ref 〉 = Unew cap hnd x? in

let pref = Upack(%, U〈iso, ref 〉) in

let stk :TJθK = inj L〈stkα, cap〉 in

L〈stk , pref 〉)

Figure 4.34: Translation from FRGN to rgnURAL (commands (II))

The translation of returnRGN and thenRGN follow directly from our stack-

passing interpretation of RGN θ τ types (see Figure 4.33).

The translation of newRGNRef in Figure 4.34 shows how the isomorphisms in the

translation of the RGNHnd and RGNRef are used. Since newRGNRef is a RGN monad

command, it is translated to a stack-passing function. Within the body of the func-

tion, the (translation of the) handle is unpacked, revealing the region %, the isomor-

phism, and the rgnURAL handle. Note that the variables hnd , inj , and prj have

the types U(Hnd %), U(L(α � L(Cap %)) (TJθK), and U(TJθK (L(α � L(Cap %))),

respectively.

176

The prj function is used to split the stack (stk of type TJθK) into a capability

(cap of type L(Cap %)) and some “rest of the stack” (stkα of type α). Having

both the capability and the handle for the region %, we are able to allocate a new

reference (ref of type U(Ref % TJτK)). However, before returning the new reference,

we must package it with an isomorphism that witnesses the fact that the capability

for % may be found within the stack TJθK. Conveniently, the isomorphism that

came packaged with the handle witnesses precisely the same fact. Finally, the inj

function is used to combine the capability and the “rest of the stack” back into a

stack of type TJθK.

Figure 4.35 gives the translations of readRGNRef and writeRGNRef. These

translations work in much the same manner as the translation of newRGNRef. The

(translation of the) reference is unpacked, revealing the region %, the isomorphism

and the rgnURAL reference. Next, the isomorphism is used to split out the capa-

bility for the region %. The capability is used to access the reference. Finally, the

isomorphism is used to combine the capability with the remainder of the stack.

The translation of letRGN is the most complicated, but breaks down into con-

ceptually simple components (see Figure 4.36). We bracket the execution of the

inner computation with a newrgn/freergn pair, creating and destroying a new

region. We construct the representation of the new stack for the inner compu-

tation (stk 2 of type L(TJθ1K � L(Cap %))) by pairing the old stack (stk 1) with the

new region capability (cap). In order to package the region handle (phnd) in the

manner expected by the translation, we must construct an isomorphism witnessing

the relationship between the new region capability and the new stack. Note that

we carefully chose the isomorphism types so that the identity function suffices as

a witness, where the old stack type TJθ1K serves as the “slack”.

177

Translations yielding expressions

Expressions

E

u

wwwww
v

∆ `index θ ∆ `type τ

∆; Γ `exp vr : RGNRef θ τ

∆; Γ `exp readRGNRef [θ] [τ] vr : RGN θ τ

}

�����
~

=

let pref :TJRGNRef θ τK = EJvrK in

U(λstk :TJθK . let pack(%, 〈pack(α, 〈prj , inj 〉), ref 〉) = ref in

let 〈stkα, cap〉 = prj stk in

let 〈cap, ref ′, res〉 = read cap ref in

let stk :TJθK = inj L〈stkα, cap〉 in

L〈stk , res〉)

E

u

wwwww
v

∆ `index θ ∆ `type τ

∆; Γ `exp vr : RGNRef θ τ ∆; Γ `exp v? : τ

∆; Γ `exp writeRGNRef [θ] [τ] vr v? : 1×

}

�����
~

=

let pref :TJRGNRef θ τK = EJvrK in

let x?:TJτK = EJv?K in

U(λstk :TJθK . let pack(%, 〈pack(α, 〈prj , inj 〉), ref 〉) = ref in

let 〈stkα, cap〉 = prj stk in

let 〈cap, ref ′〉 = write cap ref x? in

let stk :TJθK = inj L〈stkα, cap〉 in

L〈stk , U〈〉〉)

Figure 4.35: Translation from FRGN to rgnURAL (commands (III))

178

Translations yielding expressions

Expressions

E

u

wwwww
v

∆ `index θ1 ∆ `type τ

∆; Γ `exp v : ∀ϑ. RGNPf(θ1 � ϑ2)→ RGNHnd ϑ2 → RGN ϑ2 τ

∆; Γ `exp letRGN [θ1] [τ] v : RGN θ1 τ

}

�����
~

=

let fv:TJ∀ϑ. RGNPf(θ1 � ϑ2)→ RGNHnd ϑ2 → RGN ϑ2 τK = EJvK in

U(λstk 1:TJθ1K . let pack(%, 〈cap, hnd〉) = L,Unewrgn in

let id = U(λstk 2:
L(TJθ1K � L(Cap %)). stk 2) in

let phnd = Upack(%, U〈Upack(TJθ1K , 〈id , id〉), hnd〉) in

let ppf = Upack(L(Cap %), 〈id , id〉) in

let wit = U(Λβ.

U(λg:U(TJθ1K (L(TJθ1K � Uβ)).

U(λstk 2:
L(TJθ1K � L(Cap %)).

let pack(α, 〈spl , cmb〉) = ppf in

let 〈stk 1, stkα〉 = spl stk 2 in

let 〈stk 1, res〉 = g stk 1 in

let stk 2 = cmb L〈stk 1, stkα〉 in

L〈stk 2, res〉))) in

let stk 2:
L(TJθ1K � L(Cap %)) = L〈stk 1, cap〉 in

let 〈stk 2, res〉 = fv [L(TJθ1K � L(Cap %))] wit phnd stk 2 in

let 〈stk 1, cap〉 = stk 2 in

let 〈〉 = freergn L〈cap, hnd〉 in

L〈stk 1, res〉)

Figure 4.36: Translation from FRGN to rgnURAL (commands (IV))

179

The final component of the translation is the definition of a term that acts like

RGNPf(θ1 � ϑ2). Recall that RGNPf(θ1 � ϑ2) is used to coerce, for any FRGN

type β, a computation from the type RGN θ1 β to the type RGN ϑ2 β. Under the

translation, this means coercing a function of the type U(TJθ1K (L(TJθ1K � Uβ))

to a function of the type U(L(TJθ1K � L(Cap %)) (L(L(TJθ1K � L(Cap %)) � Uβ)),

since L(TJθ1K � L(Cap %)) is the type of representation of the stack indexed by ϑ2.

This coercion is easily accomplished, as seen by the definition of the wit term.

In order to more easily relate the translation in this section to extensions in the

following chapter, we factor the construction of the coercion into two pieces.

We first define a general isomorphism (ppf) witnessing the relationship between

the old stack and the new stack; as in the definition of phnd , the isomorphism types

are carefully chosen so that the identity function suffices as a witness, where the

region capability type (L(Cap %))serves as the “slack.”

We can see the isomorphism in action in the definition of the wit term. The

result of the coercion works by first splitting the representation of the new stack

(stk 2 of type L(TJθ1K � L(Cap %))) into a representation of the old stack (stk 1 of

type TJθ1K) and some “slack” (stkα of type α). Next, the function g, corresponding

to a RGN θ1 β computation, is applied to the representation of the old stack and

returns a fresh copy of the representation of the old stack and a result value.

Finally, a fresh copy of the representation of the new stack is constructed, by

combining the old stack with the “slack”, in order to return a stack/value pair of

the type L(L(TJθ1K � L(Cap %)) � Uβ).

Putting all of these pieces together, we have the translation in Figure 4.36.

180

Translations yielding expressions

Expressions

E

u

w
v

∆ `type τ ∆; Γ `exp v : ∀ϑ. RGNHnd ϑ→ RGN ϑ τ

∆; Γ `exp runRGN [τ] v : τ

}

�
~ =

let fv:TJ∀ϑ. RGNHnd ϑ→ RGN ϑ τK = EJvK in

let pack(%, 〈cap, hnd〉) = L,Unewrgn in

let id = U(λstk :L(U1� � L(Cap %)). stk) in

let phnd = Upack(%, U〈Upack(U1�, 〈id , id〉), hnd〉) in

let stk :L(U1� � L(Cap %)) = L〈U〈〉, cap〉 in

let 〈stk , res〉 = fv [L(U1� � L(Cap %))] phnd stk in

let 〈〈〉, cap〉 = stk in

let 〈〉 = freergn L〈cap, hnd〉 in

res

Figure 4.37: Translation from FRGN to rgnURAL (terms (IV))

181

Translations yielding expressions

Expressions

E

u

wwwww
v

`ctxt ∆; Γ

∆, ϑ; Γ `exp e : τ

∆; Γ `exp Λϑ. e : ∀ϑ. τ

}

�����
~

= U(Λαϑ. EJeK)

E

u

wwwww
v

∆; Γ `exp ef : ∀ϑ. τ

∆ `index θa

∆; Γ `exp ef [θa] : τ [θa/ϑ]

}

�����
~

= EJefK [TJθaK]

Figure 4.38: Translation from FRGN to rgnURAL (terms (V))

RGN monad terms Figure 4.37 gives the translation of runRGN, which works in

much the same manner as the translation of letRGN. The most significant differ-

ence is that runRGN is not translated into a stack-passing computation; rather, it

fully evaluates the monadic computation, returning the final value of type TJτK.

The other subtle difference is that the translation of runRGN constructs the repre-

sentation of the stack for the monadic computation by pairing an “empty” stack

(represented by a U1� value) with the new region capability.

Finally, Figure 4.38 gives the translation of FRGN index abstraction and in-

stantiation. Since the representation of a stack of regions in rgnURAL is a value

with L qualified pre-type, we translate FRGN index abstraction and instantiation to

rgnURAL type abstraction and instantiation.

182

4.3.1 Translation Properties

The translation is type preserving, as formalized by the following lemma. The

proof is by (mutual) induction on the structure of the typing judgments, making

frequent appeals to various well-formedness lemmas.

Lemma 4.2 (Translation Preserves Types)

(1) If ∆ is well-formed, then DJ∆K is well-formed.

(2) If ∆ `FRGN

index θ, then DJ∆K `rgnURAL
type T

r
∆ `FRGN

index θ
z
.

(3) If ∆ `FRGN

type τ , then DJ∆K `rgnURAL
ptype P

r
∆ `FRGN

type τ
z
.

(4) If ∆ `FRGN

type τ , then DJ∆K `rgnURAL
type T

r
∆ `FRGN

type τ
z
.

(5) If ∆ `FRGN

vctxt Γ, then DJ∆K `rgnURAL
vctxt G

r
∆ `FRGN

vctxt Γ
z
.

(6) If `FRGN

ctxt ∆; Γ, then `rgnURAL
ctxt DJ∆K ; G

r
∆ `FRGN

vctxt Γ
z
.

(7) If ∆; Γ `FRGN

exp e : τ , then

DJ∆K ; G
r
∆ `FRGN

vctxt Γ
z
`rgnURAL

exp E
r
∆; Γ `FRGN

exp e : τ
z

: T
r
∆ `FRGN

type τ
z

.

Furthermore, we firmly believe that the translation is meaning preserving, with

respect to the dynamic semantics of FRGN and rgnURAL, as formalized by the

following conjecture:

Conjecture 4.3 (Translation Correctness (Programs))

If ·; · `FRGN

exp e : Bool and (·; e) ⇓FRGN
b and E

r
·; · `FRGN

exp e
z

= e†,

then ({}; e†) 7−→rgnURAL∗ b.

Intuitively, the conjecture follows from the fact that the translations of the

RGN monad commands directly implement the large-step operational semantics of

183

FRGN, where the sequence of linear capabilities (formed out of nested linear tuples)

represents the stack which is threaded through the evaluation of FRGN commands.

The major difficulty with a rigorous proof of this conjecture is the fact that the

operational semantics for FRGN and rgnURAL have significant differences. The most

obvious difference is that FRGN uses a large-step operational semantics, whereas

rgnURAL uses a small-step operational semantics. Another major difference is that

the operational semantics of FRGN replaces constant-region names (r) with a dead

region (•) in expression forms when a region is deallocated, whereas the operational

semantics of rgnURAL leaves constant-region names (r) in expression forms, but

marks the region as dead (dead) in the heap, when a region is deallocated.

In order to undertake a rigorous proof that the translation is meaning preserv-

ing, it would be advisable to first consider a second operational semantics for FRGN.

In particular, we would consider an operational semantics in which constant-region

names are left in expression forms, and the region stack is instrumented with marks

for live and dead regions. Since the first and second operational semantics for FRGN

would be very similar, it should be straightforward to show that for any FRGN pro-

gram, evaluating it under the first operational semantics has the same observable

behavior as evaluating it under the second operational semantics. Similarly, since

there would be a closer correspondence between the second operational semantics

for FRGN and the operational semantics for rgnURAL, it should be somewhat easier

to show that the translation is meaning preserving.12

12However, it should be noted that even in this case, there are significant tech-
nical details that need to be formalized. For example, as is done in Appendix B.3
for the translation from SEC to FRGN, we would need to extend the translation in
this section with cases for the additional semantic objects in the abstract machine
configurations of FRGN.

184

4.4 Related Work

Our rgnURAL is most directly influenced by the presentation of substructural type

systems by Walker [89], which in turn draws upon the work of Wansbrough and

Peyton-Jones [94] and Walker and Watkins [92]. Relative to that work, we have

added both relevant and affine qualifiers, which is necessary to account for the

varied forms of linearity found in higher-level programming-language proposals;

see below.

A related body of work is that on type systems used to track resource usage [82,

60, 94, 53, 32, 47]. We note that the usage subsumption found in these systems

(e.g., a “possibly used many times” variable may be subsumed to appear in a

context requiring a “used exactly once” value) is not applicable in our setting

(e.g., it is clearly unsound to subsume U(Ref ρ τ) to L(Ref ρ τ)), due to differences

in the interpretation of type qualifiers.

There has been much prior work aimed at relaxing the stack discipline imposed

on region lifetimes by the Tofte-Talpin region calculus. The ML Kit [78] uses a

storage-mode analysis to determine when it is safe to deallocate data in a region

(known as region resetting) prior to the deallocation of the region itself. The safety

of the storage-mode analysis has not been established formally.

Aiken et al. [1] eliminate the requirement that region allocation and dealloca-

tion should coincide with the lexical scope of region variables introduced by the

letregion construct. Their approach uses late allocation/early deallocation, which

delays the allocation of a region until just before its first access, and deallocates

the region just after its last access. A constraint-based analysis determines where

to insert region allocation and deallocation commands. We believe that the results

of their analysis can be encoded explicitly in rgnURAL. However, we note that, as

185

formulated, rgnURAL does not support late allocation, since the newrgn primitive

both generates a fresh region name and allocates the region. We believe that it

would be straightforward to revise rgnURAL, giving newrgn the typing rule:

∆ `qual qc ∆ `qual qh

∆; · `exp
qc,qhnewrgn : L(∃%. L(L1� (L(qc(Cap %) � qh(Hnd %))))

Note that with the rule, the result of newrgn generates a fresh region name (∃%),

along with a function (L(L1� (L(qc(Cap %) � qh(Hnd %)))), which may be evalu-

ated later to allocate the region and yield the region capability and handle; Sec-

tion 5.6 considers a similar idea.

Unlike the previous two approaches which build on the Tofte-Talpin region

calculus, Henglein et al. [40] present a region system that (like ours) replaces the

letregion primitive with explicit commands to allocate and deallocate a region,

eliminating the need for the LIFO discipline. To ensure safety, they use a region

type system with Hoare-logic and consequently have no support for higher-order

functions. While they provide an inference algorithm to annotate programs with re-

gion manipulation commands, we intend for rgnURAL to serve as a target language

for programs annotated using a region inference system or for programs written

in languages like Cyclone. The Calculus of Capabilities [90] is also intended as

a target for annotated programs, but unlike rgnURAL, it is defined in terms of a

continuation-passing style language and does not support first-class regions.

The region system presented by Walker and Watkins [92] is perhaps the most

closely related work. Like our target, they require a linear capability to be pre-

sented upon each access to a region. However, they provide a primitive, similar to

letregion, that allows a capability to be temporarily treated as unrestricted for

convenience’s sake. We have shown that no such primitive is needed. Rather, we

186

use a combination of monadic encapsulation (to thread capabilities) coupled with

unrestricted witnesses to achieve the same flexibility. In Section 5.5, we show how

to translate Cyclone’s dynamic regions into rgnURAL in a manner that achieves

the same effect as the Walker-Watkin’s primitive.

Another related body of work has used regions as a low-level primitive on which

to build type-safe garbage collectors [93, 64, 38]. Each of these approaches requires

non-lexical regions, since, in a copying collector, the from- and to-spaces have non-

nested lifetimes. Hawblitzel et al. [38] introduce a very low-level language in which

they begin with a single linear array of words, construct lists and arrays out of

the basic linear memory primitives, introduce type sequences for building regions

of nonlinear data. Such a foundational approach is admirable, but there is a large

semantic gap between a high-level language and such a target. Hence, rgnURAL

serves as a useful intermediate point, and we may envision further translation

from rgnURAL to such a low-level language. A first step in this direction is taken

in Chapter 5.

Our treatment of mutable references in rgnURAL is related to a number of

projects (e.g., Clean, CQual, Cyclone, Vault), which have introduced some form of

“uniqueness” to “tame” state. In each these systems, unique objects make it pos-

sible to perform operations that would otherwise be prohibited (e.g., deallocating

an object) or to ensure that some obligation will be met (e.g., an opened file will

be closed).

For instance, the Clean programming language [74] relies upon a form of unique-

ness to ensure equational reasoning in the presence of mutable data structures. Cy-

clone’s unique pointers are also used to allow fine-grained memory management.

For example, a unique pointer may be updated from uninitialized to initialized, and

187

its contents may also be deallocated. In both of these languages, a unique object

may be implicitly discarded, yielding affine objects (a weak form of uniqueness).

On the other hand, the Vault programming language [18] uses tracked keys

to enforce resource management protocols. For example, an interface may specify

that opening a file returns a new tracked key, which must be present when reading

the file, and which is consumed when closing the file. Because tracked keys may

be neither duplicated nor discarded, Vault supports linear objects (a strong form

of uniqueness), which ensures that an opened file must be closed exactly once,

much in the way that our linear capabilities ensures that an allocated region is

deallocated exactly once.

Since programming in a language with only unique (i.e., linear or affine) objects

is much too painful, it is not surprising that both Cyclone and Vault allow a

programmer to put unique objects in shared objects, with a variety of restrictions

to ensure that these mixed objects behave in a safe manner. In fact, understanding

the various mechanisms by which unique objects (with strong updates) may safely

coexist and mix with shared objects is currently an active area of research [2],

though much of it has focused on high-level programming features, often without

a complete formal account. Our treatment of mutable references with four sorts

of qualifiers gives an integrated design that demonstrates exactly when unique

objects may be stored in shared references.

There has also been a great deal of work on adapting some notion of linear-

ity to real programming languages such as Java. Examples include ownership

types [15, 8], uniqueness types [9, 13], confinement types [14, 31, 83], balloon

types [3], islands [45], and roles [54]. Each of these mechanisms is aimed at sup-

porting local reasoning in the presence of aliasing and updates.

188

4.5 Summary and Future Work

We have given a type- and meaning-preserving translation from FRGN to rgnURAL.

The central element of the translation is to “break open” the RGN monad, expos-

ing its interpretation as a region-stack transformer. Whereas FRGN uses monadic

encapsulation and the parametric types for runRGN and letRGN to prevent access

to regions beyond their lifetimes, rgnURAL separates the creation and destruction

of a region and uses a substructural type system to manage capabilities that grant

access to regions. By ensuring that the (one) capability for a region is consumed

when the region is destroyed, we ensure that although the region may be named

after it is destroyed, it cannot be accessed. The FRGN witness terms, used to safely

“shift” computations from one region stack to another, are realized in the transla-

tion as functions that “shuffle” capabilities in the representation of a region stack

as a sequence of linear capabilities.

There are numerous directions for future work. Perhaps the most important

direction is to better account for the fact that capabilities have no run-time sig-

nificance in a program. (Recall that the run-time representation of a qc(Cap r) is

qc(cap), which does not name the region.) In principle, we could erase capabilities

(and the translations of FRGN witness terms, which do nothing but “shuffle” capa-

bilities) before running a program, without changing the behavior of the program.

To realize this goal, we should introduce a phase distinction, where capabili-

ties are treated as static objects, and other terms are treated as dynamic objects.

Just as an unrestricted data structure cannot contain linear components, static

values could not depend upon dynamic values. In order to justify the erasure of

static computations, we would need to ensure that such computations correspond

to total, effect-free functions. This sort of phase-splitting has been used in other

189

settings that mix programming languages and logics, such as Xi et al.’s Applied

Type System [12] and Sheard’s Omega [73]. Another promising approach is sug-

gested by Mandelbaum, Walker, and Harper’s refinement language [59], where they

developed a two-level language for reasoning about effectful programs.

Another important direction is to further explore the ways in which unique and

shared data may be mixed. For example, Cyclone’s alias construct [44] takes a

unique pointer and returns a shared pointer to the same object, which is available

for a limited lexical scope. Vault’s focus and CQuals’s restrict constructs [20, 2]

provide the opposite behavior: temporarily giving a linear view of an object of

shared type. Both behaviors are of great practical significance. More work is

required to understand how best to model these advanced features in terms of a

substructural language like rgnURAL.

Nonetheless, rgnURAL does capture the essential aspects of region-based mem-

ory management. In the next chapter, we consider the expressiveness of FRGN and

rgnURAL and consider extensions that provide support for additional programming

features (though, not the advanced features mentioned above). We also consider

an advanced application of region-based memory management.

190

Chapter 5

Expressiveness and Applications
In this chapter, we consider the expressiveness of the various type-and-effect,

monadic, and substructural languages presented in the previous chapters, consider

extensions that provide support for additional programming features, and con-

sider an advanced application of region-based memory management. This short

investigation, along with the translations from the Single Effect Calculus to FRGN

(Section 3.3) and from FRGN to rgnURAL (Section 4.3), helps to justify FRGN and

rgnURAL as realistic formal languages that capture the essential aspects of region-

based memory management.

An important issue to consider is the expressiveness of the Single Effect Cal-

culus (and, subsequently, FRGN and rgnURAL) relative to the original Tofte-Talpin

region calculus. Tofte and Talpin’s formulation of the region calculus as the im-

plicit target of an inference system makes a direct comparison difficult. Fortu-

nately, there has been sufficient interest in region-based memory management to

warrant direct presentations of region calculi [39, 10, 11, 41], which are better

suited for comparison. Three aspects of the region calculus are highlighted as es-

sential features: region polymorphism, region polymorphic recursion, and effect

polymorphism.

Similarly, we would like to consider the expressiveness of FRGN and rgnURAL

relative to Cyclone [29]. As noted previously, Cyclone includes a number of dif-

ferent kinds of regions. Cyclone also extends the type-and-effect system of the

Tofte-Talpin region calculus with a form of region subtyping: pointers into older

regions can be safely coerced into pointers into younger regions. Finally, in order

191

to address the limitations of lexically-scoped regions, later versions of Cyclone have

added a number of features [77], including dynamic regions and unique pointers.

Recall that while the soundness of Cyclone’s initial design (with region subtyping

and lexically-scoped regions) has been established [30], an argument that justifies

the soundness of the new features has proved elusive, due to sheer complexity.

Much of the complexity arises from the presence of related, but subtly different,

features in the language.

The remainder of this chapter is structured as follows. In the next four sec-

tions, we show how the languages of the previous chapters either handle or may

be extended to handle some of the essential aspects of region calculi: region poly-

morphism (Section 5.1), general recursion and region polymorphic recursion (Sec-

tion 5.2), region reference subtyping (Section 5.3), and effect polymorphism (Sec-

tion 5.4). In Section 5.5, we present a high-level overview of Cyclone, introduce

a hybrid monadic and substructural language that captures the key features of

Cyclone, and sketch a translation from this hybrid language to rgnURAL. Finally,

in Section 5.6, we consider an advanced application of region-based memory man-

agement: expressing a type-safe copying garbage collector. We show that rgnURAL

is nearly expressive enough to handle this application, and show how to extend

rgnURAL (using many of the insights which drove the original development of

rgnURAL) in order to handle this application.

5.1 Region Polymorphism

It should be clear that each of the languages considered (the Single Effect Cal-

culus, FRGN, and rgnURAL) directly support region polymorphism. We note that

FRGN technically supports index polymorphism (through the index abstraction type

192

∀ϑ. τ). Nonetheless, the translation from the Single Effect Calculus to FRGN shows

that index polymorphism effectively provides region polymorphism.

5.2 General Recursion and Region Polymorphic Recursion

5.2.1 The Single Effect Calculus

General recursion can be supported in the Single Effect Calculus by adding fix

and fixing a function. Similarly, region polymorphic recursion can be supported

by fixing a region abstraction (as is shown by Henglein, Makholm, and Niss

for the Tofte-Talpin region calculus [41]); Figure 5.1 presents the extensions to

SEC necessary to support fix. Note that the dynamic semantics implements the

recursion by region allocating an abstraction, and substituting the region reference

for the recursive variable in the body of the abstraction.

As an example, consider the following term to compute a factorial (in which

we elide the type annotation on fact):

fix fact .(Λ%i � {}.ρf (Λ%o � {}.ρf (Λ%b � {ρf , %i, %o}.ρf

(λn:(Int, %i).
%b

if (letregion % in n ≤ (1 at %))

then 1 at %o

else letregion %i′ in (letregion %o′ in

(fact [%i′] [%o′] [%o′]

(letregion % in (n− (1 at %) at %i′))) ∗ n at %o

) at ρf) at ρf) at ρf) at %f)

The function fact is parameterized by three regions: %i is the region in which the

input integer is allocated, %o is the region in which the output integer is to be

193

Terms

e ::= . . . | fix f :τ.u

Abstractions

u ::= λx:τ.π
′
e at ρ | Λ% � φ.π

′
u at ρ

(S; e) ⇓ (S ′; v′)

r ∈ dom(S) p /∈ dom(S(r))

(S; fix f :τ.λx:τx.
π′

e′ at r)

⇓ (S{(r, p) 7→ (λx:τx.
π′

e′)[ref r p/f]}; ref r p)

r ∈ dom(S) p /∈ dom(S(r))

(S; fix f :τ.Λ% � φ.π
′
u′ at r)

⇓ (S{(r, p) 7→ (Λ% � φ.π
′
u′)[ref r p/f]}; ref r p)

∆; Γ `exp e : τ, π

∆; Γ, f :τ `exp u : τ, π

∆; Γ `exp fix f :τ.u : τ, π

Figure 5.1: Extensions to SEC for fix

194

allocated, and %b is a region that bounds the latent effect of the function. (Region

ρf is assumed to be bound in an outer context and holds the closures.) We see

that the bounds on %i and %o indicate that they are not constrained to be outlived

by any other regions. On the other hand, the bound on %b indicates that ρf , %i,

and %o must outlive %b. Hence, %b suffices to bound the effects within the body

of the function, in which we expect regions ρf (at the recursive call) and %i to be

read from and region %o to be allocated in. Note that the regions passed to the

recursive call of fact satisfy the bounds, as %o′ outlives ρf (through %i′ and %b), %i′

is allocated before (and deallocated after) %o′ , and %o′ clearly outlives itself.

5.2.2 The FRGN Language

General recursion can be supported in FRGN by adding fix in the standard man-

ner [67, Section 11.11]. This extension admits fixing functions, type abstractions,

and index abstractions.

Translation: From SEC to FRGN

The extension of SEC with fix can be translated into the extension of FRGN with

fix. The translation of Section 3.3 is extended with the translations in Figure 5.3.

Recall that all abstractions (including recursive abstractions) in SEC are region

allocated; hence, they must be translated to region references in FRGN, in order that

the recursive invocations are correctly handled by the translations of application

and instantiations. We handle this using the standard trick of “back-patching” a

mutable reference. In both translations, we allocate a region reference, bound to a

divergent abstraction of the appropriate type (constructed using the FRGN fix). We

then immediately update the region reference with the proper translation, which

195

Terms

e ::= . . . | fix f :τ.u

Abstractions

u ::= λx:τ. e | Λα. τ | Λϑ. e

(T ; e) ⇓ v

(T ; fix f :τ.u) ⇓ u[fix f :τ.u/f]

∆; Γ `exp e : τ

∆; Γ, f :τ `exp u : τ

∆; Γ `exp fix f :τ.u : τ

Figure 5.2: Extensions to FRGN for fix

196

E

u

wwwwwwwwww
v

∆; Γ, f :(τx
π′
−→ τ, ρ), x:τx `exp e : τ, π′

∆ `region ρ ∆ `rr π � ρ

∆; Γ, f :(τx
π′
−→ τ, ρ) `exp λx:τx.

π′
e at ρ : (τx

π′
−→ τ, ρ), π

∆; Γ `exp fix f :(τx
π′
−→ τ, ρ).λx:τx.

π′
e at ρ : (τx

π′
−→ τ, ρ), π

}

����������
~

=

bindRGN f :T
r
(τx

π′
−→ τ, ρ)

z
⇐ EJπ � ρK [T

r
(τx

π′
−→ τ, ρ)

z
]

(newRGNRef [IJρK] [T
r
(τx

π′
−→ τ, ρ)

z
]

EJρK (fix g:T
r
(τx

π′
−→ τ, ρ)

z
.λy:TJτxK . g y)) ;

bindRGN u:1⇐ EJπ � ρK [1]

(writeRGNRef [IJρK] [T
r
(τx

π′
−→ τ, ρ)

z
]

f (λx:TJτxK . EJeK)) ;

returnRGN [IJπK] [T
r
(τx

π′
−→ τ, ρ)

z
] f

E

u

wwwwwwwwww
v

∆, % � φ; Γ, f :(∀% � φ.π
′
τ, ρ) `exp u : τ, π′

∆ `region ρ ∆ `rr π � ρ

∆; Γ, f :(∀% � φ.π
′
τ, ρ) `exp Λ% � φ.π

′
u at ρ : (∀% � φ.π

′
τ, ρ), π

∆; Γ `exp fix f :(∀% � φ.π
′
τ, ρ).Λ% � φ.π

′
u at ρ : (∀% � φ.π

′
τ, ρ), π

}

����������
~

=

bindRGN f :T
q
(∀% � φ.π

′
τ, ρ)

y
⇐ EJπ � ρK [T

q
(∀% � φ.π

′
τ, ρ)

y
]

(newRGNRef [IJρK] [T
q
(∀% � φ.π

′
τ, ρ)

y
]

EJρK (fix g:T
q
(∀% � φ.π

′
τ, ρ)

y
.Λϑ%. g [ϑ%])) ;

bindRGN u:1⇐ EJπ � ρK [1]

(writeRGNRef [IJρK] [T
q
(∀% � φ.π

′
τ, ρ)

y
]

f (Λϑ%. λw%:TJ% � φK . λh%:RGNHnd ϑ%. EJuK)) ;

returnRGN [IJπK] [T
q
(∀% � φ.π

′
τ, ρ)

y
] f

Figure 5.3: Translation from SEC to FRGN (fix)

197

Terms

e ::= . . . | fix f :τ.u

Abstractions

u ::= qλx:τ. e | qΛξ. e | qΛα. e | qΛα. e | qΛ%. e

(H; e) 7−→ (H ′; e′)

(H; fix f :τ.u) 7−→ (H; u[fix f :τ.u/f])

∆; Γ `exp e : τ

∆ ` τ � U ∆; Γ, f :τ `exp u : τ

∆; Γ `exp fix f :τ.u : τ

Figure 5.4: Extensions to rgnURAL for fix

may mention the variable f to implement the recursion.

5.2.3 The rgnURAL Language

General recursion can be supported in rgnURAL in much the same manner as it is

supported in FRGN. This extension admits fixing all forms of abstractions: func-

tions, qualifier abstractions, pre-type abstractions, type abstractions, and region

abstractions. Note that the typing rule for fix requires the type of the recursive

abstraction to be unrestricted. While a less restrictive antecedent could be formu-

lated, all practical uses of recursion suggest that the type should be unrestricted.

198

E

u

w
v

∆; Γ, f :τ `exp u : τ

∆; Γ `exp fix f :τ.u : τ

}

�
~ = fix f :TJτK .EJeK

Figure 5.5: Translation from FRGN to rgnURAL (fix)

Translation: From FRGN to rgnURAL

The extension of SEC with fix may be trivially translated into the extension of

FRGN with fix. The translation of Section 4.3 is extended with the translations

in Figure 5.5. Recall that all types in FRGN are translated to unrestricted types

in rgnURAL. Therefore, the translation of a FRGN fix expression is a well-typed

rgnURAL expression.

5.3 Region Reference Subtyping

We have noted previously that Cyclone extends the type-and-effect system of the

Tofte-Talpin region calculus with a form of region subtyping: a reference in an older

region can be safely treated as a reference in a younger region. Intuitively, this

subtyping is safe, because the liveness of the younger region implies the liveness of

the older region. Hence, whenever the type-and-effect system asserts that it is safe

to access a reference in a younger region (by establishing that the younger region

is live), it is also safe to access a reference in an older region (since the older region

is necessarily live). In this section, we show how to support this form of region

reference subtyping.

199

∆; Γ `exp e : τ, π

∆; Γ `exp e : (µ, ρ1), π ∆ `rr ρ2 � ρ1

∆; Γ `exp e : (µ, ρ2), π

Figure 5.6: Static semantics of SEC (region reference subtyping)

5.3.1 The Single Effect Calculus

This form of region reference subtyping may easily be handled in the Single Effect

Calculus, by simply including a new type-and-effect rule for expressions that allows

a boxed type in one region to be typed as a boxed type in a second region, when

the first region is guaranteed to outlive the second (see Figure 5.6). Recall that

the soundness of this rule is ensured by the LIFO stack of regions, which imposes

a partial order on live regions. Operationally, the the coercion has no run-time

effect; in particular, we do not copy the contents of the reference from one region

to another.

5.3.2 The FRGN Language

We next turn our attention to FRGN and the extensions needed to support this

form of region reference subtyping. Since we intend to extend the translation of

Section 3.3 to handle this extension, we first consider what the translation must

accomplish with respect to the new SEC type-and-effect rule.

Note that the translation of the new SEC type-and-effect rule must coerce

a value of (translated) type RGNRef IJρ1K TJτK to a value of (translated) type

RGNRef IJρ2K TJτK. Abstracting, we can imagine a more general coercion function

200

with the type:

∀ϑ1, ϑ2.∀β. RGNRef ϑ1 β → RGNRef ϑ2 β

Alternatively, we could introduce an abbreviation RGNRefPf(θ1 � θ2) for the type

of a function that coerces any reference in the region indexed by θ1 into a reference

in the region indexed by θ2:

RGNRefPf(θ1 � θ2) ≡ ∀β. RGNRef θ1 β → RGNRef θ2 β

Note that there is a strong similarity between the proposed RGNRefPf(θ1 � θ2)

and the RGNPf(θ1 � θ2) already present in FRGN. In fact, they both express a

relationship between an older region index θ1 and a younger region index θ2; the

only difference is that RGNPf specializes this relationship to region computations,

while RGNRefPf specializes this relationship to region references.

Hence, rather than introduce RGNRefPf, we find it more convenient to make

RGNPf an abstract type, and introduce new terms for specializing RGNPf to com-

putations and to region references. We may consider RGNPf(θ1 � θ2) to be a

witness to the fact that the region stack indexed by θ1 is a subtype of the region

stack indexed by θ2, corresponding to the fact that every region in the stack θ1

is also in the stack θ2. Figure 5.7 presents the typing rules for the new terms in

FRGN. The terms reflRGNPf and transRGNPf are combinators witnessing the re-

flexivity and transitivity of the outlives relation on regions. The terms coerceRGN

and coerceRGNRef apply a proof of region subtyping to computations and region

references, respectively. Operationally, both of these terms act as the identity

function.

201

∆; Γ `exp e : τ

`ctxt ∆; Γ ∆ `index θ

∆; Γ `exp reflRGNPf [θ] : RGNPf(θ � θ)

∆ `index θ1 ∆ `index θ2 ∆ `index θ3

∆; Γ `exp e1 : RGNPf(θ1 � θ2)

∆; Γ `exp e2 : RGNPf(θ2 � θ3)

∆; Γ `exp transRGNPf [θ1] [θ2] [θ3] e1 e2 : RGNPf(θ1 � θ3)

∆ `index θ1 ∆ `index θ2 ∆ `type τ

∆; Γ `exp e1 : RGNPf(θ1 � θ2) ∆; Γ `exp e2 : RGN θ1 τ

∆; Γ `exp coerceRGN [θ1] [θ2] [τ] e1 e2 : RGN θ2 τ

∆ `index θ1 ∆ `index θ2 ∆ `type τ

∆; Γ `exp e1 : RGNPf(θ1 � θ2) ∆; Γ `exp e2 : RGNRef θ1 τ

∆; Γ `exp coerceRGNRef [θ1] [θ2] [τ] e1 e2 : RGNRef θ2 τ

Figure 5.7: Static semantics of FRGN (region reference subtyping)

202

Witnesses

E

u

w
v
`rctxt ∆ (% � {ρ1, . . . , ρi, . . . , ρn}) ∈ ∆

∆ `rr % � ρi

}

�
~ = seli w%

E

u

w
v

∆ `region ρ

∆ `rr ρ � ρ

}

�
~ = reflRGNPf [IJρK]

E

u

w
v

∆ `rr ρ2 � ρ′ ∆ `rr ρ′ � ρ1

∆ `rr ρ2 � ρ1

}

�
~ =

transRGNPf [IJρ1K] [IJρ′K] [IJρ2K] EJρ′ � ρ1K EJρ2 � ρ′K

Expressions

E

u

w
v
`ctxt ∆; Γ; π ∆ `region ρ ∆ `rr π � ρ

∆; Γ `exp i at ρ : (Int, ρ), π

}

�
~ =

coerceRGN [IJρK] [IJπK] [TJ(Int, ρ)K]

EJπ � ρK (newRGNRef [IJρK] [TJIntK] EJρK i)

...

E

u

w
v

∆; Γ `exp e : (µ, ρ1), π ∆ `rr ρ2 � ρ1

∆; Γ `exp e : (µ, ρ2), π

}

�
~ =

bindRGN r:TJ(µ, ρ1)K⇐ EJeK ;

returnRGN [IJρ2K] [TJ(µ, ρ2)K] (coerceRGNRef [IJρ1K] [IJρ2K] [TJµK]

EJρ2 � ρ1K r)

Figure 5.8: Translation from SEC to FRGN (region reference subtyping)

203

Translation: From SEC to FRGN

Figure 5.8 shows the revised and extended translation from SEC to FRGN, now sup-

porting region reference subtyping. We revise the translation from SEC outlives

relations to FRGN witness terms; the reflexive and transitive rules are now trans-

lated to the reflRGNPf and transRGNPf terms. Because RGNPf(θ1 � θ2) is now

abstract, the translation of expressions must be revised to use coerceRGN; we give

the translation of an integer constant as representative of this change.

Finally, the translation of the new SEC type-and-effect rule uses coerceRGNRef.

Note that we must use bindRGN and returnRGN to sequence the pure coerceRGNRef

in the RGN monad.

5.3.3 The rgnURAL Language

Encouragingly, we need to make no changes to rgnURAL to support region reference

subtyping. Note that the insight (that the LIFO stack of regions, which imposes

a partial order on live regions) used to ensure the soundness of region reference

subtyping in SEC and FRGN does not apply to rgnURAL, since regions may be cre-

ated and destroyed in an arbitrary order. Nonetheless, we may translate the region

reference subtyping of FRGN into rgnURAL by revising and extending the transla-

tion of Section 4.3. The insight here is that the translation of the RGNRef θ τ

uses an existentially bound region name (%r), to fix the region for the rgnURAL

reference, and isomorphism to witness the fact that (the capability for) %r may

be found within the stack represented by TJθK. The isomorphism expresses the

fact that TJθK may be coerced to and from L(β � L(Cap %r)), for some “slack” β.

Region reference subtyping in FRGN is translated to rgnURAL by constructing a

new isomorphism with more “slack”, corresponding to the additional live regions.

204

Translation: From FRGN to rgnURAL

Figures 5.9–5.12 revise and extend the translation of Section 4.3. Since the

RGNPf(θ1 � θ2) type is no longer an abbreviation, it requires a translation (Fig-

ure 5.9). Recall that RGNPf(θ1 � θ2) is the type of witnesses to the fact that

the region stack indexed by θ1 is a subtype of the region stack indexed by θ2.

Hence, we translate it to a type that expresses the isomorphism between TJθ2K

and L(TJθ1K � β), for some “slack” β. Recall that while the types TJθ2K, TJθ1K,

and β may be linear, the pair of functions witnessing the isomorphism is unre-

stricted. This corresponds to the fact that the proof that θ1 is a subtype of θ2 is

persistent, while the existence of the stacks θ1 and θ2 are ephemeral.

Figure 5.9 also revises the translation of letRGN. It is almost the same as the

translation given in Section 4.3. The difference is that the general isomorphism

ppf is passed to the inner computation, whereas before it was used to construct

a witness (pwit , of a type corresponding to TJ∀β. RGN θ1 β → RGN ϑ2 βK) which

was passed to the inner computation.

Instead, this witness is constructed in the translation of coerceRGN (Fig-

ure 5.10). Note how the “slack” stack (stkβ) is split out and then combined in,

bracketing the execution of the RGN θ1 τ computation.

The translation of coerceRGNRef (Figure 5.11) shows how the isomorphism

for RGNPf(θ1 � θ2), witnessing the fact that TJθ1K is embedded in TJθ2K with

“slack” α, is combined with the isomorphism for RGNRef θ1 τ , witnessing the fact

that L(Cap %) is embedded in TJθ1K with “slack” β, to construct the isomorphism

for RGNRef θ2 τ , witnessing the fact that L(Cap %) is embedded in TJθ2K with

“slack” L(α � β). Note that the translation neither reads from nor writes to the

underlying reference ref ; in fact, the reference need not even be allocated. Again,

205

Types

P

u

w
v

∆ `index θ1 ∆ `index θ2

∆ `type RGNPf(θ1 � θ2)

}

�
~ = ∃β. Iso(TJθ2K , L(TJθ1K � β))

Expressions

E

u

wwwww
v

∆ `index θ1 ∆ `type τ

∆; Γ `exp v : ∀ϑ. RGNPf(θ1 � ϑ2)→ RGNHnd ϑ2 → RGN ϑ2 τ

∆; Γ `exp letRGN [θ1] [τ] v : RGN θ1 τ

}

�����
~

=

let fv:TJ∀ϑ. RGNPf(θ1 � ϑ2)→ RGNHnd ϑ2 → RGN ϑ2 τK = EJvK in

U(λstk 1:TJθ1K . let pack(%, 〈cap, hnd〉) = L,Unewrgn in

let id = U(λstk 2:
L(TJθ1K � L(Cap %)). stk 2) in

let phnd = Upack(%, U〈Upack(TJθ1K , 〈id , id〉), hnd〉) in

let ppf = Upack(L(Cap %), 〈id , id〉) in

let stk 2:
L(TJθ1K � L(Cap %)) = L〈stk 1, cap〉 in

let 〈stk 2, res〉 = fv [L(TJθ1K � L(Cap %))] ppf phnd stk 2 in

let 〈stk 1, cap〉 = stk 2 in

let 〈〉 = freergn L〈cap, hnd〉 in

L〈stk 1, res〉)

Figure 5.9: Translation from FRGN to rgnURAL (region reference subtyping (I))

206

Expressions

E

u

wwwww
v

∆ `index θ1 ∆ `index θ2 ∆ `type τ

∆; Γ `exp e1 : RGNPf(θ1 � θ2) ∆; Γ `exp e2 : RGN θ1 τ

∆; Γ `exp coerceRGN [θ1] [θ2] [τ] e1 e2 : RGN θ2 τ

}

�����
~

=

let ppf :TJRGNPf(θ1 � θ2)K = EJe1K in

let f :TJRGN θ1 τK = EJe2K in

let pack(α, 〈spl , cmb〉) = ppf in

λstk 2:TJθ2K . let 〈stk 1, stkα〉 = spl stk 2 in

let 〈stk 1, res〉 = f stk 1 in

let stk 2 = cmb L〈stk 1, stkα〉 in

L〈stk 2, res〉

Figure 5.10: Translation from FRGN to rgnURAL (region reference subtyping (II))

207

Expressions

E

u

wwwww
v

∆ `index θ1 ∆ `index θ2 ∆ `type τ

∆; Γ `exp e1 : RGNPf(θ1 � θ2) ∆; Γ `exp e2 : RGNRef θ1 τ

∆; Γ `exp coerceRGNRef [θ1] [θ2] [τ] e1 e2 : RGNRef θ2 τ

}

�����
~

=

let ppf :TJRGNPf(θ1 � θ2)K = EJe1K in

let pref :TJRGNRef θ1 τK = EJe2K in

let pack(α, 〈spl , cmb〉) = ppf in

let pack(%, 〈pack(β, 〈prj , inj 〉), ref 〉) = pref in

let prj ′ = Uλstk 2:TJθ2K . let 〈stk1 , stkα〉 = spl stk 2 in

let 〈stkβ, cap%〉 = prj stk 1 in

L〈L〈stkα, stkβ〉, cap%〉 in

let inj ′ = Uλs :L(L(α � β) � L(Cap %)). let 〈〈stkα, stkβ〉, cap%〉 = s in

let stk 1 = inj L〈stkβ, cap%〉 in

cmb L〈stk 1, stkα〉 in

Upack(%, U〈Upack(L(α � β), U〈prj ′, inj ′〉), ref 〉)

Figure 5.11: Translation from FRGN to rgnURAL (region reference subtyping (III))

208

this corresponds to the fact that this coercion does not actually copy the contents

of the reference from one region to another.

Finally, Figure 5.12 shows the translations of reflRGNPf and transRGNPf. The

translation of reflexivity simply uses a dummy L〈〉 term as the “slack”. The trans-

lation of transitivity is much like the translation of coerceRGNRef; it combines

the isomorphism for RGNPf(θ1 � θ2), with “slack” α, with the isomorphism for

RGNPf(θ2 � θ3, with “slack” β, to construct the isomorphism for RGNPf(θ1 � θ3),

with “slack” L(α � β).

5.4 Effect Polymorphism

Recall that effect polymorphism provides a means to abstract over an effect (a set

of regions). Effect instantiation applies an effect abstraction to an effect. Effect

polymorphism is especially useful for typing higher-order functions. For example,

the type of the list map function should be polymorphic in the effect of the func-

tional argument. We note that effect polymorphism is most useful in the presence

of type polymorphism. While we have presented the region calculi in Chapter 2

as a monomorphic languages, adding type polymorphism is entirely orthogonal to

the development thus far.

Our translation from the Single Effect Calculus to FRGN was simplified by using

a single index (variable) for the RGN monad. We introduced the RGNPf(θ1 � θ2)

as a witness to the relationship between the indices θ1 and θ2; as such, it is closely

related to the ∆ `rr ρ � ρ′ judgment. We noted in the previous section, that

we could represent each of the rules for the ∆ `rr ρ � ρ′ judgment as an explicit

coercion term in FRGN, which in turn could be given a translation into rgnURAL.

209

Expressions

E

u

w
v

`ctxt ∆; Γ ∆ `index θ

∆; Γ `exp reflRGNPf [θ] : RGNPf(θ � θ)

}

�
~ =

let spl = Uλstk :TJθK . let su = L〈stk , L〈〉〉 in su in

let cmb = Uλsu:L(TJθK � L1�). let 〈stk , 〈〉〉 = su in stk in

Upack(L1�, U〈spl , cmb〉)

E

u

wwwwwwww
v

∆ `index θ1 ∆ `index θ2 ∆ `index θ3

∆; Γ `exp e1 : RGNPf(θ1 � θ2)

∆; Γ `exp e2 : RGNPf(θ2 � θ3)

∆; Γ `exp transRGNPf [θ1] [θ2] [θ3] e1 e2 : RGNPf(θ1 � θ3)

}

��������
~

=

let ppf 1:TJRGNPf(θ1 � θ2)K = EJe1K in

let ppf 2:TJRGNPf(θ2 � θ3)K = EJe2K in

let pack(α, 〈splα, cmbα〉) = ppf 1 in

let pack(β, 〈splβ, cmbβ〉) = ppf 2 in

let spl = Uλstk 3:TJθ3K . let 〈stk2 , stkβ〉 = splβ stk 3 in

let 〈stk1 , stkα〉 = splα stk 2 in

L〈stk 1,
L〈stkα, stkβ〉〉 in

let cmb = Uλs :L(TJθ1K � L(α � β)). let 〈stk 1, 〈stkα, stkβ〉〉 = s in

let stk 2 = cmbα
L〈stk 1, stkα〉 in

cmbβ
L〈stk 2, stkβ〉 in

Upack(L(α � β), U〈spl , cmb〉)

Figure 5.12: Translation from FRGN to rgnURAL (region reference subtyping (IV))

210

If we were to adopt a source calculus with effects given by

Effects

φ ::= ∅ | {ρ} | ε | φ1 ∪ φ2

where effects may be any combination of regions and effect variables, then we

would need to introduce judgments and rules to handle the various relationships

between regions and effects; for example, the judgment ∆ `ee φ ⊇ φ′ would assert

that all regions and effect variables in φ′ are in φ.

Just as we represented the judgment ∆ `rr ρ � ρ′ as the FRGN type

RGNPf(θ1 � θ2), we would represent the judgment ∆ `ee φ ⊇ θ′ as a new (ab-

stract) FRGN type, say RGNPf(Θ1 ⊆ Θ2). And just as we represented each of the

rules for the ∆ `rr ρ � ρ′ judgment as an explicit coercion term in FRGN, we would

represent each of the rules for the ∆ `rr φ ⊇ φ′ judgment as new coercion terms in

FRGN.

For example, the rule

∆ `ee φ ⊇ φ1 ∆ `ee φ ⊇ φ2

∆ `ee φ ⊇ φ1 ∪ φ2

would be witnessed by a coercion term with the type:

∀ϕ, ϕ1, ϕ2. RGNPf(ϕ1 ⊆ ϕ2)→ RGNPf(ϕ2 ⊆ ϕ)→ RGNPf(ϕ1 ∪ ϕ2 ⊆ ϕ)

Simply put, in witnessing “sub-effecting” through explicit coercions, we need

to introduce additional terms into the FRGN language. We note that the situation

is really no better in a language with subtyping (e.g., System F≤), as the subset

relation is “richer” than the subtype relation on standard types (e.g., product

types).

211

We believe that the translation into rgnURAL would realize each of these explicit

coercions terms via various isomorphisms between different “views” of the set of

allocated regions (represented as a collection of region capabilities). Making this

intuition concrete is an interesting direction for future work.

5.5 High-Level Language Features of Cyclone

As we have noted previously, one of the goals of the Cyclone language has been

to give programmers as much control over memory management as possible, while

retaining safety through strong static typing. This goal has led to the development

and integration of a number memory-management features, using regions as an

organizing principle. While the efficacy of this design has been shown [44], an

argument that justifies the soundness of the various memory-management features

has proved elusive, due to sheer complexity.

In this section, we introduce a number of Cyclone’s high-level features. We

wish to show that the substructural language and type system of Chapter 4 is a

simple target language into which we may translate the key features of Cyclone.

This will help establish rgnURAL as a core language that captures many features

in a unified model.1 Type soundness for rgnURAL then implies the soundness of

more advanced features under suitable encodings. These encodings exhibit where

high-level features compose well with one another and where they don’t; in other

words, the encodings help manage the complexity of related, but subtly different,

features. Finally, these encodings help identify opportunities for new high-level

features that emerge naturally from the lower-level core language.

1We remark that it is our intention that rgnURAL serve as a compiler intermedi-
ate language and as vehicle for formal reasoning, not as a high-level programming
language.

212

We note that while this exercise is partially motivated by the fact that Cyclone’s

type system has not been formally proven sound, we do not expect to discover

unsoundness in the type system. Rather, we wish to demonstrate the suitability

of rgnURAL and to provide additional justification for the integration of features

in Cyclone.

5.5.1 Key Features of Cyclone

The Cyclone language [17] is a type-safe dialect of C. Cyclone attempts to give pro-

grammers significant control over data representation, memory management, and

performance (like C), while preventing buffer overflows, format-string attacks, and

dangling-pointer dereferences (unlike C). Cyclone ensures the safety of programs

through a combination of compile-time and run-time checks; the compile-time

checks use a combination of programmer annotations, an advanced type-and-effect

system, and a simple flow analysis. Cyclone’s combination of performance, con-

trol, and safety make it a good language for writing low-level software, like runtime

systems and device drivers.

In this section, we briefly introduce the key features of Cyclone that we wish

to model in rgnURAL.

As with C programs, Cyclone programs make extensive use of pointers. Cyclone

pointer types have the form t*@region(’r), where t is the type of the pointed

to object, and ‘r is a region name describing the object’s lifetime. The Cyclone

type system tracks the set of live regions at each program point; dereferencing a

pointer of type t*@region(‘r) requires that the region ‘r is in the set. (If ‘r is

not in the set, a compile-time error signals a possible dangling pointer dereference.)

Region polymorphism lets functions and data-structures abstract over the region

213

of their arguments and fields. Region parameters in Cyclone are indicated by

annotations of the form <‘r::R> on functions and types, where R distinguishes

region parameters from other kinds of parameters.

Cyclone provides a number of different kinds of regions, suitable for different

allocation and deallocation patterns. Stack regions correspond to local-declaration

blocks: entering a block creates a region and immediately allocates objects, while

exiting the block destroys the region and deallocates the region’s objects. Hence, a

stack region has lexical scope, but the number and sizes of stack allocated objects is

fixed at compile time. Pointers to stack allocated objects are assigned the name of

the stack region, thereby preventing such pointers from being dereferenced outside

the scope of the stack region.

Lexical regions are also created and deallocated according to program scoping,

but a region handle allows objects to be allocated into the region throughout the

region’s lifetime. Cyclone uses the syntax

{ region<‘r> rh; ... }

to introduce lexical regions. This syntax defines the name (‘r) of the new lexical

region and it defines the handle (rh of type region_t<‘r>) used to allocate memory

in the new lexical region. The region is created when execution enters the region

block and destroyed when execution exits the block. Note that a lexical region has

lexical scope, but the number and sizes of region allocated objects are not fixed at

compile time.

The Cyclone heap is a special region with the name ‘H. All data allocated in

the heap is managed by the Boehm-Demers-Weiser (BDW) conservative garbage

collector [7]. Conceptually, the Cyclone heap is just a lexical region with global

scope (which is never destroyed), and the global variable heap_region is its handle.

214

The lifetimes of stack and lexical regions follow the block structure of the

program, being created and destroyed in a last-in-first-out (LIFO) discipline. As

we have noted, such a discipline can be too restrictive, as it can not accommodate

objects with overlapping, non-nested lifetimes. In many instances, the limitations

associated with stack and lexical regions can be overcome by using the heap region,

whose contents are periodically garbage collected. However, garbage collection is

not suitable for all application domains. For example, embedded systems, OS

kernels and device drivers, and network servers may require bounds on memory or

real-time guarantees that are hard to achieve with garbage collection.

Hence, recent work has added unique pointers and dynamic regions to Cy-

clone [43, 77]. Unique pointers are based on insights from linear type systems and

provide fine-grained memory management for individual objects. In particular, a

the object pointed to by a unique pointer can be deallocated at any program point.

On the other hand, unique pointers cannot be freely copied and there are further

restrictions on their use in Cyclone programs. While there is much more to be

said concerning Cyclone’s unique pointers, for our purposes it suffices to reiterate

that unique pointers are treated as linear objects, where the type system and a

conventional flow analysis ensures that, at every program point, there is at most

one usable copy of a value assigned a unique-pointer type.

Integrating unique pointers in Cyclone requires that we generalize the form of

pointer types to t*@region(‘r)@aqual(\q), where \q is an aliasability qualifier.

A unique pointer has the qualifier \U, while a traditional (aliasable) pointer has

the qualifier \A.2

2We note that the unique (\U) qualifier of Cyclone is related to the linear (L)
and affine (A) qualifiers of rgnURAL, while the aliasable (\A) qualifier is related to
the unrestricted (U) qualifier. We apologize for the unfortunate clash in notation.

215

Cyclone’s general memory allocation routine takes the form

rqmalloc(rh, qh, sz), where rh is a region handle (of type region_t<‘r>),

qh is an aliasability qualifier (of type aqual_t<\q>, drawn from the constants

unique_qual and alias_qual), and sz is the amount of memory to allocate; the

routine returns a pointer of type t*@region(‘r)@aqual(\q) (for an appropriate

type t). Thus, both aliasable and unique objects may be allocated in any region.

However, only unique pointers may be deallocated, using a deallocation routine

of the form rfree(rh, p), where rh is a region handle (of type region_t<‘r>)

and p is a unique pointer (of type t*@region(‘r)@aqual(\U)). Hence, a Cyclone

programmer may (explicitly) deallocate some objects in a region individually,

and (implicitly) deallocate the rest of the objects when the region is destroyed.

This strategy can improve the space/time overhead as compared to traditional

regions; the term reap has been coined to describe regions that support this

hybrid strategy [6, 42]

A dynamic region resembles a lexical region in many ways; the crucial difference

is that a dynamic region can be created and destroyed at (almost) any point within

a program. However, before accessing or allocating data within a dynamic region,

the region must be opened. Opening a dynamic region adds the region to the set

of live regions and prevents the region from being destroyed while it is open. The

interface for creating and destroying dynamic regions is given by the following:

typedef struct DynamicRegion<‘r>*@aqual(\U)

uregion_key_t<‘r::R>;

struct NewDynamicRegion { <‘r::R>

uregion_key_t<‘r> key;

};

216

struct NewDynamicRegion new_ukey();

void free_ukey(uregion_key_t<‘r> k);

A dynamic region is represented as a unique pointer to an abstract

struct DynamicRegion<‘r> (which is parameterized by the region ‘r and in-

ternally contains the handle to the region). This unique pointer is called the key,

which serves as a run-time capability granting access to the region.

The new_ukey function creates a fresh dynamic region and returns the unique

key for the region. (The <‘r::R> annotation in the struct NewDynamicRegion

type indicates that the region variable is existentially bound. Unpacking this

existential type yields a region variable which does not conflict with any other

region name. This is precisely the behavior we require for a function that creates

a fresh region.) The free_ukey function destroys the key’s region and the storage

for the key. Since the key is unique, it must be used in a linear manner; the

free_ukey function consumes the key.

Cyclone uses the syntax

{ region<‘r> rh = open(k); ... }

to open a dynamic region. Within the scope, the region handle rh can be used

to access k’s region; furthermore, k is temporarily consumed throughout the scope

(preventing the region from being destroyed) and becomes accessible again when

control leaves the scope.

5.5.2 The Cyc Language

Although the previous section has given an informal overview of the high-level

features of Cyclone, it will be helpful to construct a more formal model of Cyclone

217

before sketching a translation into rgnURAL. In this section, we introduce the

Cyc language, which may be seen as a rough approximation of Cyclone, cast in the

spirit of the work presented thus far. In particular, we approximate Cyclone’s type

system with a novel type system that combines both monadic and substructural

elements.

Figures 5.13 and 5.14 present the syntax of Cyc. From rgnURAL, we adopt the

substructural qualifiers (q) and structure our types as a qualifier applied to a pre-

type. From FRGN, we adopt indices (θ) and the types RGN and Pf. We note that

indices in Cyc abstractly represent a stack of regions. Hence, as in FRGN, RGN θ τ

is the type of a computation which transforms a region stack indexed by θ and

delivers a value of type τ ; Pf(θ1 � θ2) is the type of a witness to the fact that the

stack indexed by θ1 is a subtype of the stack indexed by θ2; Ref θ τ is the type of

references allocated in some region in the stack indexed by θ; Hnd θ τ is the type

of region handles for some region in the stack indexed by θ. We introduce Key θ as

the type of a dynamic-region key, which serves as a capability for accessing some

region in the stack indexed by θ.

As will become clear when we examine the typing rules for Cyc, this indirect

representation of a region via a stack indexed by θ helps to model a number of

high-level features of Cyclone. Essentially, the set of live regions at each program

point, which is tracked by the Cyclone type system, is captured by the collection

of Pf terms and the index θ of a RGN computation.

We note that a unique pointer in Cyclone (t*@region(‘r)@aqual(\U)) cor-

responds to the Cyc type A(Ref θ τ) (since Cyclone allows a unique pointer to be

implicitly discarded), while an aliasable pointer (t*@region(‘r)@aqual(\A)) cor-

responds to the type U(Ref θ τ). Since Cyc assigns a substructural qualifier to all

218

Constant Qualifiers

q ∈ CQuals = {U, R, A, L}
L

��� >>>

A
??
v R

��

U

Qualifier variables

ξ ∈ QVars

Qualifiers

q ::= ξ | q

Pre-type variables

α ∈ PTVars

Pre-types

τ ::= α | Int | Bool | τ1 (τ2 | τ1 � · · ·� τn |

∀ξ. τ | ∃ξ. τ | ∀α. τ | ∃α. τ | ∀α. τ | ∃α. τ |

RGN θ τ | Pf(θ1 � θ2) | Ref θ τ | Hnd θ | Key θ | ∀ϑ. τ | ∃ϑ. τ

Type variables

α ∈ TVars

Types

τ ::= α | qτ

Index variables

ϑ ∈ IVars

Indices

θ ::= ϑ

Figure 5.13: Syntax of Cyc (I)

219

Integer constants

i ∈ Z

Boolean constants

b ∈ {true, false}

Value variables

f, x ∈ VVars

Terms

e ::= qi | q(e1 ⊕ e2) | q(e1 < e2) | qb | if eb then et else ef |

x | qλx:τ. e | e1 e2 |

q〈e1, . . . , en〉 | let 〈x1, . . . , xn〉 = ea in eb |

qΛξ. e | e [q] | qpack(q, e) | let pack(ξ, x) = ea in eb |

qΛα. e | e [τ] | qpack(τ , e) | let pack(α, x) = ea in eb |

qΛα. e | e [τ] | qpack(τ, e) | let pack(α, x) = ea in eb |

fix f :τ.u | let x = ea in eb |

runRGN e | returnRGN e | thenRGN ea ef | reflPf | transPf e1 e2 |

coerceRGN ep ek | coerceRef ep er | coerceHnd ep eh |

qrnew eh e? | free er | read er | write er e? | swap eh e? |

letRGN e | newKey | freeKey ek | openKey ek e |

qΛϑ. e | e [θ] | qpack(ϑ, e) | let pack(θ, x) = ea in eb

Abstractions

u ::= qλx:τ. e | qΛξ. e | qΛα. e | qΛα. e | qΛϑ. e

Figure 5.14: Syntax of Cyc (II)

220

pre-types (not just reference pre-types), we use the Cyc type L(Key θ) to represent

the Cyclone type uregion_key_t<‘r>.3

The term syntax for Cyc should be mostly familiar, as it adopts terms from

FRGN and rgnURAL. Note that the reference primitives (new, free, read, write,

and swap) do not take a capability argument (as they did in rgnURAL). Instead,

the typing rules will assign these terms monadic types (as they were in FRGN);

running a computation of pre-type RGN θ τ will require that all of the regions in

the stack indexed by θ are live.

The only new terms are those dealing with dynamic regions. The term newKey

creates a new dynamic region and returns its key; it corresponds to the Cyclone

function new_ukey. The term freeKey destroys a dynamic region and consumes

its key; it corresponds to the Cyclone function free_ukey. Finally, the term

openKey temporarily consumes a dynamic-region key, makes the dynamic-region

handle available to a RGN computation, and finally returns the result of the nested

computation along with the dynamic-region key.

We elide most of the static semantics for Cyc, as it follows directly from the

static semantics for rgnURAL. Figures 5.15–5.18 present the interesting typing

rules for the judgment ∆; Γ `exp e : τ . The typing rules for many of the terms

adopted from FRGN are similar to the corresponding rules in the static semantics

for FRGN. However, note the ways in which substructural qualifiers are used in

these rules. In particular, note that RGN is always qualified with L, while Pf is

always qualified with U. A monadic computation RGN is qualified with L because

it denotes a suspended computation; hence, like abstractions, the types of the free

3Using the Cyc type A(Key θ) would be slightly more accurate, as Cyclone allows
a unique region key to be implicitly discarded. However, using L(Key θ) makes the
translation in the next section somewhat more uniform.

221

∆; Γ `exp e : τ

∆; Γ `exp e : L(∀ϑ. L(RGN ϑ τ))

∆; Γ `exp runRGN e : τ

∆ `index θ ∆; Γ `exp e : τ

∆; Γ `exp returnRGN e : L(RGN θ τ)

∆ ` Γ; Γa � Γf

∆; Γa `exp ea : L(RGN θ τa)

∆; Γf `exp ef : q(τa (L(RGN θ τa))

∆; Γ `exp thenRGN ea ef : L(RGN θ τb)

∆ `index θ

∆; {} `exp reflPf : U(Pf(θ � θ))

∆ ` Γ; Γ1 � Γ2

∆; Γ1 `exp e1 : U(Pf(θ1 � θ2))

∆; Γ2 `exp e2 : U(Pf(θ2 � θ3))

∆; Γ `exp transPf e1 e2 : U(Pf(θ1 � θ3))

∆ ` Γ; Γp � Γk

∆; Γp `exp ep : U(Pf(θ1 � θ2)) ∆; Γk `exp ek : L(RGN θ1 τ)

∆; Γ `exp coerceRGN ep ek : L(RGN θ2 τ)

∆ ` Γ; Γp � Γr

∆; Γp `exp ep : U(Pf(θ1 � θ2)) ∆; Γr `exp er : qr(Ref θ1 τ)

∆; Γ `exp coerceRef ep er : qr(Ref θ2 τ)

∆ ` Γ; Γp � Γh ∆; Γp `exp ep : U(Pf(θ1 � θ2)) ∆; Γh `exp eh : qh(Hnd θ1)

∆; Γ `exp coerceHnd ep eh : qh(Hnd θ2)

Figure 5.15: Static semantics of Cyc (expressions (I))

222

∆; Γ `exp e : τ

New(Any)

∆ `qual qr ∆ ` Γ; Γh � Γa

∆; Γh `exp eh : qh(Hnd θ) ∆; Γa `exp e? : τ ∆ ` τ � A

∆; Γ `exp
qrnew eh e? : L(RGN θ qr(Ref θ τ))

New(R,L)

∆ `qual qr ∆ ` Γ; Γh � Γa

∆; Γh `exp eh : qh(Hnd θ) ∆; Γa `exp e? : τ ∆ ` R � qr

∆; Γ `exp
qrnew eh e? : L(RGN θ qr(Ref θ τ))

∆; Γ `exp er : qr(Ref θ τ) ∆ ` A � qr

∆; Γ `exp free er : L(RGN θ τ)

∆; Γ `exp er : qr(Ref ρ τ) ∆ ` τ � R

∆; Γ `exp read er : L(RGN θ L(qr(Ref θ τ) � τ))

Figure 5.16: Static semantics of Cyc (expressions (II))

223

∆; Γ `exp e : τ

Write(Weak)

∆ ` Γ; Γr � Γ?

∆; Γr `exp er : qr(Ref θ τ) ∆ ` τ � A ∆; Γ? `exp e? : τ

∆; Γ `exp write er e? : L(RGN θ qr(Ref θ τ))

Write(Strong)

∆ ` Γ; Γr � Γ? ∆; Γr `exp er : qr(Ref θ τ)

∆ ` τ � A ∆; Γ? `exp e? : τ? ∆ ` A � qr ∆ ` τ? � qr

∆; Γ `exp write er e? : L(RGN θ qr(Ref ρ τ?))

Swap(Weak)

∆ ` Γ; Γr � Γ? ∆; Γr `exp er : qr(Ref θ τ) ∆; Γ? `exp e? : τ

∆; Γ `exp swap er e? : L(RGN θ L(qr(Ref ρ τ) � τ))

Swap(Strong)

∆ ` Γ; Γr � Γ?

∆; Γr `exp er : qr(Ref θ τ) ∆; Γ? `exp e? : τ? ∆ ` A � qr ∆ ` τ? � qr

∆; Γ `exp swap er e? : L(RGN θ L(qr(Ref ρ τ?) � τ))

Figure 5.17: Static semantics of Cyc (expressions (III))

224

variables in Γ should be bounded by the qualifier assigned to the computation.

Since ∆ ` Γ � L always hold, a simple means of achieving this to always qualify

RGN with L. On the other hand, a witness Pf is qualified with U because it denotes

a persistent fact about the relationship between two indices.

The rule for runRGN in Cyc is slightly different from the corresponding rule in

FRGN; the difference is that Cyc does not provide a region handle to the computa-

tion. This simply allows a computation, say opening and reading from a dynamic

region, to be run without creating and destroying an extraneous lexical region.

Note that the rules for the reference primitives combine the corresponding rules

from FRGN and rgnURAL. As in rgnURAL, the rules enforce the safe combinations of

qualifiers for a reference and qualifiers for its contents. However, rather than take

and return a capability argument (as in rgnURAL), the primitives are assigned RGN

types (as in FRGN). The stack of regions implicitly threaded by the sequencing of

monadic computations ensures that each of these primitives only access live regions.

The rules for newKey and freeKey are straight forward. Unsurprisingly, we

may see that they are similar to the rules for newrgn and freergn in rgnURAL.

Note that newKey has the type L(∃ϑ. L(Key ϑ)); although we may read the type as

asserting the existence of a stack of regions, with a key for accessing some region

in the stack, the evaluation of newKey should create a new dynamic region and

ϑ should denote the region stack with only the new dynamic region. We use a

similar interpretation in the typing rule for letRGN: although the “inner” stack ϑi

is universally quantified, we expect it to corresponds to the stack which extends

the “outer” stack θo with one new region, to be destroyed at the end of the letRGN.

225

∆; Γ `exp e : τ

∆; Γ `exp e : L(∀ϑi.
L(arg (L(RGN ϑi τ)))

arg ≡ L(U(Pf(θo � ϑi)) � U(Hnd ϑi))

∆; Γ `exp letRGN e : L(RGN θo τ)

∆; {} `exp newKey : L(∃ϑ. L(Key ϑ))

∆; Γ `exp ek : L(Key θ)

∆; Γ `exp freeKey ek : L1�

∆ ` Γ; Γk � Γb ∆; Γk `exp ek : L(Key θ)

∆; Γb `exp eb : L(∀ϑi.
L(arg (L(RGN ϑi τ)))

arg ≡ L(U(Pf(θo � ϑi)) � U(Pf(θd � ϑi)) � U(Hnd ϑd))

∆; Γ `exp openKey ek eb : L(RGN θo
L(L(Key θd) � τ))

∆ `qual q ∆ ` Γ � q

∆, ϑ; Γ `exp e : τ

∆; Γ `exp
qΛϑ. e : q(∀ϑ. τ)

∆; Γ `exp ef : q(∀ϑ. τ) ∆ `index θa

∆; Γ `exp ef [θa] : τ [θa/ϑ]

∆ `qual q ∆; Γ `exp e2 : τ [θ1/ϑ] ∆ ` τ [θ1/ϑ] � q

∆; Γ `exp
qpack(θ1, e2) : q(∃ϑ. τ)

∆ ` Γ; Γa � Γb

∆; Γa `exp ea : q(∃ϑ. τx) ∆ `type τ ∆, ϑ; Γb, x:τx ` eb : τ

∆; Γ `exp let pack(ϑ, x) = ea in eb : τ

Figure 5.18: Static semantics of Cyc (expressions (IV))

226

The most interesting rule is the rule for openKey:

∆ ` Γ; Γk � Γb ∆; Γk `exp ek : L(Key θ)

∆; Γb `exp eb : L(∀ϑi.
L(arg (L(RGN ϑi τ)))

arg ≡ L(U(Pf(θo � ϑi)) � U(Pf(θd � ϑi)) � U(Hnd ϑd))

∆; Γ `exp openKey ek eb : L(RGN θo
L(L(Key θd) � τ))

Here, the “inner” stack ϑi corresponds to the stack which extends the “outer”

stack θo with the stack of the dynamic region θd. The relationships between these

stacks is witnessed by Pf(θo � θi) and Pf(θd � θi), which assert that the “inner”

stack outlives both of the other stacks. Note that there is no relationship between

θo and θd, since the dynamic region might be destroyed before or after the regions

in θo. Exactly the same trick as was used in FRGN ensures that the index variable

ϑi does not appear in the type τ , thereby ensuring that the result of the computa-

tion described by eb does not depend upon the particular stack used to instantiate

ϑi. In particular, the result will not leak any means of accessing the dynamic re-

gion (although it may contain references allocated in the dynamic region), thereby

ensuring that the dynamic region may be destroyed at any point where it is not

opened. Finally, note that the dynamic-region key is returned through the result

of the openKey computation, making it available either to open the dynamic region

again or to destroy the dynamic region.

A whole Cyclone program, with a global heap region may be expressed as:

runRGN (L(Λϑ. letRGN (L(ΛϑH. L(λarg . let 〈 , hndH〉 = arg in e)))))

where ϑH approximates the Cyclone region ’H and hndH approximates the Cyclone

global variable heap_region.

227

5.5.3 Translation: From Cyc to rgnURAL

While Cyc appears to concisely capture many of the high-level features of Cyclone,

it is by no means clear that there is a simple argument to directly prove the type

soundness of the Cyc language. The combination of monadic and substructural

elements in the type system would seem to suggest a rather complicated opera-

tional semantics along with an elaborate static semantics for the abstract machine

configurations.

Instead, we will sketch a translation from Cyc to rgnURAL; hence, we will define

the operational behavior of Cyc by its translation into rgnURAL. As we have already

established the soundness of rgnURAL, a type-preserving translation will imply the

soundness of Cyc. Since we will require no extensions to the rgnURAL language,

this translation helps establish rgnURAL as a core language that captures many

features in a unified model.

Before turning to the translation from Cyc to rgnURAL, we first demonstrate

that lexical regions (introduced by letRGN) may be eliminated in favor of dynamic

regions alone. In order to make the translation easier to read, we recall the bindRGN

notation:

bindRGN x:τa ⇐ ea ; eb ≡ thenRGN ea
L(λx:τa. eb)

with the derived typing rule:

∆ `exp Γ; Γa � Γb

∆; Γa `exp ea : L(RGN θ τa) ∆; Γb, x:τa `exp eb : L(RGN θ τb)

∆; Γ `exp bindRGN x:τa ⇐ ea ; eb : L(RGN θ τb)

Figure 5.19 shows how letRGN maybe implemented using dynamic regions.

The translation is fairly straight forward: the creation and destruction of a new

228

letRGN e ≡

let pack(ϑd, keyd) = newKey in

bindRGN kr :L(A(Key ϑd) � τ)

⇐ openKey keyd
L(Λϑi.

L(λarg .

let 〈pf o�i, pf d�i, hndd〉 = arg in

e [ϑi]
L〈pf o�i, coerceHnd pf d�i hndd〉)) ;

let 〈res , keyd〉 = kr in

let 〈〉 = freeKey keyd in

returnRGN res

Figure 5.19: Translation from Cyc to Cyc (letRGN)

dynamic region brackets the execution of the body of the letRGN. We coerce the

handle for the dynamic region from the type U(Hnd ϑd) to the type U(Hnd ϑi),

thereby making it available to the body of the letRGN at the appropriate type.

We next turn our attention to the translation of the remaining Cyc constructs

to rgnURAL. In spirit, the translation is very similar to that of Section 4.3, as

extended by Section 5.3.3. In particular, we translate RGN θ τ to a stack passing

interpretation of computations; Pf(θ1 � θ2) to an isomorphism between TJθ2K and

L(TJθ1K � β), for some “slack” β; and Ref θ τ and Hnd θ τ to an existentially bound

region along with a reference or handle and an isomorphism between TJθK and

L(β � L(Cap %)). Finally, a Key θ is translated to a stack (of type TJθK) along with

a handle and a “clean-up” function (of type U(TJθK (L1�)), to be invoked when

the dynamic region is to be destroyed. Figure 5.20 summarizes the translation of

Cyc types to rgnURAL types.

229

Translations yielding types

Types

TJαK = α

...
...

...

T
q

q(RGN θ τ)
y

= q(TJθK (L(TJθK � TJτK))

T
q

q(Pf(θ1 � θ2))
y

= q(∃β. Iso(TJθ2K , L(TJθ1K � β)))

T
q

q(Ref θ τ)
y

=

q(∃%r.
q(U(∃β. Iso(TJθK , L(β � L(Cap %r)))) � q(Ref %r TJτK)))

T
q

q(Hnd θ)
y

=

q(∃%h.
q(U(∃β. Iso(TJθK , L(β � L(Cap %h)))) � q(Hnd %h)))

T
q

q(Key θ)
y

= q(TJθK � T
q

U(Hnd θ)
y

� U(TJθK (L1�))

T
q

q(∀ϑ. τ)
y

= q(∀αϑ. TJτK)

T
q

q(∃ϑ. τ)
y

= q(∃αϑ. TJτK)

Indices

TJϑK = αϑ

Isomorphism Macro

Iso(τ1, τ2) = U(U(τ1 (τ2) � U(τ2 (τ1))

Figure 5.20: Translation from FRGN to Cyc (I)

230

Translations yielding expressions

Expressions

E

t

∆; {} `exp newKey : L(∃ϑ. L(Key ϑ))

|

=

let pack(%d, 〈capd, hndd〉) = L,Unewrgn in

let stkd = L〈L〈〉, capd〉 in

let isod = IsoPairId(L1�, L(Cap %d)) in

let phndd = Upack(%d,
U〈Upack(L1�, isod), hndd〉) in

let desd = U(λstkd:
L(L1� � L(Cap %d)).

let 〈〈〉, capd〉 = stkd in

freergn capd hndd) in

let keyd = L〈stkd, phndd, desd〉 in

Lpack(L(L1� � L(Cap %d)), keyd)

E

u

w
v

∆; Γ `exp ek : L(Key θ)

∆; Γ `exp freeKey ek : L1�

}

�
~ = let keyd = EJeK in

let 〈stkd, phndd, desd〉 = keyd in

desd stkd

Figure 5.21: Translation from FRGN to Cyc (II)

The translation of the purely functional Cyc terms to rgnURAL terms is very

nearly an identity translation, and we elide them in this presentation. For the

region and reference primitives adopted from FRGN, the translation from Cyc to

rgnURAL is very similar to the translation given in Section 4.3 (as extended in

Section 5.3.3), and we elide these translations as well. The dynamic region prim-

itives have the most interesting translations from Cyc to rgnURAL, and are given

in Figures 5.21 and 5.22

231

Translations yielding expressions

Expressions

E

u

wwwwwwww
v

∆ ` Γ; Γk � Γb ∆; Γk `exp ek : L(Key θ)

∆; Γb `exp eb : L(∀ϑi.
L(arg (L(RGN ϑi τ)))

arg ≡ L(U(Pf(θo � ϑi)) � U(Pf(θd � ϑi)) � U(Hnd ϑd))

∆; Γ `exp openKey ek eb : L(RGN θo
L(L(Key θd) � τ))

}

��������
~

=

let keyd:T
q

L(Key θd)
y

= EJekK in

let fb:T
q

L(∀ϑi.
L(arg (L(RGN ϑi τ)))

y
= EJebK in

L(λstk o:TJθoK . let 〈stkd, phndd, desd〉 = keyd in

let ppf o = Upack(TJθdK , IsoPairId(TJθoK , TJθdK)) in

let ppf d = Upack(TJθoK , IsoPairSwap(TJθoK , TJθdK)) in

let arg = U〈ppf o, ppf d, phndd〉 in

let stk i:
L(TJθoK � TJθdK) = L〈stk o, stkd〉 in

let 〈stk i, res〉 = fb [L(TJθoK � TJθdK)] arg stk i in

let 〈stk o, stkd〉 = stk i in

let keyd = L〈stkd, phndd, desd〉 in

L〈stk o,
L〈keyd, res〉〉)

Figure 5.22: Translation from FRGN to Cyc (III)

232

Unsurprisingly, the translation of newKey uses newrgn to create a region. Sur-

prisingly, the translation of freeKey does not (directly) use freergn to destroy

the region. Rather, the translation of newKey constructs a function to destroy

the region, when applied to the representation of the dynamic-region stack. The

translation of freeKey needs only apply this function to the representation of the

dynamic-region stack in order to destroy the region.

This translation ensures that only the translation of newKey needs to know the

representation of the dynamic-region stack (stkd). The macro IsoPairId(τ1, τ2)

abbreviates a the isomorphism between the type L(τ1 � τ2) and the type L(τ1 � τ2).

The isomorphism witnesses the embedding of the capability (capd) in the stack

(stkd). The translation of newKey uses the isomorphism to construct a packed

handle for the dynamic region.

The translation of openKey is not significantly more complicated than the trans-

lation of letRGN in Section 4.3. The “inner” stack stk i is formed by pairing the

“outer” stack stk o with the dynamic-region stack stkd. The isomorphisms witness-

ing the embedding of the “outer” stack in the “inner” stack and the dynamic-region

stack in the “inner” stack are trivial. The macro IsoPairSwap(τ1, τ2) abbreviates

an isomorphism between the type L(τ1 � τ2) and the type L(τ2 � τ1). After running

the “inner” computation, the dynamic-region key is reconstructed and paired with

the result of the “inner” computation as the result of the “outer” computation.

5.5.4 Fused Regions

One of the advantages of translating Cyc to rgnURAL is that it exhibits opportu-

nities for new high-level features that emerge naturally from the lower-level core

language. In this section, we explore one such opportunity.

233

We first recall the translation for the type of a Cyc dynamic-region key:

T
q

q(Key θ)
y

= q(TJθK � T
q

U(Hnd θ)
y

� U(TJθK (L1�))

Note that this translation includes a “thunk” that remembers how destroy the

dynamic region when freeKey is applied to the key. It should be clear that we

can make a “bigger” key out of two keys by composing their thunks. For example,

given key1 of type T
q

L(Key θ1)
y

and key2 of type T
q

L(Key θ2)
y
, we can construct

a new key as follows:

let 〈stk 1:TJθ1K , phnd1, des1〉 = key1 in

let 〈stk 2:TJθ2K , phnd2, des2〉 = key2 in

let stk = L〈stk 1, stk 2〉 in

let des = U(λstk :L(τ1 � τ2). let 〈stk 1, stk 2〉 = stk in

let 〈〉 = des1 stk 1 in

let 〈〉 = des2 stk 2 in

L〈〉) in

let iso1� = IsoPairId(TJθ1K , TJθ2K) in

let iso2� = IsoPairSwap(TJθ1K , TJθ2K) in

let pack(%1, 〈iso1, hnd1〉) = phnd1 in

let pack(%2, 〈iso2, hnd2〉) = phnd2 in

let phnd = . . . in

let key = L〈stk , phnd , des〉 in

key

where the new packed handle phnd can be constructed either from hnd1 (by com-

posing iso1 with iso1≺ in the appropriate manner) or from hnd2 (by composing

iso2 with iso2≺).

234

Having combined the “thunks” which destroy the dynamic regions, we know

that the two dynamic regions will be destroyed at the same time. Therefore, in

some sense, the liveness of one region implies the liveness of the other region, and

vice-versa. In fact, we can make this notion more concrete by constructing not

just a new key, but also witnesses to the relationship between the first and second

stacks (stk 1 and stk 2) and the new stack (stk). We change the expression above to

include:

let key = L〈stk , phnd , des〉 in

let ppf 1 = U(pack(TJθ2K , iso1�)) in

let ppf 2 = U(pack(TJθ1K , iso2�)) in

L(pack(L(TJθ1K � TJθ2K), L〈key , ppf 1, ppf 2〉))

This expression now has a type equivalent to:

T
q

L(∃ϑ. L(L(Key ϑ) � Pf(θ1 � ϑ) � Pf(θ2 � ϑ)))
y

Hence, we could take the expression above as the translation of a new Cyc term

(fuseKeys) with the following typing rule:

∆ ` Γ; Γ1 � Γ2 ∆; Γ1 `exp e1 : L(Key θ1) ∆; Γ1 `exp e2 : L(Key θ2)

∆; Γ `exp fuseKeys e1 e2 : L(∃ϑ. L(L(Key ϑ) � Pf(θ1 � ϑ) � Pf(θ2 � ϑ)))

Note that the result includes a “new” existentially bound index variable, along

with proofs that allow references in either of the old dynamic regions to be coerced

(via coerceRef) into the “new” dynamic region.

There are a some scenarios where the operational behavior of fuseKeys could be

useful. For example, consider a routine that constructs a rooted data structure and,

in many instances, the data structure is not needed in the future, but occasionally

235

it is necessary to use the structure in the future.4 Since the structure might be

needed in the future, the whole structure needs to be allocated in a region that

outlives the current routine, but that wastes space in the cases where the structure

is no longer needed. Using fuseKeys, we may instead allocate the structure in

a dynamic region; when the structure is not needed, the dynamic region may be

destroyed; when the structure is needed, the dynamic region may be fused with

another dynamic region (which accumulates all of the dynamic regions for all of

the needed data structures).

5.6 A Type-Safe Copying Garbage Collector

In this section, we consider an advanced application of region-based memory man-

agement: expressing a type-safe copying garbage collector. We are motivated to

consider this application by the recognition that although many high-level, safe

languages provide automatic memory management through a garbage collector,

the interpreters and runtime systems for these high-level, safe languages are often

written in low-level, unsafe languages. Providing interpreters and runtime sys-

tems are a common way of hosting applications on a dynamic platform (such as

a web server). Yet, making use of a low-level, unsafe language to implement the

interpreters and runtime systems raises the concern that a bug in the interpreter

or runtime system may introduce a security hole that compromises the integrity

of the entire platform. Hence, reducing or eliminating code written in low-level,

unsafe languages from the implementation increases our confidence in the security

of the platform as a whole.

4This kind of scenario often arises in assertion checking and theorem proving
applications, where the rooted data structure corresponds to a logical formula.

236

3

������������

97

97 nil

From−space

To−space

root objects object pointer forwarding pointer

nil

��

Figure 5.23: Copying garbage collector example

Implementing the core of an interpreter in a safe language is not itself a signif-

icant challenge. Rather, implementing the runtime system for the interpreter that

provides automatic memory management is a challenge. Nonetheless, we sketch an

implementation of a type-safe copying garbage collector, which uses region-based

memory management to reclaim memory. Using region-based memory manage-

ment to implement a type-safe garbage collector is not itself novel [93, 64, 38],

but we believe that our implementation gives rise to a more natural typing for

forwarding pointers.

Figure 5.23 illustrates a simple copying garbage collector collector. We assume

that the interpreted program has been running, allocating objects in memory. At

some point in time, the runtime system stops the interpreted program and starts

the garbage collector. The collector begins with with a group of objects in the

From-space and an empty To-space. The collector traverses the live objects (those

objects reachable from the root objects) in From-space, copying each live object

237

into To-space when the object is first visited. The collector preserves sharing

among objects by leaving a forwarding pointer in each From-space object when

it is copied. The forwarding pointer points to the copied object in To-space.

Whenever an object in From-space is visited, the copying function first examines

the forwarding pointer. If it is non-NULL, then the copy function returns the

forwarding address. Otherwise, space for the object is reserved in To-space, the

forwarding pointer is set to the address of the reserved space, and the fields of the

object are copied. After all live objects in From-space have been copied (depicted

in Figure 5.23), the collector can free all memory in From-space and the program

can continue execution, allocating new objects in To-space.

In the copying algorithm, the separation of managed memory into a From-space

and a To-space suggests a natural correspondence with regions. Clearly, the LIFO

discipline of lexical regions is insufficient for a copying garbage collector, since the

lifetime of From-space should end after the beginning but before the end of To-

space’s lifetime. Hence, we turn our attention to rgnURAL with non-LIFO regions,

where it appears that we have sufficient expressiveness to write a simple copying

garbage collector (Figure 5.24).

In this simple example, the state of the interpreted program is a value of the

type:

L(∃%. L(L(Cap %) � L(Hnd %) � Prog[%]))

where the existentially bound region name % fixes the region for the program’s

garbage collected memory, the capability L(Cap %) and handle L(Hnd %) provide

access to the region, and the unspecified type Prog[%] describes the evaluation of

the program. The notation [%] indicates that Prog[%] is a type parameterized by

a region, in this case instantiated to the region %. We intend that a value of type

238

let doGC =

U(λstateold:
L(∃%. L(L(Cap %) � L(Hnd %) � Prog[%])).

// unpack the old program state

let pack(%f , 〈capf , hnd f , progf〉) = stateold in

// create the to-space region

let pack(%t, 〈capt, hnd t〉) = L,Unewrgn in

// copy the program

let 〈capf , capt, prog t〉 = copyProg [%f , %t]
L〈capf , capt, hnd t, progf〉 in

// destroy the from-space region

let 〈〉 = freergn L〈capf , hnd f〉 in

// package the new program state

let statenew = Lpack(%t,
L〈capt, hnd t, prog t〉) in

statenew)

Figure 5.24: Simple copying garbage collector in rgnURAL

239

Prog[%] provides sufficient information for the garbage collector to identify the root

objects in the program’s memory.

The implementation of this simple garbage collector is relatively straight for-

ward. The state of the interpreted program is unpacked, naming the From-space

region %f . A new To-space is created with newrgn; the result is unpacked naming

the To-space region %t. The program is copied using the copyProg function, which

has the type:

U(∀%f .
U(∀%t.

U(L(L(Cap ρf) � L(Cap ρt) � L(Hnd ρf) � Prog[%f]) (

L(L(Cap ρf) � L(Cap ρt) � Prog[%t]))))

Note that this function takes the capabilities for both From- and To-space and

the handle for To-space, since it will need to read the program’s old memory

in From-space and write the program’s new memory in To-space. The function

returns the capabilities along with a new program (of type Prog[%t]), which has root

objects in To-space. Next, the From-space is destroyed, reclaiming memory that

will no longer be accessed by the interpreted program. Finally, the new program

is packed along with the capability and handle for To-space, yielding a new state

of the interpreted program.

While this captures the spirit of the garbage collector, many details remain.

In particular, we need to consider the representation of objects in the program’s

memory and the representation of forwarding pointers, used by the copyProg func-

tion to implement the copying of objects from From-space to To-space. A simple

representation of objects pairs a forwarding pointer with some value corresponding

to heap allocated data manipulated by the program (e.g., integer constants, pairs,

etc.). The simple extension of rgnURAL with sum pre-types (τ1 � τ2) and recursive

240

pre-types µα. τ would admit the following definitions:

Obj[%] ≡ U(?FwdPtr? � Val[%])

Val[%] ≡ U(Const � Pair[%] � · · ·))

Const ≡ UInt

Pair[%] ≡ U(ObjRef[%] � ObjRef[%])

ObjRef[%] ≡ U(Ref % Obj[%])

Note that a Pair[%] value combines two object references (ObjRef[%]), thereby al-

lowing both cycles and sharing in heap data manipulated by the program; these

cycles and sharing should be preserved by the garbage collector.

We have yet to answer the question: “what is the type of the forwarding

pointer?” The answer is (something along the lines of): “a pointer to an ob-

ject in To-space, whose forwarding pointer is a pointer to an object in To-space’s

To-space, whose forwarding pointer” What we require is a name for all of the

unwindings of the infinite sequence of pointers. The rgnURAL language (even with

recursive types) cannot express this infinite sequence. Hence, we extend rgnURAL

to provide such a name in the form of a region constructor, which maps region

names to region names and generates an infinite sequence of region names:

Region variables

% ∈ RVars

Regions

ρ ::= % | Next ρ

Note that although the region names ρ and Next ρ are related, the lifetimes of their

corresponding regions are not. In a similar manner, ObjRef[Next %] will be a well-

formed type anywhere in the scope of %, even if the region corresponding to Next ρ

has not been created. The original inspiration for the Next region constructor

241

comes from Hawblitzel et al. [38], where type sequences (mappings from integers

to types) are used to index regions by a region number (“epoch”), yielding the

connection between successive regions in a copying collector.

We can now give the type of a forwarding pointer as follows:

Obj[%] ≡ U(FwdPtr[%] � Val[%])

ObjRef[%] ≡ U(Ref % Obj[%])

FwdPtr[%] ≡ U(Ref % U(U1� � ObjRef[Next %]))

Note that a forwarding pointer is a mutable reference containing either a dummy

value (of type U1�, indicating that the pointed to object hasn’t yet been allocated)

or a reference (of type ObjRef[Next %]) to the pointed to object in the next region.

Operationally, we expect regions in a region sequence to behave much like nor-

mal regions, with access to a region in a region sequence mediated by a capability.

In addition, we will have operations to create new region sequences and to cre-

ate the next region in a region sequence. Furthermore, the operation to create the

next region (Next ρ) in a region sequence should produce the capability and handle

for the next region (Cap (Next ρ) and Hnd (Next ρ)). While this operation yields

an infinite sequence of region capabilities, we need to ensure that the sequence is

unique: that there is exactly one way to generate the capability for Next ρ for any

ρ. The substructural qualifiers of rgnURAL provide exactly this uniqueness.

Hence, we extend rgnURAL with a type and operations to manage the genera-

tion of the sequence of regions:

Pre-types

τ ::= · · · | Gen ρ

Terms

e ::= · · · | qgnewrgnseq | qc,qhnextrgn

242

∆ ` A � qg

∆; {} `exp
qgnewrgnseqL(∃%. qg(Gen %))

∆; Γ `exp eg : qg(Gen ρ)

∆; Γ `exp
qc,qhnextrgn eg : L(qc(Cap ρ) � qh(Hnd ρ) � qg(Gen (Next ρ)))

Figure 5.25: Static semantics for rgnURAL with region sequences

The pre-type Gen ρ (which will always be affine or linear) serves as a meta-

capability: it is the capability to produce the capability for ρ and the next genera-

tor. The expression qgnewrgnseq creates a new region sequence (with no regions)

by returning the first generator; the expression qc,qhnextrgn eg creates the next

region (capability and handle) in a region sequence when applied to a generator.

The typing rules for the new expression forms are given in Figure 5.25.

Both newrgnseq and nextrgn are closely related to newrgn. Like newrgn,

newrgnseq returns an existential package, hiding the name of a region, but rather

than returning a capability and handle, it returns a generator. Hence, the existen-

tially bound region name corresponds to the (as of yet uncreated) “first” region in

the region sequence. Like newrgn, nextrgn returns a capability and handle, but

rather than existentially hiding the region name, the region name is taken from the

input generator. A generator for the “next” region is also returned, giving rise to

an infinite sequence of (potential) regions. Because the generator is unique (affine

or linear) and nextrgn consumes it, it follows that a program can only create one

capability for Next %; hence, the sequence of regions is unique.

Operationally, we note that the physical region for any given region name need

only be created when the capability and handle are created; that is, when nextrgn

243

let doGC =

U(λstateold:
L(∃%. L(L(Gen (Next %)) � L(Cap %) � L(Hnd %) � Prog[%])).

// unpack the old program state

let pack(%f , 〈genf , capf , hnd f , progf〉) = stateold in

// create the to-space region

let 〈gent, capt, hnd t〉) = L,Unextrgn genf in

// copy the program

let 〈capf , capt, prog t〉 = copyProg [%f]
L〈capf , capt, hnd t, progf〉 in

// destroy the from-space region

let 〈〉 = freergn L〈capf , hnd f〉 in

// package the new program state

let statenew = Lpack(Next %f ,
L〈gent, capt, hnd t, prog t〉) in

statenew)

Figure 5.26: Simple copying garbage collector in rgnURAL with region sequences

is called. In particular, no regions need to be pre-created. Furthermore, we note

that the rgnURAL primitive freergn suffices for destroying regions in a region

sequence.

Figure 5.26 revises the simple copying garbage collector from Figure 5.24

to use region sequences. The program state is extended with a generator

(L(Gen (Next %))), in order to create the To-space. (Note that copyProg needs

only %f , since the name of the To-space region is necessarily Next %f .)

More details on this application, including a full description of an interpreter,

runtime system, and copying garbage collector implemented in Cyclone, may be

found in the paper Implementation and Performance Evaluation of a Safe Runtime

244

System in Cyclone [22]. Preliminary benchmarks demonstrated that we can indeed

build a platform with reasonable performance when compared to other approaches

that guarantee safety. More importantly, we could significantly reduce the amount

of trusted, unsafe code needed to implement the system. The implementation

relies crucially upon both dynamic regions and unique pointers, along with Cyclone

analogues of Next, newrgnseq, and nextrgn.

245

Chapter 6

Conclusion
The central thesis of this dissertation has been that the type-and-effect systems

that have traditionally been used to ensure the safety of region-based memory

management are neither the only nor the simplest systems for this purpose. We

have proposed that monadic and substructural type systems give rise to simpler,

more expressive, and more uniform languages that continue to provide the power

and safety of region-based memory management. In order to substantiate this

claim, we defined two languages with novel type systems that ensure the safety of

region-based memory management:

• the FRGN language with a monadic type system;

• the rgnURAL language with a substructural type system.

The first major technical contribution of this work has been the design of these

languages and their type systems. The second major technical contribution of this

work has been to demonstrate that we have lost no expressive power in adopting

the type systems of FRGN and rgnURAL. In order to justify this claim, we showed

how a region calculus with a traditional type-and-effect system may be translated

to the FRGN language and we showed how the FRGN language may be translated to

the rgnURAL language.

It is worth reviewing these translation before turning again to the claim that

the monadic and substructural type systems are simpler than the type-and-effect

systems.

We began with the Traditional Region Calculus (TRC), which corresponds di-

rectly to type-and-effect systems given in the literature. Its defining characteristics

246

are the form of the function type, the region abstraction type, and the type-and-

effect judgment for expressions:

τ1
φ−→ τ2 ∀%.φ τ ∆; Γ `exp e : τ, φ

where the effect φ is a finite set of regions. We also introduced the Bounded Region

Calculus (BRC), which extends TRC with a form of bounded region subtyping.

Hence, the form of the function type, the region abstraction type, and the type-

and-effect judgment for expressions are given as follows:

τ1
φ−→ τ2 ∀% � φ′.φ τ ∆; Γ `exp e : τ, φ

where the effect φ′ serves as a lower bound on the lifetime of any region that

instantiates %. There is a trivial translation from TRC to BRC, whereby every

region abstraction becomes a region abstraction with an empty bound.

The Single Effect Calculus (SEC) restricts BRC by admitting only a single region

as the latent effect in a function or region abstraction type or in the type-and-effect

judgment for expressions. Using the intuition that, given the partial order on live

regions imposed by their nested lifetimes, a single region can serve as a witness

for a set of regions, we showed how to translate from BRC to SEC. In terms of

translating types and judgments, the key translations were the following:

TRC/BRC ; SEC

(τ1
φ−→ τ2, ρ) ; (∀$ � φ.ρ (τ †1

$−→ τ †2 , ρ), ρ)

(∀% � φ′.φ τ, ρ) ; (∀% � φ′.ρ (∀$ � φ.$ τ †, ρ), ρ)

∆; Γ `BRC
exp e : τ, φ ; ∆†; Γ† `SEC

exp e† : τ †, π where π � φ

The FRGN language introduced a monadic type system for region-based mem-

ory management. We used a monadic type, RGN θ τ , to represent computations

247

which transform a stack of regions indexed by θ and deliver a value of type τ .

We also used region handles (RGNHnd θ) and region references (RGNRef θ τ) to

more accurately model the run-time behavior of region-based memory manage-

ment. Finally, we introduced the type (abbreviation) RGNPf(θ1 � θ2) to represent

evidence of the fact that the stack of regions indexed by θ1 is outlived by the stack

of regions indexed by θ2. Monadic encapsulation and parametric polymorphism

provide sufficient “typing machinery” to ensure region safety; furthermore, all of

the monadic commands for region-based memory management may be assigned

conventional polymorphic types.

The translation from SEC to FRGN is primarily concerned with (1) eliminating

region outlives relationships (using explicit evidence) and (2) sequencing computa-

tions using the monadic commands. The translation also introduces uses of region

handles and region references. In terms of translating types and judgments, the

key translations were the following:

SEC ; FRGN

(τ1
π−→ τ2, ρ) ; RGNRef θρ (τ †1 → RGN θπ τ †2)

(∀% � {ρ′1, . . . ρ′n}.π τ, ρ) ;

RGNRef θρ (∀ϑ%. (RGNPf(θρ′
1
� ϑ%)× · · · × RGNPf(θρ′

n
� ϑ%))

→ RGNHnd ϑ% → RGN θπ τ †)

∆; Γ `SEC
exp e : τ, π ; ∆†; Γ† `FRGN

exp e† : RGN θπ τ †

The rgnURAL language introduced a substructural type system for region-based

memory management. We used separate primitives for creating and destroying re-

gions, which allows regions to have non-nested lifetimes. We continued to use

region handles (Hnd ρ) and region references (Ref ρ τ) to more accurately model

the run-time behavior of region-based memory management. Finally, we intro-

248

duced the pre-type Cap ρ to represent a capability that mediates access to a region

(for allocating, reading, and writing references in the region and for destroying the

region). A substructural type system (making use of the substructural qualifiers

U, R, A, and L) provides sufficient “typing machinery” to ensure region safety;

in particular, only regions with unique (A and L) capabilities may be destroyed,

ensuring that there are no other copies of the capability in the program state to

access the region.

The translation from FRGN to rgnURAL is primarily concerned with (1) exposing

the stack-passing implementation of RGN θ τ computations and (2) eliminating

explicit evidence terms by rearranging the representation of the region stack for a

nested computation. It also handles the slight mismatch between the RGNHnd θ

and RGNRef θ τ types in FRGN and the Hnd ρ and Ref ρ τ pre-types in rgnURAL;

the former types denote a handle for or reference in some region in the stack indexed

by θ, while the latter pre-types denote a handle for or reference in a specific region

named ρ. In terms of translating types and judgments, the key translations were

the following:

FRGN
; rgnURAL

RGN θ τ ;
U(τθ (L(τθ � τ †)

RGNHnd θ ;

U(∃%. U(U(∃β. Iso(τθ,
L(β � L(Cap %)))) � U(Hnd %)))

RGNRef θ τ ;

U(∃%. U(U(∃β. Iso(τθ,
L(β � L(Cap %)))) � U(Ref % τ †)))

∆; Γ `FRGN

exp e : τ ; ∆†; Γ† `rgnURAL
exp e† : τ †

Thus far, we have considered the various translations in isolation. We can, of

course, compose the translations, to yield a translation from TRC/BRC to rgnURAL.

249

TRC/BRC

(τTRC
1

{ρ1,...,ρn}−−−−−→ τTRC
2 , ρ)

SEC

(∀$ � {ρ1, . . . , ρn}.ρ (τSEC
1

$−→ τSEC
2 , ρ), ρ)

FRGN

RGNRef θρ (∀ϑ$. (RGNPf(θρ1 � ϑ$)× · · · × RGNPf(θρn � ϑ$))→

RGNHnd ϑ$ →

RGN θρ (RGNRef θρ (τFRGN

1 → RGN ϑ$ τFRGN

2)))

rgnURAL

U(∃%a.
U(U(∃βa. Iso(τθρ ,

L(βa � L(Cap %a)))) � U(Ref %a τZ)))

where τZ ≡ U(∀αϑ$. U(τY (U(τX (τW)))

τY ≡ U(TJRGNPf(θρ1 � ϑ$)K � · · ·� TJRGNPf(θρn � ϑ$)K)

τX ≡ U(∃%b.
U(U(∃βb. Iso(αϑ$, L(βb � L(Cap %b)))) � U(Hnd %b)))

τW ≡ U(τθρ (L(τθρ � τV))

τV ≡ U(∃%c.
U(U(∃βc. Iso(τθρ ,

L(βc � L(Cap %c)))) � U(Ref %c τU)))

τU ≡ U(τ rgnURAL
1 (U(αϑ$ (L(αϑ$ � τ rgnURAL

2)))

Figure 6.1: Translation from TRC/BRC to rgnURAL (function type)

250

Figure 6.1 shows the translation of the TRC function boxed-type, through SEC and

FRGN, to a rgnURAL type. At first glance, this translation would appear to be a

serious strike against the claim that the monadic and substructural type systems

are simpler than the type-and-effect systems. It certainly appears that the TRC

function boxed-type is simpler than its translation into FRGN and into rgnURAL.

However, the apparent complexity of the FRGN and rgnURAL types are actually

evidence that the corresponding monadic and substructural type systems are sim-

pler than the type-and-effect systems. To see this, we recall that the translations

are type- and meaning-preserving. Hence, each of the types in Figure 6.1 repre-

sent values with the same computational behavior. The TRC function boxed-type

combines many aspects of region-based memory management into a single type;

hence, we must understand and reason about the TRC type as a whole. The FRGN

and rgnURAL types in Figure 6.1, while complex in their entirety, are the compo-

sition of simpler individual types. For example, the FRGN type makes it clear that

region handles and region references are distinct aspects of region-based memory

management. Similarly, the FRGN type makes it clear that the effect and region sub-

typing in TRC may be factored out using explicit evidence of to the nested lifetimes

of regions. The rgnURAL type exposes yet more distinct aspects of region-based

memory management. For example, it demonstrates that the FRGN computations

may be realized using a stack-passing implementation. Similarly, it demonstrates

that region handles and references must identify a specific region within the im-

plicit region stack. Hence, the translations show how much complexity is hidden

“behind the scenes” in the deceptively simple TRC function boxed-type. We are

able to explain this hidden complexity in terms of the distinguished components

of the FRGN and rgnURAL languages. This helps demonstrate that the monadic

251

and substructural type systems are, at their core, simpler than the type-and-effect

systems, but nonetheless are capable of expressing complex interactions among

these components.

Another way of evaluating the various type systems for region-based memory

management is to consider what type system features are used to support region-

based memory management. Type-and-effect systems introduce heavy-weight fea-

tures into the type system exclusively for supporting region-based memory man-

agement. For example, at the type level, they introduce a new syntactic class for

effects, which are meant to be treated as sets of regions, so standard term equality

does not suffice for type checking. The letregion construct requires a distin-

guished typing rule to account for the interplay of dangling pointers and affects.

Similarly, a type-and-effect system requires special type-and-effect rules for func-

tions and applications to account for latent effects. All of these features make a

type-and-effect system both specialized to region-based memory management and

distant from well-understood and widely-used type systems.

On the other hand, the monadic and substructural type systems introduce light-

weight primitives and reuse features of the corresponding type system to encode

proper region-based memory management. For example, we have noted that all of

the FRGN monadic commands may be assigned conventional polymorphic types. A

key aspect of the FRGN language is that it adopts the well-understood and widely-

used type system of System F with no extensions. All that was required to support

region-based memory management was to introduce the types RGN θ τ , RGNHnd θ,

and RGNRef θ τ and the monadic commands with appropriate polymorphic types;

the type system of System F required no changes (e.g., the typing rules for functions

and applications are the same in System F and FRGN).

252

Similarly, the substructural type system for the rgnURAL language needs no

region specific “typing-machinery.” In particular, we note that the majority of the

typing rules for rgnURAL either follow directly from the corresponding rules in the

λURAL-calculus or support the extension of the λURAL-calculus with universal and

existential quantification. There are no extensions to the type system exclusively

for supporting region-based memory management; rather, all that was required to

support region-based memory management was to introduce the pre-types Cap ρ,

Hnd ρ, and Ref ρ τ and the region and reference primitives. Although we may

not assign conventional polymorphic types to the region and reference primitives

(the appropriate constraints between types and qualifiers cannot be expressed in

a polymorphic type), we note that the typing rules for the region and reference

primitives need no special auxiliary judgments; rather, they may use of the judg-

ments ∆ ` q � q′ and ∆ ` τ � q′, which are used extensively throughout the rules

for the other terms in the language.

Hence, we believe that we have established the claim that monadic and sub-

structural type systems give rise to simpler, more expressive, and more uniform

languages that continue to provide the power and safety of region-based mem-

ory management. Certainly, the rgnURAL language is more expressive than the

Tofte-Talpin region calculus, as the region primitives of rgnURAL allow regions to

have non-nested lifetimes. As we demonstrated in Section 5.5, the rgnURAL lan-

guage is expressive enough to encode a number of advanced memory-management

features of Cyclone. We may also see that the FRGN and rgnURAL languages are

more uniform, in the sense that they uniformly represent evidence and capabilities

as first-class values to be manipulated by the program, rather than leaving such

aspects implicit in the type system.

253

6.1 Future Directions

When viewing the work in this dissertation as a whole, there are three major direc-

tions for future research, in addition to those considered previously in Sections 3.5

and 4.5.

The first is to note that while this dissertation has focused on region-based

memory management, many of the themes explored here apply to any resource

management problem. We began this dissertation by noting that memory is an

essential resource used by computer programs. There are many other resources

that may be acquired and released during the execution of a program: file handles,

database connections, concurrency locks, graphics processor texture and shader

units, etc. There are also less tangible, but important, “resources” that are used

by a program, such as the current state within a network or cryptographic protocol.

Understanding how best to manage a variety of resources is an important direc-

tion for future research. As we continue to focus on static type systems, we see a

need to move beyond types as “persistent” invariants towards types as “ephemeral”

(or “dynamic”) invariants; that is, invariants about the program or resources which

are only true under some conditions or are only true for a limited duration. A sub-

structural type system, like that considered in Chapter 4, would appear to be a

good starting point, since the “persistent”/“ephemeral” distinction can be roughly

approximated by the substructural qualifiers. Recall that in the translation from

FRGN to rgnURAL, an unrestricted isomorphism corresponded to the fact that the

proof that a capability is a member of a stack is persistent, while a linear capability

corresponds to the fact that the proof that a region is live is ephemeral.

We believe that the uniformity of the monadic and substructural type systems

discussed in the previous section should allow additional resources to be easily

254

Region−based memory management

Type−and−effect

Monadic

Substructural
Monadic

Type−and−effect

Region−based memory management

Substructural

(a) (b)

Figure 6.2: Relationships among three “flavors” of type systems

integrated into a language. In fact, others have adapted the ideas of the monadic

type system for FRGN to provide a safe interface to file handles in Haskell [51].

A second major direction for future research is to further explore the relation-

ships among type-and-effect systems, monadic type systems, and substructural

type systems. Recall that we have demonstrated that one may successively encode

the type-and-effect system of SEC into the monadic type system of FRGN and the

monadic type system of FRGN into the substructural type system of rgnURAL. It

is tempting to conclude from this result that we can order these three “flavors”

of type systems by increasing expressiveness (Figure 6.2(a)). However, a more ac-

curate picture is given by Figure 6.2(b), where region-based memory management

falls into the intersection of these three “flavors” of type systems, as one feature

that may be handled by all of them, and where the boundaries between these three

“flavors” is indistinct (recall the hybrid monadic and substructural type system

given in Section 5.5.

Hence, a particularly interesting direction for future research is to better under-

stand what truly distinguishes one “flavor” of type system from another. As the

work in this dissertation has demonstrated, we have a fairly good understanding

255

of the sorts of program behaviors that can be statically enforced in the intersec-

tions. However, we do not have as good an understanding of the sorts of program

behaviors that can only be statically enforced by one “flavor” of type system and

not by either of the others.

Perhaps surprisingly, we believe that the full range of type-and-effect systems

have yet to be satisfactorily explored. As we noted in Chapter 2, variation amongst

type-and-effect systems largely arises from the choice of effect language and the

choice of auxiliary judgments that prove when one effect term is equivalent to or

subsumed by another. Practically every type-and-effect system includes a number

of atomic effects and an algebraic structure for combining effects. Effect terms

as finite sets of atomic effects (as in the Tofte-Talpin region calculus) have been

studied, but appear to have limited application. Exploring other algebraic struc-

tures should help illuminate the range of type-and-effect systems. At one end of

the spectrum are program behaviors where it suffices to distinguish between the

presence or absence of an effect (e.g., I/O interaction, non-termination, dynamic

behavior). It may be possible to exploit the simplicity of these effect terms to yield

simpler type-and-effect systems.

At the other end of the spectrum are applications where it is necessary for

effect terms to accurately reflect run-time behavior of a program. For example,

compilers are often conservative in the presence of effects like exceptions, because

transformations that change the order of observed exceptions are not semantics

preserving. Richer effect algebras offer a means by which program transformations

may be enabled or disabled based on whether or not they preserve the effect of an

expression. An important direction for future research is to hone in on suitable ef-

fect algebras that offer the right trade-offs between expressiveness and tractability.

256

A final major direction for future research is to explore how to best design

high-level programming languages that integrate the monadic and substructural

type systems explored in this dissertation. We have noted that it is our intention

that FRGN and rgnURAL be considered as core languages, suitable for service as

compiler intermediate languages or as a vehicles for formal reasoning; they are

not suitable for service as high-level programming languages, since they lack many

features that are essential in such a general-purpose programming language. It is

also important to explore ways to minimize the burden placed on a programmer,

who would otherwise need to account for a number of administrative details (e.g.,

composing and applying evidence terms in FRGN, passing capabilities in rgnURAL).

The investigation of inference algorithms and flow analyses should yield insights

that make the type systems more palatable in high-level programming languages.

257

Appendix A

Type-and-Effect Systems: Technical

Details
This appendix supplements the material in Chapter 2 with a number of technical

details that would otherwise detract from that chapter’s focus on the definition

of the static semantics for th surface syntax of the Single Effect Calculus. In the

following section, we revisit the presentation of the Single Effect Calculus, revising

the static semantics to include judgment for the additional semantic objects in-

troduced by the abstract machine configurations. These additional judgments are

also necessary to support the proof of the correctness of the translation from SEC

to FRGN in Appendix B.3.

In Appendix A.2, we sketch a syntactic proof of that evaluation in SEC preserves

types. Yet more details, including complete proofs, may be found in the technical

report Monadic Regions: Formal Type Soundness and Correctness [21].

A.1 The Single Effect Calculus

A.1.1 Static Semantics of SEC

Section 2.2.5 gave the static semantics for the surface syntax of SEC. However,

the judgments given in that section are insufficient for carrying out a syntactic

proof of type soundness, since there are no rules for ref terms (which arise during

the evaluation of a program) and there is no typing judgment for stacks. This

section extends the static semantics of Section 2.2.5 to overcome these deficiencies.

In addition to the typing judgments for expressions and various well-formedness

258

Region contexts ∆ ::= · | ∆, % � φ

Expression contexts Γ ::= · | Γ, x:τ

Region domains R ::= {p1, . . . , pn}

Region types R ::= {p1 7→ ω1, . . . , pn 7→ ωn}

Stack domains S ::= · | S, r 7→ R (ordered domain)

Stack types S ::= · | S, r 7→ R (ordered domain)

S w S
′ ≡ dom(S) = dom(S

′
) ∧

∀r ∈ dom(S
′
). dom(S(r)) ⊇ dom(S

′
(r))

S w S′ ≡ dom(S) = dom(S′) ∧

∀r ∈ dom(S′). dom(S(r)) ⊇ dom(S′(r)) ∧

∀p ∈ dom(S′(r)). S(r, p) = S′(r, p)

Figure A.1: Static semantics of SEC (definitions)

judgments for boxed types, types, and contexts given previously, we have typing

judgments for values and storable values and judgments that check the type and

well-formedness of stacks.

Definitions Figure A.1 presents additional definitions for syntactic objects that

appear in the static semantics. Stack and region types mimic stacks and regions,

recording the type of the value stored at each pointer. Stack and region domains

are a technical device that records the live region and pointer names. Because

proving the well-formedness of stack types requires proving the well-formedness of

types, which requires verifying that region names are live, one cannot easily have

stack types serve the dual purpose of recording live names. We tacitly assume that

all domains are well-formed – containing distinct region names and pointer names.

259

∆; S `rr ρ2 � ρ1

S `rctxt ∆ (% � {ρ1, . . . , ρi, . . . , ρn}) ∈ ∆

∆; S `rr % � ρi

∆; S `region ρ

∆; S `rr ρ � ρ

∆; S `rr ρ2 � ρ′ ∆; S `rr ρ′ � ρ1

∆; S `rr ρ2 � ρ1

S `rctxt ∆ S = S1, r1 7→ R1, S2, r2 7→ R2, S3

∆; S `rr r2 � r1

∆; S `re r � {r1, . . . , rn}

∆; S `rr r � ri

S `rctxt ∆ S = S1, r1 7→ R1, S2

∆; S `rr • � r1

∆; S `re ρ � φ

S `rctxt ∆ ∆; S `rr ρ � ρi
i∈1...n

∆; S `re ρ � {ρ1, . . . , ρn}

Figure A.2: Static semantics of SEC (outlives judgments)

We define the relation w to describe extensions of stack domains and types.

Note that we consider stack domains and types to have ordered domains. Hence,

dom(S) w dom(S ′) indicates that the ordered domain of dom(S ′) is a prefix of the

ordered domain of dom(S).

Outlives judgments Figure A.2 gives the judgments that formalize the liveness

relationships between regions and effects. We summarize these judgments in the

260

following table:

Judgment Meaning

∆; S `rr ρ2 � ρ1 If region ρ2 is live, then region ρ1 is live.

(Alt.: region ρ1 outlives region ρ2.)

∆; S `re ρ � φ If region ρ is live, then all regions in φ are live.

(Alt.: all regions in φ outlive region ρ.)

We note that the typing rules for the judgments `rr and `re simply formalize the

reflexive, transitive closure of the syntactic constraints in ∆, each of which asserts

a particular “outlived by” relation between a region variable and an effect set, and

S, which asserts “outlived by” relations by explicit ordering of region names. Note

that the judgment ∆; S `rr ρ2 � ρ1 is not syntax directed.

Terms Figures A.3–A.6 present the typing rules for the judgment ∆; Γ; S : S `exp

e : τ, π, which asserts that under the region context ∆, the value context Γ, and

the stack type S with the stack domain S, the expression e has type τ and effects

bounded by the region π. Figures A.3, A.4, and A.5 repeat the rules from Fig-

ures 2.22 and 2.23SECStaticSemanticsExpIII in order to demonstrate the manner

in which stack types and stack domains are propagated through the rules given in

Section 2.2.5. In particular, note that in every rule, stack types and stack domains

are passed unmodified to sub-judgments.

Figure A.6 gives typing rules for reference expressions. The first rule asserts

that a reference to a pointer in a dead region may be assigned any well-formed

boxed type. The second rule ensures that any region name that appears in a

reference is in scope; furthermore, a pointer in a live region denotes a value with

the boxed type assigned by the stack type.

261

∆; Γ; S : S `exp e : τ, π

`ctxt ∆; Γ; S : S; π ∆; S `region ρ ∆; S `rr π � ρ

∆; Γ; S : S `exp i at ρ : (Int, ρ), π

∆; Γ; S : S `exp e1 : (Int, ρ1), π ∆; S `rr π � ρ1

∆; Γ; S : S `exp e2 : (Int, ρ2), π ∆; S `rr π � ρ2

∆; S `region ρ ∆; S `rr π � ρ

∆; Γ; S : S `exp e1 ⊕ e2 at ρ : (Int, ρ), π

∆; Γ; S : S `exp e1 : (Int, ρ1), π ∆; S `rr π � ρ1

∆; Γ; S : S `exp e2 : (Int, ρ2), π ∆; S `rr π � ρ2

∆; Γ `exp e1 < e2 : Bool, π

`ctxt ∆; Γ; S : S; π

∆; Γ; S : S `exp b : Bool, π

∆; Γ; S : S `exp eb : Bool, π

∆; Γ; S : S `exp et : τ, π ∆; Γ; S : S `exp ef : τ, π

∆; Γ; S : S `exp if eb then et else ef : τ, π

Figure A.3: Static semantics of SEC (expressions (I))

262

∆; Γ; S : S `exp e : τ, π

`ctxt ∆; Γ; S : S; π x ∈ dom(Γ) Γ(x) = τ

∆; Γ; S : S `exp x : τ, π

∆; Γ, x:τx; S : S `exp e : τ, π′ ∆; S `region ρ ∆; S `rr π � ρ

∆; Γ; S : S `exp λx : τx.
π′

e at ρ : (τx
π′
−→ τ, ρ), π

∆; Γ; S : S `exp ef : (τx

π′
f−→ τ, ρf), π ∆; S `rr π � ρf

∆; Γ; S : S `exp ea : τx, π ∆; S `rr π � π′f

∆; Γ; S : S `exp ef ea : τ, π

∆; Γ; S : S `exp e1 : τ1, π · · · ∆; Γ; S : S `exp en : τn, π

∆; S `region ρ ∆; S `rr π � ρ

∆; Γ; S : S `exp 〈e1, . . . , en〉 at ρ : (τ1 × · · · × τn, ρ), π

∆; Γ; S : S `exp e : (τ1 × · · · × τn, ρ), π

∆; S `rr π � ρ 0 ≤ i ≤ n

∆; Γ; S : S `exp seli e : τi, π

Figure A.4: Static semantics of SEC (expressions (II))

263

∆; Γ; S : S `exp e : τ, π

∆; S `type τ `ctxt ∆; Γ; S : S; π

∆, % � {π}; Γ; S : S `exp eb : τ, %

∆; Γ; S : S `exp letregion % in eb : τ, π

∆, % � φ; Γ; S : S `exp u : τ, π′ ∆; S `region ρ ∆; S `rr π � ρ

∆; Γ; S : S `exp Λ% � φ.π
′
u at ρ : (∀% � φ.π

′
τ, ρ), π

∆; Γ; S : S `exp ef : (∀% � φ.π
′
f τ, ρf), π ∆; S `rr π � ρf

∆; S `region ρa ∆; S `re ρa � φ ∆; S `rr π � π′f [ρa/%]

∆; Γ; S : S `exp ef [ρa] : τ [ρa/%], π

Figure A.5: Static semantics of SEC (expressions (III))

∆; Γ; S : S `exp e : τ, π

`ctxt ∆; Γ; S : S; π ∆; S `btype ω

∆; Γ; S : S `exp ref • p : (ω, •), π

`ctxt ∆; Γ; S : S; π r ∈ S p ∈ S(r) S(r, p) = ω

∆; Γ; S : S `exp ref r p : (ω, r), π

Figure A.6: Static semantics of SEC (expressions (IV))

264

S : S `val v : τ

`stype S : S

S : S `val b : Bool

`stype S : S ·; S `btype ω

S : S `val ref • p : (ω, •)

`stype S : S r ∈ S p ∈ S(r) S(r, p) = ω

S : S `val ref r p : (ω, r)

Figure A.7: Static semantics of SEC (values)

S : S `sto w : ω

`stype S : S

S : S `sto i : Int

·; ·, x:τx; S : S `exp e : τ, π′

S : S `sto λx:τx.
π′

e : τx
π′
−→ τ

S : S `val v1 : τ1 · · · S : S `val vn : τn

S : S `sto 〈v1, . . . , vn〉 : τ1 × · · · × τn

·, % � φ; ·; S : S `exp u : τ, π′

S : S `sto Λ% � φ.π
′
u : ∀% � φ.π

′
τ

Figure A.8: Static semantics of SEC (storable values)

265

`stype S : S

S = dom(S)

∀r ∈ S. S(r) = dom(S(r))

∀r ∈ S. ∀p ∈ S(r). ·; S `btype S(r, p)

`stype S : S

Figure A.9: Static semantics of SEC (stack types)

`stack S : S : S

`stype S : S

dom(S) = dom(S) = dom(S)

∀r ∈ dom(S). dom(S(r)) = dom(S(r)) = dom(S(r))

∀r ∈ dom(S). ∀p ∈ dom(S(r)). S : S `sto S(r, p) : (S(r, p), r)

`stack S : S : S

Figure A.10: Static semantics of SEC (stacks)

Storable values and stacks Figures A.7 and A.8 give the typing rules for values

and storable values, which follow directly from the typing rules for expressions.

We require a separate judgments for these syntactic forms because the typing

rules for expressions necessarily associate a single region bounding the effect of the

expression. Since values and storable values are not evaluated, they have no effect.

Figures A.9 and A.10 presents typing rules that check the type and well-

formedness of stacks. The judgment `stype S : S asserts that stack type S is well-

formed with stack domain S. In particular, the judgment asserts that S has the

domain specified by S and each type in the range of S is well-formed. Finally, the

266

∆; S `region ρ

S `rctxt ∆ % ∈ dom(∆)

∆; S `region %

S `rctxt ∆ r ∈ dom(S)

∆; S `region r

S `rctxt ∆

∆; S `region •

∆; S `eff ϕ

S `rctxt ∆ ∆; S `region ρi
i∈1...n

∆; S `eff {ρ1, . . . , ρn}

Figure A.11: Static semantics of SEC (regions and effects)

judgment `stack S : S : S asserts that the stack S is well-formed with stack type S

and stack domain S. Like the judgment `stype, it asserts that S has the domain

specified by S and each storable value in the range of S has the type specified by

S.

Regions, effects, boxed types, types, and contexts Figures A.11, A.12,

and A.13 contain additional judgments for ensuring that regions ρ, effects φ, boxed

types ω, types τ , region contexts ∆, and value contexts Γ are well-formed. Because

regions, effects, boxed types, and types may contain region names, the judgments

`region, `effect, `btype, `type, `rctxt, and `vctxt require a stack domain S.

Surface programs and surface syntax Figure A.14 recalls the judgment

`prog e. The rule for top-level surface programs requires that an expression evalu-

ate to a boolean value in the context of distinguished region H that remains live

throughout the execution of the program. It also serves as the single effect that

bounds the effects of the entire program.

267

∆; S `btype ω

S `rctxt ∆

∆; S `btype Int

∆; S `type τ1 ∆; S `region π′ ∆; S `type τ2

∆; S `btype τ1
π′
−→ τ2

∆; S `type τ1 · · · ∆; S `type τn

∆; S `btype τ1 × · · · × τn

∆; S `eff φ ∆, % � φ; S `region π′ ∆, % � φ; S `type τ

∆; S `btype ∀% � φ.π
′
τ

∆; S `type τ

S `rctxt ∆

∆; S `type Bool

∆; S `btype ω ∆; S `region ρ

∆; S `type (ω, ρ)

Figure A.12: Static semantics of SEC (boxed types and types)

268

S `rctxt ∆

S `rctxt ·

S `rctxt ∆ % /∈ dom(∆) ∆; S `eff φ

S `rctxt ∆, % � φ

∆; S `vctxt Γ

S `rctxt ∆

∆; S `vctxt ·

∆; S `vctxt Γ x /∈ dom(Γ) ∆; S `type τ

∆; S `vctxt Γ, x:τ

`ctxt ∆; Γ; S : S; π

`stype S : S ∆; S `vctxt Γ ∆; S `region π

`ctxt ∆; Γ; S : S; π

Figure A.13: Static semantics of SEC (contexts)

`prog e

·,H � {}; ·; · : · `exp e : Bool,H

`prog e

Figure A.14: Static semantics of SEC (programs)

269

We note that stack types and stack domains are purely technical devices that

are used to prove type preservation and to support the proof of the correctness

of the translation from SEC to FRGN. In the static semantics, they simply collect

the names of live regions and assign types to references. Note that in every rule,

stack types and stack domains are passed unmodified to sub-judgments. Since

the surface syntax does not admit explicitly named regions, we can type any sur-

face expression with the judgment ·,H � {}; ·; · : · `exp e : τ,H (as in the judgment

`prog e). Pushing these empty stack types and stack domains through the rules

leads to the following simplifications:

∆; Γ; S : S `exp e : τ, π =⇒ ∆; Γ `exp e : τ, π

∆; S `type τ =⇒ ∆ `btype τ

∆; S `btype ω =⇒ ∆ `btype ω

∆; S `eff ϕ =⇒ ∆ `eff ϕ

∆; S `region ρ =⇒ ∆ `region ρ

∆; S `re ρ � ϕ =⇒ ∆ `re ρ � ϕ

∆; S `rr ρ2 � ρ1 =⇒ ∆ `rr ρ2 � ρ1

S `rctxt ∆ =⇒ `rctxt ∆

∆; S `vctxt Γ =⇒ ∆ `vctxt Γ

`ctxt ∆; Γ; S : S; θ =⇒ `ctxt ∆; Γ; θ

Hence, we recover the type system presented in Section 2.2.5, which is sufficient

for type-checking surface programs.

A.2 Type Soundness for SEC

In this section, we sketch a syntactic proof of type soundness [96]. Since our

ultimate goal was to demonstrate a type- and semantics-preserving translation

270

from the Single Effect Calculus to FRGN, we forgo proving a Progress Theorem

(such a proof would be very similar to the Progress Theorem for FRGN given in

Appendix B.2).

The Preservation Theorem states that the terminating computation of a well-

typed expression yields a well-typed extension of the stack and a value of the same

type. Various substitution lemmas for dead regions are required to prove the cases

where regions are deallocated.

Theorem A.1 (Preservation)

If

(a) `stack S : S : S,

(b) ·; ·; S : S `exp e : τ, r, and

(c) (S; e) ⇓ (S ′; v′),

then there exists S
′ w S and S′ w S such that `stack S ′ : S′ : S

′
and

·; ·; S′ : S
′ `val v′ : τ .

Proof

By induction on the derivation (c) (S; e) ⇓ (S ′; v′).

Full details of this development are given in the technical report Monadic Re-

gions: Formal Type Soundness and Correctness [21].

271

Appendix B

A Monadic Type System: Technical

Details
This appendix supplements the material in Chapter 3 with a number of technical

details that would otherwise detract from that chapter’s focus on the translation

from the Single Effect Calculus to FRGN. In the following section, we revisit the

presentation of the FRGN language, extending the dynamics to a natural transition

semantics [84, 76], which models program execution in terms of transitions between

partial derivations, and revising the static semantics to include judgment for the

additional semantic objects introduced by the abstract machine configurations.

In Appendix B.2, we present a syntactic proof of type soundness for FRGN.

We adopt a proof method using natural transition semantics, which allows us to

prove type soundness with the familiar progress and preservation theorems, without

needing define a small-step operational semantics nor establish its correspondence

with the large-step operational semantics. We remark further on this proof method

at the end of Appendix B.2.

Finally, in Appendix B.3, we revisit the translation from SEC to FRGN, extending

the translation to accommodate the abstract machine configurations for SEC and

expanding upon the proof of translation correctness. Yet more details, including

complete proofs, may be found in the technical report Monadic Regions: Formal

Type Soundness and Correctness [21].

272

B.1 The FRGN Language

B.1.1 Natural Transition Semantics of FRGN

While the dynamic semantics presented in Section 3.2.2 suffices to describe the

complete execution of a program, it cannot describe non-terminating executions

or failed executions. To do so, we adopt a natural transition semantics [84, 76],

which provides a notion of attempted or partial execution. The key idea is to

model program execution as a sequence of partial derivation trees, which may or

may not converge to a complete derivation. The advantage of the natural transition

semantics is that it is directly related to the large-step operational semantics of

the language, while being capable of describing the evaluation of programs that

(a) diverge, (b) terminate with a value, and (c) “get stuck.”

Before defining partial derivation trees, we distinguish between complete judg-

ments ((T ; e) ⇓ v and (T, s 7→ S; κ) ⇓κ (S ′; v), introduced in the dynamic seman-

tics) and pending judgments, which are judgments of the form (T ; e) ⇓ ? or

(T, s 7→ S; κ) ⇓κ ? and represent expressions and commands that need to be eval-

uated.

A partial derivation tree is an inductively defined structure given by the fol-

lowing grammar:

Predicates P

Complete derivations ? J ::= [(T ; e) ⇓ v] | [(T, s 7→ S; κ) ⇓κ (S ′; v)] | P

Partial derivation trees D ::= J | [(T ; e) ⇓ ?]() | [(T, s 7→ S; κ) ⇓κ ?]()

| [(T ; e) ⇓ ?](J1, . . . , Jk−1, Dk)
†

| [(T, s 7→ S; κ) ⇓κ ?](J1, . . . , Jk−1, Dk)
‡

where

273

? A complete derivation represents the entire derivation tree (comprised of in-

stances of the evaluation rules) that terminates with the eponymous complete

judgment.

† There is an instance of an evaluation rule with the form

J1 · · · Jn

(T ; e) ⇓ v

where 1 ≤ k ≤ n and

– for i < k, Ji ≡ [Ji].

– if Jk ≡ (T ; e) ⇓ v, then Dk = [(T ; e) ⇓ v] or Dk = [(T ; e) ⇓ ?](. . .).

– if Jk ≡ (T, s 7→ S; κ) ⇓κ (S ′; v), then Dk = [(T, s 7→ S; κ) ⇓κ (S ′; v)] or

Dk = [(T, s 7→ S; κ) ⇓κ ?](. . .).

– if Jk ≡ P , then Dk = P .

‡ There is an instance of an evaluation rule with the form

J1 · · · Jn

(T, s 7→ S; κ) ⇓κ (S ′; v)

where 1 ≤ k ≤ n and

– for i < k, Ji ≡ [Ji].

– if Jk ≡ (T ; e) ⇓ v, then Dk = [(T ; e) ⇓ v] or Dk = [(T ; e) ⇓ ?](. . .).

– if Jk ≡ (T, s 7→ S; κ) ⇓κ (S ′; v), then Dk = [(T, s 7→ S; κ) ⇓κ (S ′; v)] or

Dk = [(T, s 7→ S; κ) ⇓κ ?](. . .).

– if Jk ≡ P , then Dk = P .

274

Note that the definition of a partial derivation tree requires that a node la-

beled with a pending judgment must have children that are “compatible” with the

corresponding complete judgment. Furthermore, each node of a partial derivation

tree can have at most one pending judgment amongst its children; the pending

judgment must be the rightmost child and the parent node must also be a pending

judgment.

Figures B.1 and B.2 gives (a representative sample of) the rules for the natural

transition semantics. The rules are derived systematically from the judgments of

Figures 3.5–3.8. In addition, there are two “congruence” rules given in Figure B.3.

Finally, it should be clear that each transition moves a partial derivation tree

“closer” to a complete judgment. Let −→∗ be the reflexive, transitive closure of

the −→ relation.

The natural transition semantics enjoys soundness and completeness properties

demonstrating that it accurately models the dynamic semantics in the case of

terminating computations.

Lemma B.1

If D is a partial derivation and D −→ D′, then D′ is a partial derivation.

Lemma B.2 (NTS Soundness)

(1) If [(T ; e) ⇓ ?]() −→∗ D′ and D′ contains no pending judgments, then

D′ is a complete derivation for a judgment of the form (T ; e) ⇓ v (i.e.,

D′ ≡ J′ ≡ [(T ; e) ⇓ v]).

(2) If [(T, s 7→ S; κ) ⇓κ ?]() −→∗ D′ and D′ contains no pending

judgments, then D′ is a complete derivation for a judgment of the

form (T, s 7→ S; κ) ⇓κ (S ′; v) (i.e., D′ ≡ J′ ≡ [(T, s 7→ S; κ) ⇓κ S ′; v]).

275

D −→ D′

[(T ; λx:τ. e) ⇓ ?]() −→

[
(T ; λx:τ. e) ⇓ λx:τ. e

]

[(T ; ef ea) ⇓ ?]() −→ [(T ; ef ea) ⇓ ?]([(T ; ef) ⇓ ?]())

vf ≡ λx:τx. eb

[(T ; ef ea) ⇓ ?]([(T ; ef) ⇓ vf]) −→

[(T ; ef ea) ⇓ ?]([(T ; ef) ⇓ vf], vf ≡ λx:τx. eb)

[(T ; ef ea) ⇓ ?]([(T ; ef) ⇓ vf], vf ≡ λx:τx. eb) −→

[(T ; ef ea) ⇓ ?]([(T ; ef) ⇓ vf], vf ≡ λx:τx. eb, [(T ; ea) ⇓ ?]())

[(T ; ef ea) ⇓ ?]([(T ; ef) ⇓ vf], vf ≡ λx:τx. eb, [(T ; ea) ⇓ va]) −→

[(T ; ef ea) ⇓ ?]

[(T ; ef) ⇓ vf], vf ≡ λx:τx. eb,

[(T ; ea) ⇓ va], [(T ; eb[va/x]) ⇓ ?]()



[(T ; ef ea) ⇓ ?]

[(T ; ef) ⇓ vf], vf ≡ λx:τx. eb,

[(T ; ea) ⇓ va], [(T ; eb[va/x]) ⇓ v]

 −→
(T ; ef) ⇓ vf vf ≡ λx:τx. eb (T ; ea) ⇓ va (T ; eb[va/x]) ⇓ v

(T ; ef ea) ⇓ v


Figure B.1: Natural transition semantics of FRGN (abbreviated (I))

276

D −→ D′

s /∈ dom(T)

[(T ; runRGN [τ] v) ⇓ ?]() −→ [(T ; runRGN [τ] v) ⇓ ?](s /∈ dom(T))

r /∈ dom(·)

[(T ; runRGN [τ] v) ⇓ ?](s /∈ dom(T)) −→

[(T ; runRGN [τ] v) ⇓ ?](s /∈ dom(T), r /∈ dom(·))

[(T ; runRGN [τ] v) ⇓ ?]
s /∈ dom(T), r /∈ dom(·),

[(T, s 7→ (·, r 7→ {}); v [s]r] (hnd s]r)) ⇓ v′], v′ ≡ κ′,

[(T, s 7→ (·, r 7→ {}); κ′) ⇓κ (S ′′; v′′)], S ′′ ≡ ·, r 7→ R′′

 −→


s /∈ dom(T) r /∈ dom(·)

(T, s 7→ (·, r 7→ {}); v [s]r] (hnd s]r)) ⇓ v′

v′ ≡ κ′ (T, s 7→ (·, r 7→ {}); κ′) ⇓κ S ′′; v′′ S ′′ ≡ ·, r 7→ R′′

(T ; runRGN [τ] v) ⇓ v′′[◦]•/s]r]



Figure B.2: Natural transition semantics of FRGN (abbreviated (II))

D −→ D′

D −→ D′

[(T ; e) ⇓ ?](J1, . . . , Jk, D) −→

[(T ; e) ⇓ ?](J1, . . . , Jk, D
′)

D −→ D′

[(T, s 7→ S; κ) ⇓κ ?](J1, . . . , Jk, D) −→

[(T, s 7→ S; κ) ⇓κ ?](J1, . . . , Jk, D
′)

Figure B.3: Natural transition semantics of FRGN (congruence)

277

Lemma B.3 (NTS Completeness)

(1) If (T ; e) ⇓ v and D is a complete derivation for (T ; e) ⇓ v, then

[(T ; e) ⇓ ?]() −→∗ D.

(2) If (T, s 7→ S; κ) ⇓κ (S ′; v) and Dκ is a complete derivation for

(T, s 7→ S; κ) ⇓κ (S ′; v), then [(T, s 7→ S; κ) ⇓κ ?]() −→∗ Dκ.

For each tower T and expression e, we define an execution of e in T as a

sequence

[(T ; e) ⇓ ?]() −→ D1 −→ D2 −→ · · ·

Thus, an execution has three possibilities:

(1) Suppose that for all Dn such that [(T ; e) ⇓ ?]() −→∗ Dn, there exists Dn+1

such that Dn −→ Dn+1. Then, we say that e in T diverges.

(2) Suppose that there exists Dn such that [(T ; e) ⇓ ?]() −→∗ Dn, such that there

does not exist Dn+1 such that Dn −→ Dn+1.

(a) Suppose Dn contains no pending judgments. By Lemma B.2,

Dn ≡ [(T ; e) ⇓ v]. Then, we say that e in T terminates with the value

v.

(b) Suppose Dn contains pending judgments. Then, we say that e in T gets

stuck.

By inspection of the rules in Figures B.1–B.3, it is clear that the stuck par-

tial derivation trees correspond to trees in which predicates cannot be satisfied;

all other transitions are unrestricted. Predicates like v ≡ λx:τ. e and v ≡ κ are

traditional type errors, where expressions evaluate to values of the wrong form.

278

Predicates like s ∈ dom(T) also correspond to type errors, where towers have the

wrong form. The static semantics in Section 3.2.3 and the next section ensure that

stuck partial derivation trees are not well-typed.

B.1.2 Static Semantics of FRGN

Section 3.2.3 gave the static semantics for the surface syntax of FRGN. However, the

judgments given in that section are insufficient for carrying out a syntactic proof of

type soundness, since there are no rules for ref, hnd, or witnessRGN terms (which

arise during the evaluation of a program) and there is no typing judgment for

towers. This section extends the static semantics of Section 3.2.3 to overcome these

deficiencies. In addition to the typing judgments for expressions and various well-

formedness judgments for types, indices, and contexts given previously, we have

judgments that check the type and well-formedness of towers and the consistency

of FRGN witness terms.

Definitions Figure B.4 presents additional definitions for syntactic objects that

appear in the static semantics. Tower, stack, and region types mimic the structure

of towers, stacks, and regions; they record the type of the value stored at each

pointer. Tower, stack, and region domains are technical devices that record the

live stack, region, and pointer names. Because proving the well-formedness of

tower, stack, and region types requires proving the well-formedness of types, which

requires verifying that stack and region names are live, one cannot easily have

tower, stack, and region types serve the dual purpose of recording live names. We

tacitly assume that all domains are well-formed – containing distinct stack names,

region names, and pointer names.

279

Type and index contexts ∆ ::= · | ∆, α | ∆, ϑ

Value contexts Γ ::= · | Γ, x:τ

Region domains R ::= {p1, . . . , pn}

Region types R ::= {p1 7→ τ1, . . . , pn 7→ τn}

Stack domains S ::= · | S, r 7→ R (ordered domain)

Stack types S ::= · | S, r 7→ R (ordered domain)

Tower domains T ::= · | T, s 7→ S (ordered domain)

Tower types T ::= · | T, s 7→ S (ordered domain)

RGNPf(θ1 � θ2) ≡ ∀β. RGN θ1 β → RGN θ2 β

S w S
′ ≡ dom(S) = dom(S

′
) ∧

∀r ∈ dom(S
′
). dom(S(r)) ⊇ dom(S

′
(r))

T|s ≡ T
′
, s 7→ S

′
such that T ≡ T

′
, s 7→ S

′
, T

′′

S w S′ ≡ dom(S) = dom(S′) ∧

∀r ∈ dom(S′). dom(S(r)) ⊇ dom(S′(r)) ∧

∀p ∈ dom(S′(r)). S(r, p) = S′(r, p)

T|s ≡ T′, s 7→ S′ such that T ≡ T′, s 7→ S′, T′′

Figure B.4: Static semantics of FRGN (definitions)

280

∆; Γ; T : T `exp e : τ

`ctxt ∆; Γ; T : T x ∈ dom(Γ) Γ(x) = τ

∆; Γ; T : T `exp x : τ

∆; Γ, x:τx; T : T `exp e : τ

∆; Γ; T : T `exp λx:τx. e : τx → τ

∆; Γ; T : T `exp ef : τx → τ

∆; Γ; T : T `exp ea : τx

∆; Γ; T : T `exp ef ea : τ

`ctxt ∆; Γ; T : T

∆; Γ; T : T `exp ei : τi
i∈1...n

∆; Γ; T : T `exp 〈e1, . . . , en〉 : τ1 × · · · × τn

∆; Γ; T : T `exp e : τ1 × · · · × τn

1 ≤ i ≤ n

∆; Γ; T : T `exp seli e : τi

`ctxt ∆; Γ; T : T

∆, α; Γ; T : T `exp e : τ

∆; Γ; T : T `exp Λα. e : ∀α. τ

∆; Γ; T : T `exp ef : ∀α. τ

∆; T `type τa

∆; Γ; T : T `exp ef [τa] : τ [τa/α]

∆; Γ; T : T `exp ea : τx

∆; Γ, x:τx; T : T `exp eb : τ

∆; Γ; T : T `exp let x = ea in eb : τ

Figure B.5: Static semantics of FRGN (expressions (II revised))

We define the relation w to describe extensions of stack domains and types.

Note that we consider tower and stack domains and types to have ordered domains.

Hence, dom(S) w dom(S ′) indicates that the ordered domain of dom(S ′) is a prefix

of the ordered domain of dom(S). Finally, we define restriction operators, which

return a prefix of tower domains and types.

Terms Figures B.5–B.8 present the typing rules for the judgment ∆; Γ; T : T `exp

e : τ , which asserts that under the type and index context ∆, the value context

Γ, and the tower type T with the tower domain T, the expression e has the type

281

∆; Γ; T : T `exp e : τ

∆; T `index θ ∆; T `type τ

∆; Γ; T : T `exp v : τ

∆; Γ; T : T `exp returnRGN [θ] [τ] v : RGN θ τ

∆; T `index θ ∆; T `type τa ∆; T `type τb

∆; Γ; T : T `exp va : RGN θ τa

∆; Γ; T : T `exp vf : τa → RGN θ τb

∆; Γ; T : T `exp thenRGN [θ] [τa] [τb] va vf : RGN θ τb

∆; T `index θ1 ∆; T `type τ

∆; Γ; T : T `exp v : ∀ϑ. RGNPf(θ1 � ϑ2)→ RGNHnd ϑ2 → RGN ϑ2 τ

∆; Γ; T : T `exp letRGN [θ1] [τ] v : RGN θ1 τ

Figure B.6: Static semantics of FRGN (commands (I revised))

282

∆; Γ; T : T `exp e : τ

`ctxt ∆; Γ; T : T ∆; T `type τ

∆; Γ; T : T `exp ref ◦]• p : RGNRef ◦]• τ

`ctxt ∆; Γ; T : T s ∈ T ∆; T `type τ

∆; Γ; T : T `exp ref s]• p : RGNRef s]• τ

`ctxt ∆; Γ; T : T s ∈ T r ∈ T(s) p ∈ T(s, r) T(s, r, p) = τ

∆; Γ; T : T `exp ref s]r p : RGNRef s]r τ

`ctxt ∆; Γ; T : T

∆; Γ; T : T `exp hnd ◦]• : RGNHnd ◦]•

`ctxt ∆; Γ; T : T s ∈ T

∆; Γ; T : T `exp hnd s]• : RGNHnd s]•

`ctxt ∆; Γ; T : T s ∈ T r ∈ T(s)

∆; Γ; T : T `exp hnd s]r : RGNHnd s]r

Figure B.7: Static semantics of FRGN (references and handles)

τ . Figures B.5 and B.6 repeat the rules from Figures 3.11 and 3.13 in order to

demonstrate the manner in which tower types and tower domains are propagated

through the rules given in Section 3.2.3; we elide the rules for other expression and

command forms given in Section 3.2.3. We note that in every rule, tower types

and tower domains are passed unmodified to sub-judgments.

Figure B.7 gives typing rules for reference and handle expressions. The rules

ensure that stack and region names that appear in references and handles are in

scope; furthermore, a pointer in a live stack and region denotes a value with the

type assigned by the tower type.

283

∆; Γ; T : T `exp e : τ

∆; T `type τ

∆; Γ; T : T `exp v : RGN s]r1 τ T `cast s]r1 ; s]r2

∆; Γ; T : T `exp witnessRGN s]r1 s]r2 [τ] v : RGN s]r2 τ

Figure B.8: Static semantics of FRGN (commands (witness))

T `cast s]r ; s]r ′

T `cast ◦]•; ◦]•

s ∈ T

T `cast s]•; s]•

s ∈ T T(s) ≡ S1, r1 7→ R1, S2

T `cast s]r1 ; s]•

s ∈ T T(s) ≡ S1, r1 7→ R1, S2, r2 7→ R2, S3

T `cast s]r1 ; s]r2

Figure B.9: Static semantics of FRGN (casts)

Recall that the typing rule for letRGN requires that its function argument

accepts a witness argument of type RGNPf(θ1 � ϑ2). The witness argument is

provided to the computation taking place in the stack with the inner/younger

region allocated in order to coerce computations (such as allocating a new value

in some outer/older region) from a computation indexed by the outer region to a

computation indexed by the the inner region. This coercion is safe because every

region in the stack denoted by θ1 outlives every region in the stack denoted by ϑ2.

Operationally, such a witness function acts as the identity function.

The typing rule for witnessRGN in Figure B.8 formalizes this outlives argument:

a witnessRGN term is well-typed whenever s]r1 can be cast to s]r2. The judgment

284

`ttype T : T

T = dom(T)

∀s ∈ T. T(s) = dom(T(s))

∀s ∈ T. ∀r ∈ T(s). T(s, r) = dom(T(s, r))

∀s ∈ T.∀r ∈ T(s).∀p ∈ T(s, r). ·; T|s `type T(s, r, p)

`ttype T : T

Figure B.10: Static semantics of FRGN (tower types)

`tower T : T : T

`ttype T : T

T = dom(T) = dom(T)

∀s ∈ T. T(s) = dom(T(s)) = dom(T (s))

∀s ∈ T. ∀r ∈ T(s). T(s, r) = dom(T(s, r)) = dom(T (s, r))

∀s ∈ T. ∀r ∈ T(s). ∀p ∈ T(s, r). ·; ·; T|s : T|s `exp T (s, r, p) : T(s, r, p)

`tower T : T : T

Figure B.11: Static semantics of FRGN (towers)

T `cast s]r1 ; s]r2 in Figure B.9 verifies the casts witnessed by witnessRGN terms.

Note that the judgment T `cast s]r1 ; s]r2 enforces the requirement that r1 out-

lives r2 in the stack s. The other `cast judgments allow casts to deallocated re-

gions, which can be introduced when deallocating a region at the end of a runRGN

or letRGN computation. This is a technicality needed to ensure that programs

remain closed and well-typed during their execution.

285

Towers Figures B.10 and B.11 presents typing rules that check the type and

well-formedness of towers. The judgment `ttype T : T asserts that tower type T is

well-formed with tower domain T. In particular, the judgment asserts that T has

the domain specified by T and each type in the range of T is well-formed. Note

the use of the restriction operator; this ensures that types “lower” in the tower

cannot reference stack and region names that appear “higher” in the tower. This

corresponds to the fact that while runRGN computations can be nested, the inner

computation must complete before executing a command in the outer computation.

Hence, while an inner computation may have references to the outer computation,

there can be no references from the outer computation to the inner computation.

Finally, the judgment `tower T : T : T asserts that the tower T is well-formed with

tower type T and tower domain T. Like the judgment `ttype, it asserts that T has

the domain specified by T and each value in the range of T has the type specified

by T. Again, restriction operators are used to assert that values “lower” in the

tower cannot contain references to names “higher” in the tower.

Types, indices, and contexts Figures B.12 and B.13 contain additional judg-

ments for ensuring that types τ , indices θ, and value contexts Γ are well-formed.

Because types and indices may contain stack and region names, the judgments

`index, `type, and `vctxt require a tower domain T.

Surface syntax We note that tower types and tower domains are purely tech-

nical devices that are used to prove type soundness and to support the proof

of the correctness of the translation from SEC to FRGN. In the static semantics,

they simply collect the names of live stacks and regions and assign types to refer-

ences. Note that in every rule, tower types and tower domains are passed unmod-

286

∆; T `type τ

α ∈ dom(∆)

∆; T `type α ∆; T `type Int ∆; T `type Bool

∆; T `type τ1 ∆; T `type τ2

∆; T `type τ1 → τ2

∆; T `type τi
i∈1...n

∆; T `type τ1 × · · · × τn

∆, α; T `type τ

∆; T `type ∀α. τ

∆; T `index θ ∆; T `type τ

∆; T `type RGN θ τ

∆; T `index θ ∆; T `type τ

∆; T `type RGNRef θ τ

∆; T `index θ

∆; T `type RGNHnd θ

∆, ϑ; T `type τ

∆; T `type ∀ϑ. τ

∆; T `index θ

ϑ ∈ dom(∆)

∆; T `index ϑ ∆; T `index ◦]•

s ∈ T

∆; T `index s]•

s ∈ T r ∈ T(s)

∆; T `index s]r

Figure B.12: Static semantics of FRGN (types and indices)

287

∆; T `vctxt Γ

∆; T `vctxt ·

∆; T `vctxt Γ x /∈ dom(Γ) ∆; T `type τ

∆; T `vctxt Γ, x:τ

`ctxt ∆; Γ; T : T

`ttype T : T ∆; T `vctxt Γ

`ctxt ∆; Γ; T : T

Figure B.13: Static semantics of FRGN (contexts)

ified to sub-judgments. Since the surface syntax does not admit explicitly named

stacks and regions, we can type any closed, surface expression with the judgment

·; ·; · : · `exp e : τ . Pushing these empty tower types and tower domains through

the rules leads to the following simplifications:

∆; Γ; · : · `exp e : τ =⇒ ∆; Γ `exp e : τ

∆; · `type τ =⇒ ∆ `type τ

∆; · `index θ =⇒ ∆ `index θ

∆; · `vctxt Γ =⇒ ∆ `vctxt Γ

`ctxt ∆; Γ; · : · =⇒ `ctxt ∆; Γ

Hence, we recover the type system presented in Section 3.2.3, which is sufficient

for type-checking surface programs.

B.2 Type Soundness for FRGN

In this section, we sketch a syntactic proof of type soundness [96]. We wish to

prove that a well-typed, closed initial program either succeeds (returning a value

288

of the correct type) or diverges. A preservation theorem and a progress theorem

make this theorem an easy corollary.

The Preservation Theorem states that the terminating computation of a well-

typed expression yields a value of the same type. Because the dynamic semantics

are defined by two mutually inductive judgments, the Preservation Theorem also

states that the terminating computation of a well-typed command yields a well-

typed extension of the top stack and a value of the same type. Various substitution

lemmas for dead stacks and regions are required to prove the cases where stacks

and regions are deallocated.

Theorem B.4 (Preservation)

(1) If

(a) `tower T : T : T,

(b) ·; ·; T : T `exp e : τ , and

(c) (T ; e) ⇓ v,

then ·; ·; T : T `exp v : τ .

(2) If

(a) `tower T, s 7→ S : T, s 7→ S : T, s 7→ S,

(b) ·; ·; T, s 7→ S : T, s 7→ S `exp κ : RGN s]r τ , and

(c) (T, s 7→ S; κ) ⇓κ S ′; v,

then there exists S
′ w S and S′ w S such that

`tower T, s 7→ S ′ : T, s 7→ S′ : T, s 7→ S
′
and

·; ·; T, s 7→ S′ : T, s 7→ S
′ `exp v : τ .

289

Proof

By mutual induction on the derivations (1c) (T ; e) ⇓ v and

(2c) (T, s 7→ S; κ) ⇓κ (S ′; v).

The Progress Theorem states that a partially evaluated expression can always

move forward towards complete evaluation. Progress Theorems are notoriously

difficult in a large-step operational semantics. Hence, we make use of the natural

transition semantics [84, 76] introduced in Appendix B.1.1. The Progress Theorem

states that any well-typed partial derivation that contains a pending judgment

can transition to another well-typed partial derivation. As usual, the proof of the

Progress Theorem depends on a Canonical Forms Lemma, which describes the

forms of values of particular types.

Definition B.1

(1) A pending judgment (T ; e) ⇓ ? is well typed iff there exists T, T, and τ

such that `tower T : T : T and ·; ·; T : T `exp e : τ .

(2) A pending judgment (T, s 7→ S; κ) ⇓ ? is well typed iff there exists T, T,

S, S, r ∈ dom(S), and τ such that `tower T, s 7→ S : T, s 7→ S : T, s 7→ S

and ·; ·; T, s 7→ S : T, s 7→ S `exp κ : RGN s]r τ .

(3) A partial derivation D is well typed iff every pending judgment in it is

well typed.

Theorem B.5 (Progress)

If D is a well-typed partial derivation with pending judgments, then there

exists D′ such that D −→ D′ and D′ is well typed.

290

Proof

Let N be the uppermost node of D that is labeled with a pending judgment,

either (T ; e) ⇓ ? or (T, s 7→ S; κ) ⇓κ ?. Any transition on D must occur at

this node. Proceed by considering all possible forms of pending judgments.

Theorem B.6 (Soundness)

If ·; ·; · : · `exp e : τ , then any execution of e (in ·) either terminates with a

value v (such that ·; ·; · : · `exp v : τ) or diverges.

Proof

Let [(·; e) ⇓ ?]() −→ D1 −→ D2 −→ · · · be an execution of e. Note that

[(·; e) ⇓ ?]() is well-typed by `tower · : · : · and ·; ·; · : · `exp e : τ . By Progress,

every Di is well typed.

(1) Suppose that for all Dn such that [(·; e) ⇓ ?]() −→∗ Dn, there exists

Dn+1 such that Dn −→ Dn+1. Then, e diverges.

(2) Suppose that there exists Dn such that [(·; e) ⇓ ?]() −→∗ Dn, such that

there does not exist Dn+1 such that Dn −→ Dn+1.

(a) Suppose Dn contains no pending judgments. By Lemma B.2, Dn ≡

[(·; e) ⇓ v]. Then, e terminates with the value v. By Preservation,

·; ·; · : · `exp v : τ .

(b) Suppose Dn contains pending judgments. By Progress, there exists

D′ such that Dn −→ D′, contradicting the assumption that there

does not exist Dn+1 such that Dn −→ Dn+1. Thus, e cannot get

stuck.

291

Remarks As stated previously, our main reason for adopting a large-step opera-

tional semantics is to simplify the theorems and proofs of Appendix B.3. However,

we believe that the technique of proving type soundness for languages described

by natural transition semantics shows great promise, particularly when combined

with a monadic treatment of effects. In many ways, natural transition semantics

attempts to bridge the gap between large-step operational semantics and small-step

operational semantics. Natural transition semantics incorporates the advantages

of large-step operational semantics (namely, a concise semantics) and ameliorates

some of the disadvantages of small-step operational semantics. First, there is no

need to introduce intermediate terms to “mark” points of interest in an evaluat-

ing program. For example, Semmelroth and Sabry’s account of monadic state in

ML [72] requires a term sto ∆ e, to distinguish nested runST evaluations.

Second, there is no need to introduce evaluation contexts. While this may

appear to be a minor point (since we have effectively defined the evaluation context

by the path through a partial derivation tree to a pending judgment), it has broader

implications, particularly in the monadic setting. For example, Semmelroth and

Sabry’s evaluation contexts are quite complex, requiring four separate contexts.

This complexity is required to express the relative sequencing of pure and monadic

operations; essentially, the contexts must find the sto ∆ [] that corresponds to the

“active” monadic evaluation, then follow commands down to either the “active”

monadic command or “active” pure expression. In the natural transition semantics,

this is accomplished “automatically” by jumping to the pending judgment of the

partial derivation tree. In our case, the fact that this pending judgment can take

one of two forms (either a pure call-by-value System F judgment or an imperative

monadic judgment), effectively eliminates the need to interleave contexts.

292

We also believe that the complete soundness proof using natural transition

semantics is easier than the corresponding proof using small-step operational se-

mantics (for example, the soundness proof for Cyclone’s region system [30]). Elim-

inating intermediate terms and evaluation contexts are obvious savings. The proof

flavor is also slightly different: where one was doing case analysis on the form of

the active position of an evaluation context, now one is doing case analysis on the

pending judgment’s children.

B.3 Translation from SEC to FRGN

Section 3.3 gave a translation from the surface syntax of SEC to the surface syntax

of FRGN. However, the translation given in that section is insufficient for carrying

the proof of translation correctness, since there are no translations for SEC stacks

and ref terms, which arise during the evaluation of a program. This section

extends the translation of Section 3.3 with cases for the additional semantic objects

in the abstract machine configurations for SEC.

Recall that a SEC program requires exactly one region stack for evaluation; we

assume that the corresponding stack in the translated FRGN program is labeled by

the stack name s. To the translation functions given in Section 3.3, we add XJ·K,

which translates into towers, tower types, and tower domains.

Stacks Figures B.14 and B.15 give the translation of values and storable values,

which follow directly from the translations of expressions. Figures B.16 and B.17

give the translation of stacks, where each stored value is translated according to the

`sto derivation implied by the `stack derivation. There is one minor complication

due to the fact that a Single Effect Calculus program has an implicit region stack,

293

Translations yielding closed values

Closed values

E

u

w
v

`stype S : S

S : S `val b : Bool

}

�
~ = b

E

u

w
v
`stype S : S r ∈ S p ∈ S(r) S(r, p) = ω

S : S `val ref r p : (ω, r)

}

�
~ = ref s]r p

E

u

w
v
`stype S : S ·; S `btype ω

S : S `val ref • p : (ω, •)

}

�
~ =

 ref ◦]• p if S = ·

ref s]• p otherwise

Figure B.14: Translation from SEC to FRGN (closed values)

Translations yielding closed values

Storable values

E

u

w
v
`stype S : S

S : S `sto i : Int

}

�
~ = i

E

u

w
v
·; ·, x:τx; S : S `exp e : τ, π′

S : S `sto λx:τx.
π′

e : τx
π′
−→ τ

}

�
~ = λx:TJτ1K . EJeK

E

u

w
v

S : S `val v1 : τ1 · · · S : S `val vn : τn

S : S `sto 〈v1, . . . , vn〉 : τ1 × · · · × τn

}

�
~ = 〈EJv1K , . . . , EJvnK〉

E

u

w
v

·, % � φ; ·; S : S `exp u : τ, π′

S : S `sto Λ% � φ.π
′
u : ∀% � φ.π

′
τ

}

�
~ =

Λϑ%. λw%:TJ% � φK .λh%:RGNHnd ϑ%. EJuK

Figure B.15: Translation from SEC to FRGN (storable values)

294

Translations yielding tower domains

Stack domains

X
q
S
y

=

 · if S = ·

·, s 7→ S otherwise

Translations yielding stack types

Stacks types

X

u

wwwwwwww
v

S = dom(S)

∀r ∈ S. S(r) = dom(S(r))

∀r ∈ S. ∀p ∈ S(r). ·; S `btype S(r, p)

`stype S : S

}

��������
~

= S∗

where dom(S) = dom(S∗)

∀r ∈ dom(S). dom(S(r)) = dom(S∗(r))

∀r ∈ dom(S). ∀p ∈ dom(S(r)). S∗(r, p) = TJS(r, p)K

Translations yielding tower types

Stack types

X
q
`stype S : S

y
=

 · if S = ·

·, s 7→ X
q
`stype S : S

y
otherwise

Figure B.16: Translation from SEC to FRGN (stack domains and stack types)

295

Translations yielding stacks

Stacks

X
q
`stack S : S : S

y
= S∗

where dom(S) = dom(S∗)

∀r ∈ dom(S). dom(S(r)) = dom(S∗(r))

∀r ∈ dom(S). ∀p ∈ dom(S(r)). S∗(r, p) = EJS(r, p)K

Translations yielding towers

Stacks

X
q
`stack S : S : S

y
=

 · if S = ·

·, s 7→ X
q
`stack S : S : S

y
otherwise

Figure B.17: Translation from SEC to FRGN (stacks)

while FRGN explicitly introduces (and eliminates) a region stack with the runRGN

command. Hence, a stack domain, stack type, or stack may be translated to either

an empty tower or a tower with a single stack. We make this choice based on

whether or not any region is allocated in the stack.

Terms Figure B.18 gives the translation of ref terms. As with the translation

of stacks, an issue arises with occurrences of • in the source program, which may

be translated either to s]•, within the scope of the runRGN, where s is the name

of the stack introduced by the runRGN, or to ◦]•, outside the scope of the runRGN.

Again, we make the choice of translation based on whether or not any region is in

the S stack domain.

296

Translations yielding expressions

Expressions

E

u

w
v
`ctxt ∆; Γ; S : S; π r ∈ S p ∈ S(r) S(r, p) = ω

∆; Γ; S : S `exp ref r p : (ω, r), π

}

�
~ =

returnRGN [IJπK] [TJ(ω, r)K] ref s]r p

E

u

w
v
`ctxt ∆; Γ; S : S; π ∆; S `btype ω

∆; Γ; S : S `exp ref • p : (ω, •), π

}

�
~ =

 returnRGN [IJπK] [TJ(ω, •)K] ref ◦]• p if S = ·

returnRGN [IJπK] [TJ(ω, •)K] ref s]• p otherwise

Figure B.18: Translation from SEC to FRGN (references)

Translations yielding indices

Regions

I

u

w
v

S `rctxt ∆ % ∈ dom(∆)

∆; S `region %

}

�
~ = ϑ%

I

u

w
v

S `rctxt ∆ r ∈ dom(S)

∆; S `region r

}

�
~ = s]r

I

u

w
v

S `rctxt ∆

∆; S `region •

}

�
~ =

 ◦]• if S = ·

s]• otherwise

Figure B.19: Translation from SEC to FRGN (regions (I))

297

Translations yielding expressions

Regions

E

u

w
v

S `rctxt ∆ % ∈ dom(∆)

∆; S `region %

}

�
~ = h%

E

u

w
v

S `rctxt ∆ r ∈ dom(S)

∆; S `region r

}

�
~ = hnd s]r

E

u

w
v

S `rctxt ∆

∆; S `region •

}

�
~ =

 hnd ◦]• if S = ·

hnd s]• otherwise

Figure B.20: Translation from SEC to FRGN (regions (II))

Regions Constant regions may also appear in the translation of SEC regions to

FRGN indices (Figure B.19) and in the translation of SEC regions to FRGN handles

(Figure B.20).

Outlives relations Figure B.21 extends the translation of the SEC outlives rela-

tion given in Figure 3.21. During the evaluation of a SEC program, the outlives re-

lation is instantiated with constant regions (either region names or a dead region);

under the translation, these outlives relations correspond to FRGN witnessRGN

terms. Note that the translation ensures that an outlives relation is translated to

a witnessRGN with a valid cast (see Figure B.9).

B.3.1 Translation Properties

As stated in Section 3.3.1, the translation is type preserving. To handle the ex-

tended translation, we refine the lemma as follows:

298

Translations yielding expressions

Witnesses

E

u

w
v

S `rctxt ∆ (% � {ρ1, . . . , ρi, . . . , ρn}) ∈ ∆

∆; S `rr % � ρi

}

�
~ =

Λβ. λk:RGN IJρiK β. let w = seli w% in w [β] k

E

u

w
v

∆; S `region ρ

∆; S `rr ρ � ρ

}

�
~ = Λβ. λk:RGN IJρK β. k

E

u

w
v

∆; S `rr ρ2 � ρ′ ∆; S `rr ρ′ � ρ1

∆; S `rr ρ2 � ρ1

}

�
~ =

Λβ. λk:RGN IJρ1K β. let k′ = EJρ′ � ρ1K [β] k in EJρ2 � ρ′K [β] k′

E

u

w
v

S `rctxt ∆ ∆; S `rr ρ � ρi
i∈1...n

∆; S `re ρ � {ρ1, . . . , ρn}

}

�
~ = (EJρ � ρ1K , . . . , EJρ � ρnK)

E

u

w
v

S `rctxt ∆ S = S1, r1 7→ R1, S2, r2 7→ R2, S3

∆; S `rr r2 � r1

}

�
~ =

Λβ. λk:RGN s]r1 β. witnessRGN s]r1 s]r2 [β] k

E

u

w
v

∆; S `re r � {r1, . . . , rn}

∆; S `rr r � ri

}

�
~ =

Λβ. λk:RGN IJriK β. let w = seli EJr � {r1, . . . , rn}K in w [β] k

E

u

w
v

S `rctxt ∆ S = S1, r1 7→ R1, S2

∆; S `rr • � r1

}

�
~ =

Λβ. λk:RGN s]r1 β. witnessRGN s]r1 s]• [β] k

Figure B.21: Translation from SEC to FRGN (outlives relations (II))

299

Lemma B.7 (Translation Preserves Types)

(1) If S `SEC
rctxt ∆, then D

q
S `SEC

rctxt ∆
y

is well-formed.

(2) If ∆; S
SEC `region ρ, then D

q
S `SEC

rctxt ∆
y

; X
q
S
y
`FRGN

index I
q
∆; S `SEC

region ρ
y
.

(3) If S `SEC
rctxt ∆, then D

q
S `SEC

rctxt ∆
y

; X
q
S
y
`FRGN

vctxt G
q
S `SEC

rctxt ∆
y
.

(4) If ∆; S `SEC
btype ω, then D

q
S `SEC

rctxt ∆
y

; X
q
S
y
`FRGN

type T
q
∆; S `SEC

btype ω
y
.

(5) If ∆; S `SEC
type τ , then T

q
S `SEC

rctxt ∆
y

; T
q
`sdom S

y
`FRGN

type T
q
∆; S `SEC

type τ
y
.

(6) If `SEC
stype S : S, then `FRGN

ttype X
q
`SEC

stype S : S
y

: X
q
S
y
.

(7) If ∆; S `SEC
vctxt Γ, then D

q
S `SEC

rctxt ∆
y

; X
q
S
y
`FRGN

vctxt G
q
∆; S `SEC

vctxt Γ
y
.

(8) If ∆; S `SEC
vctxt Γ, then

D
q
S `SEC

rctxt ∆
y

; X
q
S
y
`FRGN

vctxt G
q
S `SEC

rctxt ∆
y

, G
q
∆; S `SEC

vctxt Γ
y
.

(9) If ∆; S `SEC
rr ρ2 � ρ1, then

D
q
S `SEC

rctxt ∆
y

; X
q
S
y
`FRGN

type T
q
∆; S `SEC

rr ρ2 � ρ1

y
.

(10) If ∆; S `SEC
re ρ � φ, then

D
q
S `SEC

rctxt ∆
y

; X
q
S
y
`FRGN

type T
q
∆; S `SEC

re ρ � φ
y
.

(11) If `SEC
stype S : S and ∆; S `SEC

rr ρ2 � ρ1, then

D
q
S `SEC

rctxt ∆
y

; G
q
S `SEC

rctxt ∆
y

; X
q
`SEC

stype S : S
y

: X
q
S
y

`FRGN

exp E
q
∆; S `SEC

rr ρ2 � ρ1

y
: T

q
∆; S `SEC

rr ρ2 � ρ1

y
.

(12) If `SEC
stype S : S and ∆; S `SEC

re ρ � φ, then

D
q
S `SEC

rctxt ∆
y

; G
q
S `SEC

rctxt ∆
y

; X
q
`SEC

stype S : S
y

: X
q
S
y

`FRGN

type E
q
∆; S `SEC

re ρ � φ
y

: T
q
∆; S `SEC

re ρ � φ
y
.

(13) If `SEC
stype S : S and ∆; S `SEC

region ρ, then

D
q
S `SEC

rctxt ∆
y

; G
q
S `SEC

rctxt ∆
y

; X
q
`SEC

stype S : S
y

: X
q
S
y

`FRGN

exp E
q
∆; S `SEC

region ρ
y

: RGNHnd I
q
∆; S `SEC

region ρ
y
.

300

(14) If ∆; Γ; S : S `SEC
exp e : τ, π, then

D
q
S `SEC

rctxt ∆
y

; G
q
S `SEC

rctxt ∆
y

, G
q
∆; S `SEC

vctxt Γ
y

; X
q
`SEC

stype S : S
y

: X
q
S
y

`FRGN

exp E
q
∆; Γ; S : S `SEC

exp e : τ, π
y

: RGN I
q
∆; S `SEC

region π
y

T
q
∆; S `SEC

type τ
y
.

(15) If S : S `SEC
sto w : ω, then

·; ·; X
q
`SEC

stype S : S
y

: X
q
S
y

`FRGN

exp E
q
S : S `SEC

sto w : ω
y

: T
q
·; S `SEC

btype ω
y
.

(16) If `SEC
stack S : S : S, then

`FRGN

tower X
q
`SEC

stack S : S : S
y

: X
q
`SEC

stype S : S
y

: X
q
S
y
.

(17) If `SEC
prog p, then ·; ·; ·; · `FRGN

exp E
q
`SEC

prog p
y

: Bool.

As before, the proof is by (mutual) induction on the structure of the typing

judgments, making frequent appeals to various well-formedness lemmas.

As stated in Section 3.3.1, the translation is meaning preserving, with respect

to the dynamic semantics of SEC and FRGN:

Theorem B.8 (Translation Correctness (Programs))

If `SEC
prog e and e ⇓SEC

prog b and E
q
`SEC

prog e
y

= e†,

then (·; e†) ⇓FRGN
b.

We noted that the proof relies on a coherence lemma stating that the trans-

lation of SEC outlives relations to FRGN witness terms yields functions that are

operationally equivalent to the identity function. The extended translations in

this section make it possible to state the Coherence Lemma precisely:

301

Lemma B.9 (Coherence)

Suppose `SEC
stack S : S : S and ·; S `SEC

rr r � ri.

Let X
q
S
y

= ·, s 7→ S
†
, X

q
`SEC

stype S : S
y

= ·, s 7→ S†,

X
q
`SEC

stack S : S : S
y

= ·, s 7→ S†, and E
q
·; S `SEC

rr r � ri

y
= v†w.

If ·; ·; ·, s 7→ S† : ·, s 7→ S
† `FRGN

exp κ : RGN s]ri τ and

(·, s 7→ S†; κ) ⇓FRGN

κ (S ′; v′),

then (·, s 7→ S†; v†w [τ] κ) ⇓FRGN
κ′ and (·, s 7→ S†; κ′) ⇓FRGN

κ (S ′; v′).

Coherence is used throughout the proof of correctness to show that every eval-

uation derivation for the source can be simulated by a derivation involving the

translation of the source:

Theorem B.10 (Translation Preserves Semantics)

Suppose `SEC
stack S : S : S, ·; ·; S : S `SEC

exp e : τ, r′, and (S; e) ⇓SEC (S ′; v′).

Then there exists S
′ wSEC S and S′ wSEC S

such that `SEC
stack S ′ : S′ : S

′
and S′ : S

′ `SEC
cval v′ : τ .

Let X
q
S
y

= ·, s 7→ S
†
, X

q
`SEC

stype S : S
y

= ·, s 7→ S†,

X
q
`SEC

stack S : S : S
y

= ·, s 7→ S†, and E
q
·; ·; S : S `SEC

exp e : τ, r′
y

= e†.

Then (·, s 7→ S†; e†) ⇓FRGN
κ′ and (·, s 7→ S†; κ′) ⇓FRGN

κ (S ′†; v′†),

where X
r
S
′
z

= S
′†
, X

r
`SEC

stype S′ : S
′
z

= S′
†, X

r
`SEC

stack S ′ : S′ : S
′
z

= S ′†, and

E
r
S′ : S

′ `SEC
cval v′ : τ

z
= v′†.

We note that the proof is greatly simplified by using large-step operational se-

mantics for both the source and target languages, since for many expression forms,

a single operational step in the source language is expanded to many operational

steps in the target language.

302

Full details of this development are given in the technical report Monadic Re-

gions: Formal Type Soundness and Correctness [21].

303

Appendix C

A Substructural Type System: Technical

Details
This appendix supplements the material in Chapter 4 with a number of technical

details that would otherwise detract from that chapter’s focus on the translation

from FRGN to rgnURAL. In the following section, we revisit the presentation of the

rgnURAL language, extending the dynamics to an allocation semantics, which mod-

els the allocation (and deallocation) of every data structure in the program (not

just regions and references), and revising the static semantics to include judgments

for the additional semantic objects introduced by the abstract machine configura-

tions.

In Appendix C.2, we discuss a syntactic proof of type soundness for rgnURAL.

We have carried out and mechanically-verified the proof in the Twelf system [66]

using its metatheorem checker [71, 36, 37]. We also consider the major differences

between the static semantics of Appendix C.1.2 and the static semantics as encoded

in the mechanized proof.

C.1 The rgnURAL Language

C.1.1 Allocation Semantics of rgnURAL

While the dynamic semantics presented in Section 4.2.2 accurately captures the

allocation and deallocation of regions and the manipulation of references during

the evaluation of the program, it does not capture the number of times that a

(functional) data structure is used during the evaluation of the program. For

304

example, consider the following program:

let i = L1 in

let f = L(λx:LInt. L(x⊕ i)) in

let g = L(λh:U(LInt (LInt). h (h L3)) in

g f

This program may not be assigned a typing derivation according to the static

semantics presented in Section 4.2.3, but it may be evaluated (without error) by

the dynamic semantics presented in Section 4.2.2, yielding the value L5. Although

a static semantics is a conservative approximation of those programs that evaluate

without error, it would be more satisfactory to have a dynamic semantics that

accurately reflected that a linear qualified data structure must be used exactly

once, an affine at most once, a relevant at least once, and an unrestricted an

arbitrary number of times.

In order to capture these properties, we adopt an allocation semantics, where

each value is allocated in a global store (distinct from the global heap), which

records whether or not the value has been used.

Abstract Machine Configurations for rgnURAL

Figures C.1 and C.2 present abstract machines configurations for rgnURAL, which

extend the syntax of Section 4.2.1 with semantic objects that appear in the allo-

cation semantics.

Locations are used to represent indirections to store allocated values. The ab-

stract machine syntax adds locations as a new expression form. Note that this

formulation of the rgnURAL language does not include references, handles, or ca-

pabilities as expression forms.

305

Location names

l ∈ LNames

Abstract terms

e ::= . . . | l

Pointer names

p ∈ PNames

Region names

r ∈ RNames

Abstract pre-values

v ::= i | b | λx:τ. e | 〈l1, . . . , ln〉 |

Λξ. e | pack(q, l) | Λα. e | pack(τ , l) | Λα. e | pack(τ, l) |

cap | hnd r | ref r p | Λ%. e | pack(ρ, l)

Abstract values

v ::= qv

Figure C.1: Abstract machine syntax of rgnURAL (I)

306

Flags

f ::= unused | used

Stores

σ ::= {l1 7→ (f1, v1), . . . , ln 7→ (fn, vn)}

Regions

R ::= {p1 7→ (q1, l1), . . . , pn 7→ (qn, ln)}

Region mark

υ ::= qlive | dead

Heaps

H ::= {r1 7→ (υ1, R1), . . . , rn 7→ (υn, Rn)}

Abstract machine configurations

(H; σ; e)

Figure C.2: Abstract machine syntax of rgnURAL (II)

Value forms in rgnURAL are structured as a (constant) qualifier applied to a

(closed) pre-value, which mirrors the structuring of types. Note that value forms

are not a subset of expression forms; rather, they are a disjoint syntactic class

representing store allocated data structures. Since we are assuming that all values

are store allocated, pre-values include references, handles, and capabilities. Fur-

thermore, the components of a tuple and of an existential package are required to

be locations.

Figure C.2 gives the syntax of stores, regions, and heaps. Intuitively, values

are associated with locations in stores σ; locations are associated with pointers

307

in regions R; regions are collected into heaps H. In order to support a syntactic

proof of type soundness, the structure of stores, regions, and heaps includes some

additional instrumentation.

A store σ maps locations l to a pair of a flag f and a value; the flag records

whether or not the value has been used during the evaluation of the program.

A region R maps pointers p to a pair of a qualifier q and a location; the

qualifier records the qualifier that annotated the new primitive that allocated the

corresponding reference. A heap H maps region names r to a pair of a region mark

ν and a region; the region mark records whether the named region is allocated

(qclive) or deallocated (dead). As in the operational semantics of Section 4.2.2,

the allocation semantics will not allow the evaluation of a rgnURAL program to

access a deallocated region. When a region is allocated, the region mark qclive

records the qualifier of the capability associated with the region.

The notation σ1] σ2 (respectively, H1]H2 and R1]R2) denotes the disjoint

union of the stores σ1 and σ2 (respectively, the heaps H1 and H2 and the regions

R1 and R2); the operation is undefined if the domains of σ1 and σ2 (respectively,

H1 and H2 and R1 and R2) are not disjoint.

Store and heap rules Before turning to the inductive judgment that defines

the allocation semantics, we introduce a number of auxiliary judgments that factor

out store and heap manipulations (see Figures C.3, C.4, and C.5).

The judgment (σ; v)
alloc−−→ (σ′; l′) encapsulates the allocation of a new value in

the store. The new value is assigned to a fresh location l′ and is flagged as unused.

Somewhat more interesting is the judgment (σ; l)
fetch−−→ (σ′; v), which fetches the

contents of a location in the store. Since a value will only be fetched in order to be

308

(σ; v)
alloc−−→ (σ′; l′)

l′ /∈ dom(σ)

(σ; v)
alloc−−→ (σ, l′ 7→ (unused, v); l′)

(σ; l)
fetch−−→ (σ′; v)

q v R

(σ] {l 7→ (f, qv)}; l) fetch−−→ (σ] {l 7→ (used, qv)}; qv)

A v q

(σ] {l 7→ (unused, qv)}; l) fetch−−→ (σ; qv)

Figure C.3: Dynamic semantics of rgnURAL (store)

(H; qc)
newrgn−−−−→ (H ′; r′)

r /∈ dom(H)

(H; qc)
newrgn−−−−→ (H] {r 7→ (qclive, {})}; r)

(H; r)
freergn−−−→ H ′

(H] {r 7→ (qclive, R)}; r) freergn−−−→ H] {r 7→ (dead, R)}

Figure C.4: Dynamic semantics of rgnURAL (heap (I))

309

(H; r; qr; l?)
new−−→ (H ′; p′)

p′ /∈ dom(R)

(H] {r 7→ (qclive, R)}; r; qr; l?)
new−−→ (H] {r 7→ (qclive, R] {p′ 7→ (qr, l?)})}; p′)

(H; r; p)
free−−→ (H ′; l)

(H] {r 7→ (qclive, R] {p 7→ (qr, l)})}; r; p)
free−−→ (H] {r 7→ (qclive, R)}; l)

(H; r; p)
read−−→ l

(H] {r 7→ (qclive, R] {p 7→ (qr, l)})}; r; p)
read−−→ l

(H; r; p; l?)
write−−→ H ′

(H] {r 7→ (qclive, R] {p 7→ (qr, l)})}; r; p; l?)
write−−→

H] {r 7→ (qclive, R] {p 7→ (qr, l?)})}

(H; r; p; l?)
swap−−→ (H ′; l)

(H] {r 7→ (qclive, R] {p 7→ (qr, l)})}; r; p; l?)
swap−−→

(H] {r 7→ (qclive, R] {p 7→ (qr, l?)})}; l)

Figure C.5: Dynamic semantics of rgnURAL (heap (II))

310

used, we reflect this fact in the updated store σ′. If the fetched value is unrestricted

or relevant (q v R), then (independent of the current flag) the location is flagged

as used in the updated store. On the other hand, if the fetched value is affine or

linear (A v q), then the location is required to be currently unused and is removed

from the updated store. This corresponds to the fact that an affine or linear value

is required to be used at most once and at least once, respectively. By removing

affine and linear values from the store, the semantics ensures that there would be

an evaluation error if they were to be used more than once.

The judgments in Figure C.4 encapsulate the allocation and deallocation of re-

gions, while the judgments in Figure C.4 encapsulate the allocation, deallocation,

reading, writing, and swapping of references. They are straightforward manipula-

tions of heaps and regions. Note that, like the semantics of Section 4.2.2, a region

must be live in order to be accessed.

Evaluation rules An inductive judgment Figures C.6–C.12 defines the alloca-

tion semantics. We state without proof that the allocation semantics is determin-

istic, taking (σ; H; e) configurations modulo α-conversion, including conversion of

locations, region names, and pointers, which are uniquely bound in the store σ and

heap H.

The judgment (σ; H; e) 7−→ (σ′; H ′; e′) asserts that one step of evaluation of the

closed expression e in a store σ and heap H results in a new store σ′ and heap H ′

and new expression e′.

The rules for (σ; H; e) 7−→ (σ′; H ′; e′) are very similar to the rules for

(H; e) 7−→ (H ′; e′) given in Figures 4.9–4.13. The major difference is that each

introduction form allocates a new value in the store, while each elimination form

311

(σ; H; e) 7−→ (σ′; H ′; e′)

(σ; qi)
alloc−−→ (σ′; l′)

(σ; H; qi) 7−→ (σ′; H; l′)

(σ; l1)
fetch−−→ (σ1; i1) (σ1; l2)

fetch−−→ (σ2; i2)

i1 ⊕ i2 = i (σ2;
qi)

alloc−−→ (σ′; l′)

(σ; H; q(l1 ⊕ l2)) 7−→ (σ′; H; l′)

(σ; l1)
fetch−−→ (σ1; i1) (σ1; l2)

fetch−−→ (σ2; i2)

i1 < i2 = b (σ2;
qb)

alloc−−→ (σ′; l′)

(σ; H; q(l1 < l2)) 7−→ (σ′; H; l′)

(σ; qb)
alloc−−→ (σ′; l′)

(σ; H; qb) 7−→ (σ′; H; l′)

(σ; l)
fetch−−→ (σ′; true)

(σ; H; if l then et else ef) 7−→ (σ′; H; et)

(σ; l)
fetch−−→ (σ′; false)

(σ; H; if l then et else ef) 7−→ (σ′; H; ef)

Figure C.6: Dynamic semantics of rgnURAL (expressions (I))

312

(σ; H; e) 7−→ (σ′; H ′; e′)

(σ; q(λx:τ. e))
alloc−−→ (σ′; l′)

(σ; H; q(λx:τ. e)) 7−→ (σ′; H; l′)

(σ; lf)
fetch−−→ (σ′; (λx:τx. eb)

(σ; H; lf la) 7−→ (σ′; H; eb[la/x])

(σ; q〈l1, . . . , ln〉)
alloc−−→ (σ′; l′)

(σ; H; q〈l1, . . . , ln〉) 7−→ (σ′; H; l′)

(σ; la)
fetch−−→ (σ′; 〈l1, . . . , ln〉)

(σ; H; let 〈x1, . . . , xn〉 = la in eb) 7−→ (σ′; H; eb[l1/x1] · · ·[ln/xn])

(σ; q(Λξ. e))
alloc−−→ (σ′; l′)

(σ; H; q(Λξ. e)) 7−→ (σ′; H; l′)

(σ; lf)
fetch−−→ (σ′; (λξ. eb))

(σ; H; lf [qa]) 7−→ (σ′; H; eb[qa/ξ])

(σ; qpack(q, l))
alloc−−→ (σ′; l′)

(σ; H; qpack(q, l)) 7−→ (σ′; H; l′)

(σ; la)
fetch−−→ (σ′; pack(q, lx))

(σ; H; let pack(ξ, x) = la in eb) 7−→ (σ′; H; eb[q/ξ][lx/x])

Figure C.7: Dynamic semantics of rgnURAL (expressions (II))

313

(σ; H; e) 7−→ (σ′; H ′; e′)

(σ; q(Λα. e))
alloc−−→ (σ′; l′)

(σ; H; q(Λα. e)) 7−→ (σ′; H; l′)

(σ; lf)
fetch−−→ (σ′; q(λα. eb))

(σ; H; lf [τa]) 7−→ (σ′; H; eb[τa/α])

(σ; qpack(τ , l))
alloc−−→ (σ′; l′)

(σ; H; qpack(τ , l)) 7−→ (σ′; H; l′)

(σ; la)
fetch−−→ (σ′; pack(τ , lx))

(σ; H; let pack(α, x) = la in eb) 7−→ (σ′; H; eb[τ/α][lx/x])

(σ; q(Λα. e))
alloc−−→ (σ′; l′)

(σ; H; q(Λα. e)) 7−→ (σ′; H; l′)

(σ; lf)
fetch−−→ (σ′; (λα. eb))

(σ; H; lf [τa]) 7−→ (σ′; H; eb[τa/α])

(σ; qpack(τ, l))
alloc−−→ (σ′; l′)

(σ; H; qpack(τ, l)) 7−→ (σ′; H; l′)

(σ; la)
fetch−−→ (σ′; pack(τ, lx))

(σ; H; let pack(α, x) = la in eb) 7−→ (σ′; H; eb[τ/α][lx/x])

(σ; H; let x = la in eb) 7−→ (σ′; H; eb[la/x])

Figure C.8: Dynamic semantics of rgnURAL (expressions (III))

314

(σ; H; e) 7−→ (σ′; H ′; e′)

Evaluation contexts

E ::= [·] | q(E1 ⊕ e2) | q(l1 ⊕ E2) | q(E1 < e2) | q(l1 < E2) |

if Eb then et else ef |

Ef ea | lf Ea |

q〈l1, . . . , Ei, . . . , en〉 | let 〈x1, . . . , xn〉 = E1 in e2 |

Ef [qa] | qpack(q, E) | let pack(ξ, x) = Ea in eb |

Ef [τa] | qpack(τ , E) | let pack(α, x) = Ea in eb |

Ef [τa] | qpack(τ, E) | let pack(α, x) = Ef in ea |

let x = Ea in eb |

freergn Ec eh | freergn lc Eh |

qnew Ec eh ea | qnew lc Eh ea | qnew lc lh Ea |

free Ec er | free lc Er |

read Ec er | read lc Er |

write Ec er ea | write lc Er ea | write lc lr Ea |

swap Ec er ea | swap lc Er ea | swap lc lr Ea |

Ef [ρa] | qpack(ρ, E) | let pack(%, x) = Ea in eb

(σ; H; e) 7−→ (σ′; H ′; e′)

(σ; H; E[e]) 7−→ (σ′; H ′; E[e′])

Figure C.9: Dynamic semantics of rgnURAL (contexts)

315

(σ; H; e) 7−→ (σ′; H ′; e′)

(H; qc)
newrgn−−−−→ (H ′; r′)

(σ; qc(cap))
alloc−−→ (σ′c; l

′
c) (σ′c;

qh(hnd r′))
alloc−−→ (σ′h; l

′
h)

(σ′h;
L〈lc, lh〉)

alloc−−→ (σ′z; l
′
z) (σ′z;

Lpack(r′, l′z))
alloc−−→ (σ′; l′)

(σ; H; qc,qhnewrgn) 7−→ (σ′; H ′; l′)

(σ; lc)
fetch−−→ (σc;

qc(cap))

(σc; lh)
fetch−−→ (σh;

qh(hnd r)) (H; r)
freergn−−−→ H ′ (σh;

L〈〉) alloc−−→ (σ′; l′)

(σ; H; freergn lc lh) 7−→ (σ′; H ′; l′)

Figure C.10: Dynamic semantics of rgnURAL (expressions (IV))

fetches a value from the store. The rules for expression forms other than the re-

gion and reference primitives all return the heap H unchanged. We use evaluation

contexts E (Figure C.9) to lift the base rewriting rules to a standard, left-to-right,

innermost-to-outermost, call-by-value interpretation of the language.

The rules for (σ; H; e) 7−→ (σ′; H ′; e′) for the region and reference primitives

perform operations that side-effect the store and the heap. The rules mostly behave

as their counterparts in Section 4.2.2, except that they use (σ; v)
alloc−−→ (σ′; l′) and

(σ; l)
fetch−−→ (σ′; v) to manipulate references, handles, and capabilities.

Recall that the operational behavior of new, free, read, write, and swap is

to thread a qc(Cap r) value through the evaluation; furthermore, read, write, and

swap thread a qr(Ref r τ) value through the evaluation. In Figures C.10 and C.11,

we may see that this threading is accomplished by fetching the value from the

argument location and reallocating the value, so that the value remains available

for future use (at a fresh location).

316

(σ; H; e) 7−→ (σ′; H ′; e′)

(σ; lc)
fetch−−→ (σc;

qc(cap)) (σc; lh)
fetch−−→ (σh;

qh(hnd r))

(H; r; qr; la)
new−−→ (H ′; p′) (σh;

qc(cap))
alloc−−→ (σ′c; l

′
c)

(σ′c;
qr(ref r p′))

alloc−−→ (σ′p; l
′
r) (σ′p;

L〈l′c, l′r〉)
alloc−−→ (σ′; l′)

(σ; H; qrnew lc lh la) 7−→ (σ′; H ′; l′)

(σ; lc)
fetch−−→ (σc;

qc(cap)) (σc; lr)
fetch−−→ (σr;

qr(ref r p))

(H; r; p)
free−−→ (H ′; l) (σr;

qc(cap))
alloc−−→ (σ′c; l

′
c) (σ′c;

L〈l′c, l〉)
alloc−−→ (σ′; l′)

(σ; H; free lc lr) 7−→ (σ′; H ′; l′)

(σ; lc)
fetch−−→ (σc;

qc(cap))

(σc; lr)
fetch−−→ (σr;

qr(ref r p)) (H; r; p)
read−−→ l (σr;

qc(cap))
alloc−−→ (σ′c; l

′
c)

(σ′c;
qr(ref r p))

alloc−−→ (σ′r; l
′
r) (σ′r;

L〈l′c, l′r, l〉)
alloc−−→ (σ′; l′)

(σ; H; read lc lr) 7−→ (σ′; H; l′)

(σ; lc)
fetch−−→ (σc;

qc(cap)) (σc; lr)
fetch−−→ (σr;

qr(ref r p))

(H; r; p; l?)
write−−→ H ′ (σr;

qc(cap))
alloc−−→ (σ′c; l

′
c)

(σ′c;
qr(ref r p))

alloc−−→ (σ′r; l
′
r) (σ′c;

L〈l′c, l′r〉)
alloc−−→ (σ′; l′)

(σ; H; write lc lr l?) 7−→ (σ′; H; l′)

(σ; lc)
fetch−−→ (σc;

qc(cap)) (σc; lr)
fetch−−→ (σr;

qr(ref r p))

(H; r; p; l?)
swap−−→ (H ′; l) (σr;

qc(cap))
alloc−−→ (σ′c; l

′
c)

(σ′c;
qr(ref r p))

alloc−−→ (σ′r; l
′
r) (σ′c;

L〈l′c, l′r, l〉)
alloc−−→ (σ′; l′)

(σ; H; swap lc lr l?) 7−→ (σ′; H ′; l′)

Figure C.11: Dynamic semantics of rgnURAL (expressions (V))

317

(σ; H; e) 7−→ (σ′; H ′; e′)

(σ; q(Λ%. e))
alloc−−→ (σ′; l′)

(σ; H; q(Λ%. e)) 7−→ (σ′; H; l′)

(σ; lf)
fetch−−→ (σ′; (λ%. eb))

(σ; H; lf [ρ2]) 7−→ (σ′; H; eb[ρ2/%])

(σ; qpack(ρ, l))
alloc−−→ (σ′; l′)

(σ; H; qpack(ρ, l)) 7−→ (σ′; H; l′)

(σ; la)
fetch−−→ (σ′; pack(ρ, lx))

(σ; H; let pack(%, x) = la in eb) 7−→ (σ′; H; eb[ρ/%][lx/x])

Figure C.12: Dynamic semantics of rgnURAL (expressions (VI))

C.1.2 Static Semantics of rgnURAL

Section 4.2.3 gave the static semantics for the surface syntax of rgnURAL. However,

the judgments given in that section are insufficient for carrying out a syntactic proof

of type soundness, since there are no rules for l, ref, hnd, or cap terms (which

arise during the evaluation of a program) and there are no typing judgments for

stores, regions, or heaps. This section extends the static semantics of Section 4.2.3

to overcome these deficiencies. In addition to the typing judgments for expressions

and various well-formedness judgments for qualifiers, pre-types, types, regions, and

contexts given previously, we have judgments that check the type and consistency

of stores, regions, and heaps.

Definitions Figure C.13 presents additional definitions for syntactic forms that

appear in the static semantics. Store, region, and heap types mimic the corre-

sponding objects from the dynamic semantics. A store type Σ records the type of

318

Qualifier, pre-type, type, region contexts

∆ ::= · | ∆, ξ | ∆, α | ∆, α | ∆, %

Value contexts Γ ::= · | Γ, x:τ

Store types Σ ::= {l1 7→ τ1, . . . , ln 7→ τn}

Region types R ::= {p1 7→ (q1, τ1), . . . , pn 7→ (qn, τn)}

Region tokens Υ ::= qpre | abs

Heap types H ::= {r1 7→ (Υ1, R1), . . . , rn 7→ (Υn, Rn)}

Figure C.13: Static semantics of rgnURAL (definitions)

the value stored at each location. A heap type H records, for each region name r,

a region token Υ and a region type. The region token records the presence (pre)

or absence (abs) of the capability for r in an object type checked under H; when

type checking a heap, the region token must also match the region mark. Finally, a

region type R records, for each pointer p, a qualifier for the corresponding ref r p

pre-value and a type for the contents of the reference.

Qualifier order As before, in order to ensure the correct relationship between

a data structure and its components, we extend the partial order on constant

qualifiers to arbitrary qualifiers, types, and value contexts (see Figure C.14).

We must also extend the partial order to the other type-like syntactic objects:

store types, region tokens, region types, and heap types. Figure C.15 presents the

rule for the judgment ∆ ` Σ � q′, which simply requires that each type τ in the

range of Σ is bounded by q′.

Figure C.16 presents the rules for the judgments ` Υ v q′, ` R v q′,

` (Υ, R) v q′, and ` H v q′. Since heap types will only be used to type check

319

∆ ` q � q′

∆ `qual q

∆ ` U � q

q1 v q2

∆ ` q1 � q2

∆ `qual q

∆ ` q � L

∆ `qual q

∆ ` q � q

∆ ` q1 � q2 ∆ ` q2 � q3

∆ ` q1 � q2

∆ ` τ � q′

∆ `type τ

∆ ` τ � L

∆ ` q � q′ ∆ `ptype τ

∆ ` qτ � q′

∆ ` Γ � q′

∆ `qual q′

∆ ` · � q′

∆ ` τ � q′ ∆ ` Γ � q′

∆ ` Γ, x:τ � q′

Figure C.14: Static semantics of rgnURAL (� (I))

∆ ` Σ � q′

∆ `qual q′ ∀(l 7→ τ) ∈ Σ. ∆ ` τ � q′

∆ ` Σ � q′

Figure C.15: Static semantics of rgnURAL (� (II))

320

` Υ v q′

q v q′

` qpre v q′ ` abs v q′

` R v q′

∀(p 7→ (q, τ)) ∈ R. q v q′

` R v q′

` (Υ, R) v q′

` Υ v q′ ` R v q′

` (Υ, R) v q′

` H v q′

∀r ∈ dom(H). ` H(r) v q′

` H v q′

Figure C.16: Static semantics of rgnURAL (v (III))

321

∆ ` Γ; Γ1 � Γ2

∆ ` ·; ·� ·

∆ ` Γ; Γ1 � Γ2

∆ ` Γ, x:τ ; Γ1, x:τ � Γ2

∆ ` Γ; Γ1 � Γ2

∆ ` Γ, x:τ ; Γ1 � Γ2, x:τ

Contr

∆ ` Γ; Γ1 � Γ2 ∆ ` τ � R

∆ ` Γ, x:τ ; Γ1, x:τ � Γ2, x:τ

Figure C.17: Static semantics of rgnURAL (� (I))

∆ ` Σ; Σ1 � Σ2

Σ = Σ1] Σ2] Σ′ ∆ ` Σ′ � R

∆ ` Σ; (Σ1] Σ′) � (Σ2] Σ′)

Figure C.18: Static semantics of rgnURAL (� (II))

closed values and stores, the judgments are given without a context ∆. Note that

in the judgment ` R v q′, the antecedent requires the qualifier of the reference

(not the type of the contents of the reference) to be bounded by q′.

Context, store, heap, and region splitting Figure C.17 recalls the value-

context splitting judgment given in Section 4.2.3. Splitting the context is necessary

to ensure that variables are used appropriately by sub-expressions.

In addition, Figures C.18 and C.19 presents judgments that split store types,

region tokens, region types, and heap types. As with value-context splitting, split-

ting these type-like syntactic objects is necessary to ensure that locations, refer-

ences, handles, and capabilities are used appropriately by component objects in

the typing rules.

322

` Υ; Υ1 � Υ2

q v R

` qpre; qpre � qpre ` qpre; abs � qpre ` qpre; qpre � abs

` abs; abs � abs

` R; R1 � R2

R = R1] R2] R′ ` R′ v R

` R; (R1] R′) � (R2] R′)

` (Υ, R); (Υ1, R1) � (Υ2, R2)

` Υ; Υ1 � Υ2 ` R; R1 � R2

` (Υ, R); (Υ1, R1) � (Υ2, R2)

` H; H1 � H2

H = H1]H2]H′ dom(H′) = dom(H′
1) = dom(H′

2)

∀r′ ∈ dom(H′). ` H′(r′); H′
1(r

′) � H′
2(r

′)

` H; (H1]H′
1) � (H2]H′

2)

Figure C.19: Static semantics of rgnURAL (� (III))

323

In the rule for store-type splitting, the antecedent ∆ ` Σ′ � R allows a set

of unrestricted and relevant assumptions to be duplicated; hence, it acts like a

strengthened Contraction property at the level of store types.

The rule for heap-type splitting is more subtle. The source heap type H is split

into three disjoint components (H1, H2, and H′); however, rather than sharing a

common heap type H′, the output heaps (H1]H′
1 and H2]H′

2) are defined so

that on their common domains, they correspond to the pairwise splitting of the

region tokens and region types from the heap type H′.

Like the rule for store-type splitting, the rule for region-type splitting allows

unrestricted and relevant assumptions to be duplicated; hence, it also acts like

a strengthened Contraction property at the level of region types. Finally, the

rules for the judgment ` Υ; Υ1 � Υ2 ensure that an affine or linear pre token

(corresponding to an affine or linear region capability) cannot be duplicated, but

an unrestricted or linear pre token can be duplicated.

Qualifiers, pre-types, types, and regions Figure C.20 contains (completely

standard) judgments for ensuring that qualifiers q, pre-types τ , types τ , and regions

ρ are well-formed. These judgments simply enforce the invariant that no type or

expression may depend upon unbound qualifier, pre-type, type, or region variables.

Note that in the judgement ∆ `region ρ, any region name is considered well-formed.

Terms Figures C.21–C.28 present the typing rules for the judgment

∆; Γ; Σ `exp e : τ , which asserts that under the qualifier, pre-type, type, and re-

gion context ∆, the value context Γ, and the store type Σ, the expression e has the

type τ . Recall that references, handles, and capabilities are not expression forms;

hence, the judgment for expressions has no dependency on a heap type H.

324

∆ `qual q

ξ ∈ dom(∆)

∆ `qual ξ ∆ `qual q

∆ `ptype τ

α ∈ dom(∆)

∆ `ptype α ∆ `ptype Int ∆ `ptype Bool

∆ `type τ1 ∆ `type τ2

∆ `ptype τ1 (τ2

∆ `type τi
i∈1...n

∆ `ptype τ1 � · · ·� τn

∆, ξ `type τ

∆ `ptype ∀ξ. τ

∆, ξ `type τ

∆ `ptype ∃ξ. τ

∆, α `type τ

∆ `ptype ∀α. τ

∆, α `type τ

∆ `ptype ∃α. τ

∆, α `type τ

∆ `ptype ∀α. τ

∆, α `type τ

∆ `ptype ∃α. τ

∆ `region ρ ∆ `type τ

∆ `ptype Ref ρ τ

∆ `region ρ

∆ `ptype Hnd ρ

∆ `region ρ

∆ `ptype Cap ρ

∆, % `type τ

∆ `ptype ∀%. τ

∆, % `type τ

∆ `ptype ∃%. τ

∆ `type τ

α ∈ dom(∆)

∆ `type α

∆ `qual q ∆ `ptype τ

∆ `type
qτ

∆ `region ρ

% ∈ dom(∆)

∆ `region % ∆ `region r

Figure C.20: Static semantics of rgnURAL (qualifiers, pre-types, types, and regions)

325

∆; Γ; Σ `exp e : τ

∆ `qual q

∆; ·; {} `exp
qi : qInt

∆ `qual q ∆ ` Γ; Γ1 � Γ2 ∆ ` Σ; Σ1 � Σ2

∆; Γ1; Σ1 `exp e1 : q1 Int ∆; Γ2; Σ2 `exp e2 : q2 Int

∆; Γ; Σ `exp
q(e1 ⊕ e2) : qInt

∆ `qual q ∆ ` Γ; Γ1 � Γ2 ∆ ` Σ; Σ1 � Σ2

∆; Γ1; Σ1 `exp e1 : q1 Int ∆; Γ2; Σ2 `exp e2 : q2 Int

∆; Γ; Σ `exp
q(e1 < e2) : qBool

∆ `qual q

∆; ·; {} `exp
qb : qBool

∆ ` Γ; Γ1 � Γ2 ∆ ` Σ; Σ1 � Σ2

∆; Γ1; Σ1 `exp eb : qBool ∆; Γ2; Σ2 `exp et : τ ∆; Γ2; Σ2 `exp ef : τ

∆; Γ; Σ `exp if eb then et else ef : τ

Figure C.21: Static semantics of rgnURAL (expressions (I))

326

∆; Γ; Σ `exp e : τ

∆ `type τ

∆; ·, x:τ ; {} `exp x : τ

Weak

∆ ` Γ; Γ1 � Γ2 ∆ ` Γ1 � A ∆; Γ2; Σ ` e : τ

∆; Γ; Σ `exp e : τ

∆ `qual q ∆ ` Γ � q ∆ ` Σ � q ∆; Γ, x:τx; Σ `exp e : τ

∆; Γ; Σ `exp
qλx:τx. e : q(τx (τ)

∆ ` Γ; Γf � Γa ∆ ` Σ; Σf � Σa

∆; Γf ; Σf `exp ef : q(τx (τ) ∆; Γa; Σa `exp ea : τx

∆; Γ; Σ `exp ef ea : τ

∆ `qual q ∆ ` Γ; Γ1 � · · ·� Γn ∆ ` Σ; Σ1 � · · ·� Σn

∆; Γi; Σi `exp ei : τi
i∈1...n ∆ ` τi � q i∈1...n

∆; Γ; Σ `exp
q〈e1, . . . , en〉 : q(τ1 � · · ·� τn)

∆ ` Γ; Γa � Γb ∆ ` Σ; Σa � Σb

∆; Γa; Σa ` ea : q(τ1 � · · ·� τn) ∆; Γb, x1:τ1, . . . , xn:τn; Σb `exp eb : τ

∆; Γ; Σ `exp let 〈x1, . . . , xn〉 = ea in eb : τ

Figure C.22: Static semantics of rgnURAL (expressions (II))

327

∆; Γ; Σ `exp e : τ

∆ `qual q ∆ ` Γ � q ∆ ` Σ � q ∆, ξ; Γ; Σ `exp e : τ

∆; Γ; Σ `exp
qΛξ. e : q(∀ξ. τ)

∆; Γ; Σ `exp ef : q(∀ξ. τ) ∆ `qual qa

∆; Γ; Σ `exp ef [qa] : τ [qa/ξ]

∆ `qual q ∆; Γ; Σ `exp e2 : τ [q1/ξ] ∆ ` τ [q1/ξ] � q

∆; Γ; Σ `exp
qpack(q1, e2) : q(∃ξ. τ)

∆ ` Γ; Γa � Γb ∆ ` Σ; Σa � Σb

∆; Γa; Σa ` ea : q(∃ξ. τx) ∆ `type τ ∆, ξ; Γb, x:τx; Σb ` eb : τ

∆; Γ; Σ `exp let pack(ξ, x) = ea in eb : τ

∆ `qual q ∆ ` Γ � q ∆ ` Σ � q ∆, α; Γ; Σ `exp e : τ

∆; Γ; Σ `exp
qΛα. e : q(∀α. τ)

∆; Γ; Σ `exp ef : q(∀α. τ) ∆ `ptype τa

∆; Γ; Σ `exp ef [τa] : τ [τa/α]

Figure C.23: Static semantics of rgnURAL (expressions (III))

328

∆; Γ; Σ `exp e : τ

∆ `qual q ∆; Γ; Σ `exp e2 : τ [τ 1/α] ∆ ` τ [τ 1/α] � q

∆; Γ; Σ `exp
qpack(τ 1, e2) : q(∃α. τ)

∆ ` Γ; Γa � Γb ∆ ` Σ; Σa � Σb

∆; Γa; Σa ` ea : q(∃α. τx) ∆ `type τ ∆, α; Γb, x:τx; Σb ` eb : τ

∆; Γ; Σ `exp let pack(α, x) = ea in eb : τ

∆ `qual q ∆ ` Γ � q ∆ ` Σ � q ∆, α; Γ; Σ `exp e : τ

∆; Γ; Σ `exp
qΛα. e : q(∀α. τ)

∆; Γ; Σ `exp ef : q(∀α. τ) ∆ `type τa

∆; Γ; Σ `exp ef [τa] : τ [τa/α]

∆ `qual q ∆; Γ; Σ `exp e2 : τ [τ1/α] ∆ ` τ [τ1/α] � q

∆; Γ; Σ `exp
qpack(τ1, e2) : q(∃α. τ)

∆ ` Γ; Γa � Γb ∆ ` Σ; Σa � Σb

∆; Γa; Σa `exp ea : q(∃α. τx) ∆ `type τ ∆, α; Γb, x:τx; Σb ` eb : τ

∆; Γ; Σ `exp let pack(α, x) = ea in eb : τ

∆ ` Γ; Γa � Γb

∆ ` Σ; Σa � Σb ∆; Γa; Σa `exp ea : τx ∆; Γb, x:τx; Σb ` eb : τ

∆; Γ; Σ `exp let x = ea in eb : τ

Figure C.24: Static semantics of rgnURAL (expressions (IV))

329

∆; Γ; Σ `exp e : τ

∆ `qual qc ∆ `qual qh

∆; ·; {} `exp
qc,qhnewrgn : L(∃%. L(qc(Cap %) � qh(Hnd %)))

∆ ` Γ; Γc � Γh ∆ ` Σ; Σc � Σh

∆; Γc; Σc `exp ec : qc(Cap ρ) ∆ ` A � qc ∆; Γh; Σh `exp eh : qh(Hnd ρ)

∆; Γ; Σ `exp freergn ec eh : L1�

New(Any)

∆ `qual qr ∆ ` Γ; Γc � Γh � Γa

∆ ` Σ; Σc � Σh � Σa ∆; Γc; Σc `exp ec : qc(Cap ρ)

∆; Γh; Σh `exp eh : qh(Hnd ρ) ∆; Γa; Σa `exp e? : τ ∆ ` τ � A

∆; Γ; Σ `exp
qrnew ec eh e? : L(qc(Cap ρ) � qr(Ref ρ τ))

New(R,L)

∆ `qual qr ∆ ` Γ; Γc � Γh � Γa

∆ ` Σ; Σc � Σh � Σa ∆; Γc; Σc `exp ec : qc(Cap ρ)

∆; Γh; Σh `exp eh : qh(Hnd ρ) ∆; Γa; Σa `exp e? : τ ∆ ` R � qr

∆; Γ; Σ `exp
qrnew ec eh e? : L(qc(Cap ρ) � qr(Ref ρ τ))

∆ ` Γ; Γc � Γr ∆ ` Σ; Σc � Σr

∆; Γc; Σc `exp ec : qc(Cap ρ) ∆; Γr; Σr `exp er : qr(Ref ρ τ) ∆ ` A � qr

∆; Γ; Σ `exp free ec er : L(qc(Cap ρ) � τ)

Figure C.25: Static semantics of rgnURAL (expressions (V))

330

∆; Γ; Σ `exp e : τ

∆ ` Γ; Γc � Γr ∆ ` Σ; Σc � Σr

∆; Γc; Σc `exp ec : qc(Cap ρ) ∆; Γr; Σr `exp er : qr(Ref ρ τ) ∆ ` τ � R

∆; Γ; Σ `exp read ec er : L(qc(Cap ρ) � qr(Ref ρ τ) � τ)

Write(Weak)

∆ ` Γ; Γc � Γr � Γ?

∆ ` Σ; Σc � Σr � Σ? ∆; Γc; Σc `exp ec : qc(Cap ρ)

∆; Γr; Σr `exp er : qr(Ref ρ τ) ∆ ` τ � ∆; Γ?; Σ? `exp e? : τ

∆; Γ; Σ `exp write ec er e? : L(qc(Cap ρ) � qr(Ref ρ τ))

Write(Strong)

∆ ` Γ; Γc � Γr � Γ? ∆ ` Σ; Σc � Σr � Σ?

∆; Γc; Σc `exp ec : qc(Cap ρ) ∆; Γr; Σr `exp er : qr(Ref ρ τ)

∆ ` τ � A ∆; Γ?; Σ? `exp e? : τ? ∆ ` A � qr ∆ ` τ? � qr

∆; Γ; Σ `exp write ec er e? : L(qc(Cap ρ) � qr(Ref ρ τ?))

Figure C.26: Static semantics of rgnURAL (expressions (VI))

331

∆; Γ; Σ `exp e : τ

Swap(Weak)

∆ ` Γ; Γc � Γr � Γ?

∆ ` Σ; Σc � Σr � Σ? ∆; Γc; Σc `exp ec : qc(Cap ρ)

∆; Γr; Σr `exp er : qr(Ref ρ τ) ∆; Γ?; Σ? `exp e? : τ

∆; Γ; Σ `exp swap ec er e? : L(qc(Cap ρ) � qr(Ref ρ τ) � τ)

Swap(Strong)

∆ ` Γ; Γc � Γr � Γ? ∆ ` Σ; Σc � Σr � Σ?

∆; Γc; Σc `exp ec : qc(Cap ρ) ∆; Γr; Σr `exp er : qr(Ref ρ τ)

∆; Γ?; Σ? `exp e? : τ? ∆ ` A � qr ∆ ` τ? � qr

∆; Γ; Σ `exp swap ec er e? : L(qc(Cap ρ) � qr(Ref ρ τ?) � τ)

∆ `qual q ∆ ` Γ � q ∆ ` Σ � q ∆, α; Γ; Σ `exp e : τ

∆; Γ; Σ `exp
qΛ%. e : q(∀%. τ)

∆; Γ; Σ `exp ef : q(∀%. τ) ∆ `region ρa

∆; Γ; Σ `exp ef [ρa] : τ [ρa/%]

∆ `qual q ∆; Γ; Σ `exp e2 : τ [ρ1/%] ∆ ` τ [ρ1/%] � q

∆; Γ; Σ `exp
qpack(ρ1, e2) : q(∃%. τ)

∆ ` Γ; Γa � Γb ∆ ` Σ; Σa � Σb

∆; Γa; Σa `exp ea : q(∃%. τx) ∆ `type τ ∆, α; Γb, x:τx; Σb ` eb : τ

∆; Γ; Σ `exp let pack(%, x) = ea in eb : τ

Figure C.27: Static semantics of rgnURAL (expressions (VII))

332

∆; Γ; Σ `exp e : τ

∆ `type τ

∆; ·; {l 7→ τ} `exp l : τ

Weak(Store)

∆ ` Σ; Σ1 � Σ2 ∆ ` Σ1 � A ∆; Γ; Σ2 ` e : τ

∆; Γ; Σ `exp e : τ

Figure C.28: Static semantics of rgnURAL (expressions (VIII))

Figures C.21–C.27 repeat the rules from Figures 4.17–4.24 in order to demon-

strate the manner in which store types are propagated through the rules given in

Section 4.2.3. In particular, note that the store type is treated in much the same

manner as the value context: it is split in rules with multiple sub-expressions and

it is bounded by a qualifier in rules that introduce closures. Like assumptions in

the value context, splitting and bounding the store type ensures that each of the L

and A values from the store is exclusively “owned” by exactly one sub-expression.

Hence, we may see that the store type does not uniformly represent the type of the

entire global store; rather, it represents the types of those locations in the global

store which are “local” to an expression.

This interpretation is no clearer than in the typing rules for locations (see

Figure C.28). Note that the rule demands that the store type expresses only the

type of the location in question. Finally, the Weak(Store) rule demonstrates one

more point of comparison with the treatment of the value context. This rule splits

the store type into a sub-store type used to type the expression e ad a discardable

sub-store type consisting of U and A locations that are not required to type the

expression. Hence, the Weak(Store) rule acts as a strengthened Weakening

property at the level of store types.

333

Σ; H ` v : τ

{}; {} `val
qi : qInt {}; {} `val

qb : qBool

· ` Σ � q ·; ·, x:τx; Σ `exp e : τ

Σ; {} `val
q(λx:τx. e) : q(τx (τ)

∆ ` Σ; {l1 7→ τ1}� · · ·� {ln 7→ τn} · ` τi � q i∈1...n

Σ; {} `val
q〈l1, . . . , ln〉 : q(τ1 � · · ·� τn)

· ` Σ � q ·, ξ; ·; Σ `exp e : τ

Σ; {} `val
q(Λξ. e) : q(∀ξ. τ)

· ` τ [q1/ξ] � q

{l2 7→ τ [q1/ξ]}; {} `val
qpack(q1, l2) : q(∃ξ. τ)

· ` Σ � q ·, α; ·; Σ `exp e : τ

Σ; {} `val
q(Λα. e) : q(∀α. τ)

· ` τ [τ 1/α] � q

{l2 7→ τ [τ 1/α]}; {} `val
qpack(τ 1, l2)) : q(∃α. τ)

· ` Σ � q ·, α; ·; Σ `exp e : τ

Σ; {} `val
q(Λα. e) : q(∀α. τ)

· ` τ [τ1/α] � q

{l2 7→ τ [τ1/α]}; {} `val
qpack(τ1, l2)) : q(∃α. τ)

Figure C.29: Static semantics of rgnURAL (values (I))

334

Σ; H ` v : τ

{}; {r 7→ (abs, {p 7→ (q, τ)})} `val
q(ref r p) : q(Ref r τ)

{}; {r 7→ (abs, {})} `val
q(hnd r) : q(Hnd r)

{}; {r 7→ (qpre, {})} `val
q(cap) : q(Cap r)

· ` Σ � q ·, %; ·; Σ `exp e : τ

Σ; {} `val
q(Λ%. e) : q(∀%. τ)

· ` τ [ρ1/%] � q

{l2 7→ τ [ρ1/%]}; {} `val
qpack(ρ1, l2) : q(∃%. τ)

Figure C.30: Static semantics of rgnURAL (values (II))

Values The typing rules for values are, for the most part, simple adaptations of

the typing rules for the corresponding expression forms. Figures C.29 and C.30

present the typing rules for the judgment Σ; H `val v : τ , which asserts that under

the store type Σ and heap type H, the value v has the type τ . Recall that val-

ues are closed; hence, the judgment for values has no dependency on a qualifier,

pre-type, type, and region context ∆ or a value context Γ. Furthermore, values

include references, handles, and capabilities; hence, the judgment for values has a

dependency on a heap type H.

One significant difference between the typing rules for values and the typing

rules for expressions is that the judgment Σ; H `val v : τ does not include any rules

for weakening the store type Σ or the heap type H.

The typing rules for references, handles, and capabilities in Figure C.30 show

that, like the store type Σ, the heap type H does not uniformly represent the type of

335

the entire global heap; rather, it represents the portion of the global heap which is

“local” to a value. In particular, the rule for a reference q(ref r p) demands a heap

type of the form {r 7→ (abs, {p 7→ (q, τ)})}, which expresses only the type of the

pointer in question and indicates that the capability for r is absent from the value.

The rule for a handle q(hnd r) demands a heap type of the form {r 7→ (abs, {})},

which indicates that the capability for r is absent from the value. Finally, the

rule for a capability q(cap) demands a heap of the form {r 7→ (qpre, {})}, which

indicates that the capability for r is present in the value.

Program states, heaps, and stores The recursion between stores and heaps

(namely, that stores map locations to values, including reference pointers, and

heaps map region names to regions, which map pointers to locations) means that

the judgments that assign store types to stores and heap types to heaps are inter-

dependent. In order to keep the system comprehensible, we isolate this interde-

pendence in the typing rule for program states (Figure C.31). Before examining

this rule in detail, we introduce the typing judgments:

• H′ ` σ : Σ asserts that, under the heap type H′, the store σ has the store

type Σ. As we have noted above, a store type does not uniformly represent

the type of the entire store. Here, the store type Σ represents only the types

of locations in the store σ that must be used to type check the heap and

expression in the program state; in particular, it need not include the types

of location used to type check other values in the store.

• Σ′ ` H : H asserts that under the store type Σ′, the heap H has the heap

type H. Here, the heap type H does represent the type of the entire heap

that must be used to type check the store in the program state.

336

` (σ; H) : Σ′ and ` (σ; H; e) : τ

Hσ ` σ : Σ ΣH ` H : Hσ · ` Σ; ΣH � Σ′

` (σ; H) : Σ′

` (σ; H) : Σe ·; ·; Σe `exp e : τ

` (σ; H; e) : τ

Figure C.31: Static semantics of rgnURAL (program state)

• ` (σ; H) : Σ′ asserts that the store and heap are consistent. Here, the store

type Σ′ represents only the types of locations in the store σ that must be

used to type check the expression in the program state; in particular, it need

include the types of locations used to type check other values in the store or

other locations in the heap.

• ` (σ; H; e) : τ asserts that a complete program state, consisting of a store,

heap, and expression, is consistent; furthermore, the expression e has the

type τ .

We first consider the typing rule for program states (Figure C.31). The first

rule asserts the existence of a heap type (Hσ) and three store types (Σ, ΣH , and

Σ′). The heap type Hσ is the type of the heap H and is used to type check the

store σ. The store type Σ is the type of the store σ and is split into ΣH and Σ′;

the store type ΣH is used to type check the heap H, while the store type Σ′ is “left

over”, and will be used to type check the expression in a complete program state.

Note that the use of Hσ and ΣH as both type checking assumptions and as type

checking results ensures that the store and heap are consistent.

337

The second rule simply requires that, in a complete program state, the store

typing Σe that is “left over” from type checking the store σ and heap H is used to

type check the expression e.

Next, we consider the typing rules for the judgment Σ′ ` H : H and the sup-

porting judgments Σ′ ` R : R, ` τ ↓ q, and ` υ : Υ (Figure C.32).

The judgment ` υ : Υ ensures that a region mark is consistent with its corre-

sponding region token. If the region is allocated (qlive), then a capability for the

region must be present (first rule), unless the newrgn primitive that allocated the

region was annotated as unrestricted or affine (q v A), in which case, the capabil-

ity for the region may be absent (second rule). If the region is deallocated (dead),

then the capability for the region must be absent (third rule).

The judgment ` τ ↓ q formalizes the safe combinations of qualifiers for a ref-

erence and type for its contents, as were given in Figure 4.22. In particular, it

ensures that unrestricted and affine references may only store unrestricted and

affine types, while relevant and linear references may store any type.

The judgment Σ′ ` R : R asserts that, under the store type Σ′, the region R

has the region type R. An empty region requires an empty store type and yields

an empty region type (first rule). A non-empty region may be disjointly split into

a region R and a distinguished binding {p 7→ (q, l)} (second and third rules). In

the second rule, the store type Σ′ is split into Σ′
R, which is used to type check

the region R, and {l 7→ τ}, which gives the type of the contents of the reference;

furthermore, the qualifier for the reference and the type for its contents must be

a safe combination. In the third rule, an unrestricted or affine reference may have

been dropped; hence, we do not add a binding {p 7→ (q, τ)} to the region type,

since there will be no q(ref r p) value in the program state to use the binding.

338

` υ : Υ

` qlive : qpre

q v A

` qlive : abs ` dead : abs

` τ ↓ q

· ` τ � A

` τ ↓ U ` τ ↓ R

· ` τ � A

` τ ↓ A ` τ ↓ L

Σ′ ` R : R

{} ` {} : {}

· ` Σ′
; Σ′

R � {l 7→ τ} Σ′
R ` R : R ` τ ↓ q

Σ′ ` R] {p 7→ (q, l)} : R] {p 7→ (q, τ)}

Σ′ ` R : R q v A

Σ′ ` R] {p 7→ (q, l)} : R

Σ′ ` H : H

{} ` {} : {}

· ` Σ′
; Σ′

H � Σ′
R Σ′

H ` H : H ` υ : Υ Σ′
R ` R : R

Σ′ ` H] {r 7→ (υ,R)} : H] {r 7→ (Υ, R)}

Figure C.32: Static semantics of rgnURAL (heap)

339

H′ ` σ : Σ

∀r′ ∈ dom(H′). H′(r′) = (abs, {})

H′ ` {} : {}

` H′
; H′

σ � H′
v H′

σ ` σ : Σσ ` Σσ ; Σv � Σ Σv; H
′
v `val v : τ

H′ ` σ] {l 7→ (f, v)} : Σ] {l 7→ τ}

H′ ` σ : Σ q v A

H′ ` σ] {l 7→ (f, qv)} : Σ

H′ ` σ : Σ q v R

H′ ` σ] {l 7→ (used, qv)} : Σ

Figure C.33: Static semantics of rgnURAL (store)

Finally, the judgment Σ′ ` H : H asserts that under the store type Σ′, the heap

H has the heap type H. An empty heap requires an empty store type and yields

an empty heap type (first rule). In the second rule, a non-empty heap is disjointly

split into a heap H and a distinguished binding {r 7→ (υ,R)}. The store type Σ′

is split into Σ′
H , which is used to type check the heap H, and Σ′

R, which is used to

type check the region R; furthermore, the region mark υ must be consistent with

the region token Υ.

Note that the heap type H has a binding {r 7→ (Υ, R)} for every binding

{r 7→ (υ,R)} in the heap H.

Lastly, we consider the typing rules for the judgment H′ ` σ : Σ (Figure C.33).

This judgment asserts that, under the heap type H′, the store σ has the store type

Σ. An empty store requires an (effectively) empty heap type and yields an empty

store type (first rule). As noted above, since a heap type has a binding for every

binding in the heap, the rule for an empty store may not require an empty heap

340

type {}. Rather, it requires a heap type that includes only bindings of the form

{r′ 7→ (abs, {})}, which is effectively empty.

A non-empty store may be disjointly split into a store σ and a distinguished

binding {l 7→ (f, v)} (second, third, and fourth rules). In the second rule, the heap

type H′ is split into H′
σ, which is used to type check the store σ, and H′

v, which

is used to type check the value v. However, type checking a value requires both a

store typing and a heap typing. We find the store typing used to type check the

value by splitting the store type Σσ (the store type of the store σ) into Σv and Σ.

Splitting the store type in this manner ensures that an affine or linear value from

the store σ is used either to type check the value v or is propagated to type check

another portion of the program state. Hence, this rule ensures that locations for

linear values in the store appear exactly once in the program state.

On the other hand, locations for affine values in the store must appear at most

once in the program state and locations for unrestricted values may appear an

arbitrary number of times (including zero times). The third rule covers this case:

we do not add a binding {l 7→ τ} to the store type, since there will be no l in the

program state to use the binding.

Similarly, locations for relevant values in the store must appear at least once

in the program state until the value is used ; once the value has been used at least

once, it need not appear in the program state. The fourth rule covers this case:

we do not add a binding {l 7→ τ} to the store type, since there will be no l in the

program state to use the binding.

Note that this formulation of the static semantics, along with the allocation

semantics in Appendix C.1.1, captures much of the behavior we expect from sub-

structurally qualified data structures. In particular, the program state will not

341

type check unless locations bound to linear values appear exactly once in the pro-

gram state, locations bound to affine values appear at most, locations bound to

relevant values appear at least once until they are used (at which point, they may

appear an arbitrary number of times), and locations abound to unrestricted values

appear an arbitrary number of times.

Surface syntax We note that store types and heap types are purely technical

devices that are used to prove type soundness. Since the surface syntax does not

admit explicitly named locations, we can type any closed, surface expression with

the judgment ·; ·; · `exp e : τ . Pushing this empty store type through the rules leads

the type rules in Figures 4.17–4.24 and the type system presented in Section 4.2.3,

which is sufficient for type-checking surface programs.

C.2 Type Soundness for rgnURAL

In this section, we sketch a syntactic proof of type soundness [96]. We wish to prove

that a well-typed, closed initial program either terminates (returning a location of

the correct type) or may continue to take evaluation steps. A progress theorem and

a preservation (subject reduction) theorem make this theorem an easy corollary.

The proofs are relatively straightforward, albeit tedious; we briefly discuss the

most interesting components.

The Progress Theorem states that any well-typed program state, for which the

expression is not already a location, may take an evaluation step.

Theorem C.1 (rgnURAL Progress)

If ` (σ1; H1; e1) : τ (i.e., if ` (σ1; H1) : Σ1 and ·; ·; Σ1 `exp e1 : τ), then

342

either there exists l such that e1 ≡ l or there exists σ2 and H2 and e2 such

that (σ1; H1; e1) 7−→ (σ2; H2; e2).

The proof is by induction on the derivation ·; ·; Σ1 `exp e : τ . In order to carry

out the proof, we require a number of lemmas stating that various store and heap

manipulations are implied by the well-typedness of the store and heap.

A representative sample of these lemmas are the following:

Lemma C.2

If H ` σ : Σ, then there exists σ′ and l′ such that (σ; v)
alloc−−→ (σ′; l′).

Lemma C.3

If H ` σ : Σ and · ` Σ; {l 7→ τ}� Σ′, then there exists σ′, v, such that

(σ; l)
fetch−−→ (σ′; v).

Lemma C.4

If Σ ` H : H′, then there exists H ′ and r′ such that (H; qc)
newrgn−−−−→ (H ′; r′).

Lemma C.5

If Σ ` H : H and ` H; {r 7→ (qcpre, {})}� H′, then there exists H ′ such

that (H; r)
freergn−−−→ H ′.

Lemma C.6

If Σ ` H : H and ` H; {r 7→ (qcpre, {p 7→ (qr, τ)})}� H′, then there

exists H ′ and l′ such that (H; r; p; l?)
swap−−→ (H ′; l′).

343

The proofs of each of these lemmas is either immediate or by induction on the

store-typing derivation or the heap-typing derivation.

The Preservation Theorem states that the evaluation of a well-typed program

state yields a program state of the same type.

Theorem C.7 (rgnURAL Preservation)

If (σ1; H1; e1) 7−→∗ (σ2; H2; e2) and ` (σ1; H1; e1) : τ (i.e., if ` (σ1; H1) : Σ1

and ·; ·; Σ1 `exp e1 : τ), then ` (σ2; H2; e2) : τ (i.e., then ` (σ2; H2) : Σ2 and

·; ·; Σ2 `exp e2 : τ).

The proof is by induction on the simultaneous order of the derivation

(σ1; H1; e1) 7−→ (σ2; H2; e2) and the derivation ·; ·; Σ1 `exp e1 : τ . (Induction over

the expression typing judgment is only needed for the Weak rule.) In order to

carry out the proof, we require a number of lemmas.

The first group of supporting lemmas state that various store and heap ma-

nipulations preserve the well-typedness of the store and heap. A representative

sample of these lemmas are the following:

Lemma C.8

If H1 ` σ1 : Σ1, Σv; Hv `val v : τ , · ` Σ1 ; Σv � Σ′, ` H2 ; Hv � H1, and

(σ1; v)
alloc−−→ (σ2; l), then there exists Σ2 such that H2 ` σ2 : Σ2 and

· ` Σ2 ; {l 7→ τ}� Σ′.

Lemma C.9

If H1 ` σ1 : Σ1, · ` Σ1 ; {l 7→ τ}� Σ′, and (σ1; l)
fetch−−→ (σ2; v), then there

exists H2, Σ2, Σv, and Hv, such that H2 ` σ2 : Σ2, Σv; Hv `val v : τ ,

· ` Σ2 ; Σv � Σ′, and ` H1 ; Hv � H2.

344

Lemma C.10

If Σ ` H1 : H1 and (H1; qc)
newrgn−−−−→ (H2; r), then there exists H2 such that

Σ ` H2 : H2 and · ` H2 ; {r 7→ (qcpre, {})}� H1.

Lemma C.11

If Σ ` H1 : H1, A v qc, ` H1 ; {r 7→ (qcpre, {})}� H′, and

(H1; r)
freergn−−−→ H2, then there exists H2 such that Σ ` H2 : H2 and

` H2 ; {r 7→ (abs, {})}� H′.

Lemma C.12

If Σ1 ` H1 : H1, A v qr, ` τ? ↓ qr,

` H1 ; {r 7→ (qcpre, {p 7→ (qr, τ))}� H′, · ` Σ; {l? 7→ τ?}� Σ1, and

(H1; r; p; l?)
swap−−→ (H2; l), then there exists Σ2 and H2 such that

Σ2 ` H2 : H2, ` H2 ; {r 7→ (qcpre, {p 7→ (qr, τ?))}� H′, and

· ` Σ; {l 7→ τ}� Σ2.

Lemma C.13

If Σ1 ` H1 : H, ` H; {r 7→ (qcpre, {p 7→ (qr, τ))}� H′,

· ` Σ; {l? 7→ τ}� Σ1, and (H1; r; p; l?)
swap−−→ (H2; l), then there exists Σ2

such that Σ2 ` H2 : H, and · ` Σ; {l 7→ τ}� Σ2.

As with the corresponding progress lemmas, the proofs of each of these lemmas is

either immediate or by induction on the store-typing derivation or the heap-typing

derivation.

The next lemma required by the proof of the Preservation Theorem is a stan-

dard substitution lemma. Note that a general substitution (i.e., one that arbitrary

expressions for variables), is not type preserving:

345

False Conjecture C.14

If ∆; Γe+x; Σe `exp e : τ , ∆; Γe′ ; Σe′ `exp e′ : τ ′, ∆ ` Σ; Σe � Σe′,

∆ ` Γe+e′ ; Γe � Γe+e′, ∆ ` Γe+x ; Γe � ·, x:τ ′, and x /∈ dom(Γe), then

∆; Γe+e′ ; Σe+e′ `exp e[e′/x] : τ .

As a simple counter example, consider the following instantiation of the conjecture:

·; ·, x:UInt; {} `exp
L〈x, x〉 : L(UInt � UInt)

·; ·, f :L(L1� (UInt); {} `exp f L〈〉 : UInt

· ` {}; {}� {}

· ` ·, f :L(L1� (UInt); ·� ·, f :L(L1� (UInt)

· ` ·, x:UInt; ·� ·, x:UInt

x /∈ dom(·)

It should be clear that the corresponding consequent does not hold:

·; ·, f :L(L1� (UInt); {} `exp
L〈f L〈〉, f L〈〉〉 : L(UInt � UInt)

since the linear variable f is used more than once in expression L〈f L〈〉, f L〈〉〉.

Instead, we require a more specific substitution lemma. We note that a loca-

tion is the only expression form that is substituted for variables in the allocation

semantics. Hence, we may state the substitution lemma for this specific case:

Lemma C.15

If ∆; Γe+x; Σe `exp e : τ , ∆ ` Σe+l ; Σe � {l 7→ τ ′},

∆ ` Γe+x ; Γe � ·, x:τ ′, and x /∈ dom(Γe), then ∆; Γe; Σe+l `exp e[l/x] : τ .

The proof is by induction on the derivation ∆; Γ; Σe `exp e : τ .

Finally, the most interesting portion of the proof of the Preservation Theorem

is a group of lemmas stating that typing derivations for stores and heaps with

346

“garbage” in the store and heap types may be transformed into derivations that

omit the “garbage” from the store and heap types:

Lemma C.16

If H ` σ : Σ, · ` Σ; Σg � Σ′, and · ` Σg � A, then there exists Hg and H′

such that H′ ` σ : Σ′, ` H; Hg � H′, and ` Hg v A.

Lemma C.17

If Σ ` H : H, ` H; Hg � H′, and ` Hg v A, then there exists Σg and Σ′

such that Σ′ ` H : H′, · ` Σ; Σg � Σ′, and · ` Σg � A.

Lemma C.18

If ` (σ; H) : Σ, · ` Σ; Σg � Σ′, and · ` Σg � A, then ` (σ; H) : Σ′.

The proofs of the first and second lemmas are by induction on the derivations

H ` σ : Σ and Σ ` H : H, respectively.

The proof of the third lemma is much more subtle. Consider a näıve proof

attempt.

Proof Attempt (Lemma C.18)

We assume that ` (σ; H) : Σ1, · ` Σ1 ; Σg1 � Σ, and · ` Σg1 � A. We note

that there is only one rule for the judgment ` (σ; H) : Σ; by inversion of this

rule, there exists Hσ1, Σ′
1, and ΣH1 such that Hσ1 ` σ : Σ′

1, ΣH1 ` H : Hσ1,

and · ` Σ′
1 ; ΣH1 � Σ1. By the associativity and commutativity of �, it fol-

lows that there exists Σ′
2 such that · ` Σ′

2 ; ΣH1 � Σ and · ` Σ′
1 ; Σg1 � Σ′

2.

Applying Lemma C.16 to Hσ1 ` σ : Σ′
1, · ` Σ′

1 ; Σg1 � Σ′
2, and · ` Σg1 � A,

we conclude that there exists Hg1 and Hσ2 such that Hσ2 ` σ : Σ′
2,

` Hσ1 ; Hg1 � Hσ2 and ` Hg1 v A.

347

Applying Lemma C.17 to ΣH1 ` H : Hσ1, ` Hσ1 ; Hg1 � Hσ2, and

` Hg1 v A, we conclude that there exists Σg2 and ΣH2 such that

ΣH2 ` H : Hσ2, ` ΣH1 ; Σg2 � ΣH2 and · ` Σg2 � A.

By the associativity and commutativity of �, it follows that there exists Σ2

such that · ` Σ2 ; Σg2 � Σ and · ` Σ′
2 ; ΣH2 � Σ2.

Note that we may construct the derivation:

Hσ2 ` σ : Σ′
2 ΣH2 ` H : Hσ2 · ` Σ′

2 ; ΣH2 � Σ2

` (σ; H) : Σ2

We also have that · ` Σ2 ; Σg2 � Σ and · ` Σg2 � A.

At this point in the proof, it appears as though we are in a position to induc-

tively apply the lemma (as in a proof by induction). However, the constructed

derivation ` (σ; H) : Σ2 is not a sub-derivation of ` (σ; H) : Σ1; nor it is not nec-

essarily the case that Σg2 is smaller than Σg1. Furthermore, we must establish

that pushing “garbage” through the store type and heap typing eventually stops

producing more “garbage”.

The solution is to first prove a lemma relating the sizes of a store type and its

splitting:

Lemma C.19

If · ` Σ; Σ1 � Σ2, then either Σ2 = Σ or |Σ2| < |Σ|.

On more auxiliary lemma exposes a sufficiently strong induction hypothesis:

Lemma C.20

If ΣH1 ` H : Hσ1, · ` Σ′
2 ; ΣH1 � Σ, · ` Σ′

1 ; Σg1 � Σ′
2, Hσ1 ` σ : Σ′

1,

· ` Σg1 � A, then there exists ΣH2, Hσ2, and Σ′
3 such that ΣH2 ` H : Hσ2,

· ` Σ′
3 ; ΣH2 � Σ, Hσ2 ` σ : Σ′

3.

348

Proof (Lemma C.20)

The proof is by strong induction on |Σ′
1|. Applying Lemma C.19 to · ` Σ′

1 ;

Σg1 � Σ′
2, we conclude that either Σ′

2 = Σ′
1 or |Σ′

2| < |Σ′
1|.

Suppose Σ′
2 = Σ′

1. Take ΣH2 = ΣH1, Hσ2 = Hσ1, and Σ′
3 = Σ′

2. Note that

ΣH1 ` H : Hσ1, · ` Σ′
2 ; ΣH1 � Σ, Hσ1 ` σ : Σ′

2.

Suppose |Σ′
2| < |Σ′

1|. Applying Lemma C.16 to Hσ1 ` σ : Σ′
1,

· ` Σ′
1 ; Σg1 � Σ′

2, and · ` Σg1 � A, we conclude that there exists Hg1 and

Hσ2 such that Hσ2 ` σ : Σ′
2, ` Hσ1 ; Hg1 � Hσ2 and ` Hg1 v A.

Applying Lemma C.17 to ΣH1 ` H : Hσ1, ` Hσ1 ; Hg1 � Hσ2, and

` Hg1 v A, we conclude that there exists Σg2 and ΣH2 such that

ΣH2 ` H : Hσ2, ` ΣH1 ; Σg2 � ΣH2 and · ` Σg2 � A.

By the associativity and commutativity of �, it follows that there exists Σ?

such that · ` Σ? ; ΣH2 � Σ and · ` Σ′
2 ; Σg1 � Σ?.

Applying the induction hypothesis to ΣH2 ` H : Hσ2, · ` Σ? ; ΣH2 � Σ,

· ` Σ′
2 ; Σg2 � Σ?, Hσ2 ` σ : Σ′

2, and · ` Σg2 � A, and noting that

|Σ′
2| < |Σ′

1|, we conclude that there exists ΣH2, Hσ2, and Σ′
3 such that

ΣH2 ` H : Hσ2, · ` Σ′
3 ; ΣH2 � Σ, Hσ2 ` σ : Σ′

3.

The proof of Lemma C.18 follows as a simple corollary of Lemma C.20.

We require these “garbage” lemmas in order to discard the store type left over

from inverting the expression typing derivation for a location:

Lemma C.21

If ·; ·; Σ ` l : τ , then there exists Σg such that · ` Σ; Σg � {l 7→ τ} and

· ` Σg � A.

349

The proof is by induction on ·; ·; Σ ` l : τ , accumulating the “garbage” store type

from instances of the Weak(Store) rule.

The Soundness theorem follows directly from the Progress and Preservation

Theorems.

Theorem C.22 (rgnURAL Soundness)

If ` (σ1; H1; e1) : τ and (σ1; H1; e1) 7−→∗ (σ2; H2; e2), then either there exists

l such that e2 ≡ l or there exists σ3 and H3 and e3 such that

(σ2; H2; e2) 7−→ (σ3; H3; e3).

Mechanized proof

We have carried out and mechanically-verified the soundness proof of rgnURAL

in the Twelf system [66] using its metatheorem checker [71, 36, 37]. We con-

sider the major differences between the presentation of the rgnURALlanguage in

Appendix C.1 and its encoding in the mechanized proof.

Stores, heaps, and regions It turns out that modeling a program state with a

store, considered as a partial map from (α-varying) locations to values (which may

have free occurrences of those locations), is somewhat awkward to encode. The

encoding becomes even more awkward in the presence of a heap of regions, as the

store may have free occurrences of region names from the heap and pointer from

the regions and the heap may have free occurrences of locations from the store.

Hence, to simplify the formulation, a store is represented as a list of loca-

tion/flag/value triples, where locations are isomorphic to the natural numbers:

350

st : type. %name st S.

nil_st : st.

cons_st : loc -> flag -> val -> st -> st.

which is essentially equivalent to the following:

σ ::= • | l 7→ (f, v), σ

The representations of regions and of heaps are analogous: a list of

pointer/constant qualifier/location triples and a list of region name/region

mark/region triples, respectively.

Our syntactic form for stores in Appendix C.1.1 implicitly required that a

store does not contain duplicate bindings for the same location. A simple means

of maintaining this invariant in the mechanized proof is to ensure that the locations

in the store are kept in a sorted order, and to ensure that new locations are greater

than any current location. We capture this invariant with a store well-formedness

judgment:

st_wf : st -> type.

st_wf_nil : st_wf nil_st.

st_wf_cons_nil : st_wf (cons_st L F V nil_st).

st_wf_cons_cons : st_wf (cons_st L’ F’ V’ S’) ->

loc_lt L’ L ->

st_wf (cons_st L F V (cons_st L’ F’ V’ S’)).

which is equivalent the following rules:

` • wf ` l 7→ (f, v), • wf
` l′ 7→ (f′, v′), σ′ wf l′ <loc l

` l 7→ (f′, v′), l′ 7→ (f′, v′), σ′ wf

351

Note that that we could (almost) equally well take this as the definition of

a store. However, it becomes somewhat cumbersome to do so, and there are

relatively few situations where we really need the well-formedness requirement.

Also, note that induction on stores (st) has two cases, while induction on store

well-formedness judgments (st wf) have three cases. Hence, where it is possible

to reason about an arbitrary store, it is expedient to do so.

Store allocation ((σ; v)
alloc−−→ (σ′; l′)) is represented by a judgment:

st_alloc : st -> val -> st -> loc -> type.

st_alloc_nil : st_alloc nil_st V’’

(cons_st zero_loc V’’ unused_flag

nil_st)

zero_loc.

st_alloc_cons : st_alloc (cons_st L’ V’ F’ S’) V’’

(cons_st (next_loc L’) V’’ unused_flag

(cons_st L’ V’ F’ S’))

(next_loc L’).

which is equivalent the following rules:

(•; v)
alloc−−→ (0loc 7→ (unused, v), •; 0loc)

(l′ 7→ (f′, v′), σ′; v)
alloc−−→ (l′ +loc 1loc 7→ (unused, v), (f′, v′), σ′; l′ +loc 1loc)

Note that location 0loc (zero loc) is allocated when the input store is empty;

otherwise the location l′ +loc 1loc (next loc L’) is allocated when the head of the

input store is location l′ (L’). A simple lemma proves that store allocation preserves

store well-formedness.

352

Similar judgments represent the other store, heap, and region manipulations,

each of which maintains well-formedness.

Store, heap, and region types The representation of a store type is analogous

to the representation of a store; a store type is represented as a list of location/type

pairs:

sttp : type. %name sttp ST.

nil_sttp : sttp.

cons_sttp : loc -> tp -> sttp -> sttp.

which is essentially equivalent to the following:

Σ ::= • | l 7→ τ, Σ

As with stores, we have a well-formedness judgment for store types, which requires

that locations in the store type are kept in a sorted order.

This representation of a store type makes the representation of the judg-

ment that splits store types somewhat more cumbersome than the correspond-

ing the judgment given in Appendix C.1.2 (Figure C.18). Store type splitting

(∆ ` Σ; Σ1 � Σ2) is represented by a judgment:

sttp_split : sttp -> sttp -> sttp -> type.

sttp_split_nil__* : sttp_split ST nil_sttp ST.

sttp_split_*__nil : sttp_split ST ST nil_sttp.

353

sttp_split_cons__cons_shared

: sttp_split ST ST1 ST2 ->

|-tpsq T rel_qual ->

sttp_split (cons_sttp L T ST)

(cons_sttp L T ST1)

(cons_sttp L T ST2).

sttp_split_cons__cons_l

: sttp_split ST ST1 (cons_sttp L2 T2 ST2) ->

loc_lt L2 L1 ->

sttp_split (cons_sttp L1 T1 ST)

(cons_sttp L1 T1 ST1)

(cons_sttp L2 T2 ST2).

sttp_split_cons__cons_r

: sttp_split ST (cons_sttp L1 T1 ST1) ST2 ->

loc_lt L1 L2 ->

sttp_split (cons_sttp L2 T2 ST)

(cons_sttp L1 T1 ST1)

(cons_sttp L2 T2 ST2).

which is equivalent the following rules:

∆ ` Σ; •� Σ ∆ ` Σ; Σ � •
∆ ` Σ; Σ1 � Σ2 ∆ ` τ � R

∆ ` l 7→ τ, Σ; l 7→ τ, Σ1 � l 7→ τ, Σ2

354

∆ ` Σ; Σ1 � l2 7→ τ2, Σ2 l2 <loc l1

∆ ` l1 7→ τ1, Σ; l1 7→ τ1, Σ1 � l2 7→ τ2, Σ2

∆ ` Σ; l1 7→ τ1, Σ1 � Σ2 l1 <loc l2

∆ ` l2 7→ τ2, Σ; l1 7→ τ1, Σ1 � l2 7→ τ2, Σ2

Using the store type splitting judgment in the mechanized proof can be tedious.

Induction on the store type splitting judgment requires five cases. Furthermore, we

are required to state, prove, and make extensive use of “obvious” lemmas stating

that the store splitting is a commutative and associative operation with the empty

store as an identity.

The representation and treatment of heap types and region types is analo-

gous. There are well-formedness judgments for heap types and region types, and

the judgments for splitting of heap types and region types make use of the list

representation.

We note that the judgments from Appendix C.1.2 that assign region types to

regions (Σ ` R : R), heap types to heaps (Σ ` H : H), and store types to stores

(Figures C.32 and C.33) are naturally handled by the list representation, since

these rules are defined by a case for an empty object and a number of cases for an

object factored into a sub-object and a distinguished binding.

Higher-order abstract syntax As is customary when representing an object

language in the Twelf system, we representing binding of rgnURAL variables using

higher-order abstract syntax. We use this encoding for value variables, qualifier

variables, pre-type variables, type variables, and region variables.

This representation implicitly uses the LF context to represent the rgnURAL

value context Γ and qualifier, pre-type, type, and region context ∆. Since the

355

LF context treats all bindings as unrestricted (i.e., the LF type system is not

a substructural type system), we must use an auxiliary judgment to codify the

substructural treatment of the value context. This auxiliary judgment asserts that

meta-function (i.e., a piece of higher-order abstract syntax) respects the type of the

abstracted variable (i.e., is linear, affine, relevant, or unrestricted in the variable).

The encoding of the typing rules for value variable binding forms requires that

the higher-order abstract syntax representing the binding respects the type of

the bound variable. This auxiliary judgment is used in the formal proof of the

substitution lemma (Lemma C.15).

We note that no such auxiliary judgment is needed for the qualifier, pre-type,

type, and region context, since these variables may be treated as unrestricted.

356

BIBLIOGRAPHY

[1] Alex Aiken, Manuel Fähndrich, and Raph Levien. Better static memory man-
agement: Improving region-based analysis of higher-order languages. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’95), pages 174–185, June 1995.

[2] Alex Aiken, Jeffrey Foster, John Kodumal, and Tachio Terauchi. Checking and
inferring local non-aliasing. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’03), pages 129–
140, June 2003.

[3] Paulo Almeida. Balloon types: Controlling sharing of state in data types. In
Proceedings of the 11th European Conference on Object-Oriented Programming
(ECOOP’97), pages 32–59, June 1997.

[4] Zena Ariola and Amyr Sabry. Correctness of monadic state: An imperative
call-by-need calculus. In Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’98), pages 62–
74, January 1998.

[5] Anindya Banerjee, Nevin Heintze, and Jon Riecke. Region analysis and the
polymorphic lambda calculus. In Proceedings of the 14th IEEE Symposium
on Logic in Computer Science (LICS’99), pages 88–97, July 1999.

[6] Emery Berger, Benjamin Zorn, and Kathryn McKinley. Reconsidering custom
memory allocation. In Proceedings of the 17th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’02), pages 1–12, November 2002.

[7] Hans Boehm and Mark Weiser. Garbage collection in an uncooperative en-
vironment. Software – Practice and Experience, 18(9):807–820, September
1988.

[8] Chandrasekhar Boyapati, Alexandru Sălcianu, William Beebee, and Martin
Rinard. Ownership types for safe region-based memory management in real-
time Java. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’03), pages 324–337, June 2003.

[9] John Boyland, James Noble, and William Retert. Capabilities for aliasing: A
generalization of uniqueness and read-only. In Proceedings of the 15th Euro-
pean Conference on Object-Oriented Programming (ECOOP’01), pages 2–27,
June 2001.

[10] Cristiano Calcagno. Stratified operational semantics for safety and correctness
of the region calculus. In Proceedings of the 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’01), pages 155–
165, January 2001.

357

[11] Cristiano Calcagno, Simon Helsen, and Peter Thiemann. Syntactic type
soundness results for the region calculus. Information and Computation,
173(2):199–332, March 2002.

[12] Chiyan Chen and Hongwei Xi. Combining programming with theorem prov-
ing. In Proceedings of the 10th ACM SIGPLAN International Conference on
Functional Programming (ICFP’05), pages 66–77, September 2005.

[13] Dave Clarke and Tobias Wrigstad. External uniqueness is unique enough. In
Proceedings of the 17th European Conference on Object-Oriented Programming
(ECOOP’03), pages 176–200, July 2003.

[14] David Clarke. Object Ownership and Containment. PhD thesis, School of
Computer Science and Engineering, University of New South Wales, 2001.

[15] David Clarke, John Potter, and James Noble. Ownership types for flexible
alias protection. In Proceedings of the 13th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’98), pages 48–64, October 1998.

[16] Karl Crary, David Walker, and Greg Morrisett. Typed memory management
in a calculus of capabilities. In Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’99),
pages 262–275, January 1999.

[17] Cyclone, version 1.0, May 2006. http://cyclone.thelanguage.org/.

[18] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-
level software. In Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’01), pages 59–69, June
2001.

[19] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt,
James Larus, and Steven Levi. Language support for fast and reliable message-
based communication in Singularity OS. In Proceedings of the 1st ACM
SIGOPS Eurosys Conference (EuroSys’06), April 2006.

[20] Manuel Fähndrich and Robert DeLine. Adoption and focus: Practical lin-
ear types for imperative programming. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation
(PLDI’02), pages 13–24, June 2002.

[21] Matthew Fluet. Monadic regions: Formal type soundness and correctness.
Technical Report TR2004-1936, Department of Computer Science, Cornell
University, April 2004.

358

[22] Matthew Fluet and Daniel Wang. Implementation and performance evalua-
tion of a safe runtime system in Cyclone. In Informal Proceedings of the Se-
mantics, Program Analysis, and Computing Environments for Memory Man-
agement Workshop (SPACE’04), January 2004.

[23] Steven Ganz. Monadic Encapsulation of State. PhD thesis, Indiana University,
Bloomington, Indiana, forthcoming.

[24] David Gay and Alex Aiken. Memory management with explicit regions. In
Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’98), pages 313–323, June 1998.

[25] David Gifford, Pierre Jouvelot, and Mark Sheldon. The FX-87 reference
manual. Technical Report TR-407, Massachusetts Institute of Technology,
September 1987.

[26] David Gifford, Pierre Jouvelot, Mark Sheldon, and James O’Toole. Report
on the FX programming language. Technical Report TR-531, Massachusetts
Institute of Technology, February 1992.

[27] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102,
1987.

[28] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cam-
bridge University Press, 1989.

[29] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang,
and James Cheney. Region-based memory management in Cyclone. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’02), pages 282–293. June 2002.

[30] Dan Grossman, Greg Morrisett, Yanling Wang, Trevor Jim, Michael Hicks,
and James Cheney. Formal type soundness for Cyclone’s region system. Tech-
nical Report TR2001-1856, Department of Computer Science, Cornell Univer-
sity, November 2001.

[31] Christian Grothoff, Jens Palsberg, and Jan Vitek. Encapsulating objects with
confined types. In Proceedings of the 16th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’01), pages 241–255, October 2001.

[32] Jörgen Gustavsson and Josef Svenningsson. A usage analysis with bounded
usage polymorphism and subtyping. In Selected Papers of the 12th Interna-
tional Workshop on Implementation of Functional Languages (IFL’00), pages
140–157, September 2000.

359

[33] Kevin Hamlen, Greg Morrisett, and Fred Schneider. Certified in-lined ref-
erence monitoring on .NET. Technical Report TR2005-2003, Department of
Computer Science, Cornell University, November 2005.

[34] Kevin Hamlen, Greg Morrisett, and Fred Schneider. Certfied in-lined reference
monitoring on .NET. In Proceedings of the ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security (PLAS’06), pages 7–16,
June 2006.

[35] R. Todd Hammel and David Gifford. FX-87 performance measurements:
Dataflow implementation. Technical Report TR-421, Massachusetts Institute
of Technology, September 1988.

[36] Robert Harper and Karl Crary. How to believe a Twelf proof. (Draft.), May
2005.

[37] Robert Harper and Daniel Licata. Mechanizing language definitions. (Sub-
mitted for publication.), April 2006.

[38] Chris Hawblitzel, Edward Wei, Heng Huang, Erik Krupski, and Lea Wittie.
Low-level linear memory management. In Informal Proceedings of the Seman-
tics, Program Analysis, and Computing Environments for Memory Manage-
ment Workshop (SPACE’04), January 2004.

[39] Simon Helsen and Peter Thiemann. Syntactic type soundness for the region
calculus. In Proceedings of the 4th International Workshop on Higher Order
Operational Techniques in Semantics (HOOTS’00), pages 1–19, September
2000.

[40] Fritz Henglein, Henning Makholm, and Henning Niss. A direct approach to
control-flow sensitive region-based memory management. In Proceedings of
the 3rd ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming (PPDP’01), pages 175–186, September 2001.

[41] Fritz Henglein, Henning Makholm, and Henning Niss. Effect types and region-
based memory management. In Benjamin Pierce, editor, Advanced Topics in
Types and Programming Languages, chapter 3, pages 87–135. MIT Press, 2005.

[42] Matthew Hertz and Emery Berger. Quantifying the performance of garbage
collection vs. explicit memory management. In Proceedings of the 20th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’05), October 2005.

[43] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Safe and
flexible memory management in Cyclone. Technical Report CS-TR-4514, Uni-
versity of Maryland Department of Computer Science, July 2003.

360

[44] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Experience
with safe manual memory-management in Cyclone. In Proceedings of the 4th
International Symposium on Memory Management (ISMM’04), pages 73–84,
October 2004.

[45] John Hogg. Islands: Aliasing protection in object-oriented languages. In Pro-
ceedings of the 6th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’91), pages 271–285,
November 1991.

[46] Galen Hunt, James Larus, Mart́ı Abadi, Mark Aiken, Paul Barham, Manuel
Fähndrich, Chris Hawblitzel, Orion Hodson, Steven Levi, Nick Murphy,
Bjarne Steensgaard, David Tarditi, Ted Wobber, and Brian Zill. An overview
of the Singularity project. Technical Report MSR-TR-2005-135, Microsoft
Corporation, October 2005.

[47] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. In Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’02), pages 331–342, January 2002.

[48] Koji Kagawa. Compositional references for stateful functional programming.
In Proceedings of the 2nd ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’97), pages 217–226. June 1997.

[49] Koji Kagawa. Monadic encapsulation with stack of regions. In Proceedings
of the 5th International Symposium on Functional and Logic Programming
(FLOPS’01), pages 264–279, March 2001.

[50] Richard Kieburtz. Taming effects with monadic typing. In Proceedings of the
3rd ACM SIGPLAN International Conference on Functional Programming
(ICFP’98), pages 51–62, September 1998.

[51] Oleg Kiselyov. Simple IO regions. http://www.haskell.org/pipermail/

haskell/2006-January/017410.html, January 2006.

[52] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heteroge-
neous collections. In Proceedings of the ACM SIGPLAN Workshop on Haskell
(Haskell’04), pages 96–107, September 2004.

[53] Naoki Kobayashi. Quasi-linear types. In Proceedings of the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’99), pages 29–42, January 1999.

[54] Viktor Kuncak, Patrick Lam, and Martin Rinard. Role analysis. In Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 17–32, January 2002.

361

[55] John Launchbury and Simon Peyton Jones. Lazy functional state threads.
In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’94), pages 24–35, June 1994.

[56] John Launchbury and Simon Peyton Jones. State in Haskell. Lisp and Sym-
bolic Computation, 8(4):293–341, December 1995.

[57] John Launchbury and Amr Sabry. Monadic state: Axiomatization and type
safety. In Proceedings of the 2nd ACM SIGPLAN International Conference
on Functional Programming (ICFP’97), pages 227–237, June 1997.

[58] John Lucassen and David Gifford. Polymorphic effect systems. In Proceedings
of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’88), pages 47–57, January 1988.

[59] Yitzhak Mandelbaum, David Walker, and Robert Harper. An effective theory
of type refinements. In Proceedings of the 8th ACM SIGPLAN International
Conference on Functional Programming (ICFP’03), pages 213–225, Septem-
ber 2003.

[60] Torben Mogensen. Types for 0, 1 or many uses. In Selected Papers of
the 10th International Workshop on Implementation of Functional Languages
(IFL’98), pages 112–122, September 1998.

[61] Eugino Moggi. Computational lambda calculus and monads. In Proceedings
of the 4th IEEE Symposium on Logic in Computer Science (LICS’89), pages
14–23, June 1989.

[62] Eugino Moggi. Notions of computation and monads. Information and Com-
putation, 93(1):55–92, January 1991.

[63] Eugino Moggi and Amr Sabry. Monadic encapsulation of effects: a revised
approach (extended version). Journal of Functional Programming (JFP),
11(6):591–627, November 2001.

[64] Stefan Monnier, Bratin Saha, and Zhong Shao. Principled scavenging. In
Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’01), pages 81–91, June 2001.

[65] Peter O’Hearn and John Reynolds. From Algol to polymorphic linear lambda-
calculus. Journal of the ACM (JACM), 47(1):167–223, January 2000.

[66] Frank Pfenning and Carsten Schürmann. System description: Twelf – a meta-
logic framework for deductive systems. In Proceedings of the 16th International
Conference on Automated Deduction (CADE-16), pages 202–206, July 1999.

[67] Benjamin Pierce. Types and Programming Languages. MIT Press, 2002.

362

[68] John Reynolds. Towards a theory of type structure. In Proceedings of Colloque
sur la Programmation (Programming Symposium), pages 408–425, April 1974.

[69] Jon Riecke and Ramesh Viswanathan. Isolating side effects in sequential
languages. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’95), pages 1–12, January
1995.

[70] Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 19(6):916–941,
November 1997.

[71] Carsten Schürmann and Frank Pfenning. A coverage checking algorithm for
LF. In Proceedings of the 16th International Conference on Theorem Proving
in Higher Order Logics (TPHOLs’03), pages 120–135, September 2003.

[72] Miley Semmelroth and Amr Sabry. Monadic encapsulation in ML. In Pro-
ceedings of the 4th ACM SIGPLAN International Conference on Functional
Programming (ICFP’99), pages 8–17, September 1999.

[73] Tim Sheard and Emir Pasalic. Meta-programming with built-in type equality
(extended abstract). In Proceedings of the Fourth International Workshop
on Logical Frameworks and Meta-Languages (LFM’04), pages 106–124, July
2004.

[74] Sjaak Smetsers, Erik Barendsen, Marko van Eekelen, and Rinus Plasmeijer.
Guaranteeing safe destructive updates through a type system with uniqueness
information for graphs. In Dagstuhl Seminar on Graph Transformations in
Computer Science, pages 358–379, January 1993.

[75] Fred Smith, David Walker, and Greg Morrisett. Alias types. In Proceedings
of the 9th European Symposium on Programming (ESOP’00), pages 366–381,
March 2000.

[76] Geoffrey Smith and Dennis Volpano. A sound polymorphic type system for
a dialect of C. Science of Computer Programming, 32(1-3):49–72, September
1998.

[77] Nikhil Swamy, Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor
Jim. Safe manual memory management in Cyclone. Science of Computer
Programming, 62(2):95–204, October 2006. To appear.

[78] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Olesen,
and Peter Sestoft. Programming with regions in the ML Kit (for version 4).
Technical Report, IT University of Copenhagen, October 2002.

363

[79] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value
λ-calculus using a stack of regions. In Proceedings of the 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’94),
pages 188–201, January 1994.

[80] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. In-
formation and Computation, 132(2):109–176, February 1997.

[81] Stephen Tse and Steve Zdancewic. Translating dependency into parametric-
ity. In Proceedings of the 9th ACM SIGPLAN International Conference on
Functional Programming (ICFP’04), pages 115–125, September 2004.

[82] David Turner, Philip Wadler, and Christian Mossin. Once upon a type. In
Proceedings of the 7th International Conference on Functional Programming
Languages and Computer Architecture (FPCA’95), pages 1–11, June 1995.

[83] Jan Vitek and Boris Bokowski. Confined types in Java. Software – Practice
and Experience, 31(6):507–532, May 2001.

[84] Dennis Volpano and Geoffrey Smith. Eliminating covert flows with minimum
typings. In Proceedings of the 10th IEEE Computer Security Foundations
Workshop (CFSW’97), pages 156–168, June 1997.

[85] Philip Wadler. Linear types can change the world! In Proceedings of the IFIP
TC 2 Working Conference on Programming Concepts and Methods, pages
561–581, April 1990.

[86] Philip Wadler. The essence of functional programming. In Proceedings of
the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’92), pages 1–14, January 1992.

[87] Philip Wadler. The marriage of effects and monads. In Proceedings of the
3rd ACM SIGPLAN International Conference on Functional Programming
(ICFP’98), pages 63–74, September 1995.

[88] Philip Wadler and Peter Thiemann. The marriage of effects and monads. ACM
Transactions on Computational Logic (TOCL), 4(1):1–32, January 2003.

[89] David Walker. Substructural type systems. In Benjamin Pierce, editor, Ad-
vanced Topics in Types and Programming Languages, chapter 1, pages 3–43.
MIT Press, 2005.

[90] David Walker, Karl Crary, and Greg Morrisett. Typed memory management
in a calculus of capabilities. ACM Transactions on Programming Languages
and Systems (TOPLAS), 24(4):701–771, July 2000.

364

[91] David Walker and Greg Morrisett. Alias types for recursive data structures.
In Proceedings of the 3rd ACM SIGPLAN Workshop on Types in Compilation
(TIC’00), pages 177–206, September 2000.

[92] David Walker and Kevin Watkins. On regions and linear types. In Pro-
ceedings of the 6th ACM SIGPLAN International Conference on Functional
Programming (ICFP’01), pages 181–192, September 2001.

[93] Daniel Wang and Andrew Appel. Type-preserving garbage collectors. In
Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’-1), pages 166–178, January 2001.

[94] Keith Wansbrough and Simon Peyton Jones. Once upon a polymorphic type.
In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’99), pages 15–28, January 1999.

[95] Geoffrey Washburn and Stephanie Weirich. Boxes go bannanas: Encoding
higher-order abstract syntax with parametric polymorphism. In Proceedings of
the 8th ACM SIGPLAN International Conference on Functional Programming
(ICFP’03), pages 249–262, September 2003.

[96] Andrew Wright and Matthias Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115(1):38–94, November 1994.

365

