ON SIMPLE GOEDEL NUMBERINGS
AND TRANSLATIONS*

J. Hartmanis and T. P. Baker
TR 73-179

July 1973

Department of Computer Science
Cornell University
Ithaca, New York 14850

* This research has been supported in part by the National Science
Foundation Grant GJ-33171X.

Ve ik Lol

o Na

ON SIMPLE GOEDEL NUMBERINGS
AND TRANSLATIONS

J. Hartmanis and T. P. Baker

Department of Computer Science

Cornell University
Ithaca, N.Y.

Abstract:

In this paper we consider Goedel numberings (viewed as simple
models for programming languages) into which all other Goedel num-
berings can be translated very easily. Seyeral such classes of
Goedel numberings are defined and their properties are investigated.
We also compare these classes of Goedel numberings to optimal Goedel
numberings and show that translation inté optimal Goedel numberings

can be computationally arbitrarily complex.

P v s olins 0 AN

A R

ON SIMPLE GOEDEL NUMBERINGS

AND TRANSLATIONS

J. Hartmanis and T. P. Baker

l. INTRODUCTION

It is well-known [1] that all (acceptable) Goedel numberings
of the partial recursive functions are recursively isomorphic and
thus, frém an abstract recursive function theory point of view,
they can all be considered equivalent. On the other hand, from a
computational complexity point of view this is definitely not
the case, since translations between Goedel numberings'can be com-
putationally arbitrarily complex. In particular, if we‘view Goedel
numberings as simple models for programming languages, we are in-
terested in numberings into which all other Goedel numberings can
be translated easily. Similarly, we are interested in Goedel num-
berings with computationally simple S? functions and functions
satisfying the Recursion Theorem.

In this paper we define classes of Goedel numberings into
which all other Goedel numberinas can be translated by map-
pings of bounded complexity, investigate properties of these
classes of Goedel numberings and compare these classes for differ-
ent complexity bounds on the translations.

We observe that many programming languages and natural Goedel
numberings are such that all other numberings can be translated
into them by finite automata. We derive several results about
such Goedel numberings, and state some interesting open problems.

In the last part of this paper we consider optimal Goedel

-2-

numberings [2]. Though these numberings have some nice mathematical
properties, we show that, from a computer science point of view, they
have undesirable properties, since the translations into or between
optimal Goedel numberings can be computationally arbitrarily comple#
and .that. similarly their Si functions and .the funttions satisfying

the Recursion Theorem must be computationally arbitrarily complex.

2. COMPLEXITY CLASSES OF GOEDEL NUMBERINGS

Let Rk and Py denote the recursive and bartial recursive func-
tions of k variables, respectively. For all g in Priy’ let
gi(§) = Ax[g(i,x)].

A Goedel Numbering, GN, of Py is a function ¢k in Pk+1 such

that for all g in Pl there exists a t in R, satisfying
g(i'xl'XZ""'Xk) = gi(xl,xz,...,xk) = ¢t(i)(xl'x2”"’xk) .

for all i.

In this paper we are primarily concerned with GN's for Pl' Since
we are ihterested in those GN's into which” all others can be easily
translated we will define complexity classes of GN's in terms of
the computational complexity of into translations from other GN's.

Note that in actual translations from one programming lang-
uvage into another the translations are mapping sequences over
finite alphabets into other sequences over a finite alphabet.

Thus we will view the index i of a Goedel numbering as the binary
sequence representing i and express some of our results in terms
of operations on sequences. It should be noted that the whole
treatment can easily be transcribed to the convention that we

are indexing algorithms by the set £+, and thus avoid some of the

R s QA e T S gy e e e

-3

technical difficulties of mixing integers and their binary repre-

sentations.

For any GN ¢l (¢1(i,x) = ¢i(x)) and every ¢ in P, a translation

of ¢ into ¢1 is a recursive function ¢ such that

1, . _
!‘)(l,X) = ¢ (0(1) Ix) - ¢U(i) (X) °

We will denote translations by writing

Definition: Let C be any class of recursive functions. Then

ane = {4 ¢} is a @ and (v y in P,) (T o in) [o: ¢ » 71}

Thus GNC consists of those GN's into which all other GN's can
be translated into by functions from C. Usually we will let C
be éome well-known class of functions of bounded computational
complexity.

For example, let
GNReg
denote the class of all GN's into which all other GN's can be
translated by finite automata mappings (i.e. deterministic gsm

mappings [3]). We refer to these as regular GN's.

Similarly, let
C = Prfx and C = Pstfx

denote the class of functions which prefix and postfix, respectively,

a . fixed string to the representation of i. That is, o is in Prfx

iff there exists w such that

o(i) = wi .

~

We refer to
GNPrfx and GNPstfx

as prefix and postfix GN's, respectively.

The class
GNLBA

consists of all those GN's into which all other GN's can be trans-
lated by deterministic linearly bounded automata.

It should be observed that several programming languages and
many natural GN's belong to GNReg and GNPrfx. Intuitively speak-
ing, every GN or formal programming language in which we.can
"freely" program is in GNPrfx, since for any other GN ¥ we just
have to use a prefix w with the meaning: |

"This is a descriptioh of GN ¥, what follows is a
description ofban index i, please compute wi."
Thus o(i) = wi will be the desired translation of ¥ into ¢.

Next we prove formally that postfix GN's exists. The post-
fix GN exhibited is the same as used by Schnorr [2] to show that
there exist optimal GN's. |

A GN ¢ is said to be optimal iff every other GN Yy can be trans-

lated into ¢ by a mapping o such that
o(i) < c+i

for some positive constant c. We denote the class of optimal

R et e R T AR eyt s

e ek ek Ak A

GN's by GNOpt.
Egmggi There exist postfix GN's'and

GNPstfx C GNReg © GNLBA € GNOpt
Proof: Let ¢2 be any GN of P2 and let

AN+l + 2n

g(i,n) = i2 -1 .

The pairing function g is a bijection and if we interpret it as
mapping sequences into sequences, where i is the binary representa-
tion of the i-th integer and 1" represents the sequence of n ones,

we get
gi,;n) = i(M" .
Thus
Mlg(im))
is_a postfix function for every n and the;gfore

o21i,n,x] = ¢laln,i),x] = ¢ , ()

g(n,i

is a postfix GN.

Straightforward constructions show that
GNPstfx © GNReg C GNLBA .

The assertion

GNLBA C GNOpt

follows by combining the facts that:

-6-

a) in every computational complexity measure ¢ the linearly
bounded automata mappings are of bounded complexity;

b) (proven later in this paper) in any complexity measure
¢ the complexity of translations from GN's into optimal GN's cannot
be recursively bounded.

Thus GNLBA # GNOpt.

c) every ftba mappihg is linearly size bounded.

Thus GNLBA C GNOpt, which completes the proof.

Lemma: For every computational complexity measure ¢ there exist

infinitely many different complexity classes of GN's GNCﬁ.

Proof: By a diagonal argument we can construct for every ¢ a GN ¢

into which ¢ cannot be mapped by any ¢ in Cg.

In [2] it was shown that ¢ is in GNOpt iff ¢ admitted an Si
function which is linearly size bounded in the second variable.

A similar proof shows our next result.

Lemma: The GN ¢ is in GNPrfx, GNPstfx, GNReg and GNLBA iff ¢ ad-
mits an S} function which is in the second variable a prefix,

postfix, gsm or linearly bounded automaton mapping, respectively.

Proof: We give the proof for ¢ in GNReg.

ILet ¢ be a GN and Si such that for all n,i,x
62(1,30 = 6.1 (%)
n'' Sl(n,i) '
and assume that for all n Si(n,i) is a gsm mapping. Then for any

other GN there exists an ng such that the numbering is given by

2 .
¢n0(1,x) .

Vo T bk A e 2 A

But then

‘ 2 ,.
c”Si(n(),i)(x) = ¢n0(l'x)

and we see that
o(i) = ritsi(n,,i)]
107

is the desired gsm translation.
Conversely, if ¢ is in GNReg and $ is the GN of the previous

theorem, then there exists a gsm mapping o such that
6 (%) =B, . (%) = ¢2(in,x) .
ogeg(n,i) “g(n,i) ST
Since g is a postfix translation
oog (n,i)
is a gsm mapping. Thus ¢ admits
1 . .
s](n,i) = gog(n,i)

as an Si function which is a gsm mapping in the second variable.

The other cases follow by an identical argument.

Next we show that those GN's into which all others can be
easily translated have easily computable Recursion Theorem fixed

points.
We recall that by the Recursion Theorem [1] for every GN ¢

there exists a recursive function n such that for all z

*n(z) T % [n(z2)1 -

Lemma: If ¢ is in GNPrfx, GNPstfx, GNReg or GNLBA, then there

-8~

exists a prefix, postfix, gsm or g¢ba mapping n, respectively, such

that for every z

(z) = ¢¢z[n(z)] :

Proof: The proof follows the standard proof of the Recuréion

Theorem [1l]. Define
Y(u,x) = ¢¢ (u)(X) if ¢u(u) converges else divergent .
u
Let g be a recursive function (translation) such that
vlu,x) = ¢igw ,x) = ¢, (x)
! ! g(u) '
Thus for ¢u total we have
d>cbu(u) = ¢g(u) :
Define
plz,x) = ¢z°g(x) if ¢Z°g(x) converges else divergent
and let h be the recursive function (translation) such that
(z,%) = ¢3(h(2),%) = ¢,y (%)
HrE ’ h(z) '

Thus for ¢Z total we have

¢h(z) = ¢Z°g

By combining these equalitites we get for all z such that ¢, total

bgen(z) T %4,y (201 T g lg°h(2)] .

Thus by setting

e

P

| et & ety 7 it 4

o T IS A S AR Tt asas Rl & /il

g°h(z) = n(z)

we get that

¢¢Z[n(z)] = ¢n(z)

Furthermore, since g and h are translations we can choose them to
be prefix, postfix, regular, or fba mappings, respectively, and

therefore
n = g°h
will be a mapping of the same type, as was to be shown.

Schnorr has sﬁown that the optimal GN's are all isomorphic
under linearly size bounded mappings. Thus, in a mathematical
sense, they form a natural class of GN's.

For the prefix and postfix GN's we know that they cannot be
isomorphic under prefix and postfix mappings, since these mappings
are (but for the trivial case) proper into mappings. On the
other hand, our next result shows that they are closed under gsm
mappings. Thus they form classes of GN's which are very similar

in a computational sense.

Theorem: Let ¢ and ¢ be in GNPrfx or GNPstfx. Then there exists

a permutation m such that = and ﬂ"l are gsm mappings and

0; = b gy and & = ¢ 14y -

Proof: We give the proof for GNPrfx. Let w and Vv be the prefix
sequences which translate ¢ into ¢ and $‘into<b, respectively.

Then

-10-

*x k *
1(1+0) {(wv)"2z]k=0,1,2,... and z £ w(0+1) } U

Lo Xz|k=0,1,2,... and z £ v(0+1)"}

'{v(wv)kz|k=0,l,2,... and z £ w(0+l)*} U

{ (v)¥z|k=0,1,2,... and z £ v(0+1)"} .

Define

ﬂ[(wv)kz] = v(wv)kz, for k=0,1,2,... and z £ w(0+1)*
mlw(v w)kz] = (vw)kz, for k=0,1,2,... and z £ v(0+1)* .

*.
We see that ¢ is a permutation of the set 1(0+1) and since

03 = bp; and 04 = b4y
we see that for j = (wv)kZ
o5 = 95 T 49
L k
and for j = w(vw) 2z
¢(vw)kz = v ¥z '

and therefore

*5 = dvwrkz T ®r(3)
Finally we note that a finite automaton can perform the permutation

m. The arguments for n—l can be carried out similarly, which com-

pletes the proof.

It should be noted that in the previous proof the finite
automaton computing T either prefixed the scquence v or re-

moved the sequence w. Let us call such mappings restricted reqular

[PPSR S R R

AT A AR S o L

-11-

mappings and let us call the GN's into which all other GN's can be

mapped by such mappings restricted regular GN's. We conjecture

that the restricted regular GN's are all isomorphic under restricted
regular mappings. Unfortunately, so far we have not been able to
prove this conjecture.

We also conjecture that regular GN's are not closed under
finite automata isomorphisms. Again, we have not been able to
prové this simple sounding conjecture.

We .can prove though that the complexity of the isomorphisms
between GN's in GNReg or GNLBA are of bounded computational complex-
ity and we will see that this is not true for GNOpt.

To do this let ¢ be any computational complexity measure and

let

¢
GNCt

denote all the GN's into which all other GN's can be mapped by

. . . o)
mappings in complexity class Ct'

Theorem: For any computational complexity measure ® and t in
R, there exists a t' in Ry such that the isomorphisms between

) (o] o)
GN's in GNCt can be chosen from Ct' .

Proof: Follows from a close inspection of the proof of Rogers'

Isomorphism Theorem of GN's.

Furthermore, we can see that Rogers' Isomorphism Theorem yields
a recursive operator which maps the two one-to-one~ into mappings
of this theorem into an isomorphism. But then the complexity of

the isomorphism is given by a recursive operator in terms of the

-12-

complexity‘of the two mappings used.
This observation permits us to read off another result (due

partially to K. Mehlhorn).

Corollary: For any computational complexity measure ¢ there exist

arbitrarily large t in Ry such that any two GN's in

¢
GNCt

: . . ¢
are isomorphic under a permutation in C,.

Proof: Let R be the recursive operator yielded by the Isomorphism
Theorem. Then there exists a recursive opérator which‘bounds the
complexity of the resulting isomorphism in terms of the complexity
of the two into mappings, denote it by 9R'. Then from the Operator
Gap Theorem [4] we know that there exists arbitrarily large recur-

sive t such that

¢ ¢
c, =C ' .
t R[]
Thus GNCi is closed under isomorphisms in Cz, as was to be shown.

It should be stated again that it would be interesting to
determine some natural classes of into translatable Goedel number-
ings which are closed under isomorphism in the same complexity

class as the into translations. For example, we conjecture that
GNLBA

is closed under %ba isomorphisms.
We describe one recasonably natural class of Goedel number-

ings which is closed under isomorphisms of the same type.

R VSRR b S S i NS Y e

s A

-13-

Let GNPTIME denote the class of GN's into which all others
can be translated by deterministic Turing machines whose computa-
tion times are bounded by a polynomial in the size of the input
(index) .

The following result is due to R. Constable.

Theorem: The class GNPTIME is closed under polynomial-time bounded

Turing machine computable isomorphisms.

Proof: By a lengthy and careful estimation of runtimes in the

proof of the Isomorphism Theorem [i1.

A somewhat more natural (and better known) class of GN's would
be the class into which all other GN's can be translated by Turing
machines whose computation times are bounded by a polynomial in

the length of the input (index) . Unfortunately, the previous proof

‘does not show that this class is closed under isomorphisms in the

same complexity classes. We conjecture that the answer is posi-
tive.

we conclude this section by showing that for any GN ¢1 we can
give a recursive function which bounds the complexity of transla-

tions from all other GN's into ¢1 .

. . 1
Theorem: Let ¢ be any computational complexity measure and ¢
fixed GN. Then we can recursively obtain indices for two recursive
functions ¢ and & such that for any GN ¢ therc exists a transla-

tion o: ¢ - ¢1 such that

o is in c& and [o(D)|<l2@)] a-e-

-14-

Proof: Let ¥ be a prefix GN and let o be a translation mapping

Y into ¢1. Then for any GN. ¢ there exists a sequence w such that
o(i) = wi
is a translation of ¢ into ¥. But then
00°0(i) = oo(wi)
is a translation of ¥ into ¢% To obtain the functions ¢ and 2

let Zo(wi)'be the complexity of the computation Oo(wi) and define

6(i) = max | Zo(wi)} ,
lwl<|i]
similarly,
2(i) = max {|o,(wi)]}
lo]<]i] °

Clearly, for every ¢ there exists a translation o: ¢ - ¢l such

that
. . o]
0 18 1n Cé
and
lo(i)| < 2] , a.e.,

as was to be shown.

g

DGR RN

e

-15-

3. COMPLEXITY OF OPTIMAL GOEDEL NUMBERINGS

In this section we show that the computational complexity of
translations into optimal Goedel numberings cannot be recursively
bounded. Actually we will show that for any GN ¢ there exist op-
timal GN's whbse translations into ¢ are arbitrarily complex. Simil-

arly, we will show that for optimal GN's the computational complex-

1
1

cannot be recursively bounded.

ity of the S; function and the function n of the Recursion Theorem

Theorem: For any computational complexity measure (¢,?%) and recursive

function t there exists an optimal GN ¥ into which ¢ cannot

be translated by any

. 4]
o 1n Ct .

Proof: Let y be an optimal GN. We will obtain ¢ from x by a per-
mutation which will not move any index upward by more than one
place. Therefore y will also be an optimal GN. The construction
bof y is obtained by diagonalizing over all possible t-bounded o.

We know.that for sufficiently large recursive T the complex-
ity class C$ can be recursively enumerated. Thus we can assume
that

¢k Id)k

P e
1 kg K

3
is an enumeration of the functions in Ci, or choose a larger com-
plexity bound T with an enumerable complexity class.

Let

¢j1'¢j2’¢j3""

-15a-

be a recursive sequence of constant functions such that

¢jk(x) = k .

We now define the stages in the computation of V.
Stage 1: let wl = Xqp-

Stage i: By the i-th stage let
wllwzl' A Ilei

be defined. We define wj' N. <3j < N +1 @s follows: compute
¢k [§) dovetailed for j = N.+1, N.+2,..., until

i i i

a) ¢ki(j) > Ni and ¢j(l) converges, oOr

b) ¢k.(j2) < N. for more than N. distinct values of 2 (where

Iy is from the enumeration of ¢31 ¢32 ee) .
This computation is eventually halted by (a) or (b) In
case (a) let n = ¢ki(j). Let q be the first p greater than n

for which xp(l) # ¢j(l) gotten by dovetailing the computation of

xp(l) for p = j+1, j+2,.... Let N, 4 = q.- We want wn # ¢j SO
we define v, = x, for p < n, Uy = Xqr and vy = Xp-y for
n<pz=<gdg.
e.g.
ag N'
i e
X 1
w L) d

In case (b) 1let

N;.y = Nj+1 and l!’Niﬂ = XNi+l

-16-

and proceed to stage i+l.

If ¢ki translates ¢ into Y then we would have

o = Yo (0
1

for all p. This is not the case if the computation was halted by

(a) , because of the definition of Y. 1In case (b) at least two

different jz, jm exist such that
b (3 = o (3
i i
but then

lpd’k.(jz)) \p¢k.(jm) and ¢j2 7 ¢jm '
1 1

an inconsistency. Thus we see that no ¢k from Ci can translate

¢ into the optimal GN ¥, as was to be shown.

Next we show that optimal GN's require computationally arbi-

trarily complex S} functions.

Theorem: For every computational complexity measure ® and recursive

function t there exists optimal GN ¢ such that for no Si function

is

. 1 . . (o}
Al[Sl(n,l)] in Ct

for all n.

Proof: Using the previous result we construct two optimal GN's ¢
— - . . . o
and ¢ such that ¢ cannot be translated into ¢ by a mapping 1n Ct'

Let S1

1 be defined for ¢. Then for some ng,

% (ng,i,%) = B(i,%)

-17-

and therefore

42 (ng.i,x) = o L) = B0

1
Sl(no,l i

But then

R I
o(i) = Allsl(no,l)]
is a translation of § into ¢ and therefore
. 1 . . (o}
Al[Sl(no,l)] not in Ct,
as was to be shown.

similarly, we show that optimal GN's require arbitrarily com-

plex functions satisfying the Recursion Theorem.

Theorem: For any recursive function t and complexity measure
(¢,2) there is an optimal Goedel numbering y such that every func-

tion Oy satisfying the recursion theorem condition: for all j

Yo, () T Vg (o ()

is of complexity greater than t.

Proof: We define the Cesired Y inductively, diagonalizing over all
the possible t—boundéd'¢k.

Without loss of generality we may assume that ¢ is an optimal
Goedel numbering. If it is not, we may construct another complex-
ity measure (¢',®) with the same complexity classes such that ¢'

is an optimal Goedel numbering: start with an optimal Goedel

BT e

Foaes s ML v vl o

-18-

numbering ¥, we know there are infinitely many of these; let

¢j = Xc(j) for every j, where ¢ is a recursive isomorphism from

¢ to Y.
Let ¢34 L EPYARE be a recursive subsequence of ¢ consisting
of the constant functions
¢j_(X) = A(x) (1), 3;>1+3 .
i
¢ must ha&e such a recursive subsequence by the Sﬂ theorem.

Let

I

p(n) = min {j, | ¢>n 1} and
Je
min'{jj | @ > p(n) 1.

d

Il

q(n)

Note that these are both recursive functions and that they are
indices in ¢ of constant functions which compute indices in ¢ of

other constant functions. For any n

n < ¢¢ < ¢ < p(n) < ¢ < ¢ < g(n) .

p(n) p(n) %q(n) q(n)

Since for sufficiently large t the functions of complexity
t can be recursively enumerated, we assume without any loss of

generality that ¢k ' ¢k ,... is a recursive enumeration of the
1 2
functions of complexity t.

¥ will be defined as a recursive permutation of ¢ in which
no index is increased by more than three, so therc will be no
question about Y being an optimal Goedel numbering. We assume

that wl’ wz,... are defined by the i-th stage, and proceed

’lei

to extend the definition to ¢) e Let k = k, and
Nj+1

o .
| "Nj41 3
N = Ni‘ Compute

¢k(32) and ¢j£(¢k(3£)) for & = N+1, N+2,...

-19-

until one of the following cases holds. 1In each case Y is de-

fined for certain critical indices so that for some j

Yo (3) 7 Yy (e)

Case 1: - If ¢k(jm) = ¢k(j9), m > N, and 2 > jm + 3, let

by, = 05, Ve Tl e T % Ve T by 2 M T 90
e Ve o 30 T)] CIEBIAR ICHA B I A CHE MR

Case 2: If ék(jz) = J, + let wjz = ¢p(j2)’ w¢p(j£) = ¢¢p(j2)
and N; ., = q(j;). Then wwjé¢k(j£)) = w¢p(j£) = ¢¢p(j2) # ¢p(j£)
"~ Y3, T Ve 6

Case 3: If ¢, (j,) = %, let ¢, = ¢q(j£), wjl = ¢p(j2),

U] = ¢ , and N, = gq(j,). Then ¥ . = Y
b3 o3y i+l : b, O3 Ty

¢ £ o by = Yy (4
b3, aliy b %k

Case 4: If ¢k(j2) £ L, # jl , > N, and m = max (jg, ¢k(j2))'

let Yy = by 0 ¥y = pm Vo, (5) 7 Cqem Niey T GlM TR

Mo G T Ve = fpm 7 tqm T Yo, (5))

Furthermore, wj is defined for all other j (Ni <3j < Ni+l) to be

' ey s . Ceel oi-
¢j, ¢j—l' ¢j—2' or ¢j_3, shifting the indices as little as possi
ble; i.e., for Jj:= Ni+l until Ni+l do

f (wj not yet defined)

e

then wj:= ¢ nin {i] 05 not yet used to define any wk} *

R L SRR TR -

' ;20_

D N

For example, in case (1) we have:

’ Ny % 3y, m I P a=N; 1
T 7 15 = i 7
: :‘ ‘\\ .\ ‘l\ /j\ \\ J
[YT‘ N ‘\‘—7 \\
1 [}
] L YR N W RSN ¢ .
N, . 3y m I P q

To see that this computation musthalt , suppose (1), (2), and (3)
fail for évery L > N;. It follows that (4) succeeds for large

enough ¢, since:

¢k(j2) > Ni’ because (¢k(j£) < N for a.e.f) =(1).

Thus for no ¢k in C¢ can we have that

t

Yo) T Yugte o

as was to be shown.

-21-

4. REFERENCES

1. Rogers, H. Jr., Theory of Recursive Functions and Effective
Computability. McGraw-Hill Book Co., New York, 1967.

2. Schnorr, C.P., "Optimal Enumerations and Optimal Goedel Number-
ings." To appear in Math. Syst. Theory.

3. Hopcroft, J.E., and J.D. Ullman, Formal Lanqguages and Their

Relation to Automata. Addison-Wesley Publishing Co.,

Reading, Mass., 1969.

Constable, R.L., "The Operator Gap," IEEE Conference Record
of 1969 Tenth Annual Symposium on Switching and Automata
Theory, (1969) 20-26.

i

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif

