
  

 

NONLINEAR PHENOMENA IN HIGHER ORDER MODE FIBER FOR 

DEVELOPMENT OF LIGHT SOURCES FOR BIOMEDICAL IMAGING 

 

 

 

 

 

 

 

 

A Dissertation 

Presented to the Faculty of the Graduate School 

of Cornell University 

In Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy 

 

 

 

 

 

 

by 

Jennifer Hanmei Lee 

January 2011



 

 

 

 

 

 

 

 

 

 

 

 

 

© 2011 Jennifer Hanmei Lee



 

 

NONLINEAR PHENOMENA IN HIGHER ORDER MODE FIBER FOR 

DEVELOPMENT OF LIGHT SOURCES FOR BIOMEDICAL IMAGING  

 

Jennifer Hanmei Lee, Ph. D.  

Cornell University 2011 

 

Higher order mode (HOM) fibers present a breakthrough in fiber design, in its 

ability to provide anomalous dispersion in solid, silica-based fiber below 1300 nm. 

Anomalous dispersion is especially interesting for purposes of short-pulse 

propagation, since soliton propagation requires this sign of dispersion to balance the 

nonlinear phase induced by self-phase modulation. Since silica has normal material 

dispersion below 1300 nm, and a fundamental mode propagating in single-mode fiber 

has negative waveguide dispersion, access to anomalous dispersion below 1300 nm 

has been limited to special microstructured fibers. These microstructured fibers, 

however, are limited to regimes of power too extreme for biomedical applications. 

Hollow-core photonic bandgap fibers (PBGF), with their low nonlinearity, require 

pulse energies of many hundreds of nanojoules, while solid-core photonic crystal 

fibers (PCF), with their tight confinement, support only fractions of nanojoule-pulses. 

HOM fibers, are all-solid silica but can attain anomalous waveguide dispersion (and 

thus anomalous dispersion below 1300 nm) by propagating light solely in a higher-

order mode (LP02) of the fiber. With moderate nonlinearity (compared to PBGF) and 

relatively large mode area (compared to PCF), HOM fibers aim to provide 1-10 nJ 

pulses at wavelengths suitable for biomedical imaging applications. We demonstrate 

the nonlinear phenomena of soliton self-frequency shift and Cerenkov radiation 

generation in HOM fibers for providing short energetic pulses. By pumping an HOM 



 

fiber with a free-space femtosecond fiber laser, Raman-shifted solitons and a 

compressible radiation band (Cerenkov radiation) on the long-wavelength side of the 

zero-dispersion wavelength were observed, spanning 1064 nm to 1450 nm. In 

addition, with longer fiber lengths and a picosecond fiber laser source, we were able to 

demonstrate an all-fiber system for generating shifted solitons and Cerenkov radiation. 

This all-fiber system was successfully used as a light source for two-photon 

fluorescence microscopy, and the focusing properties of the LP02 mode were carefully 

characterized.  
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CHAPTER 1 

 

INTRODUCTION  

 

1.1 Optical Fibers 

Optical fibers, the thin strands of glass that bring us our high-speed, high-

capacity data links, had its beginnings in Victorian light shows [1]. In 1841, Daniel 

Colladon used focused light to illuminate streams of water for fluid flow 

demonstrations in a dimly-lit lecture hall. He observed that the streams of water 

guided the light without it escaping, unless the stream was perturbed by an obstacle or 

the stream broke up [2]. The effect was showy, and led to the construction of many 

illuminated fountains across Europe in the late 1800s. This concept of light guiding 

was extended to glass rods, and much work was done in the late 1800s and early 1900s 

using glass rods for illumination and image transfer. Glass rods gradually gave way to 

thinner glass fibers, which were flexible and thus more versatile. While promising, 

early glass fibers were lossy and ineffective for delivering light more than a few 

meters. It was the development of glass-clad fibers in the 1950s [3, 4] and low-loss 

optical fiber in the 60s and 70s [5, 6] that truly enabled the optical fiber 

communications revolution. While fiber communications is arguably the realm of 

greatest commercial impact for optical fibers, optical fibers have also left its mark on 

the realms of illumination, light generation, metrology, medicine, and remote sensing.  

The interaction of light with the optical fiber gives rise to linear effects such as 

chromatic dispersion and absorption, as well as nonlinear effects such as self- and 

cross-phase modulation, stimulated Raman and Brillouin scattering, and four-wave 

mixing. These effects, detrimental to signal fidelity in fiber communications, are 

actually the enabling factors for creating novel light sources based on nonlinear optical 
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phenomena. The core-guiding property of optical fiber gives localization of these 

effects, lending spatial confinement of the light-matter interactions and isolating these 

interactions from the external environment. This has special appeal for creating light 

sources: first, in-fiber confinement replaces complex free space optical setups, making 

these light sources alignment-free and easy-to-operate; and second, the isolation 

provided by the fiber-based approach makes these devices robust to environmental 

perturbations. In addition, the linear and nonlinear properties of a fiber can be tuned 

by engineering its material, structure, and geometry. This design freedom extends the 

capabilities of conventional and novel fiber structures. One example of this is the 

higher order mode (HOM) fiber, which was recently demonstrated to exhibit 

dispersion characteristics previously thought impossible for its fiber geometry [7]. 

With proper design, the HOM fiber can access a unique set of dispersion and 

nonlinearity characteristics that enable energetic pulse generation in the near infrared.  

 

1.2 Light Sources for Nonlinear Microscopy 

Since its beginnings, optical fibers have attracted much attention for 

applications to medicine, especially for remote viewing of internal body parts. The 

light guiding properties, mechanical flexibility, and small size of optical fibers are 

well-suited to the development of endoscopes. However, traditional white light 

reflection endoscopy is limited in resolution and penetration depth. Patient comfort 

and accuracy of medical diagnostics would be greatly improved if an endoscope were 

capable of imaging tissue in situ with the same resolution and specificity of 

conventional biopsy techniques of tissue excision and histology. This noninvasive 

“optical biopsy” is made possible by combining a fiber endoscope with multiphoton 

microscopy, which has fine lateral resolution and optical sectioning capability [8, 9]. 

One hurdle to the realization of such a multiphoton endoscope is the availability of an 
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appropriate light source. To excite the nonlinear processes involved in multiphoton 

microscopy, one needs a light source that provides short, energetic pulses in the near 

infrared. The current standards for such an excitation source are the Ti:Sapphire laser 

and the synchronously-pumped optical parametric oscillator (OPO). These solid state 

lasers, while versatile and powerful, are bulky, expensive, and difficult to operate. As 

such, they are ill-suited for the clinical setting. The work presented here focuses on the 

development of fiber-based light sources for multiphoton endoscopy. The 

engineerability and versatility of HOM fibers make it appealing as a platform on 

which to build this technology. The goal is simple: an easy-to-use, easy-to-transport, 

robust light source delivering high peak power, energetic pulses at wavelengths 

suitable for two-photon microscopy.  

In this dissertation, I outline our efforts to develop a light source based on an 

HOM fiber, and its application to nonlinear microscopy. In Chapter 2, I briefly 

summarize our methods for numerically simulating fiber propagation and introduce 

non-conventional fiber designs. In Chapter 3, I introduce the phenomenon of soliton 

self-frequency shift (SSFS) as it has been observed in conventional and specialty 

fibers, and present the demonstration of SSFS in a HOM fiber for a tunable 

wavelength light source between 1.0 and 1.3 µm. In Chapter 4, I show that the band of 

Cerenkov radiation generated as a consequence of a shifting soliton approaching a 

zero dispersion wavelength is compressible and has potential to be another short-pulse 

source from the same HOM fiber. In Chapter 5, I present an all-fiber source based on 

nonlinear propagation in HOM fiber, as enabled by longer fiber length and a 

picosecond fiber laser source. In Chapter 6, the spatial imaging properties of the HOM 

fiber output are studied by characterizing its two-photon fluorescence point spread 

function (PSF). Finally, in Chapter 7, I summarize the presented work and outline a 

few potential directions for further study of HOM fibers and their applications in 
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biomedical imaging. Appendix A presents a separate but related effort to develop 

sources for nonlinear microscopy: a time lens source synchronized to a modelocked 

laser for coherent Raman microscopy.  
 
 



5 

REFERENCES 

 

1. J. Hecht, City of Light, New York: Oxford University Press, 1999. 

2. D. Colladon, "On the reflections of a ray of light inside a parabolic liquid stream," 

Comptes Rendus, vol. 15, pp. 800, 1842. 

3. B. O'Brien, "Optical Image Forming Devices," U.S. Patent 2,825,260, March 4, 

1958. 

4. A. C. S. van Heel, "A New Method of transporting Optical Images without 

Aberrations," vol. 173, pp. 4392, 1954. 

5. K. C. Kao and G. A. Hockham, "Dielectric-Fibre Surface Waveguides for optical 

frequencies," Proceedings of the IEE, vol. 113, pp. 1151-1158, 1966. 

6. D. B. Keck, R. D. Maurer and P. C. Schultz, "On the ultimate lower limit of 

attenuation in glass optical waveguides," Applied Physics Letters, vol. 33, pp. 307-

309, 1973. 

7. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg 

and F. V. Dimarcello, "Anomalous dispersion in a solid, silica-based fiber," Optics 

Letters, vol. 31, pp. 2532-2534, 2006. 

8. W. Denk, J. Strickler and W. Webb, "Two-photon laser scanning fluorescence 

microscopy," Science, vol. 248, pp. 73-76, 1990. 

9. W. R. Zipfel, R. M. Williams and W. W. Webb, "Nonlinear magic: multiphoton 

microscopy in the biosciences," Nature Biotechnology, vol. 21, pp. 1369-1377, 2003. 



6 

 CHAPTER 2 

 

BACKGROUND  

 

2.1 Numerical Modeling of Fiber Propagation 

To understand the propagation of light in an HOM fiber, we consider the 

evolution of a pulse as described by the generalized nonlinear Schrödinger equation 

(GNLSE) [1, 2]. The GNLSE can be derived from Maxwell’s equations, and makes 

the assumption that the light is of a single linear polarization whose polarization state 

is not affected during propagation. We also assume that there are no back-propagating 

waves, and we can decompose the pulse into its carrier and envelope 

[ ]1
2( , ) ( , , , ) exp( ) . .oE r t E x y z t i t c cω= − + Writing the wave equation in the frequency 

domain, it can be solved by separation of variables for the transverse mode and the 

spectral envelope Ã(z,ω- ω0). Transforming back to the time-domain, the GNLSE 

describing the envelope A(z,T) in the moving reference frame of the traveling light 

( gT t z v= − , vg being group velocity of the envelope) is: 

 
1

2

2

1 ( , ) ( ') ( , ') '
2 !

k k

k shockk
k

A i AA i i A z T R T A z T T dT
z k TT

α β γ τ
∞+

≥ −∞

⎛ ⎞∂ ∂ ∂⎛ ⎞+ − = + −⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂∂ ⎝ ⎠⎝ ⎠
∑ ∫  

  (2.1) 

where α is the linear absorption, and βk are the dispersion coefficients given by the 

Taylor expansion of propagation constant β about carrier frequency ω0: 

 ( ) ( ) ( )2 3
0 1 0 2 0 3 0

1 1( ) ...
2 6

β ω β β ω ω β ω ω β ω ω= + − + − + − +  (2.2) 

β2 is related to the dispersion parameter D by 22

2 cD π β
λ

= − . In this dissertation, D will 

primarily be used in describing fiber dispersion. The parameter γ represents the 

nonlinear effects from the nonlinear refractive index n2 and is given by the relation 
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0

2 0

( )eff

n
cA

ωγ
ω

=  (2.3) 

shock tτ ∂ ∂  describes the self-steepening and shock formation, and is related to the 

carrier frequency: 01shockτ ω= . R(T) describes the Raman response, and can be 

approximated well by the following expression: 

 
2 2
1 2

2
2 11 2

( ) (1 ) ( ) exp sin ( )R R
t tR t f t f H t

τ τ
δ τ ττ τ

⎡ ⎤+ ⎛ ⎞ ⎛ ⎞−= − + ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (2.4) 

The parameters are set to fit the measured Raman response of silica:  fR = 0.18, τ1 = 

12.2 fs, and τ2 = 32 fs [1, 3]. H(t) is the Heaviside step function.  

To understand the effects of propagation, we need to solve Eqn. (2.1). We 

describe in this chapter two commonly used methods: the split-step Fourier method, 

and solving the frequency-domain GNLSE.  

 

2.1.1 Split-step Fourier Method 

The split-step Fourier method solves the GNLSE in the frequency domain for 

linear effects, and in the time domain for nonlinear effects [1]. For many-cycle pulses, 

we assume the envelope is slowly varying and Taylor-expand the squared-magnitude 

of the envelope function: 

 
2 2 2( , ') ( , ) ' ( , ) ...A z T T A z T T A z T

T
∂

− = − +
∂  (2.5) 

Inserting this into (2.1), we can pull A(z,T) out of the integrals, yielding: 

 

1

2

2 2

2 2

2 !

( ') ' ( ') '

' ( ') ' ' ( ') '

k k

k k
k

shock

shock

A i AA
z k T

A A R T dT i A A R T dT
T

i
A A

A T R T dT i A T R T dT
T T T

α β

τ

γ

τ

+

≥

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

∂ ∂
+ −

∂ ∂

⎛ ⎞∂
+⎜ ⎟

∂⎜ ⎟= ⎜ ⎟∂ ∂∂⎜ ⎟+ +⎜ ⎟∂ ∂ ∂⎝ ⎠

∑

∫ ∫

∫ ∫

 (2.6) 

We simplify the GNLSE using ( ) 1R t dt
∞

−∞

=∫  and defining ( )RT tR t dt
∞

−∞

= ∫ . While the 

Raman response is accurately represented by the full integral form of TR, when the 
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slope of the Raman gain over the pulse spectrum is linear, TR can be reasonably 

approximated as a constant [4]. 

 
21

2 2

22 !

k k

k shock Rk
k

AA i AA i A A i A A T A
z k T TT

α β γ τ
+

≥

⎛ ⎞∂∂ ∂ ∂⎜ ⎟+ − = + +
⎜ ⎟∂ ∂ ∂∂ ⎝ ⎠

∑            (2.7) 

The final term in (2.6), proportional to τshockTR, is small and does not appear in (2.7). 

To employ the split-step method, we will group the terms and write the 

GNLSE in the form  

 ( )ˆ ˆA D N A
z

∂
= +

∂
 (2.8) 

Where the linear operator D̂ represents all the linear effects: dispersion, linear 
absorption: 

 
1

2

ˆ
2 !

k k

k k
k

iD
k T

α β
+

≥

∂
= − +

∂∑  (2.9) 

And the nonlinear operator N̂ represents the nonlinear effects; here intensity-

dependent nonlinear index, self-steepening, shock, and Raman scattering: 

 ( )
2

2 2

0

1ˆ
R

AiN i A A A T
A T T

γ
ω

⎛ ⎞∂∂
= ⎜ + − ⎟

⎜ ⎟∂ ∂⎝ ⎠
 (2.10) 

The length of propagation is divided into many small steps Δz, and at each step, the 

linear and nonlinear effects are considered separately. In the first half of the step Δz/2, 

we set ˆ 0N =  and solve the NLSE with only linear effects in the Fourier domain. The 

operator D̂  in the Fourier domain is 

 
1

2

ˆ ( ') ( ')
2 !

k
k

k
k

iD i i
k

αω β ω
+

≥

= − + ∑  (2.11) 

We write for clarity in the shifted frequencies 0'ω ω ω= − . The propagation half-step 

is described by: 
 

 
( )

( , ) ( , ')

ˆ( 2, ') ( , ') exp '
2

FTA z T A z
zA z z A z D i

ω

ω ω ω

⎯⎯→

Δ⎡ ⎤+ Δ = ⎢ ⎥⎣ ⎦

 (2.12) 



9 

In the middle of the step, we set ˆ 0D = and solve the GNLSE with only nonlinear 

effects in the time domain: 

 

1

( 2, ') ( 2, )
ˆ( 2, ) ( 2, ) exp

FTA z z A z z T

A z z T A z z T N z

ω
−

+ Δ ⎯⎯⎯→ + Δ

⎡ ⎤+ Δ = + Δ Δ⎣ ⎦
 (2.13) 

  
For the second half of the step, we once again set ˆ 0N = and apply linear effects: 

 
( )

( 2, ) ( 2, ')

ˆ( , ') ( 2, ') exp '
2

FTA z z T A z z
zA z z A z z D i

ω

ω ω ω

+ Δ ⎯⎯→ + Δ

Δ⎡ ⎤+ Δ = + Δ ⎢ ⎥⎣ ⎦

 (2.14) 

For judicious choice of step size and time window, the split-step method is effective 

and fast for calculating propagation of pulses as short as tens of femtoseconds. The 

split-step Fourier method was the numerical method used in Chapters 3 and 4 of this 

dissertation for understanding the propagation of femtosecond input pulses in HOM 

fibers.  

 

2.1.2 Integrating the GNLSE in the Frequency Domain 

Another method to solve the GNLSE is by solving the frequency domain 

ordinary differential equation directly [2]. Doing so, it is straightforward to 

incorporate the frequency dependence of Aeff, which in the split-step Fourier method 

described above, could only be estimated by a single Aeff (ω0) at each propagation step. 

To obtain the GNLSE in the Fourier domain, we take the Fourier transform of (2.1).  

 ( )
1

2

2
( ') ' ( , ) ( ') ( , ') '

2 !

k
k

k
k

A iA i A i FT A z T R T A z T T dT
z k

α β ω γ τω
∞+

≥ −∞

⎧ ⎫∂ ⎪ ⎪+ + = − −⎨ ⎬
∂ ⎪ ⎪⎩ ⎭

∑ ∫  

  (2.15) 

If we group the linearly dispersive terms on the left hand side of the equation as an 

operator L̂   

 
2

1ˆ ( ')
2 !

k
k

k
L i

k
α β ω

≥

= − + ∑  (2.16) 

And make the variable substitution for the envelope 
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 ˆ'( , ') ( , ') exp( )A z A z Lzω ω= −  (2.17) 
As well as the following substitutions: 

 

1
1/ 4

2 0
1/ 4

( , ')( , )
( ')

'
( ')

( ') ( ')

eff

eff eff

A zA z T FT
A

n n
cn A

ω
ω

ω
γ ω

ω ω

−
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

=
 (2.18) 

We can write the GNLSE as 

 ( )
2' ˆ' exp( ) ( , ) ( ') ( , ') 'A i Lz FT A z T R T A z T T dT

z
γ ω

∞

−∞

⎧ ⎫∂ ⎪ ⎪= − −⎨ ⎬
∂ ⎪ ⎪⎩ ⎭

∫  (2.19) 

The Aeff can be fitted from measured values and incorporated in this equation, as well 

as the Raman response as estimated in (2.4). The resulting differential equation can 

then be solved using numerical integration methods, a few of which are available 

packaged in Matlab. Frequency-domain integration of the GNLSE was the method 

employed for calculations in Chapter 5 of this dissertation, and was written following 

the code provided in Chapter 3 of Ref. [2]. 

 

2.1.3 Conditions for Soliton Propagation 

If we consider fiber propagation as governed by the GNLSE, but ignoring all 

linear and nonlinear effects except the group velocity dispersion (GVD) and the self-

phase modulation (SPM), the GNLSE in (2.7) reduces to the familiar nonlinear 

Schrödinger equation (NLSE): 

 
2

22
22

iA A i A A
z T

β
γ∂ ∂

+ =
∂ ∂  (2.20) 

The equation is written in normalized units using 

 

0

0

D

AU
P

z
L
T
T

ξ

τ

=

=

=

 (2.21) 
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Where P0 is the peak power and T0 is the pulsewidth. Dispersion length is defined as 

LD = T0
2/|β2|, and nonlinear length LNL = 1/(γP0). The parameter N is defined as 

N2 = LD/LNL, and is the soliton order. The NLSE in (2.20) can now be written as 

 
2

222
2

sgn( )
2

U Ui iN U Uβ
ξ τ

∂ ∂
+ =

∂ ∂  (2.22) 

Making the substitution u = NU and rearranging the equation: 

 
2

22
2

sgn( )
0

2
u ui u u

β
ξ τ

∂ ∂
− + =

∂ ∂  (2.23) 

A solution of this equation is the fundamental soliton (N = 1), which has the form  

 sech( ) exp( / 2)u iτ ξ=  (2.24) 

Its peak power we can obtain at by solving for P0 for N = 1. 

 
2 2

0 2 2
2 0 0 2 02
eff effcA A

P
n T n T

β λ β
ω π

= =  (2.25) 

The linear phase induced by GVD is  

 
2

2
2

sgn( )
2L

ud d
u
βφ ξ

τ
∂

= −
∂

 (2.26) 

And the nonlinear phase induced by SPM is 

 
2

NLd u dφ ξ=  (2.27) 

The sum of the linear and nonlinear phase is then 

 2 2
2

1sgn( ) sech ( ) sech ( )
2L NLd d d dφ φ β τ ξ τ ξ⎛ ⎞+ = − − +⎜ ⎟

⎝ ⎠
 (2.28) 

When β2 is negative, the sum of the linear and nonlinear phase is a constant (1/2), 

meaning no phase distortion across the pulse is induced during propagation and the 

pulse travels unperturbed in the fiber. Here we see two requirements for soliton 

propagation: anomalous dispersion (β2  < 0, or D > 0), and sufficient peak power (the 

launch requirement for a fundamental soliton, P0). 
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2.2 Specialty Fibers and Fiber Dispersion1 

As was outlined in the preceding description of the fundamental soliton 

solution to the NLSE, anomalous dispersion is a prerequisite for soliton propagation. 

This section will discuss the dispersive properties of three types of fibers: standard 

single-mode fiber (SMF), microstructured optical fibers, and HOM fibers. 

Furthermore, I will use the characteristic power for soliton propagation (defined as the 

peak power of a fundamental soliton 2 2
0 2 2 0 2 02eff effP A n T A D n Tλ β π= ∝ ) to 

comment on the pulse energies attainable with the various fiber types. 

The total dispersion of a fiber is the sum of material dispersion, Dm, and 

waveguide dispersion, Dw. Since the waveguide dispersion of the fundamental (LP01) 

mode in standard SMF is normal (Dw < 0), soliton propagation is largely limited by the 

region of anomalous material dispersion in silica, λ > 1.3 μm. We can understand this 

by considering the mode evolution of the LP01 mode. As wavelength increases, the 

LP01 mode monotonically transitions from the high-index central core to the 

surrounding lower index regions, yielding a smaller effective mode index. Thus, the 

group velocity, which scales inversely as the group index, decreases with increasing 

wavelength. Waveguide dispersion, related to the group velocity by ( )1w gD d v dλ= , 

is therefore negative.  

Newer fiber designs that exhibit different mode propagation characteristics 

allow for positive waveguide dispersion values. Positive waveguide dispersion larger 

than the magnitude of negative material dispersion can then achieve anomalous 

dispersion at previously unattainable wavelengths. In addition, these newer fiber 

platforms can be engineered to have different dispersion profiles by dimensional 

scaling or tuning of index parameters. We can divide the microstructured optical fibers 

                                                 
1 The contents of this section have been reproduced in part from Journal of Selected Topics in Quantum 
Electronics, 14, 713 (2008) 
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discussed here into two main groups: index-guided photonic crystal fibers and hollow-

core photonic bandgap fibers. We will use PCF to refer to the index-guided structures 

and PBGF to refer to the hollow-core structures. Fig. 2.1(a) and (b) show typical PCF 

and PBGF structures. 

Light in high-index core PCFs is index-guided (total-internal reflection), as 

with conventional solid-silica step-index SMF. Due to the high index contrast between 

the silica core and air-hole clad, the PCF can be thought of as a thin silica strand in air. 

Such a structure can have large anomalous dispersion over the wavelength regions 

where silica has normal material dispersion [5]. In addition, the photonic crystal lattice 

that forms the cladding can be designed to give a wide range of dispersion profiles [6]. 

The small core size and thus small Aeff of PCF enable observation of nonlinear effects 

at low pulse energies (P0 ~ Aeff). 

PBGFs, on the other hand, with its low-index core, does not guide with total-

internal reflection. Instead, it guides light by the bandgap effect created by the periodic 

lattice that surrounds the central defect [7]. As with PCFs, the dispersion of PBGFs 

can be engineered by appropriate design of the photonic crystal lattice cladding. The 

appeal of PBGF lies in its hollow core: the low nonlinearity of the propagation 

medium enables high energy (P0 ~ 1/n2) pulse delivery [8].   

HOM fiber, in contrast with microstructured optical fibers, has large Aeff and 

moderate nonlinearity (both comparable to conventional SMF), and shows promise for 

supporting solitons of pulse energies 1-10 nJ. Such an exciting new fiber type was 

recently demonstrated that yields strong anomalous dispersion in the 1-μm wavelength  

range [9]. This all-solid silica fiber structure is index-guided as with SMF. This 

represents a major breakthrough in fiber design because it was previously considered 

impossible to obtain anomalous dispersion at wavelength shorter than 1.3 μm in such 
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Figure 2.1 (a) SEM image of a PCF, (b) SEM image of a PBGF, (c) radial index 

profile of an HOM fiber, (d) index profile of a conventional step-index fiber. Index 

profiles not to scale. Images in (a) and (b) courtesy of Thorlabs and Crystal Fibre. 
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an all-solid silica fiber. The key to the design was the ability to achieve strong positive 

(anomalous) Dw for the LP02 mode (a higher-order mode) of a specially designed 

HOM fiber. Combined with in-fiber gratings, this enabled constructing an anomalous 

dispersion element with low loss (~ 1%) and Aeff of ~40-70 μm2.   

In contrast to the normal waveguide dispersion of the LP01 mode, the LP02 

mode can exhibit anomalous waveguide dispersion. The LP02 mode, instead of 

transitioning to the lower index cladding with increasing wavelength, can be designed 

to have the opposite mode evolution: as the wavelength increases, the mode transitions 

from the lower index regions to the higher index core. Following the same analysis as 

we did previously when considering the dispersion of the LP01 mode, but now with an 

effective modal index that increases with increasing wavelength, we conclude that Dw 

is positive (anomalous) for the LP02 mode.  

In fact, very large positive values of Dw can be obtained, vastly exceeding the 

magnitude of (negative) Dm. This yields a mode with positive total D (anomalous 

dispersion). Note that this evolution is governed by the various high index regions of 

the waveguide which can be modified to achieve a variety of dispersion magnitudes, 

slopes and bandwidths. Sample index profile for an HOM fiber shown in Fig. 2.1 (c), 

in contrast with the top-hat index profile of conventional SMF in Fig. 2.1 (d). The 

design flexibility with the index contrast and size of core and cladding rings yields a 

recipe to obtain positive dispersion in a variety of wavelength ranges. In fact, the 

enormously successful commercial dispersion compensation fiber was designed to 

achieve a variety of dispersion values based on the same concept [9, 10]. The HOM 

fibers investigated in the following chapters are designed to achieve anomalous 

dispersion in the near infrared, with maximum D between 50 and 80 ps/nm/km, and 

Aeff on the order of 50 μm2. 
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 CHAPTER 3 

 

SOLITON SELF-FREQUENCY SHIFT IN HIGHER ORDER MODE FIBER2  

 

 

3.1 Introduction 

A soliton is a wave packet whose temporal profile does not change with 

propagation. In the early 1970s, Zakharov and Shabat [1] and Hasegawa and Tappert 

[2] showed theoretically that these solitonic solutions exist for propagation in 

dielectric fiber. Soon after, Satsuma and Yajima added to the understanding by 

presenting higher-order soliton solutions [3]. The first experimental observation of a 

fiber-bound optical soliton was in 1980 [4]. Mollenauer et al. observed that pulses 

from a mode-locked laser coupled into a low-loss single-mode fiber (SMF) exhibited 

dispersive broadening at low power. Then at higher powers, they observed the 

fundamental and higher order solitons predicted in [1-3].  

The soliton is a solution of the nonlinear Schrodinger equation (NLSE), which 

governs light propagation. In the regime where the equation cannot be approximated 

by solely dispersive or nonlinear propagation, the soliton solution exists due to the 

interplay of group velocity dispersion (GVD) and self-phase modulation (SPM).  In a 

soliton, the linear phase shift caused by GVD is completely cancelled by the nonlinear 

phase shift caused by SPM, resulting in a pulse that propagates unperturbed down the 

fiber. To get this phase cancellation, the dispersion must be positive (anomalous). 

Since its discovery, optical solitons have had widespread impact in optics, in particular 

to telecommunications and ultrafast science.  

                                                 
2 The contents of this chapter have been  reproduced in part from Journal of Selected Topics in 
Quantum Electronics, 14, 713 (2008) 
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Dianov et al. reported in 1985 a Raman pumping of the Stokes frequency by a 

sufficiently powerful input into a single-mode quartz optical fiber [5]. In 1986, 

Mitschke and Mollenauer reported a increasing red-shift of the center frequency of a 

subpicosecond soliton pulse with increasing power in standard single-mode, 

polarization maintaining fiber [6]. They named the phenomenon soliton self-frequency 

shift (SSFS). Due to Raman gain, the blue portion of the soliton spectrum pumps the 

red portion of the spectrum, causing a continuous red-shift in the soliton spectrum. 

This wavelength shift was observed to increase with both input power and fiber 

length. The mathematical basis of SSFS is described in [7]. Gordon found that the 

frequency shift per unit length was proportional to 4
0T − , T0  being the pulsewidth. SSFS 

is not significant for telecom scale (at least tens or hundreds of picoseconds-long) 

pulses. The long pulsewidth leads to only a fraction of GHz shift over tens of 

thousands of kilometers. The delay between the discovery of the optical soliton and 

the observation of the SSFS was primarily because of the lack of a reliable 

subpicosecond high-power soliton source.  

Other early work in SSFS [8-11] showed that for a short pulse at high power 

(capable of producing N ≈ 10 order soliton), instead of forming a higher-order soliton 

as expected from [3, 4], fissioned to form numerous fundamental solitons. These 

fundamental solitons would then individually shift in frequency. Beaud et al. [8] 

observed the formation of multiple Stokes pulses each with the temporal profile of a 

fundamental soliton. These Stokes pulses underwent frequency shift, resulting in an 

output spectrum with spectrally separated soliton peaks. The remaining energy not 

converted to a soliton was dissipated in a dispersive wave at the source wavelength.  

Since its discovery in SMF, SSFS has also been observed in other fiber 

platforms, including tapered microstructured air-silica fiber [12], high-index-core 

photonic crystal fiber (PCF) [13, 14], hollow-core photonic bandgap fiber (PBGF) 
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[15], and solid-silica higher order mode (HOM) fiber [16]. The region of anomalous 

dispersion for silica limits SSFS in standard step-index silica-based fiber to 

wavelengths longer than 1.3 μm. Microstructured optical fibers and other new fiber 

designs, on the other hand, have non-conventional mode-propagation characteristics 

[17, 18], which give rise to fiber dispersion profiles previously unattainable by step-

index silica-based fibers. These novel fiber structures have extended the accessible 

region down to the near IR, and even visible wavelengths [18, 19].  

Since the frequency shift from SSFS is deterministic, SSFS has seen much 

application over the last decade to fabricating fiber-delivered, widely frequency-

tunable, femtosecond pulse sources [20, 21]. Other applications of SSFS include 

analog to digital conversion [22, 23], and telecom applications such as signal 

processing [24, 25], tunable time delays [26, 27], switching and demultiplexing [28-

30].  

In this chapter, we will describe SSFS as observed in various fiber platforms, 

namely SMF, high-index core PCF, hollow-core PBGF, and solid all-silica HOM 

fiber. In addition, we will review applications of SSFS for making tunable- and multi-

wavelength sources, analog to digital conversion, and all-optical tunable delay lines.  

 

3.2 Fiber Structures 

SSFS has been observed in many types of fibers. In early experiments in SMF, 

SSFS has been observed between 1.3 μm and 2 μm. Microstructured optical fibers 

such as PCF and PBGF have been shown to exhibit SSFS between 0.8 μm and 1.7 μm. 

Recently, SSFS has also been shown in HOM fibers between 1 μm and 1.3 μm. Each 

fiber type has unique characteristics of dispersion and nonlinearity, as described in 

Chapter 2, and the behavior of SSFS in these fiber platforms are dictated by these  
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properties. Table 3.1 summarizes past representative experiments of SSFS in different 

fiber platforms.  

 

3.2.1 SSFS in Single Mode Fiber 

The first discovery of SSFS was made in polarization maintaining (PM) single 

mode step-index fiber [5, 6]. Mitschke and Mollenauer [6] observed up to 10 THz 

shift of an input at 1.5 μm, about 75 nm shift. Since then there have been numerous 

demonstrations of SSFS in standard PM SMF showing shift over different 

wavelengths. Beaud et al. [8] showed wavelength shift from 1.36 to 1.54 μm, 

Nishizawa et al. showed a redshift up to 2.03 μm [31]. Many other groups have shown 

SSFS in PM SMF in between these wavelength ranges [20, 32-34]. Other efforts 

include demonstrations in doped fiber amplifiers [35], highly nonlinear fiber [36], 

birefringent fiber [37, 38], fiber with length-variable dispersion [39], as well as non-

PM fibers [32, 40, 41].  

 

3.2.2 SSFS in Microstructured Optical Fiber 

As was described in Chapter 2, microstructured fibers such as index-guided 

PCFs and hollow-core PBGFs can be engineered to access anomalous dispersion at 

wavelengths not attainable by conventional solid-silica fibers. This anomalous 

dispersion access provided by these fiber structures also opens the door to observation 

of SSFS at these wavelengths. The first demonstration of SSFS in an index-guided 

microstructured optical fiber was in a tapered PCF by Liu et al., showing wavelength 

shift from 1.3-1.65 μm [12]. Later, Washburn et al. [13] as well as Cormack et al. [14] 

demonstrated SSFS in untapered PCF in regions of normal silica dispersion (λ < 1.3 

μm). Since these early demonstrations, groups have shown wavelength shifts within 

the wavelength range of 0.6-1.7 μm [14, 42-48]. In addition to the demonstrations in  
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TABLE 3.1 
EXAMPLES OF SOLITON SELF-FREQUENCY SHIFT IN FIBER 

Fiber Wavelength 
Range (μm) 

Pulse Energy Reference 

PM SMF 1.36-1.54 0.4 nJ Beaud 1987 
 1.56-2.03 0.2 nJ Nishizawa 2001 
HNLF 1.56-1.72 15 pJ Chestnut 2003 
Doped fiber 
amplifier 

1.55-1.60 ~1 nJ Kim 2002 

Birefringent 
fiber 

1.56-1.70 ~0.1 nJ Nishizawa 1999 

Non-PM 
SMF 

1.55-1.7 0.4 nJ Wei, 2004 

 1.55-1.83 60 pJ Korolev 2007 
Tm-Ho 1.97-2.15 2 nJ Kivisto 2007 
Tapered PCF 1.3-1.65 1 nJ Liu 2001 
 0.81-1.13 0.1 nJ Kobtsev 2004 
PCF 0.85-1.05 60 pJ Washburn 2001 
 0.8-1.26 ~0.4 nJ Cormack 2002 
 0.78-1.0 ~50 pJ Nishizawa 2003 
 1.03-1.33 0.5 nJ Lim 2004 
 0.82-1.35 ~10 pJ Ishii 2006 
 1.05-1.69 ~0.2 nJ Takayanagi 2006 
PBGF 1.47-1.53 ~600 nJ Ouzounov 2003 
HOM fiber 1.06-1.20 0.8 nJ van Howe 2007 
 1.06-1.30 1 nJ Lee 2007 

PM: Polarization maintaining, SMF: single mode fiber, PCF: photonic crystal 
fiber (here refers to index-guiding structures), PBGF: photonic bandgap fiber 
(here refers to hollow core structures), HOM: higher-order-mode 
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index-guided PCFs, Ouzounov et al. recently demonstrated SSFS in a hollow core 

PBGF. For propagation in an air-filled PBGF, they observed soliton self-frequency 

shift of 60 nm from 1.47-1.53 μm [15].   

The wavelength access provided by dispersion engineering in these 

microstructured fibers is exciting; however, each novel fiber design has limitations in 

allowed pulse energies. The pulse energy required to support stable Raman-shifted 

solitons in index-guided PCFs and hollow-core PBGFs is either very low, a fraction of 

a nJ for silica-core PCFs [13, 46], or very high, greater than 100 nJ (requiring an input 

from an amplified optical system) for hollow-core PBGFs [49]. The low-energy limit 

is due to high nonlinearity in the PCF. In order to generate large positive waveguide 

dispersion to overcome the negative dispersion of the material, the effective area of 

the fiber core must be reduced. For positive total dispersion at wavelengths less than 

1.3 μm this corresponds to an Aeff of 2-5 μm2, approximately an order of magnitude 

less than conventional SMF. The high-energy requirement for PBGF is due to low 

nonlinearity in the air-core where the n2 of air is roughly 1000 times less than that of 

silica. These extreme ends of nonlinearity dictate the required pulse energy (P0) for 

fundamental soliton propagation, which scales as 2
0 2 0effP A D n T∝ . In fact, most PCF 

and tapered fibers with positive dispersion are intentionally designed to demonstrate 

nonlinear optical effects at the lowest possible pulse energy. On the other hand, 

hollow-core PBGFs are often used for applications that require linear propagation, 

such as pulse delivery. For these reasons, previous work showing SSFS below 1.3 μm 

were performed at soliton energies either too low or too high (by at least an order of 

magnitude) for many practical applications, where wavelength-tunable bulk solid state 

lasers are currently the mainstay for the excitation source [50].  
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3.2.3 SSFS in HOM Fiber 

HOM fibers achieve anomalous dispersion at wavelengths of normal silica 

material dispersion by propagating the light in a higher-order mode of the fiber instead 

of the fundamental mode. Like the microstructured fibers described above, the HOM 

fiber dispersion is also widely engineerable, while having large Aeff (compared to PCF) 

and moderate nonlinearity (compared to the air-core of PBGF). These attributes enable 

it to generate solitons in the intermediate pulse energy regime (1-10 nJ) between PCFs 

and PBGFs. We present here the demonstration of SSFS from 1.06 μm to 1.2 μm with 

up to 57% power efficiency in a HOM fiber [16]. The HOM fiber used in this 

experiment had positive dispersion (~60 ps/nm-km) below 1.3 μm and a relatively 

large effective area [18], approximately ten times that of index-guided PCFs for 

similar dispersion characteristics. Through soliton shaping and higher-order soliton 

compression within the HOM fiber, we were able to generate clean 49 fs pulses from 

200 fs input pulses. In addition, we also observed red-shifted Cerenkov radiation in the 

normal dispersion regime for appropriately energetic input pulses. This dispersive 

wave to which the soliton energy couples efficiently is called Cerenkov radiation in 

fiber [51-53], in analogy to the Cerenkov radiation generated by a charged particle 

moving through a dispersive medium. The phenomenon of Cerenkov radiation 

generation in HOM fiber is discussed further in Chapter 4.  

 Fig. 3.1(a) shows the dispersion curve for the LP02 mode in the HOM fiber 

used in our experiment. To generate positive dispersion below 1.3 μm while 

simultaneously maintaining a large effective area, light propagates solely in the LP02 

mode. A dispersion of 62.8 ps/nm-km at 1.06 μm is comparable to that of 

microstructured fibers used previously for SSFS [12, 13, 46], and exhibits two zero-

dispersion wavelengths (ZDWs) at 908 nm and 1247 nm. The mode profile at the end 

face of the HOM fiber is shown in Fig. 3.1(b), demonstrating a clean higher-order  
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Figure 3.1 (a) Total dispersion for propagation in the LP02 mode. (b) Experimental 

near-field image of the LP02 mode with effective area Aeff = 44 μm2. (c)  Experimental 

setup used to couple light through the HOM fiber module. 
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LP02 mode and an effective area of 44 μm2.  

  The HOM fiber module (Fig. 3.1 (c)) consists of a segment of standard SMF 

(flexcore), a long period grating (LPG) [54], and 1.0 m of HOM fiber. Light 

propagates in the fundamental mode in the flexcore pigtail, is coupled to the LP02 

mode in the LPG (99% mode conversion efficiency), then propagates solely in the 

higher order mode through the HOM fiber We note that the all-silica HOM fiber 

leverages the standard silica fiber manufacturing platform and retains the low loss 

properties (for both transmission and bending) of a conventional SMF, allowing easy 

termination and splicing.  

The experimental setup for observing SSFS in HOM fiber is shown in Fig. 

3.1(c). The pump source consisted of a fiber laser (Fianium FP1060-1S) which 

delivered a free space output of ~200 fs pulses at a center wavelength of 1064 nm and 

an 80 MHz repetition rate. Using a variable attenuator, the input pulse energy was 

varied from 1.36 nJ to 1.63 nJ to obtain clean spectrally-shifted solitons with a 

maximum wavelength shift of 136 nm (12% of the carrier wavelength), Fig. 3.2(a). 

Theoretical traces from numerical simulation (using the split-step Fourier method) for 

similar input pulse energy are plotted adjacent to the experimental data in Fig. 3.2(d). 

The non-PM nature of the higher order mode fiber does not give rise to any observable 

instability, as observed from the clean spectra of the solitons as well as the agreement  

with numerical simulation.   

We measure 57% power conversion from the input pulse spectrum to the red-

shifted soliton for the case of 1.39 nJ input pulses to achieve ~0.8 nJ output soliton 

pulses, Fig. 3.2(a). The corresponding second-order interferometric autocorrelation 

(Fig. 3.3) gives an output pulse width of 49 fs, assuming a sech2 pulse shape, showing 

a factor of four in pulse width reduction due to higher-order soliton compression 
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Figure 3.2 (a) Soliton self-frequency shifted spectra corresponding to different input 

pulse energies into the HOM fiber. All traces taken at 4.0 nm resolution bandwidth 

(RBW). Input pulse energy noted on each trace. Power conversion efficiency is 57 % 

for 1.39 nJ input. (b) High resolution trace of the initial spectrum; 0.1 nm RBW. (c) 

High resolution trace of the shifted soliton for 1.63 nJ input into the HOM fiber; 0.1 

nm RBW. (d) Soliton self-frequency shifted spectra calculated from simulation using a 

200 fs input Gaussian pulse and shifted soliton energies comparable to those in (a). 

Input pulse energy noted on each trace. 
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Figure 3.3. Second-order interferometric autocorrelation trace of HOM output for 1.39 

nJ input pulses. Autocorrelation FWHM measured to be 92 fs corresponding to a 

deconvolved pulse width of 49 fs. 



 

29 

(soliton order N = 2.1) in the HOM fiber. The measured spectral bandwidth of 35 nm 

gives a time-bandwidth product of 0.386 which is 23% beyond that expected for a 

sech2 pulse shape. We further note the ripple-free, high-resolution spectrum of the 

shifted soliton at 1.63 nJ input, Fig. 3.2(c), indicative of single mode propagation in 

the LP02 mode. 

Though not demonstrated in our experiments, light can be easily coupled back 

into the fundamental mode using another LPG at the output end. Previous work 

showed that by using a dispersion-matching design, ultra-large bandwidths can be 

supported by a LPG [54]. Recently conversion efficiency of 90% over a bandwidth of 

200 nm was obtained for a similar fiber structure [55]. Such a LPG will ensure the 

output pulse is always converted back to a Gaussian profile, within the tuning range. 

On the other hand, depending on the intended usage, the higher order mode output 

could also be used directly without mode conversion. The focusing properties of the 

LP02 mode for nonlinear microscopy applications are discussed in Chapter 6.  

 

3.2.4 Extended Soliton Shift in HOM Fiber with Dispersion Engineering3 

One can imagine that an HOM fiber module could be engineered to produce 

shifted solitons of different wavelengths and pulse energies with a different dispersion 

design. For example, simple dimensional scaling of the index profile can be used to 

shift the dispersion curve of the LP02 mode. Our numerical modeling shows that 

output soliton energy of approximately 2 nJ can be realized if the dispersion curve is 

shifted ~ 100 nm to the longer wavelength side. Additionally, pulse energy can be 

scaled by increasing D or Aeff. Aside from increasing the magnitude of dispersion 

through manipulation of the index profile and dimensions of the fiber, the effective 

area can be significantly enhanced by coupling into even higher-order modes. An 

                                                 
3 The contents of this section have been reproduced in part from OFC/NFOEC 2007, PDP38. 
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effective area of  ~2000 μm2 (more than 40 times this HOM fiber) was recently 

achieved by coupling to the LP07 mode [55].  

Indeed, we obtained much improved SSFS performance by dispersion 

engineering of the HOM fiber. The dispersion is changed by simple dimensional 

scaling in this case, yielding a dispersion curve with ZDWs separated by 415 nm. We 

demonstrated SSFS below 1.3 μm over a 240 nm range (100 nm more than in 3.2.3). 

The shifted spectra from Section 3.2.3 and the HOM fiber under study here are shown 

side by side in Fig. 3.4. With measured soliton energies above 1.0 nJ, Fig. 3.4 

represents the largest wavelength shift of energetic pulses in the technologically 

important, but hard-to-access range of 1-1.3 μm.  

The experimental setup for observing extended SSFS in HOM fiber was the 

same as described in Section 3.2.3, but now the HOM fiber module consisted of a 13.5 

cm standard single mode (Flexcore) pigtail, a long period grating (LPG) mode 

converter, and 2.4 m of HOM fiber. The LP02 mode in this HOM fiber had a large 

effective mode field area of 70 μm2 at 1064 nm.  

The dependence of soliton shift on input power is shown in Fig. 3.5. With 

increasing input pulse energy, we observed soliton fission and redshift of the fissioned 

soliton. As the input energy was increased beyond 2.9 nJ, the center wavelength of the 

soliton shifted to 1300 nm, nearly 240 nm away from the input pulse. Further 

increasing the input pulse energy did not increase the range of the soliton shift because 

of the ZDW of the HOM located at 1368 nm. We also observed a Cerenkov radiation 

band appearing in the normal dispersion regime, centered at 1480 nm. Further 

increasing the input pulse energy pumped energy into the Cerenkov radiation in lieu of 

further shifting the soliton. 
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Figure 3.4. Spectrum showing SSFS in HOM fiber overlaid with dispersion curves, (a) 

initial demonstration (as described in 3.2.3), (b) dispersion shifted design. Zero 

dispersion wavelength is marked with a dashed line. Residual input is attenuated by 7 

dB in both plots to accentuate the wavelength shifted features.  
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Figure 3.5. (a) Measured spectra for different input pulse energies as indicated next to 

each trace. Residual input is attenuated by 7 dB to accentuate the wavelength shifted 

features. (b) Soliton wavelength shift (from 1064 nm) as a function of input pulse 

energy. 
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We measured the autocorrelation of a shifted soliton centered at 1125 nm. The 

second-order interferometric autocorrelation is shown in Fig. 3.6. The intensity 

autocorrelation full width half-max (FWHM) was 140 fs, and assuming a sech2 shape, 

gave a deconvolved pulsewidth of 91 fs. Soliton energy was measured to be 1.05 nJ, 

the highest energy level ever achieved by SSFS in a solid core fiber at below 1300 nm. 

We note that solitons with a larger wavelength shift have larger bandwidth and would 

result in a shorter pulsewidth and higher pulse energy. We note that at maximum 

coupled power, the HOM fiber can be cut to the appropriate length for maximal 

soliton energy, i.e. just before the appearance of Cerenkov radiation.  

In this section, we demonstrated SSFS from 1064 nm to 1300 nm in a solid 

silica HOM fiber. A shifted soliton of 1.05 nJ pulse energy and 91 fs pulsewidth was 

measured. The large range of wavelength tunability combined with high pulse 

energies make this the first practical all-fiber tunable source with performance 

approaching that of an optical parametric oscillator (OPO) pumped by a modelocked 

Ti:Sapphire laser. 

 

3.3 Applications of SSFS 

Using its power-dependent wavelength tuning property, SSFS can be 

straightforwardly used to provide a widely tunable laser source at different wavelength 

ranges from a fixed-wavelength input. Nishizawa and Goto demonstrated a compact 

tunable source over 1.56-1.78 μm by simply varying the input power into the shifting 

fiber [20]. Other tunable sources employing SSFS have been shown for wavelengths 

ranging 0.8 μm up to 2 μm (see Table 3.1). In addition to wavelength tuning by 

varying input power, it has also been shown that wavelength tuning can be achieved 

by changing the input polarization to a highly birefringent fiber exhibiting SSFS [38]. 

The birefringence also introduces an additional degree of freedom, which can be used  
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Figure 3.6. Second-order interferometric autocorrelation shows 140 fs intensity 

FWHM, a 91 fs pulse assuming a sech2 shape. 

-0.5 0 0.5
0

2

4

6

8

Delay (ps)
-0.5 0 0.5
0

2

4

6

8

Delay (ps)



 

35 

in making multi-wavelength sources [37, 56].  

  SSFS demonstrations in HOM fiber, described in preceding sections, showed 

wavelength tuning range and pulse energies that could be invaluable for developing an 

all-fiber, energetic, wavelength-tunable source for a variety of practical applications. 

For example, the tunable wavelength range of 1-1.3 μm and pulse energy of a few nJ 

are of great interest for multiphoton imaging. SSFS in fiber, along with a fixed-

wavelength fiber laser, could be easily integrated into a fiber endoscopy system with 

turnkey operation.  

 In addition to laser wavelength tuning, SSFS has also been employed to realize 

high-speed analog-to-digital conversion. The main advantage of photonic analog-to-

digital converters (ADCs) over electronic ADCs is the ultrastable sampling provided 

by optical pulses. Konishi et al. proposed to use the power-dependent frequency shift 

property of SSFS to realize photonic ADC [22]. Recently, Nishitani, Konishi, and Itoh 

demonstrated a 4-bit photonic ADC by using SSFS in combination of SPM-induced 

spectral compression [57]. Additionally, Xu and Liu [23] proposed a method to 

significantly reduce the optical complexity associated with the SSFS-based photonic 

ADC by employing passive splitters and wavelength interleaving filters.  

A third application of SSFS is to optical buffering and tunable delays. An all-

optical tunable delay line consisting of intensity-dependent delay based on SSFS and 

supercontinuum generation and filtering was recently proposed [27] and demonstrated 

[58].  By using the chromatic dispersion of a fiber and the wavelength tunability 

supplied by SSFS, a tunable delay of up to 720 ps for a 0.45 ps pulse (corresponding 

to a delay-to-pulse-width ratio of 1600) was achieved. Tuning of the delay was 

achieved by varying the input peak power to the soliton-shifting fiber. The light was 

reconverted to the input wavelength via supercontinuum generation and spectral 

filtering after the delay stage.  
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3.4 Summary and Outlook 

We have reviewed the fundamentals of SSFS, various state-of-the-art fiber 

platforms for SSFS, and recent experimental SSFS demonstrations. We presented in 

detail the demonstrations of SSFS in HOM fibers, and its tunability via dispersion 

engineering. Several interesting applications of SSFS, such as wavelength-tunable 

laser sources, ADC, and tunable delays, were briefly discussed.  

The recent experimental demonstration of SSFS from 1.06 nm to 1.3 μm in a 

HOM fiber indicated the possibility for significantly increased wavelength shift with 

dispersion engineering. The record magnitude of wavelength shift at pulse energies 

greater than 1 nJ make this the first practical demonstration of an all-fiber tunable 

source that approaches the performance of state-of-the-art bulk OPOs. Even larger 

wavelength shifts and higher pulse energies are expected by using further improved 

HOM fiber structures that enable both large dispersion and large fiber effective area. 

Using SSFS in HOM fiber shows great promise for developing a new approach for an 

all-fiber, compact, energetic, and wavelength-tunable femtosecond source. 
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 CHAPTER 4 

 

GENERATION OF FEMTOSECOND PULSES AT 1350 NM BY CERENKOV 

RADIATION IN HIGHER ORDER MODE FIBER4 

  

 

4.1 Introduction 

Higher order mode (HOM) fiber has attracted significant interest recently due 

to the freedom it provides to design unique dispersion characteristics in all-solid silica 

(non-holey) fibers [1]. This new fiber platform allows for anomalous dispersion below 

1300 nm by propagating light solely in one of the higher-order modes [1]. Such 

dispersion characteristics were previously attainable only by photonic crystal fibers 

(PCF). The unique characteristics of the HOM fiber, such as large anomalous 

dispersion and a large effective area (approximately ten times that of index-guided 

PCFs), provide a number of new opportunities for applications in nonlinear fiber 

optics. For example, we recently demonstrated soliton self-frequency shift (SSFS) 

below 1300 nm in an HOM fiber. The advantage of using HOM fiber lies in the ability 

to generate higher energy self-frequency shifted solitons than attainable in 

microstructured PCFs [2].  Output pulse energy obtainable for cleanly frequency-

shifted solitons in index-guided PCFs is limited to fractions of a nanojoule [3, 4] due 

to light confinement to a smaller effective area, rendering pulses more susceptible to 

nonlinearity. In contrast, the HOM fiber platform allows advantages of interesting 

dispersion curves similar to PCFs, yet with a higher tolerance to nonlinearity. The 

ability to obtain complex dispersive profiles in fiber is interesting because of its 

prospect for realizing sources in hard-to-access spectral regions by exploiting the 

                                                 
4 The contents of this chapter reproduced from Optics Letters, 32, 1053, 2007. 
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generation of Cerenkov radiation [5]: that is, the dispersive waves shed by solitons 

near the zero-dispersion wavelength (ZDW). HOM fibers, with its higher tolerance to 

nonlinearities, will allow for energetic sources at wavelengths where fiber-based 

sources are not currently available. 

Cerenkov radiation in fibers has been demonstrated in microstructured fibers 

pumped near the ZDW as well as experiments generating self-frequency shifted 

solitons [5-9]. An ideal soliton requires a perfect balance between dispersion and 

nonlinearity so that energy becomes confined to a discrete packet both spectrally and 

temporally.  With the introduction of perturbations such as higher-order dispersion, 

this stable solution breaks down, allowing the transfer of energy between the soliton in 

the anomalous dispersion regime and newly shed dispersive radiation in the normal 

dispersion regime. Such energy transfer occurs most efficiently in fibers for solitons 

near the ZDW. The spectral regime to which energy couples most efficiently has been 

dubbed “Cerenkov radiation” due to an analogous phase matching condition in particle 

physics. The phenomenon of Cerenkov radiation in fibers is often associated with 

SSFS as it allows a convenient mechanism for more efficient energy transfer between 

the soliton and the Cerenkov band. When the third-order dispersion is negative, SSFS 

will shift the center frequency of the soliton toward the ZDW, resulting in efficient 

energy transfer into the Cerenkov radiation in the normal dispersion regime. A more 

rigorous description and analytical derivation of Cerenkov radiation in fibers can be 

found in various theoretical works [10-12].  

In this chapter we show generation of Cerenkov radiation at 1350 nm in an 

HOM fiber with 20% power conversion efficiency (approximately 25% photon 

efficiency). We successfully filter and compress the Cerenkov output pulses to 106 fs. 

Cerenkov radiation generated in the normal dispersion regime of this HOM fiber can 

be used to extend the wavelength range covered by the shifting soliton, or to create a 



 

46 

three-color pulsed source (centered at the pump, frequency shifted soliton, and 

Cerenkov radiation wavelengths). This new class of fiber shows great promise for 

generating femtosecond pulses at various wavelengths in the energy regime of several 

nJs.  

 

4.2 Experimental Methods 

The experimental setup is shown in Fig. 4.1(a). The pump source consists of a 

pulsed fiber laser (Fianium FP1060-1S) centered at 1064 nm, with 80 MHz repetition 

rate and 200 fs pulsewidth. We couple the source into the HOM fiber module, which 

consists of a 12.5 cm standard single mode fiber (flexcore) pigtail, 2.5 cm of long 

period grating (LPG) and 1 m of HOM fiber. The LPG converts the fundamental mode 

to the higher-order LP02 mode with good (>90%) efficiency over a large (50 nm) 

bandwidth; for the input wavelength of 1064 nm, 99% of the fundamental mode is 

converted to the LP02 mode, which exhibits anomalous dispersion in the HOM fiber 

between 908 and 1247 nm [1], see Fig. 4.1(b). At the input wavelength, the LP02 

mode, shown in Fig. 4.1(c), has an effective area Aeff = 44 μm2. The output of the 

HOM fiber module is collimated and measured with an optical spectrum analyzer and 

a second order interferometric autocorrelator. A 1300 nm long-pass filter is used to  

select out the Cerenkov radiation, and a pair of silicon prisms are used for dispersion 

compensation and to simultaneously filter out any residual pump wavelength.  A 

polarizer and a half-wave plate serve as a variable optical attenuator (VOA) at the 

input of the HOM fiber module.  

We also numerically simulate the system using the split-step Fourier method 

[13]. The source is modeled as a Gaussian pulse with added self-phase modulation 

(SPM) to approximately match the source spectrum from the experiment (Fig. 4.2 
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Figure 4.1. (a) Experimental setup used to measure the Cerenkov pulse generated in 

the HOM fiber, (b) measured dispersion for the LP02 mode in the HOM fiber, (c) the 

measured mode profile of the LP02 mode. 
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 insets). For propagation in the HOM fiber, we include SPM (nonlinear parameter 

γ = 2.2 W-1km-1), stimulated Raman scattering (Raman response TR = 5 fs), self-

steepening, wavelength dependent Aeff, and dispersion up to fifth-order. Dispersion 

coefficients are calculated by numerically fitting the dispersion curve shown in Fig. 

4.1(b) [1]. We also scale the power accordingly during Raman wavelength-shifting to 

take into account energy lost to phonons. 

 

4.3 Results and Discussion 

We are able to couple a total power of 265 mW (3.31 nJ pulse energy) into the 

HOM fiber module. At this power level, the residual input, shifted soliton, and 

Cerenkov radiation can be clearly seen in the output spectrum shown in Fig. 4.2(a). 

The optical power residing in the Cerenkov band is ~53 mW (0.66 nJ pulse energy), a 

power conversion efficiency of 20% (25% photon conversion efficiency). We 

qualitatively match the experimental spectrum in simulation, shown in Fig. 4.2(b). We 

note the excellent qualitative match between simulation and experiment and the 

relatively good quantitative match. The observed quantitative discrepancy could arise 

from our approximation of both the input source characteristics and the dispersion 

curve, which is not characterized beyond 1400 nm. This simulated spectrum 

corresponds to an input power of 189 mW (2.36 nJ pulse energy), with 30% 

conversion to the Cerenkov band, equivalently 0.70 nJ in the Cerenkov pulse. At this 

power level, the soliton (centered at approximately 1200 nm) has shifted enough 

energy past the ZDW so that resonant coupling occurs efficiently at 1350 nm 

(Cerenkov radiation). Intuitively, growth of the Cerenkov radiation begins 

exponentially with increasing input power until the “spectral recoil” exerted by the 

Cerenkov radiation on the soliton cancels the Raman self-frequency shift [5]. After the 
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Figure 4.2. Optical spectrum at output of HOM fiber module. (a) from experiment, (b) 

from simulation. Insets show source spectra on a 30 nm window. 
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soliton is frequency-locked, for our experiment at 1200 nm, increasing the pump 

power will only transfer energy to the Cerenkov spectrum instead of shifting the 

soliton further. Simulation shows that up to approximately 5 nJ can be pumped into 

the Cerenkov band, after which nonlinear effects begin to degrade the system. 

Experimental pulse energies were limited by the pump source’s non-Gaussian beam 

shape, which results in poor coupling into the HOM fiber module. 

 We additionally measure Cerenkov output pulse energy as a function of input 

pulse energy by varying the attenuation at the input of the HOM fiber module. We can 

see from Fig. 4.3 that the Cerenkov pulse energy increases rapidly at input energies of 

approximately 2 nJ (input power 160 mW). This "threshold" behavior, as well as the 

location of the knee agrees well with our simulation. The threshold behavior has also 

been experimentally observed previously in PCF [5]. A discrepancy in Cerenkov pulse 

energy between numerical results and experiment was found at the highest input pulse 

energies we investigated, where simulation shows a faster increase in Cerenkov 

energy than the experimental results. We currently do not have an explanation for this 

discrepancy.   

A second order autocorrelation trace of the filtered Cerenkov pulse at the 

output of the HOM fiber module is shown in Fig. 4.4(a); it is visibly chirped and has 

an autocorrelation FWHM of 907 fs. We are able to compress this pulse to 207 fs 

autocorrelation FWHM, shown in Fig. 4.4(b), with appropriate dispersion  

compensation by a silicon prism pair. We calculate the dispersion provided by the 

silicon prism pair (prism separation distance approximately 7 cm in optical pathlength) 

to be β2 = -0.0065 ps2 and β3 = -1.9×10-5 ps3. Applying such dispersion compensation 

values to our spectrally matched simulation, we obtain numerically an autocorrelation 

FWHM of 200 fs and a pulsewidth of 103 fs. If we assume the same pulse shape, the 

experimentally measured deconvolved pulsewidths with and without 
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Figure 4.3. Cerenkov output pulse energy as a function of input pulse energy. 
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Figure 4.4. Intensity autocorrelation traces of Cerenkov pulse, (a) at the output of the 

HOM fiber module, without dispersion compensation, and (b) dispersion compensated 

pulse. Vertical axes span from 1 to 3 for collinear autocorrelation. Interferometric 

autocorrelation traces are shown in insets. Assuming the pulse shape predicted by 

simulation, this corresponds to pulsewidths of 465 fs and 106 fs, in (a) and (b) 

respectively. 
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dispersion compensation are 106 fs and 465 fs, respectively.  

The location of the Cerenkov radiation can be tuned through engineering of the 

fiber dispersion [9]. For example, simple dimensional scaling of the index profile of 

the HOM fiber can be used to shift the dispersion curve of the LP02 mode. By shifting 

the ZDW 50 nm to the shorter wavelength side, the generated Cerenkov radiation will 

also shift by approximately the same amount. Such design control could lead to the 

generation of useful femtosecond pulsed sources in spectral regimes unattainable by 

current laser systems. Furthermore, the large effective area and flexibility for 

dispersion engineering in the HOM fiber open up the possibility to achieve pulse 

energies significantly beyond the level demonstrated here. 

Although not demonstrated in our experiment, the generated Cerenkov pulse 

can be converted back to the fundamental mode by another LPG at the output of the 

HOM fiber module. With proper dispersion matching, efficient and broadband (> 100 

nm) LPG has already been experimentally demonstrated for mode conversion [14]. On 

the other hand, depending on the intended usage, the higher order mode output could 

also be used directly without mode conversion. 

 

4.4 Conclusions 

In summary, we demonstrate a method of generating short pulses at 1350 nm 

by exciting Cerenkov radiation in a HOM fiber with a 1064 nm pulsed fiber source. 

We have successfully dechirped a 465 fs pulse at the output of the HOM fiber to a 106 

fs pulse with a pair of silicon prisms. This method of generating short pulses at 1350 

nm can potentially be extended to other wavelengths and to higher pulse energies with 

appropriate design of the HOM fiber. 
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CHAPTER 5 

 

AN ALL-FIBER SYSTEM FOR OBSERVING SSFS AND CERENKOV 

RADIATION IN LONG HOM FIBERS  

 

 

5.1 Introduction 

Recent developments in fiber design for dispersion engineering have led to the 

emergence of an all-silica fiber with anomalous dispersion below 1300 nm. This fiber 

has the unique dispersion characteristic of a large positive waveguide dispersion from 

higher-order mode (HOM) propagation that offsets negative material dispersion of 

silica [1]. Previously, this type of dispersion profile had only been accessible to 

microstructured optical fibers such as index-guided photonic crystal fibers [2] and 

hollow-core photonic bandgap fibers [3]. The anomalous dispersion profile of the 

HOM fiber used here, with moderate dispersion values (~60 ps/nm/km) at 1000 nm 

and a zero dispersion wavelength (ZDW) around 1215 nm, allows us to explore two 

nonlinear phenomena useful for generating short pulses: soliton self-frequency shift 

(SSFS) and Cerenkov radiation. SSFS is a consequence of intrapulse Raman 

scattering, causing a continuous wavelength shift of the pulse spectrum to longer 

wavelengths with propagation [4]. SSFS gives us access to a tunable wavelength 

source in the anomalous dispersion region with the shifting soliton [5]; Cerenkov 

radiation, a result of a phase-matched condition of the soliton k-vector to a dispersive 

wave on the other side of the ZDW, giving us a fixed-wavelength source in the normal 

dispersion regime [6, 7].  

This wavelength shift has special appeal because it opens the door to designing 

simple, robust, compact fiber sources at wavelengths of interest for nonlinear optical 



 

57 

imaging, but where suitable in-fiber gain media are lacking. Recent reports have 

shown that by utilizing longer excitation wavelengths (1280 nm instead of 800 nm) to 

excite two-photon fluorescence, far greater penetration depths are possible [8]. 

Conventional pulsed sources for these long wavelength regimes are bulky and 

nontrivial to operate and maintain. For example, a Ti:Sapphire-pumped optical 

parametric oscillator, while having the desirable qualities of being widely wavelength-

tunable, energetic, and of good spatial and temporal quality, does not lend itself 

naturally to widespread adoption for clinical practice due to their high cost, large size, 

and complex operation procedures. On the other hand, a HOM fiber system leveraging 

SSFS and Cerenkov radiation can access the similar wavelengths and pulse energies, 

while being fiber-delivered and requiring no optical alignment for operation.  

Previous demonstrations of such a fiber-delivered source based on HOM fibers 

[5, 6] required a femtosecond input source to obtain the peak power needed to excite 

soliton formation and shift in a short length of HOM fiber (~1 m). However, with 

sufficiently long fiber length (a few meters), this condition can be relaxed. Indeed, we 

have shown that with a few-picosecond input and several-meters long HOM fiber we 

can still see the nonlinear phenomena previously observed. In this chapter we explain 

our understanding of the mechanism of SSFS and Cerenkov radiation in a picosecond-

pumped HOM fiber. We demonstrate successful use of a picosecond source to excite 

wavelength-shifted solitons and Cerenkov radiation in an HOM fiber. We measured a 

46 fs soliton pulse, and were able to obtain up to 28 % power conversion efficiency 

(~35 % photon efficiency) from the source wavelength to the Cerenkov band. We 

further show that the source is useful for biomedical imaging by employing it as the 

excitation source for a two-photon fluorescence microscope (TPM) to image lens 

tissue and mouse brains. 
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5.2 Propagation in Picosecond-pumped HOM Fibers 

The realm of picosecond pumping differs from femtosecond pumping of HOM 

fibers because the input pulse energy required to observe soliton behavior within a 

length of fiber results in a much higher soliton order N. While the basic process of 

soliton fission, soliton shift, then Cerenkov generation still occurs, more than one of 

these pulse-creating nonlinear processes can happen in the length of HOM fiber. The 

generated wavelength components can overlap and interfere, leading to complex 

output pulse characteristics. To aid our understanding of these nonlinear phenomena 

from an HOM fiber, we carried out numerical calculations to solve the generalized 

nonlinear Schrodinger equation by integrating in the frequency domain, as described 

in Chapter 2. Fiber effects of dispersion, nonlinearity, frequency-dependent Aeff, self 

steeping, shock, and Raman response (as in (2.4)) are taken into account in 

calculations. The frequency domain approach allows for straightforward incorporation 

of the frequency-dependent Aeff, and behaves well under conditions that result in 

multiple-soliton formation. The dispersion (D) and Aeff of the fiber used in this 

experiment are shown in Fig. 5.1. Both dispersion and Aeff were fitted with a 

polynomial fit (dispersion to 11 orders, Aeff to 10).  

We first consider a femtosecond input into a short length of HOM fiber. We 

simulate a 1.3 nJ, 400 fs transform-limited sech input into a 2 m length of HOM fiber. 

Spectrograms of the output at different lengths (at 0.4 m increments) are shown in  

Fig.5.2 (a-e), spectrograms shown use a 50 fs gate pulse. We observe, with increasing 

length, the phenomena of soliton-effect compression, fission of a single soliton, SSFS, 

and Cerenkov radiation generation. As the fully-shifted soliton propagates in the fiber, 

it is accompanied by the Cerenkov radiation on its leading edge. We see that the 

Cerenkov radiation propagates and disperses without interaction with other non- 
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Figure 5.1: D and Aeff with respect to wavelength for the HOM fiber used. D is plotted 

on the left axis, Aeff is plotted on the right axis.  
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solitonic spectral components. At 2 m of HOM fiber propagation, we see that the very 

tail of the Cerenkov radiation overlaps in time with the residual input, and some cross-

phase modulation occurs (Fig. 5.2 (e)). 

  For a picosecond input into a short length of fiber, the dynamics are more 

complex. We simulate a 5 nJ, 4 ps sech input with added SPM (~6.5 π) to simulate the 

spectral broadening caused by the fiber amplifier and SMF pigtail of the HOM fiber 

module. Representative spectrograms at different fiber lengths (0.3 m increments) for 

the picosecond input are shown in Fig. 5.2 (f-j). We see that the picosecond input 

pulse requires a considerable length of HOM fiber propagation for pulse compression 

(Fig. 5.2 (f) is at fiber length 4.2 m). Also, when the initial pulse compresses, it breaks 

up into many pulses, which is characteristic of soliton fission for high soliton orders 

[9, 10]. We see that the first soliton formed shifts and forms Cerenkov radiation over a 

very short length of fiber, and thus the temporal extent of the Cerenkov is much 

shorter than in the femtosecond case. We also observe that like in Fig. 5.2 (e), the 

Cerenkov band formed overlaps in time with the residual input, and becomes 

modulated (Fig. 5.2 (g)). Furthermore, as the light continues to propagate, the residual 

input fissions additional solitons (Fig. 5.2 (h-j)). These solitons interfere with the  

initially formed Cerenkov, as well as contribute to the energy in the Cerenkov band as 

they shift towards the ZDW and fulfill the phase matching condition between soliton 

and Cerenkov radiation. The case shown here in Fig. 5.2 (f-j) serves to illustrate 

multiple-pulse behavior that happens with large input pulse energies; at lower input 

pulse energies the picosecond input also exhibits single-soliton-Cerenkov generation 

as was seen with the femtosecond input. We draw a few conclusions from our 

simulations: First, at low input pulse energies, the Cerenkov radiation is formed by a 
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Figure 5.2. Calculated spectrograms for (a-e) 400 fs input into an HOM fiber,at 0.4m 

increments, starting with 0.4m fiber length in (a). Final output at fiber length of 2 m is 

shown in (e). (f-j) show spectrograms for 4 ps input, starting at 4.2m fiber length in (f) 

at 0.3 m steps for successive frames. Final fiber length in (j) is 5.5 m. Wavelength 

scale is the same for each subfigure. 
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single soliton and does not interact with radiation at other wavelengths. Second, when 

input energy increases, the temporal overlap between the Cerenkov radiation and the 

residual input causes interference in the leading edge (smaller delay side) of the 

Cerenkov pulse. Third, at even higher input energy, multiple solitons emerge 

successively from the input, and the later solitons both interact with and contribute to 

the initial Cerenkov radiation band.  

 

5.3 Experimental Methods 

We experimentally investigated the propagation of picosecond pulses in an 

HOM fiber. We used a semiconductor saturable absorber mirror (SESAM)-

modelocked fiber laser [11, 12] as the light source for seeding our HOM fiber module. 

A schematic of the laser is shown in Fig. 5.3 (a). The linear cavity of the oscillator 

consisted of 0.75 m of Yb-doped gain fiber (Coractive), a SESAM (BATOP) which 

provided the modelocking mechanism, and a chirped fiber Bragg grating (CFBG, O/E 

Land) that served as both the source of anomalous in-cavity dispersion as well as the 

output coupler. Two seed sources were built for this work, one with center wavelength 

1029 nm and the other at center wavelength 1062 nm. The oscillator design was the 

same except for the grating bandwidth of the CFBG. The oscillator was then amplified 

with a Yb-doped fiber amplifier (YDFA). The power amplifier stage utilized a large-

mode-area (10 µm core) double-clad Yb-doped fiber (Liekki). For the 1029 nm 

source, a pre-amplifier stage (with 0.75 m Yb-doped fiber) before the final power 

amplifier stage was also used to boost the oscillator power to suitable levels for the 

power amplifier. Both the cavity and the preamplifier (when used) were pumped by a 

single-mode 980 nm fiber-coupled laser diode combined with a fiber wavelength 

division multiplexer (WDM) coupler, the high power amplifier employed a fiber-

coupled 976 nm multimode pump diode combined with a high-power signal-pump 
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combiner (ITF Labs). Fiber inline isolators (Novawave) are used between amplifier 

stages to protect from back reflections. All components of the picosecond laser source 

are in-fiber and assembled by fiber splicing, except for the SESAM which was 

mechanically secured to the endface of a polished fiber. The SESAM allows for self-

starting operation and the entire system is very robust to environmental fluctuations. 

Pump current of the final power amplifier stage was adjusted to achieve power tuning. 

The resulting source had ~65 MHz repetition rate and ~4 ps output pulsewidth, and 

average power up to 575 mW. Measurements at the output of the power amplifier 

indicate slight SPM broadening at the levels of amplification used in this experiment, 

but this is not of detriment to the results.  

This picosecond laser source was then spliced directly to the HOM fiber 

module (OFS, od 134), and the output collimated and measured. The HOM fiber 

module consisted of ~0.8 m length of SMF pigtail, a long period grating (LPG) mode 

converter written on the HOM fiber, and total HOM fiber length of ~5.5 m. Total 

insertion loss (including splice loss and loss through the mode converter) was ~0.5 dB.  

Since the picosecond source did not require any free-space compression optics 

(as with high-power femtosecond fiber sources employing chirped-pulse 

amplification), instability due to coupling a free space input to the HOM module was 

completely circumvented. Indeed, we observed remarkable power stability at the 

output of the HOM module (less than 1% fluctuation over 1 Hz - 100 kHz bandwidth 

and 2 % over 4 hours). 

To characterize the output of the HOM fiber module spectrally, we measured 

its optical spectrum with an optical spectrum analyzer. Temporal characterization was 

carried out with a second-order autocorrelator in a Michelson interferometer setup 

(collinear geometry), and a prism compressor-based SFG cross-correlator [13]. A 
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Figure 5.3 (a). Schematic of all-fiber HOM source. Arrows entering optical path 

denote locations of pump diodes. CFBG: chirped fiber bragg grating, YDFA: 

Ytterbium-doped fiber amplifier, iso: isolator. In (b), a schematic of the prism-

compressor based cross-correlator.  
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schematic of the cross-correlator setup is shown in Fig. 5.3 (b). A pair of crossed SF11 

prisms were used to obtain greater angular dispersion with less prism separation [14]. 

The prism compressor was aligned to provide zero dispersion. A split-mirror placed 

across the dispersed beam served to selectively delay different wavelength 

components.  After the prism pair, the beam was focused (f = 5 cm) onto a Lithium 

triborate (LBO) crystal (5 mm), and the sum frequency signal detected with a GaAsP 

photodiode for the cross-correlation traces. Alternately, spectrally-resolved cross 

correlation traces were obtained by dispersing the sum frequency signal with a grating 

and imaging it onto a charge-coupled device (CCD) camera. For Cerenkov pulse 

compression, we used a pair of silicon prisms polished at Brewster’s angle for 

dispersion compensation.  

To verify the viability of our setup for biomedical imaging purposes, we 

performed two-photon fluorescence microscopy with our HOM fiber source. The 

output of the HOM fiber was directed to a raster-scanned TPM (Cambridge 

Technologies galvo-scanner, Sutter Instruments Movable Objective Microscope). The 

raster-scanned beam was focused into the sample by a high numerical aperture water 

immersion objective (Olympus UMPlanFL N 20x 0.5NA for the lens tissue imaging 

and Olympus XLMPlan Fluar 20x 0.95NA for the mouse imaging). The fluorescence 

from the sample was epi-collected and directed to a photomultiplier tube (PMT) by a 

dichroic mirror. We used a GaAs PMT (Hamamatsu H7422P-50) to collect the 

fluorescence signal. Microscope movement and image acquisition were controlled by 

a computer running MPScope [15]. Spectral components of the HOM fiber output 

were filtered for selective excitation of different fluorophores. For the residual and 

soliton wavelengths, lens tissue samples were prepared by staining with Texas Red 

(Invitrogen) and Alexa647 (Invitrogen). For the Cerenkov wavelength, the vasculature 

of an in vivo mouse brain was imaged. The vasculature was labeled with Alexa680 
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(Invitrogen). Methods used for in vivo sample preparation are detailed in Kobat et al 

[8].  

 

5.4 Results and Discussion 

First, we study the spectral output from the picosecond-pulse pumped HOM 

fiber. In previous chapters, we showed that a femtosecond input had sufficient peak 

power to induce the nonlinearities that cause soliton formation and soliton self-

frequency shift (SSFS), and subsequently Cerenkov radiation. Here, we show that with 

sufficiently long HOM fiber length (a few meters), a picosecond input pulse can also 

generate the same phenomenon. Fig. 5.4 (a) shows the output spectra of a femtosecond 

pulse input (Polaronyx Uranus, center wavelength 1064 nm, 400 fs pulsewidth, 

80 MHz) and in (b), picosecond input. Power was adjusted such that all three spectral 

features (residual input, shifted soliton, and Cerenkov radiation) are visible. 

Dispersion curves of the fiber are overlaid with the spectra, with the zero dispersion 

wavelength marked. Note that the soliton and Cerenkov radiation appear at the same 

positions (the soliton centered at 1180 nm, the Cerenkov about 1300 nm) despite 

differences in input wavelength and pulse width. This confirms our understanding that 

the locations of the spectral features are solely determined by the shape of the 

dispersion curve.  

We note that though the picosecond input requires more pulse energy to 

generate equivalent spectra, the efficiency is respectable at high pulse energies where 

the Cerenkov band is saturated. Fig. 5.5 shows the output Cerenkov pulse energy as a 

function of input energy, as measured with the 1062 nm source. At maximum input 

energy available to our system, we observe a 2.4 nJ pulse energy in the Cerenkov 
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Figure 5.4: Experimentally measured output spectra for (a) femtosecond input to 

HOM fiber module, and (b) picosecond input to same HOM module, for both a 1029 

nm source and one at 1062 nm, showing the locations of locked soliton and Cerenkov 

radiation. Spectra are offset in (b) for clarity. 
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radiation band, with 28% power conversion efficiency (35% photon efficiency) from 

the input wavelength to the Cerenkov wavelength. We note the shape of the power 

conversion curve in Fig. 5.5. The first sharp rise in Cerenkov energy occurs because of 

the thresholding behavior of the Cerenkov radiation as the soliton shifts to the ZDW. 

As input energy is increased, the Cerenkov energy then exhibits a knee as the soliton 

is now locked in wavelength and continues to transfer energy into the Cerenkov band. 

A second sharp rise in the Cerenkov energy occurs ~4.4 nJ input energy. Our 

simulations show that this is indicative of a second soliton beginning to also pump the 

Cerenkov band. At this first knee, where the Cerenkov radiation is only pumped by 

one soliton, the Cerenkov pulse energy is is ~0.4 nJ.  

The ability to use a picosecond input is especially compelling because it 

enables us to have a truly all-fiber source that exhibits the nonlinear behavior in the 

HOM fiber, which was not possible in our previous work [5, 6]. The longer HOM 

fiber length here is the key to being able to use a picosecond input. Qualitatively, a 

long (picosecond) input shortens the effective “length” of HOM fiber propagation. 

Whereas in previous demonstrations, the entire 1-2 m length of HOM fiber was 

required to generate the shifted soliton and Cerenkov radiation, here the initial portion 

of the HOM fiber simply acts to generate the needed SPM-induced spectral 

broadening and pulse compression to produce a high peak power short pulse that then 

fissions a soliton and undergoes SSFS and Cerenkov generation.  

Next we characterize the temporal properties of the output of the HOM fiber. 

We first verify that the soliton at the output is indeed a short pulse. The measured 

second order interferometric autocorrelation trace is shown in Fig 5.6 (a), and it shows 

a 86 fs autocorrelation FWHM, a 46 fs pulsewidth deconvolved assuming a sech2  

shape. We also characterize the output of the Cerenkov pulse by measuring its cross- 

correlation. The reference pulse used in the cross-correlation was the soliton, 
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Figure 5.5 Energy in the Cerenkov band as a function of input pulse energy. 
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spectrally filtered in the cross-correlator. As the Cerenkov pulse at appreciable pulse 

energies has a pulsewidth much larger than the soliton, using the soliton to gate the 

Cerenkov faithfully maps the shape of the Cerenkov pulse in time. We show also in 

Fig. 5.6 two sample cross-correlation traces at 3.8 nJ input energy (Fig. 5.6 (b)) and 

4.7 nJ input energy (Fig. 5.6 (c)). Fig. 5.6 (b) shows the shape we expect to see in the 

Cerenkov pulse. The mechanism of Cerenkov formation by the soliton gives it the 

sharp edge on the large delay side. The diminishing tail on the small delay side is 

indicative of the Cerenkov radiation’s dispersive behavior. Fig. 5.6 (c) shows a cross-

correlation trace at higher input energy. Here we see in addition to the sharp edge and 

diminishing tail, a skirt on the large delay side. This is due to the formation of a 

second soliton which is temporally offset from the first soliton. This behavior was 

seen in the calculated spectrograms shown in Fig. 5.2 (f-j).The second soliton also 

gates the Cerenkov pulse, but at a different relative delay. As such, the measured 

cross-correlation trace is a sum of the cross-correlation between the first soliton and 

the Cerenkov, and the second soliton and the Cerenkov. The second soliton, when just 

formed, is not as short as the initial soliton, which gives the cross-correlation the 

sloping edge on the positive delay side. While this overlay of cross-correlations from 

multiple solitons distorts the cross-correlation trace, we can make an estimate of the 

temporal extent of the Cerenkov by measuring the temporal width on the negative  

delay side of the cross-correlation (the edge at zero delay marking the overlap with the 

initial soliton).   

Fig. 5.7 (a) shows a plot of measured Cerenkov cross-correlation widths as a 

function of input pulse energy. We show in Fig. 5.7 (b-e) a few representative 

frequency resolved cross-correlations. As with the cross-correlation traces, we 
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Figure 5.6 (a) Interferometric autocorrelation of the soliton pulse, its FWHM is 86 fs, 

46 fs pulsewidth assuming a sech2 shape. (b) and (c) show sample measured cross-

correlation traces, for an input pulse energy 3.8 nJ in (b) and 4.7 nJ in (c).  
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Figure 5.7 (a) Measured cross-correlation widths of the Cerenkov radiation with 

increasing input pulse energy. (b)-(e) show representative spectrally resolved sum-

frequency generation cross-correlation traces, at input pulse energies are 3.8 nJ, 4.7 nJ, 

6.2 nJ, and 8.4 nJ, from left to right.  
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examine the negative delay in relation to the first soliton (the first soliton creates a 

bright line at zero delay). The spectrogram shows that the Cerenkov energy is broad 

temporally as well as spectrally. We see that the Cerenkov width increases with 

increasing input pulse energy, both as a consequence of fiber dispersion, as well as the 

process of its formation by multiple solitons (for input pulse energies higher than 

~4.4 nJ). In the regime where the Cerenkov radiation is formed by a single soliton and 

its broadening is governed by fiber dispersion, its energy is compressible, as was 

shown in Chapter 4 for femtosecond pumped HOM fibers. At higher input pulse 

energies, as the broadening can no longer simply attributed to chromatic dispersion, 

compression by group velocity dispersion (GVD) compensation becomes difficult. In 

our simulations, we see that at input energies where multiple solitons form the 

Cerenkov band (~4.4 nJ), GVD compensation does not yield significant improvement 

in expected two-photon fluorescence signal ( 2( )I t∝  [16]). Here, for long HOM fiber 

length and energetic picosecond input, we obtained best-effort compression of a 

Cerenkov pulse from 4.0 ps to 313 fs (measured intensity autocorrelation FWHM), 

and the shortest compressed pulse we were able to obtain was 230 fs, compressed 

from a 1.1 ps pulse (also intensity autocorrelation FWHM). Uncompressed and 

compressed interferometric autocorrelation traces are shown in Fig. 5.8 (a) through 

(d). The small skirt that remains in the compressed pulses may be due to residual third 

order dispersion that was not removed by the silicon prisms. Even with increasing 

cross-correlation widths and increasingly complex pulse profiles at Cerenkov energies,  

measured two-photon signal increases nonlinearly with Cerenkov energy. Fig. 5.9 

shows normalized two-photon signal as a function of Cerenkov energy, with no  

dispersion compensation applied to the Cerenkov radiation. A fit of the log-log plot 



 

74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.8 Autocorrelation traces for best-effort compressed Cerenkov pulses, in (a) 

and (b), an uncompressed 4.1 ps pulse and its corresponding 313 fs compressed pulse, 

in (c) and (d), an uncompressed 1.1 ps pulse and its corresponding 230 fs compressed 

pulse. All widths quoted are measured intensity autocorrelation FWHMs. Intensity 

autocorrelations shown in main figure, second order interferometric traces shown in 

inset.  
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Figure 5.9 Measured two-photon signal as a function of Cerenkov energy. Two-photon 

signal is normalized. 
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Figure 5.10 A few TPM images taken with the HOM fiber output. They are from left 

to right, imaged with the residual pump light at 1062 nm, the soliton at 1180 nm, and 

the Cerenkov about 1300 nm. The samples are dye-stained lens tissue for the residual 

and soliton, and an in vivo image of mouse brain vasculature for Cerenkov. Each 

image has a scale bar for 20 μm. 
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indicates the two-photon signal scales as 
1.3~ CerenkovP . We conclude that though the 

Cerenkov radiation band is not a source of ideal pulses, its energetic output can still be 

viable for TPM applications. 

Lastly, we take this system and show its usefulness for biological imaging 

applications. Lens tissue samples and cortical vasculature of a mouse were imaged by  

using this HOM-fiber-based source as the excitation light in a two-photon 

fluorescence microscope. Fig. 5.10 shows the images obtained, from left to right, with 

the residual input wavelength of 1064 nm, at the soliton wavelength of 1180 nm, and 

the Cerenkov radiation centered at 1300 nm. Each image shows a single z-section. A 

scale bar in each marks 20 μm. For each wavelength imaging, the output from the 

fiber source was filtered for each of the wavelength components; the Cerenkov energy 

was used uncompressed. We can see that even without compression, the Cerenkov 

light (26 mW measured at the sample) has sufficient peak power to excite two-photon 

fluorescence in this biological sample.  

 

5.5 Conclusions 

We have shown an all-fiber short-pulsed source covering wavelengths from 

1029 nm to ~1300 nm. This source employs a picosecond fiber laser in conjunction 

with long HOM fiber to generate a wavelength-shifted soliton at 1180 nm and a 

Cerenkov radiation band about 1300 nm, with the residual input ~ 1 µm, all three 

suitable for biomedical imaging. We have characterized both the soliton and the 

Cerenkov, and shown that even with the long input pulse, short and energetic pulses 

can be obtained from the long HOM fiber length. We measured a 46 fs soliton pulse, 

and a maximum Cerenkov energy of 2.4 nJ (28% power conversion efficiency). 

Lastly, we showed this system in application as the light source for two-photon 

fluorescence microscopy. The combination of the picosecond input, all-fiber 
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configuration, and fiber delivered short pulse output make this an attractive 

component for further imaging applications. 
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 CHAPTER 6 

 

FOCUSING OF THE HIGHER ORDER MODE  

 

 

6.1 Introduction 

Higher order mode (HOM) fibers have generated interest as potential platforms 

for creating fiber-based sources for biomedical imaging. It is of particular interest to 

the nonlinear microscopy field because the ability of such fibers to deliver short pulses 

in the near infrared. Conventional single mode fiber cannot support soliton 

propagation below 1.3 µm due to the normal dispersion contribution of both the 

material and the waveguide for the fundamental mode. On the other hand, HOM fibers 

are capable of achieving anomalous waveguide dispersion to counteract the material 

dispersion of silica [1]. In addition, the index profile is engineerable to tune the region 

of anomalous dispersion. Anomalous dispersion allows for energetic short-pulse 

delivery via the nonlinear phenomena surrounding soliton propagation [2], and HOM 

fibers have been shown to support solitonic propagation over a wavelength range 

spanning 1.0 um to 1.3 µm [3]. These pulses fit the high-peak-power low-repetition 

rate requirements for multiphoton microscopy [4]. While the HOM fiber can generate 

the temporal profile desirable for nonlinear microscopy techniques, its spatial profile 

is different from the Gaussian beam profile typical to light sources for nonlinear 

microscopy. The HOM shows promise, though, as it was recently reported that the 

LP02 mode (from a similar HOM fiber as used here) has improved lateral resolution 

over the LP01 mode for nonlinear focusing [5]. In this chapter, we investigate the full 

3-D focusing properties of the LP02 mode obtained from an HOM fiber. We study its 

nonlinear excitation focal volume by looking at its intensity-squared point spread 
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function (PSF), as measured by two-photon fluorescence microscopy (TPM) of 

1.0 µm fluorescence-labeled beads. We show that at various back aperture filling 

ratios, we can obtain vastly differing PSFs. At one particular filling ratio, we obtain a 

null at the focal spot, much like the depletion beam focus of stimulated emission 

depletion microscopy systems. Finally, we conclude by discussing the potential uses 

of such a mode for applications to microscopy and micromanipulation.  

 

6.2 Calculating the point spread function 

To understand the image focus, we consider an incident field distribution on a 

pupil defined by radius α. By the Huygens-Fresnel principle, we consider every point 

in the pupil to be an emitter of spherical wavelets and construct the field in the focal 

region as a superposition of these point emitters. Assuming radial symmetry of the 

incident field, F(θ), we can introduce it as a pupil function to the derivation of the 

focus from a circular aperture. Following Richards and Wolf [6], we write the field in 

the focal region as 
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A is a constant proportional to the incident field amplitude, andφ  is the azimuthal 

angle in the spherical coordinate system. The integrals I0, I1, and I2 are given by 
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where θ is the radial coordinate in the pupil plane, and the optical coordinates (u,v) are 

defined with origin at the focus and have the following relation to spatial coordinates z 

and r: 

 

2sin ( )
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u kz
v kr
NA n

α
α
α

=
=

=
. (6.3) 

2k π λ= , NA is the numerical aperture of the focusing element, and n is the index in 

the focal region. Under the limit of low-NA focusing and for regions close to the focus 

(θ and α small), Eqn. (6.2)  reduces to 
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In addition, integrals I1, and I2 are much smaller than I0 for the case of low-NA 

focusing, so we will only consider I0 when calculating the field in the focal region. 

The field in the focus is proportional to I0, and the two-photon emission fluorescence 

(TPEF) signal scales as the intensity squared, so the TPEF PSF follows an 4
0I  

dependence. 
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6.3 Experimental Methods 

 We characterized the focusing properties of the LP02 mode by measuring the 

two-photon fluorescence PSF. The light source used to supply the HOM beam was a 

semiconductor saturable-absorber mirror (SESAM)-modelocked picosecond Yb-fiber 
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laser system (homebuilt) at center wavelength 1062 nm, spliced to a HOM fiber 

module (OFS Laboratories, od134). The fiber laser served as a seed for pumping the 

HOM fiber, which at large input energies exhibits the nonlinear phenomena of self 

phase modulation, soliton fission, soliton self-frequency shift, and subsequently 

Cerenkov radiation generation. These nonlinear processes provide three wavelength 

bands of radiation, each with pulsed energy, which could be used separately to excite 

different fluorescent probes. For the measurement of PSFs the seed laser power was 

kept relatively low and while some spectral broadening from self-phase modulation 

was observed, no additional wavelength bands (soliton, Cerenkov) were generated. 

The measured intensity autocorrelation full-width at half-maximum (FWHM) of the 

excitation pulse was about 2 ps, showing some soliton-effect compression within the 

HOM fiber. The HOM beam used was at center wavelength 1064 nm, with maximum 

power (at greatest underfilling) of 51 mW measured at the sample. We measured the 

profile of the beam at the back aperture by scanning a single mode fiber (SM980) 

across the beam and measuring the transmitted power with a fiber power meter.   

The output of the higher order mode fiber was collimated with a 0.4 NA 

aspheric lens and directed to a raster-scanned TPM (Cambridge Technologies 6 mm 

galvo-scanner, Sutter Instruments Moveable Objective Microscope). The beam was 

focused through a 20x, 0.50 NA water immersion microscope objective (Olympus 

UMPlanFL N) onto the sample, the two-photon fluorescence epi-collected and 

directed via a dichroic mirror to a GaAs photomultiplier tube (PMT, Hamamatsu 

H7422P-50). A 700 nm short pass filter (Thorlabs) was used to separate the 

fluorescence signal from the excitation light. We prepared a sample of 1.0 µm orange 

fluorescent beads (540/560, Invitrogen) in a 3% solution of low-melting point agarose 

gel (Sigma Aldrich). Bead dilution was controlled to have individually resolvable 
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beads within each image stack. Sample TPM images were taken of lens tissue samples 

stained with Texas Red dye (Invitrogen).  

We varied the back aperture filling ratios by inserting appropriate telescopes in 

the beampath to achieve the correct beam size at the back aperture. We observed the 

beam at the back aperture with a charge coupled device (CCD) camera, and measured 

the diameter of the null ring in the LP02 mode to obtain back aperture filling parameter 

β. We define the parameter as /BA nulld dβ = , where dnull is the diameter of the null 

ring, and dBA is the diameter of the back aperture of the objective. Larger β values 

correspond to underfilling of the objective, and in the limit of 0β → , the field incident 

on the back aperture is a plane wave. For the objective used in this work, the back 

aperture diameter was 10 mm. The software program MPScope [7] was used to 

control the objective movement and acquire the image stacks. Bead images were 

recorded by taking 16 µm by 16 µm x-y plane images at 0.2 µm depth increments. 

Each frame was 512 by 512 pixels taken at ~3 fps, averaged for 3 frames per depth 

step. Vertical stacks were acquired over sufficient depth to capture the axial extent of 

the bead fluorescence. Image stacks were assembled in ImageJ to extract the PSF 

cross-sections; axial and radial profiles were extracted from these cross-sectional 

images. No smoothing or additional image processing was applied to the cross-section 

images. To verify our understanding, we also calculated the PSF numerically using 

Eqn. (6.5). We used the calculated LP02 mode solution of the HOM fiber for the pupil 

function F(θ); the mode profile was provided by scientists at OFS Laboratories. Fig. 

6.1 (a) plots the mode profile used in calculations and the mode profile measured at 

the back aperture. Fig. 6.1 (b) shows calculated fraction of total mode intensity 

retained at various filling ratios β. 
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6.4 Results and Discussion 

We recorded TPM images of the 1.0 µm beads. We note that the beads are 

below the diffraction limit in the axial dimension, but are close to but not below the 

diffraction limit in the lateral dimension. We verified with 0.2 µm beads that the 

lateral dimension of the PSF obtained with the 1.0 µm bead was not noticeably 

exaggerated. Due to low signal from the 0.2 µm beads, we chose to image the 1.0 µm 

beads. Acknowledging this, we will still refer to the TPM images as PSFs for 

simplicity. Note that these are the intensity squared PSFs, as the TPEF signal 2I∝ .  

Several representative PSFs are shown in Fig. 6.2 at different back aperture 

filling ratios, from underfilling on the left to overfilling on the right. The back aperture  

filling ratios are, from left to right, β = 3.7, 2.8, 2.5, 1.9, 1.4, and 0.5. A scale bar in 

the upper right hand corner demarks 5 µm. It is important to recognize that while the 

PSFs are shown as a cross-section, all of the PSFs measured were symmetric under 

rotation about the optical axis. We note the evolution of the PSF as the beam is 

expanded to overfill the back aperture, from a PSF with extended axial confinement 

and narrow lateral confinement (large β), to one with two distinct axial focal lobes 

and an annular ring at the focal plane, to a near diffraction-limited focal spot (small β). 

We note further that for β larger than 1.4, all PSFs exhibit an annular ring structure at 

the focal plane.  

We can understand the focusing behavior as follows: with the outer ring of the 

LP02 mode being of opposite phase from the central peak, for the proper back aperture 

filling, the focused field from the central peak and the outer ring can exactly cancel, 

forming the null that is observed at β = 1.9. As the filling parameter β is decreased, the 

contribution from the opposite phase outer ring is less and dark region diminishes until 

at β = 1 (dnull = dBA) only the central peak remains. Further decreasing β from there, 

the focus behaves as a Gaussian beam that is increasingly apertured. As β approaches 
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Figure 6.1 (a) Theoretical (solid line) and measured (dots) intensity profile of the LP02 

mode plotted against radial distance, at the back aperture of the imaging objective. 

Inset in (a) plots the field against radial distance, showing the phase change across the 

null of the mode; (b) shows the fractional power in the mode for various back aperture 

filling ratios β, calculated by integrating the theoretical mode profile shown in (a). 
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Figure 6.2 Intensity squared point spread functions as measured from two-photon 

fluorescence imaging of 1μm dyed polystyrene beads. Back aperture filling was 

adjusted by adding appropriate telescopes. PSFs are shown for increasing beam size 

on the back aperture from left to right, shown for a few representative filling ratios: 

β = 3.7, 2.8, 2.5, 1.9, 1.4, and 0.5. This spans the range from under- (for β = 3.7) to 

over-filling (for β = 0.5) of the objective back aperture. Raster-scanned images were 

recorded at 0.2 μm steps in depth, the images stacked and cross sections shown here. 

Scale bar is 5 μm, shown in the upper right hand corner.  
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zero, the field at the aperture approaches a plane wave and the focus approaches the 

diffraction limit. On the other side, as β is increased from the condition with the null 

focus, the field at the focus gains more contribution from the outer ring, raising the 

intensity at the focus. At largest β the lateral PSF approaches the 2D Fourier transform 

of the LP02 mode. 

We verify our understanding of the HOM focusing by comparing the measured 

lateral and axial profiles of the PSFs with that calculated from Eqn.(6.5). Fig. 6.3 and 

Fig. 6.4 show the profiles at several representative back aperture fillings; the radial 

TPEF profile is plotted in Fig. 6.3 against radial distance in microns, and the axial 

TPEF profile is plotted in Fig. 6.4 against axial distance in microns. TPEF values are 

normalized independently for each profile. Profiles shown are for experimentally 

measured β = 3.7, 2.6, 1.9, and 0.5, from top to bottom, and best-match calculated 

profiles are for β = 3.0, 2.2, 1.6, and 0.5. The difference between measured β values 

and β values of best-fit calculated profiles is due to the deviation between measured 

LP02 mode profile and the mode solution used in the calculations. While the LP02 

mode was calculated for the index-profile designed, variations in manufacturing can 

lead to minor differences in calculated and observed mode profiles. We can see this 

difference, especially for the outer ring of the mode, in the measured and calculated 

mode profiles shown in Fig. 6.1(a). We will use the β values for calculated profiles 

when we refer to the PSFs; these are noted in Fig. 6.3 and Fig. 6.4. Measured β values 

can be scaled by 0.8 to match β used in calculations.  

We note the excellent agreement between calculated and experimentally 

observed radial and axial profiles. Looking at Fig. 6.3, we see that the shape of the 

radial profile evolves from a Gaussian-like shape for lowest β values (overfilling, 

approaching plane-wave focus) to a central dip and a peak a few microns from the 

optical axis for moderate β values, to a profile much like the starting mode itself for 
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highest β values. The axial profiles in Fig. 6.4, like the radial, start with a Gaussian-

like shape for the lowest β values, evolves into a central dip with an outer lobe at 

moderate β values, back to a more centralized focus at highest β values. If we examine 

the radial and axial profile for β = 1.6, we can clearly discern the central null that was 

observed in one of the PSFs shown in Fig. 6.2.  

We show in Fig. 6.5 two sample TPM images taken at different back aperture 

fillings. Both images are of a single z-section of dyed lens tissue samples. The scale 

bar shows 20 µm, a total field of view of 315 µm x 315 µm. Subfigure (a) shows the 

resulting image with back aperture filling β ~ 1, and (b) shows image with back 

aperture filling β ~ 3. We observe that the fibers of the lens paper are not as sharp in 

(b) as in (a), due to the extended axial focus of the HOM at large β values. The 

annular ring in the focal plane for large β values is dim enough not to cause significant 

distortion to the TPM image. We conclude that the LP02 mode from an HOM fiber can 

feasibly be used for TPM for either under- (large β) or over-filled (small β) cases.   

 

6.5 Focal “Holes” and Phase Modification  

Figure 6.5 shows the “darkness” of the PSF at the focus. For each β value, 

two-photon signal at the focus is plotted, normalized to the highest two-photon signal 

in the PSF. Background signal, determined by averaging pixels far away from the 

focus, is subtracted from both signal at focus and maximum signal of the PSF. β 

values measured in experiment were scaled by 0.8 to match the calculated β. We see 

for β ~ 1.3 to 2.0 there is a measured hole in the center of the focal volume.  

We take a closer look at the case β = 1.6, where there is a measured null at the focus 

of the beam. We calculate the “darkness” of the focal “hole” by measuring the average 

pixel value in a small volume at the focus, and comparing it to the bright axial lobes 

and the focal plane annular ring. To account for photon noise, a background 
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Figure 6.3 Radial profiles of the intensity squared point spread functions. The profiles 

from top to bottom are for back aperture filling ratios β = 3.0, 2.2, 1.6, and 0.5. 

Experimental profiles, shown in the colored dots, were taken from recorded point 

spread functions as shown in Figure 6.2. Black curves show calculated profiles. 

Curves are offset for clarity. 
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Figure 6.4 Axial profiles of the intensity squared point spread functions. The profiles 

from top to bottom are for back aperture filling ratios β = 3.0, 2.2, 1.6, and 0.5. 

Experimental profiles, shown in the colored dots, were taken from recorded point 

spread functions as shown in Figure 6.2. Black curves show calculated profiles. 

Curves are offset for clarity. 
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Figure 6.5 Two examples of images taken with the HOM. Both are lens tissue samples 

stained with Texas Red dye, (a) with a just-overfilled beam (β~1), (b) with an 

underfilled beam (β~3). The white scale bar indicates 20 μm.  

(a) (b)(a) (b)
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pixel value is determined by measuring the average pixel value in some small volume 

far away from the bead in the acquired stack. For β = 1.6, the contrast of the bright 

axial lobe to the dark focus is ~33 dB and the annular ring to the dark focus is ~20 dB. 

Our calculated PSF for β = 1.6 yields 52 dB and 43 dB for axial and radial contrast, 

respectively. The experimentally measured contrast is limited by photon noise and the 

dynamic range of our measurement method, we believe that for the correct filling ratio 

the focal hole can be completely dark. 

We note that this special case has a very similar focal volume shape as a beam 

used for stimulated emission depletion (STED) microscopy [8]. Since STED 

microscopy employs a one-photon depletion process, comparison between intensity 

(not intensity squared) PSFs will be discussed here. In Fig. 6.7, we show the  

calculated intensity PSF for our focused HOM beam at β = 1.6 in (a), and a typical 

depletion beam for STED microscopy in (b). The insets of Fig. 6.7 (a) and (b) show 

the intensity profile at the back aperture for the HOM (a), and the phase profile at the 

back aperture for the STED beam (b). The STED beam was created by placing a phase 

mesa (defined as a cylindrical bump centered on the optical axis) in the beampath, 

giving the center of the beam π phase shift compared to the outer regions. For the 

correct choice of mesa size, yielding opposite phase for half of the amplitude in the 

back aperture, a null appears at the focus due to destructive interference of the π 

phase-shifted wavefronts [8]. We calculate here a plane wave with a mesa radius of 

2mesar a= , where a is the radius of the back aperture. This yields the condition 

described above; we will refer to this type of beam as the plane-phase beam.  

We see qualitatively in Fig. 6.7 (a) and (b) the match between the HOM focus 

and the plane-phase focus. We also plot the radial and axial profiles in (c) and (d) to 

show the similarity of the two focal distributions. The power at the back aperture for 
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Figure 6.6 Relative two-photon fluorescence signal at focus at different filling ratios, 

normalized to maximum signal in PSF at that filling ratio. Red squares mark 

experimentally measured values; the blue line denotes calculated values.  
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the HOM and the plane-phase beam are normalized to a plane wave incident on the 

back aperture. We note that the intensity value of the peak of the annular ring in the 

HOM focus is 50% more than that of the STED beam, and the axial profiles are 

comparable. We can also compare the size of the focal “holes” created by the HOM 

focus and the plane-phase focus. We define a dark focus half-width at half-maximum 

(HWHM) by measuring the inner location of the half-maximum intensity along each 

axis. In the radial direction, both the HOM and plane phase focus have HWHM of 

0.8 μm. In the axial direction, the HOM focus has a HWHM of 3.9 μm, somewhat 

smaller than the plane-phase HWHM of 4.3 μm. We conclude that the HOM with 

β = 1.6 generates a nearly identical focal volume as a common depletion beam for 

STED microscopy, but with tighter axial confinement and a brighter annular ring. 

Furthermore, as resolution improvement from fluorescence depletion scales as the  

intensity of the depletion signal, we believe the HOM focus could provide (for the 

same incident power) better resolution improvement for STED microscopy than the 

mesa phase-plate.   

On the other hand, for applications to multi-photon microscopy, a tight, 

centralized focus is desired. To this end, we also consider the modification of the 

HOM focus by manipulating the phase of the HOM at the back aperture. While we 

know that true reconstruction of the fundamental mode (to generate a Gaussian beam 

focus) is not possible with a simple binary phase plate [9, 10], we can recover a 

centralized focus for β = 1.6 with a properly placed phase plate. We verify in our 

calculations that with a mesa phase plate situated with the π phase step at the null of 

the HOM, the dark focus disappears. Plots of the radial and axial intensity squared 

profiles of the HOM focus are shown in Fig. 6.8 (a) and (b), for the HOM and the 

phase-modified HOM in solid and dashed lines, respectively. Fig. 6.8 (c) and (d) show 
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Figure 6.7 Calculated intensity PSFs for (a) HOM with filling ratio β = 1.6, (b) plane 

wave with π phase across a central spot 0.71 times the diameter of the beam. Insets in 

(a) and (b) show radial profiles at back aperture; for (a) intensity as a function of radial 

distance, (b) phase as a function of radial distance (intensity is uniform). In addition, 

radial and axial profiles of the point spread functions are shown in subfigures (c) and 

(d), respectively. 
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Figure 6.8 Focal properties of an HOM with a phase plate that lends π phase to the 

outer ring of the HOM, for an HOM with filling ratio β = 1.6. Calculated radial (a) and 

axial (b) intensity squared profiles are plotted for the HOM, in the darker solid line, 

and the HOM with the phase plate, in the brighter dashed line. As a comparison, radial 

(c) and axial (d) profiles of the focused phase-modified HOM (dashed red) are also 

plotted with the plane wave focus (solid blue).  
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the phase- modified HOM focus in comparison to a plane wave focus, the dashed red 

being the phase-modified HOM, and the solid blue being the plane wave. Power is 

normalized at the back aperture; we can see that the two-photon excitation efficiency 

( 2I∝ ) of the HOM is lower than that of a plane wave, which is not surprising. The 

lateral FWHM of the phase-modified HOM focus is calculated to be 0.88 µm, slightly 

larger than the diffraction limited focus. Interestingly, the axial FWHM of the phase-

modified HOM focus is smaller than the diffraction limited focus. The secondary peak 

in the axial distribution at about 15 µm from the focus is likely responsible for this. 

While the phase plate corrects for the phase at the back aperture, the amplitude profile 

remains and the focus is still somewhat structured.  

 

6.6 Structured Illumination and its Applications 

One very promising application of the HOM focus is to STED microscopy. As 

was shown above, the HOM at filling ratio β = 1.6 makes it an ideal candidate to form 

the depletion beam for a STED microscope. In STED microscopy, the excitation beam 

(of typical Gaussian mode profile) excites a fluorophore, and a depletion beam with an 

annular ring in the focal plane follows immediately to de-excite the dye in regions 

outside the central focus. When the fluorescence from the excitation beam is collected, 

only the photons emitted from the undepleted regions remain, resulting in an effective 

excitation volume much smaller than the diffraction limit [8, 11, 12]. STED 

microscopy requires two light sources of different wavelengths and different focusing 

properties to be coincident; this is typically supplied by two lasers, beam combiners, 

and specially fabricated phase plates. With an HOM fiber, we could obtain both the 

excitation beam and depletion beam from the same device. It was shown in previous 

chapters that for high pump powers at the output of the HOM fiber, three wavelength 

bands exist: the residual input, the shifted soliton, and the Cerenkov radiation. The 
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same LPG that is used to initially launch the light into the LP02 mode can be used to 

reconvert a portion of light back into the fundamental mode, while leaving the 

remainder of light outside the bandwidth of the LPG in the LP02 mode. The multi-

wavelength, multi-modal output of the HOM fiber can be collimated and used for 

STED microscopy directly, without need for beam combination or special phase 

plates. About 40% of total power should be retained with aperturing of the HOM to 

achieve the STED focus.  

Besides STED, we recognize the many other interesting research problems that 

can be probed with such a structured focus. It has been demonstrated that dark foci can 

be created with various phase and interference tricks, as well as from cylindrical 

vector beams [13-17]. At the focal plane the annular ring could be used for the 

manipulation of molecules and small particles [18-20], and the 3-dimensional focal 

“hole” for optical trapping of atoms [21-23]. 
 

6.7 Conclusions 

We have shown the focusing properties of the LP02 mode from a HOM fiber by 

measuring the TPM PSFs. We showed that by varying the back aperture filling ratio, 

vastly different PSFs can be obtained. Interestingly, we observed that for a particular 

back aperture filling (β = 1.6), a null appeared at the center of the focal spot. The 

measured two-photon signal contrast of the central dark spot to the bright regions of 

the focus was 33 dB in the axial direction and 20 dB in the focal plane. We verified in 

our calculations that the PSF for filling ratio β = 1.6 matched well with one used for 

fluorescence depletion in STED microscopy. We also confirmed in our calculations 

that a centralized focus can be recovered by proper phase manipulation of the HOM. 

We conclude that the HOM focus is appropriate for multi-photon microscopy for large 
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and small β, and the focal distribution at β = 1.6 has great potential for applications in 

structured illumination microscopy and micromanipulation. 
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

  

7.1 Summary 

In this dissertation, I showed that HOM fiber, when seeded by a short, pulsed 

source, was capable of generating light pulses in the 1 µm to 1.5 µm range. These 

pulses arose from the phenomena of SSFS and Cerenkov radiation generation, and 

were measured to be short (46 fs for the soliton pulse) and energetic (a few nJ in the 

Cerenkov radiation band). I outlined the demonstration of wavelength-tunable solitons 

by the power tuning of SSFS in HOM fiber, over wavelength ranges of up to 240 nm. 

The Cerenkov radiation band, formed as a result of the shifting soliton approaching a 

zero dispersion wavelength, was shown to be compressible and provided a fixed-

wavelength pulsed source at 1.3 µm. A true all-fiber system for generating SSFS and 

Cerenkov radiation in HOM fiber was also demonstrated by using a few-meter long 

fiber and a picosecond fiber laser. The all-fiber source was used as the light source for 

a TPM, confirming its applicability for nonlinear imaging. Lastly, I showed that the 

focusing properties of the LP02 mode emerging from the HOM fiber make it 

interesting for multi-photon microscopy as well as structured illumination techniques. 

 

7.2 Outlook 

 

7.2.1 Future Fiber Designs 

With the demonstration of a functioning all-fiber source for imaging purposes, 

our eyes turn to probing the true potentials of such a system. We showed that 

engineering the dispersion in an HOM fiber can predictably change the wavelengths of 



 

106 

the soliton and Cerenkov. Fig. 7.1 shows the dispersion profiles and output spectra 

from 6 different HOM fibers. We see that the wavelength of the shifted soliton and 

Cerenkov radiation are precisely determined by the shape of the dispersion curve. In 

addition to engineering dispersion for wavelength access, new fiber designs are 

currently under development for producing more energetic pulses, especially enabling 

more energetic and precisely wavelength-tunable solitons. The HOM fiber designs 

used in this dissertation all employed the dispersion-decreasing (dD/dλ < 0) side of the 

anomalous dispersion regime, causing a shifting soliton that accelerates towards the 

zero dispersion wavelength. Thus, the exact wavelength of the shifting soliton is very 

sensitive to changes in input energy. However, if the HOM fiber is designed such that 

the input pulse is launched on the dispersion-increasing side, the shifting soliton will 

decelerate as it approaches the dispersion peak, making it less susceptible to input 

energy fluctuations. In addition, launching the input on the dispersion-increasing side 

also results in more energetic soliton formation. Calculations have shown that up to 5 

nJ solitons can be obtained with appropriate dispersion design. Furthermore, cascaded 

HOM fiber designs -- multiple fibers with overlapping anomalous dispersion bands -- 

have also been theoretically investigated for extending the wavelength tuning range of 

the HOM fibers. Since the dispersion and nonlinearity characteristics of the HOM 

fibers are highly engineerable, the possibilities are numerous for the design of fibers to 

target the wavelengths and pulse energies one desires. 

 

7.2.2 Applications of the Higher order Mode for Imaging 

One major impetus for the work in this dissertation was for the development of 

an all-fiber, turnkey source for a multiphoton fiber endoscope. Chapters 5 and 6 

showed the HOM fiber’s capability as a light source for TPM. Integration with fiber-

scanning endoscopes currently under development will bring to reality this dream of a  
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Figure 7.1 Dispersion profiles and measured output spectra for 6 different HOM 

fibers. For each fiber, the same color is used to plot each dispersion curve and 

corresponding spectrum. Residual input was attenuated 7dB to accentuate wavelength-

shifted features. 
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compact, easy-to-operate fiber endoscope for minimally invasive optical biopsy and 

medical diagnostics.  

In addition, as was described in Chapter 6, the HOM demonstrates interesting 

focusing properties with proper aperturing of the mode. A focus with a null at the 

center and an annular ring on the focal plane can be achieved. This, coupled with the 

multiple-wavelength output of the HOM fiber, can be an ideal candidate for STED 

microscopy [1]. By using a LPG to reconvert selected wavelength bands after SSFS 

and Cerenkov generation in the HOM fiber, one can obtain a dual-mode, multi-

wavelength source that could provide both the excitation and depletion beams for a 

STED microscope system. Recent developments in STED microscopy has pushed its 

implementation towards fiber-based sources, for ease of alignment and simplification 

of operation [2, 3]. Even with these, specially fabricated phase plates are still needed 

to create the depletion beam; our proposed HOM fiber would provide – at the fiber 

output – the correct beam shapes, without need for external modification of the output 

light. Furthermore, modal dispersion in fiber can be used to relatively delay the 

excitation and depletion light as STED requirements demand.  

The nonlinear phenomena of SSFS and Cerenkov generation in HOM fibers 

has shown it to be a suitable medium for creating light sources for nonlinear 

microscopy. With further design advancements, HOM fibers should emerge as a 

flexible and versatile platform for applications needing wavelength-tunable and 

energetic short pulses.  
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APPENDIX A 

 

TIME LENS SOURCES AND THEIR APPLICATION TO IMAGING 

 

A.1 Introduction 

The short pulsed light source is a crucial element to exciting nonlinearities in 

materials. In the main body of this dissertation we discussed the nonlinear phenomena 

in HOM fibers, as excited by short light pulses. Furthermore, the primary application 

of this HOM fiber research, nonlinear microscopy, is made possible by short light 

pulses. The time lens, which manipulates the temporal phase of incident light, is 

capable of generating short, energetic pulses without laser modelocking (the usual 

means of creating short pulses). This appendix will cover the principles and 

implementation of a time lens for generating short pulses. I will show one example of 

the its application for imaging, in a picosecond light source at 1064 nm, synchronized 

to a Ti:Sapphire laser for coherent anti-Stokes Raman scattering (CARS) and 

stimulated Raman scattering (SRS) microscopy.  

 

A.2 Electro-optic modulators 

Time lenses in fiber optics are implemented with inline electro-optic (EO) 

modulators. The modulators used here are made of LiNbO3 crystal, whose refractive 

index changes when an electric field is applied to it. In a phase modulator (PM), the 

light passes through a single LiNbO3 waveguide, and when a voltage is applied to the 

modulator, the change in refractive index in the waveguide causes a phase change 

(temporal delay) of the input light. An intensity modulator (IM) uses two such 

waveguides oriented in a Mach-Zehnder (MZ) geometry, with opposite voltage 

applied to each arm. The interference of the light from the arms of the MZ modulator 
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produces signal variation from “on” (constructive interference) to “off” (destructive 

interference). These EO modulators are characterized by a parameter Vπ , which 

denotes the voltage required to induce a π phase shift in the waveguide (Vπ is typically 

a few volts). For PMs, large drive voltages (>> Vπ) are desired for maximal phase 

shifts. As such, RF (radio frequency) amplifiers for generating PM drive signals need 

to be high power and placed close (due to loss of RF connections and cables) to the 

modulators themselves. For IMs, Vπ gives the voltage required to sweep from “on” to 

“off.” Correct amplitude of drive voltage as well as proper setting of bias voltage is 

crucial to obtaining maximum extinction ratio (ER, light intensity at “on” compared to 

“off”) and minimum insertion loss. Standard ER values for IMs used in 

telecommunications are ~20 dB, and higher ERs can be achieved with fine voltage 

control or multi-stage modulators. These EO modulators are used in 

telecommunications for data encoding in transmitters, and are capable of modulating 

at speeds in the tens of GHz.  

 

A.3 Using time lenses to create short pulses 

The time lens works in the temporal domain much as a spatial lens does in 

space. A focusing lens imposes a quadratic phase profile on a planar wavefront; this 

combined with propagation (diffraction) brings the light to a focus. In analogy, an 

ideal time lens imposes a quadratic phase profile on a pulse. The generated chirped 

bandwidth, with appropriate propagation (dispersion) to remove the chirp, produces a 

“temporal focus”: a short pulse [1, 2]. We can write the phase in space imposed by a 

lens:  

 
2 2( )( , )
2

k x yx y
f

ϕ +
=  (A.1) 
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Where k is the propagation wave vector, and f is the focal length of the lens. Similarly, 

the phase induced by an ideal time lens has the form 

 
2

( ) ,
2

o
PM

t

t
t

f
ω

ϕ
−

=  (A.2) 

Where ft represents the “focal length,” or strength, of the time lens. It is easy to see 

how a sinusoidal phase drive can approximate this profile: an RF phase drive with 

modulation frequency ωm and peak-to-peak voltage Vp-p applied to an EO PM with 

characteristic Vπ, can be expanded in a Taylor series: 

 ( )
2

( ) cos 1
2 2

p p o
PM m

t

V t
t t

V fπ

ω
ϕ π ω− −

= ≈ +  (A.3) 

The leading term in the expansion is a constant phase across the whole pulse, which 

we can disregard. The effective time lens “strength” ft is given by:  

 2

2 o
t

p p m

V
f

V
π ω

π ω−

=  (A.4) 

We can see that a larger peak-to-peak drive voltage and higher modulation frequency 

applied to the PM gives smaller ft and thus “tighter focusing,” which in turn creates 

shorter pulses.  

We consider this phase on a Gaussian pulse with 1/e half-width τ0: 
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 (A.5) 

This takes the same form as chirp C applied to a Gaussian pulse [3], chirp that can be 

subsequently removed by dispersion compensation. 
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exp 1
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tE iC
τ

⎡ ⎤
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⎣ ⎦
 (A.6) 

A typical time lens setup for generating low-duty cycle short pulses is shown 

in Fig. A.1(a). A continuous wave (CW) laser is first carved into a low-duty cycle 

pulse train by an IM. The pulses emerging from the IM are long (tens of picoseconds 

at best), due to finite bandwidth of the RF electronics. To obtain the wide bandwidth  
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Figure A.1 (a) A typical time lens setup. Red profiles denote temporal shape at points 

along the system, blue profiles denote spectral shape. (b) Alignment of sinusoidal 

phase drive (green) with optical pulse envelope (red) for a time lens. CW: continuous 

wave laser, IM: intensity modulator, PM: phase modulator. 
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associated with a short pulse, a time lens is required. A PM is driven with a high 

repetition rate sinusoid, synchronized such that the cusp of the sinusoid aligns with the 

peak of the pulses, approximating a quadratic phase profile (Fig. A.1(b)). Appropriate 

dispersion compensation matched to the chirp acquired from the time lens then 

compresses the pulse. Optical fiber amplifiers can be added inline to boost the signal 

as needed. Amplification before the dechirping step sees minimal nonlinear penalty as 

the peak power before compression is relatively low.  

The key to generating maximal bandwidth (and consequently the shortest 

pulse) is the alignment of the phase curvature with the pulse profile. This is easiest 

achieved by delaying the RF signal driving the PM. To ensure that each pulse acquires 

the same bandwidth from the time lens, the RF signal driving the IM (a low duty cycle 

pulse train) and the PMs (a high repetition rate sinusoid) must be synchronized. Either 

the pulse carver signal can be clocked by the PM signal, or the PM signal can be 

derived from the pulse carver signal. Typically, a precision frequency synthesizer, 

which generates a single pure high frequency tone, supplies the signal for the PM. 

This same single RF frequency is also used as the clock signal to a pulse pattern 

generator that creates the RF signal to drive the IM. The example we present here does 

the opposite: a high harmonic of the low duty-cycle drive signal for the IM is filtered 

and amplified to drive the PM.  

It is instrumental to note that while we drew in Fig. A.1(b) the alignment of the 

pulse with a negative phase curvature (φPM ~ −t2), the sinusoidal drive can generate the 

same bandwidth with either sign of chirp depending on which cusp is aligned to the 

pulse. This gives flexibility to the dispersion compensation techniques one can use to 

remove the chirp from the pulse, from free space dispersion compensators like 

gratings and prisms, to fiber-based compensators like standard single mode fiber, 

dispersion compensating fiber, and chirped fiber Bragg gratings.  
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Also, we note that components of the time lens system do not need to go in any 

particular order: PMs and IMs can be swapped in position with no effect on the 

resulting outcome. In fact, the time lens does not need an IM to generate short pulses. 

However, as only a portion of the sinusoidal RF signal is well-matched to the 

parabolic phase profile, many sidelobes result in the temporal profile of the output 

pulse. We use the IM here to reduce these sidelobes, as well as lower the duty cycle of 

the pulsetrain. Whereas the modulators can be exchanged in position, amplifier 

position is of more importance: to maintain a high optical signal-to-noise ratio, 

amplifiers must be used along propagation to compensate for component insertion 

loss. In addition, final power amplification should be before pulse compression to 

reduce nonlinear distortions to the pulse.  

In contrast to laser modelocking, using a time lens to generate short pulses 

requires no cavity or feedback, and thus the repetition rate can be widely tuned and 

pulses can even be generated “on demand.”  In addition, the output wavelength of the 

time lens source can be changed simply by changing the initial CW laser. The 

modulators, as they are designed for wavelength-division-multiplexed applications in 

telecommunications, have good performance over many tens of nanometers. Another 

benefit of the non-modelocking nature of time lens sources, as it is completely feed-

forward and deterministic, means that its operation is reliable and predictable. During 

operation, only minor adjustments to IM bias from day to day are needed to maximize 

ER, and these adjustments can be incorporated into an electronic feedback control 

loop for optimization, enabling simple, fuss-free operation. Further, as the optical and 

electrical components used in a time lens system are standard to telecommunications, 

they are low-cost and robust. Time lens systems at wavelengths outside standard 

telecommunication bands operate on the same principle, but its optical components 
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(CW lasers, EO modulators, amplifiers) incur slightly higher cost due to lower market 

demand.  

 

A.4 Synchronized time lens source for CARS and SRS microscopy 

While time lenses can be used independently to generate short pulses [4, 5], we 

show in this section the adaptability of the time lens for creating a pulsed source 

synchronized to a master oscillator for CARS and SRS microscopy. CARS [6] and 

SRS [7] microscopy are nonlinear imaging techniques that require no contrast agents. 

These techniques use two wavelengths of light to probe molecular vibrations, the 

optical frequencies of the two beams separated by the vibrational frequency of the 

molecule ωvib = ωpump−ωStokes. These coherent Raman microscopy techniques require 

two synchronized, pulsed laser sources to be spatially and temporally overlapped at 

the microscope focus. In addition, each laser needs to have a narrow linewidth as to 

only probe a single molecular vibration of interest. Moreover, wavelength-tunability 

of one of the laser sources is desired to be able to target different molecular vibration 

lines. CARS and SRS microscope systems typically employ modelocked laser sources 

to satisfy these requirements, but the synchronization of multiple modelocked lasers is 

a nontrivial problem. Early systems used electronic feedback circuits to synchronize 

laser cavity lengths [8], but these eventually gave way to optical synchronization [9]. 

Currently, the workhorse laser system for CARS and SRS microscopy is a picosecond 

Nd:YAG laser at 1064 nm and a synchronously pumped optical parametric oscillator 

(OPO) tunable from 800 to 1000 nm. A portion of the Nd:YAG laser output is used as 

the Stokes beam, and the majority of it is frequency-doubled to pump the OPO, which 

serves as the pump beam. While suitable for laboratory research, such laser systems 

are cumbersome and make it difficult for these powerful microscopy techniques to see 

clinical application. We describe here an alternative to this by using a time lens source 
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synchronized to a pulsed laser source. A tunable-wavelength Ti:Sapphire laser 

provides the pump pulse, and the time lens source provides the Stokes pulse. We show 

low jitter between the time lens source and its master oscillator Ti:Sapphire laser, and 

successful demonstration of CARS and SRS imaging with this system.  

 Since CARS and SRS microscopy requires picosecond pulses for optimal 

signal-to-background, molecular specificity, and damage performance, two PMs 

(lumped as a single time lens) are used to generate the bandwidth required. A 

simplified schematic of the synchronized time lens system is shown in Fig. A.2. A 

Ti:Sapphire laser (Coherent) served as the master oscillator, its 76 MHz, 2 ps pulses 

were tunable between 700 nm and 1000 nm. The time lens source consisted of a 

single-mode, 1064 nm DFB laser (Qphotonics), two PMs (EOSpace) to generate the 

chirped bandwidth, an IM (PP1, EOSpace) to carve a pulsetrain matching the master 

oscillator, Ytterbium-doped fiber amplifiers to boost the optical signal, and a circulator 

(Novawave) and chirped fiber Bragg grating (Teraxion) for dispersion compensation. 

A second IM (PP2, EOSpace) was added in the system for modulation of the Stokes 

beam for SRS imaging, and when not used (in the case of CARS imaging), could be 

set to a constant bias voltage to allow maximum transmission. The electronic drive 

signals for the time lens components were derived from the master oscillator. The 

Ti:Sapphire light was tapped with a beamsplitter and directed to a high speed electro-

optic detector (EOT), which output an RF pulsetrain at the same repetition rate as the 

master oscillator. Due to the response time of the detector, the RF pulses were ~60-70 

ps long. The RF signal was divided and one branch was used to drive PP1, creating a 

low-duty cycle pulsetrain. The other branch was filtered with a narrowband RF filter 

centered about 9.95 GHz, and this filtered signal (the 131st harmonic) was used to 

drive the PM for the time lens. RF amplifiers were used to  
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Figure A.2. Simplified schematic of time lens source for CARS and SRS microscopy. 

Red lines denote optical path of 1064 light, green lines indicate Ti:Sapph optical path, 

blue lines mark the RF signal path. CW: continuous-wave laser, PC: pulse carver, 

YDFA: Ytterbium-doped fiber amplifier, PM: phase modulator, PP: pulse picker, EO: 

electro-optic, CFBG: chirped fiber Bragg grating, BS: beamsplitter, DC: dichroic 

mirror. 
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boost signal strength applied to the modulators. An RF delay line before the split 

controlled the delay of the pulsetrain, and another delay line at the RF signal input to 

PP1 ensured the phase modulation was properly aligned with the pulse. The fiber-

coupled output of the time lens was then collimated with a 0.18 NA aspheric lens and 

combined with the Ti:Sapphire beam with a dichroic (DC) mirror. The combined 

beams were sent to a beamscanning microscope for imaging [10]. Spectrum of the 

time lens output was measured with an optical spectrum analyzer. Temporal 

characterization of the time lens source was conducted by measuring its sum 

frequency cross-correlation with the master oscillator.  

 The spectral and temporal characteristics of the time lens source are shown in 

Fig. A.3. The output spectrum after amplification and compression is shown in Fig. 

A.3(a), the inset shows a zoomed view near the center wavelength. We see the 

characteristic modulated spectrum of a time lens, showing ~2 nm of bandwidth. The 

pulsewidth of the time lens source was ~1.7 ps, measured by cross-correlation with a 

synchronized 130 fs fiber laser source. Fig. A.3(b) shows a cross-correlation of the 

time lens source with the master Ti:Sapphire. The cross-correlation has a width of 

~2.9 ps, a convolution of the Ti:Sapphire and the time lens pulsewidths. The inset of 

Fig. A.3(b) plots the sum frequency signal at the half-maximum point of the cross 

correlation, showing good long-term jitter performance. Fig. A.3(c) shows the 

modulated time lens source (Stokes beam) in blue and the unmodulated Ti:Sapphire 

(pump beam) in the green. Modulation was accomplished by applying a 10 MHz 

square wave to PP2. As 10 MHz is not an integer factor of the fundamental repetition 

rate, occasionally the pulse groups show different numbers of pulses. The modulated 

pulsetrain shows excellent modulation depth, which is crucial to successful SRS 

microscopy.  
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Figure A.3. Output of the time lens source. In (a), the output spectrum, in log scale. 

Inset shows fine spectral features at the center wavelength. Cross-correlation of time 

lens source with Ti:Sapph laser is shown in (b), inset shows stability of signal at half-

maximum. (c) shows recorded pulsetrains of Ti:Sapph laser in green and time lens 

source modulated at 10 MHz in blue.  
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 The time lens source synchronized to the master Ti:Sapphire laser was used for 

CARS and SRS imaging of mouse skin. SRS images of various structures in the skin 

are shown in Fig. A.4(a-c). Structures shown are (a) a sebaceous gland, (b) the viable 

epidermis, and (c) the stratum corneum. The Ti:Sapphire was tuned to 817 nm to 

match the CH2 vibration at 2850 cm-1, which highlights the lipid-rich regions of the 

skin tissue. Fig. A.4(d) shows drug penetration into the spaces between corneocytes in 

the stratum corneum. For this image retinoic acid was applied to the mouse skin, and 

the Ti:Sapphire was tuned to 909 nm to match the resonance of retinoic acid at 

1600 cm-1. The images show no adverse effects from jitter, which would manifest 

itself in nonuniformity of image brightness.  

The time lens source demonstrated here is flexible, as it can be synchronized to 

any optical or electrical pulsetrain. Since the time lens pulses are simply triggered by 

the master oscillator, there is no feedback involved and the synchronization is 

instantaneous. The time lens source has additional flexibility because the pulses can be 

generated “on demand,” and pulse amplitude varied pulse-to-pulse. Also, while in this 

demonstration the time lens source was fixed-wavelength, the wavelength of the time 

lens could be changed by replacement of the CW seed laser.  

The time lens source is convenient, as it provides a mechanism to delay its 

pulses without changing optical alignment. The RF delay simply controls the electrical 

signals triggering the time lens pulses, and the fiber-coupled output of the time lens is 

temporally delayed without movement of the optical beam. Fine control of the delay is 

accomplished through manual and electronically controlled RF delay lines, but large 

amounts of delay can be added or subtracted by addition or removal of RF cables and 

optical fibers. In addition to the alignment-free control of pulse delay, modulation of 

the pulsetrain for SRS and other pump-probe type experiments is incorporated to the 

system, without need for external modification of the optical beam. In this  
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Figure A.4. Sample SRS microscopy images taken with the time lens source, of (a) the 

sebaceous gland, (b) viable epidermis, and (c) stratum corneum of mouse skin, imaged 

by probing the CH2 resonance (2850 cm-1). (d) shows drug delivery through mouse 

skin, imaged by probing the resonance of retinoic acid (1600 cm-1). Scale is as shown 

in (a) and (d). Scale in (a) applies also to (b) and (c).  
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demonstration a second IM was used to achieve this modulation capability, but it 

could also be accomplished by electrically mixing the SRS modulation signal with the 

input signal to PP1, or by directly modulating the CW seed laser.  

 

A.5 Conclusions 

We have shown here that the time lens-based pulsed source is viable for 

nonlinear imaging applications. We demonstrated a time lens source synchronized to a 

tunable-wavelength modelocked laser for CARS and SRS microscopy. The time lens 

source provides a low-jitter synchronized pulse train, allows for alignment-free tuning 

of pulse delay, and has integrated pulsetrain modulation capability. Furthermore, as 

the system is all-fiber, it is robust and easy-to-transport, and can be a very compact 

system with proper packaging.  
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