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Abstract

Loop unwinding is a well known technique for reducing loop overhead, exposing parallelism
and increasing the efficiency of pipelining. Traditional loop unwinding is limited to the in-
nermost loop in a group of nested loops and the amount of unwinding is either fixed or has
to be specified by the user, on a case by case basis. In this paper we present a general tech-
nique for automatically unwinding multiply nested loops, explain its advantages over other

transformation techniques and illustrate its practical effectiveness.
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Fori = x,y,3 Do
Ali] : = expr(i);
If i>y Then Goto exit;
Ali+1]: = expr(i + 1);
If i +1>y Then Goto exit;

Fori = x, ydo | Ali+2] : = expr(i +2);
Ali] : = expr(i);
End; End;
exit:

Figure 1: Simple Loop Unwinding: (a) Original Loop. (b) Loop Unwound 3 times.

1 Introduction

Loop unwinding has been long known as an effective way to increase the efficient utilization
of pipelined machines. More recently loop unwinding has emerged as a primary technique
for exploiting fine-grained parallelism within loops, notably for Very Large Instruction Word
machines, a form of very tightly coupled multiprocessors [7]. Loop unwinding helps exploit
fine-grain parallelism by providing a large number of operations (the unwound loop body)
which can then be scheduled by operation-level code transformations such as Trace Scheduling
[8] or Percolation Scheduling [17]. The operations in the unwound loop body come from
previously separate iterations and thus are freer of the order imposed by the original loop.
Inside this (larger) loop-body, operations can be scheduled for parallel execution (by the
compiler) subject only to data dependencies. Large amounts of parallelelism which is too
irregular to exploit by traditional methods (e.g., vectorization) can be found in this way.
The basic unwinding technique is very simple. The body of the loop together with the
control code (i.e., counter and exit-test) is replicated a number of times. For example, figure
1b shows the effect of unwinding the loop in figure 1a three times. This form of unwinding
is usually used for simple for loops, but other forms of iteration can be dealt with in similar
fashion.
" The unwound loop can sometimes be simplified by removing the intermediate tests and
jumps introduced by the unwinding process. This may require static (i.e., compile-time)
knowledge about the number of times the loop will be executed. For example, if the user
knows that the loop will be executed a multiple of three times, the extra tests and jumps in
figure 1b could be removed. Alternatively, if the pattern of memory references of the loop
can be determined by static analysis (e.g., using disambiguation techniques [3], [16]), some
extra memory locations can be allocated to allow extra iterations of the unwound loop to
execute safely. For example, even if no information about the number of times the loop in

figure 1a is executed is available at compile time, we may still safely remove the tests and



jumps as before, if we add 2 extra elements to array A. Note that this increase is a function of
the number of times the loop is unwound, not of the number of times the original loop body
gets executed. More complex methods for the removal of tests and jumps from unwound
loops exist, including testing at run-time the number of times a loop is executed and then
executiing an appropriatedly unwound loop based on this information. While such methods
can effectively deal with statically unpredictable loops and references, they introduce some
overhead.

The above description surveys current uses of loop unwinding. But current techniques do
not allow unwinding multiply nested loops. This is a major disadvantage, as it significantly
limits the usefulness of loop unwinding, particularly for fine-grained parallelism architectures
such as VLIW’s [6], [9], ROPE [18], Microflow [20] and Alliant [2]. In this context, the
parallelism may be distributed across several nested loops, so unwinding only one of the loops
will not achieve the best results. This situation occurs frequently and is illustrated in section
3. In the rest of this paper we present a technique, called Loop Quantization, that overcomes
this problem by allowing correct multiple-loop unwinding for arbitrary nested loops.2 We will
also describe how the decision on the bounds of Quantization can be automated. That is,
we will show how to automatically determine the amount of unwinding needed to efficiently
execute a loop on a particular machine. While the user may be able to make such decisions
for single loop unwinding, dealing with multiple loop unwinding by hand requires significant
effort and is extremely error prone. Loop quantization is being integrated in a parallelizing
compiler under development at Cornell.

Quantization allows the extraction of parallelism that was previously believed to be de-
tectable only at runtime [11]. Furthermore, quantization applies in cases where higher-level
parallelism exploitation methods (like vectorization and loop interchange) do not apply, but
where a significant amount of fine-grained parallelism is still present.

Loop Quantization can help achieve significant speedups in scientific code by allowing

2Loop unwinding should not be confused with loop jamming (fusion), a transformation that merges the bodies
of two loops (that have the same iteration bounds) into a single loop, which eliminates the loop overhead
for one of the loops. While both loop quantization and jamming require testing that program correctness is
preserved (as do all useful transformations), the test for jamming is obvious: jamming is feasible iff given an
operation of iteration 7 in the second loop that depends on the result of an operation done during iteration
1 of the first loop, we have ¢ < 7. For loop quantization, on the other hand, the test is much more complex

and was previously unknown; thus automatic multiple loop unwinding was not feasible.



better pipelining and fine-grain parallelism exploitation. The main loop of weather code,
for example, is naturally amenable to Quantization, as are the Livermore loops[14] in their
nested context. Several of the Livermore loops (e.g., 5,6,11,24) are considered “hazard bound”
[10] and do not yield to previous techniques. These loops can be successfully quantized,
allowing fine-grain paralellization. The speedups achieved in our experiments range from 4
to six over the code produced for Cray-1 by the CIVIC compiler. These experiments use
Percolation Scheduling to exploit the fine-grain parallelism exposed by Loop Quantization.
The amount of parallelism exposed is often limited only by the hardware resources available
(e.g., the number of processors). Since Quantization rearranges the order of execution of the
loop iterations less than other transformations, and since it can expose even irregular fine-
grail; parallelism, it can be applied to a large variety of code. Furthermore, quantized loops
naturally map onto parallel architectures with hypercube or cube-connected-cycles topologies
(e.g., Cosmic-cube[19], Microflow[20]).

2 Loop Quantization

Given enough processors, optimal speedups can be achieved if all nested loops were fully
unwound. Since no artificial constraints would be introduced by the indexing order, the
only limitation would be imposed by data dependencies.® Techniques such as Percolation
Scheduling could then be applied to exploit the available parallelism. Unfortunately, such
complete unwinding is not usually feasible because of processor and memory limitations* and
because the loop bounds are not always known at compile time. Still, even if the amount of
unwinding is limited, we need the ability to unwind all loops. Unwinding just the innermost
loop is not satisfactory, since it exposes parallelism only in that loop, whereas the parallelism
is often available between several of the outer loops.

The basic idea of Loop Quantization is to unwind a few iterations of all nested loops. The
way we do the unwinding is constrained by three factors:
1. Correctness. Quantization should not altering the order in which data-dependent state-

ments are executed.

3A data dependency is a relationship between two instructions that use a common register or memory location.
The second operation cannot begin until the first operation is finished using the register or memory.
“Mainly processor limitations—if we were to have enough processing power to execute the unwound loops in

parallel, we could probably afford the memory.



2. Avaslable parallelism. Unwind so as to maximize the parallelism exposed - i.e., minimize

dependency chains.

3. Space considerations.

2.1 Formalisation of Loop Quantisation

We will now formalize the problem of Loop Quantization. This will enable us to derive formal
conditions for when and how quantization can be applied. These conditions are introduced
in section 2.2. The actual use of these conditions in the automatic quantizations of loops is
described in section 2.3.

We will consider n nested loops, where loop n is the innermost and loop 1 is the outermost,
as shown in figure 2. A loop indez I; is associated with each loop I. We will denote by 3;
particular values of Ij. An sncrement, K;, may also be specified for each loop I. We will
denote particular values of Ky by k;. Originally, the loops are assumed to be normalized to
range from 1 to N; with increments of 1 (our system can bring them into this normal form).

In the following discussion we assume that the n loops are the only ones affected by the
quantization and that indirect references (i.e. references involving computed addresses) are
linear functions of the iteration vectors.> We will also assume that two references to an array
A, namely A[iy, iz, ..., in] and A[j1, J2, ..., jn] are equal if and only if i1 = jj, iz = j2,...,0n = jn.
That is, no ambiguous equivalence and common statements are used.

To unwind loop ¢ k; times, the loop-body is duplicated k; times. In the first duplication of
the original body the index I; is unchanged; in the second, each occurrence of I; is replaced
with I; + 1, and so on, all the way up to I; — k; — 1. For the next outermost loop, (i — 1),
the newly unwound body is itself replicated k;—; times, with indexes I;_; to I;_y + k;—; — 1
replacing I;_,. This is essentially equivalent to unwinding all the nested loops fully, when their
upper bounds are k;, .., k, respectively. For this unwinding to be useful, it must preserve the
semantics of the original loop. Informally, this means that each statement S executed for
some original index-vector value § = (i1, ..., in), will have available to it exactly the same data
when the unwound loop is executed as it would have in the original loop. In particular, if the

statement was accessing a value computed in an iteration preceding it (i.e., calculated by a

8An iteration (or index) vector [13] consists of the seting of the induction variables that uniquely identify an

iteration of the nested loops.
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Figure 2: Sample 2 dimensional loop quantization

statement with an index vector j < i, where “<” denotes lexicographic ordering®), it should
be able to access this value in the unwound loop. Similarly, the statement S should not access
values computed in later iterations of the original loop(s). Our goal is to find a set {k;,...kn}
of loop increments (steps) such that the quantized loops preserve the semantics of the original
ones (i.e., given the same input they both produce the same output).

If only the innermost loop is unwound no problems arise, as this preserves the execution
order of the iterations. However, when other loops are also unwound, the looping consists of
~ a n-dimensional box B with dimensions k; by k2 by...k, (see figure 2). All the statements in
B are executed before the box is shifted (by a “quantum jump”) along any of the dimensions.
The movement along the n dimensions, while quantized, is still in the normal loop order (i.e.,
first along dimension n, then along dimension n — 1, etc). This obviously alters the order
of execution. A statement S; in the original iteration (iy + 1,42, ...,¢,) may be included in
this box (in fact it will be, if loop 1 is unwound at all) and thus may be executed before a
statement Sy in the original iteration (iy,....,in + k) (which already falls outside the box),
even though in the original execution the latter would precede the former. This will not
present any problem if S; does not require the results of Sz, or if Sz does not use information
that is altered by S;. If such dependencies exist, however, the particular quantization is
illegal, although other quantizations may succeed. We will discuss the chioce of a particular

quantization in section 2.3. We need not worry about incorrect execution order when both

$That is, the relation is determined by the pairwise comparison from left to right of the elements of ¢ and 7.
The first pair of elements that are not equal determines the result of the comparison. This comparison can
often be made (symbolically) even when the elements are expressions involving variables. For example the
expression 25 + 3¢ + 4 is greater than or equal to s + 3 for all positive values of + and 5. Our system can
automatically determine this. Note that this is not syntactic comparison, but symbolic evaluation akin to
MACSYMA [4].



dependent statements are inside the same box since the execution order of such statements is
preserved by the quantization.”

To fix the dependency problem, we could increase the size of the box to include any
dependent references. This would ensure correctness, since all dependent pairs of operations
whose order would be reversed as a result of quantization would now be contained in the
box and thus executed subject to their dependencies. Unfortunately, this process can be self
replicating, and the unwinding might have to repeat until the bound of the array encompasing
the problematic references is reached. Since in many applications one of the dimensions of
the array is quite small, full unwinding on that dimension may be reasonable.

In cases where dimensions are large or full unwinding along some dimension cannot resolve
the problem, the alternative is to only allow unwindings of loops which do not cause depen-
dencies to be violated. For example, a quantization yielding a box B bounded by (iy,...,i,)
and (i; +k; — 1, ....i,, +kp, — 1) must be disallowed if B contains references to a variable written
in the original iteration j = (iy,...,in—1 + kn—1 — 2, in + kn), which occurs in a box executed
after B. Limiting the amount of unwinding to avoid violating dependencies should not be
much of a constraint as long as we are utilizing the (limited) resources fully. If utilization is

too low we can unwind one of the loops further.

2.2 Loop Quantisation Conditions
2.2.1 Dependencies

We will now formally define the dependencies and the conditions under which they may be
violated by loop quantization. Assuming that useless writes to memory are eliminated by
dead-code removal, two types of dependencies may be violated as a result of Loop Quantiza-
tion:

Write-before-Read: A memory location is written in iteration i, and in iteration j > i the
same memory location is read.

Write-after-Read: A memory location is read in iteration i, and in iteration j > § the same
memory location is written.

The execution order of all statements connected by such dependencies must be preserved to

ensure semantic correctness. The order of independent statements is irrelevant.

"Since Loop Quantization changes the order of the iterations less drastically than more global transformations

(e.g., interchange), quantization can succeed even when global transformations would not apply.



To determine whether a dependency exists between two statements and to establish the
dependency type, reads in one statement are compared with writes in the other. Since scalar
variable accesses are invariant with respect to the loops, they cannot affect the semantic
correctness of the quantization. Furthermore dependencies between references in the same
iteration are not affected by quantization. Thus, it is sufficient to only consider dependencies
caused by indirect references occurring in different iterations.

Memory disambiguation techniques for determining (to the extent possible at compile
time) whether two indirect references might access the same memory location can be found
in [3], [16]. They involve the derivation of primitive expressions for the array indexes. These
expressions contain compile-time constants, and variables whose values cannot be derived at
compile-time. To determine whether two references conflict, the primitive index expressions
are symbolically equated and the resulting diophantine equation is solved. If there are (integer)
solutions to the equation, then the two references might access the same memory location,
and a potential conflict (data-dependency) must be assumed. For simplicity of notation we
will assume that index references are reduced to the primitive form (ayi; + by, ..., nin + bn),
where i is the iteration vector, and the a;’s and b;’s are constants. The following discussion
applies to arbitrary array indexes. Of course, the more complex the index expressions, the less
likely they are to be disambiguated by the compiler increasing the number of dependencies

that have to be assumed.

2.2.2 Quantisation Conditions

Given two conflicting indirect references A[a}i;+b}, ..., ahin+b)] and A[a}ji +b],...,apjn+b],
we can express the second iteration vector j as a function of the first iteration vector i by
s + (B = B)  ahin+ (U = H), _

a'll 1" a;:

J=(

for values of i;’s such that the j;’s are all integers (this must be possible, otherwise there would

(alil + by, ...,8pipn + bn) = (jl, ...,jn)

be no conflict).

Equating i and j elementwise from left to right, we may determine whether i < j, ori > j.
For quantization to be legal, we need to ensure that the order of the conflicting references is
preserved under quantization. Assuming that original iteration s occurs in a box with lower

bound® L = (I3, ...,I,) and original iteration j occurs in a box with lower bound L = (I}, ..., 1},),

8The lower bound of a box B is the index vector of the quantized loop for which the original loop iteration

with index vector ¢ gets executed.



then one of the following conditions must hold:
1.if i>j then L>L' or 2. if i<j then L< L'
Since the i.’s runs from 1 to N, and the new indexes run from 1 to N, by increments of

k., we get:
51—-1 in — 1 + _ =
i Jki +1,..,| . Jkn +1), and L' = (]| ;

As with the original iterations, the lower bounds of the quantized boxes occur in lexi-

T I=(l

Lk, 2 R+ 1),
1 kn

cographic order. That is, the box associated with L will precede during execution the box
associated with Z' if and only if I < Z'. Thus by element-wise (symbolic) comparison we

can determine if either one of the two conditions above is satisfied.

2.3 The Use of Loop Quantisation Conditions

The conditions presented above can be used in several ways. The simplest is to let the system
perform a prespecified unwinding (i.e., use some fixed k.’s, possibly determined by range
analysis of the bounds of arrays and loops). Dependent statements are checked against the
conditions derived in the previous section, for all values of each I.. If the conditions are
satisfied then the unwinding is performed, otherwise k.’s are decreased and the process is
repeated. While this could be extremely expensive, it provides a straightforward solution
for cases where only a few nested loops with few dependent statements exist and the N;’s
are known at compile time. A deficiency of this approach is that it does not provide any
information about what k.’s may be appropriate or on how to unwind so as to best utilize
the space we are willing to trade for speed.

A more reasonable approach, wich we are incorporating in our percolation scheduling
compiler improves efficiency and applies even when the bounds of the loops are not known.
We notice that a > b implies [§] > | §]. Furthermore, a — b > k implies |§] > |§]. These
rules can be used to compare L and L’ symbolically, without computing specific values for
each iteration. This can also help in picking the right unwinding (i.e., pick k. < k). Doing

such symbolic comparison, we may determine that:

e L > L'. If this is the condition needed to ensure the legality of the transformation, the
quantization can be performed, using arbitrary k.’s. Otherwise an attempt is made to
change “>” to “=" to ensure correctness. This may require full unwinding on one (or

more) dimensions.



e L < I'. If this is the condition needed to ensure the legality of the transformation
the quantization can be performed using arbitrary k.’s. Otherwise an attempt is made
to change <’s to = to ensure correctness. This may require full unwinding on one (or

more) dimensions.

e Undetermined situation. This will occur whenever we have no strict ordering (i.e., none
of “<” or “>” or “=” hold) between L and L', and there are some “<’s” and “>’s”
between various elements. For example, for Z = (|%ft], [$]) and " = (| §], | L)) we
have |%}!] > [£] and L#] < |%2]. This is undetermined, since

L=L"whena=1,k=3b=1;
I>L' whena=2,k=3,b=1;
<L'whena=1,k=3b=2.

b'I

In such cases we may obtain the desired relation by changing <’s to =’s (or >’s to =)

by using different k.’s, or if that fails, possibly by full unwinding on some dimensions.

In general, i, — je 2 k+ (c—¢') = [351] > [i‘-], where i, = dk + ¢ and j, = d'b + ¢
This together with the other constraints on the various variables can be used with integer
programming techniques to find a set of maximal k.’s satisfying the above conditions. The
simpler alternative used in our compiler is to establish an upper limit on the unwinding, say
K, for loop z. Such a bound occurs naturally in practice, as a function of the size of resources
(the number of processors) available. In this case, we can start with K, and apply the legality
tests for quantization. if the tests succeed, we’re done, and if they fail we repeat the process,
performing a binary search on the range of possible values k; < K,. In the worst case, we
will have performed log(K) attempts before finding a legal k.

When a conflict occurs, the system can compare L and L', and decide which dimension(s)
(if any) could be fully unwound to satisfy the conditions. For example, if there is a value e
such that for all i such that i < e we have l; > I} and I, < I, then the safety of quantization
is undetermined. If full unwinding on dimension e is feasible doing so will force I, = I, since
for any original iterations i, and j,, we have i, < N, and j. < N.. That is, for all i, and
j. we have I, = I'. Thus the conflict on the e'® dimension will be eliminated, since all the
potentially conflicting references will be in the same box.

As for space efficiency, intuitively, there is no point in unwinding on a dimension if de-



pendencies exist on that dimension that prevent software pipelining or parallelization.® This
indicates that there is no possible performance gain for the statements under consideration.
To decide if the unwinding will achieve any speedup, all statements in the loop body must
be considered. Even when no major overlap can occur, exit-tests might still be eliminated,
and initialization and tests from several original iterations may be done in parallel. Whenever
additional unwinding is not deemed to be worth the cost (a user or system settable parameter)
unwinding stops.

This method may be hindered by the presence of arbitrary conditional jumps in the loop
body that limit the ability to disambiguate dependencies at compile time and to accurately
evaluate the real (run-time) speedup achieved by a given unwinding. This accuracy can be
significantly improved by the use of conditional-jump probability information. Such informa-
tion can be obtained by the system using test runs and/or analysis, or can be supplied by the

user. We have found such information to be easily available in typical scientific code.

2.4 Folding and Balancing

To best exploit the parallelism exposed by quantization, we can apply another transformation
similar to tree height reduction [12]. This expresses each left-hand-side (LHS) of an assignment
in terms of initial values or irreducible variables, by using repeated back-substitution (and
constant/variable folding [16]) on the quantized body of the loops. The highest tree is then
balanced by using efficient algorithms that take advantage of commutativity, distribution, and
associativity [15], [5]. Subtrees corresponding to other LHS—if any—are identified and reused
(common subexpression elimination). The process is repeated for all independent statements
in the loop and each operation is scheduled for execution subject to its dependencies (e.g., by
Percolation Scheduling).

If the machine is “reasonably well utilized” by the final schedule (a system or user specified
bound), or the code size is getting to be “large” (another user or system specified bound)
quantization stops. Otherwise, we increase the unwinding (incrementally) and build a new
overall schedule. If the new part of this schedule is isomorphic to the part added in the previous
schedule and there is no overlap between them (i.e., a no-gain situation—the trees have exactly
the same structure and the two halves have to be scheduled completely sequentially to ensure

semantics preservation) then the last unwinding was not worthwhile, so we undo it and stop.

®See [13] for a rigorous definition of loop carried dependencies.
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Do i=1,n
Do j=1,n
(1) T1=Xx[i+16,j];
(2) T12=X[i+1,j]; /* Notice that statements (2 and 4) form a recurrence */
(3) T1=T1+T2;
(4) X[i+1,j+1]1=T1;
0d; 0d:

Figure 3: Original Recurrence code

Otherwise we repeat the process until either one of the bounds is reached or a no-gain situation

is encountered.

3 Examples

3.1 Example 1

As an illustration, consider the way Loop Quantization techniques deal with recurrences.
In figure 3 we have a simple piece of code. Transformations such as loop interchange or
vectorization do not apply here. For example, in the original loops, X[17,2] will be read
in iteration (§ = 1,5 = 2), and written in iteration (i = 16,5 = 1). Since the loop on j
is innermost, (1,2) occurs before (16,1) and thus we have a read before a write. Reversing
the loops will write into X[17,2] in iteration (j = 1,§ = 16) and read from it in iteration
(3=2,i=1); but since the loops are now reversed, the write will occur before the read, which
is obviously not semantically equivalent to the original code. The interchange is therefore
illegal. Vectorization is unfeasible, even if we use expansion and loop distribution (breaking);
the first statement could be vectorized, but that would only reduce the execution from 4 * n®
to 3+ n? + 1 steps, even assuming an array of processors of size n. This would be wasteful if n
is large. A similar speedup (3 * n? execution steps) could be achieved on a multiprocessor by
running the first two statements in parallel. Even if more than two processors were available
on a traditional multiprocessor, attempting to distribute the loop across the processors will
incur very heavy communication costs due to the tight dependencies between the iterations.

Our techniques, on the other hand, can quantize the loop by unwinding on both i and j,

11



Do i=1,n,15
Do j=1,n,15
T1=X[i+16,j]; /* j+0, i+0 #*/
T2=X[i+1,j];
T1=T1+T2;
X[i+1,j+1]=T1;
T29=X[i+2,j+15]; /* j+15,i+0 =/
T30=X[i+1,j+15];
T29=T29+T30;
X[i+1,j+16]1=T29;

........................

T1=X[i+31,j]; /* j+0, i+15 /
T2=X[i+1,j]; '
T1=T1+T2;
X[i+16,j+1]=T1;
T29=X[i+31,j+15]; /* j+15,i+15 */
T30=X[i+16,j+15];
T29=T29+T30;
X[i+16,j+16]=T29;
0d; 0d;

Figure 4: Same Recurrence with quantized unwinding

12



which will expose enough fine-grain parallelism to keep the available processors busy (e.g.,
in a VLIW machine, or any other type of tightly coulpled multiprocessor). This quantizing
is legal even though loop interchange is impossible. This is because quantization, unlike
interchange, preserves the relative order of execution of the critical statements inside the
“box”. By comparing

(1) T1:= X[i + 16, j]

and
(4) X[i'+1,;'+1]:=T1;

our disambiguator system can determine that conflicts between iteration i = (i, j) and j =

(#,7') can occur when i’ = i — 15 and j' = j + 1. Since i > ¢/, it follows that i > j and thus
L=k +1, 22K +1)
Y K; ¢ 't K !
must be greater or equal to
o= (1" =1 k. J k.
7= (501, LI+ )

if quantization is to be allowed. In general this is not the case, as

l.i;(._l.l > Li ;{.IG_I

but
ji-1 j
I 1< |1
i< 1)
and thus there is no definite ordering for arbitrary K;, K;. However, since i —i' = 15, chosing
K; =15 will ensure that

lil—le > liI;GJ

and therefore L > L'. K; has no influence over this, and thus any value choosen for it will

still preserve correctness. For this example we will assume that K; = 15 as well. The other

dependency that needs to be examined for the legality of loop quantization is between

(2) T2 :=X[i +1,j]

13



and
(4) X['+1,'+1):=Ty

where i = (i,7), 7 = (i' = 4,5’ = j— 1), and thus § > j. Since i =4’ and j > j', it follows that
L > I allowing semantically correct quantization. The resulting loop is shown in figure 4.
Our system will decide that the 15 unwindings along i (i to i+14) are independent of each
other, and can be done in parallel. Applying folding and balancing (tree height reduction)
techniques to each such group (for j to j+14), we can, resources permitting, execute each in 6
steps: 1 for loading, 4 for computing sums and storing, and 1 for storing the last results (see
figure 5). To fully exploit this parallelism, we need 16 processors per unwinding on i, for a
total of 15*16 processors!®. The speedup achieved is from 4+ n? steps to 6+ (n/k;) *(n/k2), (in
our example, k; = k; = 15). If more resources were available, we could unwind more, getting
even more dramatic speedups. In particular, if the loops were fully unwound the speedups
would be optimal. Even when this is impossible, we will still get good performance given the

available resources.

3.2 Example 2

This example illustrates how Loop Quantization can expose parallelism previously observable
only at runtime (e.g., [11]). The following is an illustration of this point, based on Heft’s and
Little’s original example in [11].

To simplify the discussion we will assume that intermediate exit-tests have been removed
by any of the methods described above. Consider the original loop in Heuft’s and Little’s
example, shown in figure 6. As a result of the tests described in section 2.3, we can determine
automatically that the loop can be quantized safely. The details of the quantization proper
for this loop are similar to those for the previous example and are omitted. Based on symbolic
analysis, the system can determine a correct and effective quantization subject to the data-
dependencies present and the resources available. Assuming that we had enough processors!!

the quantization shown in figure 7 would yield optimal speedups.

If more processors were available, we would like to automatically infer by analyzing the

19By reducing the speedup slightly, from 6 to 8 time steps per unwinding of i, we could do with only 15*8
processors by adding 2 extra steps for initial and intermediate storage of results.

"Three hundred are required for this example, under the same assumptions as in [11]
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Figure 5: Balanced tree for i, j..j+14

DO 100 I1 = O, N

DO 100 I2 =0, N

DO 100 13 =0, N
S1: A(I1,I2+1,1I3] = B(I1,12,13+2) * C(I1,I2) + U(I1,I2) * V(I1,I2)
52: B(I1+1,12,13) = A(I1,I2,13+6)* D(I1,13)
100: CONTINUE

Figure 6: Sample Loop from [HeuLitt82]
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DO 100 I1 =0, N, 9

DO 100 I2 =0, N, 9

DO 100 I3 =0, N, 9
Si: A(I1,12+1,13] = B(I1,12,13+2) * C(I1,I2) + U(I1,I2) * V(I1,I2)
S2: B(I1+1,12,13) = A(I1,I2,13+6)* D(I1,I3)
S1: A(I149,12+10,13+9] = B(I1+9,12+9,13+11) * C(I1+9,12+9)

+ U(I1+49,12+9) * V(I1+49,12+9)

52: B(I1+410,12+9,I3+9) = A(I1+9,12+9,I3+15)* D(I1+9,I3+9)

100: CONTINUE

S1 in iteration (i1,i2,i3) depends on S2 from iteration (il-1,i2,i3+2)

S2 in iteration (i1,i2,i3) depends on S1 from iteration (il,i2-1,i3+6)

Figure 7: Quantized Loop and Dependency Pattern

dependency pattern (figure 7) that unwinding more on the innermost loop would not lengthen
the execution time, since this would not introduce any longer dependency-chains. While we
can achieve this by explicitly unwinding as described in the previous section, such symbolic
inference would be more efficient, and is the goal of current research. The system could
then decide to unwind on the inner loop until all the processors are utilized. Finally the
actual code generation has to be done, to map the 3-d structure of the quantized loop body,
onto the actual hardware. This can be achieved naturally (subject to the dependency con-
straints discovered by the system) for a machine with a cube-connected-cycles topology, such
as Microflow [20]. Ideally, the system could express this information implicitly in a compact
symbolic representation such as that shown in figure 8, rather than explicitly (i.e., explicit
unwinding) as currently done. The code derived from such a representation for execution on
the Microflow architecture is shown in figure 9.

This is equivalent, given the number of processors used, to the bounds claimed by Heuft

and Little.
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For X=0,1,...
Set A = {All instances of S1 for index values:
(I3=X,X+9; (I2=X,X+9; (I1=i)))
All instances of S2 for index values:
(I3=X,X+9; (I2=X; (I1=X,X+9))) }

Set ‘B = {All instances of S1 for index values:
(I3=X,X+9; (I2=X; (I1=X+1,X+49)))
All instances of S2 for index values:

(I3=X,X+9; (I2=X+1,X+9; (I1=X;))) }

Figure 8: Compact representation of Quantized loop

. X:=0;
Broadcast X;
Execute all members of Set A in parallel;

Execute all members of Set B in parallel;

o> W N = O

Increment X and Repeat steps 1..4, unless Set B is empty.

Figure 9: Compact representation of Quantized loop
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