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ABSTRACT

.In principle, the exponential of a matrix could be come
puted in many ways. Methods involving approximation theory, dif-
ferential equations, the matrix eigenvalues, and the matrix chare
acteristic polynomial have been proposed. In practice, consider-
ation of computational stability and efficiency 16dicatea that
sore of the methods are preferable to others, but tﬁat none are

completely satisfactory.
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1. INTRODUCTION

Mathematical models of many physical, blological, and
economic processes often involve systems of linear, constant

coefficient ordinary differential equations
X(t) = Ax(t)

Here A is a given, fixed, real or complex n-by-n matrix. A
solution vector x(t) 4is sought which satisfies an initial

condition

x(0) = X

In control theory, A is known as the state companion matrix

and x(t) 48 the system response.

In principle, the solution is given by x(t) = °=‘*o
where e can be formally defined by the convergent power
series

2,2
Qn = T 4+ tA + t—é ® e
2!

The effective computation of this matrix function is the

main . topic of this survey.

We will primarily be concerned with matrices whose order

.n is less than a few hundred, so that all the elements can be
stored in the main memory of a contemporary computer. Our dis=-
cussion will be less germane to the type of large, sparsec ma-
trices which occur in the method of lines for partial differ-

ential equations.
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Dotens of methods for computing otA can bo obtained

from more or less classical results in analysis, approximation
theory, and matrix theory. Some of the methods have been pro-
posed as spccific algorithms, while others are based on less
constructive characterizations. Our bibliography concentrates
on recent papers with strong algorithmic content although we
have included a fair number of references which posscss histor-

ical or theoretical interest.

In this survey we try to cescribe all the methods that
appear to be practical, classify them into five broad categories,
and assess their relative effectiveness. Actually, each of the
"methods” when completely implemented might lead to many dife
fereat computer progrens which differ in various details. More-
over, these Cetéils might have more influence on the actual per-
fornance than our gross assessment indicates. Thus, our comments

may not directly apply to particular subroutines.

In asse3sing the effectiveness of various algorithms we
will be concerred with the following attributes, listed in de-
creasing order of importance: gencrality, rcliability, stabile
ity, accuracy, efficiency, storage requirements, ease of use,
and simplicity. Wwe would consider an algorithm completely sate
isfactory if it could be used as the basis for a general pur-
pose subroutine which meets the standards of quality software
now available for linear algebraic equations, matrix eigenvale-
tes, and initial value problems for nonlinear ordinary differ-

ential cquations. By these standards, none of the algorithms we



know of are completoly satisfactory, although some are much

better than others.

Generality means that the method is applicable to wide
classes of matrices. For example, a method which works ohly on

matrices with distinct eigenvalues will not be highly recarded.

Reliability means that the method does not produce come
Pletely erroneous results, or at least that some indication is

. given if the method cannot perform satisfactorily on a partic-

ular matrix.

Stability means that the method does not introduce any
more sensitivity to perturbation than i{s inherent in the under=
lying problem. A method can be stable and still not produce
accurate results if those results are not well determined by
the data for the problem. Accuracy refers primarily to the er-
ror introduced by trﬁncating infinite series or terminating
iterations. Often, using more time will increase accuracy gro-

vided the method is stable.

Efficiency is measured by the amount of computer time
required to solve a particular problem. There are several
problems to distinguish. For example, corputing eA once is
different from computing et"A for several values of t . Methols
which make use of some decomposition of A which is independ-
ent of t might be more efficient for the second problen. Oth~
er methods may be more efficient for computing cthxo for one

or several values of t . We are primarily concerned with the

i)



order of magnitude of the work involved. In matrix eigenvalue
computation, for example, a method which required O(n‘) time
would be considered grossly inefficient because the usual methe

ods reguire only O(ns) time.

In estimating the time required by matrix computations
it is traditional to estimate the time required by the multi-
plications and then increase it by some factor to account for
the other operations. We suggest making this slightly more
precise by defining a basic floating point operation, or "flop®,
to be the time required for a particular computer system to

execute the FORTRAN statement

A(I,J3) = A(I,3) + T*A(I,K)

This involves one floaiing point multiplication, one floating
point addition, a few subscript and index calculations, and a
few storage references., We can then say, for example, that

Gaussian elimination requires nJ/J flops to solve an n-by=-n

linear system Ax = b.

The eigenvalues of A play a fundamental role in the
study of et even though they may not be involved in a spec-
ific algoritha. For example, if all the eigenvalues lie in the

open left half plane, then etA

-0 as t - = ., This property
is often called "stability® but we will reserve the use of this

tern for describing numerical properties of algorithms.



Several particular classes of matrices lead to special
algorithms. If A is symmetric, then methods based on eigenvalue-
decompositions are particularly effective. If the original
problem actually involves a single, n-th order differential
equation which has been rewritten as a system of first order
equations in the standard way, then A is a companion matrix

and other speccial algorithms are appropriate.

The inherent difficulty of finding effective algorithms
for the matrix exponential problem is based in part on the fole
lowing dilemma. Attempts to exploit the spécial properties of
the differential equation lead naturally to consideration of

the eigenvalues xi and eigenvectors vy of A and to a repre-

sentation of x(t) by

A\t
x(t) = a;, 6'4i" v
Jdou 1

However, it is not always possible to express x(t) 4in this
way. If there are confluent eigenvalues, then the coefficients
o in the linear combination may have to be polynomials in t.
In practical computation with inexact data and inexact arith=-
metic, the gray area where the eigenvalues are nearly confluent
leads to loss of accuracy. On the other hand, algorithms which
avoid use of the eigenvalues tend to require consicderably more
computer time for any particular péoblem. They may also be ad-
versely effected by roundoff error in problems where the matrix

tA has large elements.
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These difficulties can be illustrated by a simple
2-by~2 exarple,

p-

At _ _ut
ekt a2 e
.tA - A=y
0 e"t

Of course, when A = y , this representation must be replaced
by

eht at elt

0 elt
There is no serious difficulty when A and u are exactly
equal, or even when their difference can be considered neglig-
ible. The degenezacy.can be detected and the resulting special
form of the solution invorxed. The difficulty comes when A -y

is small but not negligible. Then, if the divided difference

is cozmputed in the most obvious way, a result with a large
relative error is produced. When multiplied by a , the final

co=puted answer may be very inaccurate. Of ccurse, for this




example, the formula for the off-diagonal element can be write
ten in other ways which are more stable. However, when the same
" type of difficulty occurs in nontriangular problems, or in prob-
lems that are larger than 2-by-2, its detection and cure is by

no means easy.

The example also illustrates another property of etA °

which must be faced by any successful algorithm. As t in~

creases, the elements of etA

may grow before they decay. If
A and u are both negative and a is fairly large, the
graph in Figure 1 is typical.

'y

le® |l

l)ﬂl ]
t .

+

Figure l. The "Hump®
Several algorithms make direct or indirect use of the identity
sA (‘sA/m) m

The difficulty occurs when s/m is under the hump but s be-
jond it for then

Ne® I << [e®A/my ®

Unfortunately, the roundoff errors in the m=th power of a ma=- -
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~

trix, say B™ , are usually small relative to [|B||™ rather
than IZBnIl . Consequently, any algorithm which tries to pass
over the hump by repeated multiplications is in difficulty.

Pinally, the example illustrates the special nature of
normal matrices. (See below.) The example matrix is normal if
and only if a =0 . When a = 0 , the difficulties with

rultiple eigenvalues and the hump both disappear.

It is convenient to review some conventions and defin-
ftions at this time. All matrices are denoted by capital let-
ters (A,B,C,etc.). A will always be n-by-n and the dimen~
sions of other matrices will be clear from context. If

A= (aij) we have the notions of transpose

T

A - (aji)
and conjugate transposes
At = (agy)

The following types of matrices will have an eminent role to

play:
‘A syrmmetric AT = A .
A Hermitian <« A* = A
A normal ~ A*A = AR
Q orthogonal «= OTQ -1
Q unitary — Q*Q=1I
T triangular «» tij =0 , 1>
D diagonal dij =0 , 143



Because of the convenience of unitary invariance, we
shall work exclusively with the 2~-norm:

1 o1/2

TR Ixﬂ’_' ) x = [

- .".‘
-

X oo
3

Al = max Jax|l
x| =2

However, all our results apply with minor modification when

other norms are used.

The condition of an invertible matrix A is denoted by

cond(A) where

cond(a) = [IA] a2
Should A be singular, we adopt the convention that it has
infinite condition.

The commutator of two matrices B and C is given by

(B,C)} where
(B,C] = BC - CB

T™wo matrix decompositions are of importance. The Schur
decomposition states that for any matrix A , there exists a

uhitary Q and a triangular T , such that
[
Q AQ = T

If T = (tij) , then the eigenvalues of A are tn,...,tnn .
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The Jordan Canonical Form decomposition states that there

exists an invertible P such that

where J is a direct sum,

of Jordan blocks

Iy

J

©O o o o

Polap = g

Q@ ... @ Jk
1 « 0
Xi : L)
0 o 0

P .er 0 O

Ay

-

(mi-by-mi)

The li are eigenvalues of A . If any of the m, are

greater than 1 , A is said to be defective. This means that

A does not have a full set of n 1linearly independent eigen-

vectors. A is derozatory if there is more than one Jordan block

associated with a‘givcn eigenvalue.
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2. TUE SENSITIVITY OF THE PRODLEM

It is important to know how sensitive a quantity is beZore
_ its computation is attempted. For the problem under consideration

we are thus interested in the relative perturbation

[eLASE) | tAy
o) = - :
I e | .

In the following three theorems we summarize some upper bounds
for ¢é(t) which are derived in Van Loan (B15).
Theorem 1

If a(A) = max{Re(A) | A an eigenvalue of A } and

u(A) = max{ u | u an eigenvalue of (A* + A)/2 } , then

olt) ¢ t [zl elv(A) = aw) +Ef ]t (£20)

The scalar u(A) 4is the "log norm" of A (associated with the
2-norm) and has many interesting properties [Cl-C6§] . In partic~-
ular, u(A) 3 a(A) .

Theorem 2

1f A = PIp"! 1s the Jordan decomposition of A and m §
the dimension of the largest Jordan block in J , then

sty < ¢ fIEll m(? Myt [ELE (£30)
where '
My(t) = mcond(p) max i/
05j¢m-1
, - ) ) '
-~~~

<
-
<o
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Theorem 3

IZ A = Q(D + N)Q* 4is the Schur decomposition of A with
D diagonal and N strictly upper triangular ("Lj =0, 41> 3), then

olt) < ellell Ms(t)z Mg tllE e (£20)

where

© = T ik
M. (C - t H
s X=0

As a corollary to any of these theorems one can show that i A

{s normal, then
ott) ¢ tlE(ellEllt

This shows that the perturbation bounds on ¢(t) for normal ma-
trices are as small as can be expected. This leads us to con-

clude that the & problem is "well conditioned" when A is normal.

It is rather more difficult to characterize those A for
which em is very sensitive to changes in A. The bound in Theorem
2 suggests this might be the case when A has a poorly conditioned
eigensystem as measured by cond(®). This is related to having a
large Ms(t) in Theorem 3 or a positive u(A) - a(A) 4in Theorem
1. It is unclear what the precise connection is hetween these sit=

uvations and the hump phenomena we described in the introduction.
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Some progress can be made in understanding the sensitivity
of oA by defining the *matrix.exponential condition number®
v(A,t)

Loyap
Je®

v(A,t) = max
flell =2

¢
g ot 8 p SR 4y

A aiscussion of v(A,t) can be found in (B15) . One can show

that there exists a perturbation B such that

sy w EElvae
aldi

This indicates that if v(A,t) 4is large, small changes in A
can induce relatively large changes in etA . It is easy to

verify that

via,t) > t Al

with equality if and only if A 1is normal. When A {s not normal,
v(A,t) can grow as a polynomial in ¢ of higher degree.



3. SEPIES METHNADS

The common thema of what we call series methods is the
@irect application to matrices of standard approximation teche
nigues for the scalar function et « In these methods, neither

the order of the matrix nor its eigenvalues play a direct rols.

¥ethod 1. Taylor Scries

The definition

e = rea+aara ...

is, of course, the basis for an algorithm. If we momentarily
ignore efficiency, wo can simply sum the series until adding
another term does not alter the numbers stored in the computer.
That is, 4f
o
Tk(A) = | a /3!
j=0

and tl[?k(A)] is the matrix of floating point numbers obtained
by cozputing Tk(A) in floating point arithmetic, then we find
K so that tl[Tx(A)l - fl[Tx+1(A)) . We then take TK(A) as our

approxination to eA .

Such an algorithm is knecwn to be unsatisfactory even in the
1-by-1 case and our main reason for mentioning it is to éet a
clear lower bound on possible performance. To illustrate the most
serious shortcoming, we inmplemented this algorithm on the IBM 360
using “"short” arithmetic, which corresponds to a relntivelaccur-

acy of 167> « 0.95 - 107 . we input

- 14 -



- 1% e

=49 24
A=
~64 3l
and obtained the output

. A | ~22.25880 -1.432766 ]
o - |
(-61.49931  -3.474280 |

A total of X = 59 terms were required to obtain convergence.
There are several ways of obtaining the correct eA for this
example. The simplest is to be told how the oxample was con-
sructed in the first place. We have
1 3% A 071 37"
12 4] 0o 17! 2 4
and so
A 1 31Tl o 3=
e = 2 17! :
2 4 Lo e ‘2 4

-

which, to 6 decimal places is,

-0.735759  0.551819 .
A y

-1.471518  1.103638 !

The computed approximation even has the wrong sign in two

components,

Of course, .this example was constructed to make the
method look bad. But it is important to understand the source

of the error. By looking at intermediate results in the cal-
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culation we f£ind that the two matrices A'S/16! and al7/17:
have elemen;s between 10s and 107 in magnitude but of oppo=
size signs., Because we are using a relative accuracy of only
10'5, the elements of these intermcdiate results have absolute
errors larger than ihe final result. So, we have an extreme
exazple of "catastrophic cancellation” in floating point arith=-
zetic. It should be emphasized that the difficulty is not the
truncation of the series, but the truncation of the arithmetic.
1f we would have used 360 "long” arithmetic (which does not
reguire significantly more time), we would have obtained a re-

sule accurate to about nine decimal places.

Concern over where to truncate the series is important
if efficiency is being considered. The example above required
59 terms giving Method 1 low marks in this connection. Among
several papers concerning the truncation error of Taylor Series,
the pager by Liou (E7) is frequently cited. If 6 1is some
rescribed error tolerance, Liou suggests choosing K large

enough so that

lIa %2 1
(K+1) ! 1 - ||A ||/ (K+2)

€8

Iz 2 = e <

Moreover, when eqh is desired for several different values
of t, say t = 1l,...,m , he suggests an error checking procedure '
which involves choosing L from the same inequality with A

replaced by mA and then comparing (TK(A)]mxo with TL(mA)xo .
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In rolated papers Everling [E4] has sharpened the truncatioa
error bound implemented by Liou, and Bickhart [£l] has consid-
ered relative instead of absolute error. Uafortunately, all
these approaches ignore the effects of roundoff error and so

must fail in actual computation with certain matrices.

Method 2. Padé Mpproximation

The (p,g) Padc approximation to eA is defined by

-1
qu (R) [qu(A)] N__(A)

Pq

where .
N () = % (pte-3)! p: - A
P %0  (p+q) ! 3¢ (p=3)¢

and
b (a) = __(eramdital (3
Pq 4=0 (p+q)! 3! (g-3)¢

Nonsingularity of DPQ(A) is assured if p and q are large

enough or if the eigenvalues of A are in the left half plane.
Zakian(F12]) and Wragg and Davies. [F1l] consider the advantages
of various representations of these rational appreximations
(e.g. partial fraction, continued £raction) as well as

the choice of p and g to cbtain prescribed accuracy.

Again, roundoff error makes Pacdé approximations unreli-

able. For large gq, qu(A) approaches the scries for e-;‘/2

whereas qu(A) tends to the series for e:A/2

lation error can prevent the accurate determination of these

. Hunce, cancel-



matricos. Similar comments apply to ganaral (p,q) approximantes,
In addition to the canccllation problem, the denominator matrix
qu(A) may be very poorly conditioned with respect to inversion.
This is particularly true when A has widely sprcad cigenvalues,
To see this again consider the (q.q) Padé approximants . It is

not hard to shcw that for large enough ¢ , we have

Condlbqq(h)l « cona(a™™?) 3 1" an)/2
wheze a; 3 ... 3 @, are the rcal parts of the cigenvalues of

A.

when the diagonal Padé approximants qu(h) were computed
for the same example used with the Taylor series and with the
sare sirgle precision arithretic, it was found that the most ac=-
curate was gocd to only three decimal places. This occurred with
qQ =10 and cohdloqq(A)] was greater than 104 . All other values

of q gave lcss eccurate results.

Padé approximants can be useé if liA]} is not too large. In
this case, there are scveral reasons why the diagonal approximants
(p=g) are preferred over the off diagonal approximants (p#g). Sup~-
Fose p < q . About qn3 flops are regquired to evaluate qu(A) '
an apgroxiration which has order p+g . However, the same amount
of work is needed to compute qu(A) and this approximation has
order 2q > p+G . A similar argument can be applied to the super-

diegonal approximants (p>q).
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Thore are other reasons for favoring the diagonal Padd ap-
proximants, If all the eigenvalues of A are in the left half
plane,then the computed approximants with p>q tend to have lar~
ger rounding errors due to cancellation while the computed aprrox-
imants with p<q tend to have larger rounding errors due to bad~

ly conditioned denominator matrices qu(A) o

Ve briefly mention that there are certain applications where

the determination of p and q is based on the behavior of

lim R tA
i pq‘ )

If all the eigenvalues of A are in the open left half plane,

then etA

+ 0 as t +e and the same is true for qu(:Af when
qQ > p . On the other hand, the Padé approximants with q< p ,
including q = 0, which is the Taylor series, are unbounded for

large t . The diagonal approximants are bounded as t - =

Method 3. Scaling and Squaring.

The roundoff error difficulties and the computing costs of
the Taylor and Pade approximants increases as t |A] increases,
or as the spread of the eigenvalues of A increases. Both of
these difficulties can be controlled by exploiting a fundamental

property unique to the exponential function:

.A - eA/mA)m

The idea is to choose m to be a power of two for which cA,B
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can be reliably and efficiently computed and then forming the
catrix (e A/a = by repeated squaring. One commonly used cri-
terion for choosing m is to make it the smallest power of two
for waich Al /m ¢ 1 . With this restriction, eA/m can be
sazisfactorily computed by either Taylor or Padé approximants.
When properly implemented , the resulting algorithm is one of

che most effective we know.

This approach has been sdqgested by many authors and we
will not try to attribute it to any one of them. Among those
who have provided some error analysis or suggested some refinee
rents are Ward [F8) , Kammler [E6) , Kallstrom [r2] , Scraton'
(F3] , and shah [E11,E12) .

as23

If the exponential of the scaled matrix e is to be

approxizated by qu( A/2j ) , then we have two pafameters, q
and j , to choose. In Appendix 1 we show that if [A| ¢ 23-1

then
3, 123 aee
[ qu( A/2°) ) e
where

el < gilAl 2q+1 (q:)z

a3 (2@ (g

This "inverse error analysis” result can be used to determine gq
and j- in a number of ways. For example, if ¢ 43 any error tol=-
erance, we can choose among the many (q,3j) pairs for which the

above inequality implies

lel s ¢ (Al
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3
Since ( qutalzj) ]z requires adout (q + 3 + g)n3 flops to

evaluate, it is sensible to choose the pair for which q + 3j |is

minimum,. The table below specifies these "optimum™ pairs for vare

ious values of ¢

cluded the corresponding optimun

and

IAll . By way of comparison, we have in-

(k,J) pairs associated with the

4
approximant [ TK(A/zj) ]2' . These pairs were determined from

Corollary 1 in Appendix 1 and the fact that about

flops are required to

evaluate

TABLE 1.

(k +
23

{ Tk(A/Zj)

j - l)r.3

OPTIMUM SCALING AND SQUARING PARAMETERS WITH PADE AND TAYLOR

(x,3)

APPROXIMATION
€ 1073 2076 ! 1077 l 10712 1078
1Al i |

IP I S ) (Lo | @0 3.0 (3,0
e N S (2,1) 1 (3,1 (4D (5,1)

1 .
] ) ¢t ——

a howo (2,00 | (3,00 i (4,0 (4,0)
" 3,0 (4,00 ' 4,2 | 4,90 (5,4
o ce ) cmee e e s e + + A pu———

b2, (3,1) | (4,1 (5,1) (5,2)
100

b5, (7,1) (6,3) (8,3) (7,9

!..—._,. —— ___—_+——--—

L @ (3,5) s | s (6,5)
107 s (6,5) (8,5) (7,7 (9.7
SR M RSN IS NSO SR i

2 il @ (3.8) (4,9 (5.8) (6,3)
5 e (5,9) (7,9) (9.9) (10,10)

s I 2an | ean oean bosan | s
107 s, (7.11) (6,13)  (8,13) (8,14)

' ! )
(q,3)
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To read the array, for a given ¢ and [|A]l the top ordered
pair gives the optimum (q,3j) associated with [ qu(h/zj) )2j
while the bottom ordercd pair spccifies the most efficlent choice

of (x,3) associated with [T, (A/29) 23

On the basis of the table we find that Padé appfoximants are
9enera11} more efficient than Taylor approximants. When ﬂAH is
small, the Pad@ approximant requires about one half as much work
© as the Taylor approximant for the same accuracy. As ||A]] grows,
this advantage decreases because of the larger amount of scaling
nceded.

Relative error bounds can be derived from tho above results.

Noting from Appendix 1 that AE = EA, we have

3
iz 72912 = |1 Jlehief - ]

el el

A similar bound can be derived for .the Taylor approximants.,

The analysis and the resulting table that we have presented
do not take roundoff error into account, although this is the
method’'s weakess éoint.zn gencral, the computed square of a ma=-
trix R can bec scverely affected by arithmetic cancellation. This
occurs when llazll is much less than IIRH2 since the roundoff
errors are small when compared to ”RII2 but not necessarily

srall when compared to llell . Such cancellation can only happen
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when cond(R) is large because 8'1 Rz @ R implies

2
cond(R) !lﬁlL.
=21

The particular matrices which are repeatedly squared in this
mothod can be badly conditioned. However, this does not necess~
arily 1mpiy that severe cancellation actually takes place. More-
over, it is possible that cancellation only occurs in problecs
which involve a large hump . We regard it as an open guestiecn
to carefully analyze the roundoff error of the repeated squaring

A/m

of matrices of the form e and to relate the analysis to a

realistic assessment of the sensitivity of eA o

In his implementation of the scaling and squaring method,
Ward (F8) 4is aware of the possibility of cancellation. He ccn-
putes an 3 posteriori bound on the size of the error, including
the effects of both truncation and roundoff. This is certainly
preferable to no error estimate at all, but it is still not com~
Pletely satisfactory. A large error estimate could be the result

of any of three different difficulties:

(i) The error estimate is a severe overestimate of the true
error, which is actually small. The algorithn is stable
but the estimate is too pessimistic.

(11) The true error is large because of cancellation in goin
over the hump, but the problem is not sensitive. The al
gorithm is unstable and another algorithm might produce

a more accurate answer.
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(£11) The underlying problem is inherently sensitive. No other
algorithm can be expected to produce a more accurate re-

sult.

Unfortunately, it is currently very difficult to distinguish

a:aég these three situations.

Meshod 4. Chebyshev Ratiocnal Approximation.

Let ccq(x) be the ratio of two polynomials each of degree q

and consider =nmax | ¢

-x |
0§x< = q

ofx) - e . For various values of q ,

Ccdy, Meinardus, and Varga (F2] have determined the coefficients

0f the particular ¢ which minimizes this maximum. Their results

cq
can be directly translated into bounds for (]cqq(A) - eAll when
A is Mermitian with eigenvalues on the negative real axis. The
azetors are interested in such matrices because of an application
to partial differential equations. Their approach is particularly

effective for the sparse matrices which occur in such applications.

For nonhermitian (non-normal) A, it is hard to determine how

cisely C. (A) approximates eA . If A has an eigenvalue A

C
off the negative real axis, it 1s possible for cqq(k) to be a
poor apgroximation to ex . This would imply that cqq(A) is a
A

poor approximation to e since

A A
lle cqq(h)ll > e cqq(x)l

These re-arks prompt us to emphasize an important facet

ebout approximation of the matrix exponential, namely, there is
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more to approximating eA

than just approximating e’ at the
eigenvalues of A . It is easy to illustrate this with Pade ap-

proximation. Suppose

o O O O
O O oo
o O o O
o o8 O O

Since all of the eigenvalues of A are 2ero,’ Rll(z) is a per-

fect approximation to e? at the eigenvalues. However,

1 6 18 S47).
) 6 1 6 18
R,4(A) =
11 o 0 1 6
o o0 o0 1]
whereas
1 6 18 136 ]
0 1 6 18
OA -
o o0 1 6
6 o0 0 1
and thus,

lle* - R, = 28

These kinds of discrepancies arise from the fact that A is not
normal. The example illustrates that non-rormality exerts a subtle
influence upon:‘the .methods of this section even though the eigen-

system, per se, is not explicitly involved in any of the algorithm
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4. OPDINAPRY DIFFPERLYTIAL EQUATION METHODS

thA ard etAx

Since e o are solutions to ordinary daif-
ferential cguations, it is natural to consider methods based
on nuncrical integration. Very sophisticated and powerful methe
ods for the numerical solution of general nonlinear different-
ial equations have becen developed in recent ycars. All worth-
vhile codes have automatic step size control and some of them
autoratically vary the order of approximation as well. Mcthods
based on single step formulas, multistep formulas, and implic-
it nultistep formulas each have certain advantages. When used
to compute etA all thesc mcthods have the advantage of being
easy to use and require very little additional prograrming or
other thought. The pxlmaéy disadvantage is a relatively high
cost in computer time. There is also some danger of roundoff

error difficulties, although this is probably not too severe.

Tre o.d.e. prcgrams are dehigned to solve a single sys-

tem of equations

x = £(x,t) x(0) = x,

and obtain the solution at many values of ¢t , By setting
£(x,t) = Ax the k-th column of e™® can be obtained by set-
ting Xo %o the k-th column of the identity matrix. All the
nethods involve a segquence of values 0 = g o Ty veeey tj =t
with either fixcd or variable step size hi - t1+1 - ti o They

all produce vectors xy which approximate x(tl).
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Method 3. General Purpose 0.D.E. Solver

Most computer center libraries contain programs for sole
ving initial value problems in ordinary differential equations.
Very few libraries contain programs that compute et . Until
tho lattor programs are more readily available, undoubtedly the
easiest and, from the programmer's point of view, the Guickess
way to computo a matrix oxponcntial {3 to call upon a general
purpose o.d.e. solver. This is obviously an expecnsive luxury
since the o.d.e. routine does not take advantage of the linear,

constant coefficient nature of our special problem.

We have run a very small experiment in which we have uscd
three recently developed o.d.e. solvers to compute the exronente-
ials of about a dozen matrices and haQe measured the amount of
work required. The programs are:

(1) RKF45. Written by Shampine and Watts[J3, this procra=
uses the Fchlberg formulas of the Runge-Kutta type. Six functien
evaluations are required per step. The resulting formula is fift!
order with automatic step size control.

(2) DE/STEP. Written by Shampine and Gordon[J2}, this pro-
gram uses variable order, variable step Adams predictor-correct=-
or formulas. Two function evaluations are required per step.

(3) IMPSUB. Written by Starner[Jdl, this program is a mod-
ification of Gear's DIFSUB [J1] and is based on implicit back~-
Qa:d differentiation formulas intended for stiff differential

equations. Starner's modifications add the ability to solve



“infinitely stiff" prodblems in which the derivatives of some
of the variables may be missing., Two function evaluations are
usuzlly required per step but three or four may occasionally
be used.

For PXF45 the output points are primarily determined by
the step sizec sclection in the program. For the other two roue
tires, the output is prcduced at user specified points by in-
terpolation. For an n-by-n matrix A , the cost of one func~-
ticn evaluation is a matrix-vector multiplication or n2 flops.
The nuxber of such function ecvaluations required is determined
Sy the length bf the integration interval and the accuracy re-

gueszted,

The relative performance of the three programs depends
fairly strongly on the particular matrix, RKF45 often requires
the zost function evaluations, especially when high accuracy is
sought becauvse it is fixed crder. But it may well require the
least actual computer time at modest accuracies because of its
lo# overhcad. DZ/STEZP indicates when it thinks a problem is
stiff, 1f it doesn't give this indication, it usually requires
the fewest function evaluvations. If it does give the indication,

IMNFSUS may require fewer.

The following ﬁable gives the recsults for onc particular
matrix wihich we arbitrarily declare to be a “"typical” nonstiff
srodlen. The matrix is of order 3, with a double eigenvalue
ogual to 3.and a simplo oigenvaluc cqual to 6. Tho matrix is

defective. We used three different local error tolerances and



- 29 -

integrated over the interval (0,1] . The averace nuvber of func-

tion evaluations for the three different siarting vectors is giv-

en in the table. These can be regarded as typical cocfficients

2

of n for the single vector problem or of n3 for the full ma-

trix exponential problem. IBM/360 long arithmetic was used.

TABLE 2.

12078 | 2079 | 10712

| 1 ] local Errzor
RKF45 || 227 ¢ 832 1 326 . Tolerance
e S T h s versus

! : ] ]
DE/STEP !| 118 160 211 Subroutine

= AR ot USSR St

IMPSUB 173 202 1510

Although people concerred with the competition between

various o.d.e. solvers might be interested in the details of

this table, we caution that it is the result of only one ex-

periment. Our main reason for presenting it is to lend general

support to our contention that the use of any such routine must

be regarded as very irneff

icient. The scaling and sjuaring meth-

od of Section 3 and some of thec matrix decomposition methods

of Scction 6 reguire on the order of 10 to 20 n3

obtain higher accuracics than those obtained with 200 n

more flops for the o.d.e. solvers.

flops to

30!

This cxcessive cost is due to the fact that tho programs

are not taking advantage of the linear,

constant coefficient

nature of tho difforential cjuation. Thoy must rcpeatedly call
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for the multiplication of varicus vectors by the matrix A

because, as far as they know, the matrix may have changed since

the last multiplication,

We now consider the various nmothods which result from
spccializing general o.d.e. methods to handle our specific

problen.

¥ethod 6. Sinqle Step 0.D.E. Methods

Two of the classical techniques for the solution of
differential equations are the fourth order Taylor and Rungee=
Xutta methods with fixed step size. For our particular equa~

tion they become

4
h 4
"ju - (I+M+...#:-:A)xj - 'r‘(Ah) xj
and
1 1
Xop = %yt gky o+ 3k o+ Ly, s % x,
where
kl - hAxj .
kz - M(xj+-§-k1)

»

- i
3 hA(xj +3 kz)
k‘ - hA(xj + k3)

A little manipulation reveals that in this case, the two methods
would producs identical. results were 1§-not for roundoff error.
As long as the step size {s fixed, the matrix 74(hA) need be

computed just once and then xj+1 can be obtained from .xj with
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Just one matrix-vector multiprlication. The standard Runge=~

Kutta method would require 4 such multiplications per step.

Let us consider x(t) for one particular value of ¢t ,
say t =1, If h=1/m where m is a positive integer,
then

x(1) = x(mh) « x . = [T,(h))" x,

Consequen%ly, there is a close connection between this rethod
and Method 3 which involved scaling and squaring [E9,E15) .

The scaled matrix is hA and the exponential of the scaled na-
trix is approximated by T‘(hh). However, even if m is a pow-
er of 2, [74(hh)]m is usually not obtained by repeated scuar-
ing. The methods have roughly the same roundoff error properties
and so0o there secems to be no important advantages for fixed step

size Runge-Kutta.

Let us now consider the possibility of variable step size.
A simple algorithm miqht‘be based on a variable step Taylor Meth-
od. In such a method, two approximations to xj+1 would be com-
puted and their difference used to choose the step size. Specif-
‘ically, let ¢ be some prescribed local relative error tolerance
and define xj+1 and x;+1 by
Xje1 = Ts(hyd) xg

Xja1 = TlhgA) xg

One way of determining' hj is to require
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":xj‘l - x;ﬂli d C"Xj"

%otice that we are using a S-th order formula to actually compute
the aéproximation, but are using a 4-th order formula to control

szep size.

Az first glance, this method appcars to be considerably
less efficient than one with fixed step size because the matrices
T:(hjh) and ?s(th) cannot be precomputed. Each step requires
5 32 flops. However, in those problems which involve large "humps®
as cescribaed in Section 1 , a smaller step size is needed at the
tesinning of the ccmputation than at the end. If the step size ¢
changces by a factor of more than S, the variable step method will

regzire less work.

~he mcthod does provide some insight into the costs of more

sczhisticated integrators. Since
L}
« h, A
X441 T X441 " o Ik x4
5:
we see that the reguired step size is given approximately by
- 1/5
hj s .5_"...5
fias

~he work required to integrate over some fixed interval is pro=
Forsional to the inverse of the average step size. So, if we de-

crease the tolerance ¢ from, say 10°% to 10" , then the
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work is increased by a factor of (103)"/5 which is adout 4 .
This is typical of any 5-th order error estimate =- askiag for

3 more figures roughly quadruples the work.

Mcthod 7. Multistep O.D.E. Solver

As far as we know, the possidbility of specializing rulti-
step methods, such as those based on the adaxs formulas, to lin-
car, constant coefficient prcblenms has not been cxplored in de-
tail. Such a method woulé ro:t be ecuivalent t? scaling and squaz-
ing because the approxirmate solutior at a given ting is cefincd
in terms of approximate solutions at several previous times. The
actual algorithm would depend upon how the startinc vectors are
obtained, and how the step size and order are detcrnined. 1% is
conceivable such an algorithm might be among the more effective
methods, particularly for grobliems which involve a single vecter,

output at many values of ¢ , large n , and a hump.

The problems associated with roundoff error have not bean of
as much concern to desigrers of differential eguation solvers as
they have been to desigrers of matrix alcabra algorithas. In par-
ticular, we do not Xnow what effect rounding ecrrors would have

- in a problem with a large hump for detailed studies are lacking.



S. POLYNOMIAL M©TTIIODS

Let the characteristic polynomial of A be

c(z) = det(zI -a) =« 2" - I S 2

Frcn the Cayley-Hamilton theorem c(A) = 0 and hence

n : n-1l
A’ = Col + CiA + o0 + Cna1?

Using this result it i{s possible to show that any power of A
can be expressed in terms of I,A,...,A"'1 H
X n=-1

AT = T 8

g0 X3 »

This irplies that etA is a polynomial in A with analytic co-
efficients in t s

- X,k e x[n-1
tA X A ¢ 3
. t A - £ B4 A
¢ o hr o % [j-xo k3 ]

- n.zl [E sxj.‘_).‘} al - n.zl ay (t) ad

j=0 | k=0 ke =0

The methods of this section involve this kind of exploitation of

the characteristic polynomial.

Mcothod 8. Cavley-Hamilton

Once the characteristic polynomial is known, the coefficients
ekj which define the analytic functions cj(t) w Bkjtk/k!

can be generated as follows:

- 34 =
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ij (k<n)
cj (k=n)
Bkj Ll R
0 fx-1,n-1 k>n o 3=0)

¢y Bk-l.n-l + 'k-l.j-l (k>n , 3>0)

One difficulty of this method is that these recursive formulas
for the akj are very prone to roundoff error. This can be seen
in the 1-by-1 case. If A = (a) then Bko - ak and aOCt) -

at

T (at)k/k! is simply the Taylor series for e « Thus, our

criticisms of Method 1 apply. In fact, if atw=6 , no partial sua

t

of the scries for e®® will have any significant digits when IBY

360 short arithmetic is used.

Another problem with this method is the requirement that the
characteristic polynomial be known. If xl,...,xn are the eicen-
values of A ,then c(z) could be computed from the formula
c(z) = R(z - xi) « Although the eigenvalues could be stably
computed,lit is unclear whether the resulting cj would be accezt-
able. Other methods for computing c(z) are discussed in Wilke-
inson[ A13]. It turns out that methods based upon repeated powers
of A and methods based upon formulas for the cj in terms of
various symmetric functions are unstable in the presence of round-
off error and expensive to implement. Techniques based upon si=mile
arity transformations break down when A is nearly derogatory.

We shall have more td say about these difficulties in connection

with Methods 12 and 13.
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In Method 8 we attempted to expand atA in terms of the
ratrices I,A,...,A"" Y . 1¢ {Agseeesn 4} is some other set of
ratrices which span the same subspace, then there exist analytiec
Zunctions Sj(t) such that

n=-1
e = I

i=0

Bj(t) Aj

. The convenience of this formula depends upon how easily the Aj
ana 2j ) can be generated. If the eigenvalues Al"""n of

A are krnown, we have the following three methods.

Yezhod 9. lagrange Interpolation

n-1 n _'
A . I eljt 1 (A kkI)
=0 k] -
L T
Mezhod 10. Newton Interpolation
tA At n-l =1
e - "1V 1 + [Xqroeerdi] T (A = A T)
go2 TN *x

The divicded differences [xl,...,le depend on ¢t and are de-

£ined recursively by
LYY R A L VIt W

[xl’.."l""‘l] o [llyao-axkl - [lennotxk.‘.l) (x>2)

Al - A

k+1

Generalizations of these formulas exist for the case when the
eigenvalues are exactly confluent and we refer the reader to

Macduffee [A8] for a discussion of them.
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Method 11. Vandermonde

There are other methods for computing the matrices

g (A = ku)
3 k=l (g = hy )
k#3 !
which were required in Method 9 . Cae of these involves the

Vandermonde matrix of eigenvalues

1l 1l e o o 1
Xl 12 « e o Xn
V = o Iy o .
n=l ,n=1 n=-1
bxl 12 ¢ 1n
b { Vix is the (3j,k) entry of vl , then

Aj - f ij Ak-l

and

wWhen A has repeated eigenvalues, the appropriate confluent
vandermonde matrix is involved. Closed expressions for the vjk

are-available and Vidyéager[GIS] has proposed their use.

Mothods 9,10, and 11 suffer on several accounts. They are
O(n‘) algorithms making then prohibitively expensive except for

small n. If the spanning matrices Ao,....k are saved, then

n=1l
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storage is nJ which {8 an order of magnitudo greater than the

amount of storage required by any "non-polynomial” method. Another
weakness of these algorithms is their behavior when tho cigenvalues
are nearly confluecnt. Even though the formulas which define meth-
‘ods 9,10, and 11 have special form in the confluent case , we do
not have a pleasing numcrical situation. The "gray" areca of near
conflucnce poscs difficult problems which are best discussed in

the next scction on decompositicn techniques.

The last two methods of this section do not require the
eigenvelues of A and thus appear to be free of the problems
associated with confluence. However, equally formidable difficul=-

ties attend these algorithms.

Method 12. Iaverse Laplace Transforms

1z :{[ e"'A ]} is the Laplace transform of the matrix expo-~
nential, then
YiePr) = (s1-mn71

The eatries of this matrix are rational functions of s . In fact,

n-1 n=k=1
(s1 =A)"! = s

A&

k=0 c(s)
n_ 7l k
where c(s) = det(sI =A) = s' - | ¢ 8 and for kK = l,...,n 8
k=0

Cpox = “trace(A  A)/k A = A A = oLl (Rg = T)

These recursions were derived by Leverrier and Faddeeva (A3] and
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can be used to evaluate etA 3

P "fl L™ e A,
k=0

Tho inverac transforms :ﬁ { .n-k-l/c(.), can be expressed as
a power series in t . Liou [H7) suggests evaluating these series
using various recursions involving the Sy - We suppress the de~
tails of tﬁis proceﬁure because of its similarity to Method 8.
There are other ways Laplace transforms can be used to evaluate
i (51,G63,C11,G12,G16) .By and large, these tcchniques have the
same drawbacks as Methods 8-11 . They are O(n‘) for general ma-

trices and may be seriously effected by roundoff error.

Method 13. Companion Matrix

We now discuss techniques which involve the computation of

lc where C 4is a companion matrixs

1 ¢ o0
\\\

€ ©1 S2°° %y

e o s O O
e 0 O =
- o000 O

Companion matrices have some interesting properties which various
auth;:s have tried to exploit [H1-R9] 1
(L) ¢ 4is sparse.
(i1) The characteristic polynomial of C is c(z) = det(zl ~
n=l X
kgo )2

LX)
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(111) 1£ Vv is the Vandermonde matrix of eigenvalues of C
(see ¥ethod 11), then V™ eV is in Jordan form. (Ap~
propriage confluent Vandermonde matrices are involved
in the multiple eigenvalue case.)
(iv) If a general rmatrix A 4is not derogatory, then it is
sinilar to a companion matrix. If A {is derogatory, then

it is similar to a direct sum of companion matrices.

Because C is sparse, small powers of C cost consider=
ably less than the usual n3 flops. Consequently, one could ime

piezent Method 3 (scaling and squaring) with a reduced amount of

FoZXK.

Since the characteristic polynomial of C is known, one
tan apply Method 8 or various other techniques which involve
resursicns with the €y « However, this is not generally advis-
tble in view of the catastrophic cancellation that can occur when

these formulas are used.

As we meationed during our discussion of Method 11 s the
rlosed expression for v'l is extremely sensitive. Because
=1 is so poorly conditioned, exploitation of property (iii) will

tererally yield a poor estimate of eA .

If A=Y CYl, then from the series definition of the
atrix exponential it is easy to verify that

A c

e = Ye 1

v

‘ence, property (iv) leads us to an algorithm for computing the
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exponential of a general matrix . Although the reduction of A
to companion form is a rational process, the algorithms for ac-
complishing this are extremely unstable and should be avoided
[A13).

We mention that if the original differential equation is
actually a single n-th order equation written as a system of
first order equations, then the matrix is already in companion
form. Conscquently, the unstable reduction is not necessary.
This is the only situation in which companion matrix methods

should be considered.

We conclude this section with an interesting aéide on com-
puting e where H = (hij) is lower lessenkberg (hij-o , 32i41).
Notice that companion matrices are lower Hessenberg. Our interest
in computing eH stems from the f#ct that any real ratrix A is

orthogonally similar to a lower Hessenberg matrix. Hence, if

A = guoQ* Qg = 1
then
e‘\ - Q eH Q‘I"
Unlike the reduction to companion form, this factorization can

be stably computed using the EISPACK routine ORTHES [X4].

H

. Now, let fk denote the k-th column of e ., It is easy

to verify that
HE, - I hyy £y (k 2 2)

by equating the k-th columns in the matrix identity Eel = oln,



- 42 -

I1f none of the superdiagonal eatries hk-l,k are zero, then

once f is known, the other f, follow immediately from

1 n
f - {ue, = ] h,f.)
k=1 k Ly kT4
Motk im=k

Similar recursive procedures have been suggested in connection
with computing e {H9) . Since ‘n equals x(l) where x(t)
solves Hx = X , x(0) = (0,...,0,1)° , it could be found using

one of the o.d.e. mncthods in the previous section.

There are ways to recover in the above algorithm should
anay of the hk-l,k be zero. However, numerically the problem
is when we have a small, but non-negligible heo1,x In this
case rounding errors involving a factor of 1/hk-1,k will oc-
cur .precluding the possibility of an accurate computation of
PLN

In surmnary, methods for computing e?

which involve the
reduction of A to companion or Hessenberg form are not attract-
ive. However, there are other matrix factorizations which can be
nore §atis£actorily exploited in the course of evaluating -eA

aad these will be discussed in the next section.



6. MATRIX DECOMPOSITION METHODS

The mothods which are likely to bg most efficient for prob-
lems involving large matrices and repeated evaluation of etA are
those which are based on various factorizations or decomposizions
of the matrix A . Unfortunately, these are also the methods which
suffer the.most from the difficulties which attend confluent eigen
values. However, if A happens to be symmetric, then all these
methods reducﬁ to the same method and that method is very effect-

ive.

All the matrix decompositions are based on similarity trans-

formations of the form

A = sBs!

As we have mentioned, the power series definition of e implies

tA s etB

e ' = -1

The idea is to £find an S for which otn is easy to compute.
The difficulty is that S8 may be close to singular which means
that cond(S) is large.

Method 14. Eigenvectors

The naive approach is to take § to be the matrix whose

columns are eigenvectors of A, that is, .S = V where

Ve (v eeee | v ]

and

- {3 -
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Avj - xjvj j - 110..;!\
These n equations can be written
AV = VD

where D = diag(xl....,ln). The exponential of D 4is trivial to
cormpute assuming we have a satisfactory method for computing e*

for scalar x :

At A
et = giag( el ,..., e n® )

Conseguently, if V is nonsingular,

-1

tA etD v

e -V
In terms of the differential equation X = Ax , the same
eiceavector approach takes the following form. The initial con-

@ition is expressed as a linear combination of the eigenvectors,

n
x(0) = } ay vy

j-
and the solution x(t) 4is given by
n At
- 3
x(t) jgo ay e vy
02 course, the coefficients aj are obtained by solving a set of

linear eguations Va = x(0) .

The difficulty with this approach is not confluent eigenval=-

ues per se. For example, the method works very well when A s
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the identity matrix, which has an eigenvalue of the highest pos-
sible multiplicity. It also works very woll for any other symmet-
ric matrix because the eigenvectors can then be takea to be orth=
oganal regardless of eigenvalue multiplicity. Xf reliadble subrou=-
tines such as TRED2 and TQL2 in EISPACKX [K4] are used to conpute
the elgenvalues and eigenvectors, the conmputed vj will be or-
thogonal to the full acecuracy of the computer. The resulting al-

tA

gorithm for e has all the attributes we desire =-- except that

it is limited to symmetric matrices.

The theoretical difficulty occurs when A does not have
a complete set of linearly independent eigenvectors and is thus
defective. In this case there is no invertible matrix of eigen=
vectors V and the whole algorithm breaks down. An exarple of

a defective matrix is

A defective matrix has confluent eigenvalues but a matrix which

has confluent eigenvalues need not be defective.

In practice, difficulties occur when A is "nearly"” defect-
ive. One way to make this precise is to use the condition rnumber,
cond(v) = vl vl , of the matrix of eigenvectors. If A is
nearly (exactly) defective, then cond (V) is large (infinite).

Any errors in A, including roundoff errors in its ccmputation
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and roundoff errors from the eigenvalue computation, may be mag=

nified in the final result by cond(V). Consecquently, when cond(V)

tA

is large, the cormputed e will most likely be inaccurate. For

example, if

- -
l+c 1
A =
0 ‘1€
e -
then
1 -1
v v
" 0 2¢ J
D = diag( l4c , l=c ) .
and

cond(V) = O( =)

If ¢ = 10”5 and IBM/360 short floating point arithmetic is

used %o compute the exponential from the formula eA -V eD V'1 P

we obtain
2.7138307 2.750000

0 2.718254
Since the exact exponential to six decimals is

2.718309 2.718282

0 2.718255

we see that the computed exponential has errors of order 10s

times the machine precision as conjectured.
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One might feel that for this example oA might be partic-
ularly sensitive to perturbations in A. Howover, when we apply

Theorem 3 in Section 2 to this example, we find

le®*E) - Ay

< 4 "gli.zlltﬂ

™

regardless of what ¢ 4is . Certainly, a“ is not overly sen-

sitive to changes in A and so Method 14 must be regarded as

unstable.

Before we proceed to the next mathod it is interesting t¢
note the connection between the use of eigenvectors and Method
Lagrange interpolation. When the eigenvalues are distinct the

eigenvector approach can be expressed

e . Vdiag(eljt) vii . I Mt vjyf
3=1 3

where yg is the j-th row of vl « The Lagrange formula is

tA n ‘jt\
e A
,51 3

where

n

Ay = 1 A - D
=l 0o

xrd 7 N

Because these two expressions hold for all ¢t , the individual

o
-
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teras in the sum must be the same and so

T
Ry = vy Yy
This indicates that the Aj are, in fact, rank ono matrices ob-

tained from the eigenvectors. Thus, the O(n‘) work involved.

in the computation of the Aj is totally unnecessary.

Method 15. Triangular Systems of Eigenvectors.

An improvement in both the efficiency and the reliability
of the conventional eigenvector approach can be obtained when
the eigenvectors are computed by the QR algorithm (Al3]. Assume
temporarily that although A is not uymmctric,.all its eigen-
values happen to be real. The idea is to use EISPACK subroutines
ORTHES and HQOR2 to compute the cigenvalues and eigenvectors [Kd}.
These subroutines produce an orthogonal matrix Q and a triang-

ular =matrix T so that

tagQ = 7T

Since 0'1 - QT , this is a similarity transformation and the
desired eigenvalues occur on tho diagonal of T. Hoﬁ2 next at~
tenpts to f£ind the eigenvectors of T. This results inaa matrix

R and a diagonal matrix D, which is sinply the diagonal part of:
<, 80 that

TR = RD

Firally, the eigenvectors of A are obtained by a simple matrix



- 49 -

multiplication

VvV = QR

The key observation is that R happens to be triangular.
In other worés, the ORTHES/HQR2 path in EISPACK computes the
matrix of eigenvectors by first ccmputing its “Q-R" factoriz-
ation. HQR2 can be easily modified to remcve the final multip-
lication of Q and R . The availability of these two ratrices
has two advantages. First, the time required to finl V.l or to
solve systems of equations iavelving V is reduced. Mowever,
since this is a fairly small fraction of the total time reguired,

the improvement in overall cfficicnecy is not very significant.

A more important advantage is that
cond (V) = coad(R)

fassuming use of the 2-norm) and that the estimation of cond(R)

can be done fairly reliably and efficicntly.

The affect of dropping the assumption that A has real
eigenvalues is that R is not quite triangular, but has 2-by-2

blocks on its diagonal for each pair of complex ecigeavalues.

Such a matrix is called "quasi-triangular®. The minor inconven~
ience that loss of proper triangularity implies allows us to

avoid complex arithmetic.
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In summary, we suspect the following algorithm might be
fairly reliable:

l. Given A , use ORTHES and a modified HQR2 to find ortho=-
gonal Q , diagonal b + and quasi-triangular R so that

AQR = qRrRD

2. Given Xq ¢ cOmpute Yo by solving

Ry, = @ x,
Also estimate cond(R) and hence the accuracy of Yo o

3. If cornd(R) is too large, indicate that this algorithm

cannot solve the problem and exit.,
4. Givea t-, compute x(t) by

x(t) = vetdy

(If we want to compute the full exponential, then in Step 2 we
solve Ry = QT for ¥ and then use efP a vetl y in step 4.)
It is important to note that the first three steps are independ-
ent of t , and that the fourth step, which requires relatively

little work, can be repeated for many values of t .

~We know there are -examples where the exit is taken in Step
3 even though the underlying problem is not poorly conditioned
implying that the algorithm is unstable. Keverthecless, the algore
ithm i{s reliable insofar as cond(R) enables us to reasonably as=-
sess the errors in the computed solution wheg that solution is

found. It would be interesting to code this algorithm and com-
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pare it with ward's scaling and squaring program, (See Method 3,
In addition to comparing timings, the crucial question would be
how often the exit in Step 3 is taken and how often Ward's pro-

gram returns an unacceptably large error bound.

Mothod 16. Jordan Canonical Form

In principle, the problem posed by defective eigensystems
can be solved by resorting to the Jordan Canonical Forn (JCF).
It

- -1
A P Jl ® ... 0 Jk ] P
is the JCF of A , then
e =« P el e ... 0otk ) p-l

The exponentials of the Jordan blocks Ji can be given in clese.

form. Por example, if

¥ 9
M 1 0 o0
3, - 0 A3 1 o0
0o 0 3 1
0 0 o0 2
L i
then
1 e )
o 1 t t?/2:
etJi - gkit i
o o 1 [
LO 0 0 b ‘J

1] o . | . .
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The problem with this technique is that the JCP cannot be
computed using floating point arithmec;c. A single rounding error
Ray cause some multiple eigenvalue to become distinct or vica
versa and as a result, the entire structure of J and P may
be altered. Another way of saying essentially the same thing is
that there is no 3 priori bound on cond(P). An appreciation of
the computational difficulties which attend the JCP may be ob-
tained by reading the papers by Golub and Wilkinson [X1] and
Xagstrom and Ruhe lK2l‘.

Method 17. Schur.,

The Schur decomposition
A = g7l

with orthogonal Q and triangular T exists if A has real eig-
envalues. If A has complex eigenvalues, then it is necessary to
a%lcw 2-by~2 blocks on the diagonal of T or to make Q and T
coz?léx (ard replace 07 with Q*). The Schur dccomposition can

be ccmputed reliably and quite efficiently by ORTHES and a short-
exded version of HQR2. The required modifications are discussed

in the EISPACK guide [K4] .
Once the Schur decomposition is available,

e a g ofT of

The oaly delicate part is the computation of et? where T is a
triangular or quasi-triangular matrix. Note that the eigenvectors

of A are not required.
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Computing functions of triangular matrices is the sudbject
of a recent paper By Parlett [X3) . If T s upper triangular
with diagonal elements xl,...,an . then it is clear that e%?
is upper triangular with diagonal elements ellt reces exnt .
Parlett shows how to compute the off-diagonal elerments of etr
recursively from divided differences of the exit +« The exanple

in section 1 illustrates the 2-by=-2 case.

Again, the difficulty is magnification of roundoff error
caused by nearly confluent eigenvalues Xi .« AS a step towards
handling this problem, Parlett describes a generalization of his
algorithm applicable to block upper triangular matrices. The
diagonal blocks are determined by clusters of nearby eigenvaluas.
The confluence prcblems o not disappear, but they are confined

to' the diagonal blocks where sgpecial techniques can be applied.

Method 18. Block Diaccnal.

All methocds which involve decompositions of the form
A = sas?

involve two conflicting objectivés:

(1) Make B close to diagonal so that Qen is easy to
compute,
(2) Make S well conditioned so that errors are not magni-

fied.

The Jordan Canonical Form places all the enphasis on the first

objective, while the Schur decomposition places most of the en~
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phasin on thae second. (Wo would regard the decomposition with
§=I and B w A as placing even more cmphasis on the second
objective.)

TQe block diagonal method is a compromise between these two
extreres. The idea is to use a nonorthogonal, but well conditioned,
S to produce a B which is triangular and block diagonal as i1l-

lustrated in Figure 2.
r— L

RN
O

N

Figure 2. Triangular Block Diagonal Form
Each of the blocks in B involves a cluster of ncarly confluent
eigenvalues. The number in each cluster, and hence, the size of

cach block is to be made as small as possible while maintaining

sone prescribed upper bound for cond(S), such as

cond(S) € 100

The choice of 100 implies roughly that at most 2 significant
decirmal figures will be lost because of rounding errors when

B yia e asetB sl | A larger bound

et is obtained froa e
would mean more figures would be lost. A smaller bound would mean

that more computer time would be required, both for the factoriz-
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ation itsolf and for the ovaluation of et® .

In practice, we would expect alrost all the blocks to be
1-by~1 or 2-by-2 and the resulting conputation of et’ to
very fast. The bound on cond(S) will mean that it is occasiona
necessary to have larger blocks in B , but it will {nsure aga

excessive loss of accutacy from confluent eigenvalues.

G.W, Stecwart has pointed out that the grouping of the ei
envalues into clusters and the resulting block structure of B
is not meiely for increased speed. There can be an izportant a
curacy benefit as well. Stewart suggests expressing each block

aj in the form
Bj - 111 + Ej

where Y4 is the average value of the eigenvalues in the j-t
cluster. If the grouping has been done properly, the matrices

should then be nearly nilpotent in the sense that 8§ will ra
idly approach zero as k increases. Since zj is triangular,
this will certainly be true if the diagonal part of Bj is s>
that is, if all the eigenvalues in the cluster are close toget

But it will also be true in another important case. If

where ¢ is the computer rounding unit, theq
. € 0—

E2 .
3 o ¢




- 56 =

can be regarded as ncgligible. The #VE perturbations are typical

when a double, defective eigenvalue is computed with, say, HQR2 .

The fact that E, is nearly nilpotent means that etBy
can be computed rapidly and accurately by using
etBj th

tEj

= e e

and computing e F3 by a few terms of the Taylor series.

Several researchers, including Parlett and Stewart, are
curzently developing computer programs based on some of these
{deas. There are many details to be worked out. The most difficult
is row to choose: the proper clustering. It is also important for
prograr efficiency to avoid complex arithmetic as much as possible.
whea fully developed, these programs will be fairly long and com-
plicated but they may well come close to meeting all our other cri-

teria for satisfactory methods.

_Once the confluent eigenvalue difficulties are dealt with
in a stadle way, concern focutes on the efficiency of the methods.
Most of the computational cost lies in obtaining the basic Schur
decomposition. Although this cost varies somewhat from matrix to
natrix because of the iterative nature of the QR. algorithm, a

good average figure is about 10n3

flops. The clustgring of the
elgeavalues and the further reduction to block diagonal requiros
a few more n3 flops. Again we emphasize that the reduction is

indegendent of t . Once the decomposition is obtalned, the cal-
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3

culation of the matrix etA requires about 2n 2lops for each

tA
*o0
various t , the equation Syo - X, should be solved only once,

€ . If all that is required are the vectors x(t) = e for
at a cost of n3/3 flops, and then each x(t) can be obtained

with only n2 flops .

Of course, these are only rough work estimates. There will
be differences between programs which work with the Schur decoa=
position and those which work with the block diagonal form, but
the timings should be similar because Parlett's algorithn for the

exponential is very £fast.

ey ::-:. 3}7’8‘\“’.”-‘,‘.‘.‘"".‘-‘“” ~ v ;_...,-\4,,\:_ - V9. £SOy -2 S vy



J. SPLITTING METHODS

A rost aggravating , yet interesting, property of the
the matrix cxponontial is that the familiar additive law does
not carry over fron the scalar case unless we have commutivity:

etB etC et(B*C)

= BC = CB

Nevertheless, there are ways of relating the exponentials of B
and C to that of B + C . One of these is the Trotter prod-
uct formula (B13]

B+C 1im (eB/m eC/m )m

m> e

e

Method 19. Splitting

The Trotter result suggests another method for approximating
eA . First, find a convenient split of the form A = B+C and
second, use the approxinmation

eA . (eB/m eC/m )m
This approach to computing et is of potential interest when the
exponentials of B and C can be accurately and efficiently com=
putéd. For example, if
B = (A+2aN)/2
c = (a-a)y2

then the exponontials of the symmetric matrix B and the skew=~
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symmetric matrix C can bo effectively computed by the methods
of Section 5. For the above choice of B and C we show in Ap=
pendix 2 that

A B/m C/m \m y. . N(AT,AY] _u(A)
(7.1) le® = (e%/M e~™ )™ |j ¢ L2200

im

where u(A) is the log norm of A as defined in Section 2.
In the following algorithm, this inequality is used to detcr-

mine the parameter m.

(a) Set B = (A +AT)/2 and C = (A - AT)/2 . Compute the
factorization B = Q diag(ui) QT (QTQ-I) using TRED2
and TQL2 ([K4).Variations of these programs can be used tc¢
compute the factorization C = UD U where UTU = I
and D is the direct sum of zero matrices and real 2-by-

blocks of the form [ 0 a] corresponding to eigenvalues
-3 0

(b) Determine m = 2j such that the upper bound in (7.1)
is less than some prescribed tolerance. Recall that u(A)
is the most positive eigenvalue of B and that this

quantity is known as a result of step (a).

(c) Compute X = Q diag(e"i/") QF and Y=U /B oT | 1n

the latter computation, one uses the fact that

. '0 a/m
-a/m 0 cos (a/m) sin(a/m)
e -gin(a/m) cos(a/m)

J
(d) Compute the approximation, (XY)2 s tO e by repeated

squaring.
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1f we assume Sn3 flops for each of the eigenvalue decom-
positions iA (a) , then the overall process outlined above re-
quires about (13 4 j)n3 flops. It is difficult to access the
relative efficiency of this splitting method because the amount
of work depends strongly on the scalars || (AT, Al]] and wu(A)
and these quantities have not arisen in connection with any of
our previous eighteen methods. On the basis of truncation error
bounds, however, it would seem that this technique would be much
less efficient than Method 3 (scaling and squaring) unless u(A)

was negative and/or || (AT,A)]| was much less than all .

Turning to the question of accuracy, our main concern are
the rounding errors which arise in (d) as a result of the repeat-
ed squaring. The remarks we made about repeated squaring in con-
nection with Method 3 are applicable here, that is, there may be
severe cancellation during the powering but whether or not this

only occurs in sensitive -eA problems is unknown.

For general splits A = B + C , we can determine the para-

meter m from the inequality

(7.2) [[er - (eB/M (C/m) m e ﬂlflflﬂ . I+ flcll
2m

which we establish in Appendix 2 .,
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To illustrate, suppose A has companion form
0 1 0 ..

N

€ 1 °°° Cn-y

0 I |in=1 - »
It B = o . and C = ‘nc vhere ¢" = (Co....,cu.l)

and e; = (0,0,...,0,1) , then

B/m n=1 {s]" 1

k=0 n b 3

and

Cn-1/m
-1 ¢+ &VE -1 7

n
Cn-1

C/m

Notice that the computation of these scaled exponentials require
only 0(n?) flops. Since [IB]] = 1, lcl= llcll , ana
Its.crll € 2 Jlell + (7.2) becomes

e *lellyey

le® - (B/® /™™ -

The parameter m can be determined from this inequality.



8. concLusIONS

A gection called "conclusions” must deal with the obvious
Guestion: vhich method is best? Answering that question is very
riszy. We don't know enough about the sensitivity of the origi-
nal problem, or cbout the deteiled pcfformance of careful imple-
rentations of various methods to make any firm conclusions. Fur-
thermore, by the time this paper appecars in the open literature,

any ¢iven conclusion might well have to be modified.

We have considered five gancral classes of methods, Vhat
w2 have called polyncmial methods are not really in the compet=
ition for "best”. Scme of them require the characteristic poly-
nomial and so are appropriate only fer certain special problems
ard others have the sarme stanility difficulties as matrix decom=
position methods but are much less efficient. The approaches we
have outlined under splitting methods are largely speculative and
untried and probably only of interest in special cettings. This

le2ves three classes in the running,

The only gencrally competitive scries method is Method 3,
scaling and squaring. Ward's program implermenting this method is
certainly amonj the best currently available. The program may
£ail, but at lecast it tells vou when it does. We don't know yet
whather or not such failures usuaily result from the inherent
seasitivity of the problem or from the instability of the algor-

ith=. The method basically computes oM for a single matrix A.

- 62 -
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To compute eth for p arbitrary values of t roquires about
P times as much work. The amount of work is O(nJ) s even for
the vector problem etA Xg . The coefficient in froat of the

n? increases as lAjl increases.

What is probably the best o.d.e. method has not been i=-
plemented. It would be a specialization of a variable order, var
iable step o.d.e. solver to the linear, constant coefficient
problem. We suspect it would be very stable and reliable althous
somewhat expensive in computer time. Its best showing on effic-
icncy would be for the vector problem 'etA Xq with many values
of t since the amount of work is only O(nz) . It would alsc
work quite well for vector.problems involving a large starse A

since no "nonsparse” approximation to the exponential wouléd be

éxplicitly required.

The best programs using matrix decomposition methods are
just now being written. They start with the Schur decomposition
and include some sort of eigenvalue clustering. There are variarc
which involve further reducglon to some block form. In all cases
the initial decomposition is O(ns) and is independent of t a
Jal . After that, the work involved in using the decompositicz

compute et Xq for different t and Xg is only a small nult

iple of n2 .
Thus, we see there are perhaps three or four candidates ¢
"best” method. The choice among them will depend upon the detail

of implementation and upon the particular problem being solved.



APPENDIX 1 . INVERSE ERROR ANALYSIS OF PADE MATRIX APPROXIMATION

Lexma 1.

12 IH)! <1, then 1log(X + H) exists and

- Inl
—_

Jlog(x + u) )
1 - |l

Proof.
45014

If£ IH| < 1 then log(I + H) = I -pkh! -’-*-k

k=1 k
and so
® yerk . - Jull
dog(zx +m)l ¢ § l8f < al' I |lapk E——
k=1 X x=0 1 - Juf
Lermma 3.
1f YAl ¢} and p> 0, then |Io_ (7Y ¢ T*P
. Pq p
Proct.

From the definition of qu(A) in section 3, qu(A) =IesP

where
3 3
Po. ] terepia ew)d
=1 (p+q)! (g-3)! 'R

- 3
Using the fact that _(P*3-3):aq! | gq " we find
(P+q) ! (q-3)¢ ~ |[p+q

q
P s ] ,"L P L e S aeay ¢ 9
1 lpsg g2 P+q P+a

ard 20 (o, (MMl e X emTY) ¢ 1 -qep ¢ 9P
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Lemma 3.

UMl €3 s a€p,and P51, then R M) = MT

where
IFl 8 Jjaj Pra*d P g
(p+q) ! (p+q+l) !
Proof.

From the remainder theorem for Pade approximants [(P? ) ,

-9 -1 -
R_(A) = b o (-1)° ,p+q+l qu(a) 1 ! e{l-wa uP(2-u) 9
0

Pq (p+q) !
and so e} qu(A) = I +H where
o7y9+1 - 1 -
H (-1 Ap+q+1 D__(A) 1 f e A wP(2-u)T au
(p+q) ¢ Pq 0

By taking norms, using Lemma 2, and noting that P*9 oS €4

P
we obtain

lall < 1 flaf P*a*l P fl 5 wP(1-w9 au
(p+q)? P 0

¢ afagErett __pial
(p+q)! (p+q+l)?

With the assumption [|A|| ¢ -% it is possible to show that for

_all admissable p and gq , I’ll < % and so from Lerma 1 ,
Mogex + myfl ¢ MH_ ¢ gpagprart __pta:
1= |ul (P+q) ! (p+q+l) ¢

Sotting F = log(I+}), Wo see that o~ qutk) “«I+n a oF .

The lemma now follows because A and F commute implying
A e!.-‘ A+F

qu(A) -0
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Lerma 4.

12 jIall ¢ -;'— then qu(M « e™T  uhere
el ¢ 8 [lay Pra*d p: g

(p+g) ! (p+g+l) !

Proof.
The case p >q , P > 1 is covered by Lemma 1 . If
p+g = 0 , then F = =A and the above inequality holds. Finally,

consider the case @ > p , g 3 1 . From Lemma 3, qu(-A) - e"AYF
where P satisfies the above bourd. The lemma now follows because
(-Fli= lIFil ana R_(3) = ('qu(-ml'l - (M7l L AT
Theoren
3
12 JIESS € -;'— , then [P (-2 ) 127 o oP*E
j P 2)
2
where
+q+
HEll < 3“A”p a+l p! q:
23(p+a)  (p+q) l(p+q+l)!
Pronf. ‘
Fron lewra 4, B (-ﬁw ) = eA*P where
M )
Tia) | pratl -
Uri s 8l P 9°
sz (p+q) ! (p+q+l)!.

The theorem follcws by noting that if E = 23 F, then

b
(r_(-A) 2

j -
S RIS I SN
2
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Coroilary 1.

3
e lIAlL ¢ % , then ('rk(-A—)lz = o*E uhere
24 . 23
nen ¢ s MARST 2
% k+1

Corollary 2.

3
1f ”.".;_' ¢ + ., then (xzqq(-’-‘;‘-)l2 = ™% where
2 2

where
| 2941 (g1)?
o3 (2g) ! (2q+1) ¢

Nzl ¢ s lAl

P



APPENDIX TWO. ACCURACY OF THE TROTTER APPROXIMATION.

In this appendix we derive the inequalities (7.1) and (7.2).

We assume throughout that A 48 an n-by-n matrix and that
A = B+C

It is convenient to define the matrices

and
- oB/Mm C/m
Tm e e

where . is a positive integer. Our goal is to bound ﬂs: - T: ]
To this end we shall have to exploit the following properties
of the log norm u(A) defined in Section 2 3
(1) e ¢ eVIME (t > 0)
(44) w(rn) ¢ |IAf

(444) wu(B + C) < u(B) + jcji

Trese and other results concerning log norms are discussed in

references [Cl]-[C6) .

le=ma l

I£ € > max{ u(A) , u(B) + u(C) } then

Ps2 - R s mOMUM s g
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Proof.

Pollowing Reed and Simon{Al0] we have

n mel ¢ ~1=X
sq-T‘; = xzo Sm (Sp = Tw) T:

Using log norm property (i) it is easy to show that both [lsnﬂ
and "'.l‘mll are bounded above by /™ and thus

-1
st - =1 < :go Isglt® sy - 2.0 gl ™3k

m=1
- ek/m O (m=1-k)/m
€ lisy-1ll [ &7 o

k=0

from which the lemna immediately follows.

In Lemmas 2 and 3 we shall make use of the notation

t-tl

t-to

F(t) - E‘(tl) - Nto)

where F(t) is a matrix whose entries are functions of ¢t .

Lemma 2
b
tB/m (1=t)A/m 1 tC/m
'I‘m-sm- é e/ [e V.;Cle/ at
Proof. N
tw
We have T =5 = gtB/R g(1-t)A/m  tC/m and thus
m m =0

1,
q - C
T, - Sy = g (21 /M JU=tIN/m (eC/m gy gy



The le~ma follows since

E%.( etB/m G(1=t)A/m  tC/m ; otB/m [ g(l=t)A/m 'x'nl'c 1 otS/m
lemma 3
I£ X and Y are matrices then
Nl s e x|l
Proof N
. t-
We have [eX,¥] = otX ¥ e(1mt)X and thus
t=0
1
(eX.y] = 5 (d_ch etX y o(1°8)X §} 4
2 3
Since dég( ot* y eu't)xl - e (x,11 ef1°8)X e get

1
ek il < g o1 [1teyy il e 2-8%) ae

1
frcm which the lewna immediately follows.

Theoren

z¢ 0 2 max{ u(A) , u(B) + u(C) } , then

Is? - Tl ¢ 5= < izl

Proof
If 0 <t <1 then an application of Lemma 3 with
X (1=-¢t)A/n and Y 2 C/m yields '




- 71 -

1 e3=8IVMm e my || < H A (=t)/m ieea/m , e/mYl

¢ QO(1-t)/m (1‘:’ Il ts,c1ll

By coupling this inequality with Lemma 2 we can bound 7y = sn“ t
N s
T, - sult ¢ g let®/n]] Je@-ONR , crm|l [|e5/7] ax

2

0 m
¢ 1 Il .l ll
me

The theorem follows by combining this result with Lerma 1.

Corollary 1.
If B= (A+A*)/2 and C = (A = A*)/2 then

st - I & & N flananl

Proof.

Since ufA) = u(B) and u(C) = 0, we can set © = u(A) .

The corollary is established by noting that [B,C] -'§ (A*,A] .

Corollary 2.
IS - P ¢ & @ tlclimen ¢ 2 izl + hell pyg,c;

Proof.

max{u(A),u(B)+u(C)} ¢ ru(B) +.Jlcl] € Hsll+ llcll

(Note: We are obliged to Professor Paul Federbush of the University
of Michigan for helping us with the analysis in this appendis

-
=y
-
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