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We formalize agents’ knowledge of counterfactuals in two different settings, players’

behavior in extensive-form games and the process of agents’ conditioning their beliefs.

For extensive-form games, we define the notion of subgame-rationality, where play-

ers best-respond to what they believe would happen at any subgame where they are

due to play. This approach settles a well-known disagreement in the literature between

Aumann and Stalnaker - supporting Aumann - regarding whether common knowledge

of rationality leads to the backwards induction solution in perfect information games

[2, 42, 41]. Subgame-rationality also makes it easier to relate epistemic characteriza-

tions of Nash equilibrium to those of subgame-perfect equilibrium. We also turn our

attention to adding counterfactuals to agents’ language, which leads to definitions of

rationality which use iterated counterfactuals.

For conditional beliefs, we propose new public-announcement style semantics which

factor out the act of conditioning, using two traditional modalities, beliefs and counter-

factuals. We investigate the set of validities for these semantics. We also take a closer

look at the relationship between traditional plausibility models for conditional beliefs

within Dynamic Epistemic Logic and models which use, instead, explicit counterfac-

tual shifts. We identify properties that counterfactual shifts need to satisfy in order to

simulate plausibility models.
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CHAPTER 1

INTRODUCTION

1.1 A study of epistemic and counterfactual logics

Epistemic logics are concerned with studying knowledge and belief. This is a work

that started with Aristotle, but continues to be an active area of research, as interesting

applications into game theory and artificial intelligence are discovered and pursued.

Studying these logics allows us to explore how we should define knowledge and belief,

what differentiates the two, or how knowledge and belief allow us to characterize other

concepts.

Modal logics, able to represent expressions like “it is necessary that...” or “it is pos-

sible that...”, lend themselves to model knowledge and belief. Traditionally, we obtain

an epistemic logic by adding to propositional logic a modal operator K and/or a modal

operator B, allowing us to represent statements like Kϕ, read as “the agent knows ϕ”,

or Bϕ, read as “the agent believes ϕ”. This is easily generalized to multiple agents, by

including modal operators indexed by the set of agents we are considering. Epistemic

logics are generally represented using possible worlds semantics, also known as Kripke

models. For example, a statement like Kϕ is modeled as ϕ holds at all the worlds the

agent considers possible (so we can see the tight connection to necessity operators in

modal logics [31]).

Our focus in this work starts with epistemic logic. We take a closer look at two

of its applications, one in game theory and one in the logic of conditional belief. In

both instances, we analyze how epistemic logics interact with logics for counterfactuals.

Counterfactuals are conditionals of the form “if A were the case, then B would be the
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case”, or “if A had been the case, then B would have been the case”. Such statements

arise naturally when agents consider if doing something else would have left them better

off (so in determining rationality in game theory), or when agents evaluate their beliefs

if a certain event were to happen (so in the process of conditioning their beliefs).

To see this more clearly, let’s look closely at Alice’s beliefs as she’s reasoning about

her move in a game of Rock-Paper-Scissors with Bob. Suppose she is planning to play

Rock and believes Bob for sure will play Scissors1. In fact, however, Bob is planning to

play Paper. We can then ask, what does Alice believe would happen if she were to play

Scissors instead? On the one hand, these beliefs can be informed by her current beliefs

– namely, she believes she is at a world where she plays Rock and he plays Scissors. In

this case, Alice believes that, if she were to switch to Scissors, it would fare worse than

Rock against Bob’s Scissors. Note that there is an important assumption we make here,

namely, as Alice is engaging in this mental exercise of considering a different move,

this doesn’t affect Bob whatsoever, so he’s still playing Scissors in this hypothetical

scenario Alice is envisioning. This is a non-trivial but commonly taken assumption in

game theory, also called “opaqueness” or “opacity” [29].

On the other hand, Alice’s beliefs can be informed by the current state of the world:

there is an actual state of the matter – she is at a world where she plays Rock and he

plays Paper – and it can be that, in reality, if she were to play Scissors, Bob might detect

a tell that she has when considering Scissors, so he would be playing Rock at that world.

This definition for Alice’s beliefs if she were to switch clearly leads to different beliefs

than the ones above. Further, there is a subtle point to note about this second definition.

In general, agents can have false beliefs about the world – like Alice believing Bob

with play Scissors – and they might not even consider the actual world possible. Then,

1We make the assumption that if a player is planning to do a certain move, they will
in fact do so.
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this second definition for Alice’s beliefs if she were to switch implies she can somehow

identify (or access) the actual world as well as what would happen if something switched

in the actual world. This doesn’t seem reasonable, and we will delve deeply into this

issue in Chapter 2. We can see the two different possible beliefs in Figure 1.1.

AR, BP

ω1

AS , BR

ω2

AR, BS

ω3

AS , BS

ω4

AS

AS

Figure 1.1: Possible counterfactual beliefs

Counterfactuals also arise if we consider conditional beliefs. Intuitively, these are

beliefs that agents hold, conditional on other events happening. Suppose Alice is not

sure what Bob will do in a round of Rock-Paper-Scissors, so she considers both him

playing Rock and playing Paper possible. Conditional on him playing Paper, she be-

lieves he does not believe she’s playing Scissors – for, otherwise, it wouldn’t be rational

for him to play Paper 2. This act of conditionalization of one’s beliefs, however, can eas-

ily be reinterpreted as, “if Bob were to play Paper, then Alice would believe he doesn’t

believe she plays Scissors.”

Studying the interaction between beliefs and counterfactuals in these two settings

leads, we argue, to a better understanding of these two concepts, namely, rationality and

conditionalization.
2We turn to formalizing rationality in a later chapter but, for now, think of rationality

as best-responding to your beliefs about what everyone else is doing (the classical game
theory definition).
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1.2 Fundamentals

In this section we go into technical detail in the formal structures we’ll be using through-

out this work, including important references for existing and related work. We start

with modal logics, and then restrict our attention to a certain modal logic with an op-

erator for knowledge; we describe the traditional Kripke semantics for such models.

Further, since the interactions between beliefs and counterfactuals fuel many of the

questions, we then turn to an exposition on counterfactual logics.

1.2.1 Modal logic

Modal logics have been studied for a long time, but the first formal approach appears to

be the work of C.I. Lewis, at the beginning of the 20th century. For a more thorough

discussion on modal logic, see [9, 15, 24]. There’s applications of modal logic in fields

like computer science, game theory, linguistics, or philosophy. Over the years, the fam-

ily of modal logics has expanded, to include logics like temporal logics ([20]), logics

for knowledge and belief [31], or dynamic logics [30, 46, 34].

Modal logic is an extension of classical propositional logic; by adding new “modal”

operators, the language can capture concepts like possibility or necessity. The standard

operator that is added is ‘�’, and it stands for “it is necessary that”. The operator ^

(which stands for “it is possible that”) is the dual of �, and is defined as ^ϕ = ¬�¬ϕ.

There are many other possible interpretations for �, lending to multiple applications of

modal logics, like “it will always be true that”, or “the agent knows that”.

Then we can define the language of modal logic. We start with a countable set of

primitive propositions, PROP. We define the language L� recursively, given by the

4



Backus-Naur form:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | �ϕ,

where p ∈ PROP.

The most familiar logic for these statements results from adding to the axioms of

propositional logic the distribution axiom (also known as K):

�(ϕ→ ψ)→ (�ϕ→ �ψ)

and adding to Modus Ponens, the inference rule for propositional logic, the Necessita-

tion Rule:

From ϕ infer �ϕ.

The resulting logic (i.e. the set of formulas provable in this system) is called K. It is

too weak to validate �ϕ → ϕ. This is traditionally called the knowledge axiom since, if

we were to interpret � as knowledge, we might want an axiom that says that we don’t

know falsehoods (so we don’t know ϕ unless it is true). By adding the knowledge axiom

(also called the axiom scheme T ) to K we obtain the logic denoted by T.

Note that these logics have no axioms formalizing iterating either the � or ^ opera-

tors. There’s two particular axioms that are usually considered, traditionally called (4)

and (5):

(4) �ϕ→ ��ϕ

(5) ^ϕ→ �^ϕ

Adding axiom (4), also called the axiom of positive introspection, to T leads to the

system S4. Note that in this system �ϕ is equivalent to ��ϕ. Finally, adding axiom (5),

also called axiom of negative introspection, to S4 leads to the system S5.
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1.2.2 Kripke models

Possible-world semantics are the most widespread semantics for modal logics, devel-

oped by Kripke [33]. The models are known as Kripke models or Kripke structures.

Each world in the model constitutes a certain way the reality can be, and a binary rela-

tion embedded in the model reflects what is considered possible at each world.

Recently, modal logics have been used to interpret the epistemic notions of knowl-

edge and belief. Hintikka developed this field, which has now become a very active area

of research, with multiple applications [31]. For a more thorough introduction, some

popular references are Fagin, Halpern, Moses and Vardi’s foundational work (which

also connects epistemic logic with computer science) “Reasoning about Knowledge”

[22], Ditmarsch, Halpern, Hoek and Kooi’s “An Introduction to Logics of Knowledge

and Belief” [18], or Stanford Encyclopedia of Philosophy’s entry on epistemic logic

[39].

To see Kripke structures in action, we define these models for a modal logic where

we use � to interpret knowledge. Taking L� as inspiration, we define the language LK

recursively, given by the Backus-Naur form:

ϕ := p | ¬ϕ | ϕ ∧ ψ | Kϕ,

where p ∈ PROP and we read Kϕ as “the agent knows ϕ”. In order to define semantics

associated with this language, we will use Kripke structures.

Definition 1. Define a Kripke structure M over PROP as a tuple M = (W,V,R), where

• W is a set of possible worlds (also called “states”),

• V is a valuation (or interpretation) function, specifying, for each primitive propo-

sition, the set of worlds at which it’s true (so V : PROP→ 2W)
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• R is a function R : W → 2W , yielding a binary relation on W.

We refer to R as a possibility, or accessibility relation according to the agent: if

ω′ ∈ R(ω) (also written ωRω′ or Rωω′) we say ω′ is considered possible or accessible

at ω.

Consider a model M = (W,V,R). We define what it means for a formula in LK to be

true at (M, ω), written (M, ω) |= ϕ inductively below:

(M, ω) |= p iff ω ∈ V(p)

(M, ω) |= ¬ϕ iff ω 6|= ϕ

(M, ω) |= ϕ ∧ ψ iff ω |= ϕ and ω |= ψ

(M, ω) |= Kϕ iff ω′ |= ϕ for all ω′ ∈ R(ω).

Note that we model knowledge as “true in all the worlds considered possible”. Kripke

structures have a very intuitive visualization, since they can be viewed as labeled di-

rected graphs. To see this, consider the following example. Suppose Matilda lives in

Ithaca and is planning to go on a walk down Cascadilla Gorge. She’s trying to best

prepare for the weather. Denote by p the statement “it’s raining” and by q the statement

“it’s windy”. For the purposes of this example, as we can see in Figure 1.2, there’s four

possible ways the world can be.

Figure 1.2: Possible worlds

Suppose it’s actually raining and it’s not windy. We can represent this by highlight-

ing the actual world, as in Figure 1.3.
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Now, in order to complete the model, we need to specify the relation R, which we

used to model what Matilda considers possible. If (ω2, ω1) ∈ R we usually represent this

with an arrow from ω2 to ω1, read as “at ω2, the agent considers ω1 possible”. We can

see this in the Figure 1.3.

Figure 1.3: A relation R

Note that, in general, we don’t have to impose any constraints on R, but if we are

trying to use it to model knowledge, there are some restrictions needed. For example, in

Figure 1.3, there’s no outward edges at ω1, so Matilda vacuously knows everything.

Then, by taking a look at certain restrictions for R, we can specify certain classes of

Kripke models that model knowledge.

We say R is reflexive iff for all ω ∈ W we have ω ∈ R(ω). In other words, at each

world, the agent doesn’t rule out that world. We depict one such relation in Figure 1.4.

Further, note that if R is reflexive, then Kϕ→ ϕ holds at every world.

Figure 1.4: A reflexive relation R

We say R is transitive iff for all w, v, u ∈ W, if wRv and vRu, then wRu. Clearly, the

empty relation is transitive, but that isn’t very interesting. We depict another possible

8



transitive relation on W in Figure 1.5. Note that if R is transitive, Kϕ → KKϕ (positive

introspection) holds at every world.

Figure 1.5: A transitive relation R

We say R is Euclidean iff for all w, v, u ∈ W, if wRv and wRu, then vRu. We

depict a possible Euclidean relation in Figure 1.6. Note that if R is Euclidean, we have

¬Kϕ→ K¬Kϕ (positive introspection) holds at every world.

Figure 1.6: A symmetric relation R

Note that when a relation is reflexive, transitive, and Euclidean, then it’s an equiv-

alence relation. In this setting, we saw that we have axioms T , (4), and (5) valid –

this is the system S5, the most popular model for knowledge. Notably, the relationship

between the restrictions on the model and the types of axioms satisfied is basically the

relationship between the semantic and proof-theoretic ways of defining a logic.

If S is a set of axioms and inference rules, we write S ` ϕ to represent that ϕ can be

deductively proven from S . The resulting logic is {ϕ ∈ L : S ` ϕ}. On the other hand, if

a formula ϕ is valid in every model M (written M |= ϕ) in a certain class of modelsM,

9



we can define the set of formulas valid on the class of models to be {ϕ ∈ L : M |= ϕ}.

An axiom system S is sound for a language L with respect to a class of modelsM if

every formula provable in S is valid with respect toM. An axiom system S is complete

for a language L with respect to a class of modelsM if every formula in the language L

that is valid with respect toM is provable in S . We say the axiom system characterizes

the class of models if it provides a sound and complete axiomatization for the language

with respect to that class of models (so {ϕ ∈ L : S ` ϕ} = {ϕ ∈ L :M |= ϕ}).

Then we say S5 provides a sound and complete axiomatization for LK with respect

to the class of models M = (W,R,V) where R is an equivalence relation.

There are other properties of interest if we model belief instead of knowledge. De-

note the language of belief byLB where K is replaced by B and we read Bϕ as “the agent

believes ϕ”. Semantics are defined the same way. Intuitively, beliefs can be false (so

believing ϕ shouldn’t imply ϕ), but we shouldn’t believe falsehoods. There’s different

restrictions on R that we can impose.

We say R is serial iff for all ω ∈ W there exists a v such that v ∈ R(ω). Seriality

implies �ϕ → ^ϕ, or, equivalently, ¬�( f alse), axiom also denoted by D. When R

is serial, transitive, and Euclidean, axioms K, D, (4), and (5) hold. In fact, KD45

provides a sound and complete axiomatization of LB with respect to the class of models

M = (W,R,V) where R is serial, transitive, and Euclidean.

1.2.3 Counterfactuals

Counterfactuals were introduced by C.I. Lewis. They are statements of the form “if A

were the case, then B would be the case”, or “if A had been the case, then B would

10



have been the case”. The simple yet powerful characteristic that differentiates these

statements from traditional conditional statements is that they can cover situations when

the antecedent is false. This lends to their application in multiple fields, from philoso-

phy to artificial intelligence, from decision theory to law. The most popular semantics

were developed by Lewis [37] and Stalnaker [41]. For a more detailed exposition on

counterfactuals, see [44].

Strict and similarity semantics for counterfactuals

The most popular semantics are similarity analyses and strict conditional analyses, usu-

ally stated in the possible worlds semantics for Kripke models that we have just intro-

duced.

Suppose we have the language given by the following Backus-Naur form:

ϕ : p | ¬ϕ | ϕ ∧ ψ | ϕ→ ψ | �ϕ | ϕ� ψ

where we read ϕ� ψ as “if ϕ were the case, then ψ would be the case”.

Semantics are given by the same kind of models M = (W,R,V) used to interpret

modal logic with one � operator (so �ϕ is interpreted using R, as ϕ holding in all R-

accessible worlds). First, let’s consider strict analysis semantics. The strict analysis

interprets ϕ� ψ as �(ϕ→ ψ), so all R-accessible ϕ-worlds are ψ-worlds.

While this semantics relates counterfactuals to material conditionals, it fails to cap-

ture an important property for counterfactuals. For material conditionals (i.e. statements

like “If A, then B”), the statement “if today is a day in January, then it snows in Ithaca”

holding implies “if today is January 20, then it snows in Ithaca” holds; this property is

known as antecedent monotonicity. For counterfactuals, the situation is more compli-

cated. Consider the following example from [44], highlighted by Goodman:
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(1) If I had struck this match, it would have lit.

(2) If I had struck this match and done so in a room without oxygen, it would have lit.

While the first, intuitively seems true, the second does not. Strict analysis semantics

for counterfactuals, however, validates this principle. If ϕ� ψ holds, so must ϕ∧χ�

ψ, since ~ϕ ∧ χ� ⊆ ~ϕ�. By contrast, a type of semantics that does not - and is indeed

more popular - is similarity analysis.

In a similarity analysis, ϕ� ψ is true at a world ω iff all ϕ-worlds most similar to

ω are ψ-worlds. We can see, then, that models need to include another relation which

models similarity. This can be done through a system of nested accessibility spheres, an

ordering on worlds, or using a counterfactual shift function.

This semantics adds to models (W,R,V), a selection function f (also called a coun-

terfactual shift function) which takes a world ω, a subset A of W, and returns the

set of A-worlds most similar to ω. Formally, we have f : W × P(W)+ → P(W)+

(where P(W)+ = P(W) − {∅}), but in certain cases, subsets of the domain are cho-

sen (e.g. if we are modeling an extensive-form game, we can choose a counterfactual

shift which can only select the closest h-worlds, for any h a history in the game). In

this semantics we have (M, ω) |= ϕ � ψ iff f (ω, ~ϕ�M) ⊆ ~ψ�M, where we define

~ϕ�M = {ω ∈ W : (M, ω) |= ϕ} (and we forego the subscript M when the model is

clear).

Looking back on antecedent monotonicity, note that, since the most similar ϕ-worlds

might not be the most similar ϕ ∧ ψ-worlds, if ϕ � ψ holds, this says nothing on

whether ϕ ∧ χ� ψ. So the principle is not valid, in general, in this interpretation.

We continue by focusing on the similarity analysis, as this is also the semantics we

use for counterfactuals in out models.
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The logic generated by a similarity analysis depends on the restraints imposed on

the counterfactual shift. Consider the following four constraints below, where ω ∈ W,

A ⊆ W:

1. f (ω, A) ⊆ A (success)

2. f (ω, A) = {ω} if ω ∈ A (strong centering)

3. f (ω, A) ⊆ B and f (ω, B) ⊆ A implies f (ω, A) = f (ω, B) (uniformity)

4. f (ω, A) contains at most one world (uniqueness)

Lewis adopts the first three constraints, while Stalnaker all four. Note that an axiom

that we might want, namely conditional excluded middle (|= ϕ� ψ∨ ϕ� ¬ψ) holds

once we adopt uniqueness, but not before.

The similarity semantics is more popular and seems to provide semantics closer to

the use of counterfactuals in our daily lives, but it has some important weaknesses. One

of the most important ones is an ambiguity on what “closest” should mean, or what “the

most similar” worlds should be. There have been some proposals to make this notion of

similarity more precise (e.g. Lewis’ system of weights [36]).

Another important property for counterfactuals is called “Rational Monotonicity”:

ϕ � χ,¬(ϕ � ¬ψ) |= (ϕ ∧ ψ) � χ. This doesn’t hold, in general, for either

semantics, but it turns out to be very closely connected to Rational Monotonicity in

Conditional Doxastic Logic (as we will see in a later chapter).
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1.3 How the paper is organized

The rest of this paper is organized as follows. In Chapter 2 we delve into how knowl-

edge, belief and counterfactuals interact in the process of defining rationality for exten-

sive form games. The starting point is one of the best known disagreements in the field

of epistemic characterizations of subgame perfect equilibria: Aumann claims common

knowledge of rationality leads to the equilibrium, Stalnaker that it does not. Halpern

provides a model that can represent both perspectives. Our work looks closely at their

definitions and intuitions. With a careful eye on the relationship between counterfac-

tuals and epistemic access, we provide a new definition and corresponding proof that

ultimately supports Aumann’s perspective.

In Chapter 3 we develop new semantics for conditional beliefs that use counterfactu-

als. We use a public announcement style syntax to ”factor out” the act of ”conditioning

on ϕ” (or ”supposing ϕ”) syntactically, with a new family of modalities, each of which is

interpreted as a kind of belief-changing model update. We study the resulting validities

for the new semantics.

Chapter 4 contains some experimental work related to the projects in Chapters 2

and 3. In Section 4.1 we investigate the consequences of adding counterfactuals to the

language agents use in their reasoning. We discover a direction that, to our knowledge,

is new to literature, through which we define rationality in extensive-form games using

iterated counterfactuals. In Section 4.2 we take a closer look at the relationship between

counterfactual models and plausibility models for conditional beliefs. We identify the

restrictions needed to be imposed on the counterfactual shift function that would lead to

the same logic for conditional beliefs.
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CHAPTER 2

A DEFENSE OF AUMANN’S RATIONALITY

2.1 Introduction

2.1.1 Subgame perfect equilibrium

Extensive form games provide a natural framework for analyzing a wide variety of situ-

ations where agents act sequentially. Interestingly, it is the sequential nature of the game

that makes the concept of “optimal play” a bit more subtle. In particular, the prospect of

“non-credible threats” leads naturally to a notion of subgame rationality.

To illustrate this, consider the following “market-entry” game ([38, Example 95.2]),

depicted in Figure 2.1. Firm 1 considers entry into a market currently occupied by a

monopolist, firm 2. If firm 1 decides to enter, firm 2 can either acquiesce, or fight.

Fighting will leave them both worse off, while acquiescing will leave the monopolist

worse off, but produce a much better outcome for the entrant.

1

(1,3) 2

(3,1) (0,0)

out in

fight
acquiesce

Figure 2.1: The market-entry game

Assuming the firms act rationally, there is a Nash equilibrium given by strategy

profile (O, F), where firm 1’s strategy is to stay out, and firm 2’s is to fight. In this
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case, since the challenger is staying out, switching between acquiescing and fighting is

irrelevant for firm 2, and since the monopolist will fight if firm 1 enters, entering will

leave them worse off. In epistemic terms, firm 1 believes firm 2’s threat to fight if they

decide to enter, and this makes it rational for them to decide to stay out. However, this

equilibrium is not very satisfying, as it is hard to see how it models real-life behavior:

firm 2’s threat is “empty” in the sense that a rational player would never choose to fight

in this game if they were truly due to play, since in that case fighting guarantees them a

utility of 0 while acquiescing guarantees a utility of 1.

The standard way of addressing this kind of issue in extensive form games is to de-

mand that players should be rational whenever they are (even hypothetically) due to play

(see, e.g., [38]). The corresponding solution concept is called subgame perfect equilib-

rium. Thus, in the example above, since fighting is not rational in the subgame where

firm 2 is due to play, the profile (O, F) is ruled out as a subgame perfect equilibrium.

2.1.2 Epistemic characterizations

There has been much discussion in the literature about the appropriate epistemic char-

acterizations for subgame perfect equilibrium, which is equivalent to the backwards

induction solutions in games of perfect information [5, 11, 13, 12, 6, 7, 8]. This has led

to one of the best-known disagreements within the field, namely that between Aumann

and Stalnaker: Aumann claims common knowledge of rationality leads to the back-

wards induction solution ([2]), and Stalnaker claims it does not ([41, 42]). Halpern, in

an attempt to identify what is at the core of these very different characterizations, creates

a model which is able to represent both Aumann’s and Stalnaker’s formalizations [27].

His conclusion is that the disagreement stems from a difference in how Aumann and
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Stalnaker formalize rationality for extensive-form games.

As noted above, the relevant portion when considering extensive-form game sub-

game perfect equilibria is how to evaluate rationality at nodes players assume they will

not reach.

Aumann, seems, at first glance, to take this entire discussion lightly. In order to

see whether a player is best responding at a vertex they currently consider unreachable,

he simply considers agents suppose that vertex already happened, and then they see

whether continuing with the same strategy and beliefs on others’ strategies is a best-

response. With respect to this definition, common knowledge of rationality leads to

playing the backwards induction solution (this is what we - and Halpern - will be refer-

ring to as Aumann’s result).

For Stalnaker, reasoning about rationality in extensive-form games has an inherent

counterfactual nature. In order to see, at the current world, if a player is rational in their

response at a vertex currently considered unreachable, he argues for a need to (coun-

terfactually) shift to the closest world where the vertex has indeed occurred, and see

whether the player is best-responding to their beliefs there. In light of this definition, it

turns out that common knowledge of rationality is not sufficient to ensure the backwards

induction solution is played. Stalnaker points out that, since the vertex is considered

unreachable at the current world, seeing what would happen if the player were to act

at that vertex is not a simple matter, and it requires a belief revision policy - after all,

it might imply that an opponent is doing something completely unexpected, and that

needs to be included in updating the player’s beliefs. This stems partly from the fact

that, for Stalnaker, strategies themselves seem to have an epistemic component and a

causal component, suggesting a need to separate strategies from syntactic specifications

of a model; notably, however, he still includes them as primitives within his models.
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In any case, as Halpern points out, some easily spottable differences between the

two models are the lack of explicit counterfactual shifts, and the lack of an explicit

belief revision policy for Aumann. And, as Stalnaker points out, these are not simple

syntactic differences, but quite crucial elements inherent to reasoning in extensive-form

games.

Halpern seems to agree with Stalnaker that a model without a belief revision policy

is weaker in this context. His model, furthermore, is able to identify a coherency re-

quirement between a player’s beliefs at the current world and those at the closest-world

where a certain vertex occurred. When this requirement is added to Stalnaker’s models,

Halpern proves common knowledge of rationality within these models is necessary and

sufficient to ensure the backwards induction solution.

2.1.3 Our contributions

At a closer look at the models outlined above, however, there are a number of issues

which arise.

To start, from a game theoretical perspective, the notion of rationality, as well as

the subsequent notions of backwards induction or subgame perfect equilibrium, have

very clear intuitions. It is suprising, then, that there are a number of differing epistemic

characterizations of all of these notions. We claim that the reason for this is a certain

large granularity at the syntactic level, which doesn’t allow for transparency in the kinds

of assumptions sometimes taken for granted within a game theoretical approach.

For example, Aumann’s framework has him consider the outcome obtained by sup-

posing vertex v happened and then following the path given by a certain strategy profile;
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we can see that there is an implicit counterfactual shift to the closest-world where v in-

deed has happened. Stalnaker notes this and tries to include it in his models. A problem

we note, however, is that Stalnaker evaluates rationality at a vertex v in the current world

by considering an agent’s beliefs at the actual closest world where v has occurred. A

priori, there is no reason why an agent should have access to these beliefs. Furthermore,

it defeats the purpose of evaluating rationality in these games, at least as far as subgame

perfect equilibrium is concerned in classical game theory - the issue is not whether the

player would actually be best-responding to her beliefs if v occurred, but if she is best-

responding to her current beliefs about what would happen if v occurred.

Continuing the work of Stalnaker and Halpern, the models we propose are also based

on a counterfactual framework. Our formalization of rationality, however, does not

require this unmotivated epistemic access, and, instead, looks more carefully at the set

of beliefs an agent currently has about what would happen at some counterfactual world.

We make this more precise in Section 2.3.2. Interestingly, within our framework, we

show that Aumann’s intuition and formalization is the appropriate way to deal with

rationality in perfect information extensive form games.

Furthermore, Stalnaker notes that, while strategies have a simple mathematical defi-

nition, they seem to encode both an epistemic component and a causal component. This

would suggest a need to separate strategies from the syntactic specifications of a model,

and have them recreated from other primitives. There is work in the existing literature

pushing this issue forward. Bonanno emphasizes that defining strategies involves spec-

ification of actual behavior, as well as counterfactual behavior (e.g. specifying actions

chosen at histories subsequent to actions not chosen, and as such, not reached) [12].

For him, this distinction between the epistemic and the causal components of strate-

gies, and the consequences this has on rationality, lead him to recommend a subjective
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counterfactual shift function, i.e. one for each player. This severely complicates the

models and confuses a player’s beliefs about her opponents with her beliefs about what

would be the case if the game was continuing from a certain vertex. Samet defines a

model which appears as a possible answer to Stalnaker’s complaint ([40]). He intro-

duces a separate modal operator to represent hypothetical knowledge, which he claims

is unreproducible using counterfactuals (Halpern shows, later, the contrary [26]), and

he reconstructs strategies as hypothetical objects. Samet’s models, then, are quite far

removed from the original ones of Aumann and Stalnaker.

We agree that, once we operate within a counterfactual framework, the notion of a

strategy also cries out for a counterfactual treatment. Further, once we allow for models

which no longer include strategies as primitives, the notion of iterating counterfactuals

in reasoning about rationality in these games arises naturally. Hence, one of the most

important contributions of the current paper is the construction of a framework through

which we can isolate the assumptions that underlie some of the results in the models

outlined above, and which seem, within these models, unmotivated. Within our frame-

work, we can more easily study to what extent the assumptions above are reasonable,

and whether they can be left out of models for extensive-form games.

2.2 Halpern’s model

We begin by carefully introducing Halpern’s model. As mentioned above, he constructs

this model in order to compare Aumann’s and Stalnaker’s, so it is a great framework to

start with for our analysis. Later, in section 2.3.3, we will enrich it in order to discuss

models where strategies are no longer primitives, but much of our initial discussion uses

his model, so we will dedicate this entire section to presenting his formalism carefully.
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Fix a game Γ of perfect information for n players. The non-leaf vertices in the game

tree are partitioned into n sets, G1, . . . ,Gn; the vertices in Gi are said to belong to i, in

that these are histories where i is due to move. We start by defining a model of Γ in

Halpern’s adaptation of Aumann’s perspective.

Definition 2. A model of Γ is a tuple (Ω, (Ki)i∈N , s), where Ω is a set of states of the

world, Ki are information partitions, one for each player i, and s maps each world

ω ∈ Ω to a strategy profile s(ω) = (s1, . . . , sn), where si is i’s strategy in Γ at state ω.

An extended model of Γ is Halpern’s adaptation of Stalnaker’s perspective. This

is not precisely the one Stalnaker argues for, as Stalnaker has a probability measure on

worlds instead of accessibility relations for semantics of belief, but, as Halpern out-

lines, for the purposes of outlining the intuition behind rationality, looking at this model

suffices.

Definition 3. Define an extended model of Γ to be a tuple (Ω,K1, . . . ,Kn, s, f ), where

(Ω, (Ki)i∈N , s) is a model of Γ, and f : Ω ×G → Ω is a closest-world shift function, and

G =
⋃n

i=1 Gi. There are some constraints on f :

F1. v is reached in f (ω, v); that is, v is on the path determined by s( f (ω, v)).

F2. If v is reached in ω, then f (ω, v) = ω.

F3. s( f (ω, v)) and s(ω) agree on the subtree of Γ below v.

A careful look at the previous models will outline their similarities. Clearly, an

extended-model is just a model with an added counterfactual shift function, which is

needed to interpret Stalnaker’s definitions; the counterfactual shift function is not needed

for Aumann since his model does use any explicit counterfactuals.
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Both Aumann and Stalnaker assume players know their strategies, so, formally, if

ω′ ∈ Ki(ω), then si(ω) = si(ω′).

Define operator Ki on events as Ki(E) = {ω : Ki(ω) ⊆ E}, where Ki(E) is the event

that i knows E. Let A(E) = K1(E)∩ . . .∩Kn(E), where A(E) is the event that all players

know E. Let CK(E) = A(E)∩A(A(E))∩ . . ., where CK(E) is the event that E is common

knowledge. Let BI comprise all states where the backward induction solution is played.

Denote hv
i (s) to be i’s payoff if the unique path in Γ determined by following strat-

egy s starting at v. We can now define rationality at a vertex (where Aumann’s and

Stalnaker’s views agree).

Definition 4. Player i is said to be rational at vertex v in ω if for all strategies si , si(ω),

there exists ω′ ∈ Ki(ω) such that

hv
i (s(ω′)) ≥ hv

i (s−i(ω′), si).

In other words, a player i is irrational if there exists another strategy they could be

playing that would leave them better off in all the worlds they consider possible.

Ratonality in the overall game is where Stalnaker and Aumann disagree on, as we

can see in Definition 5.

Definition 5. A player i is Aumann-rational (or A-RAT) at ω if they are rational at

every v ∈ Gi in ω. A player i is Stalnaker-rational (or S-RAT) if they are rational at

every v ∈ Gi in f (ω, v).

This difference, small as it may seem, is enough to generate the opposing perspec-

tives on whether common knowledge of rationality is necessary and sufficient to ensure

the backwards induction solution.
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Theorem 1 (Aumann’s Theorem). If Γ is a nondegenerate game of perfect information,

then in all models of Γ, CK(A-RAT) ⊆ BI.

Theorem 2 (Stalnaker’s Theorem). There exists a nondegenerate game Γ of perfect

information and an extended model of it (in which the selection function satisfies F1-

F3) such that CK(S-RAT) * BI.

Halpern notes that this difference is a formal reflection of the fact that Aumann’s

framework does not allow him to model players’ revising their beliefs, while Stalnaker’s

does. He then identifies a formal requirement which, when imposed to Stalnaker’s

framework, is neccesary and sufficient to generate a model in which Aumann’s result

holds:

F4. For all i, v, if ω′ ∈ Ki( f (ω, v)) then there exists a state ω′′ ∈ Ki(ω) such that s(ω′)

and s(ω′′) agree on the subtree of Γ below v.

This guarantees a certain coherency between players’ beliefs about other players’

strategies at the current world and those at the closest-world where players are, hypo-

thetically, in a certain subgame.

This leads Halpern to a result similar, in spirit, to the one Stalnaker formulated in a

response paper to Aumann [42]:

Theorem 3. If Γ is a nondegenerate game of perfect information, then for every extended

model of Γ in which the selection function satisfies F1-F4, CK(S-RAT) ⊆ BI. Moreover,

there is an extended model of Γ in which the selection function satisfies F1-F4.
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2.3 Our approach

2.3.1 Motivation

There are a number of unmotivated assumptions in the existing models. Our goal is to

generate a framework where the intuition directly guides our formalization, which will

allow us to study how reasonable these assumptions truly are.

As we’ve already mentioned, we focus on the inherent counterfactual nature in rea-

soning about rationality in extensive-form games, so our models will start by adopting

the general framework of Halpern’s extended-models. First, we take a closer look at

the existing definitions of rationality. Stalnaker’s, in particular, seems to require an un-

reasonable epistemic access. Intuitively, if we say an agent has epistemic access to a

certain state, this simply means that the reach of that agent’s knowledge extends to that

particular state.

We offer an alternative, which we claim is the appropriate way to reason about ratio-

nality within a counterfactual framework. Interestingly, once we do, we are able to see

that Aumann’s definition of rationality is not as unreasonable as Stalnaker and Halpern

claim. Further, in this process, we observe that the bulk of the work in proving Au-

mann’s result for extended-models is actually done by requirement F3, one of the three

requirements imposed on a counterfactual shift function for extended-models. Halpern

claims that the purpose of F3 is to capture the intuitive meaning of a strategy, insofar as

this intuition can be given a voice through the language of counterfactuals: if the strategy

at ω specifies choosing a at v, then at the closest v-world to ω, a should be played. How-

ever, as Halpern points out, requirement F3 says much more than this, since it requires

this coherency at all vertices below v as well. We construct a model where the counter-
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factual shift function does not satisfy F3, and does, instead, satisfy some well-motivated

assumptions, linking counterfactual shifts to the inherent structure of an extensive-form

game. These models will also no longer contain strategies as primitives, in an attempt

to isolate further unmotivated assumptions within previous models. As it turns out, in

these new models, we are able to prove that F3 holds.

2.3.2 Rationality

Intuitively, rationality requires best responding to one’s beliefs. In the case of exten-

sive form games, however, players’ beliefs about their opponents’ strategies are closely

connected to their beliefs about what would happen after a certain node in the tree is

reached. It will be helpful, then, to take a more general approach to defining rationality.

Definition 6. We say player i is rational at vertex v in world ω with respect to the

belief set S if, for all strategies si , si(ω), there exists ω′ ∈ S such that hv
i (s(ω′)) ≥

hv
i (s−i(ω′), si).

Informally, this says i cannot do any better by using si (instead of si(ω)), considering

her beliefs S at world ω regarding the strategies the other players are employing. Then

Definition 4 appears as a special case, where we restrict the set of beliefs S to be the

beliefs player i has at ω, namely the information set Ki(ω). Interestingly, the definition

above allows us to more clearly delineate between Aumann’s definition of rationality in

the overall game and Stalnaker’s (as defined by Halpern).

Definition 7. A player i is Aumann-rational at ω if, for all v ∈ Gi, she is rational at v

in world ω with respect to Ki(ω), i.e. for all si , si(ω) there is ω′ ∈ Ki(ω) such that

hv
i (s(ω′)) ≥ hv

i (s−i(ω′), si).
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Definition 8. A player i is Stalnaker-rational at ω if, for all v ∈ Gi, she is rational

at v in world f (ω, v) with respect to Ki( f (ω, v)), i.e. for all si , si( f (ω, v)) there is

ω′ ∈ Ki( f (ω, v)) such that hv
i (s(ω′)) ≥ hv

i (s−i(ω′), si).

We can see the difference between these two definitions in Figure 2.2. S-RAT at ω

(the world with a bold outline in the figure) is evaluated with respect to the belief set

at the closest v-world to ω (marked with a red arrow in the figure), which could be in a

different information set, while A-RAT at ω is evaluated with respect to the belief set at

ω.

Figure 2.2: Rationality

Notably, Stalnaker-rationality at ω implies a player’s access to beliefs at f (ω, v), the

actual closest-world to the current world, which is something that the player might not

have epistemic access to.

The way to think about rationality in extensive-form games is by seeing whether a

player is best-responding to the beliefs they would have if they were at a certain point in

the game tree. This is sometimes referred to as a player’s counterfactual beliefs. Both

English descriptions, however, are insufficiently precise. There are two different possi-

ble interpretations of counterfactual beliefs, or beliefs I would have if v were to occur.

One interpretation is the set of beliefs at the counterfactual world closest to the actual

one where v does occur, formally represented as Ki( f (ω, v)). Another interpretation is

the set of beliefs you currently have about what would happen at the counterfactual sit-
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uation where v occurs, in which case you have to consider the image of your beliefs

under some counterfactual shift. As such, the expression counterfactual beliefs is too

vague, in that it does not fully specify the scope of the belief operator with respect to the

counterfactual shift function. Due to this ambiguity we will avoid using this term.

We claim the second interpretation is the appropriate one with respect to evaluating

rationality in extensive-form games. However, we cannot represent this formally using

existing notation. Then, we define the set of beliefs at ω about what would be the case

if v were to occur 1 as

K v
i (ω) = { f (ω′, v) : ω′ ∈ Ki(ω)}.

Basically, these beliefs are the pushforward of the player’s actual beliefs at ω, via the

counterfactual shift function. We can now define what it means for a player to believe

they would (counterfactually) be best-responding in a given subgame. We call this

subgame-rationality.

Definition 9. A player i is subgame-rational at ω if, for all v ∈ Gi, she is rational at v

in world ω with respect to K v
i (ω), i.e. for all si , si(ω) there is ω′ ∈ K v

i (ω) such that

hv
i (s(ω′)) ≥ hv

i (s−i(ω′), si).

Figure 2.3 points out the main difference between S-RAT and our definition of

SUB-RAT, since the definitions correspond to the two different interpretations we out-

lined above for the beliefs one would have if they were at a certain point in the game

tree.

Further interesting points arise, after a careful look at the formalism of Definitions

7 through 9. In Aumann’s definition, the superscript v in hv
i is necessary, as it implicitly

1We agree that this is slightly awkward; as we have already noted, our natural lan-
guage cannot capture this distinction, while the formal models can, emphasizing their
importance
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Figure 2.3: S-RAT and SUB-RAT

defines a counterfactual shift; it helps agents reason about what would happen in the

subgame starting at v. Hence, even though Aumann does not have a counterfactual shift

function, there is an implicit one in the notation used above.

In Stalnaker’s definition, it might seem, at first glance, that v is not necessary, since,

after all, we are looking at the beliefs at f (ω, v), which is a v-world by definition. How-

ever, a player i might consider several non-v-worlds possible at the closest v-world, so,

in fact, v appears twice within the definition, and it is needed both times.

In our definition, the superscript v is superfluous: we are considering an agent’s

response to the pushforward of her beliefs, so we have already ensured that all worlds

considered are v-worlds. As such, for all ω′ ∈ K v
i (ω), we have hi(s(ω′)) = hv

i (s(ω′))

(where hi(s(ω′)) simply is the outcome determined by the strategy profile s(ω′)).

Interestingly, due to condition F3, we note that Definition 9 - which we claim is

appropriate once we deal with a model with the added power of counterfactual shifts -

is actually equivalent to Aumann’s.

Proposition 1. Let Γ be a nondegenerate game of perfect information. Then for every

world ω and player i, player i is Aumann-rational at world ω iff they are subgame-

rational at world ω.

Proof. Let ω ∈ Ω, i ∈ N. We will prove that checking whether Aumann-rationality

holds (as per Definition 7) coincides with checking whether subgame-rationality holds
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(as per Definition 9).

Now consider v ∈ Gi. Using condition F3, s(ω′) and s(ω′′) coincide below v, for

any ω′ ∈ Ki(ω) and ω′′ ∈ K v
i (ω). This implies hv

i (s(ω′)) = hv
i (s(ω′′)), and, in fact,

these are also equal to hi(s(ω′′)). Further, we also have hv
i (s−i(ω′), si) = hv

i (s−i(ω′′), si)

for any si , si(ω), since si(ω), si(ω′), and si(ω′′) all coincide below v (by F3 and players

knowing their strategies). �

Let SUB-RAT comprise all states where all players are subgame-rational. Given this

equivalence to Aumann’s rationality, it is easy to see that CK(SUB-RAT) ⊆ BI.

Interestingly, however, once we consider subgame-rationality, a different perspective

renders the common knowledge requirement obsolete. Let S trat = {ω : ∀i ∀ω′ ∈

Ki(ω), s(ω) = s(ω′)} be the set of states where all players know their strategies.

Proposition 2. Consider an extended model for nondegenerate game Γ of perfect in-

formation where the selection function satisfies F1-F3. Then S trat ∧ SUB-RAT ⊆ BI.

Moreover, there exists an extended model of Γ in which the selection function satisfies

F1-F3.

Proof. The proof follows the structure of the proof outlined by Halpern.

Suppose ω ∈ S trat ∧ SUB-RAT. We proceed by induction on k: if v is at height k in

the tree, the move indicated by the backwards induction solution is played at v in ω.

For the base case, suppose v is at height 1. Suppose i moves at v and suppose,

for a contradiction, i plays a′, and not a, which is the backwards induction solution.

Then, since a is the backwards induction solution (in this nondegenerate game), for all

ω′ ∈ Ki(ω), we have hv
i (s( f (ω′, v)) < hv

i (s−i( f (ω′, v)), a), which is a contradiction to i

being SUB-RAT at v in ω.
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Now for the inductive step, suppose v is at height k + 1, and i moves at v. For

a contradiction, suppose si(ω′)(v) = a′ , a, where a is the move indicated by the

backwards induction solution. Since ω ∈ SUB-RAT, there exists ω′ ∈ Ki(ω) such that

hv
i (s( f (ω′, v)) ≥ hv

i (s−i( f (ω′, v)), a).

Since players know their strategies, it must be that i plays a′ at ω′ and, by F3, she

does the same at f (ω′, v). Now, by the inductive hypothesis, we know that at all ver-

tices below v (strictly), all players play the backwards induction solution in ω. Since

ω ∈ S trat, we know the same holds for ω′ and, by F3, for f (ω′, v). This implies that

hv
i (s−i( f (ω′, v)), a) is the outcome corresponding to the backwards induction solution at

v, so the inequality above is equivalent to i getting a bigger payoff by playing a′ than a,

a contradiction (to the definition of backwards induction).

For the second half, we only note that the model constructed by Halpern requires f

to satisfy F4 as well, so there clearly is a model where the function satisfies F1-F3.

�

In fact, common knowledge is not required even when we use Halpern’s definition of

Stalnaker-rationality and the requirement that the counterfactual shift function satisfies

F1-F4.

Proposition 3. Consider an extended model for a nondegenerate game Γ of perfect

information where the selection function satisfies F1-F4. Then S trat ∧ S-RAT ⊆ BI.

Proof. Suppose ω ∈ S trat ∧ S-RAT. We proceed by induction on k: if v is at height k,

the move indicated by the backwards induction solution is played at v in ω.
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For the base case, suppose v is at height 1. Since ω ∈ S-RAT, we know i is rational at

f (ω, v), and since v has height 1, this implies i makes the move dictated by the backwards

induction solution at f (ω, v). By F3, i makes the same move at ω.

For the inductive case, suppose v is at height k + 1 and that i moves at v. Suppose

for a contradiction that si(ω)(v) = a′ , a, which is the backwards induction action.

By the inductive hypothesis, at every vertex below v, players plan to play the back-

wards induction solution at ω. By F3, we know i’s strategy is to play a′ at f (ω, v), and

at every vertex below v players plan to play the backwards induction solution at f (ω, v).

Sinceω ∈ S-RAT, we know i is rational at v in f (ω, v). Then there existsω′ ∈ Ki( f (ω, v))

such that using si( f (ω, v)) does at least as well at ω′ as using the backwards induction

solution starting from v. By F4, there is ω′′ ∈ Ki(ω) such that s(ω′) and s(ω′′) agree

below v. Since ω ∈ S trat, we know s(ω) = s(ω′′), so, by the inductive hypothesis, the

players are playing the backwards induction below v at ω′′. Since s(ω′) and s(ω′′) agree

below v, the players are playing the backwards induction solution below v at ω′.

This implies that i does at least as well playing a′ as she does playing a in ω′, a

contradiction to a being the backwards induction solution. �

It’s worthwhile, then, to take a closer look at the S trat requirement. At first glance,

this seems a far too strong constraint on agents’ epistemic access, since it seems that mu-

tual knowledge of the strategy being played, and not common knowledge of rationality

is what is needed. However, this distinction appears in a clear analog to the character-

ization of Nash Equilibrium for normal-form games. After all, when we are analyzing

whether a strategy profile is a Nash equilibrium, it is irrelevant what one player believes

about another, and, instead, the assumption is that players have mutual knowledge of the

strategy being played. With this in mind, requiring that rationality (in the basic sense,
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at the empty history of the game), together with mutual knowledge of the strategy being

played, leads to the analog of Nash Equilibrium for Extensive Form Games. Now, as

we argued in the introduction, this kind of rationality is not appropriate for reasoning

about extensive form games, particularly due to empty threats. But if we are to change

the definition of rationality to the suitable one, namely SUB-RAT, while maintaining the

constraints for Nash Equilibrium for normal-form games, we obtain the subgame perfect

equilibrium/backwards induction solution. Given this, the fact that S trat is the neces-

sary requirement for Halpern’s model is no longer surprising - once the assumptions

on the model are fixed to correct for the inappropriate definition of rationality, requir-

ing mutual knowledge of the strategies being played is a reflection of the fact that the

backwards induction solution is an analog of Nash Equilibrium. Notably, then, although

our model can capture higher order beliefs, and can, thus, capture common knowledge

of rationality, we only need the appropriate notion of rationality and counterfactuals in

order to get the backwards induction solution.

2.3.3 Extended counterfactual models

We now turn to constructing a model where we forgo requirement F3 for the counter-

factual shift, as well as strategies as primitives.

Recall that in Halpern’s models, worlds encoded strategies. As we’ve already seen,

they also implicitly associated an outcome with every world. We claim this is in fact the

primitive agents truly reason about - the way the world can be - and so, while strategies

will be recreated as counterfactual objects, outcomes become our primitives. In order to

do so, first, we need to distinguish between the terminal history of a certain game, and

a player’s utility at that terminal history (what Halpern would refer to as outcome). As
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such, let Z be the subset of G consisting of terminal histories, and ui : Z → R are as

given by the game tree for any player i.

Definition 10. Define an extended-counterfactual-model M = (Ω, (Ki)i∈N ,O, f ), where:

(R1) Ω is a nonempty, finite state space.

(R2) Ki : Ω→ (2Ω ∅) are information partitions of Ω, one for each player i.

(R3) O : Ω→ Z assigns a unique outcome to every state.

(R4) f : Ω ×G → Ω is a “closest-world” function satisfying

(S1) v is reached in f (ω, v); in other words, the sequence of moves leading to v is

an initial history for O( f (ω, v)).

(S2) if v is reached in ω (i.e., the sequence of moves leading to v is an initial

history for O(ω)), then f (ω, v) = ω.

These are the models Halpern considered, except we have removed strategies as

primitives, and we have added an explicit outcome function. We also note that S1 and S2

are precisely F1 and F2 in Halpern’s models. And while we do not include requirement

F3, we do impose some further conditions on our counterfactual shift operator.

(C1) ∀ω ∈ Ω, ∀i ∈ N, ∀v ∈ Gi, if v′, which is obtained by taking some available action

ai at v, is on the path specified by O( f (ω, v)), then for all ω′ ∈ Ki(ω), v′ is on the

path specified by O( f (ω′, v)).

(C2) ∀ω ∈ Ω, ∀v ∈ G, and for all v′ successors of v (i.e. obtained by taking some

available action a at v), we have

f ( f (ω, v), v′) = f (ω, v′).
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Condition (C1) essentially guarantees that players are sure of their own strategies

(we make this precise in Section 2.3.4). Condition (C2) says, roughly speaking, that the

counterfactual shift operator respects the temporal nature of the game in the sense that

the closest v′-world to ω is also the closest v′-world to the closest v-world to ω (where v

and v′ are immediate successors).

It is worth noting that although it seems that condition (C2) is superficially restricted

to a single move after a vertex, this coherency condition actually holds across all exten-

sions, as established by the following lemma.

Lemma 1. For all ω ∈ Ω and v ∈ G, if v′ ∈ G is reachable from v via a sequence of

moves h′, we have

f ( f (ω, v), v′) = f (ω, v′).

Proof. We proceed by induction on the length of the sequence of moves h′. The base

case, when the length is 1, follows by one application of (C2). Now suppose the state-

ment holds for any v′ reachable from v in k many steps, we want to prove it holds for a

vertex reachable in k + 1 steps. Namely, suppose we have moves a1, . . . , ak+1 such that

by following them from vertex v, we obtain vertex v′ ∈ G. We want to prove

f ( f (ω, v), v′) = f (ω, v′).

For ease of notation, let vk be obtained by following the set of actions a1, . . . , ak form

v. Then v′ is obtained by taking action ak+1 at vk. Using (C2), we know f (ω, v′) =

f ( f (ω, vk), v′). Our inductive hypothesis then gives

f (ω, v′) = f ( f ( f (ω, v), vk), v′),

and another application of (C2) (to f (ω, v)) gives the desired result. �
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2.3.4 Representing strategies

In the classical setting, a strategy for player i is a function ρi mapping histories where

player i is due to play to actions such that for each v ∈ Gi we have ρi(h) an available

action in the game tree at vertex v. Informally, a strategy is a complete specification

of what the player would do at every point in the game where they would be due to

play. This might be thought of as a “plan of action”, in a certain sense, but with the

understanding that it includes a plan for how to act even at histories that the player is

sure they won’t reach.

As we’ve already mentioned, a profile of strategies (one for each player) uniquely

determines an outcome, but the converse is not true in general (an outcome is typically

compatible with more than one strategy). The models we have defined explicitly asso-

ciate an outcome with each world via the function O, and they have all the necessary

machinery to also uniquely pick out a strategy for each player at each world, derived

using the counterfactual operator.

Fix a game Γ and let M be an extended-counterfactual-model for this game. Denote

by Λi the set of all strategies for player i. For every world ω, each player i, and each

vertex v ∈ Gi at which player i is due to play, we can ask, “What would player i do if

they were to find themselves at vertex v?” Provided the model M is sufficiently rich,

the counterfactual operator provides a unique answer to this question by moving to the

world closest to ω at which v actually occurs. Since f is, by definition, total and since

f satisfies (S1), we note that for every node v of the tree, there is ω ∈ Ω such that v

is reached in ω. In particular, this implies O is surjective in counterfactual-extended-

models.

Proposition 4. Let M = (Ω, (Ki)i∈N ,O, f ) be a counterfactual-extended-model for Γ.
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For all ω ∈ Ω, for all i ∈ N, and for all nonterminal v ∈ Gi, there is a unique action in

the set of actions available at v, call it si(ω)(v), such that the vertex reached by taking

si(ω)(v) is also reached at f (ω, v).

Proof. Since O is surjective, there is ω′ ∈ Ω such that v is reached in ω′, therefore

f (ω, v) is defined. Since v is nonterminal, it follows that there exists an available action

a at v such that action a is taken at f (ω, v). Now suppose two different available actions

at v are taken at f (ω, v), leading to vertices v1 and v2 both reached at f (ω, v). This clearly

contradicts O assigning a unique outcome to every vertex. �

As the notation suggests, we can think of each si : Ω→ Λi as a function assigning a

strategy for player i to each world.

In the remainder of this section, we describe and prove a number of desirable proper-

ties these functions enjoy in our models. Fix a game Γ and an extended-counterfactual-

model for it M. First, players are sure of their own strategies:

Proposition 5. For every ω ∈ Ω and each i ∈ N, we have that, for every ω′ ∈ Ki(ω),

si(ω′) = si(ω).

Proof. Let ω′ be as above, and consider nonterminal v ∈ Gi. By Proposition 4,

si(ω)(v) = a for a unique a available at v. Then the vertex v′ obtained by taking action a

at v is reached at f (ω, v). By (C1), that implies that the sequence of moves leading to v′

is an initial segment to O( f (ω′, v)) (i.e. v′ is reached at f (ω′, v)). Again by Proposition

4, we know that si(ω′)(v) = a′ for a unique a′ available at v, so the vertex v′′ obtained by

taking action a′ at v is on the path determined by the terminal history O( f (ω′, v)), which

implies that a = a′, i.e. si(ω)(v) = si(ω′)(v). Since this equality holds for arbitrary v, we

have si(ω) = si(ω′) for every ω′ ∈ Ki(ω), as desired. �
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Now recall Halpern’s notation hv
i (s(ω)), which identified the outcome (in his case,

the utility) for player i at the terminal history determined by following strategy profile

s(ω) after vertex v. Since we have had to separate the outcome of the game with a

player’s subsequent utility, we need a bit of notation.

For each v ∈ G, let [v] ⊆ Z be the set of terminal histories that pass through v. We

denote the unique terminal history in [v] reached from v when the players play according

to ρ by [v]ρ. Then, in this notation, hv
i (s(ω)) now becomes ui([v]s(ω)).

Further, [∅]ρ is the outcome of the game induced by ρ. The next proposition ensures

that the strategies associated with any given world actually induce the outcome that is

assigned to that world.

Proposition 6. For all ω ∈ Ω, the terminal history induced by s(ω) = (s1(ω), . . . , sn(ω))

is precisely O(ω). In other words, [∅]s(ω) = O(ω).

Proof. For a contradiction, suppose not; that is, suppose that [∅]s(ω) , O(ω). Then there

exists v ∈ G such that v is the last common vertex in the paths determined by s(ω) andO.

This implies v is not terminal. Let a be the available action at v taken at O(ω). Suppose

player i is due to play at v. Then by assumption si(ω)(v) = a′ , a (for some a′). This

implies a′ is the action taken at v in f (ω, v). Now, since v is on the path determined by

O(ω), this implies v is reached at ω, so f (ω, v) = ω. This implies a′ is the action taken

at v in ω. Since O assigns a unique outcome to every state, it must be that a′ = a, a

contradiction to our assumption. �

Now, recall our definition of a strategy from Proposition 4. Note that it captures

precisely the intuition that Halpern refers to in his motivation for F3: if a player’s current

plan is to play a if at the subgame determined by vertex v, then at the closest v-world,

the player is choosing action a.
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And, although we do not explicitly impose that strategies below v coincide at ω and

the closest v-world toω, as F3 does without much motivation, this arises naturally within

our framework. They key condition here is (C2), which ensures the counterfactual shift

respects the temporal nature of the game.

Proposition 7. Suppose we have a extensive-counterfactual-model M = (Ω, (Ki)i∈N , f ,O)

of an extensive-form game Γ. Then f also satisfies F3.

Proof. Let ω ∈ Ω and v ∈ G. We want to show s( f (ω, v)) and s(ω) agree at any vertex

below v.

We proceed by strong induction on the length k of the sequence of moves following

v which lead to a new vertex v′.

The base case, for k = 0, follows by definition.

For the inductive case, consider the vertex v′′ obtained by starting at vertex v and

following the sequence of moves a1, . . . , ak, ak+1); we want to show s( f (ω, v)) and s(ω)

agree at v′′.

By definition, we know s( f (ω, v′′)) and s(ω) agree at v′′. We want to show s( f (ω, v))

and s( f (ω, v′′)) agree at v′′. By Lemma ??, we know f (ω, v′′) = f ( f (ω, v), v′′). Then

we want to show s( f (ω, v)) and s( f ( f (ω, v), v′′))) agree at v′′, which holds by definition,

once again. �

As such, while F3 seems a strong requirement in Halpern’s original model, it arises

as a natural consequence within our models.

What is more, there is a strong connection between the strategies primitive in an

extended-model, and the ones recreated in an extended-counterfactual-model.
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Consider game Γ and an extended-model for it M = (Ω, (Ki)i∈N , f , s). Generate an

associated model M′, using the same set of worlds, the same accessibility relations, and

the same counterfactual shift; generate the outcome function defined by the outcome

determined by the strategy profile at every world in the extended-model.

It is easy to see that R1-R4 hold for M′, so M′ is an extended-counterfactual-model.

In fact, M′ also satisfies C1.

Proposition 8. Consider game Γ and an extended-model for it M = (Ω, (Ki)i∈N , f , s)

which satisfies F1-F3. Generate an associated model M′, using the same set of worlds,

the same accessibility relations, and the same counterfactual shift; generate the outcome

function defined by the outcome determined by the strategy profile at every world in the

extended-model. Then M′ is an extended-counterfactual model which also satisfies C1.

Proof. The first part of the proof follows clearly - requirements R1-R4 are easy to check,

so M′ is an extended-counterfactual-model. To prove M′ satisfies C1, let ω ∈ Ω, i ∈ N,

and v ∈ Gi. Suppose v′, which is obtained by taking action a at v, is on the path

determined by O( f (ω, v)). Then, by construction, this implies si( f (ω, v))(v) = a (in M).

Since F3 holds in M , this implies si(ω)(v) = a. Using the fact that players know their

strategies in the models employed by Halpern, we get si(ω′)(v) = a for all ω′ ∈ Ki(ω).

Using F3 once again, this implies si( f (ω′, v))(v) = a, so, by the definition of the outcome

function, we get v′ is also on the path determined by O( f (ω′, v)), for all ω′ ∈ Ki(ω). �

Since this associated model satisfies C1, we can now reconstruct strategies at a

world, as outlined in Section 2.3.4. In fact, the strategies reconstructed coincide with

the ones in the original extended-model.

Proposition 9. Consider game Γ and the associated extended-counterfactual-model for

it M = (Ω, (Ki)i∈N , f , s) (constructed as in Proposition 8). Construct the associated
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strategy functions si : Ω → Λi for each i ∈ N, for M′. Then for every ω ∈ Ω, s(ω) =

s(ω).

Proof. Let ω ∈ Ω, i ∈ N, v ∈ Gi. We want to show si(ω)(v) = si(ω)(h). By construction,

there exists a unique a = si(ω)(v) such that the vertex reached by taking a is also reached

in f (ω, v). Then si( f (ω, v))(v) = a, so by F3, si(ω)(v) = a. Since this holds for arbitrary

v and i, we have s(ω) = s(ω), for every ω ∈ Ω. �

2.3.5 Quantitative interpretation

Until now, we have used knowledge in our exploration of epistemic characterizations

of solution concepts, in a similar spirit to Halpern. Furthermore, the entire discussion

above is done through a qualitative lens. We note that we can easily consider a slightly

more general model, in which we use belief for our epistemic characterization and,

correspondingly, we look into a quantitative interpretation of rationality as expected

utility maximization.

While all the results follow naturally, we include this section, since this quantitative

version might be more familiar to some readers.

Define a counterfactual-model M = (Ω, (PRi)i∈N ,O, f ), where:

(R1) Ω is a nonempty, finite state space.

(R2) PRi : Ω → ∆(Ω) assigns to each ω ∈ Ω a probability measure PRi(ω) on Ω

representing the beliefs of player i at ω.

(R3) PRi(ω)({ω′ : PRi(ω′) = PRi(ω)}) = 1 (i.e., players are sure of their own beliefs).

(R4) O : Ω→ Z assigns a unique outcome to every state.
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(R5) f : Ω ×G → Ω is a “closest-world” function satisfying

(S1) v is reached in f (ω, v); in other words, the sequence of moves leading to v is

an initial history for O( f (ω, v)).

(S2) if v is reached in ω (i.e., the sequence of moves leading to v is an initial

history for O(ω)), then f (ω, v) = ω.

We note that, formally, the only change is replacing the information partitions with

probability distributions on states, and ensuring coherency inherent within a partition

(namely, players are sure of their beliefs). The added requirements appear without al-

most any changes:

(C1) ∀ω ∈ Ω, ∀i ∈ N, ∀v ∈ Gi, if v′, which is obtained by taking some available

action ai at v, is on the path specified by O( f (ω, v)), then for all ω′ ∈ Ω such that

PRi(ω)(ω′) > 0, v′ is on the path specified by O( f (ω′, v)).

(C2) ∀ω ∈ Ω, ∀v ∈ G, and for all v′ successors of v (i.e. obtained by taking some

available action a at v), we have

f ( f (ω, v), v′) = f (ω, v′).

Propositions 4 and 6 are unaffected by our change in the description of the model,

and Proposition 5 follows very easily. Hence, we can also associate a unique strategy

profile with every state in these counterfactual-models, such that players are sure of their

own strategies and strategy profiles played at a world induce the outcomes associated

with said world. Notably, since (C2) holds, it’s easy to see that for any counterfactual-

model, its counterfactual shift function satisfies F3.

And, once states are assigned probability measures representing agents’ beliefs, we

can capture agents’ uncertainty over their opponents’ strategies. Each probability mea-
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sure on worlds induces a probability measure on opponents’ strategies via the functions

si. We can then compute each player’s expected utility for playing their strategy at a

given world:

Definition 11. For every i ∈ N and ω ∈ Ω, define

EUi(ω, si(ω)) =
∑
ω′∈Ω

PRi(ω)(ω′) · ui(O(ω′)).

Now, using the same terminology as Aumann, we can easily find, for each world

considered possible, the outcome (and hence, the utility) obtained by switching strate-

gies, supposing all other players’ strategies remain the same.

Definition 12. For every i ∈ N, ω ∈ Ω, and ρi ∈ Λi, define

EUi(ω, ρi) =
∑
ω′∈Ω

PRi(ω)(ω′) · ui([∅](s−i(ω′),ρi)).

When ρi = si(ω), Definition 11 clearly arises.

Let RATi comprise of all states where player i’s expected utility function is maxi-

mized when playing the strategy associated with that state, and RAT comprise all states

where all players are rational.

As discussed in the introduction, mere rationality falls short in articulating solution

concepts for extensive form games, since it allows players to make bad decisions at

histories that they assign probability 0 to. Thus, we want to extend our analysis to

be able to reason about whether players’ strategies constitute best responses in every

subgame.

The existence of a probability distribution has some interesting consequences for

the definition of subgame-rationality. Keeping the intuition on the appropriate notion

of rationality in extensive-form games (from Section 2.3.2), we define the pushforward
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of the player’s actual beliefs at ω. We define a counterfactual probability distribution

reflecting what player i believes would be the case if vertex v were to occur (this is pre-

cisely the notion of a player’s counterfactual belief at state ω from [29], except adapted

here to an extensive form setting). For every i ∈ N and ω ∈ Ω, define

PRv
i (ω)(ω′) =

∑
{ω′′: f (ω′′,v)=ω′}

PRi(ω)(ω′′). (2.1)

Then we can define the expected utility of player i playing any given strategy, sup-

posing history h has occurred:

Definition 13. For every i ∈ N, v ∈ Gi, and ρi ∈ Λi, define

EUv
i (ω, ρi) =

∑
ω′∈Ω

PRv
i (ω)(ω′) · ui([∅](s−i(ω′),ρi)).

Note that F3 becomes crucial here. Since switching to the closest v-world does not

change any of the players’ strategies from vertex v onward, this definition of expected

utility at a subgame actually computes the utilities associated with playing different

strategies in that subgame, as we would want it to.

Superficially, Definition 13 looks quite different from Definition 12. However, we

can show that when the history considered is ∅, corresponding to the beginning of the

game, we obtain Definition 12 as a special case:

Proposition 10. For every i ∈ N, ω ∈ Ω, and ρi ∈ Λi, we have EU∅i (ω, ρi) = EUi(ω, ρi).

Proof.

EU∅i (ω, ρi) =
∑
ω′∈Ω

PRi(ω)(ω′) · ui(O( f ( f (ω′, ~ϕρi�), ~ϕ∅�)), by Lemma 5

=
∑
ω′∈Ω

PRi(ω)(ω′) · ui(O( f (ω′, ~ϕρi�)), since f (ω′′, ~ϕ∅�) = ω′′ for all ω′′ ∈ Ω

= EUi(ω, ρi). �
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We can now let SUB-RATi denote the set of states where player i is maximizing their

counterfactual expected utility whenever they are due to play, and SUB-RAT the set of

states where all players are maximizing this counterfactual expected utility.

Note that, if a player is rational by maximizing their expected utility, then they must

be rational using Aumann’s qualitative definition. This is easier to formulate for irra-

tionality: if a player is irrational since something else would leave them better off in

all possible worlds, then they cannot be maximizing expected utility. The same holds

for subgame-rationality. In particular, this implies all the results regarding epistemic

characterizations of backwards induction solutions from Section 2.3.2 hold.

2.3.6 Discussion

To start, we want to address the proof of Proposition 7. The proof is quite easy, even

more so since it follows closely the structure outlined by Halpern. Nevertheless, the

point we want to emphasize is that it outlines that our assumptions are in line with the

non-epistemic interpretation of Nash Equilibrium. While these assumptions are all quite

natural, to the best of our knowledge, this result has not been discussed in the literature.

Further, there are a number of questions that we note are now open, and we leave for

a future paper.

It is natural to study the full expressive power of counterfactuals within these mod-

els. As Bonanno points out, once we are doing counterfactual reasoning, it makes sense

to include counterfactuals explicitly in the formal language agents are reasoning with

[12]. This would allow us to adopt a more general framework for counterfactual shifts,

in which we are no longer limited to shifting to a certain subgame. In the literature,
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counterfactual shifts tend to be defined on subsets of the state space and, after all, shift-

ing to the closest v-world is just a shorthand for shifting to the sets of worlds represented

by vertex v. Once we can shift to any subsets of the state space, however, we can rep-

resent, formally, the notion of a player counterfactually switching their strategy. Now,

since strategies are themselves counterfactual objects, this is a sort of “second-order”

counterfactual shift, since it’s a shift to a world where a conjunction of counterfactual

statements hold (namely, the ones specifying the strategy). There is no existing work

in the literature (that we have seen) that adopts this iterated counterfactual approach to

model rationality.

Finally, while requirement F3 seemed too strong at an intuitive level, and unmoti-

vated even though it also did much of the work in terms of Aumann’s result, we were

able to obtain it as a natural consequence of other, more palatable, primitive assump-

tions. In fact, this suggests that, if we are trying to find a more general model, it is not

requirement F3 that we can relax, but instead, some of these more primitive assump-

tions.

At a first glance, both (C1) and (C2) seem crucial. We want players to know their

strategies, and we want the counterfactual shift function to reflect our operating in an

extensive-form game. However, we can see that our discussion on rationality, where we

noticed the difference between counterfactually shifting from the actual world versus

within the scope of your beliefs, also directly applies to (C1). Models without this

requirement would allow us to study players who have false beliefs about what they

would do. Halpern himself notes that, within extensive form games, strategies are very

complicated, since, in the natural language, we seem to often conflate what we would

do with what we believe we would do.

Further, in the context of extensive form games, relaxing this assumption seems to
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illustrate a new way, not yet existing in the literature, of capturing agents’ uncertainty in

games. In the literature, this uncertainty is captured by randomization of strategies, or

the probability distribution reflecting opponents’ uncertainty of what the agent will do.

The interpretation that we propose, however, can model agents that are uncertain about

what they would do if they were to find themselves at v. We leave this discussion for

future work.

In conclusion, we note that at the core of the disagreement in the literature on the

epistemic characterization of the backwards induction solution lies confusion in the ap-

propriate way to formalize game theoretic intuitions. Our framework is able to capture,

formally, where these disagreements stem from. And while, in the end, our framework

suggests that Aumann-rationality and his result are the appropriate ways to deal with

rationality in extensive-form games, we note that it was the added counterfactual ma-

chinery that allowed us to identify this.
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CHAPTER 3

ALTERNATE SEMANTICS FOR CONDITIONAL BELIEFS

3.1 Introduction

At the intersection of conditionals and beliefs lie statements like “conditional on ϕ,

the agent believes ψ”, statements which are also called “conditional beliefs”. There

are many different approaches in the literature to study conditional beliefs, and many

semantics have been defined over the years [23, 17, 41, 10, 3]. It is easy to see that a

counterfactual reading might also be applicable for such statements, namely “if ϕ were

the case, then the agent would believe ψ”. Using counterfactuals to interpret conditional

beliefs is not new to the literature [41, 10]. We want to study the types of theories of

conditional beliefs that arise by combining beliefs and counterfactuals, and where these

theories stand within the ample literature on conditional beliefs.

Stalnaker points out the important difference between epistemic counterfactuals

(“how players would revise their beliefs were they to learn they were mistaken”) and

causal counterfactuals (“a player considers what the consequences would be of his do-

ing something he is not in fact going to do”) [41]. He pushes this distinction forward

and constructs plausibility models for belief revision in games. Board takes them as

inspiration for a theory of conditional belief for multiple agents (BRSIC), using a lan-

guage with an additional operator Bψ
i ϕ, read as “i believes that ϕ upon learning that ψ”

[10]. He calls them revised belief operators. Within the context of Dynamic Epistemic

Logic, Baltag and Smets generate a single-agent version of his theory, namely Condi-

tional Doxastic Logic (or CDL), where they introduce an additional modality, Bψϕ, to

interpret conditional belief. These models will serve as our inspiration.
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Conditional beliefs arise naturally when we study how agents change (revise or

update) their beliefs upon learning new information. Belief change is an active area

of research in philosophy and artificial intelligence. There are two well-known theo-

ries which specify postulates that any structure modeling belief change has to satisfy.

The distinction between - and the important implication of - static and dynamic be-

lief change is well known in the literature [4, 45, 19]. There has been much work

on the mechanisms for belief revision and update within the dynamic epistemic logic

paradigm [4, 3, 45, 19, 46, 34]. The standard AGM theory is associated with belief

revision, and with learning information about a static world [1], while the Katsuno and

Mendelzon theory (also denoted KGM) is associated with belief update, and learning in-

formation about a changing world [32]. Many models have been proposed which model

belief change according to these postulates, from connections to justification logic [4],

to dynamic doxastic logic [34], or Halpern’s belief-change systems [28]. Iterated belief

change is also an active area of research [16, 35, 14]. Conditional beliefs can also be

interpreted as suppositions, and there is a body of literature studying this approach [21].

We take a closer look at agents’ conditional beliefs on a static situation. Using coun-

terfactuals, however, we note there’s an inherent “active” interpretation of conditional

beliefs: after we consider ϕ being the case, then the agent believes ψ. In fact, broadly,

given how the conditional belief is interpreted, we can divide existing models in two

categories, fixed models which do not change as the agent conditions on the given infor-

mation, and kinetic models which do. A “fixed” read is closer to the initial one offered,

namely “conditional on ϕ, the agent believes ψ, while a “kinetic” read is closer to “the

agent will believe ψ after revising her belief state by successfully incorporating the in-

formation that ϕ is true” [3]. While these interpretations are similar for non-epistemic

facts, the difference appears in higher-order conditional beliefs. Our approach bridges

the gap between these two interpretations, as we use counterfactuals only to change the
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epistemic formulas at a world. It is easy to see that such an approach will have con-

sequences on higher-order conditional beliefs, which becomes another departure from

existing models for static belief change, which cannot capture higher-order beliefs.

3.1.1 Plausibility models

In this section we introduce some of the main components of plausibility models for

conditional beliefs, as defined by Baltag and Smets. For a more detailed exposition, see

[3, 4].

Suppose PROP is a set of propositional letters. A plausibility model is a structure

M = (W,≤,V), where W is a set of worlds, ≤ is a reflexive and transitive binary relation

on W, and V : W → 2P a valuation mapping each world to the set of propositional letters

true at that world. For each ω ∈ W, we define the set of worlds at least as plausible as

ω as ω↓ = {x ∈ W | x ≤ ω}. For each ω ∈ W, we define its connected component as

cc(ω) = {y ∈ W | x(≥ ∪ ≤)+y}, where (≥ ∪ ≤)+ is the transitive closure of ≥ ∪ ≤.

There are certain properties of interest that ≤ can satisfy, to which one usually re-

stricts plausibility models. If cc(ω) = W for each ω ∈ W, we say M is connected. We

say ≤ is well-founded if, for each nonempty set S ⊆ W, the set min S = {x ∈ S | ∀y ∈

S : y ≮ x} of minimal elements of S is nonempty, and we call the associated model

well-founded also. We say ≤ is total on W iff for each (x, y) ∈ W × W, we have x ≤ y

or y ≤ x, and we call the associated model M total as well. Finally, we say M is well-

ordered when ≤ is well-ordered, namely when it is total and well-founded, and locally

well-ordered when ≤ well-founded and total on each connected component.

49



Now consider the language of Conditional Doxastic Logic defined by the grammar:

ϕ ::= ⊥ | p | (ϕ→ ψ) | Bϕψ

where p ∈PROP. The formula Bψϕ is read “conditional on ψ, the agent believes ϕ”.

Intuitively, this means that each of the most plausible ψ-worlds satisfies ϕ.

Let M = (W,≤,V) be a locally well-ordered plausibility model. Semantics for LCDL

with respect to these models are defined the following way [3]:

• ~ϕ�M = {v ∈ W | M, v |= ϕ}

• M, ω 6|= ⊥

• M, ω |= p iff p ∈ V(ω)

• M, ω |= ϕ→ ψ iff M, ω 6|= ϕ or M, ω |= ψ.

• M, ω |= Bψϕ iff for all x ∈ cc(ω) we have

x↓ ∩ ~ψ� = ∅ or ∃y ∈ x↓ ∩ ~ψ� : y↓ ∩ ~ψ� ⊆ ~ϕ�.

In other words, Bψϕ holds at ω iff for every world connected to ω that has an equally

or more plausible ψ-world y, the ψ-worlds that are equally or more plausible than y

satisfy ϕ.

Theory CDL0 is a single-agent variant of Board’s theory BRSIC, and is a sound and

complete axiomatization of the language of conditional belief with respect to plausibility

models [3]:
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[(CL)] Schemes for Classical Propositional Logic

(K) B(ϕ1 → ϕ2 | ψ)→ (B(ϕ1 | ψ)→ B(ϕ2 | ψ))

(Succ) B(ψ|ψ)

(IEa) B(ϕ|ψ)→ (B(χ|ψ ∧ ϕ)↔ B(χ|ψ))

(IEb) ¬B(¬ϕ|ψ)→ (B(χ|ψ)→ B(χ|ψ ∧ ϕ))

(PI) B(χ|ψ)→ B(B(χ|ψ)|ϕ)

(NI) ¬B(χ|ψ)→ B(¬B(χ|ψ)|ϕ)

(WCon) B(⊥|ψ)→ ¬ψ

(MP) From ϕ and ϕ =⇒ ψ infer ψ

(MN) From ϕ infer [ψ]Bϕ

(LE) From ψ↔ ψ′ we can infer Bψϕ↔ Bψ′ϕ

Baltag et. al also provide the equivalent theory CDL, which they use to give rise to

a theory of Conditional Doxastic Logic with justifications:

[(CL)] Schemes for Classical Propositional Logic

(K) B(ϕ1 → ϕ2 | ψ)→ (B(ϕ1 | ψ)→ B(ϕ2 | ψ))

(Succ) B(ψ|ψ)

(KM) B(⊥|ψ)→ B(⊥|ψ ∧ ϕ)

(RM) ¬B(¬ϕ|ψ)→ (B(χ|ψ)→ B(χ|ψ ∧ ϕ))

(Inc) B(χ|ψ ∧ ϕ)→ B(ϕ→ χ|ψ)

(Comm) B(χ|ϕ ∧ ψ)→ B(χ|ψ ∧ ϕ)

(PI) B(χ|ψ)→ B(B(χ|ψ)|ϕ)

(NI) ¬B(χ|ψ)→ B(¬B(χ|ψ)|ϕ)

(WCon) B(⊥|ψ)→ ¬ψ

(MP) From ϕ and ϕ =⇒ ψ infer ψ

(MN) From ϕ infer [ψ]Bϕ

Note that this latter theory separates (IEa) and (IEb) into sub-axioms, and so (RM),
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also called rational monotonicity, appears as a more basic principle within (IEb). We

also note the similarity between this version of (RM) and (RM) for counterfactuals. In

fact, Halpern notes that rational monotonicity (for conditionals) appears in the AGM

postulates (in R8, in particular) [28].

Now, although plausibility models have some intuitive appeal, they validate some

problematic principles. Let’s start with (RM) itself. Consider the following statements:

(1a) After conditioning on me being a karate master, I consider it possible that I have

a twisted ankle.

(1b) After conditioning on me being a karate master, I believe I would have won the

match.

(1c) After conditioning on me being a karate master and me having a twisted ankle, I

believe I would have won the match.

Supposing (1a) and (1b) somehow doesn’t seem sufficient to then be able to conclude

(1c).

Now let’s take a closer look at axioms (PI) and (NI). These are clearly a mark of

these models capturing agents’ beliefs that are immutable in the face of conditioning.

Notably, these axioms do not correspond to principles of AGM. One important question

to answer is whether these are reasonable axioms when modeling conditioning. Con-

sider the following two statements:

(2a) After conditioning on this match being struck, I believe the match will light.

(2b) After conditioning on this match being wet, I believe that, after I condition on this

match being struck, I believe the match will light.
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(2a) seems reasonable, and by positive introspection (and modus ponens), we would

get to conclude (2b), which seems less reasonable.

A similar situation happens when we take a closer look at (NI). While this latter ex-

ample is slightly more challenging to represent in natural language, it seems problematic

to have an axiom that allows us to conclude (3b) from the very reasonable (3a):

(3a) It’s not the case that after conditioning on this match being struck, I believe the

match will light.

(3b) After conditioning on this match being lit, I believe that, it’s not the case that after

I condition on this match being struck, I believe the match will light.

We note that these examples are very similar to those in the literature on counterfac-

tuals, which is unsurprising given our goal to outline the applicability of a counterfactual

read.

3.2 Semantics

In this section we start outlining our response to some of the issues outlined above. To

start, we define a language that isolates the process of conditioning, introducing a public

announcement style operator which factors out “conditioning on ϕ”. Formally, fix a

finite set of countable primitive propositions PROP. The language of conditionalization,

denoted LC, is defined recursively

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | Bϕ | [ψ]ϕ,

where p ∈ PROP and [ψ]ϕ is read, “after conditionalization on ψ, ϕ holds”. As men-

tioned in the introduction, this language can be used to interpret conditional beliefs,
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since [ψ]Bϕ can be read as “after conditioning on ϕ, the agent believes ψ”. We can

recover Baltag and Smets’ language of Conditional Doxastic Logic by considering the

fragment of LC where we can only apply [·] if it is followed by a belief operator (so the

only formulas that contain [·] are formulas like [ψ]Bϕ).

Semantics for this language are given using counterfactual models.

Definition 14. A counterfactual model is a tuple M = (W,V,R, f ), where:

(P1) W is a finite set of worlds

(P2) V : PROP→ 2W is a valuation function

(P3) R ⊆ W ×W is a serial, transitive, and Euclidean binary relation, representing the

set of worlds the agent considers possible1

(P4) f : W ×P(W)+ → P(W)+ 2 is a Lewis-style closest-world function, i.e. it satisfies

the following three properties:

(c1) f (ω, A) ⊆ A (success)

(c2) f (ω, A) = {ω} whenever ω ∈ A (strong centering)

(c3) If f (ω, A) ⊆ B and f (ω, B) ⊆ A, then f (ω, A) = f (ω, B) (uniformity)

Although, in general, counterfactuals cannot qualify any relationships between the

A−closest and the A ∧ B−closest worlds, uniformity does relate the two, in a special

subcase when A and B themselves are related.

Lemma 2. Let M be a counterfactual model. Consider ω ∈ W and A, B ⊆ W. If

f (ω, A) ⊆ B then f (ω, A) = f (ω, A ∧ B).
1We write ωRω′ as well as ω′ ∈ R(ω) to represent this accessibility relation.
2P(W)+ = P(W) − {∅}
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Proof. We know f (ω, A) ⊆ A by success, so together with f (ω, A) ⊆ B, we get

f (ω, A) ⊆ A ∧ B. Note that success also implies f (ω, A ∧ B) ⊆ A ∧ B ⊆ A. Uniformity

implies then that f (ω, A) = f (ω, A ∧ B). �

For all ω ∈ W and A ⊆ W, we define the agent’s beliefs conditional on A or A-

conditional beliefs as RA(ω) = {ω′ ∈ f (ωi, A) | ωi ∈ R(ω)} (we will also be referring to

this as the pushforward of the agent’s beliefs at ω).

For each M = (W,V, f ,R) and A ⊆ W, we define the associated A-conditional model

to be MA = (W,V, f ,RA), where the set of worlds the agent considers possible has been

“conditionalized”.

Formulas in the language are interpreted the natural way:

• (M, ω) |= p iff p ∈ V(ω) for p ∈ PROP.

• (M, ω) |= ¬ϕ iff (M, ω) 6|= ϕ.

• (M, ω) |= ϕ ∧ ψ iff (M, ω) |= ϕ and (M, ω) |= ψ.

• (M, ω) |= Bϕ iff (M, ω′) |= ϕ for all ω′ ∈ R(ω).

Before we turn to semantics for the conditionalization operator, we need further

notation. Stalnaker takes a deep dive on appropriate definitions and logics for knowledge

and belief [41, 43]. A relation of interest for him is “epistemic indistinguishability”,

namely, worlds which the agent can’t distinguish between with respect to her beliefs. In

particular, consider our binary relation R on W through which we interpret belief. Then,

for every x ∈ W, we can look at the set of “epistemically indistinguishable” worlds,

namely {y : R(x) = R(y)}. Since the agent’s beliefs coincide at these worlds, the agent

can’t tell these worlds apart. Also note that, in general, this is a superset for the agent’s

55



beliefs at x. Epistemic indistinguishability is also an (easy to check) equivalence relation

on W; we will call the equivalence classes brushes, and we denote them by Br(x).

Recall that one complaint in the literature against similarity semantics for counter-

factuals is the lack of a clear specification of what constitutes as similar. We claim that

epistemic indistinguishability is a yet unexplored notion of closeness, but one that seems

entirely reasonable. On the one hand, while counterfactuals are context-dependent, it is

not obvious why this context should depend on the agent’s beliefs. This kind of interac-

tion between an agent’s epistemic access and counterfactual relations in the model might

sound unacceptable, if one is to interpret counterfactuals as reflecting some laws of the

world we are modeling. On the other hand, given that we are modeling how agents con-

dition their beliefs, assuming these are related to a notion of closeness brings us closer

to “subjective counterfactuals”, where each agent has a certain ordering on worlds, and

this ordering determines the similarity semantics for that agent [12, 43].

We say the worlds where the agent has the same beliefs as at the worlds currently

considered possible should be thought of as “closer” than any other worlds in the model.

We want to study models where, whenever possible, we counterfactually shift within

such a brush. Formally, we define the subjective property for a Lewis-style counterfac-

tual shift function:

(c4) for all ω ∈ W and A ⊆ W, if Br(ω) ∩ A , ∅, then f (ω, A) ⊆ Br(ω) (subjective)

A counterfactual model M whose counterfactual shift function satisfies (c1) − (c4)

is called subjective. We restrict our attention to subjective counterfactual models in the

remaining discussion.

We propose two different semantics for the conditionalization operator. Note the

dynamic style, which includes changing the model, similar to public announcements.
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Also note the similarity in these semantics in the existence of a precondition.

1. (M, ω) |= [ϕ]ψ iff ~ϕ� , ∅ implies (Mϕ, ω) |= ψ; we will be referring to this

semantics as adventurous, representing an agent that can update their beliefs, as

long as the information they conditionalize on is remotely compatible with the

rules of the world (i.e. the model).

2. (M, ω) |= [ϕ]ψ iff Br(ω) ∩ ~ϕ� , ∅ implies (Mϕ, ω) |= ψ; we will be referring to

these semantics as conservative, representing an agent that updates their beliefs

only if the information they conditionalize on is compatible with their epistemic

indistinguishability set.

We note that in each semantics, when the precondition doesn’t hold, we can represent

a certain type of existential quantification, of different scopes. Define ^ϕ ≡ ¬[ϕ]⊥.

1. For the first semantics, we have full existential quantifier over the domain: if

ω |= [ϕ]⊥ then the precondition fails, so there are no ϕ-worlds in the model; then

^ϕ is an existential quantifier over W.

2. For the second semantics, we have an existential quantifier over a brush: if ω |=

[ϕ]⊥ then the precondition fails, so there are no ϕ-worlds in ω’s brush; then ^ϕ is

an existential quantifier over Br(ω).

We can easily define universal quantification, using the dual. Define �ϕ ≡ [¬ϕ]⊥.

Then the first semantics can capture universal quantification over W, while the second

can capture universal quantification over the brush.

Note that, if one can stay in the brush, we recover a belief relation, as we can see in

the following claim.
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Proposition 11. Let M = (W,R,V, f ) be a subjective counterfactual model and let A ⊆

W. Consider ω ∈ W such that Br(ω) ∩ A , ∅. Then the restriction of RA to Br(ω) is

serial, transitive and euclidean.

Proof. First, note that, since we are restricting to ω, where Br(ω) ∩ A , ∅ and f is

subjective, the adventurous and conservative semantics are equivalent. Also note that,

if Br(ω) ∩ A , ∅, we have RA(ω) = RA(ω′) for any ω′ ∈ Br(ω), so the agent’s beliefs

conditional on A are the same anywhere in the brush.

For seriality, let ω′ ∈ Br(ω). Since Br(ω) ∩ A , ∅ and f is well-defined, RA(ω) =

RA(ω′) nonempty, so there exists v such that v ∈ RA(ω′).

For transitivity, let w ∈ Br(ω) and suppose wRAv and vRAu. Since Br(ω) ∩ A , ∅,

we have v ∈ Br(ω), so vRAu implies u ∈ f (ωi, A) ⊂ Br(ω) for some ωi ∈ R(ω), which

implies wRAu.

For euclidean, let w ∈ Br(ω) and suppose wRAv and wRAu. Since Br(ω)∩ A , ∅, we

have u, v ∈ Br(ω), so R(u) = R(v) = R(ω), which implies, as above, RA(u) = RA(v), so

vRAu. �

Note that the adventurous and conservative semantics differ when we condition on

an event whose satisfiability set intersects the brush trivially. Let M = (W,R,V, f ) be a

subjective counterfactual model and let A ⊆ W. Considerω ∈ W such that Br(ω)∩A = ∅.

For conservative semantics, conditioning on A leads to the agent vacuously believing

everything (including ⊥). For adventurous semantics, there are still non-trivial validities

when there are A-worlds in the model, but, even so, A-conditional beliefs need not be

introspective. We can see this depicted in a possible representation of this situation, in

Figure 3.1.
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Figure 3.1: A relation RA

The brush for world ω1 contains no A-worlds, but W has another brush which does

contain A-worlds. In the figure, the red arrows specify the closest-world counterfactual

shift (so, for example, f (ω1, A) = {ω2}). In particular, note that the relation RA is not

transitive: ω1RAω2 and ω2RAω3, but ω3 < RA(ω1).

3.2.1 Soundness

In this section we study the soundness of CDL-theory and CDL0-theory for our lan-

guage, LC, with respect to our models. This will point out how our models differ from

traditional models for conditional belief.

To start, we have the expected axiomatization for the universal and existential quan-

tifiers defined in the previous section.

Proposition 12. The � and ^ operator have an S5 axiomatization, where ^ϕ = ¬[ϕ]⊥

and, its dual, �ϕ = [¬ϕ]⊥:
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(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)

(T) �ϕ→ ϕ

(4) �ϕ→ ��ϕ

(5) ^ϕ→ �^ϕ

Proof. We prove the axioms above for an adventurous semantics - the proof for conser-

vative semantics follows in the same manner.

(K): First, suppose (M, ω) |= �(ϕ→ ψ). Then (M, ω) |= [ϕ∧¬ψ]⊥ which implies all

the worlds in the model are either ¬ϕ-worlds or ψ-worlds. Now suppose (M, ω) |= �ϕ,

i.e. (M, ω) |= [¬ϕ]⊥, so all worlds are ϕ-worlds. Since all worlds are either ¬ϕ-worlds

or ψ-worlds, this implies all worlds are ψ-worlds, so (M, ω) |= �ψ.

(T): Suppose (M, ω) |= �ϕ, i.e. (M, ω) |= [¬ϕ]⊥, so all worlds are ϕ-worlds. Then it

must be that (M, ω) |= ϕ.

(4): Suppose (M, ω) |= �ϕ. Suppose for a contradiction that there is a world ω′

in the model where (M, ω′) |= ¬�ϕ, which would imply there exists a non-ϕ-world, a

contradiction. Then (M, ω′) |= �ϕ for all ω′ ∈ W, so, by definition, (M, ω) |= ��ϕ.

(5): Suppose (M, ω) |= ^ϕ, so there exists a ϕ-world in the model. Using a similar

reasoning as in (4), we get that (M, ω′) |= ^ϕ for all ω′ ∈ W, which implies (M, ω) |=

�^ϕ. �

Proposition 13. The following axioms of CDL and CDL0 hold for us (adapted to our

notation):
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(CL)

(K) [ψ]B(ϕ1 → ϕ2)→ ([ψ]Bϕ1 → [ψ]Bϕ2)

(Succ) [ψ]Bψ

(KM) [ψ]B⊥ → [ψ ∧ ϕ]B⊥

(Comm) [ϕ ∧ ψ]Bχ→ [ψ ∧ ϕ]Bχ

(WCon) [ψ]B⊥ → ¬ψ

(IEa) [ψ]Bϕ→ ([ψ ∧ ϕ]Bχ↔ [ψ]Bχ)

(MP) From ϕ and ϕ =⇒ ψ infer ψ

Proof. We show that the axioms hold for a counterfactual model M and adventurous se-

mantics for the conditioning operator. Adapting the proofs for a conservative semantics

follows easily.

Axioms of (CL) clearly hold. So does (MP).

Consider axiom (K). Suppose (M, ω) |= [ψ]B(ϕ1 → ϕ2). If ~ψ�M = ∅, then there are

no ψ-worlds in the domain, so (M, ω) |= [ψ]Bϕ1 and (M, ω) |= [ψ]Bϕ2 hold trivially too.

Otherwise, we get (Mψ, ω) |= B(ϕ1 → ϕ2), so (Mψ, ω′) |= (ϕ1 → ϕ2) for all ω′ ∈ Rψ(ω)

(*). Now suppose (M, ω) |= [ψ]Bϕ1, so, since we already know W ∩ ~ψ� , ∅, we have

(Mψ, ω) |= Bϕ1. This is equivalent to (Mψ, ω′) |= ϕ1 for all ω′ ∈ Rψ(ω). This together

with (*) implies (Mψ, ω′) |= ϕ2 for all ω′ ∈ Rψ(ω), so, by definition (M, ω) |= [ψ]Bϕ2.

Consider axiom (Succ). It holds by construction, since f satisfies success, so it must

be that ψ holds at all closest ψ-worlds.

Consider axiom (KM). Suppose (M, ω) |= [ψ]B⊥. This implies there are no ψworlds

in the model, so there are no ψ ∧ ϕ worlds either, so (M, ω) |= [ψ ∧ ϕ]B⊥.

Consider axiom (Comm). This is valid since f (ω, ~ϕ ∧ ψ�) = f (ω, ~ψ ∧ ϕ�) for any
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ω ∈ Ω.

Consider axiom (WCon). Suppose (M, ω) |= [ψ]B⊥ implies there are no ψ worlds in

the model, so (M, ω) |= ¬ψ.

Consider axiom (IEa). Suppose (M, ω) |= [ψ]Bϕ. If W∩~ψ� = ∅, then W∩~ψ∧ϕ� =

∅ so it all holds trivially. Otherwise, we have f (ω′, ~ψ�) ⊆ ~ϕ ∧ ψ� for all ω′ ∈ R(ω).

By uniformity, this is equivalent to f (ω′, ~ψ�) = f (ω′, ~ψ ∧ ϕ�) for all ω′ ∈ R(ω). We

then have (M, ω) |= [ψ ∧ ϕ]Bχ↔ [ψ]Bχ. 3

�

Proposition 14. The following axioms are valid for LC with respect to subjective coun-

terfactual models:

Introspective conditioning ^ϕ→ B^ϕ

Serial conditioning Bϕ→ ^ϕ

Belief and conditioning [ψ]Bϕ→ B[ψ]Bϕ

Proof. Once more, we consider adventurous semantics for the [·] operator, and note the

proofs for the conservative semantics follow in the same manner.

Consider the axiom Introspective Conditioning. Suppose (M, ω) |= ^ϕ, i.e. (M, ω) |=

¬[ϕ]⊥. If ~ϕ� = ∅, then we would have (M, ω) |= [ϕ]⊥, so ~ϕ� , ∅. Suppose for a

contradiction (M, ω) |= ¬B^ϕ, so there exists ω′ ∈ R(ω) such that (M, ω′) |= ¬^ϕ, i.e.

(M, ω′) |= [ϕ]⊥, which implies ~ϕ� = ∅, a contradiction. Hence (M, ω) |= B^ϕ.

Consider the axiom Serial Conditioning. Suppose (M, ω) |= Bϕ. Then we must have

~ϕ� , ∅, so (M, ω) |= ^ϕ.

3We actually have [ψ]Bϕ→ ([ψ ∧ ϕ]χ↔ [ψ]χ).
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Consider the axiom Belief and Conditioning. Suppose (M, ω) |= [ψ]Bϕ. If ~ψ� =

∅, then the consequent holds trivially. Otherwise, we have (Mψ, ω) |= Bϕ, and since

Rψ(ω) = Rψ(ω′) for all ω′ ∈ R(ω), we have (Mψ, ω′) |= Bϕ for all ω′ ∈ R(ω). The

consequent follows. �

Proposition 15. The following axioms of CDL and CDL0 don’t, in general, hold for LC

with respect to subjective counterfactual models:

(PI) [ψ]Bχ→ [ϕ]B[ψ]Bχ

(NI) ¬[ψ]Bχ→ [ϕ]B¬[ψ]Bχ

(Inc) [ψ ∧ ϕ]Bχ→ [ψ]B(ϕ→ χ)

(IE b) ¬[ψ]B¬ϕ→ ([ψ ∧ ϕ]Bχ↔ [ψ]Bχ)

(RM) ¬[ψ]B¬ϕ→ ([ψ]Bχ→ [ψ ∧ ϕ]Bχ)

Proof. First, note that (PI) and (NI) are axioms reflecting the static nature of conditional

belief semantics and, as argued in Section 3.1.1, we don’t want these axioms to hold in

our semantics. We can see that they are, indeed, not valid, by considering the following

counterexamples.

For (PI), consider the model in Figure 3.2.

This clearly satisfies KD45 for R, success, subjectivity, and strong centering for f .

The trickier property to prove is uniformity. Recall uniformity requires that, if f (ω, A) ⊆

B and f (ω, B) ⊆ A for any ω ∈ W, and A, B ⊆ W, then f (ω, A) = f (ω, B). Note that

uniformity does not apply if A ∩ B = ∅. Then we have to check the following cases:

Case 1. A = {ω1}, B = {ω1, ω2} (using symmetry, we don’t need to check when

A = {ω1, ω2}, B = {ω1}). Now, for ω1, we clearly have (by strong centering) that

f (ω1, A) = f (ω1, B) = {ω1}. For ω2, we have f (ω2, B) = {ω2} (by strong centering), and

ω2 < A, so uniformity does not apply.
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ϕ, ψ,¬χ

ω1

¬ϕ, ψ, χ

ω2

ϕχ

Figure 3.2: A counterexample for PI

Case 2. A = {ω2}, B = {ω1, ω2} (using symmetry, we don’t need to check when

A = {ω1, ω2}, B = {ω2}). Now, for ω2, we clearly have (by strong centering) that

f (ω2, A) = f (ω2, B) = {ω2}. For ω1, we have f (ω1, B) = {ω1} (by strong centering), and

ω1 < A, so uniformity does not apply.

So the model defined in Figure 3.2 is a subjective counterfactual model. Now con-

sider adventurous semantics 4. Note that at ω1, we have (M, ω1) |= [ψ]Bχ, since the only

world considered possible, ω2, is already a ψ∧χ-world; however, (M, ω1) 6|= [ϕ]B[ψ]Bχ,

since ω2 is not a ϕ-world, conditioning to the closest ϕ-world leads to ω1, which is a

ψ-world, but not a χ-world.

For (NI) consider the model in Figure 3.3.

This model clearly satisfies KD45 for R, success, subjectivity, and strong centering

for f . As for (PI), uniformity is more tricky to prove, but the small number of worlds

makes it as straightforward as for (PI) (with exactly the same cases considered).

So the model defined in Figure 3.3 is a subjective counterfactual model. Now con-

4The proof follows in the same manner for conservative semantics.
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ϕ, ψ, χ

ω1

¬ϕ, ψ,¬χ

ω2

ϕ, χ

Figure 3.3: A counterexample for NI

sider adventurous semantics. Note that at ω1, we have (M, ω1) |= ¬[ψ]Bχ, since the only

world considered possible, ω2, is a ψ ∧ ¬χ-world; however, (M, ω1) 6|= [ϕ]B¬[ψ]Bχ,

since ω2 is not a ϕ-world, conditioning to the closest ϕ-world leads to ω1, which is a

ψ ∧ χ-world.

On the other hand, the axioms (Inc), (RM) and (IEb) don’t hold, all for a simi-

lar reason, namely the counterfactual semantics for the conditionalization operator. In

general, unless the closest ψ-worlds are all ϕ worlds (in which case, by Lemma 2, the

closest ψ-worlds are precisely the closest ψ ∧ ϕ-worlds), the closest ψ-worlds need not

be (even related to) the closest ψ ∧ ϕ-worlds. This is precisely the issue of antecedent

monotonicity.

A restriction of (Inc) does hold (easy to check using Lemma 2): [ψ]Bϕ → ([ψ ∧

ϕ]Bχ → [ψ]B(ϕ → χ)). There are other special cases we could consider. To start, let

ψ = >. Then (Inc) becomes [ϕ]Bχ → [>]B(ϕ → χ) which is valid in our models (both

semantics). This shows us another case in which (Inc) holds, namely if ~ψ� ⊆ ~ϕ�. The

resulting axiom is [ψ]Bχ→ [ψ]B(ϕ→ χ), which clearly holds. Slightly more generally,

if f (ω, ~ψ�) ⊆ ~ϕ�, then by Lemma 2, (Inc) holds again.
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The axioms in Proposition 13 and 14 are all sound for our language with respect to

subjective counterfactual models. We believe they also form a complete axiomatization:

Conjecture 1. The axioms in Proposition 13 and 14 form a sound and complete axiom-

atization for the fragment ofLC that does not include iterated [·] operators, with respect

to subjective counterfactual models.

3.3 Discussion

We proposed adventurous and conservative semantics for conditional beliefs which con-

tinue the tradition of Dynamic Epistemic Logic. This approach for interpreting condi-

tional beliefs focuses on a kinetic, counterfactual read, where “believing ϕ conditional

on ψ” is read as, “if ψ were the case, the agent would believe ϕ”. We saw the effects

of this interpretation on validities for higher-order conditional beliefs in this logic, but a

sound and complete axiomatization remains an open problem.

Further, we noticed that there are a number of axioms which hold intrinsically in

existing theories for conditional beliefs, and don’t in counterfactual models, like positive

and negative introspection. We leave for future work the study of restrictions needed

to be imposed on counterfactuals in order to obtain an equivalence with the existing

plausibility models that interpret conditional beliefs.

Finally, we also turned our attention to the conditions under which A-conditional

beliefs remain introspective (as unconditional beliefs are). There are a number of ques-

tions here that remain open, from whether we can preserve introspection with weaker

conditions than subjectivity, to whether there is a place for adventurous models.
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CHAPTER 4

EXTENSIONS FOR PREVIOUS RESULTS

4.1 The language of counterfactuals

We have seen that counterfactuals arise, naturally, when agents reason about the best

thing to do in extensive form games [12, 42, 26]. Chapter 2 continued the work in this

field by taking a closer look at how counterfactuals and beliefs interact in extensive-form

games. A natural next step is to include counterfactuals explicitly in the language. While

this seems like a small change, this cascades into interesting consequences. Consider

the following game:

1

(1,3) 2

(3,2) 1

(2,0) (1,1)

l
r

R
L

u d

v0

v1 v2

v3 v4

v5 v6

l
r

R
L

u d

Figure 4.1: The game (left) and associated vertices (right)

Suppose player 1 believes player 2 would choose L if given the chance, so is plan-

ning to play l; they are trying to reason about what would happen if player 2 would

choose R instead. Now, since both players have access to the game tree, a traditional

representation of this setting in game theory, similar to the one in Chapter 2, would re-

quire associating a vertex with each node, like the figure on the right. Then player 1’s
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reasoning above basically asks her to consider what is the case at the closest v2-world

where player 2 chooses R, which requires primitive access, in the model, to player’s

strategies, or checking whether node v4 is reached. It turns out that, with a more precise

specification of the language agents use to reason about such a game, we no longer need

to have the vertex-representation in mind when reasoning about the game, nor do we

need primitive access to strategies. We are studying static settings, where agents reason

a priori to the game starting about how the game will unfold, but we are not including

time in our models. Hence, a state in our models specifies a way in which the game

unfolds, i.e. an outcome. Outcomes are, simply, sequences of moves in the tree (all the

way down to a leaf), so we want our agents to be able to specify, in the language, the

moves they choose, and when they do so. Then, player 1 reasoning about the closest v2-

world where v4 is reached can be expressed as the closest world where player 1 chooses

r, and the subsequent move in whatever outcome is determined at said world is R.

We consider, then, a language which includes beliefs and counterfactuals. This can

capture statements like, “player 2 believes player 1 will choose l at the onset of the

game”, or “if player 1 were to choose r at the onset, player 2 would choose L”. Now,

recall that in Chapter 2, we argue that, since strategies can be thought of as complete

specifications of what a player would do at every history they are due to play, they are

counterfactual objects. We outline below how easily strategies can be represented in

our language. Further, once we turn to defining rationality in extensive-form games, our

language enables us to take a closer look at how counterfactuals and beliefs interact.

In particular, note that determining rationality implies determining whether switching

strategies would leave someone better off. Switching implies a counterfactual shift, but

since strategies are counterfactual objects, reasoning about switching strategies becomes

reasoning about iterated counterfactuals. There is no existing work in the literature (that

we have seen) that adopts this iterated counterfactual approach to model rationality.
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The rest of this chapter goes as follows. To start, we adapt the model introduced in

Chapter 2, Section 2.3.3 to a more general setting which includes counterfactuals in the

language. Many of the results included in that chapter follow easily. The interesting

changes occur once we look at definitions of rationality.

4.1.1 Counterfactual models for extensive-form games

An extensive form game is a tuple Γ = (N,H, P, (ui)i∈N) where:

(P1) N = {1, . . . , n} is the set of players.

(P2) H is a set of sequences called histories, intuitively describing paths in the game

tree. A terminal history or outcome is a member of H that has no proper extension

in H. Denote the set of terminal histories by Z.

(P3) P : H Z → N is the player function, where intuitively P(h) = i means that player

i is due to act at history h. Let Hi = {h ∈ H : P(h) = i}.

(P4) ui : Z → R is a utility function for every player i ∈ N.

For each h ∈ H Z, let A(h) = {a : (h, a) ∈ H}; in other words, A(h) is the set of

actions available to player P(h) at history h. To streamline the presentation, we restrict

our attention in this paper to finite games, that is, games where Z is finite.

Next we build a logical language for reasoning about extensive form games, starting

with the set of primitive propositions

ΦΓ = {movei(h, ai) : i ∈ N, ai ∈ A(h), P(h) = i}.

We read movei(h, ai) as “player i moves from history h by taking action ai”. The re-

quirement P(h) = i ensures that it is player i’s turn at history h, and ai ∈ A(h) ensures
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that the move is legal, in that it generates a well-defined history (h, ai) ∈ H. Closing

this set under negation, conjunction, unary belief modalities Bi for i ∈ N, and the binary

counterfactual modality� generates LEFG. This is our object language.

By conjoining primitives, the language can describe not only individual moves but

also whole histories of play, which will be particularly useful in representing players’

plans of action at different histories of the game. For each h ∈ H, define ϕh ∈ LEFG

recursively: for the history ∅ let ϕ∅ = >; now, supposing ϕh is defined, define ϕ(h,a) =

ϕh ∧ movei(h, a), where P(h) = i. Intuitively, ϕh describes the moves in the game up to

history h. For example, in the market-entry game, we have ϕ(I,F) = > ∧ move1(∅, I) ∧

move2((I), F).

Semantics for this language are given by a generalized version of the counterfac-

tual models introduced in Chapter 2 where the closest-world function is defined on any

nonempty subset of the state space, instead of, simply, sets which specify where cer-

tain vertices are reached. As motivated in the introduction, this is so that we can model

agents who reason about switching their strategies, which for us will be counterfactual

objects as well.

Consider an adaptation of counterfactual-models from Section 2.3.3 to this more

general counterfactual shift, so we define M = (Ω, (PRi)i∈N ,O, f ):

(R1) Ω is a nonempty, finite state space.

(R2) PRi : Ω → ∆(Ω) assigns to each ω ∈ Ω a probability measure PRi(ω) on Ω

representing the beliefs of player i at ω.

(R3) PRi(ω)({ω′ : PRi(ω′) = PRi(ω)}) = 1 (i.e., players are sure of their own beliefs).

(R4) O : Ω→ Z assigns a unique outcome to every state.
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(R5) f : Ω× (2Ω ∅)→ Ω is a “closest world” function satisfying f (ω,T ) ∈ T and such

that if ω ∈ T , then f (ω,T ) = ω (intuitively, f maps (ω,T ) to the T -world most

similar to ω).1

Formulas in the language LEFG are interpreted in such models recursively, as fol-

lows:

~movei(h, ai)� = {ω ∈ Ω : (h, ai) is an initial segment of O(ω)}

~¬ϕ� = Ω ~ϕ�

~ϕ ∧ ψ� = ~ϕ� ∩ ~ψ�

~Biϕ� = {ω ∈ Ω : PRi(ω)(~ϕ�) = 1}

~ϕ� ψ� = {ω ∈ Ω : f (ω, ~ϕ�) ∈ ~ψ�}.

Thus, worlds in our models encode outcomes via the function O, Bi is interpreted as

probability 1 belief, and counterfactual expressions are interpreted in the standard way:

ϕ� ψ is true at ω just in case ψ is true at the ϕ-world that is “most similar” to ω, as

picked out by the function f .

Conditions (C1) and (C2) introduced and motivated in Chapter 2 are easily rewritten

in this new setting:

(C1) ∀ω ∈ Ω, ∀i ∈ N, ∀h ∈ Hi, if (h, ai) is an initial segment of O( f (ω, ~ϕh�)) for some

ai, then for all ω′ ∈ Ω such that PRi(ω)(ω′) > 0, (h, ai) is an initial segment of

O( f (ω′, ~ϕh�)).

1It’s common to include a general coherency requirement for counterfactual shift
functions, namely that for all ω ∈ Ω, and for all T,U ∈ 2Ω, if f (ω,T ) ∈ U, then
f (ω,T ) = f (ω,T ∩ U). This simply says that if the closest T -world is a U world, then
it is also the closest T -and-U-world. For the present work, we omit it for the sake of
generality, though it could certainly be imposed.

71



(C2) ∀ω ∈ Ω, ∀h ∈ H, ∀a ∈ A(h) we have

f ( f (ω, ~ϕh�), ~ϕ(h,a)�) = f (ω, ~ϕ(h,a)�).

Recall that condition (C1) essentially guarantees that players are sure of their own

strategies. Condition (C2) says, roughly speaking, that the counterfactual shift operator

respects the temporal nature of the game in the sense that the closest (h, a)-world to ω

is also the closest (h, a)-world to the closest h-world to ω; this will allow us to compute

the expected utility of playing a strategy in a certain subgame. Also recall that, although

it seems that condition (C2) is restricted to a single move after a history, this condition

holds across all extensions, and an analagous result to Lemma 1 (Section 2.3.3) easily

holds in this setting as well:

Lemma 3. For all ω ∈ Ω and h ∈ H, if h′ is a sequence of moves such that (h, h′) ∈ H,

we have

f ( f (ω, ~ϕh�), ~ϕ(h,h′)�) = f (ω, ~ϕ(h,h′)�).

Denote the class of all models satisfying (R1)–(R5) and (C1)–(C2) by MEFG, and

call these models for Γ.

Representing strategies

Our previous work already showed how we can represent strategies. We take the time

in this section to reiterate our previous results in this new semantics.

Recall that a strategy for player i is a function ρi mapping histories where player i

is due to play to actions such that for each h ∈ Hi we have ρi(h) ∈ A(h).

Fix a game Γ and let M ∈ MEFG be a model for this game. Denote by Λi the set of

all strategies for player i. Recall that we can use the counterfactual operator to answer
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the question “What would player i if history h occurred?”, by switching to the closest

world where history h does occur – provided the model is rich enough. In Chapter 2,

this richness was ensured by the fact that f was defined as a total function, but as f is

defined in greater generality here, we need to consider a certain subset of the class of

models. Say that a model for Γ is history-rich if O is surjective.2

Then we can recover strategies, as expected (similar to Proposition 4, Section 2.3.3):

Proposition 16. Let M = (Ω, (PRi)i∈N ,O, f ) be a history-rich model for Γ. For all

ω ∈ Ω, for all i ∈ N, and for all nonterminal h ∈ Hi, there is a unique si(ω)(h) ∈ A(h)

such that ω |= ϕh � movei(h, si(ω)(h)).

Proof. Since O is surjective, ~ϕh� , ∅, therefore f (ω, ~ϕh�) is defined. Since h is

nonterminal, it follows that there exists an a ∈ A(h) such that ω |= ϕh � movei(h, a).

Now suppose there exist ai, a′i ∈ A(h) such that ω |= ϕh � movei(h, ai) and ω |=

ϕh � movei(h, a′i). Then f (ω, ~ϕh�) ∈ ~movei(h, ai)�, so (h, ai) is an initial segment

of O( f (ω, ~ϕh�)), and similarly (h, a′i) is an initial segment of O( f (ω, ~ϕh�)). By (R4),

since O assigns a unique outcome to every state, we have (h, ai) = (h, a′i), so ai = a′i . �

Recall then that we can think of each si : Ω → Λi as a function assigning a strategy

for player i to each world. In light of the importance of these functions, we henceforth

restrict attention to history-rich models.

It easily follows that players are sure of their own strategies, or, formally:

Proposition 17. For every ω ∈ Ω and each i ∈ N, we have PRi(ω)({ω′ : si(ω′) =

si(ω)}) = 1.
2This richness condition can be weakened slightly: it is only necessary that every

non-terminal node in the game tree be actualized at some world. Nonetheless, we opt
for this more succinct and slightly stronger formulation since the extra richness will be
required later, when we discuss rationality and strategy shifts.
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Proof. The proof is analagous to that for Proposition 5, adapted to this setting.

It is sufficient to prove that for every ω′ ∈ Ω such that PRi(ω)(ω′) > 0 we have

si(ω′) = si(ω). Let ω′ be as above, and consider nonterminal h ∈ Hi. By Proposition

16, si(ω)(h) = a for a unique a ∈ A(h). Then ω |= ϕh � movei(h, a), so (h, a) is

an initial segment to O( f (ω, ~ϕh�)). By (C2), that implies (h, a) an initial segment to

O( f (ω′, ~ϕh�)). Again by Proposition 16, we know that si(ω′)(h) = a′ for a unique

a′ ∈ A(h), so (h, a′) an initial segment to O( f (ω′, ~ϕh�)), which implies that a = a′, i.e.

si(ω)(h) = si(ω′)(h). Since this equality holds for arbitrary h, we have si(ω) = si(ω′) for

every ω′ ∈ Ω such that PRi(ω)(ω′) > 0, as desired. �

In Section 2.3.3 we identified the unique terminal history reached from a vertex

given a strategy profile - we need a similar thing here, for histories instead. Then for

each h ∈ H, let [h] ⊆ Z be the set of terminal histories that extend h. Denote the unique

terminal history in [h] reached from h when the players play according to ρ by [h]ρ. In

particular, [∅]ρ is the outcome of the game induced by ρ.

We also have the analog of Proposition 6 for this setting, so the strategies associated

with any given world actually induce the outcome that is assigned to that world.

Proposition 18. For all ω ∈ Ω, the terminal history induced by s(ω) =

(s1(ω), . . . , sn(ω)) is precisely O(ω). In other words, [∅]s(ω) = O(ω).

Proof. The proof follows that for Proposition 6 precisely.

For a contradiction, suppose not; that is, suppose that [∅]s(ω) , O(ω). Then there

exists h ∈ H such that h is a maximal initial segment for both of these terminal histories,

but h is not itself terminal. Let a be such that (h, a) is an initial segment for O(ω).

Then by assumption sP(h)(ω)(h) = a′ , a (for some a′). This means that ω |= ϕh �
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moveP(h)(h, a′), so f (ω, ~ϕh�) ∈ ~moveP(h)(h, a′)�. But ω ∈ ~ϕh�, so f (ω, ~ϕh�) = ω,

hence ω ∈ ~moveP(h)(h, a′)�, so (h, a′) is an initial segment of O(ω), contradicting the

fact that a , a′. �

Now then that by conjoining counterfactual statements, the language can encode full

strategies. For each strategy ρi ∈ Λi, let ϕρi denote the formula∧
hi∈Hi

ϕhi � movei(hi, ρi(hi)).

Proposition 19. For all ω ∈ Ω, we have ω |= ϕρi iff si(ω) = ρi.

Proof. First suppose ω |= ϕρi . Let hi ∈ Hi; then ω |= ϕhi � movei(hi, ρi(hi)), so by

definition si(ω)(hi) = ρi(hi). Since hi ∈ Hi was arbitrary, this shows that si(ω) = ρi.

Conversely, suppose that ω 6|= ϕρi; then there is some hi ∈ Hi such that ω 6|= ϕhi �

movei(hi, ρi(hi)), from which it follows that si(ω)(hi) , ρi(hi), hence si(ω) , ρi. �

A standard assumption in classical game theory is that, as players consider switching

strategies, their opponents are unaffected by this “mental exercise”, and as such, their

strategies do not change. It will be useful to have a name for models with this “opaque-

ness” property (cf. [29]): say that a model is opaque if it satisfies the following:

(C3) ∀ω ∈ Ω, ∀i ∈ N, we have s j( f (ω, ~ϕρi�)) = s j(ω) for all j ∈ N with j , i.

4.1.2 Rational Play

Best Responding

To start, we look at defining the notion of rationality in the classical setting within our

models. Recall that a player is rational if they are best responding to their beliefs about
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the strategies their opponents are using—that is, if their chosen strategy maximizes their

expected utility across all their possible strategies. This is easy to define in our models.

Each probability measure on worlds induces a probability measure on opponents’ strate-

gies via the functions si. This captures players’ uncertainties about the strategies their

opponents are using. We can then compute each player’s expected utility for playing a

given strategy at a world:

Definition 15. For every i ∈ N, ω ∈ Ω, and ρi ∈ Λi, define

EUi(ω, ρi) =
∑
ω′∈Ω

PRi(ω)(ω′) · ui(O( f (ω′, ~ϕρi�)).

Thus, for each possible world ω′ that player i considers possible, we compute the

utility player i would get if they were to play ρi at that world (which is just the utility of

the outcome associated with the closest ρi-world to ω′, namely f (ω′, ~ϕρi�)); this value

is then weighted by the probability player i assigns to ω′. Note that when ρi = si(ω), by

Proposition 17, for each ω′ with PRi(ω)(ω′) > 0 we have si(ω′) = si(ω), and therefore

f (ω′, ~ϕρi�) = ω′, so this definition reduces to player i’s actual expected utility at ω:

EUi(ω, si(ω)) =
∑
ω′∈Ω

PRi(ω)(ω′) · ui(O(ω′)).

Observe that EUi(ω, ρi) is not always defined—it crashes whenever ~ϕρi� = ∅. Thus,

to make sense of expected utility, we must assume this does not occur. Call a model in

which each si is surjective strategy-rich. In light of the importance of strategy-richness

for articulating the notion of best response, we henceforth restrict our attention to models

that satisfy it. Extensive-form games can easily have very large strategy spaces, making

this condition highly non-trivial; still, in order for a player to actually compute their

expected utility, they must consider in turn how things would be if they were to play

each and every one of their alternative strategies. For this reason we do not feel that

76



strategy-richness, as a condition on models, oversteps the bounds of what it is reasonable

for models appropriate for representing rationality to encode.

We can collect at each world ω the set of strategies that maximize player i’s expected

utility,

BRi(ω) = {ρi ∈ Λi : ∀ρ′i ∈ Λi, EUi(ω, ρi) ≥ EUi(ω, ρ′i)},

and extend the object language with new propositional constants RATi, read “player i is

rational”, interpreted in the natural way: ~RATi� = {ω ∈ Ω : si(ω) ∈ BRi(ω)}.

Subgame Rationality

We have already seen in Chapter 2 that the appropriate notion of rationality for

extensive-form games seems to be subgame rationality. Interestingly, however, once

we add counterfactuals to our language, defining subgame-rationality is no longer as

straightforward.

Recall that we need to define the expected utility of playing a strategy after a given

history has occurred; this will allow us to express whether a player’s strategy is optimal

not only at the start of the game, but after every possible history where they are due to

play. This involves yet another kind of counterfactual shift: roughly speaking, for each

world and each player, we want to check what would be the case if history h were to

occur. Here an interesting subtlety arises. The concept of subgame perfect equilibrium

might be read as implying a specific order of operations: first, we consider a given

subgame h (which in our setting corresponds to a first-order counterfactual shift, moving

to the closest h-world); next, player i considers switching strategies to check whether

their current strategy is expected utility maximizing (which in our setting corresponds

to second degree counterfactual shifts, moving to the closest ρi-worlds, as in Definition
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15).

Roughly speaking, if we try to implement this in our setting—shifting first

to the closest h-world, then to the closest ρi-world from there—it looks like

f ( f (ω, ~ϕh�), ~ϕρi�). However, the closest ρi-world to the closest h-world might not

be an h-world, so we couldn’t use this world to compute player i’s expected utility of

playing ρi after history h occurred. And while we do want to switch to a world where

both history h has occurred and afterwards ρi is employed, shifting to the closest ϕh∧ϕρi

world does not always make sense: some strategies are incompatible with certain histo-

ries occurring, in which case ~ϕh ∧ ϕρi� = ∅ no matter how rich the model is.

Hence, in order to compute the expected utility of playing a given strategy after his-

tory h has occurred, we need a somewhat subtler approach, one that essentially reverses

this order of operations. To begin, the following lemma will be useful. Essentially, it

says that switching to the closest h-world does not change any of the players’ strategies

from history h onward. Note that this requirement looks very similar to F3 in Halpern’s

models from Chapter 2.

Lemma 4. Let h ∈ H, ω ∈ Ω, and let ω′ = f (ω, ~ϕh�). Then for every i ∈ N, we have

si(ω)(hi) = si(ω′)(hi) for all hi ∈ Hi extending h.

Proof. Let i ∈ N and consider hi ∈ Hi for which h is an initial segment. By

Lemma 3, we have f (ω′, ~ϕhi�) = f (ω, ~ϕhi�). Then there exists a unique ai such that

f (ω′, ~ϕhi�), f (ω, ~ϕhi�) ∈ ~movei(hi, ai)�, so ω and ω′ both satisfy ϕhi � movei(h1, ai),

from which it follows that si(ω)(hi) = si(ω′)(hi), as desired. �

We next define a counterfactual probability distribution reflecting what player i be-

lieves would be the case if they were to switch to another strategy (this is precisely the

notion of a player’s counterfactual belief at state ω from [29], except adapted here to an
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extensive form setting). For every i ∈ N and ω ∈ Ω, define

PR
ρi
i (ω)(ω′) =

∑
{ω′′: f (ω′′,~ϕρi�)=ω

′}

PRi(ω)(ω′′). (4.1)

Note that PRρi
i (ω)(~ϕρi�) = 1, since

PR
ρi
i (ω)(~ϕρi�) =

∑
ω′∈~ϕρi�

PR
ρi
i (ω)(ω′)

=
∑

ω′∈~ϕρi�

∑
{ω′′: f (ω′′,~ϕρi�)=ω

′}

PRi(ω)(ω′′)

=
∑
ω′∈Ω

PRi(ω)(ω′).

Using these “counterfactual beliefs”, we can define the expected utility of player i

playing any given strategy, supposing history h has occurred:

Definition 16. For every i ∈ N, h ∈ H, and ρi ∈ Λi, define

EUh
i (ω, ρi) =

∑
ω′∈Ω

PR
ρi
i (ω)(ω′) · ui(O( f (ω′, ~ϕh�))).

By Lemma 4, for all j ∈ N and all h j ∈ H j extending h, we have s j( f (ω′, ~ϕh�))(h j) =

s j(ω′)(h j), so the players’ strategies at f (ω′, ~ϕh�) agree with their strategies at ω′ when

restricted to histories extending h. This means that O( f (ω′, ~ϕh�)) = [h]s(ω′), so this

definition of expected utility at a subgame actually computes the utilities associated

with playing different strategies in that subgame, as we would want it to.

Notice that there are two counterfactual shifts at play in Definition 16—one for

strategies, and one for histories. But we avoid the previous problem by, essentially,

implementing the shift to the closest ρi-world first (in the definition of counterfactual

belief), and then inside that context we shift to the closest h-world, relying on Lemma

4 to ensure that in so doing we do not change ρi below h. The following lemma makes

this precise.
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Lemma 5. For all i ∈ N, hi ∈ Hi, ω ∈ Ω, and ρi ∈ Λi, we have

EUh
i (ω, ρi) =

∑
ω′∈Ω

PRi(ω)(ω′) · ui(O( f ( f (ω′, ~ϕρi�), ~ϕhi�)).

Proof.

EUhi
i (ω, ρi) =

∑
ω′∈Ω

PR
ρi
i (ω)(ω′) · ui(O( f (ω′, ~ϕhi�))), using definition 16

=
∑
ω′∈Ω

 ∑
{ω′′: f (ω′′,~ϕρi�)=ω

′}

PRi(ω)(ω′′)

 · ui(O( f (ω′, ~ϕhi�))), using (1)

=
∑
ω′′∈Ω

PRi(ω)(ω′′) · ui(O( f ( f (ω′′, ~ϕρi�), ~ϕhi�))). �

Superficially, Definition 16 looks quite different from Definition 15. However, we

can show that when the history considered is ∅, corresponding to the beginning of the

game, we obtain Definition 15 as a special case:

Proposition 20. For every i ∈ N, ω ∈ Ω, and ρi ∈ Λi, we have EU∅i (ω, ρi) = EUi(ω, ρi).

Proof.

EU∅i (ω, ρi) =
∑
ω′∈Ω

PRi(ω)(ω′) · ui(O( f ( f (ω′, ~ϕρi�), ~ϕ∅�)), by Lemma 5

=
∑
ω′∈Ω

PRi(ω)(ω′) · ui(O( f (ω′, ~ϕρi�)), since f (ω′′, ~ϕ∅�) = ω′′ for all ω′′ ∈ Ω

= EUi(ω, ρi). �

The set of strategies that are a best response for player i at world ω given that history

h has occurred is denoted BRh
i (ω) = {ρi ∈ Λi : ∀ρ′i ∈ Λi, EUh

i (ω, ρi) ≥ EUh
i (ω, ρ′i)}.

From this we can define a notion of subgame-rationality, capturing those players who

are best responding to their beliefs in every subgame where they are due to play. For-

mally, we add formulas of the form S ubRATi to the language (read as “player i is
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subgame-rational”), and extend the valuation function so that ~S ubRATi� = {ω ∈ Ω :

∀h ∈ Hi, si(ω) ∈ BRh
i (ω)}.

Example

We now return to the “market-entry” game Γ0 introduced in Section 2.1.1 (depicted

by the game tree in Figure 2.1) as a concrete illustration of the framework we have

developed. Denote by ρ1 player 1’s strategy to play O, by ρ′1 player 1’s strategy to play

I, by ρ2 player 2’s strategy to play F, and by ρ′2 player 2’s strategy to play A. We define

a strategy-rich model for Γ0 (Figure 4.2).

〈O〉

ω1

〈O〉

ω2

〈I, A〉

ω3

〈I, F〉

ω4

1

2

1,2

1,2

1,2ϕI

ϕρ′2 ϕρ′2

ϕI

Figure 4.2: A model for Γ0

The outcomes associated with each world are labeled in the obvious way. All beliefs

in this model place 100% probability on a single world, as depicted by the black arrows.

So, for example, the black arrow from world ω4 to ω2 labeled 2 indicates that at world

ω4, player 2 considers only world ω2 possible and assigns it probability 1. The closest

world function associated with this model is somewhat harder to illustrate compactly,

but it can be viewed as arising from the following notion of “distance” on Ω (where
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d(ω,ω′) = d(ω′, ω) for all ω,ω′ ∈ Ω):

• d(ω,ω) = 0 for all ω ∈ Ω;

• d(ω1, ω2) = d(ω3, ω4) = 1;

• d(ω1, ω3) = d(ω2, ω4) = 2;

• d(ω1, ω4) = d(ω2, ω3) = 3.

In general, f (ω,T ) returns the d-closest T -world to ω. For example, f (ω1, ~ϕI�) =

f (ω1, {ω3, ω4}) = ω3, since d(ω1, ω3) = 2 < 3 = d(ω1, ω4). We depict some relevant

counterfactual shifts in Figure 4.2 using the red arrows. Thus we can see that in this

model, player 2’s strategy at ω1 is to acquiesce, while at ω2 it is to fight.

This model clearly satisfies requirements (R1)–(R5), and (C1) is easy to check

as well. As for (C2), the only non-trivial equalities to check are whether

f ( f (ω1, ~ϕI�), ~ϕ(I,F)�) = f (ω1, ~ϕ(I,F)�) (which follows since there is a unique world

associated with history (I, F)) and f ( f (ω2, ~ϕI�), ~ϕ(I,A)�) = f (ω1, ~ϕ(I,A)�) (which like-

wise follows since there is a unique world associated with history (I, A)).

Finally, we observe that this is an opaque model for Γ0. While the distance func-

tion defined above may seem artificial, it actually aligns with a certain way of counting

the histories on which the strategy profiles associated with the worlds differ, with more

weight given to differences that actually affect the outcome of the game. For exam-

ple, we define the distance between ω1 and ω2 to be 1, since we only have player 2

switching between I and F, and it is on an unreachable history. But we define the dis-

tance between ω1 and ω3 to be 2, since player 1’s switch from O to I also changes the

outcome. Finally, world ω4 is “farthest” from ω1 since both players’ strategies differ.

From this we can see that the distance function is such that at the closest world where
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a player changes strategies, the strategies for all the other players remain the same, and

opaqueness follows.

One can check that in this model, ω2 |= RAT1 ∧ RAT2 (in fact, RAT1 ∧ RAT2 is

common belief at ω2!), but ω2 6|= S ubRAT2. More generally, we can see that the formula

(ϕO ∧ RAT1)→ ¬B1S ubRAT2 is valid in all opaque models for Γ0.

This result implies, in particular, that the strategy profile (O, F), which is a Nash

equilibrium of the initial game, cannot be played at a world where there is common

belief of subgame-rationality.

Characterizing Subgame Perfection

We first recall the definition of subgame perfect equilibrium, adapted to our notation.

Definition 17. Let Γ be a finite game with perfect information. Then the strategy profile

ρ is a subgame perfect equilibrium (SPE) if, for every player i, every hi ∈ Hi, and every

ρ′i ∈ Λi, we have ui([hi]ρ) ≥ ui([hi]ρ′i ,ρ−i).

In other words, ρ is a SPE if, for every player i, at every history where they are due

to play, ρ leads to an outcome at least as good as what could be reached by player i

unilaterally changing their strategy.

For convenience we make use of the following abbreviations: S ubRAT ≡

S ubRAT1 ∧ · · · ∧ S ubRATn (“everyone is subrational”), ϕρ ≡ ϕρi ∧ · · · ∧ ϕρn (“everyone

is playing according to ρ”), and Eϕ ≡ B1ϕ ∧ · · · ∧ Bnϕ (“everyone believes ϕ”). We

have the following characterization theorem, which establishes a connection between

subgame-perfect equilibrium, subgame-rationality, and everyone knowing each other’s

strategies - similar to Proposition 2 in Section 2.3.2.
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Theorem 1. Let Γ be a finite extensive form game. Then the following are equivalent:

1) ρ is a subgame perfect equilibrium.

2) there exists an opaque model M for Γ and a state ω therein with (M, ω) |= Eϕρ ∧

S ubRAT.

Proof. (⇐) Consider an opaque model M for Γ such that (M, ω) |= Eϕρ ∧ S ubRAT.

Suppose for a contradiction that ρ is not a SPE. Then there exists i ∈ N and hi ∈ Hi such

that ui([hi]ρ) < ui([hi]ρ′i ,ρ−i) for some ρ′i . Since M is opaque, note that for all ω′ with

PR
ρi
i (ω)(ω′) > 0, we have j , i implies s j(ω′) = ρ j. Moreover, since ω |= Eϕρ, we

know that

PRi(ω)(ω′) > 0⇒ ω′ |= ϕρ (∗)

We have

EUhi
i (ω, ρi) =

∑
ω′′∈Ω

PRi(ω)(ω′′) · ui(O( f ( f (ω′′, ~ϕρi�), ~ϕhi�))), by Lemma 5

=
∑
ω′′∈Ω

PRi(ω)(ω′′) · ui(O( f (ω′′, ~ϕhi�))), since si(ω′) = ρi whenever PRi(ω)(ω′) > 0

=
∑
ω′′∈Ω

PRi(ω)(ω′′) · ui([hi]ρ), using (∗) and Lemma 4

<
∑
ω′′∈Ω

PRi(ω)(ω′′) · ui([hi]ρ′i ,ρ−i).

On the other hand, we have

EUhi
i (ω, ρ′i) =

∑
ω′′∈Ω

PRi(ω)(ω′′) · ui(O( f ( f (ω′′, ~ϕρ′i�), ~ϕhi�))) by Lemma 5

=
∑
ω′′∈Ω

PRi(ω)(ω′′) · ui([hi]ρ′i ,ρ−i)
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Here, the last equality requires some explanation. Note that for every ω′ with

PRi(ω)(ω′) > 0, (∗) together with opaqueness imply ω′ |= ϕ(ρ′i ,ρ−i). This together

with Lemma 4 implies that O( f ( f (ω′, ~ϕρ′i�), ~ϕhi�)) = [hi]ρ′i ,ρ−i . Thus EUhi
i (ω, ρi) <

EUhi
i (ω, ρ′i), which contradicts i being subgame-rational at ω.

(⇒) We begin with a state space consisting of one world for each strategy profile:

Ω = {ωρ : ρ ∈ Λ}. For every ωρ ∈ Ω and each i ∈ N, let PRi(ωρ) = δωρ , the point-mass

probability measure concentrated on ωρ, and define O(ωρ) = [∅]ρ.

In order to define the closest world function, we first define a notion of “distance”

between worlds by setting

d(ωρ, ω
′
ρ) = |{h : ρi(h) , ρ′i(h) for some i}|.

Note that d(ωρ, ω
′
ρ) = 0 iff ωρ = ω′ρ. Let Cω,T ⊆ T be the subset consisting of those

worlds in T with minimum distance to ω (as distances are always natural numbers, this

set is nonempty). Now consider an enumeration {ω1, ω2, . . .} of all the worlds in Ω.

Define the closest world function f by setting f (ω,T ) to be the first element of Cω,T that

appears in this enumeration. Note that if ω ∈ T , then f (ω,T ) = ω since it is the unique

world at distance 0 from itself, and so the unique element of Cω,T .

Let M = (Ω, (PRi)i∈N ,O, f ), and observe that this is a model for Γ satisfying (R1)–

(R5). It is also clear that it is strategy- and history-rich. We wish to show that it also

satisfies (C1)–(C3). Condition (C1) follows easily from the definition of the probability

measures. For (C2) and (C3), the following lemma is useful.

Lemma 6. For every ωρ ∈ Ω and h ∈ H, we have f (ωρ, ~ϕh�) |= moveP(h)(h, ρP(h)(h)).

That is, the closest h-world toωρ is a world where the player due to play at h is following

his original plan of action given by ρ.
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Proof. First define, for every strategy profile ρ and history h,

Dρ
h = {h′ : h′ is an initial segment of h and ρP(h)(h′) , a, where (h′, a) is an initial segment of h}.

Intuitively, |Dρ
h| tells us how far h is from the history that employing ρ would gen-

erate. Note that there is a unique ρh such that d(ωρ, ωρh) = |Dρ
h|, obtained by changing

ρ only at those histories that lie in Dρ
h so as to agree with h. Note that for any other

strategy profile ρ′′ which generates h we have d(ωρ, ω
′′
ρ ) > d(ωρ, ωρh), as it would have

to differ from ρ on at least one additional history. It follows that Cωρ,~ϕh� = {ωρh}, so

f (ωρ, ~ϕh�) = ωρh . Moreover, since ρh only differs from ρ at initial histories of h, we

must have ρh
P(h)(h) = ρP(h)(h), which establishes the desired result. �

From the proof of this lemma, we can also see condition (C2) holds. Let h ∈ H and

a ∈ A(h). Let i = P(h). As in the proof above, let f (ωρ, ~ϕh�) = ωρh . First, suppose

ρi(h) = a. Then f ( f (ωρ, ~ϕh�), ~ϕ(h,a)�) = f (ωρh , ~ϕ(h,a)�) = ωρh by construction. Fur-

ther, since Dρ
(h,a) = Dρ

h, we know ρh = ρ(h,a), so f (ωρ, ~ϕ(h,a)�) = ωρh . Now, suppose

ρi(h) = a′ , a. Then Dρ
(h,a) = Dρ

h ∪ {(h, a)}. Then ρh
i (h) = a′, while ρ(h,a)

i (h) = a, but ρh

and ρ(h,a) coincide at every history in Dρ
h, and coincide with ρ at every history in H Dρ

h.

Thus f (ωρh , ~ϕ(h,a)�) = ωρ(h,a) . Thus (C2) follows.

Observe also that for every ρ = (ρ1, . . . , ρi, . . . , ρn) and every ρ′i , we have

f (ωρ, ~ϕρ′i�) = ωρ′ , where ρ′ = (ρ1, . . . , ρ
′
i , . . . , ρn). This is because among all ϕρ′i -

worlds, ωρ′ differs from ωρ only at the histories specified differently by ρ′i , whereas all

other ϕρ′i -worlds must differ in at least one more history. From this it easily follows that

M is opaque.

The preceding observations establish that M ∈ Mo
EFG.

Now consider ωρ and, for ease of notation in the following calculation, denote it
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by ω. We want to prove (M, ω) |= Eϕρ ∧ S ubRAT . Note that (M, ω) |= Eϕρ follows

easily from the definition of the probability measures in M. Let i ∈ N. We know that

(M, ω) |= S ubRATi is equivalent to

EUhi
i (ω, si(ω)) ≥ EUhi

i (ω, ρ′i) (4.2)

for all hi ∈ Hi and ρ′i ∈ Λi. Recall si(ω) = ρi and s j(ω) = ρ j for all j.

Using Lemma 5, we get

EUhi
i (ω, ρi) =

∑
ω′′∈Ω

PRi(ω)(ω′′) · ui(O( f ( f (ω′′, ~ϕρi�), ~ϕhi�)))

= ui( f ( f (ω, ~ϕρi�), ~ϕhi�)) by definition of the probability distribution

= ui([hi]ρ)

and through a similar expansion, we have EUhi
i (ω, ρ′i) = ui([hi]ρ′i ,ρ−i). Then relation (4.2)

is equivalent to ui([hi]ρ) ≥ ui([hi]ρ′i ,ρ−i), which holds since ρ is a SPE. �

4.2 Transformations between plausibility and counterfactual mod-

els

In this section, we take a closer look at plausibility semantics for the language of con-

ditional doxastic belief, defined in [4, 3]. As we discussed in Chapter 3, counterfactuals

lend themselves easily to interpreting conditional beliefs. However, there were some

axioms in the axiomatization for CDL that we argued against, like positive and nega-

tive introspection. In this section we try to identify what restrictions on counterfactual

semantics would ensure a system like the one represented by plausibility models.

We start by recalling the plausibility semantics introduced in Chapter 3. We then de-

fine associated semantics using counterfactuals. We show that the new semantics defined
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are equivalent - in terms of validities - and then note the restrictions we need to impose

on counterfactuals in order to obtain these information-loss-free transformations. We

end with a discussion on potential directions for future work.

Plausibility and counterfactual models

Consider the language LCDL defined in Section 3.1.1.

First, we consider plausibility semantics for it. Consider a locally well-ordered plau-

sibility model M = (W,≤,V). For every ω ∈ W, recall its connected component is given

by cc(ω) = {ω′ ∈ W : ω′(≥ ∪ ≤)+ω}, where (≥ ∪ ≤)+ is the transitive closure of ≥ ∪ ≤.

Since ≤ is well-founded, for every S ⊆ W, we know min S = {x ∈ S | ∀ y ∈ S : y ≮ x}

is always nonempty ([3]).

Although we already outlined how the fomulas in the language LCDL are interpreted

recursively in M (in Section 3.1.1), we note that, when ≤ is total, the semantics for

conditional belief simplify to:

~Bψϕ� = {ω ∈ W : min≤(~ψ�) ∩ cc(ω) ⊆ ~ϕ�}.

Now, recall a counterfactual model M̂ = (Ŵ, V̂ ,R, f ) (as per Definition 14 in Section

3.2). Formulas in the language are interpreted the natural way, except we reinterpret

conditional belief as

~Bψϕ� =

ω ∈ Ŵ :
⋃

ω′∈R(ω)

f (ω′, ~ψ�) ⊆ ~ϕ�

 .
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From Plausibility to Counterfactual Belief

There is a natural transformation of a plausibility model into a counterfactual belief

model.

Suppose we have plausibility model M = (W,≤,V) where W is finite and ≤ is a total

pre-order on W. In particular, this implies the connected component cc(ω) = W for

every ω ∈ W.

Given such a plausibility model M, we construct a counterfactual belief model M̂.

This new model has the same state space as M, and the valuation function acts the same

as for the plausibility model on primitives.

The plausibility relation induces a partition on the state space, which can be inter-

preted as a series of concentric spheres, where more plausible worlds are on spheres of

smaller radius [25]. Formally, there is a partition {T0,T1, . . . ,Tk} of W (for some k) such

that T0 = min≤W, T1 = min≤(W T0), . . ., T j = min≤(W
⋃

0≤r< j
Tr). For every ω ∈ W,

let R(ω) = T0, so, at every world in the new model we are building, the agent consid-

ers possible only the most plausible worlds. Given this partition, define the function

rank : W → N where rank(ω) is the unique number such that ω ∈ Trank(ω).

For every ω ∈ W and A ⊆ P(W)+, let f (ω, A) =


ω if ω ∈ A

min≤A otherwise
. Note this

function is the identity function on A and the constant function on Ac, for every A ⊆

P(W)+. Formally, denote this by property (CI):

(CI) For every A ⊆ P(W)+, f (ω, A) = ω if ω ∈ A and f (ω, A) = C if ω ∈ Ac (where

the constant C = min≤ A).
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This counterfactual shift clearly satisfies success and strong centering. We take a

closer look at the uniformity property. Note that we need only analyze the cases when

ω is both an A- and a B-world, or when it is neither. If ω is an A-and B-world, by strong

centering the result easily follows. If ω is neither an A- nor a B-world, suppose for a

contradiction that there exists u ∈ min≤ B such that u < min≤ A. Then u ∈ A and u ∈ Tr

for some r such that Tn ∩ B = ∅ for all n < r. Since u ∈ A and u < min≤ A, there

exists m < r such that Tm ∩ A , ∅. However, since min≤ A ⊆ B, we get Tm ∩ B , ∅,

a contradiction. Then this closest-world function satisfies all requirements for a Lewis-

style selection function.

This definition also leads to an interesting connection between the binary relation

encoding beliefs and the counterfactual shift function. Note we have f (ω,W {ω}) =
T0 if ω < T0

T0 {ω} otherwise
, so applying the counterfactual shift function to every world in

the state space allows us to recover the worlds believed possible (i.e. the most plausible

ones). Formally, denote such a property by P0:

(P0) For all ω ∈ W, we have f (ω,W {ω}) = T0 if ω < T0 and f (ω,W {ω}) = T0

otherwise.

There are two other important properties this counterfactual shift function satisfies.

If c : W → P(W) is a choice function, recall Sen’s α and β:

(α) A ⊆ B, x ∈ A, x ∈ c(B)→ x ∈ c(A)

(β) A ⊆ B, x, y ∈ c(A), x ∈ c(B)→ y ∈ c(A)

For every ω ∈ W, the function fω : P(W)+ → P(W)+ given by fω(A) = f (ω, A) (i.e.

the choice function associated to world ω) satisfies Sen’s α and β.
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First, we show it satisfies α.

Suppose A, B ∈ P(W)+, with A ⊆ B, x ∈ A and x ∈ fω(B). Then x ∈ Tr ∩ B for

some r such that Ts ∩ B = ∅ for any s < r. For a contradiction, suppose x < fω(A),

which implies fω(A) = Ts ∩ A for some s < r. Since x ∈ A ⊆ B, we get B ∩ Ts , ∅, a

contradiction.

Now we show it satisfies β.

Suppose A, B ∈ P(W)+, with A ⊆ B, x, y ∈ fω(A) and x ∈ fω(B). Then x ∈ Tr ∩ B for

some r such that Ts ∩ B = ∅ for any s < r. In particular, this implies rank(x) = r. Since

x ∈ fω(A) = Tk ∩ A for a unique k, this implies k = r. Then rank(y) = r and y ∈ A ⊆ B,

so y ∈ Tr ∩ B = fω(B).

Then this function satisfies Sen’s α and β.

Denote a counterfactual belief model obtained in this manner by M≤ =

(W,V,R≤, f ≤).

We note that, in these models, this notion of conditional belief gives unconditional

belief the semantics of standard relational belief models. Formally, we have R(ω) ⊆ ~ϕ�

iff ω |= B>ϕ. This is easy to see, since

ω |= B>ϕ iff⋃
ω′∈R(ω)

f (ω′, ~>�) ⊆ ~ϕ� iff

⋃
ω′∈R(ω)

ω′ ⊆ ~ϕ� iff

R(ω) ⊆ ~ϕ�.
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From Counterfactual Belief to Plausibility

We also consider one possible transformation from certain counterfactual belief models

into plausibility models.

Consider a counterfactual belief model M̂ = (Ŵ, V̂ ,R, f ). Suppose R(ω) = R(ω′)

for any ω,ω′ ∈ W, and W is finite. Further, suppose the counterfactual shift function is

such that it satisfies CI, P0, and Sen’s α and β (for every ω ∈ W).

We construct a plausibility model M f . This new model has the same state space as

M̂, and the valuation function acts the same on primitives.

Let ω ∈ W and ω̃ ∈ R(ω). Consider the sets T0 = R(ω), T1 =
⋃

ω′∈R(ω)
f (ω′,W T0) =

f (ω̃,W T0) (since f (ω′,W T0) = f (ω̃,W T0) for all ω′ ∈ R(ω) by (CI)), and, in

general, T j+1 =
⋃

ω′∈R(ω)
f (ω′,W (

j⋃
n=0

Tn)) = f (ω̃,W (
j⋃

n=0
Tn)).

We claim these sets form a partition of W. First, since W is finite, the procedure

above clearly terminates. Now suppose Ti∩T j , ∅, for some i, j with i , j. Without loss

of generality, suppose i < j. Consider ω ∈ Ti∩T j. Since ω ∈ Ti, this implies ω ∈
j−1⋃
n=0

Tn.

Since ω ∈ T j, success for the counterfactual shift function implies ω ∈ W
j−1⋃
n=0

Tn, which

is a contradiction. So the sets defined above form a partition for W.

Recall the function rank : W → Nwhere rank(ω) is the unique number such thatω ∈

Trank(ω). Define a preference relation ≤ f on W so that ω ≤ f ω′ iff rank(ω) ≤ rank(ω′).

This is clearly a reflexive, transitive and total relation on W. Note, in particular, that we

have cc(ω) = W for any ω ∈ W.

Denote a plausibility model obtained in such a manner by M f = (W,V,≤ f ).
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Transformations

We claim that the transformations outlined above actually occur without any information

loss, as far as the language of conditional belief can tell.

Claim 1. For every ω ∈ W, for every ϕ ∈ LCDL, we have (M, ω) |= ϕ iff (M̂, ω) |= ϕ.

Proof. We proceed by induction on the structure of ϕ. The base case when ϕ = p ∈

PROP follows by construction of M̂, and the Boolean connectives are easy to check. So

suppose that the result holds for ϕ, ψ (namely, ~ϕ�M = ~ϕ�M̂ and the analagous equality

for ψ); we want to show it holds for Bψϕ. Equivalently, we will prove
⋃

ω′∈R(ω)
f (ω′, ~ψ�) =

min≤(~ψ�).

We will prove the equality holds by considering two cases, one where R(ω)∩ ~ψ� =

∅, and one where R(ω) ∩ ~ψ� , ∅.

Case 1. Suppose R(ω) ∩ ~ψ� , ∅. Then min≤(~ψ�) = T0 ∩ ~ψ�. We have R(ω) =

{ω ∈ R(ω) : ω ∈ ~ψ�} ∪ {ω ∈ R(ω) : ω ∈ ~¬ψ�}. Now note that⋃
ω′∈R(ω),ω′∈~ψ�

f (ω′, ~ψ�M̂) =
⋃

ω′∈R(ω),ω′∈~ψ�

{ω′} = R(ω) ∩ ~ψ� = T0 ∩ ~ψ� = min≤~ψ�M,

while ⋃
ω′∈R(ω),ω′∈~¬ψ�

f (ω′, ~ψ�M̂) =
⋃

ω′∈R(ω),ω′∈~ψ�

min≤~ψ�M = min≤~ψ�M.

Then
⋃

ω′∈R(ω)
f (ω′, ~ψ�) = min≤(~ψ�).

Case 2. Suppose R(ω) ∩ ~ψ� = ∅. Then⋃
ω′∈R(ω)

f (ω′, ~ψ�M̂) =
⋃

ω′∈R(ω)

min≤~ψ�M = min≤~ψ�M.

�
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In fact, we have a stronger result than just the fact that the transformation above

occurs without information loss. The transformation sequence that starts with a plau-

sibility model, constructs a counterfactual belief model, and then from this model ends

with a plausibility model, is one that returns the original model the sequence started

with. To prove that the plausibility ordering induced by this latter partition is precisely

the one we started with, it suffices to show these two partitions are the same.

Claim 2. Suppose M = (W,V,≤) is a plausibility model. The ordering ≤ induces a

partition {T0, . . . ,Tk}. Now generate M≤ as given above, and use this model to generate

partition {T f
0 , . . . ,T

f
j }. These two partitions are the same.

Proof. We prove by induction that Tn = T f
n for every n ≥ 0. For the base case, note

T0 = R(ω) = T f
0 (for any ω ∈ W). For the inductive case, suppose Tn = T f

n for every

n < k. We want to show the result holds for k. Now, for ω ∈ T f
0 (= T0), we have

T f
k = f

ω,W  ⋃
0≤r<k

T f
r


= min≤

W  ⋃
0≤r<k

Tr

 by IH and definition of f

= Tk

�

Therefore, to some extent, we can say the transformations outlined above are in-

verses of each other (when we start the process with a plausibility model).

From Counterfactual Belief to Plausibility

Suppose we have M̂ = (W,V,R, f ), where R(ω) = R(ω′) for any ω,ω′ ∈ W, W is finite,

and the counterfactual shift function is such that it satisfies CI, P0, and Sen’s α and β

94



(for every ω ∈ W).

Instead of α and β, however, we will be using an equivalent property γ.

Claim 3. For every ω ∈ W, fω : P(W)+ → P(W)+ given by fω(A) = f (ω, A) (i.e. the

choice function associated to world ω) satisfies Sen’s α and β iff it satisfies

(γ) : Whenever A ⊆ B, fω(B) ∩ A , ∅ =⇒ fω(A) = fω(B) ∩ A.

Proof. (→) Suppose A ⊆ B and fω(B) ∩ A , ∅.

(⊆) Let u ∈ fω(A). Then u ∈ A. For a contradiction, suppose u < fω(B). Since

fω(B) ∩ A , ∅, there exists v ∈ fω(B) ∩ A. Now, since A ⊆ B, v ∈ A, and v ∈ fω(B), by

Sen’s α, we know v ∈ fω(A). Now, since A ⊆ B, u, v ∈ fω(A), and v ∈ fω(B), then by

Sen’s β we have u ∈ fω(B). Since u ∈ A, we get u ∈ fω(B) ∩ A.

(⊇) Let u ∈ fω(B) ∩ A. Since A ⊆ B, u ∈ A, and u ∈ fω(B), then by Sen’s α, we have

u ∈ fω(A).

(←) Suppose A ⊆ B. Now let x ∈ A and x ∈ fω(B). Then fω(B) ∩ A , ∅, so by γ we

get fω(A) = fω(B) ∩ A, so x ∈ fω(A). This proves Sen’s α holds.

Now suppose x, y ∈ fω(A) and x ∈ fω(B). Then x ∈ fω(B) ∩ A, so by γ, we know

fω(A) = fω(B) ∩ A. Then y ∈ fω(B) ∩ A, so y ∈ fω(B), which proves Sen’s β. �

From such a model M̂, construct a plausibility model M f as outlined in the previous

section. This tranformation happens without any information loss, as the following

claim shows.

Claim 4. For every ω ∈ W, for every ϕ ∈ LCDL, we have (M̂, ω) |= ϕ iff (M f , ω) |= ϕ.
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Proof. We proceed by induction on the structure of ϕ. The base case when ϕ = p ∈

PROP follows by construction of M̂, and the Boolean connectives are easy to check. So

suppose that the result holds for ϕ, ψ (namely, ~ϕ�M̂ = ~ϕ�M f and the analagous equality

for ψ); we want to show it holds for Bψϕ. Equivalently, we will prove
⋃

ω′∈R(ω)
f (ω′, ~ψ�) =

min≤(~ψ�).

We will prove the equality holds by considering two cases, one where R(ω)∩ ~ψ� =

∅, and one where R(ω) ∩ ~ψ� , ∅.

Case 1. Suppose R(ω) ∩ ~ψ� , ∅. Then min≤(~ψ�) = T0 ∩ ~ψ�. Then the equality

we want to prove becomes
⋃

ω′∈R(ω)
f (ω′, ~ψ�) = T0 ∩ ~ψ�.

We have R(ω) = {ω ∈ R(ω) : ω ∈ ~ψ�} ∪ {ω ∈ R(ω) : ω ∈ ~¬ψ�}. Now note that

⋃
ω′∈R(ω),ω′∈~ψ�

f (ω′, ~ψ�M̂) =
⋃

ω′∈R(ω),ω′∈~ψ�

{ω′} = R(ω) ∩ ~ψ� = min≤~ψ�M.

Now, for every ω′ ∈ T0 ∩ ~¬ψ�, we have ~ψ� ⊆ W {ω′}, and f (ω′,W {ω′}) = T0 {ω
′}

(by P0), and since there exist ψ-worlds in T0, this implies f (ω′,W {ω′}) ∩ ~ψ� , ∅.

Then by γ we have f (ω′, ~ψ�) = f (ω′,W {ω′}) ∩ ~ψ� = T0 ∩ ~ψ� = min≤~ψ�.

Then

⋃
ω′∈R(ω)

f (ω′, ~ψ�M̂) =
⋃

ω′∈R(ω),ω′∈~ψ�

f (ω′, ~ψ�M̂) ∪
⋃

ω′∈R(ω),ω′∈~¬ψ�

f (ω′, ~ψ�M̂)

= min≤~ψ�

Case 2. Suppose R(ω) ∩ ~ψ� = ∅. By CI, we know f (ω′, ~ψ�) = f (ω′′, ~ψ�) for any

ω′, ω′′ ∈ T0.

Say min≤(~ψ�) = Tr∩~ψ� for some r > 0, where, by CI, Tr = f (ω′, (T0∪. . .∪Tr−1)c).

Then ~ψ� ⊆ (T0 ∪ . . . Tr−1)c. Then f (ω′, (T0 ∪ . . .∪Tr−1)c)∩ ~ψ� , ∅ for any ω′ ∈ R(ω).
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Then by γ, we have f (ω′, ~ψ�) = Tr ∩ ~ψ� = min≤(~ψ�) for any ω′ ∈ R(ω). Thus⋃
ω′∈R(ω)

f (ω′, ~ψ�) = min≤(~ψ�).

�
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CHAPTER 5

CONCLUSION

This paper focuses on agents’ knowledge and belief of counterfactuals by considering

two applications of this epistemic concept, rationality in extensive-form games and the

process of conditioning agents’ beliefs.

We saw that at the center of this discussion lies the difference between an agent’s

beliefs on A if B were to occur and her beliefs on A if B actually did occur. In Chapter

2, we saw that these two different beliefs leads to a lack of consensus in the literature on

what the appropriate epistemic characterization of subgame perfect equilibrium should

be. Our work points out that when a language and a model are sophisticated enough to

capture the important distinction above, the appropriate characterization arises naturally.

Chapter 3 on conditional beliefs points out another important application of agents’

beliefs of counterfactuals. Using counterfactuals to interpret the process of conditioning

our beliefs outlines how some of the existing models for conditional beliefs don’t really

align with our intuition on how conditional beliefs “work”. Our approach is at the

intersection of counterfactual logic, dynamic epistemic logic and conditional doxastic

logic, as we employ counterfactuals to actively change the epistemic fomulas at a world.

Chapter 4 contains some experimental work related to Chapters 2 and 3. We show

some advances in some of the open questions enumerated earlier, like defining rational-

ity in extensive-form games using iterated counterfactuals, or finding appropriate restric-

tions on counterfactual shifts to simulate plausibility models for Conditional Doxastic

Logic.

A number of important open questions remain in this topic. On the one hand, coun-

terfactual analysis could lend itself to characterizing other equilibria, like rationalizabil-
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ity, or the notion of sequential rationality for perfect Bayesian equilibria. On the other,

we saw that a sound an complete axiomatization for the language of conditionalization

LC remains open, as does finding other conditions under which we can preserve intro-

spection for conditional beliefs.
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