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In many natural materials, such as skin, minerals, and plastics, light scatters inside

the material and gives them their distinctive appearance. The accurate reproduction

of these materials requires new rendering algorithms that can simulate these

subsurface interactions. Unfortunately, adding subsurface scattering dramatically

increases the rendering cost. To achieve efficiency, recent approaches have used

an approximate scattering model and have two significant limitations: they scale

poorly to complex scenes and they are limited to homogeneous materials. This

thesis proposes two new algorithms without these limitations.

The first is a scalable, subsurface renderer for homogeneous scattering. Using

a canonical model of subsurface light paths, the new algorithm can judiciously

determine a small set of important paths. By clustering the unimportant paths and

approximating the contributions of these clusters, the new algorithm significantly

reduces computation. In complex scenes, this new approach can achieve up to a

three hundred fold speedup over the most efficient previous algorithms.

The second is the first, general, efficient and high-quality renderer for hetero-

geneous subsurface scattering. It based on a carefully derived formulation of the

heterogeneous scattering problem using the diffusion equation and it solves that

problem quickly and accurately using the finite element method. The new algorithm

is designed for high-quality rendering applications producing, in minutes, images

nearly identical to exact solutions produced in hours.



BIOGRAPHICAL SKETCH

Adam Joseph Arbree was born in Jupiter, Florida on Thursday, November 15th

1979. With his parents Ray and Kathi and, after a short delay, his sister Autumn,

he spent his first 18 years a child. Life was good. Unfortunately, at age 18, changing

political climates inside the Arbree household meant that he could no longer pursue

childhood as a full-time profession. Following his other interests, he began attending

the University of Florida in his spare time. There he received double Bachelors in

Physics and Computer Science (with a Mathematics Minor on the side).

However, of much greater import during this period, he began a lifelong rela-

tionship with his wife—a beautiful and intelligent young woman named Bethany.

Starting out with a 45-day car ride across much the western United States and

Canada was—depending on whom you ask, them or people who dislike fun—either

the best or worst decision of their young lives. But, regardless of opinion, the

experience cemented their love for each other and in August of 2003 they settled

down in Ithaca, New York to pursue their mutual dreams.

Citing a general dissatisfaction with his current reality, Adam dreamed of

creating some more interesting versions. To this end, Adam enrolled at Cornell

University for training in synthetic reality generation. Unfortunately, lacking in

both imagination and artistic talent, he had to come to his dream the hard way.

Through many thousands of hours of work, detailed investigations and perhaps

too much coffee, Adam built machine that could display a handful of images of

one particular dream-scape. Unfortunately, it is populated mainly by statuettes

on tables. However, since these images have never been seen before, in July 2009

Cornell decided his efforts merited a “Degree of Doctor of Philosophy”. Pleased

with his initial success, Adam is currently writing a short, humorous biographical

sketch of the experience.

iii



For Mom and Dad

For as long as I can remember, I have wanted to do what I have just finished;

for longer than that, I remember your confidence that I could.

That confidence and your love are two of the greatest gifts of my life.

iv



ACKNOWLEDGEMENTS

I’ll be honest; writing this thesis was hard. However, it was nothing compared to

writing these acknowledgments. There are so many people I want to thank for this

work.

To begin I want to thank my adviser, Kavita Bala. She has a contagious zest for

her work and encourages all around her to pursue new and interesting ideas with

vigor. Throughout my research, she gave me the freedom to work on the projects

that interested me and she was always supporting and trusting of my decisions.

However, most importantly, she pushed back precisely when I needed it. Her advice

has always been frank, well-founded and struck to the core of what, I realize in

hindsight, that I needed most to hear. Whatever I become as a professional, I

will think back on my time at Cornell and I will remember, in deep gratitude, her

guidance. I am proud to have been her student.

Next I want to thank Bruce Walter for the hundreds of hours of input on my

ideas, the innumerable discussions that taught me much of what I know about

rendering, the enormous effort he put into the code that forms the core of my own

renderer and, last but not least, the many, many free cups of Illy coffee. I know

that without your effort I could not have accomplished this dissertation.

Steve Marschner deserves considerable credit for the following: buying a very

expensive robot and then, immediately after unpacking and assembling it, giving a

untrained, first-year Ph.D. student free license to program and play with it. Of

course, I am sure to Steve, this is exactly the way things should be and that is

precisely why he was such fun to work with. Of course, expensive toys aside, I want

to thank Steve most for his invaluable advice and the time he took for so many

discussions about my work.

v



I also want to heartily thank the other members of my committee: Charlie Van

Loan, Alexander Vladimirsky and Lars Wahlbin. Their help, generous efforts on

my behalf, insight and comments were essential to my success.
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CHAPTER 1

INTRODUCTION

In the last two decades applications using synthetic, computer generated (CG)

imagery have proliferated dramatically. No visual medium has been unaffected.

Almost every movie, television show or magazine cover contains some synthetically

generated content. Fully computer animated movies have almost completely re-

placed 2D animation and the most recent personal video game consoles provide

fully interactive, real-time experiences whose quality rivals the best CG cinema

from a decade past. All of these advances were made possible by a continuous

stream of improvements in computer rendering algorithms. However, most of

these improvements rest on fundamental reflectance approximations that exclude

important classes of materials. The exclusion of the class of translucent, subsurface

scattering, materials is particularly limiting since it contains most organic materials

including skin, leaves and foods as well as many common inorganic materials such

as minerals and plastics. Because of their prevalence in everyday scenes, efficient

and accurate subsurface rendering algorithms are an essential next step towards

realistic rendering.

Rendering algorithms compute an image by simulating the interaction of light

with the objects and materials in the scene. Since light makes orders-of-magnitude

more interactions with subsurface scattering materials than without, introducing

subsurface scattering into a scene dramatically increases the cost of the rendering

computation. Until this thesis, almost all practical subsurface rendering algorithms

addressed this cost explosion by replacing the simulation of subsurface interactions

with the evaluation of a single bidirectional surface scattering reflectance distribution

function (BSSRDF), the dipole diffusion BSSRDF. Unfortunately, using the dipole

diffusion BSSRDF has two limitations: the algorithms are limited to homogeneous
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Kitchen Cordoba

Dragon Geode

Figure 1.1: Top row: Large scenes with many subsurface scattering objects. Bottom
row: Complex heterogeneously scattering materials rendered quickly and accurately.

materials and they scale poorly on large scenes. This thesis extends the state-

of-the-art in subsurface rendering by introducing two new subsurface rendering

algorithms that lift these limitations. The first algorithm is a scalable dipole diffusion

rendering algorithm. It introduces a new, adaptive hierarchical representation of

the subsurface computation that allows the algorithm to better focus its effort on

the parts of the calculation that contribute to the image. This better distribution

of effort allows the new algorithm to render larger scenes with more detailed

geometry and more complicated lighting effects than were previously possible. The

second algorithm is the first efficient and accurate simulation algorithm for general,

complex, heterogeneous materials. Together these algorithms address the two basic

challenges of subsurface rendering, significantly advance rendering technology and
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Figure 1.2: (a) Surface material interaction as described by a BRDF; (b) subsurface
material interaction as described by a BSSRDF; and (c) basic problem of subsurface
rendering.

make it possible to render new types of scenes and materials (see Figure 1.1).

1.1 Surface vs. Subsurface Rendering

To highlight the contributions of these new algorithms, this section discusses

why subsurface scattering makes the rendering problem more difficult. Rendering

algorithms simulate the propagation of light in synthetic scenes. They require four

inputs:

• The position and emission function of each light source;

• The geometry of each object;

• The reflectance function for each material; and

• The position and focal parameters of the camera.

To compute the light that arrives at the camera, a rendering algorithm propagates

the light from the sources simulating its interactions with the geometry and materials.

For a given image, the algorithm performs this calculation pixel by pixel. Through

the pixel, the algorithm computes x, the first visible surface point, and then
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computes the light, or radiance1 L(x, ~ω), that leaves x in ~ω the direction towards

the camera aperture. Compared to surface rendering, accurate subsurface rendering

requires a more general model of light/material interactions that significantly

increases the cost of computing L(x, ~ω).

1.1.1 Surface Rendering Model

The reflectance of simple materials can be accurately modeled by a bidirectional

reflectance distribution function (BRDF) (see Figure 1.2(a)). In the BRDF model

light is both incident and reflected at a single point x. The BRDF describes the

probability that at x the light will reflect from direction ~ω into direction ~ω′. Using

a BRDF, L(x, ~ω) is defined by the surface scattering integral [Kaj86]

L(x, ~ω) =

∫
(~n·~ω′)>0

fr(x, ~ω, ~ω
′)L(x, ~ω′)(~ω′ · ~n) d~ω′ (1.1)

where fr(x, ~ω, ~ω
′) is the BRDF and ~n is the surface normal vector at x.

1.1.2 Subsurface Rendering Model

Unfortunately, BRDF models fail for subsurface scattering materials. When the

material contains subsurface scattering, the light incident on the material at x and

~ω enters the object volume, is scattered and absorbed, and then exits the material

in a separate position x′ and direction ~ω′ (see Figure 1.2(b)). For subsurface

scattering materials, accurate reproduction of appearance requires simulating these

interior material interactions. Since the BRDF is insufficient, subsurface algorithms

1It is standard in computer graphics literature to omit the common dependence on the
wavelength of the light in all terms. To keep the notation consistent, this thesis follows this
standard. Unless otherwise noted, any quantity related to light transport is implicitly wavelength
dependent and any computations using these quantities—everything described in this thesis—must
be repeated once per wavelength of interest. Typically three wavelengths are chosen, one red, one
green and one blue.
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use a generalization of the BRDF, the bidirectional surface scattering reflectance

distribution function (BSSRDF) [NRH∗77]. Analogous to Equation (1.1), subsurface

rendering is defined by the volumetric scattering integral [JMLH01] (see Figure

1.2(c))

L(x, ~ω) =

∫
∂Ω

∫
4π

S(x, ~ω,x′, ~ω′)L(x, ~ω′)(~ω′ · ~n) d~ω′ dx′ (1.2)

where S(x, ~ω,x′, ~ω′) is the BSSRDF and ∂Ω is the boundary of the scattering

domain Ω.

1.2 Problems Solved by this Thesis

The differences between Equation (1.1) and Equation (1.2) succinctly illustrate the

two fundamental problems introduced and solved by this thesis.

Problem: Rapid Growth in Recursive Evaluations Since subsurface render-

ers must integrate over a larger, more complex domain, the boundary of an

arbitrary model, they make significantly more recursive evaluations of the

integrand radiance. As the subsurface objects grow in size and number, the

total cost of these recursive radiance evaluations can become prohibitive.

Solution: Scalable, Hierarchical Evaluation Algorithm By intelligently de-

termining the number and accuracy of the recursive radiance computations, a

new scalable rendering algorithm can, while preserving image quality, prune

unnecessary evaluations and approximate less important ones. For small

scenes the algorithm performs no worse than the most efficient subsurface

algorithms but for large scenes it offers dramatic performance improvements.

Problem: Heterogeneous BSSRDFs Many BRDFs are represented by simple,

analytic functions [MPBM03]. However, the BSSRDF is usually a complicated
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function of the material and geometry and often lacks a convenient analytic

form. Accurate evaluation of the BSSRDF requires a secondary simulation of

the light scattering within the material. For complex, general heterogeneous

materials, no efficient and accurate simulation algorithm has been developed.

Solution: Accurate Finite Element (FE) Algorithm By carefully formulat-

ing an approximate heterogeneous scattering problem using the diffusion

equation and solving that problem accurately, a new FE algorithm can solve

complex subsurface scattering problems in a few minutes producing images

comparable to exact solutions that require hours of computation.

The next two sections present an overview of these problems and solutions.

1.3 Scalable Subsurface Rendering

Scalable rendering exploits a fundamental property of images. Roughly, for a given

size, the amount of information an image can contain is fixed. If the scene in the

image becomes larger or more complex then the relative image importance of some

parts of the scene must go down. If image importance was distributed equally,

scalable rendering would be easy. Unfortunately, importance is a complex function

of the image, the scene and the rendering algorithm that often defies heuristic

definition. To tackle this problem, scalable rendering tries to adaptively detect

importance by performing progressively more refined calculations that home in

on important regions. This thesis demonstrates that scalable rendering is more

difficult with subsurface materials and that current algorithms are not scalable.

Then, it develops the first major contribution of this work: a scalable rendering

algorithm for homogeneous materials based on the dipole diffusion BSSRDF.

Introducing subsurface scattering simultaneously increases the relative differ-

ences in importance between regions of the scene and makes them harder to detect.

6



This is intuitive. For example, consider Figure 1.2(c) that illustrates the integral in

Equation (1.2). The integral will contain contributions from the entire surface of

the object. But, clearly, most of the contributions will come from a smaller subset of

surface regions optically close to x. A region is optically close if it is either physically

close or the material between the region and the goal is less dense. Because the

BSSRDF, a complex function material and geometry, determines whether a region

is optically close, it is challenging for rendering algorithms to determine which

regions are important.

The new algorithm developed in this thesis addresses this difficult problem. By

introducing a new unified, hierarchical representation of subsurface light paths,

called triple clusters, the new scalable algorithm can adaptively determine the

importance distribution within the subsurface integral. In tests presented in Chapter

4 the new scalable algorithm reduces subsurface rendering cost in the Cordoba

scene (see Figure 1.1, upper right) by a factor of 300.

1.4 Heterogeneous Subsurface Rendering

For many years, subsurface rendering had a large quality/performance gap. On

one hand there are exact algorithms for rendering high quality images of arbitrary

subsurface materials; however, these rendering algorithms are sufficiently costly to

be impractical. On the other hand, approximate, homogeneous scattering can be

computed in much less time by using the dipole diffusion BSSRDF. The new finite

element (FE) algorithm presented in this thesis bridges this gap. It can render

complex heterogeneous scattering in a few minutes with quality comparable to the

exact algorithms that take many hours (see Figure 1.1, bottom row).

The thesis presents the first efficient and accurate solution for general het-

erogeneous subsurface scattering. To achieve efficiency, the algorithm uses an
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approximate scattering model, the diffusion equation (DE), and solves the equation

quickly and accurately using the finite element (FE) method. The contributions of

this algorithm are two-fold:

1. It demonstrates that a careful formulation of the diffusion problem, including

a description of a new, boundary source model, obtains accuracies useful for

high-quality rendering applications.

2. It presents a FE solution for this problem describing in detail how to efficiently

discretize, assemble, solve and refine that solution.

These contributions reduce the difficult heterogeneous subsurface scattering problem

to a new, simple, four-step algorithm that works well for a wide range of scattering

materials; solves for scattering in arbitrary surface geometry; produces images

comparable to exact algorithms; and requires only a few minutes per image.

1.5 Thesis Organization

The rest of the thesis motivates, derives and reviews these new advanced algorithms

for subsurface rendering. Chapter 2 introduces the basic scattering physics that

underlie the two algorithms. Chapter 3 discusses the limitations of previous

solutions. Chapters 4 and 5 describe and analyze the scalable, dipole diffusion

algorithm and the accurate heterogeneous algorithm respectively. Then, by using

a different finite element solution, the discontinuous Galerkin method, Chapter

6 discusses why the heterogeneous solver in Chapter 5 is a particularly accurate

rendering solution. Finally, Chapter 7 reviews the contributions of all these works,

discusses their limitations and proposes remaining problems at the forefront of

subsurface rendering research.
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CHAPTER 2

SUBSURFACE SCATTERING THEORY

This chapter introduces the three models of subsurface scattering used by most

rendering algorithms.

• The volumetric radiative transfer equation (VRTE) accurately models the

physics of subsurface scattering;

• The diffusion equation (DE) approximates the VRTE by assuming many

random scattering events erase all but the lowest order directional properties

from the radiance;

• The dipole diffusion BSSRDF solves the DE approximately in the specific

case of a semi-infinite slab filled with an isotropically and homogeneously

scattering medium.

Classes of rendering algorithms using each of these models are progressively less

accurate but faster. Monte Carlo (MC) path tracing algorithms use the VRTE to

compute exact photon paths—one at a time. For any scene and material, given

sufficient time, these algorithms compute images of the highest quality; however, at

best, they require hours of computation and are generally considered impractical.

Practical rendering algorithms rely on one of the two approximate models. Chapter

5 demonstrates, for the first time, that for many materials the DE is almost

as accurate as path tracing and can be solved in a few minutes. However, for

many applications, this is still too expensive. Using the dipole diffusion BSSRDF,

many algorithms limit themselves to homogeneous materials but then approximate

scattering very fast, even in real-time. Unfortunately, despite the low cost of the

dipole diffusion BSSRDF, the structure of the basic dipole rendering algorithms

causes them to perform poorly on large, complex scenes. Chapter 4 solves this
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problem with a new scalable, dipole diffusion rendering algorithm that efficiently

renders large, complex scenes beyond the limits of all previous methods.

The development of the algorithms in Chapters 4 and 5 is closely linked to

the mathematics of the diffusion equation and the dipole diffusion BSSRDF. To

place these later discussions in context, this chapter presents the derivations of

each of these models and highlights the details related to the future discussion.

The two derivations in this chapter closely follow the work from scattering physics

by Ishimaru [Ish78] who originally derived both the DE and the dipole diffusion

BSSRDF; however, the notation matches the standard introduced to computer

graphics by Jensen et al. [JMLH01].

The second section in this chapter, Section 2.2, on the diffusion equation is

the longest and most relevant to later discussions. The section has two main

subsections. The first derives the diffusion equation. Besides the DE itself, the

most important consequence of this derivation is the reduced intensity source which

models radiance that violates the fundamental assumption of the DE, the diffusion

approximation (DA). The second subsection describes how to use the DE to create

a basic rendering algorithm. Since both of the algorithms in this thesis follow this

basic structure, this discussion is the most important in the chapter. It has three

goals.

1. It solves the basic problem of computing the radiance values needed for

rendering from a solution to the DE.

2. It discusses how to derive the DE’s boundary condition. The significant results

are the Robin boundary condition and the extrapolated boundary condition.

3. It introduces two models of the reduced intensity source: the boundary source

model and embedded source model.
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The dipole diffusion BSSRDF, used by the scalable algorithm in Chapter 4, is

derived from the extrapolated boundary condition and the embedded source model.

In Chapter 5, the more accurate Robin boundary condition and boundary source

model are combined to derive the diffusive source boundary condition—an accurate

heterogeneous boundary condition used by the new FEM rendering algorithm (see

Section 5.2.2). The rest of this chapter proceeds along the sequence of approxi-

mations: VRTE to DE to dipole diffusion BSSRDF. Section 2.1 introduces the

basic parameters of a randomly scattering medium and then uses them to define

the VRTE; Section 2.2 derives the DE; and, finally, Section 2.3 derives the dipole

diffusion BSSRDF.

2.1 Basic Scattering Physics

This first section introduces the basic physics of scattering. The physical model of

most materials is the random medium. A random medium contains a collection of

particles randomly distributed and having random sizes and shapes. The model

implicitly assumes that the particles are much larger than the wavelength of the

light scattered and therefore it ignores quantum effects, such as diffraction. Because

in most physical problems the number of particles is essentially infinite, it is

practically impossible to consider modeling particles individually. Instead, the

aggregate collection of particles is defined by the probability of interactions of

light with the medium. The goal of this section is two-fold: to introduce the

basic parameters of a random media used throughout this thesis and to introduce

the equation that governs the physical behavior of light in such a medium, the

volumetric radiative transfer equation.
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2.1.1 Parameters of a Random Media

A random medium is completely specified by three functions.

Absorption coefficient σa(x) has units of inverse distance (typically mm−1) and

describes the expected number of absorption interactions per unit distance

traveled.

Scattering coefficient σs(x) has the same units and describes the expected num-

ber of scattering interactions per unit distance traveled.

Phase Function p(~ω, ~ω′) has no units. It describes the probability that light

scatters from direction ~ω into direction ~ω′ during a scattering event. It could

vary by position but this thesis assumes that p(~ω, ~ω′) is constant throughout

the entire scattering domain. The DE derivation (see Section 2.2 and Appendix

A) requires that the phase function be normalized and depend only on the

angle between ~ω and ~ω′, i.e. ∫
4π

p(~ω, ~ω′) d~ω′ = 1 (2.1)

p(~ω, ~ω′) = p(~ω · ~ω′) (2.2)

From these three basic parameters, several additional parameters, referenced

throughout this thesis, can be derived:

Mean cosine of the phase function µ is the probability weighted average of

the cosine of the angle between the light’s current direction and its scattered

direction:

µ =

∫
4π

p(~ω, ~ω′)(~ω · ~ω′) d~ω′ (2.3)

If µ is positive, the material is said to be forward scattering since light tends

to scatter into directions closer to its current direction. Analogously, if µ
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is negative, the material is backward scattering. If µ = 0 the material has

isotropic scattering. The a common normalized isotropic phase function is

the constant, p(~ω, ~ω′) = 1/4π.

Total extinction coefficient σt(x) = σs(x) + σa(x) is the total number of inter-

actions, both absorption and scattering, per unit distance traveled.

Mean free path l(x) = 1/σt(x) is the average distance light travels before inter-

acting. The mean free path measures the optical thickness, or relative

transparency, of a material.

Albedo α(x) = σs(x)/σt(x) is the fraction of all interactions that scatter. Lower

albedo materials are more absorptive and appear darker. Most materials

have a different albedo for each wavelength and the relative differences in

absorption give the material its color.

Reduced scattering coefficient σsr(x) = (1− µ)σs(x) gives the scattering co-

efficient of an isotropically scattering material that, in the limit of many

scattering events, has approximately the same properties as a non-isotropically

scattering material whose phase function has a mean cosine of µ. This trans-

formation is commonly used to apply scattering models valid only for isotropic

materials to non-isotropic ones. The transformation leaves the absorption

coefficient unchanged but it introduces the reduced total extinction coefficient

σtr(x) = σsr(x) + σa(x).

Diffusion coefficient κd(x) = 1/3σtr(x) is a derived material property that results

from the derivation of the diffusion equation (see Equation (2.15)).
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Figure 2.1: (a) The differential radiance (~ω · ~∇)L(x, ~ω) emitted from x in direction
~ω is formed from three components: (b) the light that scatters into ~ω at x minus
(c) the light lost to absorption and scattering at x plus (d) the emission of the
media in direction ~ω.

2.1.2 Volumetric Radiative Transfer Equation

Given the parameters above, the scattering of light in a random medium is exactly

defined by the volumetric radiative transfer equation (VRTE) [Ish78]. It defines

the differential radiance (~ω · ~∇)L(x, ~ω) at each point in the medium.

(~ω · ~∇)L(x, ~ω) = σs(x)

∫
4π

p(~ω, ~ω′)L(x, ~ω′) d~ω′ − σt(x)L(x, ~ω) +Q(x, ~ω) (2.4)

In Equation (2.4), Q(x, ~ω) is the source function. On the boundary it describes any

light incident on the medium from external light sources and within the medium it

describes any emission from the medium itself. Figure 2.1 illustrates how the three

terms in the VRTE respectively account for the three basic scattering phenomenon.

Changes in the radiance at x in ~ω can arise because either:

Figure 2.1(b) light in-scatters into ~ω from other directions;

Figure 2.1(c) light is lost to absorption or out-scatter into other directions; or

Figure 2.1(d) light is emitted in ~ω by the source.

2.1.3 Basic Path Tracing

Path tracing algorithms use the VRTE to generate photon paths. Energy conserva-

tion guarantees that all light interactions are reciprocal so the paths can be traced
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either forwards or backwards using the same algorithm. Path tracing algorithms

generally start from the camera and work backwards. At each step the algorithm

has a partial path and it uses it to transmit any radiance emitted from its current

position back to the camera. Then it extends the path by one segment by sampling

the first two terms of the VRTE. The algorithm randomly samples the albedo

(the ratio of the two terms) to determine if the light scatters or is absorbed. If

it is absorbed, the simulation of the path stops. If it scattered, the first term is

sampled to create a new path segment. Repeating this process many times creates

a single path and tracing billions of such paths creates an image. Unfortunately,

this path-by-path simulation usually requires many hours of computation. The

diffusion equation, derived in the next section, reduces this cost by modeling the

bulk effect of many photon paths together.

2.2 Diffusion Equation

Almost all subsurface rendering algorithms rely on the diffusion equation (DE);

either directly or indirectly through the dipole diffusion BSSRDF. The diffusion

equation simplifies the scattering computation by assuming the light randomly

scatters in the medium enough to erase all but the lowest order angular dependence

from the radiance. By idealizing the radiance function as first order angular expan-

sion, the VRTE can reduced to a constraint on the total radiant power, the fluence,

at each point in the medium. This constraint is the diffusion equation. Because

the approximations required to derive the DE have fundamental consequences on

both of the rendering algorithms in this thesis, this section provides an in-depth

introduction to DE theory. This section has two parts. The first part motivates

the diffusion approximation (DA), the basic simplifying assumption of the DE, and

then uses the diffusion approximation to derive the DE. The second part, the most
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important part of this chapter, discusses how to use the DE for rendering.

2.2.1 Derivation

The derivation of the DE has three steps:

Step 1 introduces the diffusion approximation;

Step 2 restricts the problem by introducing the reduced intensity source to model

the radiance that violates the diffusion approximation; and

Step 3 substitutes the diffusion approximation into the restricted problem to

produce the DE.

2.2.1.1 Step 1: Diffusion Approximation

Because light interacts with the material many times, materials with high albedo and

short mean free paths are the most expensive to render using path tracing. However,

for these materials, the DE is most accurate because it leverages a consequence

of all this scattering: frequent random scattering smooths the aggregate angular

radiance distribution. As the scale the scattering domain Ω grows relative to the

mean free path l, one can assume some limit beyond which sufficient scattering

will erase almost all of the angular properties of the source Q(x, ~ω). The diffusion

approximation is the specific assumption that the final aggregate radiance is linear

in its 0th and 1st angular moments, the scalar fluence φ(x) and the vector irradiance

~E(x).

φ(x) =

∫
4π

L(x, ~ω′) d~ω (2.5)

~E(x) =

∫
4π

L(x, ~ω′) · ~ω′ d~ω (2.6)

L(x, ~ω) =
1

4π
φ(x) +

3

4π
~ω · ~E(x) (2.7)
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2.2.1.2 Step 2: Reduced Intensity Source

Unfortunately, the DA cannot be applied to all radiance in the medium. Sufficiently

near the boundary or the interior sources, the source radiance will not yet have

scattered and this radiance might contain non-linear components. To apply the

DA more accurately, this yet-to-have-scattered source radiance, called the reduced

intensity radiance Lri(x, ~ω), is separated from from the remaining, diffusive radiance

Ld(x, ~ω).

L(x, ~ω) = Ld(x, ~ω) + Lri(x, ~ω) (2.8)

Since the DA does not apply to Lri(x, ~ω), it is removed from the problem by

assuming that a new input source function can be supplied that gives diffusive

radiance out-scattered by Lri(x, ~ω). This new term is called the reduced intensity

source Qri(x, ~ω).

Qri(x, ~ω) = σs(x)

∫
4π

p(~ω, ~ω′)Lri(x, ~ω
′) d~ω′ (2.9)

Using these two equations, the VRTE can be restricted only to Ld(x, ~ω). First

substitute Equation (2.8) into Equation (2.4) to yield

(~ω · ~∇)Ld(x, ~ω) + (~ω · ~∇)Lri(x, ~ω) =

σs(x)

∫
4π

p(~ω, ~ω′)
[
Ld(x, ~ω

′) + Lri(x, ~ω
′)
]
d~ω′

− σt(x)Ld(x, ~ω)− σt(x)Lri(x, ~ω) +Q(x, ~ω) (2.10)

Next, because Lri(x, ~ω) only includes light that has not scattered, differential

changes to Lri(x, ~ω) can only occur due to losses from absorption and outscatter.

Thus, it satisfies

(~ω · ~∇)Lri(x, ~ω) = −σt(x)Lri(x, ~ω) (2.11)
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Then, by substituting Equations (2.11) and (2.9), Equation (2.10) becomes depen-

dent only on Ld(x, ~ω)

(~ω · ~∇)Ld(x, ~ω) = σs(x)

∫
4π

p(~ω, ~ω′)Ld(x, ~ω
′) d~ω′

− σt(x)Ld(x, ~ω) +Qri(x, ~ω) +Q(x, ~ω) (2.12)

2.2.1.3 Step 3: Substituting the Diffusion Approximation

Assuming that Ld(x, ~ω) in Equation (2.12) satisfies the diffusion approximation

(Equation (2.7)) yields the diffusion equation. Algebraically, this process has

three steps. The first two define separate equations that relate φ(x) and ~E(x) by

computing integrals of Equation (2.12). The first is created by equating the 0th

moments of the terms in Equation (2.12) and the second is created by substituting

Equation (2.7) into Equation (2.12) and then equating the 1st moments of the

resulting terms. The two resulting equations are (see Appendix A for the algebraic

details):

~∇ · ~E(x) = −σa(x)φ(x) +Q0
ri(x) +Q0(x) (2.13)

~∇φ(x) = −3σtr(x) ~E(x) + 3Q1
ri(x) + 3Q1(x) (2.14)

These equations introduce several new terms. Four are the 0th and 1st moments of

the two source terms, Q0(x), Q0
ri(x), Q1(x) and Q1

ri(x), and the last is the reduced

total extinction coefficient σtr(x) discussed in Section 2.1.1. The final step in the

derivation of the DE makes one further approximation: that the source terms are

isotropic, i.e. Q1(x) ≡ 0 ≡ Q1
ri(x). With this simplifying assumption, Equation

(2.14) can be used to eliminate ~E(x) from Equation (2.13) to yield the DE.

−~∇ ·
(
κd(x)~∇φ(x)

)
+ σa(x)φ(x) = Q0(x) +Q0

ri(x) (2.15)

In Equation (2.15), κd(x) is the diffusion coefficient (see Section 2.1.1).
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2.2.2 Rendering using the Diffusion Equation

Having derived the diffusion equation, the discussion turns to the most important

topic in this chapter: using the DE for rendering. Rendering using the DE is a

three step process.

Step 1 Estimate Qri(x, ~ω)

Step 2 Use Qri(x, ~ω) to solve the Equation (2.15) for φ(x)

Step 3 Compute L(x, ~ω) from φ(x) using Equation (2.18)

Unfortunately, a useful rendering algorithm cannot be created from the derivation

in the previous section alone. Implementing a rendering algorithm requires solving

three additional problems.

Problem 1 Even for accurate solutions of the DE, its approximations can introduce

objectionable artifacts in images. To hide these errors, the radiance must be

carefully computed from the fluence. Section 2.2.2.1 describes the common

rendering computation.

Problem 2 The solution to the DE is only fixed with the addition of a boundary

condition specifying φ(x) on the medium’s surface. Unfortunately, the physical

boundary condition does not satisfy the DA and an approximate condition

must be chosen. Section 2.2.2.2 describes three common choices: Dirichlet,

Robin and extrapolated [SAHD95, HST∗94]. The Dirichlet condition is used

to derive the extrapolated condition which is then used to derive the dipole

diffusion BSSRDF in Section 2.3. The Robin condition is the basis for the

diffusive source boundary condition used by the FE algorithm in Chapter 5.

Problem 3 The reduced intensity source Qri(x, ~ω) is difficult to compute accu-

rately and an approximate model of the source must be chosen as well. Section

2.2.2.3 describes two choices: the boundary source model and the embedded
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Figure 2.2: The incident light on the surface is split into three components, surface
reflection, single scattering and diffused light.

source model. The embedded source model is used to derive the dipole

diffusion BSSRDF and the more accurate boundary source model is used in

Chapter 5.

2.2.2.1 Problem 1: Radiance Computation

For rendering, the surface radiance calculation must address two issues: single

scattering and approximation errors. First, the effects of single scattering, the light

that scatters exactly once in the medium, are often visually important to image

appearance. More accurate images can be produced if, before the DE is applied, the

incident light is split into the three components shown in Figure 2.2: the surface

reflection, the single scattering component and the remaining multiple scattering

component. The first two components are computed using more accurate algorithms

[HK93] and the DE is applied only to the multiple scattering. This change alters the

definition of the reduced intensity radiance Lri(x, ~ω) and Equation (2.11) becomes

invalid. Consequently, the diffusion equation may no longer hold. However, this is

generally ignored. Subtracting the total power of the single scattered radiance from

the total power of Qri(x, ~ω) ensures that this approximate computation conserves

energy.

Second, since the DA only approximates the diffusive scattering, the a solution
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to the DE may contain non-physical 1st order, angular variation resulting entirely

from the DA. For a rendering application, it is preferable to smooth this variation

even if the smoothing is inaccurate in some cases. Moreover, in the limit of

infinite scattering, the DA solution converges to the smoothed solution [Ish78].

For rendering, the surface radiance is approximated by the angular average of the

diffuse radiance projected onto the interior boundary of the medium

L(x, ~ω) =
Ft(η, ~ω)

π

∫
(~n·~ω)>0

Ld(x, ~ω)(~ω · ~n) d~ω (2.16)

This can be simplified by the substitution of the DA into Equation (2.16). For this

Ishimaru [Ish78] derives a useful identity. If Ld(x, ~ω) satisfies the DA then∫
(~s·~ω)>0

Ld(x, ~ω)(~s · ~ω) d~ω =
φ(x)

4
− κd(x)(~s · ~∇)φ(x)

2
(2.17)

Using Equation (2.17), Equation (2.16) becomes

L(x, ~ω) =
Ft(η, ~ω)

4π

(
φ(x)− 2κd(x)(~n · ~∇)φ(x)

)
(2.18)

Finally, with Equation (2.18), a rendering algorithm can convert the fluence solution

of the DE to radiance.

2.2.2.2 Problem 2: Boundary Conditions

Solving the DE requires an additional boundary condition that fixes the solution

fluence on the surface of the medium. The physical condition should be derived

analogous to the DE: scattering physics imposes an exact condition on the radiance

at the boundary and then the DA is applied to derive a condition on the fluence.

Physical Boundary Condition The DE models the diffusive radiance Ld(x, ~ω)

and, by definition, this radiance must have scattered at least once in the medium. At
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the boundary it is not possible for light to have previously scattered so, physically,

Ld(x, ~ω) must be zero along all inward directions on ∂Ω, i.e.

∀(~n · ~ω) < 0, Ld(x, ~ω) = 0 (2.19)

Since this boundary condition is discontinuous between the inward and outward

directions, no function can simultaneously satisfy both this boundary condition and

the DA. Thus, unfortunately, when using the DE, the physical condition can only

be approximately satisfied. Three possible choices, Dirichlet, Robin and boundary

extrapolation, are discussed here [SAHD95, HST∗94].

Dirichlet Boundary Condition The Dirichlet condition is the simplest. It sets

the fluence to zero on the boundary, φ(x) ≡ 0. Depending on how the DE is solved,

the Dirichlet condition may or may not significantly effect the accuracy of the

global solution. For applications other than rendering, such as medical imaging and

scattering physics that are often concerned with radiance estimates far from the

boundary, the Dirichlet condition works well [SAHD95, HST∗94]. However, for the

obvious reason that the boundary is the only externally visible part of the medium,

the radiance estimates required by rendering algorithms are generally restricted to

the boundary. Since the boundary condition has a large effect on accuracy in these

regions, the Dirichlet condition cannot be used for rendering.

Robin Boundary Condition The physical boundary condition can be made

compatible with the DA by approximating it with a new condition on only Γin
d (x),

the net inward radiant flux at the boundary.

Γin
d (x) =

∫
(~n·~ω)<0

Ld(x, ~ω)(~ω · ~n) d~ω (2.20)

Robin boundary conditions are the general class of boundary conditions that use the

net flux approximation and, depending on the requirements imposed, they can be
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used to generate accurate solutions (see [SAHD95, HST∗94] for a 2D analysis and

Chapter 5 for analysis for rendering applications). The Robin boundary condition

φ(x) + 2A(η)κd(x)(~n · ~∇)φ(x) = 0 (2.21)

is commonly used by previous rendering algorithms [Sta95, JMLH01, HMBR05,

LPT05, WZT∗08]. It ensures that the net inward flux approximately matches the

net outward flux reflected by Fresnel interface effects at the boundary. The factor

A(η) =
1 + Fdr(η)

1− Fdr(η)
(2.22)

Fdr(η) =

∫
(~n·~ω)>0

Fr(η, ~ω)(~ω · ~n) d~ω (2.23)

approximately models these Fresnel effects. Here η is the relative index of refraction

between the interior and exterior media and Fdr(η) is the hemispherical average of

the Fresnel reflection coefficient Fr(η, ~ω). The corresponding Fresnel transmission

coefficients Fdt(η) = 1−Fdr(η) and Ft(η, ~ω) = 1−Fr(η, ~ω) are also used throughout

this thesis. In scattering physics, different Fresnel models result in different values

for A(η) (see [SAHD95] for a review). Equation (2.22) was originally derived in

[GFB83]. The derivation of Equation (2.21) is discussed in Section 5.2 as part of

the derivation of the more accurate, diffusive source boundary condition.

Boundary Extrapolation Boundary extrapolation assumes that the solution to

the DE in the original domain Ω with the Robin boundary condition is equivalent

to the projection of a solution from a larger, extrapolated domain with the Dirichlet

boundary condition. Determining the position of the new boundary has two steps.

First the fluence is extrapolated along the normal a distance δ outside Ω using a

1st order Taylor series centered at x ∈ ∂Ω.

φ(x + δ~n) = φ(x) + δ(~n · ~∇)φ(x) (2.24)
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Figure 2.3: (a) The reduced intensity source for a single collimated beam of
normally incident light with power Ψ can be approximated by a single point source
embedded one mean free path l = σ−1

t in the material with power αΨ where α is
the albedo of the medium; (b) the dipole solution to the diffusion equation (DE)
using the embedded source model and a second negative point source to satisfy the
extrapolated boundary condition.

Next, the Robin boundary condition (Equation (2.21)) is used to eliminate the

gradient term in Equation (2.24).

φ(x + δ~n) =

(
1− δ

2A(η)κd(x)

)
φ(x) (2.25)

Equation (2.25) implies that φ(x+δ~n) will equal zero on an extrapolated, boundary

normally projected outwards a distance δ = 2A(η)κd(x) from ∂Ω. The derivation

of the dipole diffusion BSSRDF uses boundary extrapolation (see Section 2.3).

2.2.2.3 Problem 3: Source Models

This final section discusses models for the reduced intensity source Qri(x, ~ω). At

any particular point, the exact value of Qri(x, ~ω) could be computed by path

tracing however this can be very expensive. By modeling the reduced intensity

approximately this cost can be reduced. Two models are discussed here: the

embedded source model, used by the dipole diffusion BSSRDF, and the boundary

source model, used by the new FE algorithm in Chapter 5.
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Embedded Source Model The embedded source model positions point sources

inside the media whose emittance approximates the reduced intensity source. The

model is motivated by the particular case, illustrated in Figure 2.3(a), of a collimated

beam of normally incident radiance arriving on a semi-infinite slab of isotropically

scattering1, homogeneous material. In this case, a single point source closely

matches the exact solution. To use the model for any other problem, the problem

is approximated locally by an instance of the semi-infinite, homogeneous case.

Let x be a point on the boundary and Ψ(x) = L(x,−~n) be the radiance of the

collimated incident beam then the reduced intensity source is exactly

Qri(x− δ~n, ~ω) =
σsΨ(x)

4π
e−σtδ (2.26)

where δ is some distance inward along the normal from x. As illustrated in Figure

2.3(a), this source is an exponentially-decreasing linear source that lies along −~n.

The total power of this source is

Qtotal
ri =

∞∫
0

∫
4π

Qri(x− δ~n, ~ω) d~ω dδ =
σsΨ(x)

σt
= αΨ(x) (2.27)

where α is the albedo of the material. The embedded source model approximates

this linear source with a single, isotropic point source of equal power. The optimal

location for the point source is the power-weighted average depth of the linear

source in the media.

1

Qtotal
ri

∞∫
0

x

∫
4π

Qri(x− δ~n, ~ω) d~ω dd =
1

Qtotal
ri

σsΨ(x)

σ2
t

=
1

σt
(2.28)

To use the embedded source model in more complicated cases, the radiance at the

surface is sampled at many points. At each point, the total incident radiance is

1This restriction is relatively minor since, when using the DE, non-isotropic materials are
approximated by isotropic ones using reduced scattering coefficients (see Section 2.1.1).
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approximated by a single collimated beam with power

Ψ(x) =

∫
4π

L(x, ~ω)Ft(η, ~ω)(~ω · ~n) d~ω (2.29)

At each sample, an embedded source is created by assuming the local media is

a homogeneous, semi-infinite slab with the scattering parameters of the surface

sample point. If many samples are created, the resulting model is a reasonable

estimate of the real reduced intensity source [DJ07].

Boundary Source Model Unlike the embedded source model, the boundary

source model does not try to create a volumetric representation of the reduced

intensity source. Instead it approximates Qri(x, ~ω) by assuming it arrives directly

at the boundary. Because the reduced intensity source decays exponentially away

from the boundary, this is reasonable since most of the power in Qri(x, ~ω) lies

very near the boundary compared to the size of the domain. For example, in the

collimated example in the last section, the powered weighted average depth of the

infinite line source was only a single mean free path. Once the reduced intensity

source is assumed to lie only on the boundary, it can be incorporated into the

boundary condition. Chapter 5 develops an accurate method of solving the DE. An

essential part of that solution is the diffusive boundary source condition (Equation

(5.5)) which combines the boundary source model with a Robin boundary condition

(Equation (2.21)) to create an accurate, DE formulation for complex heterogeneous

materials.

2.3 Derivation of the Dipole Diffusion BSSRDF

Because it is used by most previous subsurface rendering algorithms and the

new scalable algorithm in Chapter 4, this last section derives the dipole diffusion
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BSSRDF. The dipole diffusion BSSRDF is based on a solution to the diffusion

equation for the simplified configuration already discussed for the embedded source

model (Section 2.2.2.3): a collimated, normally incident beam illuminating a semi-

infinite, isotropic, homogeneous slab. Given the theory already discussed in the

previous section, the derivation of the dipole diffusion BSSRDF has only three

additional steps:

1. The DE is solved for a single point source—the embedded, reduced intensity

source approximation of the collimated beam—in an infinite medium.

2. This solution is converted into the semi-infinite solution by using the extrap-

olated boundary condition and a second, negative pseudo-source.

3. The semi-infinite solution is differentiated and converted into an approximate

BSSRDF.

The first step references Ishimaru who derives that, for an infinite, isotropic,

homogeneous material, the DE has a analytic solution for the embedded point

source:

φ(x) =
Ψ(x)

4πκd

e−σetr(x)

r(x)
(2.30)

where Ψ(x′) is the incident radiance that generates the embedded source at x,

σet =
√

3σaσt is the effective transport coefficient and r(x) is the distance from

the point source to x. The second step imposes a boundary condition on the

infinite solution to create a semi-infinite solution. Using the extrapolated boundary

condition (see Section 2.2.2.2), this is trivial: a second, negative power pseudo-

source is positioned above the boundary as illustrated in Figure 2.3(b). Since all

points on the extrapolated boundary are equally distant from both sources, the

fluence on the extrapolated boundary is zero as required. Thus, the solution to the

semi-infinite case is the composition of the two point source solutions (i.e. a dipole
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source).

φ(x) =
αΨ(x)

4πκd

[
e−σetrp(x)

rp(x)
− e−σetrn(x)

rn(x)

]
(2.31)

rp(x) and rn(x) are the distances from x to the positive and negative sources

respectively. Finally the third step uses Equation (2.31) to create an approximate

BSSRDF. A BSSRDF is an estimate the fraction of radiance incident at x′ from ~ω′

that leaves the medium at x in ~ω. Since at both the inward and outward interfaces

the radiance will experience Fresnel interface effects, a basic BSSRDF has the form

S(x, ~ω,x′, ~ω′) = Ft(η, ~ω)R(x, ~ω,x′, ~ω′)Ft(η, ~ω) (2.32)

where R(x, ~ω,x′, ~ω′) is the ratio of internal subsurface transmittance from entry to

exit. The dipole diffusion BSSRDF estimates R(x, ~ω,x′, ~ω′) as ratio of the exitant

normal gradient of the fluence to the incident, differential embedded source power.

R(x, ~ω,x′, ~ω′) =
−κd(~n · ~∇)φ(x)

dΨ(x)
(2.33)

This ratio can be directly computed by differentiating Equation (2.31) and rear-

ranging terms. In the end the result, the dipole diffusion BSSRDF, only depends

on r =
∥∥x− x′

∥∥
R(x, ~ω,x′, ~ω′) = R(r) =

α

4π

[
C1
e−σetrp(r)

rp(r)2
+ C2

e−σetrn(r)

rn(r)2

]
(2.34)

where

zp =
1

σtr
zn = zp + 4A(η)κd

rp(r) =
√
r2 + z2

p rn(r) =
√
r2 + z2

n

C1 = zp

(
σet +

1

rp(x)

)
C2 = zn

(
σet +

1

rn(x)

)
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2.4 Summary

The goal of the chapter was to give a complete introduction to the scattering theory

used by rendering algorithms. The volumetric radiative transfer equation exactly

models light transport (Section 2.1) but Monte Carlo path tracing algorithms that

solve it are too expensive for practical applications. Most previous work, surveyed

in the next chapter, and the algorithms in this thesis rely on an approximate model

of subsurface scattering, the diffusion equation, derived in Section 2.2. The most

important part of this chapter, Section 2.2.2, introduced the three steps that outline

a basic rendering algorithm using the diffusion equation. Each of the new algorithms

in this thesis extends this basic algorithm to larger and more difficult problems.

Chapter 4 demonstrates that, even when the DE solution is approximated cheaply

be the dipole diffusion BSSRDF (Section 2.3), the required pre-computation of the

reduced intensity source Qri(x, ~ω) can become an impractical bottleneck in large

complex scenes. The new scalable algorithm solves this problem by trying to detect

when source computation is essential and compute the reduced intensity source only

when necessary. Then, Chapter 5 develops the first, accurate and efficient algorithm

for solving the diffusion equation in general, complex heterogeneous materials.

It demonstrates that for many materials, the new heterogeneous algorithm is

comparable to the accuracy of path tracing with orders of magnitude savings in

cost. An essential part of this new heterogeneous algorithm is the diffusive source

boundary condition that combines the Robin boundary condition (Section 2.2.2.2)

with the boundary source model (Section 2.2.2.3) to create an accurate model of

heterogeneous boundary effects.
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CHAPTER 3

PREVIOUS WORK

Previous work in subsurface rendering can be divided into three categories: Monte

Carlo (MC) algorithms, dipole diffusion algorithms and heterogeneous algorithms.

The goal of this chapter is to identity the limits of these previous algorithms to

highlight the contributions of the two new algorithms presented in the next chapters.

To begin this discussion, it is useful to summarize the limitations of each class as a

whole.

3.1 Limitations of Previous Work

Monte Carlo algorithms are limited by their path-by-path approach. Regardless of

whether an image contains subsurface scattering or not, a path tracing algorithm

must trace a minimum number of paths to ensure the image is accurate. When

subsurface scattering is present, tracing a single path requires simulating hundreds

of subsurface interactions. These new simulation steps sufficiently raise costs such

that all path-based MC algorithms, even those that trace close to the minimum

number of paths, become impractically expensive. Since the path-by-path approach

is inherent to MC algorithms, practical considerations have pushed most research

towards approximate approaches, like the dipole diffusion BSSRDF, that can solve

for the aggregate behavior of many paths.

However, dipole diffusion algorithms have limited scalability. Recalling the

basic diffusion equation rendering algorithm discussed in Section 2.2.2, a dipole

renderer must first compute the reduced intensity source then solve the DE (using

the dipole diffusion BSSRDF) and compute an outgoing radiance estimate. In all

previous work, this algorithm is implemented in one of two ways. The first, based on

[JMLH01], computes an estimate of the reduced intensity source for each outgoing
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radiance calculation. The second, based on [JB02], leverages the independence

of the reduced intensity source from any particular radiance calculation to avoid

this re-computation. The improved algorithm has two passes. The first pass

pre-computes the reduced intensity source once and the second pass reuses it

many times for all outgoing radiance estimates. Unfortunately, the cost of both

algorithms significantly increases as the scene grows in size and complexity. In the

first approach, the effort wasted on repeated source calculations only grows. In

the two-pass algorithms, the cost of the initial source pre-computation becomes

expensive. The problem is that basic, two-pass algorithms conservatively compute

an excessively, detailed representation of the reduced intensity source. The new

scalable algorithm presented in Chapter 4 fixes this scalability limitation. It both

avoids repeated source computations and judiciously evaluates the reduced intensity

source to ensure that no extra source estimates are performed.

Finally, there is no previous algorithm for the high-quality rendering of general,

physical models of heterogeneous materials that is faster than path tracing. Previous

approaches for heterogeneous materials are capture and re-render systems. These

systems use photographs of real objects to record models of the subsurface scattering.

Using these recorded models, these systems can re-render the captured materials in

new environments. However, the capture process corrects for inaccuracies inherent

in the re-rendering algorithms by altering the recorded model parameters. As a

consequence, these rendering algorithms can produce high-quality images but only

of the recorded materials. The most recent work in this category, Wang et al., tried

to avoid this problem. However, as will be discussed in detail in Section 5.5.6, their

approach limits the scattering geometry and produces lower quality images when

not rendering captured materials. The new finite element algorithm presented in

Chapter 5 is the first, general, high-quality and practical rendering algorithm for
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heterogeneous materials.

The rest of this chapter has four sections. The first reviews Monte Carlo

algorithms and the second reviews dipole diffusion algorithms. The third section

discusses previous work on heterogeneous rendering including an overview of work

from medical imaging that addresses a similar problem. Finally, the chapter closes

with a summary of the key elements of this work relevant to the new algorithms

presented in the rest of this thesis.

3.2 Monte Carlo Algorithms

Because solving the volumetric radiative transfer equation requires only simple

extensions to basic surface path tracing algorithms, the earliest subsurface rendering

algorithms were path tracers. Hanrahan and Krueger [HK93] used path tracing

to render layered translucent materials, such as leaves and skin, and Jensen et al.

[JLD99] used it to simulate the appearance of wet materials. Pharr and Hanrahan

[PH00] later formalized the volumetric path tracing algorithm using operator theory.

Two algorithms, photon mapping [JC98, DEJ∗99] and Metropolis sampling

[PKK00], reduce the cost of the basic path tracer. Photon mapping accelerates

rendering by caching and reusing some path segments [JC98, DEJ∗99]. The photon

mapping algorithm has two stages. First it generates long paths starting at the

light sources and stores the position and radiance of all their interactions in a large

index called the photon map. Then short paths are generated from the camera.

The radiance arriving at the end of each short path can be estimated using the

photon map and then added directly to the image. By reusing a relatively small

number of long paths, the total number of simulated interactions is dramatically

reduced.

Metropolis sampling focuses effort on the simulation of paths that contribute
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most to the image [PKK00]. The algorithm randomly samples a starting path

and then mutates the path to generate new ones. The size and probability of the

mutation depend on the amount of radiance that travels along the original path.

When the algorithm finds important paths, it saves time by sampling the nearby

paths densely to quickly add radiance to the image. Unfortunately, neither of these

techniques improves performance enough to make Monte Carlo algorithms practical

for subsurface rendering.

3.3 Dipole Diffusion Algorithms

The majority of subsurface rendering algorithms are based on the dipole diffusion

BSSRDF. All of these algorithms rely on the results from two papers: one by

Jensen et al. [JMLH01] and a follow-up work a year later by Jensen and Buhler

[JB02]. When reading this section it is important to keep in mind, that none of

the following algorithms address the scalability problem solved in the next chapter.

Though one algorithm may be more accurate or more efficient than another, the

scalability of these dipole algorithms is fundamentally limited by their structure.

For any algorithm below, there is a sufficiently large or complex scene where it

becomes impractical. The new scalable algorithm presented in this thesis solves

this problem by using a new unified rendering structure that remains practical even

if the scene grows in size and complexity. The rest of this section breaks review of

dipole diffusion algorithms into three subsections. The first subsection discusses the

basic algorithms [JMLH01, JB02] and then the next two subsections respectively

discuss improvements in the accuracy and the speed of these two basic approaches.
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3.3.1 Basic Algorithms

Jensen et al. [JMLH01] introduced the dipole diffusion BSSRDF and presented an

accelerated path tracer that used it. Their algorithm worked just like a basic path

tracer. However, when it encountered a subsurface scattering material, instead of

simulating the subsurface interactions, their algorithm sampled the BSSRDF. Since

it avoided the simulation of many subsurface interactions, their path tracer was

much faster than previous, pure Monte Carlo algorithms.

However, Jensen and Buhler [JB02] realized that a significant part of the

computation could be cached and reused. To compute the light that scatters

through the material, the dipole path tracer must recursively estimate the radiance

incident on the material’s surface. Jensen and Buhler realized that, since these

recursive calculations are independent of any subsurface path, they could be

computed once and reused. Their two-pass algorithm pre-computes the radiance

at many surface samples and then gathers the subsurface scattering from these

samples in the second pass. Because of this reuse and an optimization that clusters

similar samples during the radiance calculations in the second pass, their algorithm

is very fast for simple scenes and is used in many rendering applications. However,

as will be discussed in detail in Chapter 4, the algorithm becomes inefficient as

scenes grow larger.

3.3.2 More Accurate Algorithms

The accuracy of these original dipole renderers has been improved by three tech-

niques: a new thin-layer BSSRDF, an improved embedded source model called

photon diffusion, and hybrid path tracing and dipole diffusion algorithms.
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3.3.2.1 Thin-layer BSSRDF

Donner and Jensen [DJ05] created a new BSSRDF, similar to the basic dipole

diffusion BSSRDF, but more accurate for thin-layer geometries such as skin and

leaves. To create the original dipole diffusion BSSRDF (see Section 2.3), the

derivation converted a solution for an infinite medium into a solution for a semi-

infinite medium by introducing a second, pseudo-source to satisfy the boundary

condition. In the same way, the dipole BSSRDF can be converted into a thin-layer

BSSRDF by introducing yet more sources to satisfy the second boundary condition

at the bottom of the layer. Donner and Jensen used this new BSSRDF to implement

a new accelerated path tracer for rendering layered, skin-like materials.

3.3.2.2 Photon Diffusion

Photon diffusion [DJ07] improves the accuracy of the embedded source model. The

basic dipole solution used an embedded source model that converts an incoming

collimated beam into a single dipole source. The photon diffusion algorithm converts

the incoming beam into several dipole sources. Because the new source has a larger

spatial extent, the representation is a better model for cases where the beam is not

normally incident. Additionally the algorithm can approximate volume shadows

by blocking the generation of some of the dipole sources and handle paths that

re-enter the subsurface material several times by allowing the source generation

algorithm to exit and re-enter to the material as well. Their rendering method is

the same two-pass algorithm as [JB02]. All the embedded sources are generated in

an initial pass and the second pass gathers the subsurface contributions from these

sources to produce an image.
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3.3.2.3 Hybrid Algorithms

Finally, two methods [LPT05, CTW∗04] combine accurate subsurface path tracing

with the dipole diffusion to create hybrid methods. Both algorithms divide the

subsurface scattering object into two regions: a thin, outer shell and an inner

core. The algorithms use accurate, subsurface path tracing in the outer shell but

approximate transport in the inner core using the dipole diffusion BSSRDF. Li

et al. [LPT05] demonstrate that this thin-shell model can significantly improve

quality when rendering thin geometry. Chen et al. [CTW∗04] model a limited type

of tile-able heterogeneity in the thin-shell by first pre-computing a shell texture

function (STF), a path-traced BSSRDF for the heterogeneous tile. The expensive

heterogeneous path tracing in the thin shell is accelerated by sampling the STF to

directly step from tile to tile.

3.3.3 Faster Algorithms

Fast dipole diffusion algorithms are designed for specialized hardware, the graphics

processing unit (GPU). Using the GPU these algorithms can render images fast

enough to support real-time interactions with the scene. There are two basic

methods: pre-computed radiance transfer (PRT) methods and interactive two-pass

methods.

3.3.3.1 Pre-computed Radiance Transfer

Pre-computed radiance transfer algorithms estimate the transfer function [SKS02,

WTL05]. The transfer function describes the complete radiance transport from

light sources through the scene to the outgoing radiance from all surfaces. PRT

algorithms pre-compute an estimate of the transfer function and store it in a

spherical basis. Using this pre-computed data, an image can be computed quickly
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by convolving the transfer function with the light source function using the GPU.

The initial pre-computation is not interactive. It estimates the transfer function

using the two-pass dipole diffusion algorithm [JB02]. But, given a pre-computed

transfer function, the lighting can be updated in real-time. In a later work, Sloan

et al. [SLS05] showed that deformable, dipole diffusion transfer functions can be

created with extra pre-computation.

3.3.3.2 Interactive Two-pass Algorithms

There have been many real-time implementation of the basic two-pass algo-

rithm [JB02] using the GPU [MKB∗03b, HBV03, MKB∗03a, CHH03, HV04, DS03,

LGB∗02]. The basic outline of all these algorithms is the same. Given a subsurface

scattering object, they choose a fixed set of surface samples where the outgoing

subsurface radiance will be computed. Then they link each outgoing sample to

a small set of incoming surface samples and the algorithm estimates the dipole

diffusion BSSRDF for each link. To compute the image, these algorithms compute

the radiance at all the incoming samples using a fast GPU algorithm and then they

use the links and BSSRDF values to transfer the radiance at the incoming samples

to the outgoing samples.

These algorithms fall into two groups. The first group [LGB∗02, CHH03, HBV03,

HV04] require fixed scattering geometry. In this case the links and BSSRDF values

never change and can be pre-computed and reused. Since link selection is not part of

the real-time computation, these algorithms can improve quality by spending more

effort selecting useful links and computing the BSSRDF estimates more accurately.

The second group [DS03, MKB∗03b, MKB∗03a] supports full real-time, deformation

of the geometry and alteration of the material terms. For these algorithms, the

links and the BSSRDF values must be computed interactively each frame so the

subsurface scattering computations are performed more approximately. However,
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because of this, they can support fully dynamic scenes and require no expensive

pre-computation.

3.4 Heterogeneous Materials

The most recent works in subsurface rendering address the difficult problem of

heterogeneous scattering. The new finite element algorithm in Chapter 5 is the

first general rendering algorithm in this class. Given a generic, physical description

of a heterogeneous scattering material, either measured or synthetic, it produces

in a few minutes a high-quality image comparable to Monte Carlo methods that

take hours. All of the previous algorithms discussed in this section are capture and

re-render systems. They use photographs of real objects to capture material models

that can then be re-rendered in novel environments. They all produce high-quality

images, but they rely on capture process to correct rendering inaccuracies. They

either cannot render, or cannot render accurately, general material models.

This section will discuss these previous works in three subsections. The first

subsection discusses algorithms that capture materials using a specialized material

model that can only be created through capture process itself. The second subsection

discusses the most recent and ambitious work, Wang et al. [WZT∗08], that captures

materials using a general model, but cannot render general materials accurately.

The final section discusses work outside of computer graphics in the medical imaging

field of optical tomography that solve problems similar to the one addressed in

Chapter 5.
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3.4.1 Specialized Capture Algorithms

Two capture systems represent the captured material by a compressed collection

of photographs. Goesele et al. [GLL∗04] use a video camera to record thousands

of images real objects. Then they compress this data into a smaller index of

transport coefficients within the object and material. They can then re-render the

original object in novel lighting environments by querying this index to calculate

the scattering between different regions. Peers et al. [PvBM∗06] present a similar

technique but they factor out the geometry from the captured data so the measured

material can be inserted into novel objects.

Tong et al. [TWL∗05] use the dipole diffusion BSSRDF to approximate captured

heterogeneous materials. Their rendering algorithm is essentially the two-pass

algorithm [JB02] from the previous section, but they modulate the incoming surface

radiance samples and the outgoing scattered radiance estimates using two separate

texture images. In the capture process, they compute these images so that the

renderer reproduces photographs of real objects. Then they can approximate these

materials in new geometry by mapping these textures onto the new object’s surface.

Finally, an ambitious recent work by Donner et al. [DWd∗08] uses a similar

technique to capture and model human skin. Their capture method is based

on the thin layer BSSRDF [DJ05] described above (see Section 3.3.2.1). Their

algorithm models human skin as a series of thin layers and, within each layer, they

approximate scattering homogeneously using the thin-layer BSSRDF. To add the

heterogeneous appearance of skin, they modulate the scattering between layers

using detailed, captured textures. The result is a very detailed model of the skin

material that can be applied to any object. Their renderings are very high-quality

but their model is valid only for layered skin-like geometries.
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3.4.2 Generalized Capture

Wang et al. [WZT∗08] generalizes these specialized capture algorithms. The main

component of their system is a fast finite difference solution of the heterogeneous

diffusion equation. This finite difference method was originally proposed by Stam

[Sta95] and implemented for homogeneous materials by Haber et al. [HMBR05].

Their capture system uses the adjoint conjugate gradient method to solve for an

input grid such that their finite difference rendering algorithm reproduces a series of

photographs of a real object. This capture method requires solving many instances

of the forward rendering problem and, to make this practical, they implement the

finite difference solver using the GPU. Their end result is an interactive system

that can redisplay and edit the captured materials in real-time. Their system can

apply the captured materials to new objects by warping the material grid into a

new geometry.

The finite difference renderer from Wang et al. is closely related to the new

heterogeneous finite element algorithm presented in Chapter 5. But, as a general

rendering solution for heterogeneous materials, the analysis in that chapter will

reveal two significant limitations. First, the warping operation required to deform

the finite difference grid into novel geometry is expensive to compute and cannot

be easily applied to all models without introducing error. Moreover, the warping

is expensive; Wang et al. note that good grid generation requires manual fitting.

Second, and most importantly, the finite difference algorithm has limited accuracy.

For the original capture and re-render system this is acceptable because these

accuracy issues are naturally corrected by the capture process. However, they

fundamentally limit the quality of the solution for general materials.
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3.4.3 Optical Tomography

The finite element method and the diffusion equation, the basic tools used to

develop the new heterogeneous rendering algorithm in Chapter 5, are also general

tools of mathematics and physics. Outside of computer graphics, many other

fields have considered similar scattering problems. The closest work is the medical

imaging field of optical tomography. The optical tomography problem is similar to

the capture problem addressed by Wang et al.: given a series of photographs of

human tissue lit by visible light determine the scattering properties of the tissue.

All the techniques used in subsurface rendering have also been used in optical

tomography (see [GHA05, Kol01] for a review of the state of the art). However,

the optical tomography problem is different from the rendering problem in three

ways. First, in optical tomography, the scattering solvers are interested in accurate

solutions at only a few points whereas a rendering algorithm needs accurate solutions

across a whole image. Second, rendering algorithms must work for a wide range of

material properties whereas their counterparts must consider only the small range

of parameters found in human tissue. Finally, optical tomography applications

are much less concerned with efficiency. The goal of the analysis in Chapter 5 is

to demonstrate that the new finite element algorithm is an efficient, high-quality

solution for the general class of rendering applications.

3.5 Summary

This chapter highlights two limitations of previous work in subsurface rendering.

First, dipole diffusion algorithms rely on a basic two-pass structure that limits

their scalability. Though this structure is useful for rapidly rendering small scenes

and many algorithms have considered more accurate and more efficient versions of
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this basic approach, the next chapter will demonstrate that there are always larger

scenes where these techniques become impractical. The new scalable algorithm

corrects this problem with a new unified rendering structure that performs well in

the large, complex scenes difficult for previous work. Second, the recent advances in

heterogeneous rendering are limited to capture and re-rendering applications that

cannot render general, physical material descriptions. The most advanced of these

algorithms, Wang et al., uses a finite difference technique to partially overcome this

limitation. However, the analysis in Chapter 5 will demonstrate that this algorithm

is difficult to apply to general geometric models and has limited accuracy as a

solution for general heterogeneous materials. The new finite element algorithm in

this thesis is the first efficient, general solution for the high-quality rendering of

heterogeneous subsurface scattering.
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CHAPTER 4

SCALABLE HOMOGENEOUS SCATTERING

At its core a rendering algorithm computes an integral. Scalable rendering algo-

rithms increase performance by approximating these integrals. They first determine

the relative importance of different parts of the integration domain and then they

balance performance and accuracy by estimating the contributions from unimpor-

tant regions more approximately. Since they carefully match computational effort to

relative importance, scalable algorithms can compute complex integrals with little

increase in cost. Thus they can render larger scenes with more detailed geometry

and more complex lighting. However, for subsurface rendering, the BSSRDF makes

determining the relative importance of different regions of the subsurface rendering

integral a challenge. This chapter addresses this challenge with a new scalable,

dipole diffusion rendering algorithm for large, complex scenes with subsurface

scattering materials.

4.1 Problem

To make the problem solved by the new algorithm more clear, it is useful to

consider the most commonly-used and efficient dipole diffusion rendering algorithm

in previous work: Jensen et al.’s two-pass method [JB02]. In an initial pass, this

method computes an estimate of the reduced intensity source by sampling the

radiance at many points on the scattering object’s surface. Then in a second pass,

the algorithm gathers the subsurface scattering from these samples by using the

dipole diffusion BSSRDF. If most of the samples computed in the first pass are used

when gathering scattering in the second pass, the two-pass algorithm is efficient.

However, sometimes the algorithm computes extra less important samples. If it

computes too many, the two-pass pre-computation becomes expensive.

43



Figure 4.1: Red dots indicate the pre-computed reduced intensity source samples
that were needed to compute the image of the teapot in the lower left using the
two-pass dipole diffusion algorithm by Jensen and Buhler [JB02]. Notice that even
though the samples are pre-computed uniformly across the entire surface, only a
subset of these samples are ultimately used.

Figure 4.1 shows, as a red dot, every reduced intensity source sample used during

the second pass when rendering the teapot image in the lower left-hand corner. As

illustrated by the sparse distribution of dots, there are regions, such as back-facing

areas or surfaces occluded in the camera, where fewer reduced intensity source

samples are actually needed. However, because the algorithm works in two passes,

it cannot identify these regions and it must initially, pre-compute the radiance in all

regions equally. This can waste considerable effort in large, complex scenes where

the algorithm’s cost becomes dominated by an impractical, initial pre-computation.

The new unified, scalable, dipole diffusion rendering algorithm described in this

chapter combines the two-passes. It avoids unnecessary pre-computations and can

therefore render large scenes that were impractical when using the basic two-pass

approach.
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The rest of this chapter has four sections. The first section introduces the basics

of scalable rendering by introducing Lightcuts (LC) [WFA∗05] and Multidimensional

Lightcuts (MDLC) [WABG06], previous scalable rendering algorithms for problems

without subsurface scattering. The second section builds upon these methods

to create the new scalable subsurface rendering algorithm and then Section 4.4

discusses additional details required to implement the new algorithm efficiently.

Finally, the last section in the chapter analyzes the scalability of the new algorithm

on a sequence of progressively larger and more complex scenes. This analysis

demonstrates that the new algorithm significantly improves performance when

rendering large scenes with detailed subsurface scattering geometry and complex

lighting.

4.2 Introduction to Scalable Rendering

In the introduction of this thesis, Section 1.1 discussed the basic, pixel-by-pixel

rendering process. Through each pixel in an image, some region of the scene E is

visible. To compute the value of a pixel, the rendering algorithm computes several

eye samples e within E and computes the radiance Lcam(e) that leaves each eye

sample towards the camera. At each eye sample e, this radiance equals

Lcam(e) =

∫
(~n·~ω)>0

f cam
r (e, ~ω)L(e, ~ω)(~ω · ~n) d~ω (4.1)

where f cam
r (e, ~ω) is a restricted bidirectional reflectance distribution function

(BRDF) that gives the fraction of the radiance incident from ~ω at e that reflects

towards the camera.

The Lightcuts (LC) algorithm estimates Equation (4.1) by approximating the

radiance function as a large collection of light samples l. With the light samples, the

integral reduces to a sum. However, instead of computing this large sum directly,
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which would be prohibitively expensive, the Lightcuts algorithm estimates this sum

by partitioning the light samples into clusters and approximating the sum within

each cluster. A valid non-overlapping partitioning, a cut, is created by traversing a

pre-computed hierarchy of potential clusters.

Multidimensional Lightcuts (MDLC) generalizes the Lightcuts algorithm. In-

stead of estimating the radiance at only a single eye sample, MDLC estimates the

integrated radiance over the entire pixel domain E in a unified computation. For

this problem, there will be several eye samples and, instead of clustering individual

light samples, MDLC clusters pairs of eye and light samples. Similarly, the new

scalable subsurface rendering algorithm generalizes the MDLC algorithm. The new

algorithm introduces a new set of samples, irradiance samples and clusters triples

of eye, irradiance and light samples. To build up to this new algorithm, this section

first reviews the LC and MDLC algorithms.

4.2.1 Lightcuts

The basic Lightcuts algorithm has four steps.

1. Discretize the radiance function into light samples

2. Estimate Equation (4.1) as a sum over light samples

3. Estimate this sum by another, much smaller, sum over clusters of samples

4. Choose a valid clustering of light samples by selecting a lightcut

First, an efficient light sample generation process is an essential part of the Lightcuts

algorithm; however, describing this algorithm requires introducing specific light

source models that are not relevant anywhere else in this thesis. Thus here it is

only briefly described. The basic sampling algorithm generates samples directly

on all light sources and the environment map [Deb02]. Afterward, the algorithm
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traces photons outwards from these initial samples to generate additional indirect

lighting samples that approximate the radiance in all other areas of the scene.

These generated light samples are not modeled uniformly but have slightly

different traits depending on their method of generation. Since these distinctions

have only computational importance, this chapter uses a more general and unified

light sample model with in [WFA∗05]. Each light sample has a radiant intensity

I and, given an eye sample e and a light sample l, the form factor Fel between

them can be calculated. The form factor gives the fraction of the radiant intensity

emitted by l that is reflected at e towards the camera. For more details on the

specifics of the light samples see the original work by Walter et al. [WFA∗05]. For

the rest of this chapter, it is assumed that a useful set of light samples can be

generated in a few seconds during an initial pre-process.

Moving on to the second step, given the light samples, the radiance Lcam(e) in

Equation (4.1) can be expressed as a sum over the set of all light samples L

Lcam(e) =
∑
i∈L

FeiIi (4.2)

For the next step, assume that all light samples L are partitioned into a set LC of

clusters Cl of light samples. Then the sum in Equation (4.2) can be approximated

using these clusters by reusing a single form factor for all the samples in each

cluster.

Lcam(e) =
∑
Cl∈LC

Fel

[∑
i∈Cl

Ii

]
(4.3)

The chosen form factor Fel is the form factor between the eye sample and the single

representative light sample l of the cluster. To illustrate the efficiency difference

between the preceding two sums, note that in typical scenes there are usually

several hundred thousand light samples; however, for most eye samples, only a few

thousand clusters are required to compute an accurate estimate using Equation
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(4.3). Since the total radiant intensity of all possible clusters can be pre-computed

and stored, the cost using Equation (4.3) is usually orders-of-magnitude less than

the cost using Equation (4.2).

The key to this performance gain is the selection of a good partitioning of

the light samples into clusters. Lightcuts accomplishes this using a binary tree of

potential clusters. This tree is created at the beginning of rendering along with

the original light samples. The LC algorithm chooses a partition by selecting a cut

through this tree. A cut is a set of nodes such that, along every path from the root

to a leaf, exactly one node on the path lies in the cut. Because of this property,

every cut is a valid non-overlapping partitioning of samples into clusters.

To select a cut, the LC algorithm starts with the trivial one, the root cluster of

the cluster tree. It then iteratively refines the cut by removing the highest error

cluster and replacing it with its two children clusters from the cluster hierarchy.

Of course, this requires an estimate of the error of each cluster’s approximation.

Because the contribution of a cluster to the sum cannot be negative, the error

caused by the cluster approximation must be less than the maximum possible

contribution of the cluster. This maximum contribution can be conservatively

estimated by replacing the form factor term in Equation (4.3) by its upper bound.∥∥∥Ltrue
C − Lest

C

∥∥∥ ≤ F
(ub)
el

[∑
i∈Cl

Ii

]
(4.4)

The cut refinement iteration ends when the cut satisfies a perceptual metric called

Weber’s law [Bla72]. Weber’s law notes that humans cannot recognize differences

in intensity less than a 2% of the baseline intensity. Thus the LC algorithm stops

when the error of the highest error node is less than 2% of the estimate of Lcam(e)

using the current cut.
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4.2.2 Multidimensional Lightcuts

The problem with the basic LC algorithm above is that a single pixel computation

may require radiance estimates at many eye samples. When each is computed

separately, the perceptual metric is less efficient. For example, consider a pixel

that requires 16 eye samples for a good estimate of the final pixel color. In this

case the maximum error the metric allows for each individual cut is 1/16
th the

error allowed in the sum of all eye sample cuts. Potentially, computing shorter,

less accurate individual cuts may not have a perceptual effect on the final pixel

value. Multidimensional Lightcuts (MDLC) is a unified algorithm for combining

these individual cut computations. The MDLC algorithm has the same four-step

structure as the one described for LC in the previous section, except that now,

before each pixel computation a set E of eye samples is created and, instead of

clustering the light samples individually, the MDLC algorithm clusters pairs of eye

and light samples. MDLC and LC use the same light sample generation algorithm,

so the discussion here starts with step 2 where they differ.

Given the eye samples, the total pixel radiance Lpixel can be computed by

summing the contributions of all eye and light sample pairs

Lpixel =
∑

(j,i)∈E×L

EjFjiIi (4.5)

In Equation (4.5), Ej is the weight of the jth eye sample in the pixel estimate.

The next step assumes that the set E× L of pairs can be partitioned into a set of

clusters. Each cluster of pairs can be represented by a pair (Ce,Cl) of a cluster of

eye samples Ce and a cluster of light samples Cl. Given a partitioning of all pairs

into clusters PC, the larger sum (Equation (4.5)) can be approximated by a sum
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over pair clusters which uses the same form factor Fel for all pairs in each cluster.

Lpixel =
∑

(Ce,Cl)∈PC

Fel

∑
j∈Ce
i∈Cl

EjIi (4.6)

Like LC, the chosen form factor Fel is the factor between a representative eye

sample/light sample pair (e, l) ∈ Ce ×Cl. Also like LC, the potential eye and light

clusters—used to create the pair clusters—are pre-computed and form separate

binary cluster hierarchies. For each pre-computed cluster, the total value Ej and Ii

can be computed and stored. Then Equation (4.6) can be further approximated by

replacing the interior sum of products with a product of these pre-computed sums

Lpixel =
∑

(Ce,Cl)∈PC

Fel

[∑
j∈Ce

Ej

][∑
i∈Cl

Ii

]
(4.7)

In this form, the cost of a cluster evaluation reduces to the cost of evaluating the

single representative pair. Amazingly, for many scenes, the number of pair clusters

required by MDLC to compute the entire pixel integral is roughly equal to the

number of light sample clusters required by LC to estimate the radiance at a single

sample. Since the two cluster estimates have equal cost, MDLC can be dramatically

faster.

To select its clustering, MDLC also computes a cut by refinement but, instead

of a single cluster tree, the cut is through the implicit Cartesian product graph of

the two individual sample cluster trees. The product graph need not be explicitly

created to perform this traversal; the cut can be computed by walking the two

cluster trees simultaneously. MDLC starts with the cut containing only the root

pair cluster and then it iteratively refines the cut by removing the pair cluster with

the highest error. During each refinement step, it replaces the removed pair cluster

with two new pair clusters formed by replacing either the eye cluster or the light

cluster with its hierarchy’s children. Like LC, the stopping criteria is the same
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2% perceptual metric and the error of a cluster is bounded by an estimate of its

maximum contribution.∥∥∥Ltrue
C − Lest

C

∥∥∥ ≤ F
(ub)
el

[∑
j∈Ce

Ej

][∑
i∈Cl

Ii

]
(4.8)

Since in Equation (4.8) the bound is over a cluster of pairs instead of just a cluster

of light samples, the computation of F
(ub)
el changes in MDLC but the details are

left to the original paper [WABG06].

4.3 Scalable Subsurface Algorithm

The new scalable subsurface rendering algorithm has a basic outline analogous to

both MDLC and LC. The new algorithm proceeds in five steps by:

1. discretizing the integral using three types of samples: eye samples e, irradiance

samples b and light samples l;

2. building three binary hierarchical clusterings of each type of sample;

3. finding an accurate partitioning of complete eye-subsurface-light paths, rep-

resented as a set of triple clusters (Ce,Cb,Cl), by refining a cut through an

implicit hierarchy of potential triple clusters;

4. efficiently computing a bounded-error estimate of the integrated subsurface

scattering by using Equation (4.15) to approximate the contribution of each

triple cluster in the cut; and

5. caching the expensive computation of the irradiance sample to light sample

form factors of between pixels using a form factor cache.

This section describes the new algorithm in four parts. The first discusses the

discretization of the subsurface scattering integral and the second describes how
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Figure 4.2: An eye-subsurface-light path can be represented by three points—a
blue eye sample e, a red irradiance point bj and a yellow light point li—and two
links—the irradiance link Fbl and the BSSRDF link Reb.

to convert the integral into a sum using the discretized samples. This second

section also describes how to efficiently approximate this sum with clusters of

sample triples. Comparing the size of triple cluster summation to other summation

approximations used by previous algorithms, this discussion demonstrates why

triple clustering is essential for scalable rendering. The third section describes how

to select an error-bounded clustering of triples and finally the last part discusses

the new irradiance form factor cache. This cache is a critical component of the new

algorithm that shares expensive sub-calculations between estimates for different

pixels.

4.3.1 Domain Discretization

Like MDLC, the new scalable algorithm integrates the radiance over a pixel. Using

Equation (1.2), this integral is

Lpixel =

∫
E

∫
∂Ω

∫
4π

S(x, ~ω,x′, ~ω′)L(x, ~ω′)(~ω′ · ~n) d~ω′ dx′ dx (4.9)

The integral domain of Equation (4.9) represents the set of paths, illustrated in

Figure 4.2, that leave the eye, pass through the subsurface of the object and leave to
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travel towards any light. Since the new algorithm uses the dipole diffusion BSSRDF,

each of these paths can be represented by three samples. Like MDLC, the blue

eye samples e discretize the area visible through the pixel E and the radiance is

discretized by yellow isotropically emitting light samples l. However, the subsurface

integral additionally requires irradiance samples. The red irradiance samples b

discretize the surface ∂Ω of the subsurface scattering object. The sets of all samples

of each type are respectively the eye sample set E, the light sample set L and the

irradiance sample set B. The discussion below describes how to partition each of

these sets into a set (EC, BC, LC respectively) of clusters (Ce, Cb, Cl respectively)

of samples.

The radiance from a single sample triple (e,b, l) is expressed with five terms

also illustrated in Figure 4.2. First, each of the three sample types has a strength

that represents the sample’s relative importance.

• The eye sample’s strength E is its fraction of the pixel area times the incoming

Fresnel term Ft(η, ~ω).

• The irradiance sample’s strength B is its fraction of the scattering surface’s

area times the outgoing Fresnel term Fdt(η)1.

• The light sample’s strength Ii is the intensity of sample li.

Second, each of the two links between samples has a weight.

• The irradiance link weight Fbl is the point to point form factor from Section

4.2.1

• The BSSRDF link weight Reb is the dipole BSSRDF (Equation (2.32))

between e and b.

1The irradiance strength uses the average Fresnel reflectance Fdt(η) because the dipole diffusion
BSSRDF discards the surface outgoing direction.
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(a) NTP (b) HTP (c) HTPwLC (d) Triples

Algorithm

Equation Evaluations (in millions)

1st Pass
[Irradiance]

2nd Pass
[BSSRDF]

1st Pass
[Irradiance]

2nd Pass
[BSSRDF]

NTP O(|B× L|) O(|E× B|) 3,200,000 19,200,000

HTP O(|B× L|) O(|E× BC|) 3,200,000 1,500

HTPwLC O(|B× LC|) O(|E× BC|) 128,000 1,500

Triples O(|EC × TC|) 1,800

Figure 4.3: Top Row: four different methods of computing Lpixel using 4 light
samples (yellow; top), 6 irradiance samples (red; middle) and 4 eye samples
(blue; bottom). (a) Näıve Two-pass (NTP); (b) Hierarchical Two-pass (HTP);
(c) Hierarchical Two-pass with LightCuts (HTPwLC); and (d) Unified Triples.
Table: Scalability of the four summation algorithms on the Cordoba scene where
|E| ≈ 300, 000, |B| ≈ 64, 000, 000, |L| ≈ 50, 000, |BC| ≈ 5, 000, |LC| ≈ 2, 000,
|EC| ≈ 300, 000 and |TC| ≈ 6, 000.

4.3.2 Summation

Using the discretization above, Equation (4.9) can be rewritten as a sum

Lpixel =
∑

(k,j)∈E×B

EkRkjBj

[∑
i∈L

FjiIi

]
(4.10)

This section builds up the new clustered sum used by the new scalable algorithm

by considering four progressively more efficient approximations of Equation (4.10).

These methods are illustrated in Figure 4.3. However, as a prelude to this discussion,

consider the table in Figure 4.3 which summarizes the cost of rendering the large

Cordoba scene (see Figure 4.4) using each of the four algorithms. Except for

the new unified triple algorithm, all the summation methods discussed below are
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two-pass algorithms where the first pass evaluates all of the irradiance links and

the second pass evaluates all of the BSSRDF links. The total number of each type

of evaluation is given in the rightmost two columns of Figure 4.3.

Regardless of their methods, the table highlights the fundamental problem with

two-pass algorithms. They are extremely efficient at decreasing the cost of the

second pass. They reduce the number of BSSRDF link evaluations by several orders

of magnitude. However, they do nothing to reduce the cost of the first pass. In

large scene like Cordoba, where potentially trillions of irradiance links must be

evaluated, the first pass represents essentially all of the cost. Even using Lightcuts

(see Section 4.2.1) to reduce the cost of individual computations in the first pass,

a two-pass algorithm still requires over 100 billion irradiance link evaluations.

However, the new unified algorithm, by clustering complete eye-subsurface-light

paths, is able to recognize that only a small fraction of those, 1.8 billion, make

important contributions to the image. The practical effect is to reduce image cost

from hours to minutes.

4.3.2.1 Näıve Two-pass

The näıve two-pass algorithm (Figure 4.3(a)) recognizes that the value of the inner

summation in Equation (4.10) depends only on the irradiance sample and the light

samples and its value can be precomputed, stored and re-used for all pixels.

1st pass: ∀j ∈ B, Bj = Bj

∑
i∈L

FjiIi (4.11)

2nd pass: Lpixel =
∑

(k,j)∈E×B

EkRkjBj (4.12)

4.3.2.2 Hierarchical Two-pass

The previous work by Jensen et al. [JB02] developed the näıve two-pass algorithm

and then introduced a clustering algorithm to accelerate the second pass (see Figure
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4.3(b)). They pre-computed a hierarchical set of clusters of irradiance samples and,

using this hierarchy, they selected set of irradiance clusters BC for each eye sample.

Then they approximated Equation (4.12) by reusing a single BSSRDF weight for

all the irradiance samples in the cluster.

Lpixel =
∑
k∈E

Cb∈BC

EkRkc

[∑
j∈Cb

Bj
]

(4.13)

In Equation (4.13), Rkc is the BSSRDF between the kth eye sample and the centroid

of the irradiance samples in Cb. Since the inner sums can be pre-computed and

stored with each potential irradiance cluster, Equation (4.13) reduces the cost of

the second pass from O(|E× B|) to O(|E× BC|).

4.3.2.3 Hierarchical Two-pass with Lightcuts

Next, in much the same way that Jensen et al. accelerated the second pass, the

clustered Lightcuts approximation (Equation (4.3)) can be used to make each

computation in the first pass more efficient (see Figure 4.3(c)).

Bj = Bj

∑
Cl∈LC

Fjl

[∑
i∈Cl

Ii

]
(4.14)

Here Fjl is the irradiance link weight between the jth irradiance sample and the

representative light of Cl. Again, since the inner sum can be pre-computed, this

reduces the cost of the first pass from O(|B× L|) to O(|B× LC|) but unfortunately,

this is insufficient. The issue is that the two cluster selection operations, the light

cluster selection in the first pass and the irradiance cluster selection in the second

pass, are done independently.

4.3.2.4 Unified Triples

The new unified algorithm (see Figure 4.3(d)) clusters triples of samples (e,b, l) each

representing a complete eye-subsurface-light path. By unifying the two different
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clustering operations, the relative importance of both the BSSRDF link and the

irradiance link can be considered simultaneously when partitioning the paths into

clusters. Having this unified knowledge, allows the algorithm to choose a much

smaller set of cluster triples without sacrificing the quality of the resulting estimate.

A cluster of eye-subsurface-light paths is represented with a triple of clusters

(Ce,Cb,Cl). Given a set of triple clusters TC, Equation (4.10) finally becomes

Lpixel =
∑

(Ce,Cb,Cl)∈TC

RebFbl

[∑
k∈Ce

Ek

][∑
j∈Cb

Bj

][∑
i∈Cl

Ii

]
(4.15)

where Reb and Fbl are the link weights for a representative triple (e,b, l) ∈

Ce × Cb × Cl. Like LC and MDLC, the new algorithm pre-computes hierarchical

clusters of each type of sample and, with these clusters, the inner sums can be

pre-computed and stored. Thus, the cost estimating each triple cluster reduces to

the cost of evaluating a single sample triple.

4.3.3 Cut Selection

Given Equation (4.15), the new algorithm simply requires an efficient method

of computing a set of triple clusters for each pixel. Like MDLC, the algorithm

computes this set by traversing a implicit hierarchy of potential clusters. Separate

hierarchical, binary clusterings are created for the eye, irradiance and light samples.

The eye sample clustering is computed once per pixel while the others are computed

once per image. To chose a clustering, the algorithm creates a cut through the

implicit Cartesian product graph formed by these three binary cluster trees. The

process is analogous to MDLC (see Section 4.2.2). It starts with the cut containing

the root triple cluster, the triple cluster that contains the roots of the three binary

trees. Then it iteratively removes and refines the highest error triple cluster currently

in the cut. Refining a triple cluster replaces it in the cut with two smaller clusters
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formed by switching one of the member sub-clusters with each of its two children

from its respective hierarchy. A heuristic chooses which sub-cluster to refine at

each stage (see Section 4.4.3). During cut selection, a running estimate of Equation

(4.15) is maintained using the triple clusters currently in the cut. As in LC and

MDLC, refinement stops when the error of the highest error triple cluster in the

cut falls below a 2% of the current cut’s estimate. Since the true contribution of

a triple cluster is a positive number, the error of a triple cluster estimate can be

conservatively bounded by the upper bound of its contribution estimate (compare

to Equation (4.15)).∥∥∥Ltrue
C − Lest

C

∥∥∥ =≤ R
(ub)
eb F

(ub)
bl

[∑
k∈Ce

Ek

][∑
j∈Cb

Bj

][∑
i∈Cl

Ii

]
(4.16)

Since the dipole BSSRDF monotonically decreases with distance, R
(ub)
eb can be

conservatively estimated as the BSSRDF for the smallest possible distance between

any eye sample in Ce and any irradiance sample in Cb and F
(ub)
bl can be bounded

using the techniques from [WABG06].

4.3.4 Irradiance Link Form Factor Cache

The most significant cost of the new algorithm is the evaluation of the irradiance

link form factor weights F . Each of these evaluations requires an expensive visibility

check between the irradiance sample and light sample. However, since these weights

do not depend on the eye sample, they can be cached and reused between different

pixels. This form factor cache dramatically improves performance. However,

because the cache is accessed every time the algorithm refines the current cut, the

implementation must be as efficient as possible.

To ensure this efficiency, the cache is built to mirror the order different irradiance

links are generated by the cut selection algorithm. For example, consider the root
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triple cluster (Ce,Cb,Cl). The estimate for this cluster implicitly includes an

estimate for the irradiance link between Cb and Cl. This estimate is stored in a

new root cache node. Since the irradiance and light cluster trees are reused for all

pixels, this root cache node can be used as the cache starting point for all pixels.

From the root cut, there are three possible refinement choices, splitting the eye,

irradiance or light cluster. Splitting the eye cluster does not effect the irradiance

link estimate and the root cache node covers these cases. However, splitting either

the irradiance or light cluster creates two new irradiance form factor estimates and,

therefore, the root cache node has four potential children. If each triple cluster in

the cut stores a pointer to the cache node it uses, the cache refinement algorithm

can simultaneously traverse this natural quad-tree of cache nodes. The refinement

algorithm builds the cache tree lazily. Anytime a cache node is requested, but does

not exist, the algorithm creates a new cache node and stores the appropriate form

factor within it.

Without an eviction heuristic, the form factor cache would quickly grow pro-

hibitively large. Fortunately, the cache accesses tend to be local. At any time, most

of the nodes in the cache store form factors relevant to a small region of pixels

nearby the current computation. Nearby pixels frequently reuse these form factors,

but as the rendering progresses to more distant regions, the form factors for small

cluster triples are no longer needed. After testing several cache eviction algorithms,

cache deletion was empirically determined to be the most efficient eviction strategy.

The refinement algorithm fixes the total number of nodes allowed in the cache

(1,000,000 is a reasonable choice) and simply discards them when the cache is full

and lets the algorithm lazily rebuild the cache as necessary.
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4.4 Implementation Details

This section discuss additional details essential for implementing the algorithm

described in the last section.

4.4.1 Surface, Single and Multiple Scattering

The dipole diffusion BSSRDF is an approximate method of representing subsurface

scattering. When using the dipole diffusion BSSRDF, rendering quality can be

significantly improved if the BSSRDF is split into three components, the surface

scattering, the single scattering and the multiple scattering. As discussed in

Section 2.2.2.1, these different components can be rendered separately. The test

implementation uses MDLC for the surface component, an analytic BRDF estimate

for the single scattering [HK93] and the new scalable, algorithm for the multiple

scattering.

4.4.2 Representative Selection

When computing a triple cluster’s contribution, it is important to chose the rep-

resentative triple carefully. If the cut contains many triple clusters with similar

representatives, the resulting estimate might have low error, but the switch from

one fixed set of representatives to another between neighboring pixels can result in

aliasing in the final image. Borrowing a technique from MDLC, the new algorithm

stores multiple representatives per cluster. Each time a cluster’s contribution is

evaluated, a new representative is randomly selected from the pool in the cluster.

Random representative selection makes it unlikely that nearby integral evalua-

tions will choose the same representatives and aliasing resulting from correlated

representative selection is avoided.
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However, multiple representatives complicate the irradiance form factor cache.

A weight in stored in the cache implicitly fixes the choice of the representative triple

used to compute it. Caching multiple weights per cluster would be prohibitively ex-

pensive and significantly reduce the cache’s utility. However, within a triple cluster,

it is not necessary to use the same irradiance representative to evaluate both the

representative BSSRDF and irradiance links. By using different representatives, the

algorithm can select from randomized representatives for BSSRDF link evaluations

while still caching weights for fixed representatives in the form factor cache. The

randomization of just the BSSRDF representatives is sufficient to avoid aliasing.

4.4.3 Triple Cluster Refinement

During cut selection, the algorithm must choose how to refine a given triple cluster.

The three choices are refining the eye sub-cluster, the irradiance sub-cluster or

the light sub-cluster. The ideal choice is the sub-cluster that would ultimately

produce the smallest, and thus cheapest, final cut. However, since this cannot be

easily determined, a heuristic choice must be made. As will be discussed in Section

4.4.3.2, refining the eye cluster is not usually necessary so the next section focuses

first on the choice between the irradiance and light clusters.

4.4.3.1 Irradiance/Light Refinement Heuristics

The heuristic choice between refining the light or irradiance clusters is motivated

by two factors:

• since the error in BSSRDF weight decreases exponentially with distance,

splitting the irradiance cluster tends to reduce error faster—isolating small,

high-contribution triples near the eye samples—than splitting the light cluster

which causes only a linear decrease in error; however,
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• light cluster refinement is required to identify the visible light sources.

A corollary of these two competing factors is that long chains of the same refinement

are poor choices. Based on these factors, a good heuristic applies the following four

tests in order to determine how to refine a cluster with the representative triple

(e,b, l)

1. If the irradiance cluster intersects the eye cluster, split the irradiance cluster.

2. If the last m consecutive refinements have made the same choice, split the

opposite cluster.

3. To ensures that light clusters with potentially large contributions are subdi-

vided early, if

F
(nv)
bl Ii > α ∗W (4.17)

split the light cluster. In Equation (4.17), W is the image white point and

F
(nv)
bl is the value of the representative irradiance link weight without the

visibility term.

4. If

Reb > β ∗ F (nv)
bl (4.18)

refine the irradiance cluster otherwise refine the light cluster. This last test

attempts to estimate which representative link term contributes most to the

current error and refines the appropriate cluster accordingly.

The values of m, α and β are user defined parameters that adjust the relative

importance of the various heuristics. Respectively, 8, 10 and 1 were used for all

results in Section 4.5.
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4.4.3.2 Eye Cluster Refinement

Using the dipole diffusion BSSRDF requires the assumption that the scattering

media has a high albedo and a short mean free path. As a consequence, light

in the media tends to diffuse throughout the volume and the resulting radiance

distribution becomes smooth. This smoothness means that the multiply scattered

radiance can be sampled at a much lower frequency than the surface reflection

which tends to have high frequency shadow and geometry edges. This project

compares the scalability of the new algorithm with previous algorithms. For this

goal, super-sampling the eye samples would unfairly degrade the performance of

the previous algorithms since they cannot cluster these extra eye samples. For the

results presented, one eye sample per pixel is sufficient for both the previous and

new methods.

However, the new algorithm is agnostic to extra eye samples. When eye sample

clusters are present, the heuristics in the previous section are still applied. However,

whenever these heuristics would choose to refine the irradiance cluster, the algorithm

instead refines the the larger of the eye and irradiance clusters. Since the eye samples

from a single pixel are usually tightly packed together, adding eye clusters changes

the refinement strategy little.

4.4.4 Irradiance Sample Generation

To generate the irradiance samples, the algorithm must generate a smooth, uniformly

distributed set of point samples across the entire surface of the scattering geometry.

In previous work [JB02], these samples were computed using an energy based point

repulsion algorithm developed by Turk [Tur92]. However for large meshes, that

algorithm required several hours to converge to a steady state distribution. For the

tests in the next section, a simpler method—based on Poisson sampling by dart
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throwing [Mit87, Mit91]—produced equal quality images and required only a few

minutes of computation.

A 2D Poisson sampling is a random sampling satisfying the Poisson condition:

no sample can lie within a fixed radius of any other sample. For irradiance sample

generation, this radius is the mean free path of the material. The Poisson dart

throwing algorithm randomly generates surface samples, one at a time, and discards

any sample that violates the Poisson condition. However, near the end of sample

generation, true Poisson dart throwing algorithms may generate many samples

before finding a valid one and they may even have to backtrack. These cases make

true dart throwing expensive. However, for the purposes of irradiance sample

generation, it is sufficient to use a faster approximate algorithm [Mit87, Mit91].

In the set of trial samples generated since the last valid sample was found, the

sampling algorithm remembers the discarded sample farthest away from all valid

samples. If sufficiently many discards are made before a new valid sample is found,

this “best” discarded sample is added even if it violates the Poisson condition. This

fast algorithm works quickly, generating sets of many thousands of samples in less

than a minute. Further, for all the tests here, on average, only 20 discards were

made per valid sample generated and there was no need to add a invalid sample

when up to 10,000 consecutive discards were allowed.

4.5 Analysis

To close this chapter, the new scalable algorithm was tested on a series of three

progressively larger scenes illustrated in Figure 4.4.

Teapot contains a solid marble teapot (scattering parameters from [JMLH01]) on

a small table lit by an area key light and the Grace Cathedral environment

map [Deb02].
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Teapot Kitchen

Cordoba (New) Cordoba (Reference)

Figure 4.4: Result images for the three test scenes: Teapot, Chess and Cordoba.
The lower row compares our new result (left) to a reference rendering using [JB02].

Kitchen includes several white and black marble objects on a table lit by several

small recessed area lights and a sun/sky model shining through several large

windows out of frame.

Mezquita de Cordoba shows a colonnade similar to the famous Spanish mosque.

The capitals of each column and every other brick in the upper archways

has been rendered using a translucent marble material (see Figure 4.5 for a

closeup view). The scene is lit both by several large holes in the ceiling that

pass in sun/sky illumination and from a grid of 90 point lights positioned

near the ceiling. This final scene was designed to demonstrate the type of

large complex rendering only possible with the new scalable algorithm.
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Figure 4.5: Closeup of the marble capitals in the Mezquita de Cordoba model.

For each scene, Table 4.1(a) summarizes the number of polygons, irradiance samples

and light samples used for rendering.

4.5.1 Rendering Configuration

This analysis compares a reference implementation of the two-pass method [JB02]

to the new scalable renderer. To make the comparison as fairly as possible, the

reference algorithm uses Lightcuts to pre-compute the irradiance during the first

pass. In both algorithms the reflected surface component is computed using

Multidimensional Lightcuts [WABG06]. All images are 640x480 pixels in resolution.

The Teapot and Kitchen images were computed using a dual-core 3GHz Pentium 4

with 2GB RAM and the Cordoba scene was rendered on a cluster of sixteen 1.7GHz

Pentium 3s with 1GB of RAM.

For all images, for the surface rendering, each pixel was 32x super-sampled;

however, as noted Section 4.4.3.2 this is unnecessary for the multiple scattering.

For both algorithms, the multiple scattering is only estimated at the eye sample

closest to the centroid of the samples in each pixel. The single scattering term

was approximated by a BRDF [HK93] in both algorithms and an initial culling

operation ensures that neither algorithm pre-computes any information for objects
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Table 4.1: Model size, rendering statistics and costs of the new unified scalable
renderer for its three test scenes.

(a) Number of polygons, irradiance samples and light samples.

Model Polygons Irrad. Samples Light Samples

Teapot 16,422 173,671 53,128

Kitchen 1,238,126 3,540,428 53,896

Cordoba 2,070,732 64,483,644 53,128

(b) Left side: total number of irradiance links evaluated for the reference and new algorithms
and the percentage saved by the new algorithm. Right side: Average cut size, average
irradiance link evaluations per cut and form factor cache hit rate.

Model
Irrad. Links FF Cache Performance

Reference New % Saved Ave. Cut Misses FF Hit %

Teapot 53M 12M 77.3 3,589 243 99.3

Kitchen 1,414M 62M 95.6 3,360 405 87.9

Cordoba 91,100M 304M 99.6 6,306 6,220 1.3

(c) Rendering costs for new algorithm compared to the reference algorithm. For each algorithm,
the columns present the time for the subsurface computation, the total image time and the
percent of that total the algorithm required for the subsurface. The new algorithm additionally
reports the speedup of the subsurface computation obtained using the new approach. Rows
marked with † are reported for two 3 Ghz processors and those marked with ‡ are reported
for sixteen 1.75 Ghz processors.

Model
Reference New

SS Total % SS SS Total % SS SS Speedup

Teapot† 321s 641s 50.0 318s 618s 48.2 1.0x

Kitchen† 5,179s 6,727s 74.5 960s 2,679s 35.8 5.4x

Cordoba‡ 50,276s 52,717s 97.8 166s 1,258s 13.2 300.0x

not visible in the image. In both implementations, the evaluation of the diffuse

BSSRDF term R had a significant cost. However, interpolating R from a table

of 100,000 pre-computed values introduced no visible differences and this look-up

table was used by both renders.
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4.5.2 Discussion

Tables 4.1(b) and 4.1(c) highlight three significant benefits of the new scalable

rendering algorithm: the reduction irradiance link computations, the overall speedup

and the performance of the irradiance form factor cache.

4.5.2.1 Irradiance Link Savings

As shown in the left side of Table 4.1(b), the new algorithm is able to dramatically

reduce the number of irradiance link evaluations. Since these evaluations are the

only part of the rendering computation that increases with the number of polygons

in the scene, their savings rate closely estimates the ratio of cost growth between

the two algorithms as tessellation increases. For example all other things being

equal, if each polygon in Cordoba were subdivided in place, one would expect

the increase in cost of the new algorithm to be roughly 1% of the increase of the

two-pass method.

4.5.2.2 Overall Scalability

Of course, the most important comparison is the overall savings in rendering time.

Table 4.1(b) summarizes rendering costs for both algorithms. Since only a fraction

of the total time depends on the subsurface rendering algorithm, Table 4.1(b)

reports the cost of the subsurface computation separate from the total cost of the

image. Comparing these subsurface costs reveals the significant cost benefit of a

scalable subsurface rendering algorithm. For the two-pass algorithm, the cost of

the subsurface computation grows quickly with complexity becoming almost 100%

of the almost 15 hour computation for the Cordoba scene. Comparatively, the

relative cost of adding subsurface components to complex scenes decreases with

the scalable renderer. The result is a 300x decrease in subsurface rendering costs:
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the difference between a practical and impractical rendering algorithm.

4.5.2.3 Form Factor Cache Performance

Finally, the form factor cache performs well. The right side of Table 4.1(b) shows

the average number of triples evaluated per pixel per image, the average number

of irradiance link evaluations per pixel and their ratio, the hit rate of the form

factor cache. Ignoring the Cordoba result for a moment, the high hit rates for the

Teapot and Kitchen scenes demonstrate that, when pixels are spatially similar,

the form factor cache provides significant reuse and savings. However, when the

scene has a large spatial extent, like Cordoba, the spatial distance between pixels

grows and the set of triples that contributes to each pixel becomes isolated from

its neighbors. When this happens the cache hit rate declines because there is less

and less potential for shared computation. However, this is precisely the case when

the overall scalability of the unified triple algorithm provides the most benefit. In

this case, the unified algorithm saves significant effort by finding just the triples

required to calculate these isolated pixel integrals and avoids a pre-computation

over the entire surface.

4.6 Summary

This section described a new, scalable, dipole diffusion rendering algorithm for

homogeneous subsurface scattering materials. On large, complex scenes, the new

algorithm reduces the cost of including subsurface scattering by a factor 300 (Section

4.5.2.2) while remaining robust to increases in scene tessellation (Section 4.5.2.1)

and, using a new form factor cache, ensuring that repeated calculations are shared

efficiently between pixels(Section 4.5.2.3). To achieve these dramatic improvements,

the algorithm builds on Lightcuts and Multidimensional Lightcuts (Section 4.2)
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to compute approximations of subsurface integrals by modeling complete eye-

subsurface-light paths with triples of samples (Section 4.3.1). By partitioning these

triples into clusters, the new algorithm can compute an error-bounded estimate of

the true sum by selecting a cut through a hierarchy of potential clusterings (Section

4.3.3). Because it has complete information about full subsurface paths, the new

triple cluster approximation has fundamentally better scalability that previous

two-pass algorithms that are forced to consider only sections of the subsurface

paths at a time (Section 4.3.2).
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CHAPTER 5

HETEROGENEOUS SUBSURFACE SCATTERING

Previous work on subsurface rendering is clustered at the extremes. On one end lie

Monte Carlo algorithms that can render any subsurface scattering material with

arbitrary accuracy but are prohibitively expensive. At the other end lie dipole

diffusion algorithms that are fast, even real-time, but are restricted to approximating

only homogeneous materials. This research seeks a solution in between: an algorithm

that can accurately render a general class of heterogeneously scattering materials

while remaining practically efficient. To simultaneous satisfy these competing goals,

the new algorithm represents heterogeneous scattering approximately using the

diffusion equation; but, within the limits of that representation, the algorithm solves

the problem as accurately as possible. This algorithm makes two contributions

1. a careful formulation of the heterogeneous DE problem introducing the

diffusive source boundary condition (DSBC) to model the reduced intensity

source; and

2. an finite element (FE) algorithm for solving this problem efficiently and

accurately.

Previous rendering algorithms for heterogeneous subsurface scattering are limited,

capture and re-render systems. Because these systems can rely on the capture

process to correct for rendering inaccuracies, these systems can render high quality

images but only for the captured materials. Further these systems generally

use specialized material representations that are difficult to create for general

materials. However, one ambitious system, Wang et al. [WZT∗08], begins to

overcome these limitations by measuring grids of approximately accurate, physical

scattering parameters. Because their algorithm renders these grids quickly using an
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interactive, finite difference (FD) solver implemented on fast rendering hardware,

the graphics processing unit (GPU), their system allows the user to interactively

edit the captured models. Despite these advantages, the system has limited utility

as a general rendering system for all materials. Wang et al.’s approach has two

drawbacks. First, the finite difference algorithm requires the generation of a special

warped grid, a PolyGrid mesh [THCM04], that is expensive or impossible to create

inside of arbitrary scattering geometry. Second, the finite difference algorithm is

inaccurate. The new finite element algorithm presented here has neither of these

limitations. It is the first method of rendering, general heterogeneous subsurface

scattering that:

• works well for a wide range of materials;

• computes solutions in arbitrary surface geometry;

• produces images comparable to MC algorithms requiring hours; and

• requires only a few minutes of computation per image.

5.1 Chapter Overview

To outline this chapter, its useful to state the mathematical goal of the finite

element (FE) subsurface algorithm. Mathematically, the diffusion equation (DE) is

a 2nd-order, elliptic, partial differential equation (PDE) and the rendering algorithm

requires its solution. The FE method is a general mathematical framework for

approximating the solution of these PDEs. To use the FE method, one first

chooses a space of functions H and then FE theory describes how to find the closest

approximation in H to the solution of the PDE. If H has a finite basis—i.e. it

is represented by a finite number of elements—then the closest approximating

function can be computed by solving a linear system of equations.
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The first half of this chapter derives this linear system for the heterogeneous

diffusion problem. This derivation has two parts. First Section 5.2, as outlined

in Section 2.2.2, discusses choosing a boundary condition and a computationally

efficient model of the reduced intensity source. That section demonstrates that the

best choice, balancing both accuracy and efficiency, is the diffusive source boundary

condition (DSBC). Second Section 5.3 solves this heterogeneous diffusion problem

using the FE method. The result is Equation (5.16). Though this derivation takes

several pages, a fundamental advantage of the FE solution is that the resulting

algorithm can be summarized in four steps:

Step 1 Create a basis for functions defined in the scattering

domain by discretizing the scattering volume

Step 2 Construct the linear system in Equation (5.16)

Step 3 Solve this system

Step 4 Render the image and, whenever needed, use Equation

(5.7) to compute the outgoing subsurface scattering

from the surface

The second half of this chapter describes and then analyzes a prototype implementa-

tion of this four-step algorithm. Section 5.4 enumerates the essential implementation

choices. Its two main results are the pseudo-code for the assembly of the linear

system (see Figure 5.4) and a method for creating a FE basis that adaptively

captures detail in the scattering material and geometry (Section 5.4.5). Finally,

Section 5.5 analyzes the accuracy and performance of this prototype. This analysis

has three main goals.

1. It demonstrates that the FE algorithm is general and efficient. For each of a

wide range of scenes, the algorithm produces high-quality solutions in only a

few minutes.
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Figure 5.1: Two methods of approximating the reduced intensity source Qri(x, ~ω).
The embedded source model (a) approximates Qri(x, ~ω) with point sources. (b)
The boundary source model, approximates the source as a diffusive flux arriving at
the boundary.

2. Though approximate, these images are nearly identical to accurate images

produced by MC algorithms requiring hours of computation.

3. The four-step algorithm significantly improves upon the most ambitious

previous approach, Wang et al., in both quality and generality.

5.2 Heterogeneous Diffusion Problem

As described in Section 2.2.2, rendering using the diffusion equation requires

approximating the boundary condition and the reduced intensity source. While

previous work has shown the Robin boundary condition to be most accurate

[SAHD95], the choice of the source model—between the embedded source model

and the boundary source model—is more difficult. This section describes why,

for efficiency and accuracy, the best choice is the boundary source model. Then

it combines the boundary source model with the Robin boundary condition to

derive the diffusive source boundary condition (DSBC). Together the diffusion

equation (Equation (2.15)) and the DSBC (Equation (5.5)) completely specify the

heterogeneous scattering problem.
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5.2.1 Comparing Source Models

Illustrated in Figures 5.1(a) and 5.1(b) are the two models of the reduced intensity

source. The embedded source model represents the source by placing point sources

into the medium and the boundary source model represents the source as a diffusive

flux arriving at the boundary. Compared to the embedded source model, the

boundary source model has significant advantages for the heterogeneous rendering

problem.

First, the boundary source model is cheaper to compute. Both the embedded

source model and the boundary source model sample the surface and calculate the

incoming radiance at these samples. However, the two source models must represent

different functions with these samples. The boundary source model represents the

incident radiance as it is distributed on the surface while the embedded source

model represents this radiance after it has become distributed in the outer layer

of the medium. For homogeneous materials, this difference is slight. However,

in complex heterogeneous materials the embedded source model must represent

additional, high-frequency features derived from the material parameters that are

not present in the incident radiance itself. Thus it can require more samples to

reach the same accuracy. This increased cost also has quality implications. A

rendering algorithm cannot determine a perfect sampling density a priori, it must

estimate one. The higher frequency components of the embedded source model

make this estimate less accurate, potentially decreasing the overall accuracy of the

model.

Of course, if the individual embedded sources were significantly more accurate,

these computational disadvantages might balance out. However, this is not the

case. Figure 5.2 compares the two source models on the scene used to derive

the embedded model: a collimated beam normally incident on a semi-infinite,
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Figure 5.2: (a) Exact solution (red) compared to boundary source solution (green)
and embedded source solution (green) for the problem of a column source incident
on a homogeneous, semi-infinite slab. (b) Log scale plot of the relative error of
boundary source and embedded source models.

homogeneously scattering slab. The figure shows the true solution as computed

by MC path tracing compared with the FE solution using the boundary source

model and the analytic, dipole solution of the embedded source model. Since the

FE algorithm cannot model a semi-infinite slab, it approximates one by a cube 100

mean free paths across.

Figure 5.2(b) plots the relative error of both approaches. As outlined in Section

2.2, there are many sources of error in any model based on the diffusion equation

and they are all evident on the figure. Both near the source, where the diffusion

equation breaks down, and far from the source, where the radiance values are very

small, there are high errors for both methods. In the critical middle region between

5 and 25 mean free paths (between the troughs where the approximations intersect

the true solution), both methods have a more reasonable 10% error. Though in

this region the two methods perform roughly equally, this configuration defines

the embedded source model and it’s error should be lowest for this case. Given

that the boundary source model performs equally well and it has the performance

advantages discussed above, it it clearly the best choice.
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Figure 5.3: Diagrams illustrating the three components of the diffusive source
boundary condition (Equation (5.5)). The condition forces Γin

d (x), the internal
inward flux at the boundary, to be equal to the sum of Γref

d (x), the internal flux
reflected at the boundary, and Γs(x) the exterior light refracted into the material.

5.2.2 Diffusive Source Boundary Condition Derivation

The boundary source model adds a surface flux to the Robin boundary condition

(see Section 2.2.2.2) resulting in the diffusion source boundary condition (DSBC).

At every boundary point x, it imposes the relationship

Γin
d (x) = Γref

d (x) + Γs(x) (5.1)

between three boundary fluxes (see Figure 5.3): Γin
d (x) the internal inward diffuse

flux of the solution; Γref
d (x) internal diffuse flux reflected at the boundary; and Γs(x)

the incoming flux refracted from external sources. Using Figure 5.3 as a guide each

of these fluxes is computed by integrating over the blue arrows in each sub-figure.

Γin
d (x) =

∫
(~n·~ω)<0

Ld(x, ~ω)(−~n · ~ω) d~ω (5.2)

Γref
d (x) = Fdr(η)

∫
(~n·~ω)<0

Ld(x,−~ω)(−~n · ~ω) d~ω (5.3)

Γs(x) = e−
σa(x)
σs(x)

∫
(~n·~ω)>0

Ft(η, ~ω)L(x,−~ω)(~n · ~ω) d~ω (5.4)

When creating these expressions, one must be careful to use a consistent definition

of ~ω and ~n to ensure that resulting boundary condition has the correct signs. To
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be consistent in all three equations, ~n always points out of the material and ~ω

always points away from x. Equation (5.3) computes the total reflected internal

diffuse flux by scaling the total internal diffuse flux incident on the boundary by

the average Fresnel reflectance coefficient Fdr(η). Equation (5.4) converts incident,

external radiance into refracted, internal, diffuse radiance by scaling the incoming

light by Fresnel transmittance coefficient Ft(η, ~ω) and an exponential term that

approximates the absorption that occurs before the light becomes diffusive.

The final two steps of the derivation first substitute Equations (5.2) and (5.3)

into Equation (5.1) and then substitute the diffusion approximation (Equation

(2.7)) for Ld(x, ~ω). The algebra of this derivation is presented in Appendix B. The

result is the diffusive source boundary condition

φ(x) + 2A(η)κd(x)(~n · ~∇)φ(x) =
4

Fdt(η)
Γs(x) (5.5)

where the coefficient terms are the same as in the original Robin boundary condition

(see Section 2.2.2.2). Because the DSBC models the reduced intensity source, the

Qri(x, ~ω) term can be dropped from the DE resulting in

−~∇ ·
(
κd(x)~∇φ(x)

)
+ σa(x)φ(x) = Q0(x) (5.6)

To close this section, note that the DSBC also simplifies how radiance is computed

from fluence when solving the DE. Equation (2.18) gives the basic relationship but

Equation (5.5) can now be used to eliminate the normal derivative.

L(x, ~ω) =
Ft(η, ~ω)

4π

(1 +
1

A(η)

)
φ(x)− 4

Fdt(η)A(η)
Γs(x)

 (5.7)

5.3 Finite Element Solution

This section solves the heterogeneous scattering problem, represented by Equations

(5.6) and (5.5), derived in the last section using the finite element method. As
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described in Section 5.1, FE algorithms solve a PDE by fixing a space of trial

solutions H and searching in that space for a function that best approximates the

solution to the PDE. This method is motivated by the Lax-Milgram Theorem from

functional analysis [Eva98].

Lax-Milgram Theorem. Let H be a Hilbert space. Given a bilinear functional
H : H×H→ R that is bounded and coercive, i.e. there exist constants α, β > 0

∀u, v ∈ H,
∣∣H[u, v]

∣∣ ≤ α ‖u‖ ‖v‖ (5.8)

∀u ∈ H, β ‖u‖ ≤ H[u, u] (5.9)

and a linear functional F : H→ R there is exactly one function v ∈ H such that

∀u ∈ H, H[u, v] = F [u] (5.10)

The Lax-Milgram theorem can be used to solve PDEs. The process converts the

PDE into its weak form, a bilinear form and a corresponding linear form to which the

Lax-Milgram theorem applies. The weak form generalizes the solution to the PDE.

For the weak form, the function predicted by Lax-Milgram is either the solution

to the PDE or the closest function in H, in terms of its norm, to that solution.

Conveniently, the Lax-Milgram theorem guarantees that such a weak solution exists

and is unique. The FE method solves the weak form in the special case that H

has a finite basis. In this case, the weak solution can be computed by solving a

linear system. This section derives that system, Equation (5.16), for the diffusion

equation (Equation (5.6)) and the diffusive source boundary condition (Equation

(5.6)) . To make the notation in this section more compact, the independent spatial

variable x has been omitted in all functions and η has been removed from all Fresnel

terms.
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5.3.1 Derivation of the Weak Form

Assume that H is an arbitrary space of functions and let θ ∈ H be any function.

Start by multiplying Equation (5.6) by θ and integrating over the entire scattering

volume Ω.

−
∫
Ω

[
~∇ · (κd(x)~∇φ(x))

]
θ dx +

∫
Ω

σaφθ dx =

∫
Ω

Q0θ dx (5.11)

Taking the left-hand side as the bilinear form and the right-hand side as the linear

form, Equation (5.11) is nearly what is required by Lax-Milgram. However, the

first term is not yet in a convenient form. This can be corrected in two steps. First,

using the divergence theorem,

Divergence Theorem. Let v by any vector function and u be any scalar function
then ∫

Ω

~∇u · v dx =

∫
∂Ω

u(v · ~n) dx−
∫
Ω

u(~∇ · v) dx (5.12)

integrate the first term by parts.∫
Ω

κd~∇φ · ~∇θ dx−
∫
∂Ω

κd(~n · ~∇)φθ dx +

∫
Ω

σaφθ dx =

∫
Ω

Q0θ dx (5.13)

Second, impose the DSBC (Equation (5.5)) by using it to eliminate the κd(~n · ~∇)φ

term in Equation (5.13). This gives the weak form.

Weak Form. Find φ such that

∀ θ ∈ H,
∫
Ω

κd~∇φ · ~∇θ dx +

∫
Ω

σaφθ dx

+
1

2A

∫
∂Ω

φθ dx =

∫
Ω

Q0θ dx +
2

AFdt

∫
∂Ω

Γsθ dx (5.14)
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5.3.2 Derivation of the Matrix Equation

The final step of the FE solution converts Equation (5.14) into a linear system. To

do this, first assume that H has a finite basis:

B(x) =
{
β0(x), β1(x), . . . , βn−1(x)

}
Then the weak form is equivalent to ensuring that Equation (5.14) holds for each

βi ∈ B. This is a system of |B| equations for φ.

∫
Ω

κd~∇φ · ~∇βi dx +

∫
Ω

σaφβi dx +
1

2A

∫
∂Ω

φβi dx

=

∫
Ω

Q0βi dx +
2

AF

∫
∂Ω

Γsβi dx ∀βi ∈ B (5.15)

However, by Lax-Milgram, φ ∈ H and there exist some constants ai such that

φ =
∑n−1

i=0 aiβi. Substituting this expression into Equation (5.15) results in an

system of linear equations for the coefficient vector ~a of φ.

Matrix Equation.

F~a =~r

(D + M + S)~a = (~q + ~g) (5.16)

where

Dij =

∫
Ω

κd~∇βi · ~∇βj dx ~qi =

∫
Ω

Q0βi dx

Mij =

∫
Ω

σaβiβj dx ~gi =
2

AFdt

∫
∂Ω

Γsβi dx

Sij =
1

2A

∫
∂Ω

βiβj dx
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5.4 Implementation

The next section analyzes a prototype implementation of the four-step algorithm

discussed in Section 5.1. To describe that implementation, this chapter answers

five questions:

1. How to mesh the domain to build a basis?

2. How to assemble Equation (5.16)?

3. How to solve the linear system?

4. How to prepare the material and source functions to avoid aliasing errors?

5. How to adaptively refine the mesh to ensure accuracy?

5.4.1 Tetrahedral Basis

The prototype implementation uses a piecewise-linear basis on a tetrahedral mesh.

For this basis, the support of each basis function lies only in the one ring of

tetrahedra sharing a central, support vertex. This limited support ensures that

the FE matrix will be sparse and efficient to solve. The 2D analogue of these

functions are commonly called “tent” basis functions. Tetrahedral elements are

particularly advantageous because there are many, well-studied algorithms for

quickly generating a high-quality, tetrahedral mesh within a triangular surface

mesh. For other cell types, this is a more difficult problem. The prototype uses

Tetgen [SG05] to generate its meshes.

5.4.2 Assembly of the Finite Element System

Given a tetrahedral mesh of the domain, Equation (5.16) can be written as a sum

of integrals over the tetrahedra volumes and faces. For example, if T is the set of
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SparseMatrix f mat ;
Vector r v e c ;

matrix . ze ro ( ) ;
rhs . ze ro ( ) ;
foreach Tet t in mesh {

foreach QuadPt pt in Tet {
foreach Bas i s i in Tet {

foreach Bas i s j in Tet {
f mat [ i , j ]

+= pt . wt∗Kd( pt )∗ dot ( grad ( i , pt ) , ( grad ( j , pt ) ) ) ;
f mat [ i , j ]

+= pt . wt∗ sigA ( pt )∗ value ( i , pt )∗ value ( j , pt ) ;
}
r v e c [ i ] += pt . wt∗ s r c ( pt )∗ value ( i , pt ) ;

}}

foreach Face f of Tet {
i f ( f on boundary ) {

foreach QuadPt pt on f {
foreach Bas i s i in Tet {

foreach Bas i s j in Tet {
f mat [ i , j ]

+= (0 . 5/A)∗ pt . wt∗ value ( i , pt )∗ value ( j , pt ) ;
}
r v e c [ i ] += (2/A)∗ pt . wt∗gamma( pt )∗ value ( i , pt ) ;

}}}}}

Figure 5.4: Pseudo-code for the assembly algorithm. Here Kd(pt), sigA(pt),
src(pt) and gamma(pt) are functions that return the values of κd(x), σa(x), Q0(x)
and Γs(x) respectively. The functions grad(i,pt) and value(i,pt) return the
gradient and value respectively of the ith basis function. Finally, dot computes a
dot product and pt.wt is the weight of the quadrature point.
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all tetrahedra and Ωt is the volume of tetrahedron t, an entry in Dij can be written

as

Dij =
∑
t∈T

∫
Ωt

κd~∇βi · ~∇βj dx (5.17)

However, the terms in this sum are only non-zero if the supports of βi and βj overlap.

For the piecewise-linear basis, this happens only if vertices i and j are part of the

same tetrahedron. Given this restricted domain of integration, the assembly of

Equation (5.16) can be expressed as a loop over all tetrahedra. Further, in practice,

integrals like Equation (5.17) are computed approximately using quadrature. In

this case, computing each integral term reduces to computing the sum of the values

of the integrand at a series of quadrature points. The results in Section 5.5 use 2nd

order 3D Gaussian quadrature. Combining these facts the system can be assembled

by a small set of nested loops over tetrahedra, quadrature points and basis functions.

Figure 5.4 contains the pseudo-code for the complete assembly algorithm.

5.4.3 Material and Source Projection

A side affect of the assembly process is the projection of the scattering parameters,

κd(x) and σa(x), and the source functions, Γs(x) and Q0(x), onto the FE basis.

Since this operation uses a regular spacing of quadrature points, high frequencies

in the material or source terms can cause aliasing in the projection and produce

artifacts. To avoid this, the source and material terms are computed only at the

vertices of the tetrahedral grid and interpolated within each cell. If the basis can

represent the final solution to the scattering problem, this is a small approximation

since the sub-cell detail causing the aliasing would ultimately be blurred, correctly,

by the process of scattering.
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5.4.4 Solving the Linear System

Satisfying the conditions of the Lax-Milgram theorem (Equation (5.10)) indirectly

requires that the material parameters and source functions in the DE be bounded

and have bounded 1st derivatives.1 If these conditions are violated, the resulting FE

matrix may not exist or be invertible. Moreover the approximation of the integrals

by quadrature may result in a singular matrix even if the exact matrix can be

inverted. Using the pre-projection discussed above will avoid both of these issues,

but even in other cases, the FE method was empirically robust. For all tests of

the prototype, including tests with discontinuous material and source functions,

the matrix was non-singular. To actually perform the inversion, any sparse matrix

algorithm could be used. The prototype uses the conjugate gradient algorithm with

the symmetric successive over-relaxation (SSOR) preconditioner.

5.4.5 Adaptive Refinement

The last topic in this section is adaptive mesh refinement. There are two impor-

tant issues: non-conforming meshes resulting from refinement and the refinement

heuristics themselves.

5.4.5.1 Non-conforming Meshes

Adaptively refining a mesh creates T-junction vertices when neighboring tetrahedra

have differing levels of refinement. These vertices are a problem because, when

present, the span of the resulting basis contains discontinuous functions. These

discontinuous functions violate implicit assumptions required to use the divergence

theorem (see Equation (5.13)) to derive the weak form. With T-junctions, continuity

1This condition stronger than necessary. The functions need only be 1st-order Sobelev functions
but introducing Sobelev spaces is beyond the scope of this thesis. See [Eva98] for more details.
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Figure 5.5: Evaluation of refinement metrics. Top row: Close-up images of the
Buddha result: no refinement (left), heuristic refinement (center) and FE error
metric refinement (right). Bottom row: visualization of the grid refinement levels
for each image. Unrefined tetrahedra are blue, once refined tetrahedra are green
and twice refined tetrahedra are red.

must be imposed by constraining the coefficients of the t-junction basis functions.

Creating and enforcing these constraints is a complex, but solved problem in finite

element analysis beyond the scope of this thesis (for a summary of a modern

implementation see [BKH07]). The prototype uses LibMesh [KPSC06] which

generates of these constraints automatically.

5.4.5.2 Refinement Heuristics

The prototype uses two simple refinement heuristics. It initially refines the mesh

using the following conditions in order:

1. refine, once, all the tetrahedra visible from the camera; and then

2. refine, once, those tetrahedra with large differences in scattering parameters.
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To implement the second condition, σa(x) and σs(x) are computed at all the vertices

of the mesh. Then, for each tetrahedron, the largest percentage difference amongst

all pairs of vertices is determined. All tetrahedra with a local difference greater

than one deviation above the mean are refined.

In developing the FE algorithm, a more rigorous, mathematically-motivated

error metric [dSRGKZB83] was also tested as a refinement heuristic. Given an

initial solution on a coarse mesh, the metric bounds the error of each element

and, using the metric, the radiance solution can be iteratively solved and refined.

Unfortunately, for the particular problem of subsurface rendering, these metrics

were less useful and much more expensive than the ad-hoc heuristics above. The

heuristics have an advantage because they are chosen to exploit two features specific

to the subsurface rendering problem. One, the solution tends to have large gradients

near the boundary that are hard to represent in any basis [HST∗94] and two, the

solution will only be queried on the visible surface of the mesh. These advantages

are illustrated in Figure 5.5. In the figure, the top row shows three close-up images

of the Buddha model (see Section 5.5): a scene that particularly requires refinement

because the material’s sharp features. The bottom row shows the refined mesh used

for each image. Comparing the unrefined image (left) to refined images rendered

using equal-sized meshes created with both the error metric (left) and the heuristic

refinement (center), it is clear that the heuristics better align with the material

edges and produce a higher quality solution.

5.5 Analysis

This section demonstrates that the finite element algorithm is an efficient and

accurate rendering method for general heterogeneous subsurface scattering problems.

The analysis in this section assesses the results of the new renderer on a set of four
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Bunny Dragon Buddha Geode

Figure 5.6: Four test scenes used to analyze the heterogeneous FE algorithm

distinct test scenes. This section has six parts. The first three describe the results

themselves. In order, they describe the test scenes, the details of the rendering

computation and the synthesis of the material parameters. The last three sections

use these results to highlight the advantages of the new renderer. Section 5.5.4

itemizes the costs of the FE algorithm and notes that the new algorithm adds at

most 3 minutes to rendering cost; Section 5.5.5 demonstrates that the test images

are nearly identical to exact images produced with a MC path tracer; and Section

5.5.6 discusses the improvements the new algorithm makes over the most advanced

previous method, Wang et al. [WZT∗08].

5.5.1 Scenes

The prototype implementation was tested using the scenes shown in Figure 5.6.

Each has a different geometry and material. The test scenes were chosen to

demonstrate the range of effects a general, high-quality heterogeneous solver can

reproduce.

Bunny uses a marble texture to simulate scattering in a complex, aggregate

material. The bunny scene uses a smaller mesh, simple lighting and its

rendering costs are presented with and without expensive global illumination.

This scene emphasizes that, especially for simple lighting, the FE algorithm

only adds a few seconds to the image cost.
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Dragon is modeled using an optically thinner material similar to translucent

plastic. This model shows that our solution can capture smooth changes in

color and opacity.

Buddha contains a checkerboard of homogeneous marble and jade-like materials.

The material is difficult because the solver must simultaneously capture the

sharp edges in the material properties but also correctly simulate the smooth

translucency in thinner geometry.

Geode pushes the limits of our FE algorithm. It demonstrates that the FE

approach can easily scale to capture complex, high-frequency scattering in

difficult lighting environments. In the Geode, the renderer is able to reproduce

fine detail in the subsurface scattering even in the difficult case where all light

passes through the material.

5.5.2 Details of the Rendering Computation

All results were generated on a 8 x 2.66Ghz Xeon workstation with 8GB of RAM.

Tables 5.1(a) and 5.1(b) summarize the model size, mesh creation costs and

rendering time for each scene. Of the results presented in Table 5.1, all costs

are fully parallelized on all cores except the mesh creation, the mesh refinement

and the FE matrix solution costs. For these tasks, parallel implementations

were not available and these times are presented for a single core. The images

are computed as three components (as described in Section 2.2.2.1): the surface

reflection, single scattering and multiple scattering. The multiple scattering is

solved using the new FE algorithm. The surface and single scattering are computed

using a combination of Multidimensional Lightcuts (MDLC) [WABG06] and an

analytical single scattering approximation [HK93]. The implementation is split

between Java, which provides an implementation of MDLC, and C++ which
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Table 5.1: Summary of the rendering costs and model parameters for our four test
scenes: Bunny, Dragon, Buddha and Geode. Operations marked with † are run on
a single processor.

(a) Mesh sizes, generation cost and refinement cost. Costs range
from 40-163 seconds.

Model Initial Tets Time† Refined Tets Time†

Bunny 427,918 40.8s 427,918 0s

Dragon 375,919 59.5s 1,084,599 73s

Buddha 429,158 79.0s 1,369,965 103s

Geode 849,763 60.0s 1,317,804 103s

(b) Rendering costs by model and category. Rendering times vary from 1 to 6 minutes.

Model
Base Costs FE Costs

Total
Source Surface % Assembly Solve† %

Bunny (no GI) 4s 32s 72 9s 5s 28 50s

Bunny 17s 43s 81 9s 5s 19 74s

Dragon 28s 59s 45 35s 71s 55 193s

Buddha 29s 40s 36 44s 137s 72 250s

Geode 152s 108s 78 38s 88s 32 386s

provides an interface to the LibMesh [KPSC06] library. The LibMesh library is

used only for the matrix solver and to iterate over the tetrahedra in the mesh. All

other operations are performed outside of the library. LibMesh uses a basic linear

algebra subprogram (BLAS) [LHKK79] implementation for all its linear algorithm

operations. All images are 640x480 pixels. The Geode model is lit by a small area

source, Buddha and Dragon are lit by the Kitchen environment map [Deb02] and

the Bunny is lit by a small spherical source. All images, unless otherwise noted,

include global illumination approximated by 100,000 virtual indirect sources.
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(a) (b) (c) (d) (e)

Model & Param. Range Min Range Max Base Scale Tex.

Dragon σa (.05, .05, .05) (1.0, 1.0, 1.0) (0.75, 1.25, 1.75) (d)

Dragon σs (.25, .25, .25) (1.0, 1.0, 1.0) (16.7, 16.7, 16.7) (e)

Geode σa (.01, .01, .01) (1.0, 1.0, 1.0) (5.0, 5.0, 5.0) (c)

Geode σs constant constant (5.0, 5.0, 5.0) –

Buddha σa constant constant (1.63, 1.18, 4.5) –

Buddha σs (.05, .05, .05) (1.0, 1.0, 1.0) (16.7, 16.7, 16.7) (a)

Bunny σa (.05, .05, .05) (3.5, 3.5, 3.5) (7.8, 7.8, 7.8) (b)

Bunny σs (.60, .60, .60) (1.0, 1.0, 1.0) (13.1, 15.7, 18.0) (b)

Figure 5.7: Parameters used to procedurally generate the volume scattering textures.

5.5.3 Material Parameters

The material models used in the test scenes were synthesized by orthographically

projecting an image through the scattering geometry and using the pixel values

to determine values for the scattering coefficients σa and σs. The parameters used

in this generation, as well as the source images, are provided in Figure 5.7. Each

material coefficient is specified by three colors and an image. The first two colors,

range min and max, are used to rescale the image to the dynamic range of the

scattering parameter and the last color sets the parameter’s overall scale. To

compute a scattering parameter at a particular point, one finds the corresponding

pixel in the rescaled image, inverts it and multiplies by the base scale. The inversion

is necessary because the material parameters specify how much light is removed

during scattering whereas, in the image, the colors specify how much light should

be added to each pixel.
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5.5.4 Algorithm Costs

Table 5.1 breaks down the cost of the new FE algorithm by component. From new

scene to final image, the system requires between 2 and 10 minutes. This cost can

be roughly divided into 2 parts. Table 5.1(a) gives mesh sizes and the costs of

mesh generation and refinement. Because the FE algorithm is agnostic to how the

scattering domain is discretized, it can use the most efficient meshing algorithms

available. For unstructured triangular surface meshes, tetrahedralization is fast

(1-2 minutes for all examples) and produces a high quality discretization [SG05].

Table 5.1(b) gives the cost to render each image after the mesh has been computed.

For the four test scenes, these costs total between 50s and 6 minutes. These costs

are further split into two categories. Depending only on the surface rendering

algorithm and the scene’s lighting, the base costs, computing the boundary source

and rendering the surface component, are independent of the subsurface rendering

algorithm. Only the costs of assembling Equation (5.16) and solving it are inherent

to the new FE algorithm. For all test scenes, these costs total 3 minutes or less and,

except for the Buddha image, account for half or less of the rendering cost. This

compares with the base cost of rendering high-quality images without subsurface

scattering and for a simple scenes where this base cost is smaller—like Bunny

without complex global illumination (see Table 5.1(b))—the new algorithm adds

only 15s to the total render time.

5.5.5 Comparison with Monte Carlo

To test the quality of the new algorithm, Figure 5.8 presents the images produced

by the FE algorithm side-by-side with the same images produced by an exact,

MC path tracer. Compared to previous work in subsurface rendering, there is

impressive agreement between these two sets of images. However, neither set of
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1x difference

FE Algorithm (4m 12s) Path Tracing (31h 42m 36s) 4x difference

1x difference

FE Algorithm (4m 26s) Path Tracing (3h 51m 43s) 4x difference

1x difference

FE Algorithm (4m 10s) Path Tracing (5h 19m 49s) 4x difference

1x difference

FE Algorithm (6m 26s) Path Tracing (76h 40m 30s) 4x difference

Figure 5.8: Comparison of the results of the new FE algorithm (right column) to
exact path traced references (center) column with 1x and 4x magnified difference
images (left column).
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images is perfect. As noted throughout this thesis, the path tracing algorithm is

impractically expensive. To avoid excessive computation, the path tracing was

performed progressively and was stopped as soon as the noise was fell below a level

permitting a reasonable comparison. Computing noise-free images would at least

double the multiple-hour cost of the path traced references. As expected, the new

algorithm has a considerable advantage in performance. It generates noise-free

images in a few minutes.

To facilitate the quality comparison, absolute error images are provided. These

error images are nearly black so 4x magnified versions help reveal three differences.

First, particularly prominent in the Buddha and Geode images, the path tracer

is able to capture highlights from caustic paths that do not scatter within the

material. There is currently no method for the FE algorithm to simulate these

paths. Secondly, because the diffusion equation treats all diffusive radiance as nearly

isotropic, it tends to overestimate scattering in thin geometry and near the surface.

The effect is to diminish the contribution of low order scattering events. This slightly

darkens regions when they are lit from behind as in the optically thinner parts

of the Dragon and Geode and slightly lightens highly absorptive regions viewed

directly, as in the darker checkers on the Buddha. Finally, because it projects

the final solution onto a mesh basis, the FE algorithm slightly blurs the solutions.

This is most evident in the Bunny whose marble material contains considerable

high-resolution detail. However, overall, the differences are small and mostly due

to fundamental limitations of the DE. Given the orders-of-magnitude difference in

performance, these results are compelling evidence that the FE algorithm produces

results acceptable even for high-quality rendering applications.
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(a) FD original (b) FD corrected (c) FE

(d) MC (e) 4x FD v MC error (f) 4x FE v MC error

Figure 5.9: Images of a constant scattering white bunny lit by two area lights, fill
below and key above: (a) as described in Wang et al. with negative radiance areas
highlighted in red; (b) Wang et al. corrected using derivation in Section 5.2; (c)
our FE algorithm; (d) Monte Carlo reference; (e) 4x absolute error of (b); and (f)
4x absolute error of (c).

5.5.6 Comparison to Wang et al.

Finally, the new renderer is compared directly to the next best previous approach,

Wang et al. [WZT∗08]. Since the focus of the new FE algorithm is quality, rather

than performance, the comparison is made to a software version of their iterative

finite difference (FD) algorithm. The software renderer can dispense with several

lower quality, performance optimizations required for interactive performance of

the original renderer. Specifically, it does not use an approximate multi-resolution

solution method. The software renderer performs each FD update step fully and

iterates until the solution converges. To facilitate this comparison, Wang et al.
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Photograph Path tracer

Figure 5.10: Comparison of the photograph artificial stone slab captured by Wang
et al. to a path traced rendering of the resulting material parameters. Wang et al.
have confirmed that this comparison is accurate.

kindly provided their measured material data and a PolyGrid [THCM04] bunny

model. As an initial test, several images of the bunny with a white, homogeneously

scattering material (see Figure 5.9) were created.

Unfortunately, the formulation of the heterogeneous scattering problem solved

in the original work is not physically accurate. This causes the algorithm to

sometimes compute negative radiance. As shown in red in Figure 5.9(a), this

happens almost everywhere on the homogeneous bunny. In the original work, this

error was likely corrected by the computation of the material parameters during the

capture optimization and, as a result, this problem did not manifest itself in any of

the authors’ original results. As evidence of this capture correction, Figure 5.10

compares a path traced rendering of the captured artificial stone material with a

photograph of the original object. The lack of saturation in the MC result suggests

that the acquired parameters have significantly less absorption, making the image

brighter. The authors of [WZT∗08] have confirmed the mismatch in Figure 5.10.

In order to further discuss the FD approach, the rest of the results in this

section were generated with a corrected FD renderer uses the correct formulation

described in Section 5.2. The remaining images in Figure 5.9 directly compare,
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for meshes of equal size, Wang et al.’s FD algorithm, the new FE algorithm and

a path traced reference (Figures 5.9(b), 5.9(c) and 5.9(d) respectively). Figures

5.9(e) and 5.9(f) display the error of the FD and FE methods respectively. Since

both algorithms depend on the DE, neither solution can produce an exact answer.

However, because the FD algorithm relies on a special PolyGrid mesh [THCM04],

it has at least three additional sources of error.

1. The boundary condition is enforced only approximately by using special,

smaller PolyGrid cells on the boundary.

2. The overall distortion of the PolyGrid can be only approximately modeled

during the FD solution.

3. Creating the uniformly connected PolyGrid required of the FD solver requires

deleting some nodes to along all boundary edges of the grid. This introduces

error in the solution near these edges and especially at the grid corners.

Not only does the PolyGrid introduce error, it is expensive to create. The costs of

mesh construction were not presented in [WZT∗08] but the authors noted that the

construction required optimizations performed by hand. Using the FE algorithm,

mesh generation is automated, requires only a few minutes of computation (see

Table 5.1(a)) and does not have these accuracy issues.

The iterative FD algorithm can also be unstable for certain materials. In Figure

5.11 the Bunny model is rendered with three similar materials using both the FD

and FE algorithm. The first material (left) is homogeneous and the two methods

are mostly in agreement. However, in the center and right columns, a checker board

is introduced by scaling the mean free path (MFP) of the material in alternating

sections. As this happens, the FD method diverges. In the middle and right

columns the MFP has been reduced by factors of 3x and 4x respectively. For these

cases, the FD algorithm was stopped after 500 iterations before the fluence begins
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Figure 5.11: Demonstration of FD method’s divergence. The bunny’s material is
varied from a homogeneous green material (left) towards the material used in the
Buddha (see Figure 5.6) by scaling the scattering coefficient in the lighter squares.
The FD algorithm diverges beyond a 3x scale (middle; see spots in ear, head and
foot) and prominently at a 4x scale (right).

to overflow. In both images, there is divergence is beginning in the ears, head and

foot. Unlike the Wang et al.’s FD algorithm, the new algorithm can handle this

material well. The Buddha model (see Figure 5.8) uses the same material with a

relative MFP scale of 20x.

Finally, Figure 5.12 directly compares the FD algorithm (top right), the FE

algorithm (top center) and the path traced reference (top left) for the Bunny scene.

For this example, the FD algorithm fails to capture most of the detail in the marble

material, has meshing errors visible around the tail and is clearly less accurate.
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Path Tracing FE Algorithm FD Algorithm

1x FE Difference 4x FE Difference 1x FD Difference 4x FD Difference

Figure 5.12: Comparison of path traced reference with FE and FD solutions. Top
row: Path traced reference; middle row: FE algorithm (left) and FD algorithm
(right); and bottom row: 1x and 4x absolute differences for FE algorithm (left side)
and 1x and 4x absolute differences for FD algorithm (right side)

5.6 Summary

This chapter presented the first efficient, general, high-quality algorithm for render-

ing complex heterogeneous materials. It solves a carefully derived heterogeneous

subsurface scattering problem (Section 5.2) accurately using the finite element

method (Section 5.3). Using this solution, subsurface scattering can be computed

by a simple four-step algorithm (Section 5.1). To validate this new algorithm

as a solution for high-quality rendering applications, a prototype implementation

(Section 5.4) was tested on a series of four difficult scenes (Section 5.5). The results

demonstrate that the new algorithm can render images in a few minutes (Section

5.5.4) that are nearly identical to accurate images produced, in hours, by exact

path tracing algorithms (Section 5.5.5) and significantly improve upon the quality

and generality of the best previous method (Section 5.5.6).
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CHAPTER 6

DISCONTINUOUS GALERKIN ALGORITHM

The previous chapter derived and analyzed a particular finite element solution

to the heterogeneous diffusion equation (DE) with the diffusive source boundary

condition (DSBC). Though this solution renders high quality images efficiently and

accurately, an obvious next question asks whether a more sophisticated finite element

formulation might yield an improved rendering algorithm. During the development

of this thesis, one particular alternative forumulation, the discontinuous Galerkin

(DG) finite element (FE) method, was derived and tested in detail. Unlike the

FE solution in the previous chapter, which requires that the FE basis span only

continuous functions, the DG FE method can find discontinuous solutions to the

DE. Because of this, it was hypothesized that the DG method might produce more

accurate answers to problems with highly discontinuous materials, such as in the

Buddha (see Figure 5.6).

However, because of the diffusion approximation, using the DE as a scattering

model adds some minimum error to all images. Improved finite element solutions of

the DE are useful only if they decrease other sources of error significantly relative

to this minimum threshold. Surprisingly, the continuous FE algorithm, presented in

the previous, chapter produced images close to this threshold even for discontinuous

materials. Because of the unexpected accuracy of the continuous solution, tests

using the DG method did not considerably improve rendering quality. Since the DG

algorithm is considerably more expensive than its continuous counterpart, its utility

for rendering is limited. Though this result is negative, analyzing the DG method

here helps place an upper bound on the accuracy required of finite element solutions

in subsurface rendering applications. Looking forward, future work should focus

only on matching the accuracy of the continuous renderer which seems, at least
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empirically, to achieve close to the minimum error provided by the DE. Spending

more effort on the finite element solution, such as by using the more expensive DG

FE method, is wasteful.

6.1 Discontinuous Galerkin Overview

At a high level, the DG algorithm makes only one change to the continuous

algorithm: the continuous algorithm uses basis functions that overlap several

tetrahedra while the discontinuous algorithm uses basis functions that are restricted

to a single tetrahedron. However, this change has an important consequence. In

the continuous case, the overlap blends the local solution in each tetrahedron

with the solutions in its neighbors. This blending, by construction, ensures that

the final solution is continuous. However, by making the the basis functions

private, the DG algorithm can find solutions with certain limited discontinuities.

The DG solutions are continuous within each tetrahedron but, since each has its

own separate basis functions, the overall solution can be discontinuous between

tetrahedra. Conveniently, any continuous overlapping basis can be converted into

a corresponding discontinuous basis by duplicating the continuous basis function

once for each tetrahedra it overlaps. One copy is designated a private basis function

in. By using this conversion, the DG method shares the same types of basis

functions—and consequently can share meshes and mesh refinement methods—with

the continuous FE algorithm.

The similarity of the basis functions and meshes means that there is essentially no

difference between the mechanics of the continuous and discontinuous algorithms.

Both use the same four-step structure outlined in Section 5.1: build a mesh,

construct a linear system, solve the system and query the radiance as needed. The

only change is that discontinuous method constructs a different (and larger; due
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to the basis function duplication) linear system. The mesh, the matrix solver and

the query function all remain the same. Moreover the new linear system is still a

single closed form equation (Equation (6.1)) that is assembled by iterating over the

mesh tetrahedra and their faces. Thus, relative to the continuous algorithm, the

new DG algorithm can be completely described by introducing the new DG linear

system and a new assembly method (see Section 5.4.2 for the continuous case) that

constructs it. The next section describes these elements of the DG formulation

and then Section 6.3 analyzes the limitations of the DG solution for rendering

applications.

6.2 Discontinuous Matrix Equation and Assembly

Because derivation of the DG matrix equation is much longer than the continuous

case, the goal here is only to introduce the features of the matrix equation necessary

to analyze its limitations as a rendering solution. The mathematical details are

presented separately in Appendix C. There are four parts of this discussion. The

first introduces the problem of trivial solutions that make the DG derivation

more involved. The second outlines the major steps of the complete derivation

and introduces the new DG matrix, Equation (6.1). The third describes matrix

assembly and the fourth discusses two important properties of Equation (6.1).

6.2.1 Trivial Discontinuous Solutions

In the continuous FE solution, discussed in Section 5.3, the Lax-Milgram theorem

proved that there is exactly one weak solution to every 2nd-order, elliptic PDE

(like the DE). However, in a general sense, this is not true in the discontinuous

case. To understand why, recall that a FE algorithm finds the weak solution by
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searching a chosen space of functions H for a special function that best satisfies

both the DE and its boundary condition, the DSBC. In the DG method, H is

expanded. The larger space Hdg includes H but additionally contains a larger set

of discontinuous functions. Because of its larger size, in Hdg another solution can

be constructed: use the continuous solution on the boundary to satisfy the DSBC

and then immediately jump discontinuously to the zero function everywhere else.

Since the zero function always satisfies the DE, this is a mathematically valid,

but physically useless, solution to the FE problem. To avoid finding these trivial

solutions, the derivation of the DG weak form must penalize discontinuous jumps

in potential solutions. If these penalties are chosen carefully they exclude useless

trivial solutions but allow the DG formulation to still find novel solutions that

cannot be found by the continuous FE method. The next subsection outlines how

the DG matrix equation is derived by choosing these penalties.

6.2.2 Derivation Overview

The derivation of the DG method has five basic steps:

Step 1: Diffusion System

To generate a well defined solution, jumps in both the fluence φ(x) and its

gradient, the vector irradiance ~E(x), must be penalized. To allow these

penalties to be applied, the DE must first be reformulated as a system of two

PDEs, one for φ(x) and one for ~E(x), so these jumps can be made explicit.

Step 2: Weak System

Analogous to the weak form in the continuous case (see Section 5.3.1), a weak

system is created for these two simultaneous PDEs. This process explicitly

creates the two jump terms that will later be penalized.
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Step 3: Primal Form

Because a weak system is inconvenient for the final discretization, this step is

converts the weak system back into a single equation called the primal form.

Step 4: Interior Penalty Primal Form

A new primal form, the interior penalty primal form, is created from the

basic form by choosing a specific penalty function for each of the jump terms.

Step 5: Discontinuous Galerkin Matrix Equation

The final DG matrix equation is derived by discretizing the interior penalty

primal form using a finite basis.

As mentioned above, the mathematical details of the derivation are presented in

Appendix C. Here only the final result is presented.

Discontinuous Galerkin Matrix Equation.

(D + M + S + E)~a = ~q + ~g (6.1)

where

Dij =

∫
Ω

κd~∇p βi · ~∇p βj dx; Mij =

∫
Ω

σaβiβj dx; Sij =
1

2A

∫
∂Ω

βiβj dx;

Eij = −
∫
FI

1
2
κ∗d(~∇p βj · βi~ni + ~∇p βi · βj~nj − ηβi~ni · βj~nj) dx;

~qi =

∫
Ω

Q0βi dx; ~gi =
2

AFdt

∫
∂Ω

Γsβi dx

6.2.3 Assembly

To assemble Equation (6.1), start with the basic assembly algorithm as in Figure

5.4 then add an pseudoelse clause to the if statement in the lower loop section

(see Figure 6.1). In this clause, the assembly must iterate over all pairs of basis
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e l s e {
Bas i sSet l e f t S e t = l e f t ( f ) ;
Bas i sSet r i g h t S e t = r i g h t ( f ) ;
foreach Bas i s i in l e f t S e t {

foreach Bas i s j in r i g h t S e t {
Area area = over lap ( f , i , j ) ;
i f ( area . s i z e ( ) == 0)

continue ;
foreach QuadPt pt in area

f mat [ i , j ] += jumpterm ( pt , i , j ) ;
}}}

Figure 6.1: Additional pseudo-code for discontinuous Galerkin matrix assembly.
This code should be inserted in as the else clause in the if statement in Figure
5.4. Here left and right are functions that return sets of basis functions that
project onto a face from the left and right sides respectively; overlap is a function
that returns the overlap region between the projections on a face of a pair of
basis functions; and jumpterm is a function that returns the value Eij integrand in
Equation (6.1).

functions that have overlapping, non-zero projections on the current face. It is

important to note that this operation is not trivial. Because of adaptive refinement,

given a face of a single element, the opposite side of the face may project onto only

part of an element face or many element faces if the levels of refinement of the

current element and its neighbors are different. However, once the area of overlap is

computed for each pair, the Eij term is easily estimated by quadrature. To assemble

Equation (6.1), start with the basic assembly algorithm as in Figure 5.4 then add

an pseudoelse clause to the if statement in the lower loop section (see Figure 6.1).

In this clause, the assembly must iterate over all pairs of basis functions that have

overlapping, non-zero projections on the current face. It is important to note that

this operation is not trivial. Because of adaptive refinement, given a face of a single

element, the opposite side of the face may project onto only part of an element

face or many element faces if the levels of refinement of the current element and

its neighbors are different. However, once the area of overlap is computed for each
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pair, the Eij term is easily estimated by quadrature.

6.2.4 Properties of the Discontinuous Matrix

Before the analysis in the next section, it is important to highlight two essential

properties the final matrix equation. First, notice that the DG equation subsumes

the continuous equation (Equation (5.16)). Except for the addition of the Eij term,

the two equations are identical. Intuitively this should be true because the basic

terms model the proper physical behavior required within each element and along

the boundary. The new term Eij describes the penalty of the discontinuous jumps

along the boundaries of the elements in the mesh (see Section C.3 for the definitions

of the operators in Eij) allowing discontinuous solutions.

Second, the most important property of Equation (6.1) is the penalty coefficient

η in Eij. The penalty coefficient trades the stability of the matrix solution for

flexibility of the DG method. If the penalty coefficient is zero, Equation (6.1) is

singular. If the penalty coefficient is small but non-zero, the DG method can find

solutions with large discontinuities but the matrix may not be stable (i.e. the

condition number of Equation (6.1) tends to infinity as η → 0). Finally, as η →∞,

the solution to Equation (6.1) converges to the continuous solution (Equation

(5.16)). As will be discussed in the next section, the limits of the penalty coefficient

are an important limiting factor of the DG formulation itself.

6.3 Summary and Analysis

Given the above, the continuous finite element system from the previous chapter

can be altered to solve the DG diffusion problem. Figure 6.2 illustrates a typical

result of the DG algorithm. The example shows a cube of checkerboard scattering
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Continuous Discontinuous 10x Difference

Figure 6.2: Comparison of continuous (left) and discontinuous Galerkin (middle)
finite element solutions to the diffusion equation. Even the 10x difference between
the two images (right) is negligible.

material lit be red, white and green lights. The images were produced using a

special mesh so that the interior mesh faces exactly align with the checkerboard

material. However, though this example was specifically chosen to highlight any

advantages of the DG solution, the results of the continuous and discontinuous

algorithms are nearly identical (see the 10x difference image). Given that the DG

image took almost 8x longer to solve, the typically close agreement between these

images argues against using the DG method for rendering.

The original hypothesis, that the DG method would produce better images,

has two faults: the limitations of the DG method and the advantages of the

continuous method. First, as noted in Section 6.2.4, the DG method can solve

for discontinuous solutions but only at the cost of stability. For example, altering

the penalty coefficient to make the discontinuities in Figure 6.2 sharper causes the

conjugate gradient solver to diverge. To be useful for a large range of scenes, the

penalty coefficient must be set sufficiently high to avoid this first problem, but this

limits the range of new and interesting discontinuous solutions that can be found.

Ongoing research in numerical methods is attempting to solve this problem with
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better penalty functions1 and localized choices of penalty coefficients [KK05]. The

second fault of the DG hypothesis is simply that the continuous FE formulation

produces better images than expected. Because they violate the basic diffusion

approximation, discontinuous functions tend to be poor solutions to the diffusion

equation. Because of this, even when the material is discontinuous, the diffusion

equation often favors continuous solutions that can be found by either algorithm.

This last result is a compelling promotion for the algorithm in Chapter 5.

Despite a more general matrix equation (Section 6.2.4 and Appendix C) and more

basis functions (Section 6.1), using the the DG method cannot significantly improve

upon the simple, accurate and efficient result using continuous finite elements.

1As compared to the choice, Equations (C.25) and (C.26), made when deriving Equation (6.1).
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CHAPTER 7

FUTURE WORK AND CONCLUSIONS

The two new algorithms in this thesis address the two most significant limitations

of previous approaches to subsurface rendering: scalability and heterogeneity. By

intelligently clustering complete subsurface light paths using sample triples, the

first algorithm, a new scalable, homogeneous renderer, is able to reduce the cost of

adding subsurface scattering to complex scenes three hundredfold. Then the second

algorithm, a new finite element (FE) rendering method, enabled the first general,

efficient and high-quality rendering system for complex, heterogeneous materials. It

can render, in minutes, images nearly identical to exact images taking hours. This

final chapter reviews the advantages of these two new algorithms in two sections.

The first looks forward and discusses how the new ideas from this thesis can be

used to create even more efficient, scalable and accurate renderers. The second

looks backwards and concludes with a summary of the novel contributions of the

works presented here.

7.1 Limitations and Future Work

The most promising future work in subsurface rendering lies in heterogeneous

rendering algorithms. Homogeneous rendering using the dipole diffusion BSSRDF

is a well-studied problem. With the introduction of the new scalable algorithm,

renderers can both approximate homogeneous materials in real-time [MKB∗03b,

HBV03, MKB∗03a, CHH03, HV04, DS03, LGB∗02] as well as efficiently render large,

complex scenes with many hundreds of subsurface scattering objects. However, the

dipole diffusion model has it obvious limitations and there is a continuing need for

more advanced models that can render more complex and realistic materials. The

new FE algorithm is an ideal starting point for these new applications since, in
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its initial tests, it was accurate enough for even high-quality rendering and it was

efficient. Moreover, it is backed by a rich set of mathematical tools that can be

applied to extend the basic algorithm further in both efficiency and accuracy. This

section discusses some of these possible extensions as well as some of the limitations

of each new algorithm. This section has two subsections. First a short subsection

discusses small extensions of the scalable homogeneous renderer while the second

subsection discusses a range of new topics introduced by the FE renderer.

7.1.1 Scalable Homogeneous Rendering

Compared to the less scalable, two-pass methods, the ability of the new unified

algorithm to focus effort on only the important subsurface light paths leads to

significant increases in performance. However, the overall efficiency of the new

algorithm strongly depends on the speed and accuracy of its adaptive cut refinement.

Though the refinement heuristics chosen in Section 4.4.3 attempt to find the smallest

cut as fast as possible and they worked well in all tests, they are still ad-hoc choices

limited by two factors.

First, the error bounds—the basis for the refinement choices—are very con-

servative. In the initial stages of refinement, all clusters have high error and the

algorithm essentially chooses refinements randomly. Efficient and accurate estimates

for these bounds could significantly increase refinement performance. Second, the

refinement heuristics themselves can be more advanced. Currently, the refinement

algorithm bases all choices solely on the properties of the cluster to be refined.

However, correlation between clusters in the cut is a new problem introduced by

sample triples. Repeated refinement of, for example, the irradiance cluster leads to

many triple clusters with different irradiance sample clusters but the same light

sample cluster. This type of cut can be particularly problematic if the light cluster
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is a poor approximation of the local lighting. By considering all the clusters in the

cut and the relationships between them, it may be possible to explore the space of

potential cuts more efficiently and avoid these correlation problems.

7.1.2 Heterogeneous Rendering

The results in Chapter 5 demonstrated that the finite element (FE) method is a

useful tool for solving general, efficient, high-quality and heterogeneous subsurface

scattering problems. Then, in Chapter 6, the analysis of the limitations of the

discontinuous Galerkin (DG) FE formulation suggested that the accuracy of the

continuous formulation presented in Chapter 5 might be empirically close to the

limit imposed by using the diffusion equation (DE). Looking forward, solving

subsurface scattering using finite elements provides a framework for investigating

a range of subsurface rendering algorithms. However, as suggested in Chapter 6,

there is a floor beyond which further improvement in the FE solution to the DE has

no effect on image quality. Beyond this limit, quality can only be further improved

by restricting use of the DE to only those parts of the subsurface simulation where

it is most accurate.

7.1.2.1 Restricted Diffusive Simulation

In subsurface rendering, the solution need only be accurate on the boundary

of the object. Unfortunately, this is precisely the region where the DE is most

fundamentally limited. Both the source model and the boundary condition introduce

additional approximations near the edge of the material. Taking a lesson from

previous work [LPT05, CTW∗04], a subsurface rendering algorithm could be made

more accurate by using a different simulation method in a thin shell near the

boundary and a more approximate diffusion-based method in the interior regions.
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However, in heterogeneous materials, a thin shell algorithm must overcome two

additional problems. First, the necessary shell thickness must vary with the material

parameters making it more difficult to choose when to switch between accurate

shell simulation and less accurate interior simulation. Second, the shell algorithm

must not become the simulation bottle neck. For example, using path tracing in

the thin shell as in [LPT05] would likely be impractical. One promising method of

avoiding this problem would be to couple two FE solutions, a more accurate one in

the thin shell and a less accurate one in the interior.

7.1.2.2 Heterogeneous Scalability

Unfortunately, the new FE algorithm has the same scalability limitation as previous,

homogeneous two-pass algorithms. In both cases, the algorithms pre-compute a

detailed representation of the incoming reduced intensity source and using that

representation solve for the subsurface scattering in a second step. As discussed in

Chapter 4, this structure prevents scalability because, as the scene grows in size, the

initial source computation becomes prohibitively expensive. In the homogeneous

case, scalability was ensured by isolating only a fraction of the subsurface paths

within a single object that needed to be simulated. However, the FE algorithm

solves for all paths at once in a single computation so this approach is impossible.

Thus, solving this scalability problem in FE algorithms is a formidable future

challenge.

7.2 Conclusions

The goal of this thesis was to extend the state-of-the-art in subsurface rendering

beyond the two fundamental limitations of the dipole diffusion BSSRDF. First,

dipole diffusion algorithms use a basic two-pass structure that prevents these algo-
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rithms from scaling to large complex scenes with many subsurface scattering objects.

Second, the dipole diffusion BSSRDF is fundamentally limited to homogeneous

materials. The two new algorithms in this thesis overcame each of these problems

respectively.

First, Chapter 4 introduced a new unified and scalable subsurface rendering

algorithm that generalized Lightcuts [WFA∗05] and Multidimensional Lightcuts

[WABG06] to subsurface scattering problems by representing subsurface light paths

using triples of pre-computed samples. The new algorithm partitioned these triples

into clusters by selecting a cut through an implicit hierarchy of clusters of sample

triples. By approximating the contribution of each of the clusters in a cut, the

algorithm dramatically reduces the cost of estimating the subsurface scattering in a

pixel. It then further ensures efficiency by sharing expensive form factor evaluations

between pixel computations by using a new form factor cache. Combining these new

approaches, the new scalable algorithm reduced the cost of subsurface simulation

by up to a factor of 300 and because of this dramatic performance increase was

able to render large complex, scenes with highly detailed geometry and expensive

lighting effects that were beyond the reach of previous approaches.

Second, Chapter 5 introduced a new FE algorithm for rendering subsurface

scattering in complex heterogeneous materials. In this chapter, the correct formula-

tion of heterogeneous scattering using the diffusion equation was carefully derived

and then solved using a continuous FE method. The result was a simple four-step

algorithm for heterogeneous rendering. Section 5.5.6 demonstrated that this new

FE algorithm is more accurate than even the best previous system [WZT∗08] and

has no limits on the materials and geometry it can render. Using this algorithm,

a prototype rendering system created in minutes images of a range of difficult

heterogeneously scattering objects that were nearly identical to exact images re-
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quiring hours of simulation. Finally, to promote the accuracy and efficiency of

the continuous solver presented in Chapter 5, Chapter 6 discussed why the new

algorithm empirically nears the accuracy limit imposed by the diffusion equation.

Together these two algorithms represent significant improvements in the scale,

scope and quality of subsurface rendering. They make it now possible to accurately

and quickly render a wide range of scenes and include the full range of subsurface

scattering materials. Finally, both—especially the finite element algorithm—provide

interesting new avenues for solving the difficult problem of subsurface rendering.
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APPENDIX A

ADDENDA TO DIFFUSION EQUATION DERIVATION

This appendix gives the extended algebraic derivations of Equations (2.13) and

(2.14) quoted in Section 2.2.1.3. Both derivations are manipulations of Equation

(2.12)

(~ω · ~∇)Ld(x, ~ω) = σs(x)

∫
4π

p(~ω, ~ω′)Ld(x, ~ω
′) d~ω′ (A.1)

− σt(x)Ld(x, ~ω) +Qri(x, ~ω) +Q(x, ~ω)

reprinted here for convenience.

A.1 Derivation of Equation (2.13)

Equation (2.13) is derived by equating the 0th moments of the terms in Equation

(2.12). Computing those moments yields

∫
4π

(~ω · ~∇)Ld(x, ~ω) d~ω = σs(x)

∫
4π

∫
4π

p(~ω, ~ω′)Ld(x, ~ω
′) d~ω′ d~ω

− σt(x)

∫
4π

Ld(x, ~ω) d~ω +Q0
ri(x) +Q0(x) (A.2)

First use the definitions of φ(x) and ~E(x) from Equations (2.5) and (2.6) and

rearrange the first term on the right hand side

~∇ · ~E(x) = σs(x)

∫
4π

Ld(x, ~ω
′)

∫
4π

p(~ω, ~ω′) d~ω d~ω′

− σt(x)φ(x) +Q0
ri(x) +Q0(x) (A.3)
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Next using the normalization of p(~ω, ~ω′) and Equation (2.5)

~∇ · ~E(x) = σs(x)φ(x)− σt(x)φ(x) +Q0
ri(x) +Q0(x) (A.4)

And finally the definition of σt(x) = σs(x) + σa(x) gives Equation (2.13)

~∇ · ~E(x) = −σa(x)φ(x) +Q0
ri(x) +Q0(x)

A.2 Derivation of Equation (2.14)

The derivation of Equation (2.14) is more complicated than Equation (2.13). It

has two main parts: the substitution of the DA and equating the 1st moments.

A.2.1 Making the Diffusion Approximation

Direct substitution of Equation (2.7) into Equation (2.12) yields

1

4π
(~ω · ~∇)φ(x) +

3

4π
(~ω · ~∇)(~ω · ~E(x)) =

σs(x)

4π

∫
4π

p(~ω, ~ω′)φ(x) d~ω′ +
3σs(x)

4π

∫
4π

p(~ω, ~ω′)(~ω′ · ~E(x)) d~ω′

− σt(x)

4π
φ(x)− 3σt(x)

4π
(~ω · ~E(x)) +Qri(x, ~ω) +Q(x, ~ω) (A.5)

Next, simplify the two integral terms on the right hand side. For the first term

σs(x)

4π

∫
4π

p(~ω, ~ω′)φ(x) d~ω′ =
σs(x)

4π
φ(x)

∫
4π

p(~ω, ~ω′) d~ω′ =
σs(x)

4π
φ(x) (A.6)

since the phase function is normalized. Since the phase function depends only on

the angle between the two directions (see Equation (2.2)), the second term can be
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simplified using the µ, the mean cosine of the phase function (see Equation (2.3)).

3σs(x)

4π

∫
4π

p(~ω, ~ω′)(~ω · ~E(x)) d~ω′ =
3σs(x)

4π

∫
4π

p(~ω, ~ω′)(~ω · ~ω)(~ω′ · ~E(x)) d~ω′

=
3σs(x)

4π
(~ω · ~E(x))

∫
4π

p(~ω, ~ω′)(~ω · ~ω′) d~ω′

=
3µσs(x)

4π
(~ω · ~E(x)) (A.7)

Substitute Equations (A.6) and (A.7) into Equation (A.5) and group the like terms

on the right hand side

1

4π
(~ω · ~∇)φ(x) +

3

4π
(~ω · ~∇)(~ω · ~E(x)) =

1

4π

[
σs(x)− σt(x)

]
φ(x) +

3

4π

[
µσs(x)− σt(x)

]
(~ω · ~E(x))

+Qri(x, ~ω) +Q(x, ~ω) (A.8)

Finally, use the definitions of σt(x) and σtr(x) = (1− µ)σs(x) + σa(x) to simplify

the scattering function coefficients.

1

4π
(~ω · ~∇)φ(x) +

3

4π
(~ω · ~∇)(~ω · ~E(x)) =

− σa(x)

4π
φ(x)− 3σtr(x)

4π
(~ω · ~E(x)) +Qri(x, ~ω) +Q(x, ~ω) (A.9)
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A.2.2 Computation of 1st moments

Next step is to relate the first moments of the terms in Equation (A.9). First,

compute each moment

1

4π

∫
4π

~ω(~ω · ~∇)φ(x) d~ω +
3

4π

∫
4π

~ω(~ω · ~∇)(~ω · ~E(x)) d~ω =

− σa(x)

4π

∫
4π

~ωφ(x) d~ω − 3σtr(x)

4π

∫
4π

~ω(~ω · ~E(x)) d~ω +Q1
ri(x) +Q1(x) (A.10)

Each of the integral terms need simplification and an identity from [Ish78] is useful.

Let ~s be any 3D vector, then ∫
4π

~ω(~ω · ~s) d~ω =
4π

3
~s (A.11)

Next, simplify the terms individually from left to right. The first term uses the

identity.

1

4π

∫
4π

~ω(~ω · ~∇)φ(x) d~ω =
1

3
~∇φ(x) (A.12)

The second term is identically zero.

3

4π

∫
4π

~ω(~ω · ~∇)(~ω · ~E(x)) d~ω =
3

4π

∫
4π

~ω(~ω · ~ω)(~∇ · ~E(x)) d~ω

=
3

4π
(~∇ · ~E(x))

∫
4π

~ω d~ω ≡ 0 (A.13)

And, for similar reasons, so is the first term on the right hand side.

σa(x)

4π

∫
4π

~ωφ(x) d~ω =
σa(x)

4π
φ(x)

∫
4π

~ω d~ω ≡ 0 (A.14)

Lastly, the second term on the right hand side again uses Equation (A.11).

3σtr(x)

4π

∫
4π

~ω(~ω · ~E(x)) d~ω = σtr(x) ~E(x) (A.15)
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The final step substitutes Equations (A.12)-(A.15) into Equation (A.10) and multi-

plies by 3 to derive Equation (2.14).

~∇φ(x) = −3σtr(x) ~E(x) + 3Q1
ri(x) + 3Q1(x)
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APPENDIX B

ADDENDA TO THE DIFFUSIVE SOURCE BOUNDARY

CONDITION DERIVATION

Deriving the DSBC requires substituting Equations (5.2) and (5.3) into Equation

(5.1) and then substituting the diffusion approximation (Equation (2.7)) for Ld(x, ~ω).

The result of the first substitution is∫
(~n·~ω)<0

Ld(x, ~ω)(−~n · ~ω) d~ω = Fdr(η)

∫
(~n·~ω)<0

Ld(x,−~ω)(−~n · ~ω) d~ω + Γs(x) (B.1)

Using Equation (2.17), the DA can be applied and the integrals simplified.

φ(x)

4
+
κd(x)(~n · ~∇)φ(x)

2
= Fdr(η)

[
φ(x)

4
− κd(x)(~n · ~∇)φ(x)

2

]
+ Γs(x) (B.2)

Multiply by 4.

φ(x) + 2κd(x)(~n · ~∇)φ(x) = Fdr(η)
[
φ(x)− 2κd(x)(~n · ~∇)φ(x)

]
+ 4Γs(x) (B.3)

Group like terms.

(
1− Fdr(η)

)
φ(x) + 2κd(x)

(
1 + Fdr(η)

)
(~n · ~∇)φ(x) = 4Γs(x) (B.4)

Divide by Fdt(η) = 1− Fdr(η).

φ(x) + 2κd(x)

[
1 + Fdr(η)

1− Fdr(η)

]
(~n · ~∇)φ(x) =

4

Fdt(η)
Γs(x) (B.5)

Substitute Equation (2.22) introducing A(η) and completing the derivation.

φ(x) + 2κd(x)A(η)(~n · ~∇)φ(x) =
4

Fdt(η)
Γs(x) (B.6)
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APPENDIX C

DERIVATION OF THE DISCONTINUOUS GALERKIN MATRIX

EQUATION

This derivation follows the five step outline described in Section 6.1. The dis-

continuous Galerkin (DG) penalty method used here ensures a unique solution

exists [ABCM02]. However, this proof is well beyond the scope of this thesis.

Summarizing the one in [ABCM02], this discussion only describes the minimal

detail required to derive the DG matrix equation (Equation (6.1)). Refer to the

original work for a more robust mathematical discussion.

C.1 Step 1: Diffusion System

In this first step, the dependence on the vector irradiance ~E(x) must be made

explicit. Recalling Equation (2.6), ~E(x) can be defined such that

~E(x) = κd(x)~∇φ(x) (C.1)

With this definition, the DE can be rewritten as a coupled system of two PDEs.

Diffusion System.

−~∇ · ~E + σa(x)φ = Q0 (C.2)

~E = κd~∇φ (C.3)

From these equations to the end of this appendix, all explicit references to the

independent spatial variable x and, for the Fresnel terms, the relative index of

refraction η have been dropped to make the equations more concise.
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C.2 Step 2: Weak System

Converting the diffusion system into a weak system requires two additional defi-

nitions: a domain subdivision and a new function space. First, because the final

DG method allows only a limited type of discontinuity—continuous within mesh

elements but discontinuous between mesh elements—the derivation of the DG

method is more dependent on the ultimate goal of dividing the solution into a

finite basis. Thus here, at the beginning of the derivation, the domain Ω must be

initially subdivided into a finite number Ne of elements Ωi. For this derivation,

this subdivision must be non-overlapping, complete (i.e. Ω =
⋃Ne
i=0 Ωi) and the

boundaries between elements must be planar [ABCM02]. Within these constraints,

these subdivisions can be arbitrary but a useful specific model is the tetrahedral

mesh described in Section 5.4.1. Second, additional function spaces must be defined.

In Section 5.3.1, the continuous FE method searched a continuous function space

H for the solution fluence φ. In the DG FE method, the fluence can lie in a larger

space Hdg
φ that contains additional discontinuous functions. However, the weak

system requires a second vector function space Hdg
~E

that contains all potential

solutions for ~E. These function spaces must be chosen such that gradient of any

function in Hdg
φ also lies in Hdg

~E
.

Next, the derivation of the weak system proceeds by the same process used in

Section 5.3.1 but applied separately to both Equations (C.2) and (C.3). However

additionally, because of the inter-element discontinuities, it must also be applied

separately inside each element of the domain Ωi. Let θ ∈ Hdg
φ and ~e ∈ Hdg

~E
be

arbitrary functions in each function space. Multiply Equations (C.2) and (C.3) by
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θ and ~e respectively and integrate over each Ωi

−
∫
Ωi

(~∇ · ~E)θ dx +

∫
Ωi

σaφθ dx =

∫
Ωi

Q0θ dx (C.4)

∫
Ωi

~E · ~e dx =

∫
Ωi

~∇φ · (κd~e) dx (C.5)

Now use the divergence theorem (Equation (5.12)) to transform the first term in

Equation (C.4) and the last term in Equation (C.5). Then rearranging terms yields

the DG weak system.

Weak System. Find φ and ~E such that for all Ωi ∈ Ω, θ ∈ Hdg
φ and ~e ∈ Hdg

~E∫
Ωi

~E · ~∇θ dx =

∫
∂Ωi

( ~E · ~n)θ dx−
∫
Ωi

σaφθ dx +

∫
Ωi

Q0θ dx (C.6)

∫
Ωi

~E · ~e dx = −
∫
Ωi

φ~∇ · (κd~e) dx +

∫
∂Ωi

κdφ(~e · ~n) dx (C.7)

In the weak system, the jump terms to be penalized are evident. The two element

boundary integral terms, one in each equation, respectively require the values of ~E

and κdφ on the boundaries of elements. However, in the DG formulation, ~E and φ

may be discontinuous along these boundaries and, therefore, these terms may not

be well defined. To correct this, numerical estimates of these boundary values must

be defined—call these estimates ~E∗ and φ∗κ—and, as part of these definitions, jump

penalties are imposed.

C.3 Step 3: Primal Form

In this section, the dependence on ~E is removed to produce a new weak form

dependent only on φ. This new weak form is called the primal form. This step is

the longest in the derivation and will be presented in several subsections. Each
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intermediate step either introduces some simplifying notation or performs some

simplifying algebra. To begin, sum Equations (C.6) and (C.7) over all elements in

the domain

∑
Ωi∈Ω

[ ∫
Ωi

~E · ~∇θ dx
]

= −
∫
Ω

σaφθ dx +

∫
Ω

Q0θ dx +
∑
Ωi∈Ω

[ ∫
∂Ωi

( ~E∗ · ~n)θ dx

]
(C.8)

∫
Ω

~E · ~e dx = −
∑
Ωi∈Ω

[ ∫
Ωi

φ~∇ · (κd~e) dx
]

+
∑
Ωi∈Ω

[ ∫
∂Ωi

φ∗κ(~e · ~n) dx

]
(C.9)

C.3.1 Piecewise Gradient Operator

Since ~E and φ may be discontinuous across faces, their gradient and divergence are

no longer well defined throughout the entire domain. Thus terms like the first one

in Equation (C.8) cannot be converted into a single integral over the whole domain.

However, these expressions can be simplified with some new notation: the piecewise

gradient ~∇p operator. The ~∇p operator is defined such that for any functions α

and ~a ∫
Ω

~∇p α dx =
∑
Ωi∈Ω

[ ∫
Ωi

~∇α dx
]

(C.10)

∫
Ω

~∇p · ~a dx =
∑
Ωi∈Ω

[ ∫
Ωi

~∇ · ~a dx
]

(C.11)

Using the piecewise gradient Equations (C.8) and (C.9) become

∫
Ω

~E · ~∇p θ dx = −
∫
Ω

σaφθ dx +

∫
Ω

Q0θ dx +
∑
Ωi∈Ω

[ ∫
∂Ωi

( ~E∗ · ~n)θ dx

]
(C.12)

∫
Ω

~E · ~e dx = −
∫
Ω

φ~∇p · (κd~e) dx +
∑
Ωi∈Ω

[ ∫
∂Ωi

φ∗κ(~e · ~n) dx

]
(C.13)
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C.3.2 Face Integrals with Jump and Average Operators

Next it is convenient to convert the sums of boundary integrals into integrals

over the union of all element faces. This allows the diffusive source boundary

condition (Equation (5.5)) to be imposed and simplifies the specification of ~E∗ and

φ∗κ. Performing the conversion requires introducing the average {·} and the jump

J·K operators for an interior face. If fij = Ωi ∪ Ωj is the face between Ωi and Ωj,

then let FI =
⋃
fij and F = ∂Ω ∪ FI . Then, for fij, the jump J·K and average {·}

operators are defined for scalar α and vector ~a values as

JαK = αi~ni + αj~nj {α} = 1
2
(αi + αj) (C.14)

J~aK = ~ai · ~ni + ~aj · ~nj {~a} = 1
2
(~ai + ~aj) (C.15)

Since these definitions require each face to have a single normal, their use here

requires that the domain elements Ωi have piecewise planar boundaries. With these

definitions, the sums over boundary integrals can be rewritten using an identity

(derived in Section C.6): for any ~a and α,∑
Ωi∈Ω

[ ∫
∂Ωi

α~a · ~n dx
]

=

∫
∂Ω

α~a · ~n dx +

∫
FI

J~aK{α}+ {~a} · JαK dx (C.16)

Using Equation (C.16), Equations (C.12) and (C.13) become∫
Ω

~E · ~∇p θ dx =−
∫
Ω

σaφθ dx +

∫
Ω

Q0θ dx

+

∫
∂Ω

( ~E∗ · ~n)θ dx +

∫
FI

J ~E∗ K{θ}+ { ~E∗ } · JθK dx (C.17)

∫
Ω

~E · ~e dx =−
∫
Ω

φ~∇p · (κd~e) dx

+

∫
∂Ω

φ∗κ(~e · ~n) dx +

∫
FI

J~e K{φ∗κ }+ {~e } · Jφ∗κ K dx (C.18)
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C.3.3 Piecewise Divergence Theorem

The next step simplifies the first term on the right hand side of Equation (C.18).

This requires another identity (also derived in Section C.6 by applying the divergence

theorem locally to each element in the domain): for any ~a and α,

−
∫
Ω

α~∇p · ~a dx =

∫
Ω

~∇p α · ~a dx−
∫
∂Ω

α~a · ~n dx−
∫
FI

J~aK{α}+ {~a} · JαK dx (C.19)

Applying Equation (C.19) to Equation (C.18) yields

∫
Ω

~E · ~e dx =

∫
Ω

~∇p φ · (κd~e) dx +

∫
∂Ω

(φ∗κ − κdφ)(~e · ~n) dx

+

∫
FI

J~e K{φ∗κ − κdφ}+ {~e } · Jφ∗κ − κdφK dx (C.20)

C.3.4 Final Substitution

Next, on the boundary of the domain, φ∗κ is well valued and no special definition or

penalty need be applied. Thus, on the boundary, let φ∗κ = κdφ and then Equation

(C.20) becomes∫
Ω

~E · ~e dx =

∫
Ω

~∇p φ · (κd~e) dx +

∫
FI

J~e K{φ∗κ − κdφ}+ {~e } · Jφ∗κ − κdφK dx (C.21)

Now, recalling the original definition of the weak system (see Equations (C.4) and

(C.5)), note that Equations (C.17) and (C.21) must hold for all functions θ ∈ Hdg
φ

and ~e ∈ Hdg
~E

. Moreover, for the spaces chosen for this derivation (Section C.2), it

must be that if θ ∈ Hdg
φ then ~∇p θ ∈ Hdg

~E
. Thus Equation (C.21) must specifically

hold when ~e = ~∇p θ.∫
Ω

~E·~∇pθ dx =

∫
Ω

κd~∇pφ·~∇pθ dx+

∫
FI

J~∇pθK{φ∗κ−κdφ}+{~∇pθ}·Jφ∗κ−κdφK dx (C.22)
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Substituting Equation (C.22) into Equation (C.17) and rearranging terms yields

the primal form.

Primal Form. Find φ such that for all θ ∈ Hdg
φ

∫
Ω

κd~∇p φ · ~∇p θ dx +

∫
Ω

σaφθ dx

−
∫
∂Ω

( ~E∗ · ~n)θ dx +

∫
FI

J~∇p θK{φ∗κ − κdφ}+ {~∇p θ} · Jφ∗κ − κdφK dx

−
∫
FI

J ~E∗ K{θ}+ { ~E∗ } · JθK dx =

∫
Ω

Q0θ dx (C.23)

C.4 Step 4: Interior Penalty Primal Form

This step of the derivation chooses a particular definition and penalty for the two

undefined boundary terms, ~E∗ and φ∗κ. This choice results in a specific primal

form, the interior penalty (IP) primal form [ABCM02]. However, before the

IP primal form is introduced, the basic primal form can be further simplified.

All valid choices for the element boundary terms must be both consistent and

conservative. Consistency is ensured if, when the solution fluence is smooth1, then

Jφ∗κ K = J ~E∗ K = 0, {φ∗κ } = φ and { ~E∗ } = ~E. Second, the choice is conservative if

the definition is symmetric, i.e. the definition on the face between Ωi and Ωj equals

the definition on the face defined by the elements in reverse order. This can only

be true if Jφ∗κ K = J ~E∗ K = 0. Though this conservative definition seems to repeat

part of the definition of consistency, note that conservativity it must be true for all

functions, not just for smooth functions, as required by consistency. Thus, using

1i.e. It is continuous and has a complete set of continuous derivatives.
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the conservative property, the basic primal form can be simplified to∫
Ω

κd~∇p φ · ~∇p θ dx +

∫
Ω

σaφθ dx−
∫
∂Ω

( ~E∗ · ~n)θ dx

+

∫
FI

J~∇p θK{φ∗κ − κdφ} − {~∇p θ} · JκdφK− { ~E∗ } · JθK dx =

∫
Ω

Q0θ dx (C.24)

Next the IP primal form is created by defining φ∗κ and ~E∗ as

φ∗κ = {κdφ} (C.25)

~E∗ = {κd~∇p φ} − ηJκdφK (C.26)

The coefficient η is a user specified constant that determines the relative effect of

the discontinuous penalty. However, the solution to the IP primal form is well

defined for any positive value of η [ABCM02]. The effect of the choice of η is

described in Section 6.2.4. Substituting Equations (C.25) and (C.26) into Equation

(C.24) yields∫
Ω

κd~∇p φ · ~∇p θ dx +

∫
Ω

σaφθ dx−
∫
∂Ω

(κd~∇p φ · ~n)θ dx

−
∫
FI

{~∇p θ} · JκdφK + {κd~∇p φ} · JθK− ηJκdφK · JθK dx =

∫
Ω

Q0θ dx (C.27)

Finally use the diffusive source boundary condition (Equation (5.5)) to eliminiate

the boundary term in Equation (C.27) and derive the IP primal form.

Interior Penalty Primal Form. Find φ such that for all θ ∈ Hdg
φ∫

Ω

κd~∇p φ · ~∇p θ dx +

∫
Ω

σaφθ dx +
1

2A

∫
∂Ω

φθ dx

−
∫
FI

{~∇p θ} · JκdφK + {κd~∇p φ} · JθK− ηJκdφK · JθK dx

=

∫
Ω

Q0θ dx +
2

AFdt

∫
∂Ω

Γsθ dx (C.28)
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C.5 Step 5: Discontinuous Galerkin Matrix Equation

The final step in this derivation creates the final matrix equation using the IP

primal form. This process is identical to the derivation in Section 5.3.2 except that

Equation (5.14) has been replaced with Equation (C.28). First Hdg
φ is assumed to

have a finite basis.

B(x) =
{
β0(x), β1(x), . . . , βn−1(x)

}
Second, φ is assumed to lie in that basis, i.e. φ =

∑n−1
i=0 aiβi. The result is the

basic matrix form: find {ai} such that for all βj

∑
βi∈Hdg

φ

ai

∫
Ω

κd~∇p βi · ~∇p βj dx +

∫
Ω

σaβiβj dx

+
1

2A

∫
∂Ω

βiβj dx−
∫
FI

{~∇p βj} · JκdβiK + {κd~∇p βi} · JβjK− ηJκdβiK · JβjK dx


=

∫
Ω

Q0βj dx +
2

AFdt

∫
∂Ω

Γsβj dx (C.29)

Next, since the solution can be discontinuous, it may be convenient to represent the

material coefficients κd and σa discontinuously. In this case, the two jump terms

containing κd in Equation (C.29) are still not well defined. Using the harmonic

mean κ∗d of the local values in each element, κid and κjd, as a element boundary

approximation, solves this problem.

κ∗d =
2κidκ

k
d

κid + κkd
(C.30)

Finally, since by construction (see Section 6.1), the basis functions have support

only with a single element, the jump and average of the basis functions and their

gradients have a simple form (see Equations (C.14) and (C.15)).

JβiK = βi~ni (C.31)

{~∇p βi} = 1
2
~∇p βi (C.32)
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Using Equations (C.30), (C.31) and (C.32), the face term in Equation (C.29) can

be simplified ∫
FI

1
2
κ∗d(~∇p βj · βi~ni + ~∇p βi · βj~nj)− ηκ∗dβi~ni · βj~nj dx (C.33)

Here ~ni and ~nj are the outwards pointing normals of the faces corresponding from

the elements that contain βi and βj respectively.2 Substituting Equation (C.33)

into Equation (C.29) and rearranging terms yields the final discontinuous Galerkin

matrix equation (reprinted here from Equation (6.1)).

Discontinuous Galerkin Matrix Equation.

(D + M + S + E)~a = ~q + ~g

where

Dij =

∫
Ω

κd~∇p βi · ~∇p βj dx; Mij =

∫
Ω

σaβiβj dx; Sij =
1

2A

∫
∂Ω

βiβj dx;

Eij = −
∫
FI

1
2
κ∗d(~∇p βj · βi~ni + ~∇p βi · βj~nj − ηβi~ni · βj~nj) dx;

~qi =

∫
Ω

Q0βi dx; ~gi =
2

AFdt

∫
∂Ω

Γsβi dx

2It is not true that ~ni = −~nj . Sometimes βi and βj lie in the same element and ~ni = ~nj
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C.6 Derivation of Identities

Derivation of Equation (C.16).

∑
Ωi∈Ω

[ ∫
∂Ωi

α~a · ~n dx
]

=

∫
∂Ω

α~a · ~n dx +
∑
fij∈FI

[ ∫
fij

αi~ai · ~ni + αj~aj · ~nj dx
]

αi~ai · ~ni + αj~aj · ~nj = 1
2
αi~ai · ~ni + 1

2
αi~ai · ~ni + 1

2
αj~aj · ~nj + 1

2
αj~aj · ~nj+

1
2
αi~aj · ~ni − 1

2
αi~aj · ~ni + 1

2
αj~ai · ~ni − 1

2
αj~ai · ~ni

= 1
2
αi~ai · ~ni + 1

2
αi~ai · ~ni + 1

2
αj~aj · ~nj + 1

2
αj~aj · ~nj+

1
2
αi~aj · ~ni + 1

2
αi~aj · ~nj + 1

2
αj~ai · ~ni + 1

2
αj~ai · ~nj

= 1
2
(αi~ai · ~ni + αi~aj · ~ni + αj~ai · ~nj + αj~aj · ~nj)+

1
2
(αi~ai · ~ni + αi~aj · ~nj + αj~ai · ~ni + αj~aj · ~nj)

= 1
2
(~ai · ~ni + ~aj · ~nj)(αi + αi)+

1
2
(~ai + ~ai)(αi~ni + αj~nj)

= J~aK{α}+ {~a} · JαK

∑
Ωi∈Ω

[ ∫
∂Ωi

α~a · ~n dx
]

=

∫
∂Ω

α~a · ~n dx +

∫
FI

J~aK{α}+ {~a} · JαK dx
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Derivation of Equation (C.19).

−
∫
Ω

α~∇p · ~a dx =
∑
Ωi∈Ω

[ ∫
Ωi

α~∇ · ~a dx
]

Equation (C.11)

=
∑
Ωi∈Ω

[ ∫
Ωi

~∇α · ~a dx−
∫
∂Ωi

α~a · ~n dx
]

Equation (5.12)

=

∫
Ω

~∇p α · ~a dx−
∑
Ωi∈Ω

[ ∫
∂Ωi

α~a · ~n dx
]

Equation (C.11)

=

∫
Ω

~∇p α · ~a dx−
∫
∂Ω

α~a · ~n dx

−
∫
FI

J~aK{α}+ {~a} · JαK dx Equation (C.16)
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