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Abstract 

By using an apparently little known fact about concave functions together 

with a new expectation identity for noncentral chi-squared random variables, a 

characterization of risk functions of Stein-type estimators is obtained. In 

particular, concavity of the function appearing in the shrinkage factor is related 

to the estimator's risk function being nondecreasing. 
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1. Introduction. Let X be an observation from a p-variate (p ~ 3) normal distribution 

with mean 0 and identity covariance matrix. For any estimator 6(X) of 0, the loss in 

estimating 0 by 6(X) is 

L(0,6) = IO- 6(XW ' 

whee 1·1 denotes Euclidean distance. The risk of 6(X), R(0,6), is given by 

R(0,6) = E0L(0,6) = E0IO- 6(XW , 

and 6(X) is a minimax estimator of 0 if and only if R(0,6) :::; R(O,X) p for all 0. Many 

Stein-type estimators have the form 

6(X) = (1 - r(IXI2)) X 
IXI 2 ' 

and theorems about the risk behavior of 6(X) give conditions on r(IXI). In particular, 

common conditions are that r(t) be nondecreasing and r(t)/t be nonincreasing. The following 

lemma relates the property of concavity to these conditions. 

LEMMA 1: Let r:[O,oo) -+ [O,oo) be concave. Then 

i) r( t) is nondecreasing, 

ii) r(t)/t is nonincreasing. 

PROOF: Since r( ·) is concave, it follows that 

for 0 :::; A :::; 1. Moreover, this inequality is reversed if A > 1. 

We now prove part i) by contradiction. Suppose t 1 < t 2 and r(t 1) > r(t2). Then the 

function of A, f(A) = (1-A)r(t1) + Ar(t 2) is decreasing and, for sufficiently large A > 1, it is 

negative. For sufficiently large A we then have 

which contradicts the fact that r( ·) is nonnegative on [O,oo) and establishes part i). 

To prove part ii) write, for 0 < t 1 < t 2, t 1 = ( 1 - ~~ ) X 0 + ( ~~) X t 2. By the 

concavity of r( ·) we have 
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where the second inequality follows from the fact that r(O) > 0. Thus r(t 1)/t1 ~ r(t 2)/t 2 for 

t 1 < t 2 , establishing part ii). D 

Therefore, the two original minimax conditions are tied together through the property 

of concavity. The converse of Lemma 1 is false, so there can exist minimax estimators 

satisfying i) and ii) with nonconcave r(t). However, most familiar estimators do, in fact, 

have concave r(t). 

Although the characterization in Lemma 1 may seem new, similar results are well 

known. For example, Barlow and Proschan (1975) define a function g(t) on [O,oo) to be star-

shaped if g(t)/t is increasing. They then give an exercise to show that convex functions on 

[O,oo) are star-shaped, which is quite close to the result of Lemma 1. 

2. A Chi-Squared Expectation Identity. In the following, let Xp denote a noncentral 

chi-squared random variable with p degrees of freedom and noncentrality parameter IBI 2 /2. 

The value of B is indicated by the subscript on the expectation operator. 

LEMMA 2: Let h:[O,oo) --+ (-oo,oo) be differentiable. Then, provided both sides exist, 

PROOF. The lemma is established by equating the results of the well-known 

integration-by-parts technique with the results of some lesser-known identities for 

expectations of noncentral chi-squared random variables. We will proceed by evaluating the 

risk of the estimator b(X) = ( 1 - [h(IXI 2 )/IXI 2] )x, where X ,...., Np(B,I). The usual 

integration-by-parts yields 

E8iB- b(XW = p- 4E8h'(IXI 2 ) + Eo{hi~r) [h(IXI 2)- 2(p- 2)]}. (1) 

We can also write 

E8iB- tS(X)I 2 = E8lco- X)+ (x-tS(x))l2 

= p + 2E8{ (B- X) 1Xh(IXI 2 )/IXI 2} + E8{ h2(IXI 2 )/IXI 2 } • (2) 
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We now employ the following identities, which can be found either in Bock (1975) or Casella 

(1980). If h:[O,oo) --+ (-oo,oo), then provided the expectations exist, 

Ee{ Xh(IXI 2)} = BEe{ h( x~+2)} , 

IBI 2Ee{ h( x~+2)!x~+2} = Ee{ h( x~_2)}- (p-2)E8{ h( x~ )!x~} , 

81~ 1 2 E8{h(x~)} = ~{Eeh(x~+2)- E8h(x~)}. 
Now, using (3) and (4) on the first expectation in (2), and rearranging terms, we obtain 

(3) 

(4) 

(5) 

(6) 

We note in passing that, using the fact that the noncentral chi-squared distribution has 

monotone likelihood ratio in its degrees of freedom, equation (6) provides an immediate proof 

of the minimaxity of 8(X) provided h( ·) is nondecreasing and 0 :::; h :::; 2(p-2). 

Now, equating (1) and (6), cancelling common terms, and using (5) establishes 

proving the lemma. 0 

3. Nondecreasing Risk Functions. Stein-type estimators of a multivariate normal 

mean pull the maximum likelihood estimator, X, toward a particular point (which, without 

loss of generality, can be taken to be zero). This selected point should be interpreted as an 

experimenter's best (prior) guess at the true mean, and will locate the portion of the 

parameter space in which the greatest risk improvement will be attained. It should be 

expected then, that given X is close to the prior guess, there should be good risk 

improvement in that portion of the parameter space. Work of Berger (1982) addresses the 

question of how to best take advantage of this fact. The following theorem characterizes a 

class of minimax estimators whose minimum risk is at IBI = 0. 



-5-

TH EO REM 1: Let 8(X) = (1 - r(JXJ 2 )/JXJ 2)X, where r:{O,oo) --+ [O,oo) is concave. If 0 

~ r(t) ~ 2(p-2) then R(B,8) is a nondecreasing function of JBJ. 

PROOF. Assume, for the moment, that r is twice differentiable. Using (1) we have 

(7) 

The concavity of r, together with Lemma 1, insure that the function inside the second 

expectation in (7) is nondecreasing in JXJ 2 , hence the expectation is nondecreasing in JBJ 2 • 

Thus, we only need establish the E 11 r1(JXJ 2 ) is nonincreasing in JBJ 2 • Using Lemma 2, we have 

" 

by the fact that r is concave. Thus, the theorem is established if r is twice-differentiable. If r 

is not twice-differentiable, we can take a sequence { rn} of twice-differentiable concave 

functions which uniformly approach r. By carrying out the above calculations, and passing to 

the limit, the theorem is readily established. 0 

From Lemma 1, it also follows that 8(X) of Theorem 1 is minimax. This can be seen 

from expression (7). The properties of r(JXJ 2 ) insure that the first expectation is positive and 

the second is negative. 

Although the concavity condition on r seems rather strong, most familiar estimators 

satisfy the condition. These include not only the ordinary and postive-part James-Stein 

estimators, but also the proper Bayes minimax estimators of Strawderman (1971). We also 

note that Theorem 1 generalizes a result of Efron and Morris (1973), who show that the risk 

function of the ordinary James-Stein estimator is non decreasing in J B J. 

Acknowledgement. I would like to thank Roger Berger for pointing out the existence 

of Lemma 1. 
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