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ABSTRACT.

In this paper we explore the computational complexity
measure defined by running times of programs on random access
stored program machines, RASP's. The purpose of this work is
to study more realistic complexity measures and to provide a
setting and some techniques to explore different computer
organizations. The more interesting results of this paper
are obtained by an argument about the size of the computed
functions. For example, we show (without using diagonalization)
that there exist arbitrarily complex functions with optimal
RASP programs whose running time cannot be improved by any
multiplicative constant. We show, furthermore, that these
optimal programs cannot be fixed procedures and determine the
difference in computation speed between fixed procedures
and seif-modifying programs. The same technique is used to
compare computation speed of machines with and without built
in multiplicatipn. We conclude the paper with a look at machines

1

with associative memory and distributed logic machines.



INTRODUCTION.

The purpose of this paper is to study the quantitative
problems about computation speed of random access stored pro-
gram machines, called RASP's. These abstract machines were
defined [1,2] to provide theoretical models which look more
like real computers and which reflect some aspects of real
computing more directly than previously studied Turing machines.

In the following section we give an informal‘definition of
random access stored program machines and derive some elemen-
tary results about the computational complexity measure based
on the number of operations used by RASP's. Next, by a new
technique involving the size of the computed functions, we
study the problem of how well we can define and approach the
best possible computation time with RASP programs. It is
shown that there exist arbitrarily complex computations for
which we can write programs whose compdtation time cannot be

improved by any factor. That is, there exist functions fi(n)
which can be computed in time Ti(n) but cannot be computed in
time (1 - e)Ti(n) for any € > 0 . This result contrasts

sharply the corresponding results for time-limited, tape-
limifed or reversal-limited Turing machine computations [3,4;
5,6] all of which can be improved by a constant factor. It
is also interesting to observe that this result is obtained

without using a diagonal argument which up until now was the

only technique to prove results of this type. Clearly, some



i

results about computation speeds have been obtaiped previously
by counting arguments but they did not extend to arbitrarily
complex computations [7,8].

Further analysis of the above result reveals that these
optimal programs cannot be fixed procedures in that they must
modify themselves and grow in length. This proves that for
infinitély many computations fixed procedures are slower than
self-modifying programs. Furthermore, it is showﬁ that self-

modification can at best speed-up the computation time by a

constant factor and that for infinitely many, arbitrarily complex

computations they are faster by a factor which depends on the
size of the fixed program. Next, we compare RASP's with and
without built in multiplication and prove that the RASP's

with multiplication are faster and give an upper bound for the
maximal speed difference. It is interesting to note that the
above mentioned results are much sharper than any results we
have been able to obtain for Turing machine computations.

For example, it is still not known whether million-tape Turing
machines are faster than one-tape Turing machines for compli-
cated computations [9]. We only know that for real-time com-
Putations two tapes are better than one tape [7,8]. Similarly
we do not know whethe; non-deterministic Turing machines are
faster thah deterministic machines nor do we know that Turing
machines with jump operations or nultidimensional tapes have
any speed advantage over regular, one-tape machines for arbi-

trarily complex computations.



We conclude the paper by showing that RASP's with associa-
tive memories can at best improve the computation speed by the

square root and raise some questions about distributed logic

mac hines.



RANDOM ACCESS STORED PROCGRAY MACHINES

In this se;tion we describe.a random access stored program
machine model, RASP, and derive some results about computation
times on RASP's. We are giving only an iﬁfofmal description
of éur model to avoid making a rather simple topic look more

conpliqated.

A random access stored program machine, abbreviated RASP,

consists of a memory M and a finite set of instructions I ,

RASP = <M,I> .

The memory M of the RASP consists of two special registers,

called Accumulator, AC , and Instruction Counter, IC , and

an infinite sequence of memory registers:
Rl ’ Rz ) R3 > ¢« o e

each register is capable of holding an arbitrary, finite length
binary string. The content of the registers will be denoted
by <AC> , <IC> , and <Rn> or <n> , respectively.

The non-empty, finite set of instructions can contain the

three types of instructions:

operations,

conditional transfers,

store instructions,

and must contain a HALT instruction.



A. The operations are denoted by

where Fi in the first cazse is a (name of a) one-variable

recursive function and the effect of executing Fi is to

replace the content of AC by Fi[<AC>] . In the three re-
maining cases Fi denotes a two-variable recursive function

and the effect of executing Fi,n s F,,<n> and F

1° i,<<n>> is

to replace the content of AC by
Fi[<AC>,n] ’ Fi[<AC>,<n>]

and ' -
Fi[<AC>,<<n>>J = Fi[<Ac>,<R<n>>] .

respectively. The execution of an operation also replaces

<IC> by <IC> + 1 .

B. The conditional transfers are denoted by

Pi,n and Pi,<n>

where Pi is (the name of) a recursive predicate. The execu-

tion of Pi,n and Pi,<n> transfers the control to Rn and

R<n> , respectively, if

Pi[<AC>] =1,
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otherwise it transfers control to the next instruction. Fo

(8]

the sake of convenience, we will later also use two variable

recursive predicates

Pi,m,n or Pi,<m>,<n>

which will transfer control to Rn and R<n> » Tespectively,

provided

Pi[<AC>,m] =1 or Pi[<AC>,<m>] =1,

otherwise the control is transfered to the next instruction.

C. The store instructions are denoted by

STO,n or STO,<n>

. -

The execution of STO,n <copies the contents of AC into the
register Rn and the execution of STO,<n> copies the con-
tents of AC 1into the register R<n> (where the binary string
stored in Rn is interpreted as an integer). The execution
of the store instruction also replaced <IC> by <IC> + 1 .
There is also a special instruction denoted by HALT .
When the control is éransfered to this instruction no further
instructions are executed (since <IC> 1is not changed).
Without loss of generality te assume that the integers
have the standard binary encoding: o, 1, 10, 11 , 100 , ..
The instructions are represented by sequences starting with
say, a double zero and with indications whether they operate
on addresses or indirect addresses and proper delineation .of

where the data part starts (i.e. n or <n> ).



A program consists of 2 finite sequence of instructions
and data (binary strings not representing instructions) stored
in the memory. We also assume that at the start of the compu-
tation <IC> = 1 .

The input to the machine is the integer placed in AC ia;
the s;art of the computation and the_resul; is the integer in
AC after the computation reaches a HALT 4instruction.

The program is executed by executing the inétructions in
the order indicated by the instruction counter starting with
<IC> = 1 wuntil the machine reaches a HALT instruction,
that is <<IC>> = HALT .

The machine jams if some undefined situation is entered
and we do not consider this as yielding a result.-

From the description of RASP's we can easily describe their

computational power.

Lemma: Any function computed by a RASP program is a partial
recursive function and there exists a RASP on which we can

compute all partial recursive functions.
=

Proof: Any RASP computation can be simulated on a Turing
machine and therefore they compute only partial recursive func-
tions. Since there exist RASP's which can be progrémmed to
simulate ény Turing machine we see that there-exist universal

RASP's.

We say that a RASP program is a fixed program if the instruc-

tions of the program are not changed during the execution



for any input and if only the instructions of the original
program are executed. |

Thus the program may write another program during the
computation but it is a fixed program as long as it.did not
alter its original instructions or execute any of the instruc-
tions in the program it wrote,

It should be noted that it is recursively undecidable
whether a given program for a universal RASP is fixed. At

the same time one can easily prove the next result.

Lemma: There exist universal RASP's which have recursive sets

of fixed programs to compute all partial recursive functions.

In this paper we are only interested in universal RASP's
and we can see that it is easy to specify small sets of instruc-
tions which are sufficient to obtain universality in RASP's.

At the same time we are not primarily interested in the "small

universal” RASP's and we will not dwell on the minimal number

of instructions needed for universality.

We observe though that any universal RASP can be used to
define a computational complexity measure [10] if the step-

counting function Ti(n) associated with the 1i-th program
Pi is given b§ the number of operations performed by the RASP
on program Pi before halting on input n . If the machine

does not halt or jams then Ti(n) is undefined. .
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Lemma: The number of instructions executed by a universal

RASP before halting defines a computational complexity measure.

Proof: We observe that since our RASP is universal we have a

list of algorithms (programs) Pl ,AP2 ,AP3 s +«. to compute

all partial recursive functions. Furthermore, the step-counting

function Ti(n) associated with program P is defined if

i

and only if the program Pi is defined (halts) on input n

and we can test recursively whether Ti(n) <k for all k

Thus we have a computational complexity measure as defined

in [10].

It should be observed that there exist universal RASP's
which use onl& a finite number of registers and therefore the
number of registers used by a universal RASP does not always
define a computational complexity measure.

On the other hand, the number of conditional statements

executed by any universal RASP before halting does define a
cbmputatio;;l complexity measure which deserves further inves-
tigation and is not studied in this paper.

The above lemma immediately implies that the computational
complexity measures defined by the running times of-universal
RASP's saéisfy the many’results proven for abstract complexity
measures [lO,ll,le. On the other hand, these general results

give no specific information about RASP computations nor do

they give any relations between the computation speeds of



- 11 -

different RASP's, nor their relation to running speeds on octher

types of machines.

Thus our next task will be to study the

computation times of specific RASP's and the relations between

computation times of different RASP's.

To give more concreteness to our proofs, which will be

generalized later, we now define a specific RASP, denoted by.

RASP1. The machine has the following instructions:

NAME

TRA,n
TRA,<n>

TRZ,n
TRZ ,<n>

STO,n
STO,<n>

CLA,n
CLA,<n>

CLA,<<n>>

ADD,n
ADD,<n>
ADD,<<n>>

SUB,n
SUB,<n>

SUB,<<n>>

HALT

MEANING

transfer control to register Rn and
R<n> , respectively, i.e. <IC> = n

and <IC> = <n> , respectively.

if <AC> = 0 , transfer control to
register Rn and R<n>, respectively,

otherwise continue to next instruction.

Store <AC> in Ran and R<n> , respec-
tively (the content of AC 1is not
altered).

n , <n> , and <<n>> , respectively,
is stored in AC (the content Rn

and R<n> 1is not altered).
~—

<AC> 1is replaced by <AC> + n
<AC> + <Rn> and <AC> + <R<n>>

’

respectively.

<AC> 1is replaced by <AC> = n ,
<AC> = <Rr> and <AC> = <R<n>> y res-

pectively.

No further instructions are executed.
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SIZE ARGUMENTS IN RASP COMPUTATIONS.

A general problem for specific complexity measures it to
determine how sharply we can bcund the computation time of
functions in this measure. In this section we use an
argument about the size of the computed functions to shHow that
for RASP1l and many other RASP's we can bound the computation
times very sharply indeed. As a matter of fact, we show
that for any € > 0 there exist arbitrarily complex functions

fi which can be computed by fixed RASPl programs in time

Ti(n) but cannot be computed by any RASP1l program in tinme
(1 - e)Ti(n) .

Fof programs which can modify themselves (and grow) during
the computation, we obtain even a sharper result. We show that
there exist arbitrarily difficult funcfions which can be
computed in time T(n) by a self-modifying RASPl program but
cannot be computed by a RASP1l program in time (1 - &)T(n)
for any € > 0 .

This result is then furthermore used to show that self-
modifying programs are inherently faster than fixed programs.
it is interesting to note that these results show that RASP
computation times behave quite differently from Turing machine
computatién times which always have a constant speed-up for

complex computations [3].
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The basic idea in the procf that RASPI programs cannot
be speed-up by any constant factor is that we have operaticns
which increase the size of the coatents of AC by more than
any other operations. Thus we just observe that repeating these
operations increases the value of the computed function faster
than any other sequence of operations and that this sequence
of operations cannot be substantially shortened.

We first observe that for any k in 2k operations on

RASPl we can compute the function

F(n) = n2k

by the following program with 2 > 2k + 1
STO,%2 -
ADD,<2>
STO,%
ADD,<2>
STO, 2
ADD, <>

STO, %
ADD,<2>
HALT ,
where the first pair of operations is repeated k times.
This program can be slightly modified but a simple proof
by induction shows that the number of operations cannot be
decreésed, for sufficiently large values of n . Thus we

obtain the following result.
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Lezma: The computation of the function

F(n) = n2k

on RASPl requires at least 2k operations for large values

of n .

We now use this result to show that RASP1l programs cannot

be sped-up.

Lemma: For any € > 0 there exists a fixed RASP1 program with
running time T(n) such that no other program can compute the

same function in time (1 - €)T(n)
Proof: Consider the following program which computes

F(n) = n2kn+l -
R1 STO,2k + 11
R2 STO,2k + 10
R3 ADD,<2k + 10>
STO,2k + 10
A?D,<2k + 10>

?

STO,2k + 10

R(2k+1) ADD,<2k + 10>
STO,<2k + 10> e
CLA,<2k + 11>
TRZ,<2k + 9>
SUB,1
STO,<2k + 11>
CLA,<2k + 10>
TRA, 3

R(2k+9) HALT
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For n > 1 the running time T(n) of this program satis-

fies the inequality,
T(n) < (2k + 9){n + 1) .

On the other hand, be a previous lemma, we know that this
function cannot be computed by any program with running time

t(n) such that

t(n) < 2kn .

If we choose the integer k such that k >

™ |-

+ Then obviously

for large values of n
(L - e)T(n) < (1 - €)(2k + 9)(n + 1) < 2kn
Thus

(L - €)T(n) < 2kn ,

which shows that the computation time (1 - €)T(n) is not
sufficient to compute the desired function by any RASP1l program.
Next we show how our result can be generalized to arbi-

trarily complex computations.

Theorem: For any € > 0 there exist arbitrarily complex

functions fi which can be computed in time Ti(n) by fixed

RASP1 programs but cannot be computed by any RASP1 program

in time (1 - E)Ti(n)
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Proof: We know that there exist arbitrarily complex functions
-gi(n) which can be computed in g€(n) operations. Our desired

program will compute

kgi(n)
fi(n) = n2 .

for a.properly choosen k which depends on the given € .

The program will first compute gi(n) and then cycle gi(ﬁ)

times, through 2k instructions of doubling k times the

content of the accumulator. Since gi(n) can be computed in

gi(n) operations we see that the computation time Ti(n) of

kg . (n)
fi(n) = n2 *

satisfies
Ti(n) < (2k + lO)gi(n) .

Since gi(n) operations suffice to compute gi(n) and nine
operations on each cycle suffice to decrement gi(n) by one
each time. Recalling that the computation of fi(n) requires

at least -2kgi(n) operations and choosing Lk > 1 we see that

€ ’

for large n

(1 - e)T,(n) < (1 - e)(2kx + lO)gi(n) < Zkgi(n)
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Thus 'fi(n) cannot be computed in (1 - E)Ti(n) operations,

as was to be shown.

It is interesting to observe that the previously used
size arguments can also be applied to computational complexity
measures based on RASP (or RAM) operations which are weighted
by the size of the arguments or the size of the result. Such
measures have been defined and studied by S.A. Cook and we can
show that for many weighting functions these measures also have

no speed-up [2].
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SELF-MODIFYING RASP PROGRAMS

Next we show that for self-modifying programs we can.get
even sharper time bounds. Note that for any € > 0 we exhi-
bited infipite;y-many fixed RASP programs yhose computation
time cannot be speeded-up by the factor (1 - €) . For self-
modifying programs we will show that the € does not have to
be given, in that there exist infinitely many programs whose
running time cannot be improved by the factor (1 - ¢€) for
any € > 0 .

The basic idea of the proof is very simple. With increa-
sing n our program will write new prograns with longer and

longer runs of

STO, 2 .-
ADD,<2>

instructions and thus have relatively fewer conditional state-
ments. From this we will be able to show that the running-
times of these programs approach with increasing n the order
of the optimal time and therefore they cannot be speeded-up

by agf constant factor. After that we show that self-modifi-
cation is essential for this result. |

We start with an illustrative example. Consider the

function

f(n) = n 2



We know

than 2n2
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that any program computing £f(n) cannot use less

the following RASP1l program P for f :

a)

b)

We

to take

for input n P writes in successive memory registers

n times the pair of instructions

STO, 2
ADD,<2>

and the necessary control statements to store n
and decrement that register by 1 each time it
cycles through the STO-ADD sequence.

After that P initiates the execution of this new

progran.

see that the writing of the new program does not have

more than c¢n operations for n > 1 . The execution

of the new program requires no more than

Thus

and for

(2n + 20)n - operations.

T(n) iZn2 + 20n + cn

any € > 0 and sufficiently large n

(1 - e)T(n) < 2n2 .

operations for large n . On the other hand, consider
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showing that this computation canrnot be speeded-up by any

constant factor. We summarize our conclusion.
Lemnma: There exists a RASP1l progran for the computation of

f(n) = n2
.with running time T(n) and no RASPl program can compute £

in time (1 - €)T(n) for any € > 0 .

Just as in the previous section we can extend this result

to arbitrarily complex functions.

Theorem: There exist arbitrarily complex functions fi(n)

which can be computed in time Ti(n) on RASP1l but cannot be

computed in time (1 - E)Ti(n) for any € > 0

Proof: The previous proof goes through if we replace in the

new program the n STO-ADD instructions by gi(n) STO-ADD

jnstrictions, where g_.(n) can be computed in g.(n) opera-
i i

tions. Then the program computes

; ' Si(n) | -
| fi(n) =n * 2

in time

T, (n) < (25,() + ©)gy(a)
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and we see that this time cannot be speeced-up by a factor

(L -€) for € >0.

The next result shows that there exist computations for

which self-modifying programs are faster than fixed programs.

Theorem: There exist arbitrarily complex functions fi(n)
with self-modifyiﬁg programs running in time Ti(n) such

that any fixed program for fi of length & cannot run faster

1
than (1 + 22')Ti(n) for large n.
Proof: Consider the functions

2
si(n)
n °* 2

£,(n)
of the previous proof, which we know to have running times

Ti(n) < (2g,(n) + c)g, (n)

Let P be any fixed program of length 2 for fi(n) . Then

this program must execute at least one conditional statement

every & operations. Furthermore, to compute fi(n) the

program must execute at least

287 (n)



operations which are not conditional statements. Thus the
running time of P , T(n) , must be such that

-2

2g ;0]

T(n) > 2g5(n) + —= = 285 () (1 + D)

for large n . Thus we conclude that

(1 +53DT;(0) < (1 + 39 (282(n) +eg (n)) < (1 + D282 ()

and therefore
(1 + —I)T (n) < T(mn)
28771 - ’

for large n . This concludes the proof by showing that the

fixed program is slower by the factor (1 + gz) .

A somewhat more detailed argument allows us to replace

. 1 1
the factor (1 + 2g) by (1 + )

The previous results shows that there exist computations
for which any fixed prog}am can be replaced by another fixed
program which runs faster by a positive factor. Furthermore,
there is a self-modifying program which runs faster than any
fixed program and whose running-time cannot be improved by a
multiplicative factor. Next we look at the problem of deter-
mining how chh computation speed can be gained by going from

fixed to self-modifying programs.



We will show that for RASP's with sufficiently rich
instruction sets we can easily replace self-modifying pregranms
by fixed programs and loose no mo:re than a constant factor in
computing time, where the factor depends only on the instruc-
tion set of tée machine. On the other hand, as it will be seen
from a later discussion, the situation for RASPs with very simple
instruction sets is not well undestood and there are several
open problems. Similarly, we will show that by pérmitting
operations defined on constants (not on contents of registers)
we can define RASP's for which fixed programs are arbitrarily
slower than self-modifying ones.

The main problem in replacing arbitrary programs by fixed
programs is to determine quickly what a self-modifying program
does when it eéxecutes an operation stored in Rn . 1If we can do
this then we can load the data in an approgriate register and
execute the corresponding instruction on this data in our fixed
program. Thus simulating the self-modifying program by the
operations of the fixed p?ogram and storing the results in the
appropriate places of the simulated self-modifying program.

To be able to do this simulation fast we add three new

types of instructions to RASP1:

TFX,n,m , if <AC> has prefix n or <Rn> s trans-
TFX,<n>,<m> fer control to register Rn or <Rm> s
respectively. Otherwise go to next

instruction.



PFX,n the string n o¢r contents of Ra ,
PFX,<n> respectively, are prefixed to <AC>
DFX,n if <AC> has n or <Rn> as prefix,
DFX,<n> respectively, then this prefix is

remnoved from <AC> 3

and we denote a RASPl with these additional instructions by

RASP2.

Theorem: There exists a constant c¢ such that any RASP2
program P with running time T(n) can be replaced by an
equivalent fixed program P' with running time T'(n) satis-

fying the inequality

cT(n) > T'(n)

Proof: We give only an outline of the proof. The basic’

fidea is that we will have a fixed program P' which simulates
the program P .by using onlyA;he fixed operations contained in
P at the start of the computation. The program P' keeps

a copy of the current status of program P and keeps track of
the instruction counter content. To simulate one opération of
P the program P' transfers the contents of the register
containing the next operation of P to the AC . Then, by
using the "prefix" instructions it determines what instruction
it is and.separates the data. After that a corresponding
operation in the fixed program ©P' 1is used to execute the

desired operation on this data and the result is stored in the
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cépy of P which P' nmanages. In this manner the fixed
program P' is "driving" a copy of the prograr P and com-
puting the same function as P . Since we have the "prefix"
operations, we can simulate one operation of P in a fixed
number of P' operations. This sho%s that the program P'

requires only constant times more operations than P . Thus

for a fixed ¢ > 0
¢ ¢ T(n) > T'(n)
Combining our previous results we get the following.

Corollary: For RASP2 there exist infinitely many arbitrarily
complex functions for which the computation time of any

fixed program can be improved by some positive factor and

for which we have self-modifying programs whose run-tines
cannot be improved by any factor. Furthermore, there exists
a constant factor which limits how much faster self-modifying

programs can be than fixed ones.

Another gencralization is also icmediate.

Theorem: For any RASP which contains all the instructions of
RASP2 and contains no operations defined only on constants,
there exists a constant factor which limits how much faster

self-modifying programs can run than fixed ones.

Next we observe that if a RASP has sonme operations which

defined only on constants, then the difference in computaticn

are

time
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between fixed programs and self-modifying programs can be
arbitrarily large. We prove a special case which can easily

be generalized.

Let RASP3 be the RASP obtained from RASPl by deleting

the instructions
ADD,<n> and ADD,<<n>>
and adjoining the instruction
PFX,xo
where X, 1s the part of the code for the ADDyc instruction
which comes before ¢ . Thus the execution of

PFX,x ' i
o
replaces

<AC> = m by ADD,m .

Opserve that RASP3 is a universal computer. At the same time
any fixed RASP3 program has a maximal constant which it can add
to the accumulator. Thus any fixed RASP3 program can at best
grow linearly with thg number of operations.

On the other hand self-modifying programs can grow faster.

Consider the program

R1 STO,7
R2  PFX,x
(o]
R3  STO,S
R&4 CLA,7

R5
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which copies input in R7 , then changes <AC> = n to ADD,n

ve

stores it in R5 ; places n in AC and executes ADD,n ;
.thus doutling the input. By building this program in to a
larger program we can realize a function which grows exponen-

tially with the number of operations. Thus we have shown the

following result.

Lemma: There exist a function whose computation by any fixed
RASP3 program requires exponentially more oparations than a

self-modifying RASP3 program.

Clearly we can generalize this result to obtain arbitrarily
large gaps between the running times of fixed programs and self-
modifying programs as long as we are permitted to use RAS?
instructions defined only for constants. It should be realized
that this in essence permits the self-modifying progran to generate
new and more powerful instructions and thus can be considered

as a pathology.

Theorem: Let g be an increasing, unbounded, recursive func-
tion. Then there exists a RASP and a set of arbitrarily complex

functions fi with self-modifying programs Pi running in

time T such that any fixed program P

N for £ must run

'
i i

in time Ti satisfying the condition

g(T;(n)) < T!(n)

for sufficiently large n
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We conclude this section by stating several open prcblens:

1. Can we show that for RASP1 there exist arbitrarily
coﬁplex zero-one functions whose cocmputation time
cannot be speeded-up by any factor?

2. Can we show that for any universal RASP there exist
arbitrarily complex functions whose computation time
cannot be speeded-up by any factor? Can we prove
this for zero-one functions?

3. Can we show that for any universal RASP there exists
2 recursive set of fixed programs which computes all

partial recursive functions?



COMPARISON OF RASP'S AND OTHER MODELS.

In the study of Turing machine running times we have been
rather unsuccessful in proving the advantages of additional
tapes, multidimensional tapes, jump instructions, etc.

The situation is quite different for RASP's and we illus-
trate it by showing that RASPl computations are slower than

those performéd on RASPl with the additional instructions

MLT,n
MLT,<n>

whose execution replaces

<AC> by <AC> * n and <AC> + <n>

X
respectively. We designate these machines as RASP1

Theorem: There exist arbitrarily complex functions fi(n)

% )
with RASP1l running times Ti(n) such that any RASPl program
for fi(n) with running time Ti(n) must satisfy for large

n the condition
\
Ti(n)
2 logzn < 2T£(n) .

Proof: We observe that with MLT< > operation we can write

programs which in 2k operations reach size

ok

f(n) = n
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Since a RASPl can at best compute in 2r <cperations a func-

tion of size

g(n) = n2° ,

we see that to compute the same function on a RASPl r nust

satisfy

Thus
k
r > (27 - l)logzn .

This can be generalized to arbitrarily complex functions for

which we easily obtain that

Ti(q)
T;(n) > 2 logzn ,

as was to be shown.

Similarly we can show the differences in computations
between ﬁany other RASP models, where we utilize the dif-
ferent abilities to build large functioms. It turms out that
the differences in ability to decrease a register cén also be
utilized to show differences in computation speeds. Unfortunately
we have not been able to extend the last technique to arbitrarily

large functions. Thus we have not shown that a machine, with
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the only subtraction operation SUB,l1 , which replaces <AC>
by <AC> =2 1 , is slower for arbittarily complex functions than

the same machine with the instruction
SUB,<n>

added. Cleariy, we can find simple computations for which the
second ﬁachine‘is faster. The question remaining open is what
happens for a;bitrarily c§mplex computations.

Another intgresting open problem is to determine'whether
there exist arbitrarily complex functions in whose computations
we can gain no advantage in speed going from RASP1l to RASPlx
programs. |

A considerebly different extention of RASP's can be ob-

tained by adding associative or content addressed instructions.

We illustrate this by listing a few associative operations

which are convenient in many computations.

.

ASS,n content of AC 1is replaced by content
ASS,<n> of the first register containing n

and <n> , respectively, as prefix.

AST,n gstores <AC> in the first register
AST,<n> which has n and <n> , respectively,

as prefix. .

These operations permit the location of desired information
without keeping track of its address and one can think of many
applications where these operations should speed up the compu-

tations. Unfortunately, we have not been able to show for



arbitrarily complex computations that we can gain a speed
advantage from these associative operations.

What we can show is that for.RASP's with sufficiently rich
instruction sets the addition of the associative operations
can improve the computation speed by no more than the square
root.

To make'these concepts more precise let a RASP2 with the
four additional associati&e operations ASS,n , ASS,<n> R

AST,n , AST,<n> , be denoted by RASP2A.

Theorem: There exists a constant ¢ such that any RASP2A

program running in time Ti(n) can be simulatad on a RASP2

in time Ti(n) with

CITi(n)]Z > Ti(n)
for sufficiently large Ti(n) .

Proof: We outline the basic idea of the proof. The menory
registers of RASP2 are divided in twenty register blocks.

The instructiﬁﬁs of any associative program are placed in

the odd-numbered memory blocks with the appropriate control
statements which change the addresses and transfer control

to the bléck containing the next instruction. The even numbered

blocks are used to store the addresses of the registers which

the associative program has used. Then, when an associative
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operation ig encountered a subroutine is entered which, using
the list of "used" memory registers, searches through these
registers until the desired regiscter is found and executes
the prescribed operation.

We observe that the list of "used" registers can grow only
at the rate of one register per operatiop of the RASP2A program.
Though these registers can be splattered through the memory,
we can search through them in c¢(k + %) operations if the
associative program has length 2 and has perfiormed k
operations. Thus for an associative memory which runs for

Ti(n) operations our simulation does not require more than

Ti(n)

Ti(n) < le clp + 4) = 3 T, () [T, (n) + 1] + c2T (n)

operations. For increasing Ti(n) and large n we see

that
T'(n) < ¢T2(n)
g48) STy ’

as was to be shown.

There are two other RASP extensions whose computation
speeds should be investigated and compared to regular and

associative RASP's.
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The first extention is a 1list-RASP which has the ability
in a single operaticn to create lists, prefix one list to
another, insert a list in another list, delete part of a list,
etc. We know little about the capabilities of these machines
and have not been able to prove that 1ist-RASP's are faster
than conventional RASP's for arbitrarily complex computations.

The second extention is to distributed-logic RASP's.

These machines have operations which apply simulfaneously

to all memory locations. For example, shift every word to the
next memory location, if a condition P is satisfied by the
content of a register then add it to its predecessor, double
the size of the registers satisfying condition P » etc.

Again it would be interesting to-investigate the computational

speed of such devices and compare it to the previous models.
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