SINGLE DEGREE CF FREEDOM SUMS OF SQUARES FOR TESTING
DIE FIT TO A LINEAR MODEL

> I. S. Robson

Biometrics Unit, Cornell University, Ithaca, N. Y.

ABSTRACT

An ad hoc but exact test of fit to a linear model $E\left(Y_{1} \mid X\right)$ $=X_{1} \beta$ which is designed to have power against alternatives of the form $H_{p}: E\left(Y_{1} \mid X\right)=\left(X_{1} \beta_{p}\right)^{D}$ may be constructed by solving the nonlinear moment equations $X^{\prime} Y=X^{\prime}\left(X \tilde{\beta}_{p}\right)^{p}$ and testing the significance of the correlation between $e=Y-X \tilde{\beta}_{1}$ and $\tilde{e}_{p}=\left(X \tilde{\beta}_{p}\right)^{p}$ - X $\tilde{\beta}_{\mathcal{I}}$. Under the hypothesis of the linear model with $\operatorname{NIID}\left(0, \sigma^{2}\right)$ errors the test statistic $\tilde{t}_{p}^{2}=(n-r-1) r_{e \widetilde{e}_{p}}^{2} /\left(1-r_{e}^{2} \tilde{e}_{p}\right)$ is $F-$ distributed, and is a test of H_{p} in the sense that $t_{p}^{2}=\infty$ when $Y_{1}=\left(X_{1} \beta\right)^{D}$ for all i . A more robust test not requiring the specification of p is obtained by computing $\tilde{t}_{\infty}^{2}=\underset{p \rightarrow \pm \infty}{\lim } \tilde{t}_{p}^{2}$, which
reduces to Tukey's test for nonadditivity in the case where $X \beta$ is the additive model for a two-way classification with one observation per cell. Greater robustness appears to be obtainable by combining \tilde{t}_{∞}^{2} with $\tilde{t}_{I}^{*}=\lim _{p \rightarrow 1} \tilde{Z}_{p}^{2}$ in the form of a test of significance of the multiple correlation coefficient $R_{e}^{2} \cdot \tilde{e}_{\infty}^{*}{ }_{1}^{*}$.

INITRODUCTION

We consider here an ad hoc but exact test of fit to the linear model.

$$
H_{H}: Y=X B+\varepsilon, \quad \in \sim \mathbb{N}\left(0, I \sigma^{2}\right)
$$

against the alternative that some power transform of Y is linear in X. In particular, if the alternative is expressed in the form $E\left(Y_{g} \mid X\right)=\left(X_{j} p\right.$ then for any specified p we may estimate β_{p} by solving the nonlinear moment equations $X^{\prime} Y=X^{\prime}\left(X \tilde{\beta}_{p}\right)^{p}$, where $\tilde{\beta}_{I}=\hat{\beta}$ is the linear least squares estimator. If $\hat{Y}=X \hat{\beta}$ and $e=Y-X \hat{\beta}$ then e is statistically independent of $X^{\prime} Y$ and \hat{Y} under H_{I}, so letting $\tilde{Y}^{p}\left(\left.\tilde{X}_{p}\right|^{p}\right.$ and $\tilde{e}_{p}=\tilde{Y}^{(p)}-\hat{Y}$ then \tilde{e}_{p} is statistically independent of e. For a fixed value of \tilde{e}_{p} the linear function $\tilde{e}_{p}^{\prime} e$ is therefore normally distributed with mean zero, and since $X^{\prime} \tilde{e}_{p}=0$ the conditional variance of $\tilde{e}_{p}^{\prime} e$ is simply $\tilde{e}_{p}^{\prime} \tilde{e}_{p} \sigma^{2}$. The single d.f. sum of squares

$$
\tilde{S}_{p}^{2}=\frac{\left(\tilde{e}_{p}^{\prime} e\right)^{2}}{\tilde{e}_{p}^{\prime} \tilde{e}_{p}}=e^{\prime} e^{2} \tilde{e}_{p}^{2} e
$$

due to the regression of e on \tilde{e}_{p} is therefore H_{-}-distributed as $\sigma^{2 \times 2}{ }_{i}^{2}$ as, and the test statistic

$$
\tilde{t}_{p}^{2}=\frac{(n-r-1) \tilde{S}_{p}^{2}}{e^{\prime} e-\tilde{S}_{p}^{2}}=\frac{(n-r-1) r_{\tilde{e}_{p}}^{2} e}{1-r_{\tilde{e}_{p}^{2}}^{2} e}
$$

has the F-distribution on I and $n-r-1$ d.f. when Y is $n X I$ and X is $n \times k$ with rank $r \leq k<n$. This does provide a test against the alternative hypothesis $E(Y \mid X)=\left(X \beta_{p}\right)^{p}$ in the sense that if $Y=\left(X \beta_{p}\right)^{p}$ then $\tilde{S}_{p}^{2}=e^{\prime} e$, or $\tilde{t}_{p}^{2}=\infty$.

Implementation of this procedure would require specification of p; for example, the choice $p=2$ would test whether the square root transform of Y improves the fit to a linear model in X. In practice, however, the choice of p is likely to be arbitrary, and this raises the question of how sensitive the test is to the choice
of p. If \tilde{S}_{p}^{2} is a slowly charging function of p then some degree of arbitrariness in choosing p will not greatly effect the power of the test, and if $\tilde{S}_{\tilde{p}}^{2}$ is extromely robust then a limiting value of \tilde{S}_{p}^{2} will serve almost as well as any other. With this possibility in mind we note that if the limiting form of \tilde{e}_{p},

$$
\lim _{p \rightarrow-\infty} \tilde{e}_{y}=\lim _{p \rightarrow \infty} \tilde{e}_{x}=\tilde{e}_{\infty}=\tilde{Y}^{(\infty)}-\underline{\hat{Y}},
$$

exists then $\tilde{\mathrm{Y}}^{(\infty)}$ must have the form

$$
\tilde{Y}_{1}^{(\alpha)}=\tilde{\mathbb{B}}_{1}^{X_{1}} \tilde{\mathbb{B}}_{2}^{X_{2} 1} \ldots \tilde{B}_{k}^{X_{k 1}}
$$

where $\tilde{B}_{\mathcal{I}}, \cdots, \tilde{B}_{k}$ is a solution to the equations

$$
\sum_{j=1}^{n} X_{i j} Y_{j}=\sum_{j=1}^{n} X_{1}, \tilde{B}_{1} X_{i j} \ldots \tilde{B}_{k}^{X_{k j}}, \quad i=1, \cdots, k
$$

when such a solution exists. Thus, with \tilde{e}_{∞} defined in this manner and

$$
r_{e_{\infty}}^{2} \tilde{e}_{\infty}=\frac{\left(e^{\prime} \tilde{e}_{\infty}\right)^{2}}{\left(e^{\prime} e\right)\left(\tilde{e}_{\infty}^{\prime} \tilde{e}_{\infty}\right)}
$$

then when Y is exactly the D^{\prime} th power of $X \beta, Y_{j}=\left(\sum_{i=1}^{k} \beta_{1} X_{1 j}\right)^{p}$, then

$$
i=1
$$

$r_{\text {ee }}^{2} \tilde{e}_{\infty}$ approaches unity as p approaches $\pm \infty$. The test statistic \tilde{t}_{∞}^{2} might thus be expected to be robust in power against alternatives with $E(Y \mid X)=(X \beta)^{p}$, at least when p is large in absolute value.

If such a test could be combined with another which has power against small p-values the resulting test should perform reasonably well against all p. To this end we note that $r_{e \tilde{e}_{p}}^{2}$ is undefined at $\mathrm{p}=1$ but does approach a limit; namely,

$$
\lim _{p \rightarrow 1} r_{e}^{2} \tilde{e}_{p}=r_{e e_{1}}^{2 *}
$$

where

$$
{\underset{Y}{Y}}_{1}^{*}=\hat{Y}_{1} \underset{\underline{E}}{\hat{Y}_{1}} \quad \hat{Y}_{1}=\ddot{Y}^{*}(1)-X_{1}^{*}
$$

with ${ }_{X \beta_{1}}^{*}$ defined by $Y^{\prime *}(1)=X^{\prime *}$, provided that $\hat{Y}_{1}>0$ for $i=1, \ldots, n$. The test statistic

$$
{2}^{}=\frac{(n-r-1) r{i k}^{2} e_{1}}{1-r_{1}^{2} e_{e_{1}}}
$$

should thus have desirable power characteristics for p near unity, and combining this with. t_{∞}^{2} in the form

$$
F_{2, n-r-2}=\frac{(n-r-2) R_{e}^{2} \cdot \tilde{e}_{\infty}^{*} e_{1}^{*}}{2\left(1-R_{e \cdot{\underset{e}{\infty}}_{2}^{*} e_{1}}^{e_{1}}\right)}
$$

should provide the desired robustness. The multiple correlation coefficient $R_{e} \cdot \tilde{e}_{\infty}{ }_{\infty}^{*}$ is defined by

$$
R_{e}^{2} \cdot \tilde{e}_{\infty}^{*} e_{1}^{*}=\frac{r_{\infty}^{2} \tilde{e}_{\infty}+r_{e e_{1}}^{2}-2 r_{\tilde{e}_{\infty}}^{*} r_{1} \tilde{e}_{\infty}^{r} e e_{1}^{*}}{1-r_{\tilde{e}_{\infty}^{2}}^{2} e_{1}^{*}}
$$

where
and the H_{1}-distribution of $\mathrm{F}_{2, \mathrm{n}-\mathrm{r}-2}$ is then Snedecor's F -distribution with the indicated d.f. .

The power of such tests will depend upon the error structure under the alternative hypothesis as well as depending upon the parameters p and β and the design matrix X. Instead of attempting to specify error structure and evaluate power we have made a preliminary investigation of robustness by selecting some design matrices of simple form and then numerically evaluating $r_{e_{e}^{2}}^{2}, r_{\infty}^{2_{n}}$ and $R_{e}^{2} \cdot \tilde{e}_{\infty}^{*}{ }_{1}^{*}$ when Y is exactly equal to the p^{\prime} th power of a specified linear function.

H : Simple Linear Regressior
As a numerical indication of degree of robustness in the case
 when $Y_{X}=(\alpha+\beta X)^{p}$, with $\alpha+\beta X>0$. We considered only the case of sample size $n=f$ with six equally spaced values of the independent variable \because and, without loss of generality, we took these values to be $\mathrm{X}=0,1, c^{\prime}, \cdots, 5$. Also, no generality was lost by taking $\alpha=1$ and $\beta>0$, since with this design matrix and any given pair of parameters α, β saticfying the constraints $\alpha+\beta X>0$ for $\mathrm{X}=0, \mathrm{l}, \cdots, 5$ the followirg three models

$$
\begin{aligned}
& Y_{X}=(\alpha+\beta X)^{p} \\
& Y_{X}=\left(1+\frac{\beta}{\alpha} X\right)^{p} \\
& Y_{x}=\left(1-\frac{\beta}{\alpha+5 \beta} X\right)^{p}
\end{aligned}
$$

produce identical vaiues of the criteria $r_{e_{\infty}^{2}}^{2}, r_{e}^{2} e_{e_{1}}$ and $R_{e}^{2} \cdot \tilde{e}_{\infty}^{*} e_{1}^{*} \cdot$ Thus, the constraint $\alpha+\beta X>0$ for $X=0,1,2, \cdots, 5$ restricts β / α to the interval $-.2<\beta / \alpha<\infty$, and $\beta / \alpha=\theta>0$ is equivalent to $\alpha=1$, $\beta=-\theta /(1+5 \theta)$ with respect to our chosen criteria.

Graphs of $r_{e}^{2} \tilde{e}_{\infty}, r_{e e_{1}}^{2}$ and $R_{e}^{2} \cdot \tilde{e}_{\infty}^{*}{ }_{e}^{*}$ as functions of β and p when $Y_{x}=(l+\beta X)^{p}, \beta>0$, are displayed in Figures 1 - , supplemented by Table I for values of β near zero where these correlations are too near unity to permit graphing. Plotted as a family of functions of p indexed on β, these squared correlations all approach unity as $\beta \rightarrow 0$ from either direction. This and other limit points indicated by the numerical results are readily verified analytically through application of l'Hospitale's rule. Thus, the intersection at $\mathrm{p}=0$ is given by

$$
\lim _{p \rightarrow 0} r_{e e_{\infty}^{2}}^{\tilde{e}_{\infty}}=\lim _{p \rightarrow 0} r_{e^{*}}^{2 e_{3}}=\frac{\left(e_{z \cdot x}^{\prime} e_{\hat{z}^{2} \cdot x}\right)^{2}}{\left(e_{z \cdot x}^{\prime} e_{z \cdot x}\right)\left(e_{\hat{z}^{2} \cdot x^{e}}^{e} \hat{z}^{2} \cdot x\right)}
$$

where $Z_{x}=\log (I+\beta X)$ and $e_{V \cdot x}=V_{x}-\hat{V}_{x}$ with

$$
\hat{V}_{\mathrm{X}}=\overline{\mathrm{V}}+\mathrm{b}_{\mathrm{V} \cdot \mathrm{x}}(\mathrm{X}-\overline{\mathrm{X}})
$$

The finite domain of $r_{e e_{I}}^{2_{i *}}$, which conveys a somewhat synthetic appearance in the graphs, is determined by the constraint

$$
\hat{\mathrm{Y}}_{\mathrm{X}}=\frac{I}{n} \sum_{X=0}^{n}(1+\beta X)^{p}+\frac{X-\bar{X}}{\Sigma(X-\bar{X})^{2}} \sum(x-\bar{X})(I+\beta X)^{p}>0
$$

for $X=0,1,2, \cdots, n$, and can be calculated for any given β. Results suggest that within this range the test statistic

$$
F_{2, n-4}=\frac{(n-4) R_{e}^{2} \cdot \tilde{e}_{\infty}^{*} e_{1}^{*}}{2\left(1-R_{e}^{2} \cdot \tilde{e}_{\infty}^{*}\right)}
$$

might well have very desirable power characteristics. The test statistic

$$
\tilde{t}_{\infty}^{2}=\frac{(n-3) r_{e}^{2} \tilde{e}_{\infty}}{1-r_{e}^{2} \tilde{e}_{\infty}}
$$

which represents a linear regression analogue of Tukey's test for non-additivity, would appear to be extremely robust. As anticipated, the test statistic

$$
\frac{*_{2}}{t_{1}}=\frac{(n-3) r_{e e_{1}}^{2} e_{i *}}{1-r_{e}^{2} e_{1}}
$$

appears to be only locally powerful in a neighborhood of $p=1$.
Alternative hypotheses in the close neighborhood of $p=0$ appear to be least favorable with respect to these test procedures, but such altematives might also be least likely to arise in practice.

In fact, if p departs very far from unity the nonlinearity in this case of a single independert variable should become apparent from inspection of the data and not even require a statistical test; thus there may be an argument riade for the test t_{1}^{2}. In the case of higher dimension dosigr matrices X, however, nonlinearity becomes less apparent to the inspector and robustness over a wider range of p becomes iffinitely more desirable. As an illustration we next examine the case where X is a randomized block design matrix; i.e., the cast of an additive model of a two-way classification with one observation per cell.

H2: The Additive Two-Factor Model
The additive model $E Y_{19}=\alpha_{1}+\beta_{1}$ for the rectangular array $Y_{1 g}, i=1, \ldots, r$ and $j=1, \ldots, c$, gives $\hat{Y}_{1 j}=\bar{Y}_{1}+\bar{Y}_{. j}-\bar{Y}_{\ldots}$ and in this case $\tilde{Y}_{1 j}^{(\infty)}=\bar{Y}_{1} \cdot \bar{Y}_{. j} / \bar{Y}_{. .}$; thus,

$$
\tilde{\mathrm{e}}_{\infty 1 \mathrm{l}}=\bar{Y}_{1} \cdot \bar{Y}_{\cdot g} / \bar{Y}_{\ldots}-\hat{Y}_{1 \mathrm{~g}}
$$

and
$\stackrel{H}{e}_{1, j}=\hat{Y}_{1,} \log \hat{Y}_{1 g}-\frac{I}{c} \sum_{j} \hat{Y}_{1,} \log \hat{Y}_{19}-\frac{I}{r} \sum_{i} \hat{Y}_{1 j} \log \hat{Y}_{1 j}+\frac{I}{r c} \sum_{i, j} \hat{Y}_{1,} \log \hat{Y}_{1 j}$.

An $r \times c=3 \times 3$ table with $Y_{i j}=\alpha_{i}+\beta_{j}$ was used for numerical illustration, and for graphical simplicity was constructed as a function of a single parameter θ :

i	j	1	2	3
	1	$1+\theta$	$3-\theta$	
2	$1+\theta$	$1+2 \theta$	3	
3	$3-\theta$	3	$5-2 \theta$	

Taking the p'th power of these entries as our observations we calculated $r_{e \tilde{e}_{\infty}^{2}}^{2}, r_{e_{e}^{2}}^{2}$ and $R_{e}^{2} \cdot \tilde{e}_{\infty}^{2} e_{1}^{*}$ as functions of p indexed on θ. The constraint $Y_{19}>0$ restricts θ to the interval $-.5<\theta<2.5$, and since $\theta=\theta_{0}$ and $\theta=2-\theta_{0}$ produce permutations of the same
table, the operational range of θ is $-.5<\theta<1$. Degeneracies occur at $\theta=0$ and I where $\epsilon, \tilde{\epsilon}_{\epsilon}$ and ${ }^{*}{ }_{I}$ are perfectly correlated for a.11 p . Again, becalase of thr requirement $\mathcal{Y}_{i j}^{(p)}>0$ the correlations $r_{e e_{1}^{*}}^{*}$ and $R e \cdot \tilde{e}_{\infty}^{*}{ }_{c}^{*}$ are defined only for p in an interval determined by θ.

The results are similar to those obtained for the simple linear regression model, suggesting that Tukey's test

$$
E_{\infty}^{2}=\frac{[(r-1)(c-1)-1] r^{2} \tilde{e}_{\infty}^{2}}{1-r^{2} \tilde{e}_{\infty}}
$$

is robust with respect to alternatives $H_{p}: E Y_{1 g}=\left(\alpha_{i}+\beta_{j}\right)^{p}$ and that

$$
\mathrm{F}_{2(r-1)(c-1)-2}=\frac{\left.[(r-1)(c-1)-2] \mathrm{R}_{\mathrm{e}}^{2} \cdot \tilde{\mathrm{e}}_{\infty}{\stackrel{*}{\mathrm{e}_{1}}}^{2\left(1-\mathrm{R}_{\mathrm{e}}^{2} \cdot \widetilde{\mathrm{e}}_{\infty}^{*} \mathrm{e}_{1}\right.}\right)}{(r)}
$$

may be even more robust when applicable.

FIG. 1
An illustration of the residuals used in calculating

FIG. 2
Graphs of $r_{e e_{1}}^{2 *}, r_{e e_{\infty}}^{2}$ and $R_{e}^{2} \cdot e_{1}^{*} \tilde{e}_{\infty}$ as functions of p when $Y=(1+\beta X)$ for $\beta=.5$ and I

FIG. 3
Graphs of $r_{e e_{1}}^{2 *}, r_{e e_{\infty}}^{2}$ and $R_{e}^{2} \cdot e_{1}^{*} \tilde{e}_{\infty}$ as functions of p when $Y=(1+\beta X)^{p}$ for $\beta=3$ and 20

FIG. 4
Graphs of $r_{1}^{2}=r_{e e_{1}}^{2 *}, r_{\infty}^{2}=r_{e e_{\infty}^{2}}^{2}$ and $R^{2}=R_{e}^{2} \cdot \tilde{e}_{\infty}{ }_{e}^{*}$ as functions of p when $Y_{i j}=\left(\alpha_{i}+\beta_{j}\right)^{p}$ with $\alpha_{1}=\beta_{1}=\frac{1}{2}, \alpha_{2}^{\infty}=\beta_{2}=\frac{1}{2}+\theta$, $\alpha_{3}=\beta_{3}=\frac{5}{2}-\theta$, for θ near $-\frac{1}{2}$.

