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ABSTRACT 

An ad hoc but exact test of fit to a linear model E(Y1 IX) 

= X1 ~ which is designed to have power against alternatives of the 

for.m ~: E(Y1 IX)= (X1 ~P)P may be constructed by solving the non

linear moment equations X'Y = X'(X~P )P and testing the signifi

cance of the correlation between e = y - X~ and ep = (;q3p )P 

-X~ • Under the hypothesis of the linear model with NIID(O,cr2 ) 

errors the test statistic t~ = (n-r-l)r2- /(l-r2~ ) is F-
. e~ e~ 

distributed, and is a test of ~ in the sense that t; = ~ when 

Y1 = (X1 ~)P for all i . A more robust test not requiring the 

specification of p is obtained by computing t; = lim t~, which 
P"""±~ 

reduces to Tukey's test for nonadditivity in the case where X~ is 

the additive model for a two-way classification with one observa

tion per cell. Greater robustness appears to be obtainable by 

combining t~ with t[ = lim t~ in the for.m of a test of signifi-
p-1 

cance of the multiple correlation coefficient R2 - * 
e• e~6.J. 



Dfi'RODUCTION 

We consider here e.n ad hue but exact test of fit to the lin-

ear model 

H.!_ : Y == XB -l c, E: ,.._, N(O Ia2 )' 
' ) 

against the alte:rnati ve that some :power t:ransfonn of Y is linear 

in X • In :particu~-'-'-r, if the a:: ternative is expressed in the 

form E(Y J l X) = (XJ ~P " then for any specified p we may estimate 

f>., by solving the nonlinear moment equations X'Y = X'(xf3P)P, 
"' A A 

where P!_ = i3 is the lhear least squares estimator. If Y = Xf3 
A A 

and e = Y-Xf3 th6l e is statistically independent of X'Y and Y 

under H1 , so letting r P) = (X~P )P and eP ~ r "P) -Y then eP is 

statistically independent of e • For a fixed value of eP the 

linear f'unction e;e is therefoTe normally distributed with mean 

zero, and since X'eP = 0 the conditional variance of e;e is simply 
~,- 2 Th . 1 d f f eP eP cr • .e slng e • • sum o squares 

e 'er3: 
e10 e 

due to the regression of e on e'P is therefore I-b_ -distributed as 

cr2Xr dt' and the test statistic 

has the F-distribution on land n-r-1 d.f. when Y is n x 1 and X 

is n X k with rank r ~ k < n • This does provide a test against 

the alternative hypothesis E(YIX) 

Y = (XA )P then S2 = e'e or t 2 = . • 1--'p p ' p 

(Xf3P )P in the sense that if 

co • 

Implementation of this :procedure would require specification 

of p; for example, the choice p=2 would test whether the square 

root transform of Y improves the fit to a linear model in X • In 

practice, however, the choice of p is likely to be arbitrary, and 

this raises the question of how sensitive the test is to the choice 



of :p • If S~ is a slowly char,ging :function of :p then some degree ,. 

of arbitrariness in choosing I· Hill not greatly effect the :power 

of the test, and if s~ js ext;·:·c_mely robust then a limiting value 
"' 

With this possibil-

-i ty in mind we note that i:' the lir.ri ting form of eP, 

lim e, e 

exists then yCco) must have the form 

~ 

where Eo_) 
' Bk is a solution to the equations 

n n 

I xi j Yj ~ x B, xi .l 
1 j -

B;kj 
' i=l, k 

j=l j=l 

when such a solution exists. Thus, with e defined in this manner 
00 

and 

then when Y is exactly the ~'th :power of X~, Y3 

k 

(I ~1 X1 .l)P, then 

i==l 

r2~ approaches unity as p approaches ± ro • The test statistic t 2 
ee ro 

CXl 

might thus be expected to be robust in :pmv-er against alternatives 

with E(Y!X) = (xp)P, at least when :pis large in absolute value. 

If such a test could be combined with another which has :power 

against small p-values the resulting test should perform reasonably 

well against all p . To this end we note that y2~ is undefined at 
eeP 

p==l but does a:p:proach a limit; namely, 



where 
~l) =-c y 

1 1 

/, 

.:..c g yi ~ = ~(l) - X~ 

* * with xt3:J. = X' :'~iJ.J., provided that Y1 > 0 for 

i=l, • • • ,n • The test ;tatistic 

should thus have desi:·<:d:le power characteristics for p near 1LYJ.i ty, 
-2 and combining this witL t in the form 

ro 

F 2,n-r-2 

(n-r-2)R2 ~ * e·e
00

q 

should provide the desired robustness. The multiple correlation 

coefficient R ~ * is defined by 
e·e ~ 

ro 

where 

(~ r~ )(* ,* ) e e ~ e1 roro 

and the H1 -distribution of F2 2 is then Snedecor's F-distribution ,n-r-

with the indicated d.f •• 

The power of such tests will depend upon the error structure 

under the alternative hypothesis as well as depending upon the 

parameters p and ~ and the design matrix X. Instead of attempting 

to specify error structure and evaluate power we have made a pre

liminary investigation of robustness by selecting some design 

matrices of simple form and then numerically evaluating r2~ ,r2 * 
eeco e~ 

and R2 ~ * when Y is exactly equal to the p'th power of a specie•e ~ 
ro 

fied linear function. 



Hi= Simple Linear RegressioL 

As a numerical indicatiOJ. of degree of robustness in the case 

of s:Lrrrple linear regression ',.;· :·alculated -?-,.. , -?-* and R2 ~ * 
ee 00 e~ e • e 00 E1_ 

when Yx (a: + (3X )" , .;i th ex -+ !3X > 0 . Wt_, cons ide red only the 

r::ase of sample size n:cf) with six equally .spaced values of the in

dependent variable Y :md, 11ithout loss of generality, we took these 

values to be X:=0,1,~,···,5. Also, no generality was lost by tak

ing a:=l and (3 > 0, si:let:: with this design matrix and any given pair 

of parameters a:,(3 satisfyi!~ the constraints a: + (3X > 0 for 

X=O,l,•••,5 the following three models 

Yx = (l~X)P 

Y = (1-_E_X)P 
X a:+5t) 

produce identical values of the criteria -?-~ -?-* and R2 ~ * 
ee ' e~ e•e 6:1. 

a> a> 

Thus, the constraint a:+ t3X > 0 for X=O,l,2,···,5 restricts t3/a: to 

the interval -.2 < t)/a: < oo, and t3/a: = e > 0 is equivalent to a:=l, 

t3 = -e/(l+5e) with respect to our chosen criteria. 

Graphs of -?-~ ,-?-* and R2 ~ * as functions of t3 and p when ee00 e~ e•e00e1 

Yx = (l+t)X)P, t3 > 0, are displayed in Figures l- supplemented 

by Table I for values of t~ near zero where these correlations are 

too near unity to permit graphing. Plotted as a family of functions 

of p indexed on t3, these squared correlations all approach unity 

as t3 ~ 0 from either direction. This and other limit points indi

cated by the numerical results are readily verified analytically 

through application of l 'Hospitale 's rule. Thus, the intersection 

at p=O is given by 



where 

2 

lim -?~ lim r-2-rc 
( e' e ) 

Z•X £2•X 

:p->0 
ee p->\) ee1 

00 

( e' e \(e' e l Z·x·z.x) z2.x £2.x/ 
A 

z log(l+~XJ and e 
X V•X 

V V with 
X X 

V = ~ + b (X-~) 
X V•X . 

The finite domai.~: of r~~ which comreys a somewhat synthetic 
ee1 ' 

appearance in the graplls, is detemined by the constraint 
n -

Yx = ~ Z (l +~.x)~' + x-~ I(x-x) (1 +f3X)~' > o 
X=O Z(X-X)2 

for X=O,l,2,···,n, and can be calculated for any given f3. Results 

suggest that within this range,the test statistic 

(n-4 )R2 ~ * 
e· e e, 

00 -

( 2 \ 
2 1-R - * ) e• ecoe1 

might well have very desirable power characteristics. The test 

statistic 
(n-3)-?~ 

ee 
t2 co 

00 
1--?-ee 

00 

which represents a linear regression analogue of Tukey's test for 

non-additivity, would appear to be extremely robust. As antici

pated, the test statistic 

(n-3 )-?-~~ 
e~ 

appears to be only locally powerfUl in a neighborhood of p=l. 

Alternative hypotheses in the close neighborhood of p=O appear 

to be least favorable with respect to these test procedures, but 

such alternatives might also be least likely to arise in practice. 



In fact, if p departs 'tery far from unlty the nonlinearity in this 

case of a single independent v':J.riable shou.ld become apparent from 

inspection of the data P .. nd net e'Ten require a statistical test; 
* thus there may be an .'lrgumen~- J:ta :ie for the test tf' . In the case 

of higher dimension rlc;:ign matrices X, however, nonlinearity be

comes less apparent to the inspector and robustness over a wider 

range of p becomes 1• finitely mo:re desirable. As an illustration 

we ne..xt examine the cc.::>? Hhere X is a randomized block design 

matrix; i.e., the cast of an additive model of a two-way classifi

cation with one observation per cell. 

H1: The Additive Two-Factor Model 

The additive model EY1 J = a 1 + ~j for the rectar~ar array 

A, - -

Yu, i=l,···,r and j=l,•••,c, gives Y1 j = Y1 • + Y.J - Y •• and in 

this case Y\ 7) = Y1 .Y. /Y •• ; thus, 

- - - ......... 

eoo 1 J Y1 .Y./Y •• - Y1 J 

and 

* e,_ 1 J 

An r X c = 3 X 3 table with Y1 J = ai + ~J was used for numer-

ical illustration, and for graphical simplicity was constructed as 

a function of a single parameter e : 

i j 1 2 3 
~------------------~--

1 1 l+e 3-e 
2 l+e 1+28 3 
3 3-8 3 5-28 

Taking the p'th power of these entries as our observations we 
calculated y2_ ,i2* and R2 - * as functions of p indexed one • ee00 ee1 e•e00~ 

The constraint Y1 J > 0 restricts e to the interval -.5 < 8 < 2.5, 

and since e = 80 and e = 2-90 produce permutations of the same 



table, the operational range cf 8 is -.5 < 8 < l • Degeneracies 
* occur at 8=0 and 1 where E::., ec_ 3.nd ~ are perfectly correlated for 

all p • Again, becaus,:: of thr· requirement Y\ ~) > 0 the correla-

tions r ~~ ee1 
and R ~ * e· e c, 

c:: ~ 

mined by e . 

are def ~ned. only for p in an interval deter-

The results are similar to those obtained for the simple 

linear regression rr~del, suggesting that Tukey's test 

£:2 = 
[(r-1 )( c-1) -l]r2~ ee 

l-r2-ee 
co 

co 

is robust with respect to alternatives HP: EY1 j = (a1 +~j )P and 

that 

F 2 (r-l)(c-1)-2 

[(r-l)(c-l)-2]R2 ~ * e•e
00

e1 

2(1-R2 - * ) e·e e 
OJ l 

may be even more roblist when applicable. 
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FIG. l 

An illustration of the residuals used in calculating 

r2- , r2* and~- * when Y=(a+~X)P for a=l, ~=·5 and p=2. ee GO e~ ee GO e:J. 
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Graphs of r-2* , r-2~ and R2 * - as f'unctions of p 
ee1 ee co e · e.t e 00 

when Y = (l+f3X)P for f3 = .5 and 1 

p 
6 
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Graphs of r2* , r2- and R2 * - as f'unctions of p 
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when Y = (l+~X)P for ~ = 3 and 20 
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FIG. 4 

Graphs of ..2 = I 2e!_ , r 2 = r 2 - and R2 = R2 - * as functions of p ~~ - 1 oo ee e·e e 
00 00 1 

when Yij = (ai+~j)P with a1 = ~l = i, a 2 = ~2 = ~ + e, 

a3 = ~3 = ~ - e, for e near -~ . 


