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ABSTRACT

An ad hoc but exact test of fit to a linear model E(Y, |X)
= X,p which is designed to have power against alternatives of the
form H: E(Y,|X) = (X,B, )* may be constructed by solving the non-
linear moment equations X'Y = X’(Xﬁép)p and testing the signifi-
cance of the correlation between e = Y - Xf and Ep = (XB, )*
- Xf . Under the hypothesis of the linear model with NIID(O,0%)

errors the test statistic %f = (n-r-1)r’, /(1-¥2, ) is F-
g, e,

distributed, and is a test of H, in the sense that t5 = » when
Y, = (XIB)p for all i . A more robust test not requiring the

specification of p is obtained by computing T2 = 1im %5, which
Pto

reduces to Tukey's test for nonadditivity in the case where XB is
the additive model for a two-way classification with one observa-
tion per cell. Greater robustness appears to be obtainable by

combining T2 with 2 = lim 2 in the form of & test of signifi-
Pl

cance of the multiple correlation coefficient Ri-E g& .
©
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TVTRODUCTION

We consider here an ad hoc but exact test of fit to the lin-

ear model

B :Y=3X3+4 ¢, € ~ N(0, Io?)

against the alternative that some power transform of Y is linear
in ¥ . In particulur, if the alternative is expressed in the
form E(YJ'X) = (X, » then for any specified p we may estimate

8, by solving the nonlinear moment equations X'Y = X'(XEP)’,

where El = B is the linear least squares estimator. If Y = Xé
and e = Y-Xé then e is statistically independent of X'Y and ?
under H; , so letting ¥?) = (Xﬁp)p and e, = ¥?) -y then & is

statiétically independent of e . For a fixed value of Ep the

linear function é;e is therefore normally distributed with mean
zero, and since X'8 = O the conditional variance of €je is simply

€8 0% . The single d.f. sum of squares

due to the regression of e on Ep is therefore M -distributed as
02XZ ,,, and the test statistic

(n-r-1)r2
e e

a2
(n-r-1)8; . .

has the F-distribution on 1 and n-r-1 d.f. when ¥ is n X 1 and X
is n X X with rank r < k < n . This does provide a test against
the alternative hypothesis E(Y|X) = (Xg, )? in the sense that if

Y = (Xp,)* then éf = e'e, or %f = o .

Implementation of this procedure would require specification
of p; for example, the choice p=2 would test whether the square
root transform of Y improves the fit to a linear model in X . In
practice, however, the choice of p is likely to be arbitrary, and

this raises the question of how sensitive the test is to the choice



of p . If §§ is a slowly changing function of p then some degree
of arbitrariness in choosing p will not greatly effect the power
of the test, and if 5? is exitremely robust then a limiting value
of 5? will serve almost as well =g any other. With this possibil-

ity in mind we note that if the limiting form of 2,

lim @ =1lim e, =@ = Y™ -y

exists then ¥*®) must have the form
oo - gt . e

where By, **-, B, is a solution to the equations

when such a golution exists. Thus, with Em defined in this manner
and
12 \2
(e'e_)

re, =
s (e'e)(e'? )
®»

k
A b

then when Y is exactly the p'th power of XB, Y, = ( 2451X13> , then
=1

i% approaches unity as p approaches + » . The test statistic %i

[ee]

r

might thus be expected to be robust in power against alternatives
with E(Y]|X) = (XB)?, at least when p is large in absolute value.

If such a test could be combined with another which has power
against small p-values the resulting test should perform reasonably

well against all p . To this end we note that rié is undefined at
P

p=1 but does approach a limit; namely,

1im rig = ro#
pl % %



where
%* ~ ¥* 3* #*
¥ o=y, g Y, & = ¥ Xp

%* . * ) N
with Xg, defined by »'1'*’ = «':Ja, provided that Y, > O for
i=1l,.++,n . The test statistic

*o (n-r- “1)r3 °C~
L-r2#
ee;

should thus have desiraible power characteristics for p near unity,

and combining this witl Ei in the form
2
(n-r- 2)R .3 ei
F =
2,n~-r-2 2(1 R2 N >
8'75 el

should provide the desired robustness. The multiple correlation

P o s .
coefficient Re-ewel is defined by

r 2 +r2* -2r. ¥ Tr .. T %

ee e e ee ee
1 1

R2~* _ © ©

eee

ooel l-r%*
et
where
*

|

[t

and the H, -distribution of F is then Snedecor's F-distribution

2,n-r=2
with the indicated d.f. .

The power of such tests will depend upon the error structure
under the alternative hypothesis as well as depending upon the
parameters p and B and the design matrix X. Instead of attempting
to specify error structure and evaluate power we have made a pre-
liminary investigation of robustness by selecting some design

matrices of simple form and then numerically evaluating r2~ ’r§2i
CD

and Ri-é 2& when Y is exactly equal to the p'th power of a speci-
@

fied linear function.



H : Simple Linear Regression

As a numerical indicatio:. of degree of robustness in the case

of simple linear regression - -alculated r°~ ,r°#* and RZ _ #
ee ’Tee e-8 e

@ [o <

when ¥, = (a + pX)?, with o + £X > O . We considered only the

case of sample size n:= with six equally spaced values of the in-
dependent variable > and, without losg of generality, we {took these
values to be X=0,1,z,+++,5 . Also, no generality was lost by tak-
ing =1 and B > 0, si:nce with this design matrix and any given pair
of parameters «,p saticfying the constraints o + BX > O for

X=0,1,¢e+,5 the following three models

Y, = (apx)?
Y, = (105
Y, = (gEx)

produce identical values of the criteria r°, ,r°% and R® . % .
&8 7 ee e-® &

Thus, the constraint o + BX > O for X=0,1,2,+-+,5 restricts p/a to
the interval -.2 < B/a < », and p/a = 8 > O is equivalent to o=1,
B = -6/ (1+50) with respect to our chosen criteria.

Graphs of r°~ ,r°% and RZ _ # as functions of B and p when
€ ’Teq e:? e

Y, = (1+8X)?, p > 0, are displayed in Figures 1 - , supplemented
by Table I for values of B near zero where these correlations are
too near unity to permit graphing. Plotted as a family of functions
of p indexed on B, these squared correlations all approach unity

as B = O from either direction. This and other limit points indi-
cated by the numerical results are readily verified analytically
through application of 1'Hospitale's rule. Thus, the intersection
at p=0 is given by



lin 7 - lin iy -
0 @ 0 ’ <et
Z
V. -V _ with
X X
T =V +b_  (X-X)
X VeX
The finite domair of rig , which conveys a somewhat synthetic
1

appearance in the graphs, 1s determined by the constraint

n -
T o= ) ()« —EE 0 00R) (1epx) > 0
=0 o(x-X)2°

for X=0,1,2,-++,n, and can be calculated for any given B . Results
suggest that within this range the test statistic

might well have very desirable power characteristics. The test

statistic
(n'3)r§é

~ o]

T2 =
1-r2~
ee

@

which represents a linear regression analogue of Tukey's test for
non-additivity, would appear to be extremely robust. As antici-
pated, the test statistic

. (n-3)r§§;1
t2 =
1-r2s
ee

appears to be only locally powerful in a neighborhood of p=1.
Alternative hypotheses in the close neighborhood of p=0 appear
to be least favorable with respect to these test procedures, but

such alternatives might also be least likely to arise in practice.



In fact, if p departs very far from unity the nonlinearity in this

case of a gingle independent viriable should become apparent from

inspection of the data and nct

thus there may be an argument

made for the test t§ .

aven require a statistical test;
#*

In the case

of higher dimension design matrices X, however, nonlinearity be-

comes less apparent to the inspector and robustness over a wider

range of p becomes

j+finitely more desirable.

As an i1llustration

we next examine the cas2 where X is a randomized block design

matrix; i.e., the case of an additive model of a two-way classifi-

cation with one observation per cell.

o

The Additive Two-Factor Model

The additive model EY,, =a, +B, for the rectangular array

Yy, 1=1l,ee,r and j=1,...,c, gives Y,, = §1-

this case ?(T)= ?1,

1

An r X ¢

ical illustration,

3 X 3 table with Y,

Q.J/f.. ; thus,

V\‘/\
LJYajlog
i

il

and for graphical

a function of a single parameter 6 :

1\ J

~

Y

1 2 3
1 1 1+6 3-6
2 1+ 1+20 3
3 3-6 3 5-28

-Y

.y and in

1 S .0
1yt EZ ¥, ylogYyy -
i,3

a, *+ B, was used for numer-

simplicity was constructed as

Taking the p'th power of these entries as our observations we
= " 2 s . .
calculated rZo ,riel and Re-emel as functions of p indexed on § .

[oe]

The constraint Y,, > O restricts 6 to the interval -.5 < < 2.5,

and since 6 = 6, and 6 = 2-8, produce permutations of the same



table, the operational range of § is -.5 < 9 < 1 . Degeneracies

~ #*
occur at 6=0 and 1 where ¢, e and e are perfectly correlated for

all p . Again, because of thc requirement ?ﬁﬁ) > O the correla-

tions reg and Re-E ? are defined only for p in an interval deter-
1 B
1 -

mined by 6 .
The results are similar to those obtained for the simple
linear regression model, suggesting that Tukey's test

[(r-1) (c-l)-l]rié

[ee]

[l
8N
|

1-r2
ed
is robust with respect to alternatives H : EY,, = (q,+8,)? and

that
, [(r-l)(C-l)-2]R§.€ *

1
2(1-R2 Lo )
e-® e

may be even more robust when applicable.

[oe]

F2 (r-1)(e-1)-2



Residuals = e

Residuals = e
. (o]

FIG. 1

An illustration of the residuals used in calculating

— P =
r§~em, ri-’él and R‘z-é;él when Y=(o+gX)" for o=1, B=.5 and p=2.
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FIG. 2

+* ~ 2 . i
Graphs of riel, riem and R, ¥ 5 as functions of p

©
when Y = (1+gX)? for g = .5 and 1
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FIG. 3
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Graphs of riel , riem and R§.e1 3 as functions of p

. when Y = (1+BX)? for g = 3 and 20
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Graphs of r2 = ri"él, rs = rg'é and R2 = RZ.x * as functions of p

hen Y. . = P yith o = p. - o
when 3{1'J (ozi+sj) with o, = By = %, Ay =B, =3+,

Ol3=f33=-25--e, for g near -3 .



