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Plant breeders rely on heritable genetic variation for trait improvement, and the 

two primary novel sources of this variation are recombination and mutation of genetic 

material during meiosis. These independent processes can have overlapping 

significance for breeders, as the genetic resolution generated by recombination 

influences our ability to locate mutations. In addition, population improvement often 

results in inbreeding, which reduces the effective recombination and increases the 

likelihood of deleterious mutation hitchhiking via repulsion linkages. This is 

especially true in regions of chromosomes with low recombination rates, like the 

pericentromere. Polypoid crops pose an additional challenge to pinpointing the genetic 

control of desirable traits, as the phenotypic consequence of a single-variable locus 

(e.g., genomic structural variation) can be masked by the redundant copies of other 

homoeologous genomes. Here I address how geneticists can improve the accuracy of 

identifying targets for positional cloning, and whether breeders should seek to 

manipulate recombination to further harness the power of selection, using hexaploid 

wheat (Triticum aestivum L.) as a model. 

First, I present a study with a traditional approach to positionally clone a 

quantitative trait locus for yield components on wheat chromosome arm 5A. 

Leveraging a fine-mapping population, genomic data, phenotypic associations, early 

grain development transcriptome profiles, and predicted gene function, it was 



 

determined the quantitative trait locus was a result of strong linkage disequilibrium 

with a large deletion on wheat chromosome arm 5AS. This study highlights the 

phenotypic resiliency of polyploids harboring structural variants and actionable 

recommendations to increase the likelihood of identifying causal variants in wheat.  

Second, I used simulation models with empirical data to assess the potential of 

controlled recombination for genomic selection breeding programs. While controlled 

recombination remains under research and development, initial reports have prompted 

interest in evaluating increased recombination in the pericentromere to disrupt 

repulsion linkages. Comparing high and low values for a range of simulation 

parameters identified that few combinations under increased recombination retained 

greater genetic variation and fewer still achieved higher genetic gain. More 

recombination was associated with loss of genomic prediction accuracy, which often 

outweighed the benefits of disrupting repulsion linkages. Irrespective of 

recombination frequency and distribution and QTL location, enhanced response to 

selection under increased recombination largely depended on quantitative trait 

architecture, high heritability, more repulsion than coupling linkages, and greater than 

six cycles of genomic selection. Altogether, the results discourage a controlled 

recombination approach to genomic selection in wheat as a more efficient path to 

retaining genetic variation and increasing genetic gains compared to existing breeding 

methods.   
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CHAPTER 1 

 

INTRODUCTION 

Rationale and significance  

 

Mutations and recombination between homologous chromosomes that occur 

during meiotic segregation are essential for generating heritable diversity and 

evolutionary change among sexually reproducing eukaryotes. One crossover (CO) for 

each homologous chromosome pair is required for proper segregation, and 

recombination rates above this minimum can vary among and within species 

(Henderson & Bomblies, 2021). However, the distribution of COs in many species, 

including plants, is strongly biased toward subtelomeric regions and away from the 

pericentromere. In addition to the rate of recombination, this distribution bias limits 

the genetic variation accessible to plant breeders and impacts the efficiency of 

response to artificial selection. 

There are evolutionary advantages as well as costs associated with variation in 

recombination and mutation. The benefits of recombination are described by two 

models in population and evolutionary genetics: the Hill-Robertson effect and 

Muller’s Ratchet (Hill & Robertson, 1966; Muller, 1964). In a finite population, 

recombination can break down the linkage between favorable and deleterious loci, 

aiding in the efficiency of selection (i.e., The Hill-Robertson effect). Without 

recombination the deleterious load of a population will steadily increase and can never 

be less than the lowest load in the original population (i.e., Muller’s Ratchet). For 

example, in regions of low recombination like the pericentromere, deleterious loci are 



 

2 

more frequent and are likely to become linked in repulsion with positive loci 

(Rodgers-Melnick et al., 2015; Jordan et al., 2018). Significantly increased 

recombination can come at a cost though, leading to decreased fitness by breaking up 

beneficial linkages and reduced fertility (Charlesworth & Barton, 1996; Mieulet et al., 

2018).  

Mutations provide another source of genetic diversity and can have a range of 

fitness effects from beneficial to lethal. The rate of new mutations in eukaryotes is 

estimated to be at least 1 x 10-8 / base pair / meiosis (i.e., progeny will have a handful 

of mutations not present in the parents), and it is predicted that new mutations in 

coding regions will be deleterious in some of the environments the species inhabits 

(Ohta, 1972, 1992; Baer et al., 2007). Artificial selection and population improvement 

(i.e., increased fitness) often result in inbreeding, which reduces the effective 

recombination rate and under the cost of domestication hypothesis increases the 

likelihood of deleterious variants hitchhiking via linkage disequilibrium (Moyers et 

al., 2018). Natural recombination frequency and distribution, as well as mutation rates, 

have traditionally required plant breeders to work with large populations over many 

generations to capture desirable haplotypes and select new cultivars, which may take 

10 to 15 generations for annual row crops. 

To sustainably support the world’s growing population and farm profitability 

under a changing climate, a primary focus of breeding in the 21st century has been 

improving the speed and precision of cultivar development. The affordability of high-

throughput genotyping and the adoption of genomic prediction are expected to lead to 

greater genetic gains per year in plant breeding programs (Meuwissen et al., 2001; 
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Heffner et al., 2009; Sweeney et al., 2020). The increased availability of annotated 

crop reference genomes and genome editing such as the CRISPR/Cas system have 

introduced precision-based approaches to breeding, and renewed interest in causal 

variant identification (Atkins & Voytas, 2020; Khan et al., 2020). While these 

technological advances generally represent two schools of thought, respectively 

prediction and causal variant-based breeding approaches, their utility to breeders both 

depend on genetic resolution which is inextricably linked to the frequency and 

distribution of recombination.  

The complementation of genomic to phenotypic data that allows breeders to 

make predictive selections based on genetic markers associated with a phenotype of 

interest has been referred to as Breeding 3.0 (Wallace et al., 2018). Markers in regions 

of chromosomes where historical recombination has created sufficient genetic 

resolution to identify quantitative trait loci (QTL) are more likely to be subject to 

selection. However, the selected markers are not expected to be causal and rather are 

in linkage with the causative variant. Breeders can make successful selections based 

on linkage, but in broad genomic regions (e.g., spanning the pericentromere) these 

selections can result in false positives, are insensitive to repulsion linkages with 

deleterious loci, and fail to detect small or large mutations (e.g., structural variation 

deletions, duplications, insertions, inversions, and translocations). We are now 

entering Breeding 4.0, where the complementation of genome resequencing and 

genome editing can unveil a more precise resolution of genomic variation, and 

facilitate identifying, controlling, and ultimately repairing deleterious loci (Wallace et 

al., 2018). 
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This dissertation explores challenges and opportunities for the future of 

breeding imposed by structural variation and recombination, using common wheat 

(Triticum aestivum L.) as a model. Wheat is an annual allopolyploid (AABBDD, 2n = 

42) grass that was domesticated during the origins of agriculture approximately 10,000 

years ago in the Fertile Crescent of western Asia (Preece et al., 2017). Today wheat 

remains a staple crop grown globally, delivering 20% of daily calories and protein to 

the human population (FAOSTAT, 2021). Increasing wheat productivity under fewer 

production hectares is a primary objective for breeders, however the large, redundant 

polyploid genome, the polygenic nature of grain yield, and natural recombination and 

mutation rates in wheat collectively pose unique challenges for trait improvement.  

To actualize our ability to manipulate individual base pairs and transition 

wheat genetic improvement schemes from Breeding 3.0 to Breeding 4.0 will require 

strategies that are sensitive to novel genetic variation that has a high probability of 

favorably affecting a phenotype. Evaluations of the recombination landscape in 

diverse wheat populations reveal that over 75% of the recombination events fall within 

10% of the distal ends of chromosomes, and that the mutation rate ranges from 0 to 

4.97 x 10-3 / base pair / meiosis (Raquin et al., 2008; Jordan et al., 2018). In addition, a 

higher density of putative deleterious variants was detected in the pericentromere 

versus distal regions of chromosomes. Given the tight relationship between the 

frequency and distribution of recombination, mutations, and genetic resolution, and 

the relatively recent publication of an annotated wheat reference genome (2017), there 

are many questions that remain to be answered about the genetic diversity that wheat 

harbors. The ensuing chapters seek to address two primary topics, respectively related 
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to causal variant and prediction-based approaches to breeding – 1) how geneticists can 

improve the accuracy of identifying targets for positional cloning, and 2) whether 

breeders should seek to manipulate recombination to further harness the power of 

selection. 

 

Objectives 

This work encompasses in-vivo and in-silico approaches to identifying, controlling, 

and purging deleterious loci from wheat, with an emphasis on improving productivity, 

as well as overall recommendations for the near and distant future of polyploid 

breeding programs. My objectives were to:  

1. Characterize a large deletion on wheat chromosome arm 5AS that was previously 

misidentified as a QTL on chromosome arm 5AL harboring a single gene for 

increased grain weight. 

2. Identify methods for more efficient detection of structural variation and robust 

positional cloning experimental design in polyploids. 

3. Review the potential for genome editing reagents to “control recombination” in 

plant breeding programs. 

4. Simulate a genomic selection breeding program and identify the parameter space in 

which increased recombination maintains genetic diversity and increases genetic gain. 
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CHAPTER 2 

 

POSITIONAL-BASED CLONING ‘FAIL-SAFE’ APPROACH IS OVERPOWERED 

BY WHEAT CHROMOSOME STRUCTURAL VARIATION 1 

 

Abstract  

Positional based cloning is a foundational method for understanding the genes and 

gene networks that control valuable agronomic traits, such as grain yield components. 

In this study, we sought to positionally clone the causal genetic variant of a thousand 

grain weight (TGW) quantitative trait loci (QTL) on wheat chromosome arm 5AL. We 

developed heterogenous inbred families (HIFs) (> 5,000 plants) for enhanced 

genotypic resolution and fine-mapped the QTL to a ten Mbp region. The transcriptome 

of developing grains from positive and negative control HIF haplotypes revealed 

presence/absence chromosome arm 5AS structural variation, and unexpectedly no 

differential expression of genes within the chromosome arm 5AL candidate region. 

Evaluation of genomic, transcriptomic, and phenotypic data, and predicted function of 

genes, identified that the 5AL QTL was in fact the result of strong linkage 

disequilibrium with chromosome arm 5AS presence/absence (HIF r2 = 0.91). 

Structural variation is common in wheat, and our results highlight that the redundant 

polyploid genome’s masking of such variation is a significant barrier to positional 

cloning. We propose recommendations for more efficient and robust detection of 

structural variation, including transitioning from a SNP to a haplotype-based approach 

to identify positional cloning targets. We also present nine candidate genes for grain 

yield components based on chromosome arm 5AS presence/absence, which may 
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unveil hidden variation of homoeolog dosage dependent genes across the group five 

chromosome short arms. Taken together, our discovery demonstrates the phenotypic 

resiliency of polyploid genomic structural variation and highlights a considerable 

challenge to routine positional cloning in wheat. 
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Introduction 

 

Common wheat (Triticum aestivum L.) and durum wheat [Triticum turgidum 

L. subsp. Durum (Desf.) van Slageren] deliver more than 20% of the daily calories and 

protein consumed by the human population (FAOSTAT, 2021). To sustainably 

support the world’s growing population and farm profitability, wheat productivity 

must increase under fewer production hectares. Despite wheat’s crucial bearing on 

global food security, the genes and gene networks controlling wheat grain yield 

remain poorly understood. Grain yield is a highly polygenic trait that is influenced by 

genetic and environmental factors at every stage of plant growth (Slafer, 2003). An 

additional challenge to pinpointing the genetic control of grain yield is posed by the 

large polypoid wheat genome, where the phenotypic consequence of a single variable 

locus can be masked by the redundant copies of other homoeologous genomes (Borrill 

et al., 2018). Given the complexity of identifying genetic controls of grain yield, a 

reductionist approach that considers highly heritable yield components is a valuable 

strategy to improve our understanding of underlying genes and gene networks 

(Brinton and Uauy, 2018; Zhang et al., 2018a). 

Total grain yield is a balancing act between yield components such as spikes 

per unit of area, grain number per spike, and grain weight. QTL for yield components 

have been identified on every wheat chromosome, but many of these QTL span broad 

genomic regions and offer limited impact for breeding. Some of the latest advances in 

wheat genomics now allow us to go beyond QTL mapping and invest in positional 

cloning, such as the advent of an annotated reference genome and gene editing 
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techniques (Borrill et al., 2018). Positional based cloning identifies a gene through 

fine-mapping, sequencing, and functional validation. Fine-mapping resolution is 

limited by the low frequency and uneven distribution of crossovers between linked 

genetic markers. A “fail-safe” approach is to develop heterogenous inbred families 

(HIFs) or near isogenic lines (NILs), which share a highly inbred and homogenous 

genome but are segregating for the genomic region of interest, such as a QTL 

(Tuinstra et al., 1997; Brinton et al., 2017; Kuzay et al., 2019). Continuous inbreeding 

of several thousand HIF progeny will produce distinct crossovers that delimit the QTL 

to a gene variant that can be confidently associated with the plant’s phenotype, for 

example using TILLING populations or gene editing.  

We set out to positionally clone the causal variant underlying a thousand grain 

weight (TGW) and grain morphology QTL on chromosome arm 5AL, QTgw.cnl-5A, 

as previously identified in the Synthetic W7984 x Opata M85 spring wheat doubled-

haploid reference population (herein abbreviated ‘W7984’, ‘Opata’, and ‘SynOpDH’) 

(Breseghello and Sorrells, 2006; Sorrells et al., 2011; Williams et al., 2014). Strong 

associations between grain weight or morphology and markers in this region have also 

been reported in (Kato et al., 2000; Brinton et al., 2017; Sukumaran et al., 2018). In 

this study we leveraged the SynOp recombinant inbred line (‘SynOpRIL’) population 

for HIF development by identifying two founder F6 lines segregating for the 

QTgw.cnl-5A flanking markers (5A_283300187 and 5A_482369161). We screened 

more than 5,000 progenies over five generations (2017 – 2019 field and greenhouses) 

and narrowed QTgw.cnl-5A to a ten Mbp region flanking 37 high confidence (HC) 

genes. This fine-mapping advancement coincided with the publication from 
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(Gutierrez-Gonzalez et al., 2019) that identified the short arm of chromosome 5A was 

missing from the W7984 parent and prompted us to evaluate the implications for our 

positional cloning. 

The W7984 chromosome arm deletion may not have been detected by the 

larger wheat community, or earlier in our research, in part due to no aberrant 

morphological variation or infertility, which is characteristic of whole chromosome 

arm deletions (Zhang et al., 2019, 2020). Here, we used a subset of both SynOpDH 

and SynOpRIL populations to (i) significantly and consistently map QTgw.cnl-5A 

across four environments; (ii) develop HIFs for fine-mapping QTgw.cnl-5A and 

disrupt linkage disequilibrium (LD) with chromosome arm 5AS presence (+) and 

absence (-); (iii) conduct grain growth rate analysis for greater phenotypic resolution; 

(iv) measure the transcriptome of chromosome arm 5AS+ / QTgw.cnl-5A+ and 

chromosome arm 5AS- / QTgw.cnl-5A- HIFs; and (v) conduct gene ontology (GO) 

term enrichment analysis. Based on genetic data, phenotypic associations, early grain 

development expression profiles, and predicted function of genes, we suggest that 

QTgw.cnl-5A is the result of strong LD with chromosome arm 5AS presence and 

absence (SynOpDH r2 = 0.95, HIF r2 = 0.91). The resources invested for positional 

cloning QTgw.cnl-5A were overpowered by chromosomal structural variation, and we 

discuss the challenges that persist for identifying gene function in wheat. 

We also present nine candidate genes on chromosome arm 5AS that may 

impact yield components including TGW, grain length (GL), grain width (GW), and 

spikelets per spike (SPS). These results lay the foundation for identifying hidden 

variation of homoeolog dosage dependent and functionally redundant genes on the 
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group five chromosome short arms. Altogether, our findings highlight the phenotypic 

resiliency of polyploid genomic structural variation and present recommendations for 

future approaches to positional cloning. 

 

Materials and Methods 

QTL validation plant materials 

A synthetic hexaploid wheat, generated by crossing the durum wheat ‘Altar 

84’ (AABB) with an Ae. tauschii (DD) accession, crossed with the spring wheat 

cultivar ‘Opata 85’, were used to generate 215 DHs (SynOpDH) via chromosome 

doubling, and 2,039 RILs (SynOpRIL) (Sorrells et al., 2011). Both populations 

segregate for the absence of W7984 chromosome arm 5AS, or presence of Opata, but 

the structural variation remains to be characterized in all 2,039 SynOpRILs 

(Supplementary file_S1.5.csv). A subset of each mapping population was used for this 

study. 149 entries from SynOpDH, along with parental checks and two commercial 

checks Glenn and Tom, were grown in two replicated and randomized one-meter, 

single-row plots in Ithaca, NY during the field seasons (April – August) of 2016 

(Caldwell field), 2017 (Caldwell field), and 2018 (Caldwell and Helfer field). An 

unbalanced set of thirteen additional entry observations were included during BLUP 

phenotype calculations, for 162 total entries. All field trials were non-irrigated. All of 

the spikes in each one-meter row were hand harvested and threshed with a belt 

thresher (Almaco, Nevada, IA). Heading date (HD), TGW, GL, and GW were 

measured and used to validate the QTL across years and environments, as well as 

identify the flanking marker positions of the QTL based on Chinese Spring genome 
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assembly released by the International Wheat Genome Sequencing Consortium 

(IWGSC), henceforth RefSeq v1.0 (International Wheat Genome Sequencing 

Consortium (IWGSC), 2018). Gene annotations presented in this study are based on 

RefSeq v1.1 annotation. While RefSeq v2.0 assembly was available at the time of 

analysis, the annotation was still under development. 

 

Development of HIF-derived fine-mapping population 

The fine-mapping population was constructed using HIFs derived from two F6 

SynOpRIL founder entries (7-956 and 7-1201) heterozygous for markers flanking the 

QTL on chromosome arm 5AL (5A_283300187 and 5A_482369161; marker origin is 

RefSeq v1.0 and the syntax is chromosome_RefSeq v1.0 position). In order to increase 

the genetic resolution of the QTL and maintain an isogenic background genome, 

individual progeny from these two entries were inbred X generations (F6:X) and 

genotyped to screen for recombinants between the QTL flanking markers. 

Heterozygous entry advancement, recombinant evaluation, and progeny testing took 

place 2016-2019 until the F6:4 or F6:5 generation. Inbreeding cycled between Snyder or 

Caldwell fields in Ithaca, NY and Cornell University Guterman greenhouse. Under 

field evaluation, 100 progenies of each heterozygous entry were advanced, and 20 

progenies from a recombinant entry were advanced for validation. Greenhouse 

evaluation space was limited, and this environment was only used for recombinant 

validation testing between field cycles. The greenhouse environment was 

supplemented with artificial lighting to obtain a sixteen-hour day / eight-hour night 

photoperiod, with 21-23 °C day and 15-17 °C night temperatures. Individual plant 
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identity was tracked throughout HIF development and all of the spikes of each plant 

were hand harvested into a coin envelope and belt threshed. For example, HIF entry 7-

956-2-89-2-17-01 started with F6 founder entry 7-956 and out of the 100 progenies 

planted, the 2nd plant was heterozygous for the QTL flanking markers and was 

selected from F6:1 planting, the 89th plant was selected from F6:2 planting, the 2nd plant 

was selected from F6:3 planting, at F6:4 the 17th plant recombined between the QTL 

flanking markers and was validated at the F6:5 generation. Homozygous recombinant 

and sister entries, Opata (+) and W7984 (-) allele controls without a crossover between 

QTL flanking markers, were selected and evaluated for pre- and post-harvest 

phenotypes in field experiments. 

In total more than 5,000 progenies were screened for recombinants between 

the QTL flanking markers and 109 (F6:4 or F6:5) recombinant haplotypes were selected 

for the fine-mapping population. In addition, nine sister entries with Opata alleles and 

eleven with W7984 alleles spanning QTgw.cnl-5A (+ / - controls) were selected. The 

129 fine-mapping population entries were genotyped with 31 kompetitive allele 

specific PCR (KASP) markers spanning QTgw.cnl-5A. 129 entries, along with parental 

checks and two commercial checks Glenn and Tom, were grown in two replicated and 

randomized one-meter, single-row plots in Ithaca, NY during the field seasons of 2019 

(Snyder field) and 2020 (Caldwell and Helfer field). All of the spikes in each one-

meter row were hand harvested and threshed with a belt thresher. HD, HT, grain fill 

duration (GFD), SPS, TGW, GL, and GW were measured and used for t-test 

comparisons between recombinant haplotypes and control haplotypes to narrow the 

QTL flanking markers (Supplementary file_S2.7.csv). 
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Phenotypic data and statistical analysis 

The pre-harvest phenotypes measured in this study include HD, HT, DPA 

grain morphology, and GFD; post-harvest include SPS, TGW, GL, and GW. The HD 

was recorded as Julian date of 50% spike emergence. Plant HT was measured as the 

average height (cM) from the ground to spike tip in a one-meter, single-row plot. DPA 

was recorded by tagging individual spikes at 0-DPA, when anthers at the center 

spikelet are light green and pollination can be confirmed within 24-hours of tagging. 

GFD was recorded as the time between 0-DPA and physiological maturity (when the 

peduncle turned yellow) for a one-meter, single-row plot.  

The spikes from every plot in this study were hand harvested with sickles or 

scissors. SPS was recorded as the average spikelet number from ten random spikes in 

a plot. GL and GW were measured using > 150 grains per sample on a WinSEEDLE 

STD4800 system flatbed scanner. The number of grains was recorded, and then 

weighed as a proxy for TGW. This process was replicated without resampling for a 

given plot, and the average GL, GW, and TGW was recorded. Phenotypes for the 

SynOpDH across four field-year environments and the fine-mapping population across 

three field-year environments can be found in Supplementary file_S1.1.csv and 

file_S2.1.csv, respectively. 

In order to evaluate QTgw.cnl-5A+/- haplotypes and phenotypes across field 

and year combinations, univariate linear models with random genotype and 

environment effects, and correlated information (HD, chromosome arm 5AS+/-, or 

HIF RIL founder) fixed effects were fitted with the R/lme4 package (Supplementary 

file_S1.8.xlsx / script_S1.md and file_S2.9.csv / script_S2.md) (Bates et al., 2015; R 
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Core Team, 2020). Models were evaluated based on their broad-sense heritability 

and/or Akaike information criterion. Fixed effect significance was assessed with R/car 

package Wald chi-square test (Fox and Sanford, 2019). Broad-sense heritability 

estimates (𝐻2) for HD, TGW, GL and GW in the SynOpDH population were 

calculated by 

𝐻2 =  
𝜎𝐺

2

𝜎𝐺
2 + 

𝜎𝐺𝑥𝐸
2

𝑙
 +  

𝜎𝐸
2

𝑟𝑙

⁄  

where  𝜎𝐺
2 is the genetic variance, 𝜎𝐺𝑥𝐸

2  is the GxE variance, 𝜎𝐸
2 is the residual 

variance, r is the number of replications and l is the number of environments. Best 

linear unbiased predictions (BLUPs) were obtained from the univariate linear models 

for SynOpDH and HIF phenotypes. The SynOpDH BLUP phenotypes were used for 

QTL mapping with the R/qtl package (Broman 2003). The HIF BLUP phenotypes 

were used for Welch two-sample t-tests with control and recombinant haplotypes, and 

chromosome arm 5AS+/- haplotypes (Supplementary file_S2.7.csv, script_S2.md) (R 

Core Team, 2020). 

For the grain growth rate analysis, grain length, width, fresh weight and dry 

weight were measured at 0, 4, 10, 16, and 22-DPA in a replicated subset of ten fine-

mapping haplotypes (five QTgw.cnl-5A- and five QTgw.cnl-5A+, Supplementary 

file_S3.1.csv) during the 2019 field season. The experiment was replicated in the 

Cornell University Guterman greenhouse during spring 2020 for four HIF haplotypes 

(same entries as RNA-seq experiment), and also included measurements at 28-DPA 

and senescence (Supplementary file_S3.2.csv). For every haplotype and replicate, ten 

primary spikes were used per timepoint. From each of the ten spikes, ten primary 



 

19 

developing grains in florets 1 and 2 were taken only from the central spikelets and the 

average length, width, fresh weight, and dry weight (5-days in a 30 °C dryer) were 

measured. Single trait mixed models with a fixed interaction between haplotype and 

DPA, and a random effect of plot (field) or tube (greenhouse) nested within haplotype 

were fitted with the R/lme4 package (Bates et al., 2015). Post hoc comparison of least-

squares means for haplotype and DPA was performed within each model using the 

R/emmeans package, in addition to multiple-test correction P-values (Supplementary 

script_S3.md) (Lenth et al., 2019).  

 

Genetic Map Construction and QTL Mapping  

A genetic map for the 162 entry SynOpDH subset was constructed with 1,551 

polymorphic Genotyping by Sequencing (GBS) and simple sequence repeats (SSR) 

markers that were previously published, and using the R package ‘qtl’ (Broman et al., 

2003; Sorrells et al., 2011; Poland et al., 2012). The function ‘estmap’ was used to 

estimate the genetic distances using the ‘kosambi’ mapping function, followed by 

maximum likelihood analysis of marker order on each chromosome, using the 

function ‘ripple’. Any missing genotypes were imputed with the function ‘fill.geno’ 

and ‘imp’ method. QTL were identified by a single QTL model genome scan using the 

function ‘scanone’ with the Haley-Knott regression method. A 0.05 significance LOD 

threshold for each phenotype was determined with the function ‘scanone’ and ‘n.perm 

= 1000’. Next, the percent variance explained by each significant QTL was calculated. 

The RefSeq v1.0 physical position of flanking markers was determined for each 

significant QTL as well. Later a consensus marker for chromosome arm 5AS presence 
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and absence was added for QTL mapping. The code for the genetic map and QTL 

mapping can be found in Supplementary script_S1.md. 

 

High Resolution QTgw.cnl-5A Genetic Mapping 

Seedling leaf tissue samples for DNA extraction were collected in the field or 

greenhouse from a single plant in each plot or pot, with two replicates of the parents 

per 96-well plate. The DNA was extracted from lyophilized leaf tissue using a 

modified cetyl trimethylammonium bromide extraction (Doyle and Doyle, 1990). 

KASP assays were developed to screen recombinant entries and their progeny, as well 

as identify sister entries. The KASP markers were generated from polymorphisms 

identified using the wheat exome-capture and regulatory-capture sequence of parental 

entries of the Wheat-CAP project (https://www.triticeaecap.org/wheatcap-germplasm-

list/) (Gardiner et al., 2019; He et al., 2019a). We also used the 10 + Genome Project 

data repository to BLAST our KASP marker sequences and confirmed genome and 

chromosome specificity and the marker order across Chinese Spring and eleven 

diverse wheat cultivars; ‘ArinaLrFor’, ‘Jagger’, ‘Julius’, ‘Lancer’, ‘Landmark’, 

‘Mace’, ‘Norin61’, ‘Stanley’, ‘SY-Mattis’, ‘Zavitan’ and ‘Spelt’ (Supplementary 

file_S2.6.csv, script_S2.md) (Walkowiak et al., 2020). The KASP assay procedure 

followed the methods outlined in (Makhoul et al., 2020), including PACE-IR 

Genotyping Master Mix with a low ROX level and thermo-cycling conditions 

according to 3CR bioscience protocols. On each SNP reaction plate the parent lines, 

check lines, and at least one water sample were included as controls. All experiments 

were repeated at least twice. If clear genotyping clusters were not obtained, the KASP 

https://www.triticeaecap.org/wheatcap-germplasm-list/
https://www.triticeaecap.org/wheatcap-germplasm-list/
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marker was abandoned. The clustering patterns of the three KASP markers that span 

QTgw.cnl-5A (ten Mbp region) are available as Supplementary file_2.13.pdf. 

QTgw.cnl-5A flanking KASP markers (5A_283300187 and 5A_482369161) were used 

to screen the HIF progeny, and all 31 KASP markers were used to select the fine-

mapping population (129 entries). Later, the fine-mapping population was genotyped 

with three SSR markers for chromosome arm 5AS presence and absence 

(Supplementary file_S2.5.csv). The homogeneous genetic background of the HIFs and 

the high heritability of the traits allowed us to differentiate their association with 

QTgw.cnl-5A from the causal effects of chromosome arm 5AS structural variation.  

 

Gene Expression  

We used RNA-seq to compare the levels of expression of genes within the 

candidate QTgw.cnl-5A region, across chromosome arm 5AS, and to evaluate the HIF 

isogenic background genome. The plant tissue was sampled from developing grains at 

4 and 8-DPA from four HIF haplotypes: 7-956-2-19-1-31-03 (Opata control), 7-956-2-

19-1-44 (W7984 control), 7-956-2-19-1-31-05 (recombinant I), 7-956-2-12-1-69-07 

(recombinant II). The four haplotypes were grown in a completely randomized design 

in the greenhouse during spring 2020. We sampled 500 mg of whole grain tissue per 

biological replicate. At the 4-DPA timepoint, 40 primary spikes were collected for 

each haplotype and ten developing primary grains from the central spikelets of ten 

randomly sampled spikes (four biological replicates, 100 hundred grains / biological 

replicate) were immediately frozen in liquid nitrogen and stored at -80 °C. The process 

was repeated at the 8-DPA timepoint, but only two randomly sampled spikes per 
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biological replicate were necessary due to the rapidly growing grains (four biological 

replicates, 20 grains / biological replicate). The tissue was ground with liquid nitrogen 

and mortar and pestle and total RNA was extracted using a modified hot borate 

protocol (Wan and Wilkins, 1994). Quantity and quality of the isolated total RNA was 

determined using a Biotek Epoch 2 Spectrophotometer with Nanodrop functionality 

and gel electrophoresis. Three of the four biological replicates were sent to Novogene 

for further quality screening and non-directional 150-bp paired-end reads mRNA 

sequencing (four haplotypes, three biological replicates at two timepoints: 24 

samples). The raw sequence reads were submitted to the SRA of NCBI under 

BioProject ID: PRJNA693003. 

The bioinformatics pipeline and scripts for gene expression analysis can be 

found in Supplementary script_S4.md. Paired-end reads from raw sequence data were 

imported to the Cornell University BioHPC server and all computational analysis was 

performed within the command line or R. Imported reads quality was checked with 

‘FastQC’ (Andrews, 2010). The IWGSC RefSeq v1.0 assembly and RefSeq v1.1 high 

and low confidence gene annotations were downloaded from 

https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Assemblies/v1.0/ and 

https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v1.1/. The 

genome was indexed, and the sequence reads were aligned with STAR for both low 

confidence (LC) and HC RefSeq v1.1 gene annotation (Dobin et al., 2013). Batch 

effects were accounted for using the ‘ComBat_seq’ function in the R/sva package, and 

differential expression between haplotypes was analyzed with the R/DESeq2 package 

(Love et al., 2014; Leek et al., 2020). A false discovery rate cut-off value of 0.01 and 

https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Assemblies/v1.0/
https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v1.1/
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log2 fold change threshold of two was used to select the list of differentially expressed 

genes at 4 and 8-DPA between the haplotype contrasts. Variance stabilizing 

transformation of the DESeq2 adjusted counts was used for principal component 

analysis and heatmaps of the count matrix. SNP variants in the QTgw.cnl-5A region 

were identified with the SAMtools BCFtools command ‘mpileup’ (Li et al., 2009). 

 

Gene ontology (GO) term enrichment  

At this point we excluded low confidence gene models from further analysis. 

The list of 556 HC genes differentially expressed between all three positive haplotypes 

(Opata control, recombinant I and recombinant II) and the negative haplotype (W7984 

control) at 4 and 8-DPA can be found in Supplementary file_S4.20.csv. We obtained 

RefSeq v1.1 HC gene annotation GO terms from the Wheat@URGI JBrowse portal 

(Alaux et al., 2018). In total we extracted GO terms for 93,141 genes, which included 

all 556 differentially expressed genes (DEGs). The 93,141 genes served as the 

universe of genes for a GO term enrichment study with the R package ‘GOseq’ to test 

over-representation of GO terms among the DEGs (Young et al., 2010). We 

considered over-represented GO terms with Benjamini–Hochberg false discovery rate 

adjusted P-value < 0.05 to be significant. 

We also identified DEGs with GO terms known to be associated with spike 

architecture and early grain development, including cell proliferation / division / 

growth / differentiation, meristem initiation / maintenance / transition, flowering time, 

floral organ development, mitosis, regulation of gene expression, DNA methylation 

and gene silencing, auxin, cytokinin, response to stress, phosphorylation, 
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photosynthesis, nucleosome assembly, starch, nucleic acid metabolic process, protein 

metabolic process, glucose / sucrose, ubiquitin pathway, brassinosteroid, microtubule, 

and endoreduplication (Wang et al., 2017; Brinton and Uauy, 2018; Li et al., 2018). 

Arabidopsis and rice (Oryza sativa L.) orthologs were identified using EnsemblPlants 

(https://plants.ensembl.org/index.html), arabidopsis.org TAIR Gene Search, and 

funricegenes (Yao et al., 2018).  

 

Results 

A QTL on chromosome 5A is associated with increased grain weight 

A genetic map was developed for the SynOpDH population comprising of 

1,551 polymorphic molecular markers (Supplementary file_S1.9.csv, script_S1.md). 

Using the SynOpDH phenotype BLUP values, calculated from four field-year 

observations, significant QTL for TGW were identified on chromosomes 2D 

(QTgw.cnl-2D), 5A (QTgw.cnl-5A), and 6A (QTgw.cnl-6A). QTgw.cnl-2D and 

QTgw.cnl-6A colocalized with QTL for GL, and QTgw.cnl-5A colocalized with a QTL 

for GW. A QTL for HD on the long arm of chromosome 5A was also detected, 

spanning the VRN-1 gene (Yan et al., 2003). The flanking and peak markers, logarithm 

of odds (LOD) score, positions in the genetic map and wheat reference genome, and 

grain weight percent variation explained by each QTL are described in Supplementary 

script_S1.md. A univariate linear model for TGW with random entry and environment 

effects, and fixed interaction effects between peak markers of the three TGW QTL 

showed highly significant effects for all three QTL, but no significant interactions 

(Supplementary script_S1.md). These results indicated that QTgw.cnl-5A, the focus of 



 

25 

this study, could be mapped regardless of combinations with QTgw.cnl-2D and 

QTgw.cnl-6A. 

The QTgw.cnl-5A flanking markers were wmc705 (0.1 cM, LOD 3.86) and 

synopGBS284 (4.49 cM, LOD 3.49), and accounted for 10.39% of the grain weight 

and 37.9% of the grain width variation. Upon inspection of the flanking marker 

RefSeq v1.0 physical positions (wmc705, 290 Mbp and synopGBS284, 487 Mbp), it 

became clear that QTgw.cnl-5A mapped to chromosome arm 5AL and the genetic map 

lacked markers on chromosome arm 5AS. Our QTL mapping occurred before 

(Gutierrez-Gonzalez et al., 2019) published dense GBS linkage maps that indicated 

that the SynOpDH population segregated for the presence or absence of the short arm 

on chromosome 5A. Later, we adjusted the marker order to reflect physical positions 

and incorporated a single marker for QTL mapping that represented the chromosome 

arm 5AS structural variation (Figure 2.1A).  

 Phenotypic distributions and ANOVA tests of the SynOpDH population 

revealed Opata provides the increased TGW and GW allele (Figure 2.1B, Table 2.1).  

We hypothesized that the increased grain weight is mediated by differences in grain 

width rather than length, which are under independent genetic control (Gegas et al., 

2010). The broad sense heritability for TGW, GL, GW, and HD were 0.68, 0.75, 0.81, 

and 0.78 respectively. SynOpDH entries with the QTgw.cnl-5A Opata allele (+) were, 

on average, 6.4% heavier and 4.2% wider than the W7984 allele (-), and significantly 

different across all environments (Table 2.1).  
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Figure 2.1 

Figure 2.1: (A) QTL detected for TGW, GW, and HD in the SynOpDH population on 

chromosome 5A. A single marker was used to represent the chromosome arm 5AS 

structural variation. Values on the X-axis represent RefSeq v1.0 physical position, and 

the vertical dashed line represents the centromere. The dashed line on the Y-axis 

represents the LOD significance threshold. (B) BLUP phenotype distribution for 

SynOpDH entries subset by QTgw.cnl-5A allele, based on flanking marker genotypes. 

 

 

 

 

 

 

 

 

A)

B)
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Year Location Genotype TGW (g) GL (mm) GW (mm) HD (julian) 

2016 Caldwell QTgw.cnl-5A+ 39.19 7.16 3.26 
 

  
QTgw.cnl-5A- 36.49 7.09 3.08 

 

   
7.4% *** 0.98% 5.7% *** 

 

2017 Caldwell QTgw.cnl-5A+ 6.58 2.84 
 

  
QTgw.cnl-5A- 6.53 2.68 

 

    
0.81% 6.1% *** 

 

2018 Caldwell 

(A) 

QTgw.cnl-5A+ 40.36 7.25 3.26 184.71 

  
QTgw.cnl-5A- 38.37 7.28 3.14 182.64 

   
5.2% ** -0.39% 3.7% *** 1.1% * 

2018 Caldwell 

(B) 

QTgw.cnl-5A+ 39.97 7.24 3.26 185.2 

  
QTgw.cnl-5A- 37.8 7.25 3.13 182.89 

   
5.7% ** -0.21% 4.04% *** 1.3% **  

2018 Helfer 

(A) 

QTgw.cnl-5A+ 31.04 7.08 3.08 187.05 

  
QTgw.cnl-5A- 28.55 6.97 2.92 184.8 

   
8.7% *** 1.70% 5.4% *** 1.2% * 

2018 Helfer 

(B) 

QTgw.cnl-5A+ 31.61 7.03 3.09 186.91 

  
QTgw.cnl-5A- 29.77 6.97 2.96 184.79 

   
6.2% ** 0.81% 4.5% *** 1.1% * 

BLUP 
 

QTgw.cnl-5A+ 36.46 7.07 3.12 186.02 
  

QTgw.cnl-5A- 34.26 7.004 2.996 183.77 
   

6.4% *** 0.92% 4.2% *** 1.2% ** 

H2 
  

0.68 0.75 0.81 0.78 
 

Table 2.1 

Table 2.1: Mean thousand grain weight (TGW), grain length (GL), grain width (GW), 

and heading date (HD) of SynOpDH entries. Percentages (%) refer to the trait value 

gained in SynOpDH QTgw.cnl5A+ (Opata allele) entries as compared to QTgw.cnl5A- 

(W7984 allele) entries. The QTgw.cnl5A+ and QTgw.cnl5A- allele categories were 

determined by genotype at the peak QTL marker, 5A_341510829. Broad sense 

heritability (H2) considered trait observations across all locations. Replicates grown in 

locations with spatial variation are reported independently and denoted with a letter in 

parentheses. Asterisks indicate significance determined by ANOVA for each location, 

or best linear unbiased prediction (BLUP). Key: no symbol, nonsignificant; *, P < 

0.05; **, P < 0.01; ***, P < 0.001. 
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HIFs differing for QTgw.cnl-5A show a 21.3% difference in TGW  

To further investigate the effect of QTgw.cnl-5A on TGW, HIF populations 

were generated from two F6 SynOpRIL entries (7-956 and 7-1201) heterozygous for 

flanking KASP markers 5A_283300187 and 5A_482369161. The fine-mapping 

population selection was based on recombination between flanking markers and sister 

line genotypes, as individual plant phenotypes for TGW were too variable. Our fine-

mapping population development occurred before (Gutierrez-Gonzalez et al., 2019) 

was published.  

In 2016 we grew a seed increase of the SynOpRIL population (F6:1) and 

identified HIF founder lines 7-956 and 7-1201, heterozygous for QTgw.cnl-5A 

flanking markers. We screened 600 F6:1 progeny (F6:2) during the 2017 field season 

(Snyder field) with QTgw.cnl-5A flanking KASP markers and identified no crossovers 

within the maker interval and 45 plants that remained heterozygous. 900 progenies 

from the F6:2 heterozygous plants (F6:3) were evaluated in a greenhouse during the 

winter of 2017, and 44 plants with crossovers within the flanking KASP interval, 

seven W7984 sister lines (recombination outside of flanking KASP interval), and six 

Opata sister lines were identified. Five additional KASP markers were developed 

across the target region based on SNPs identified in parental exome-capture data (He 

et al., 2019a). The F6:4 generation, validated during the 2018 field season (Caldwell 

field), consisted of inbreeding 1,620 entries with a single heterozygous flanking 

marker and progeny tests of the 44 recombinants. We identified 65 new homozygous 

recombinant plants within the flanking KASP interval, four W7984 sister lines, and 

three Opata sister lines. An additional 24 KASP markers were developed between the 
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flanking markers based on SNPs identified in the exome-capture and regulatory-

capture data (Gardiner et al., 2019). Progeny tests of the 65 recombinant plants (F6:5) 

as well as replicates of the 44 F6:4 validated recombinants and 20 sister lines were 

planted in a greenhouse during winter 2018 and characterized with the full set of 31 

KASP markers. We screened an additional 1,514 segregating F6:6 plants during the 

2019 field season (Snyder) but did not find a crossover event that reduced the target 

region. The 109 recombinants and 20 sister lines were selected for the fine-mapping 

population and field based phenotypic evaluation.  

The fine-mapping population was grown in 2019 (Snyder), and 2020 (Caldwell 

and Helfer) and evaluated for HD, HT, GFD, SPS, TGW, GL, and GW (Table 2.2). 

Significant differences in TGW and GW associated with the peak marker 

5A_341510829 narrowed the QTgw.cnl-5A candidate region to a ten Mbp interval 

containing 37 HC and 84 LC genes, flanked by markers 5A_339757917 and 

5A_349628635 (Figure 2.2, Supplementary script_S2.md). The Opata allele frequency 

at SNP 5A_341510829 was 0.58, and W7984 allele frequency was 0.42. The lower 

variability of the HIFs and homogenous background genome increased the resolution 

of additional yield component quantitative traits, including significant associations for 

GL, SPS, and HT with QTgw.cnl-5A (Table 2.2). There was no significant difference 

in HD or GFD, suggesting the difference in grain weight may be due to the grain 

filling rate rather than duration. Given the additional phenotypes associated with the 

candidate gene region, we decided to explore the transcriptome of QTgw.cnl-5A+ and 

QTgw.cnl-5A- haplotypes. 
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Figure 1.2 

Figure 2.2: Fine-mapping of HIF recombinant entries and trait variation pinpoints 

QTgw.cnl-5A to a ten Mbp interval on wheat chromosome arm 5AL. (A) Graphical 

genotypes of 129 HIFs grouped by shared recombination intervals (KASP marker 

positions not to scale, purple Opata SNPs, blue W7984 SNPs). Number of HIFs in 

each group noted within parentheses. (B/C) BLUP phenotype boxplot distribution of 

each HIF group. Boxes are colored based on Opata- or W7984- like phenotype, 

determined by t-test (Supplementary script_S2.md).  
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Year Location Genotype HD 

(julian) 

GFD 

(days) 

HT 

(cM) 

SPS  TGW 

(g) 

GL 

(mm) 

GW 

(mm) 

2019 Snyder 

(A) 

QTgw.cnl-5A+ 172.19 30.9 77.55 15.03 37.49 6.54 3.24 

  
QTgw.cnl-5A- 172.57 30.98 74.96 14.76 31.22 6.4 2.93 

   
-0.22% -0.26% 0.35% 1.80% 20.08% 

*** 

2.2% 

*** 

10.4% 

*** 

2019 Snyder 

(B) 

QTgw.cnl-5A+ 171.59 30.4 81.99 15.11 38.69 6.58 3.28 

  
QTgw.cnl-5A- 172 30.82 78.67 14.57 31.87 6.41 2.95 

   
-0.24% -1.40% 4.20% 3.7% 

** 

21.4% 

*** 

2.7% 

*** 

11.1% 

*** 

2019 Snyder 

(C) 

QTgw.cnl-5A+ 173.56 
 

83.81 15.59 38.33 6.45 3.24 

  
QTgw.cnl-5A- 171.67 

 
79.83 14.9 32.58 6.53 2.95 

   
1.10% 

 
4.90% 4.60% 17.6% 

*** 

-1.20% 9.9% 

*** 

2020 Caldwell QTgw.cnl-5A+ 174.21 29.36 66.24 12.71 38.21 6.92 3.53 
  

QTgw.cnl-5A- 173.81 29.46 62.94 12.43 31.41 6.81 3.21 
   

0.23% -0.35% 5.2% 

*  

2.20% 21.7% 

*** 

1.6% 

** 

10.2% 

*** 

2020 Helfer QTgw.cnl-5A+ 172.13 29.23 58.73 11.71 36.58 6.8 3.45 
  

QTgw.cnl-5A- 171.93 28.91 55.59 11.43 29 6.67 3.11 
   

0.12% 1.10% 5.7% 

** 

2.40% 26.1% 

*** 

1.9% 

*** 

11.02% 

*** 

BLUP 
 

QTgw.cnl-5A+ 172.57 29.32 71.2 13.62 37.72 6.71 3.37 
  

QTgw.cnl-5A- 172.63 29.39 68.45 13.43 31.09 6.58 3.06 
   

-0.04% -0.26% 4.02% 

** 

1.4% 

*** 

21.3% 

*** 

1.99% 

*** 

10.3% 

*** 
 

Table 2.2 

Table 2.2: Mean heading date (HD), grain fill duration (GFD), plant height (HT), 

spikelets per spike (SPS), thousand grain weight (TGW), grain length (GL), and grain 

width (GW) of SynOp HIF entries. Percentages (%) refer to the trait value gained in 

SynOp HIF QTgw.cnl5A+ (Opata allele) entries as compared to QTgw.cnl5A- (W7984 

allele) entries. The QTgw.cnl5A+ and QTgw.cnl5A- allele categories were determined 

by genotype at the peak QTL marker, 5A_341510829. Replicates grown in locations 

with spatial variation are reported independently denoted with a letter in parentheses. 

Asterisks indicate significance determined by ANOVA for each observation or best 

linear unbiased prediction (BLUP). Key: no symbol, nonsignificant; *, P < 0.05; **, P 

< 0.01; ***, P < 0.001. 
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HIF variation in grain weight and morphology was significantly associated with 

early grain development 

 In order to better understand the mechanism driving the grain weight and 

morphology phenotype, and to identify the optimum timepoints for our transcriptome 

study, we conducted a DPA analysis of the developing grains in five QTgw.cnl-5A+ 

and five QTgw.cnl-5A- HIF haplotypes. Grains of ten replicated haplotypes were 

sampled from the 2019 field season at 0, 4, 10, 16, and 22-DPA. The first significant 

difference in grain length, grain width and fresh weight was measured at 10-DPA, 

with QTgw.cnl-5A+ grains 4.6% longer (P < 0.001), 5.7% wider (P < 0.001), and 

18.9% (P < 0.001) heavier than QTgw.cnl-5A- grains (Figure 2.3). The first significant 

difference in dry weight was measured at 16-DPA, with QTgw.cnl-5A+ grains 25.2% 

heavier (P < 0.001) than QTgw.cnl-5A- grains (Figure 2.3). These effects increased 

and were maintained at 22-DPA, and senescence (data not shown).  

The experimental design was repeated in a greenhouse environment and 

included additional measurements at 28-DPA and senescence with four HIF entries 

that would be selected for RNA-seq (Opata control, W7984 control, recombinant I, 

recombinant II). The trend remained that the first significant difference in grain width 

and fresh weight was measured at 10-DPA and dry weight at 16-DPA, for Opata 

control versus W7984 control grains. However, for comparisons between recombinant 

I and W7984 control, and recombinant II and W7984 control, the difference for any 

phenotype was first measurable at 16-DPA (Supplementary script_S3.md). 

Differences in grain development between the field and greenhouse could be due to 
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the growing environment, time of year, HIF haplotype, or too few experimental entry 

comparisons.  

Grain development begins after pollination, starting with rapid proliferation of 

cells that form the outer layer of the grain, followed by the endosperm’s cell division 

and expansion at approximately 6 DPA (Li and Li, 2016; Brinton and Uauy, 2018). 

Our DPA study had consistent association with phenotypic variation at 10 to 16-DPA, 

and in conjunction with the 2019 and 2020 field data that found no significant 

difference in grain fill duration among QTgw.cnl-5A+ and QTgw.cnl-5A- HIFs, 

suggests the difference in grain width and weight is driven by the rapid endosperm cell 

division and expansion during early grain development. 
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Figure 2.2 

Figure 2.3: Developing grain phenotypes measured across 22 days post anthesis 

(DPA) for five QTgw.cnl-5A+ (purple) and five QTgw.cnl-5A- (blue) HIFs. Samples 

taken at 0, 4, 10, 16, and 22-DPA during 2019 field season. Key: NS, nonsignificant; 

***, P < 0.001. 

 

QTgw.cnl-5A in linkage disequilibrium with chromosome arm 5AS structural 

variation  

Upon learning from (Gutierrez-Gonzalez et al., 2019) that the SynOpDH 

population was segregating for the presence or absence of the short arm on 

chromosome 5A, we genotyped our fine-mapping population with three SSR markers 

for chromosome arm 5AS presence and absence. The frequency of chromosome arm 

5AS presence was 0.57, and absence was 0.43. Of the 129 fine-mapping entries, 126 

had either haplotype chromosome short arm 5A+ / QTgw.cnl-5A+ or chromosome 
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short arm 5A- / QTgw.cnl-5A-, with only one entry chromosome short arm 5A+ / 

QTgw.cnl-5A- and two entries chromosome short arm 5A- / QTgw.cnl-5A+. The 

skewed haplotype distributions revealed chromosome arm 5AS structural variation 

and QTgw.cnl-5A alleles are in very strong LD, with a correlation coefficient of 0.91. 

We tested for an interaction between the two loci using a univariate linear model for 

TGW with entry as a random effect and a fixed interaction between chromosome arm 

5AS and peak marker 5A_341510829. A Wald chi-square test showed highly 

significant effects for chromosome arm 5AS and 5A_341510829, but no significant 

interaction. Phenotypic distributions of the fine-mapping population indicated that trait 

values of the three recombinant HIFs that broke the LD (chromosome short arm 5A+ / 

QTgw.cnl-5A-, n = 1, and chromosome short arm 5A- / QTgw.cnl-5A+, n = 2) are 

associated with the chromosome arm 5AS structural variant, rather than QTgw.cnl-5A 

allele (Figure 2.4A). In the context of Figure 2.2, the entry with chromosome short 

arm 5A+ / QTgw.cnl-5A- recombination belongs to group 7 and the two entries with 

chromosome short arm 5A- / QTgw.cnl-5A+ recombination belong to group 14 

(Supplementary file_S2.12.xlsx). Finally, we included the chromosome arm 5AS 

structural variant as a fixed effect in the univariate models for calculating HIF 

phenotype BLUPs. The new BLUP phenotypic distributions for HIF entries showed 

no significant difference for presence and absence of chromosome arm 5AS or the 

5A_341510829 allele, suggesting the phenotypic variation was largely explained by 

the chromosome arm 5AS structural variation, and QTgw.cnl-5A is a result of linkage 

(Figure 2.4B & C, Supplementary script_S2.md).  
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Figure 2.3 

 

Figure 2.4: (A) BLUP phenotype boxplot distribution for HIF entries subset by 

chromosome arm 5AS presence or absence, and colored by QTgw.cnl-5A allele 

(KASP 5A_341510829, Opata: purple, W7984: blue). Of the 129 fine-mapping 

entries, 73 had haplotype chromosome short arm 5A+ / QTgw.cnl-5A+, 53 had 

haplotype chromosome short arm 5A- / QTgw.cnl-5A-, one had haplotype 

chromosome short arm 5A+ / QTgw.cnl-5A-, and two had haplotype chromosome 

short arm 5A- / QTgw.cnl-5A+. (B) Original BLUP TGW histogram, subset by 

chromosome arm 5AS presence (purple) or absence (blue). (C) Chromosome arm 5AS 

structural variant fixed effect BLUP TGW histogram, subset by presence (purple) or 

absence (blue). 

 

RNA-sequencing of QTgw.cnl-5A HIFs confirmed the significance of 

chromosome arm 5AS structural variation  

 We used RNA-seq to investigate three questions with four HIF haplotypes 

(Table 2.3), i) are genes in the QTgw.cnl-5A candidate region differentially expressed, 

ii) are there genes on chromosome arm 5AS that are differentially expressed, and iii) 
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do the HIFs share an isogenic background genome. We hypothesized that gene 

expression changes influencing phenotypic differences occurred before the first 

significant difference in grain morphology was detectable at 10-DPA and sampled 

whole grains at 4 and 8-DPA. We measured over 621 M reads across the 24 samples, 

with individual sample reads ranging from 21.8 M to 37 M and an average of 25.8 M 

reads (standard error 0.7 M) per sample (Supplementary file_S4.02.csv, 

file_S4.03.csv). We aligned the reads to RefSeq v1.1 HC and LC annotations 

independently, and on average across samples 89.4 +- 0.6% of reads aligned to the HC 

gene annotation, and 89 +- 0.62% aligned to the LC gene annotation (for read counts 

see Supplementary file_S4.md).  

 

HIF 1 Name chr 5AS QTgw.cnl-5a TGW (g) GW (mm) 

7-956-2-19-1-31-03 Opata control present + 37.895 3.408 

7-956-2-19-1-44  W7984 control absent - 29.983 3.091 

7-956-2-19-1-31-05 recombinant I present + 36.341 3.39 

7-956-2-12-1-69-07 recombinant II present + 40.199 3.44 

1 HIF entries were chosen to prioritize isogenic lineage and QTL resolution, over chr 5AS and 

QTgw.cnl-5A recombinants. 
 

Table 2.3 

Table 2.3: Heterogenous inbred family (HIF) haplotypes selected for RNA-

sequencing. Chromosome arm 5AS structural variation (chr 5AS), QTgw.cnl-5A 

genotype (marker 5A_341510829) where Opata is (+) and W7984 is (-), thousand 

grain weight (TGW), grain width (GW). 

 

 

 We performed differential expression comparisons between the HIFs at both 

timepoints. Independent comparison between HIFs for Opata control, recombinant I, 

and recombinant II versus W7984 control did not identify any DEGs at 4 and 8-DPA 

in the QTgw.cnl-5A candidate region (chromosome 5A 339757917 – 349628635 bp) 
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for the HC or LC gene annotation. However, there were 532 significant DEGs in 

common among these HIF comparisons at 4-DPA, 469 at 8-DPA, and 556 in total at 

either timepoint for the HC gene annotation. Of the 556 DEGs, fifteen were on 

chromosome 1A, one on 1B, one on 3A, 532 on 5A short arm, three on 5A long arm, 

one on 5D, two on 7A, and one on 7B. The 535 genes on chromosome 5A were all 

differentially expressed due to no expression in the W7984 control HIF. None of the 

DEGs homoeologous copies were differentially expressed. Given only 21 of the 556 

DEGs were on chromosomes other than chromosome 5A, the differential expression 

comparisons between HIFs also validated the fine-mapping population’s isogenic 

background genome (Figure 2.5 and Supplementary script_S4.md).  

 These results prompted us to evaluate the considerable resources we had 

invested in an otherwise reliable positional cloning approach for QTgw.cnl-5A. It was 

possible we sampled tissue at the wrong timepoints, or QTgw.cnl-5A association with 

grain weight and morphology was driven by a post-transcriptional or post-translational 

modification. We investigated the ten Mbp candidate region of the 24 samples’ raw 

reads for SNP variants from the reference genome and identified only one variant. 

Among the three W7984 control biological replicates a 3’ untranslated region 

mutation (T → C) was present in TraesCS5A02G160900 (Supplementary 

file_S4.18.xlsx). This gene codes for the third largest subunit of RNA polymerase II 

and the SNP, termed BA00617686, had previously been identified by the CerealsDB 

Axiom 820K and 35K SNP Array (Winfield et al., 2016). The SNP has not been 

associated with any phenotype, and there is no literature on the Arabidopsis and rice 

orthologs that implicate the gene in grain development. 
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Figure 2.4 

Figure 2.5: Differentially expressed genes (A) genome wide, and (B) on chromosome 

5A, for Opata versus W7984 control haplotypes at 8 DPA. Each point represents a 

gene, ordered by RefSeq v1.0 physical position along the X-axis. The Y-axis 

represents the differential expression significance, -log base 10 adjusted P-value. The 

red dashed line marks P-value = 0.01. In (B) the grey dashed line represents the 

centromere, and the red points highlight genes between QTgw.cnl-5A flanking KASP 

markers 5A_339757917 and 5A_349628635. 

 

 

Centromeres are vital for proper chromosomal segregation during mitosis and 

meiosis. Consequentially, experimentally derived chromosome arm deletion lines in 

wheat often lack a clean break at the centromere (Gill, 1996). The centromere of 

chromosome 5A is near 250 Mbp in Chinese Spring RefSeq v1.0. Although 

(Gutierrez-Gonzalez et al., 2019) reported that the entire short arm was missing for 

W7984 chromosome 5A, our transcriptome study revealed fifteen genes expressed in 

B)

A)
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the W7984 control haplotype 237 - 250 Mbp. None of the W7984 haplotype expressed 

genes were differentially expressed with the positive haplotypes, which made them 

unlikely candidates for the observed phenotypic variation. The centromeric position 

can change among cultivars, but this has not previously been associated with a 

structural variation event (Walkowiak et al., 2020). We propose that W7984 short arm 

of chromosome 5A broke approximately thirteen Mbp from the centromere, as 

compared to Chinese Spring. This remains to be validated with a transcriptome study 

across additional SynOp entries and parents. 

Across the W7984 haplotype samples there were 23 genes that were 

unexpectedly expressed on chromosome arm 5AS (0-237 Mbp) (Supplementary 

file_S4.14.xlsx). We investigated the read counts of these genes and identified eleven 

of the genes were differentially expressed, but still from less expression by W7984 

samples. We explored the 23 gene sequences using EnsemblPlants and IWGSC 

BLAST, and on average there was 94.6 +-  1.7% sequence alignment with at least one 

homoeolog or paralog. On average, reads aligned to multiple loci represent 5.16 +
-  

0.22% of the total alignment (for read counts see Supplementary file_S4.md). We 

suggest these 23 genes have multiple sequence alignments and that their expression in 

the W7984 haplotype samples was incorrect. 

 Collectively, these findings indicate our approach to positional cloning was 

overpowered by chromosome arm 5AS structural variation and that QTgw.cnl-5A was 

a result of strong LD. The presence and absence of chromosome arm 5AS was 

significantly associated with the yield component variation we identified in the fine-



 

41 

mapping population. An in-depth comparison of the 556 DEGs and association with 

yield components follows in the next section.  

 

Chromosome arm 5AS differential expression provided insight into candidate 

genes  

The phenotypes measured in the fine-mapping population were chosen based 

on the quantitative phenotypic variation associated with QTgw.cnl-5A in the 

SynOpDH background. In an isogenic fine-mapping background the phenotypic 

resolution was enhanced, and included significant associations between HT, SPS, 

TGW, GL, and GW and the presence or absence of chromosome arm 5AS. The 

percent difference between the QTgw.cnl-5A +/- HIFs for these traits is reflective of 

additive, rather than dominance variation (Table 2.2). There were no other variable 

phenological or morphological traits among SynOpDH and HIF populations that were 

obvious during field trials. It is well known that wheat harbors hidden variation due to 

polyploidy and there are likely non-additive and functionally redundant genes among 

the DEGs on chromosome 5A.  

To better understand the DEGs, we performed GO enrichment analysis with 

GOseq (Young et al., 2010). The DEGs were associated with 1,919 out of 9,709 

unique GO terms from the RefSeq v1.1. After statistical over-representation tests and 

correction for multiple testing the only significant term was “killing of cells of other 

organism” (GO:0031640) (Supplementary script_S4.md). There were nine DEGs with 

GO:0031640, including the physical cluster of genes TraesCS5A02G018000, 

TraesCS5A02G018800, TraesCS5A02G019000 and TraesCS5A02G019100 which are 
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orthologs of Arabidopsis bacterium and fungus response gene Osmotin-like protein, 

OSM34 (Capelli et al., 1997). TraesCS5A02G077600 is within the interval of a 

fusarium head blight resistance QTL termed Qfhs.ifa-5AS, and is orthologous to the 

rice Osmotin-like protein Os12g0569300 (NCBI; Steiner et al., 2019). 

TraesCS5A02G059000 is orthologous to the rice defense response gene OsPR1b, 

which is constitutively expressed at background levels (Luan and Zhou, 2015). 

Although the physical gene cluster of TraesCS5A02G046300, TraesCS5A02G046400, 

and TraesCS5A02G046500 has no known orthologs in Arabidopsis or rice, they share 

the additional GO terms defense response to fungus (GO:0050832), binding 

(GO:0005488), peptidase activity (GO:0008233), extracellular region (GO:0005576), 

cell wall (GO:0005618), integral component of membrane (GO:0016021), cellular 

component organization (GO:0016043), and cellular metabolic process 

(GO:0044237).  

The relative lack of GO term enrichment among chromosome arm 5AS+ and 

5AS- HIF DEGs coupled with phenological variation characteristic of a single gene 

rather than entire chromosome arm, highlights the challenge of identifying hidden 

variation in a redundant polyploid genome. Despite the limited GO term enrichment, 

the positive association of SPS, TGW, GL and GW with chromosome arm 5AS 

presence prompted us to investigate genes with GO terms related to spike architecture 

and early grain development. It was unclear if the difference in height was attributable 

to any DEGs measured at 4 or 8-DPA. There were 292 DEGs that had at least one GO 

term related to biological, cellular, and developmental processes during spike and 

early grain growth (file_S4.16.csv). Of these genes, 52 were only differentially 
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expressed at 4-DPA, and ten genes were only differentially expressed at 8-DPA. The 

majority of the 230 genes that were differentially expressed at both timepoints 

decreased in expression across time. Only seven of the genes were on chromosomes 

other than 5A, and are poor candidates based on GO terms and Arabidopsis and rice 

orthologs. We explored the Arabidopsis and rice orthologs for all 292 genes and 

present nine genes as candidates for wheat yield components in Table 2.4. 

While the genes in Table 2.4 have not previously been associated with wheat 

yield components, their Arabidopsis and rice orthologs have been shown to regulate 

inflorescence development or seed / grain size. Based on RefSeq v1.0 alignment and 

v1.1 annotation, there are eight candidate genes on chromosome arm 5AS and one 

candidate gene on chromosome arm 1AS, TraesCS1A02G103900. 

TraesCS1A02G103900 had GO terms related to cell size, cell growth, and epidermal 

cell differentiation, and was orthologous to HAIKU2 (IKU2), a regulator of 

endosperm proliferation and cellularization (Luo et al., 2005; Li and Li, 2016). IKU2 

loss-of-function is associated with reduced seed size in Arabidopsis (Luo et al., 2005). 

Notably, the homoeologous copies of TraesCS1A02G103900, TraesCS5B02G012000 

and TraesCS5D02G019400, map to the group 5 chromosomes, not group 1. The 

homoeologs, as reported on EnsemblPlants, are orthologues to IKU2 as well. Our 

transcriptome analysis identified three other DEGs on chromosome 1AS clustered 

near TraesCS1A02G103900 (9.76-9.98 Mbp), which also have homoeologs on the 

group 5 chromosome (Supplementary file_S4.19.xlsx). All four of these genes were 

differentially expressed due to zero read counts from the W7984 haplotype, while the 

other eleven DEGs identified on chromosome 1A have a mix of expression profiles 
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among the four haplotypes. We submitted the TraesCS1A02G103900 coding sequence 

to IWGSC BLAST RefSeq v1.0 and RefSeq v2.0, which identified 100% alignment 

with RefSeq v1.0 chromosome 1A and 71% with 5A, and 100% alignment with 

RefSeq v2.0 chromosome 5A and 75% with 1A. We also identified 99% alignment 

with chromosome 5A of the Durum wheat (cv. Svevo) genome assembly v1. Given 

the haplotype expression profile, homoeologous copies on group 5 chromosomes, and 

RefSeq v2.0 and Durum alignment, we believe TraesCS1A02G103900 was 

misannotated by RefSeq v1.1 and belongs on chromosome arm 5AS. The eight 

additional candidate genes on chromosome arm 5AS and their ortholog functions are 

discussed in the proceeding section Candidate genes for yield components. 
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T. aestivum 
RefSe

q v1.0  

Refse

q 
v2.0  

4-DPA 

P-
value1 

8-DPA 

P-
value1 

Selected GO terms2 A. thaliana O. sativa 

TraesCS1A

02G103900 

1AS 5AS 3.99 x 

10-8 

1.07 x 

10-7 

regulation of cell size 

(GO:0008361) 

HAIKU2 (IKU2), regulator of 

seed size 

HAIKU2 

     
plant-type cell wall organization (GO:0009664) 

     
multidimensional cell growth (GO:0009825) 

     
epidermal cell differentiation (GO:0009913) 

TraesCS5A

02G025900 

5AS 5AS 5.59 x 

10-30 

1.34 x 

10-17 

post-embryonic development 

(GO:0009791) 

YAB2, abaxial cell fate  OsYAB6 

     
cell differentiation (GO:0030154) 

     
reproductive structure development (GO:0048608) 

TraesCS5A

02G030300 

5AS 5AS 2.25 x 

10-9 

1.7 x 

10-7 

brassinosteroid mediated 

signaling pathway 

(GO:0009742) 

BSL2 and BSL3, 

brassinosteroid-insensitive 

suppressor family 

OsPPKL3, negative 

regulator of grain 

length          

TraesCS5A

02G037100 

5AS 5AS 4.99 x 

10-4 

 
stamen development 

(GO:0048443) 

PID, establishment of bilateral 

symmetry 

BIF2, organogenesis 

during inflorescence 
     

regulation of cell size (GO:0008361)  

     
cell projection (GO:0042995) 

     
auxin-activated signaling pathway (GO:0009734) 

TraesCS5A

02G038300 

5AS 5AS 1.43 x 

10-16 

5.75 x 

10-10 

auxin-activated signaling 

pathway (GO:0009734) 

ARF6, regulator of flower 

development / maturation 

OsARF25, regulator of 

grain size 
     

flower development (GO:0009908) 

TraesCS5A

02G103800 

5AS 5AS 6.54 x 

10-11 

7.61 x 

10-7 

auxin metabolic process 

(GO:0009850) 

RGLG1 and RGLG2, regulator of apical dominance 

     
cytokinin metabolic process (GO:0009690) 

TraesCS5A

02G106400 

5AS 5AS 4.69 x 

10-12 

4.93 x 

10-7 

diacylglycerol kinase activity 

(GO:0004143) 

DGK2, pollen and seed development 

     
intracellular anatomical structure (GO:0005622) 

TraesCS5A

02G107800 

5AS 5AS 1.37 x 

10-14 

9.33 x 

10-14 

response to ethylene 

(GO:0009723) 

VTC2 and VTC5, ascorbate 

biosynthesis 

OsGGP, biomass 

production  
     

response to auxin (GO:0009733) 

TraesCS5A

02G110600 

5AS 5AS 1.07 x 

10-13 

4.18 x 

10-9 

phragmoplast (GO:0009524) AUG6, mitotic and meiotic cell 

division 

Os02g0329300, 

AUGMIN subunit 6 
     

spindle assembly (GO:0051225) 

Table 2.4 

Table 2.4: Candidate T. aestivum RefSeq v1.1 genes and A. thaliana and O. sativa 

orthologs. RefSeq v1.0 and v2.0 assembly chromosome. 1GOSeq2 adjusted P-value 

from Opata vs W7984 HIF haplotype comparisons, 4 and 8-days post anthesis (DPA). 

All haplotype comparisons can be found in Supplementary script_S4.md. 2All GO 

terms are available in Supplementary file file_S4.17.xlsx. 
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Discussion  

In this study we discovered that a stable and robust QLT was confounded by 

linkage with chromosome structural variation. We confirmed that the SynOpRIL 

population, in addition to the SynOpDH population described by (Gutierrez-Gonzalez 

et al., 2019) is segregating for presence of the Opata parent chromosome arm 5AS and 

absence of the majority of the W7984 parent chromosome arm 5AS. Furthermore, we 

associated the chromosome arm 5AS structural variation in an isogenic background 

with yield component phenotypes, characterized the early grain development 

transcriptome, and propose nine candidate genes for agronomically valuable traits on 

chromosome arm 5AS. Genomic structural variations are common across polyploids, 

and this study contributes to our understanding of the complexities associated with 

fine-mapping in a polyploid species, and discusses a more robust approach to 

positional cloning (Song et al., 1995; Saxena et al., 2014). 

 

Detecting the chromosome structural variation 

SynOpDH and SynOpRIL were two of the most widely referenced mapping 

populations leading up to the advent of the annotated wheat reference genome. Aside 

from the phenotypic variation subtleties, why was the W7984 chromosome arm 

deletion not detected sooner by the wider wheat community? The original W7984 X 

Opata crosses were developed in the early 1990s and were later reconstructed and 

expanded in 2011 (Sorrells et al., 2011). The re-released population was genotyped 

with SSR and DArT markers, which are scored for the presence or absence of genomic 

fragments and would not have alerted researchers to the segregation of chromosome 
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arm 5AS. When the SynOpDH high-density GBS marker genetic map was developed 

in 2012 there was no reference genome available to flag that none of the markers 

mapped to chromosome arm 5AS (Poland et al., 2012). Our research group first 

noticed an anomaly on chromosome arm 5AS when we were unable to identify 

genome and chromosome arm specific polymorphic sites among the parent line 

exome-capture and regulatory-capture sequence for KASP marker development. In 

2019, the dense GBS linkage maps created by Gutierrez-Gonzalez et al. confirmed the 

significant structural variation of chromosome arm 5AS. It is also worth noting that 

many SynOp studies relied on a subset of either mapping population and may not have 

had a high enough frequency of the missing arm to detect the abnormality or were not 

focused on chromosome 5A. We urge previous studies involving SynOp populations 

and group 5 chromosomes to consider implications of chromosome arm 5AS structural 

variation on their results and recommend a list of SSR markers for any future studies 

that need to characterize SynOp entries not included in our current study 

(Supplementary file_S2.11.csv).  

 

Why did QTgw.cnl-5A map to chromosome arm 5AL? 

Fundamentally, our positional cloning difficulties began with a QTL that 

mapped to the wrong chromosome arm. Our SynOpDH QTL map significantly 

associated markers on chromosome arm 5AL with grain weight and morphology 

across four environments, which is consistent with previous publications but 

inconsistent with our fine-mapping results (Breseghello and Sorrells, 2006; Williams 

et al., 2014). Even when we were prompted by the findings of (Gutierrez-Gonzalez et 
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al., 2019) to add a chromosome arm 5AS structural variation marker to the genetic 

map, QTgw.cnl-5A still presented on the long arm. Potentially, R/qtl is insensitive to 

chromosome arm 5AS presence or absence because the QTgw.cnl-5A causal variant is 

very near the centromere or part of the W7984 chromosome arm 5AS thirteen Mbp 

segment, but none of the genes in this region were differentially expressed. The lack 

of phenotypic resolution for quantitative traits like TGW and GW in the SynOpDH 

background may have also reduced our power to detect the association with 

chromosome arm 5AS, as seen among the minimal DH chromosome arm 5AS and 

QTgw.cnl-5A haplotype recombinants (Supplementary script_S1.md). Alternatively, 

the genetic map of GBS and SSR markers on chromosome arm 5AL may not be 

genome specific and false recombination events placed QTgw.cnl-5A on chromosome 

arm 5AL. Finally, as we observed across QTgw.cnl-2D, QTgw.cnl-5A, and QTgw.cnl-

6A, GL and GW can independently influence grain weight. Although the GW 5A QTL 

spanned the centromere, because of its overlap with QTgw.cnl-5A we considered the 

difference in GW and TGW to be a pleiotropic effect. Collectively, these results 

encouraged us to develop a fine-mapping population targeting QTgw.cnl-5A on 

chromosome arm 5AL. 

 

Candidate genes for yield components  

Grain yield is a key economic driver behind the success of wheat production 

and the value chain. However, grain yield is determined at the end of plant growth and 

is directly or indirectly impacted by all genes. Balancing the mechanisms driving the 

source tissue growth, the number of grains produced by a plant, and the weight of 



 

49 

those grains are a key challenge for breeders as the constituent yield components 

compete for resources. Notably, in this study we have identified a positive 

combination among five traits (HT, SPS, TGW, GL, and GW) under independent 

genetic control on Opata chromosome arm 5AS. Phenotypic variation associated with 

chromosome arm 5AS structural variation, significant differential expression during 

early grain development, GO terms, and orthologs were leveraged to identify nine 

candidate genes that may impact spike or grain development (Table 2.4). Ultimately, 

the genomic resolution of this study was limited by presence/absence structural 

variation and it is premature to conclude that any of the nine candidate genes 

contribute to the observed spikelet and grain morphology variation. Independent 

knockout studies of each candidate gene in HIF entries with Opata chromosome arm 

5AS are necessary for functional validation. A discussion of each candidate gene 

follows.  

Among the DEGs we identified TraesCS5A02G025900, an ortholog to 

Arabidopsis gene YAB2 and rice gene YAB6, which regulate abaxial cell fate in leaf, 

sepal, petal, stamen and carpel primordia (Siegfried, 1999). In Arabidopsis, YAB2 acts 

redundantly with the larger YABBY gene family, and single loss-of-function plants 

exhibited no measurable organ polarity defects (Stahle et al., 2009). There are 21 

YABBY genes subdivided into six families in wheat but functional validation studies 

and phenotypic associations remain unexplored (Buttar et al., 2020). Given the 

functional redundancy identified in Arabidopsis, and large gene family in wheat, the 

loss of TraesCS5A02G025900 (TaYABBY5-5A) in our study was likely masked by 

gene family copies.  
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Another candidate gene that may impact wheat spike inflorescence 

development is TraesCS5A02G037100. TraesCS5A02G037100 is orthologous to 

Arabidopsis gene PID, and rice and maize gene BIF2, which are involved in 

inflorescence organogenesis (Benjamins et al., 2001; McSteen et al., 2007; He et al., 

2019b). While loss-of-function plants in maize produced fewer spikelets and florets, 

rice did not suffer from flower initiation defects and indicated BIF2 function is likely 

veiled by redundant partners (He et al., 2019b). TraesCS5A02G037100 has not been 

associated with SPS in wheat outside of our chromosome arm 5AS structural variation 

study. 

TraesCS5A02G103800 is orthologous to Arabidopsis RING domain Ligase 

genes RGLG1 and RGLG2, which modulate the directional flow of auxin (Yin et al., 

2007). While single mutants in either gene have no apparent phenotypic effect, double 

mutant plants exhibit loss of apical dominance and altered phyllotaxy. 

TraesCS5A02G103800 and homoeologous gene copies may harbor hidden variation 

regulating spike development in wheat. 

TraesCS1A02G103900 is orthologous to IKU2, a gene involved in endosperm 

growth and seed development signaling pathways (Luo et al., 2005). The RefSeq v1.1 

annotation maps TraesCS1A02G103900 to chromosome 1A, however our results 

indicate this gene was misannotated and maps to chromosome 5A. SHB1, IKU1, IKU2 

and MINI3 function in the same signaling pathway to control seed size in Arabidopsis, 

and loss of any gene can reduce seed size (Li and Li, 2016). Loss of the IKU2 wheat 

ortholog impact on grain size remains to be functionally validated outside of our 

chromosome arm 5AS structural variation study.  
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TraesCS5A02G030300 is orthologous to protein phosphatases with Kelch-like 

domains (PPKL) genes BSL2 & BSL3 in Arabidopsis, and OsPPKL3 in rice (Kim et 

al., 2018). PPKL are known positive effectors of brassinosteroid signaling in plants, 

and brassinosteroid has been shown to regulate seed size and shape in Arabidopsis 

(Jiang et al., 2013). OsPPKL3 and its homolog OsPPKL1 are negative regulators of 

grain length, but rare allelic variation is associated with extra-large grains and 

increased yield (Zhang et al., 2012). The wheat ortholog to OsPPKL1, TaGL3-5A, is 

associated with longer grain length and has been functionally validated, suggesting 

TraesCS5A02G030300 may be a strong candidate for exploring allelic diversity and 

association mapping (Yang et al., 2019).  

Another potential grain size regulator is TraesCS5A02G038300, or TaARF14, 

which is orthologous to auxin response factor (ARF) ARF6 in Arabidopsis, and 

OsARF25 in rice (Nagpal et al., 2005; Zhang et al., 2018b; Xu et al., 2020). Dosage 

effects among ARF knockouts in Arabidopsis found that ARF6 impacts the timing of 

flower maturation. OsARF25 has been functionally validated in an auxin signaling 

pathway where it binds to the promoter of OsERF142, a positive regulator of cell 

expansion and ultimately grain length (Zhang et al., 2018b). A recent comprehensive 

atlas of wheat ARF gene expression suggests TaARF14 is required to promote stamen 

development, but functional validation outside of chromosome arm 5AS structural 

variation remains to be determined.  

TraesCS5A02G106400, TaDGK5A, is the wheat ortholog of the Arabidopsis 

gene DGK2, a diacylglycerol kinase essential for reproductive organ development 

(Angkawijaya et al., 2020). There are seven DGK genes in Arabidopsis which 
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cumulatively contribute to phospholipid signaling and three are known to impact 

gametogenesis. A recent pre-print of wheat DGK2 genomic and expression profiles 

identified 20 genes and their upregulated expression in root tissues under salt and 

drought stress (Jia et al., 2020). The study did not sample grain tissue for 

transcriptome analysis. The larger TaDGK family likely masked a phenotypic 

response to loss of chromosome arm 5AS TaDGK5A in our HIF population and 

functional validation of TaDGK genes in wheat is an outstanding area of research.  

Meiotic and mitotic cell divisions are elevated during flowering plant 

reproductive growth and organogenesis. Among the DEGs we identified 

TraesCS5A02G110600, an ortholog to Arabidopsis and rice subunit 6 of the augmin 

complex, which is responsible for microtubule nucleation during cell divisions (Hotta 

et al., 2012; Oh et al., 2016). Knockdown lines of AUG6 in Arabidopsis disturbed 

mitotic and meiotic cell divisions due to malformed microtubule arrays, and effected 

both male and female gamete development (Oh et al., 2016). Functional validation of 

genes that affect gamete development is challenging due to homozygous lethality. An 

alternative approach to studying the effect of TraesCS5A02G110600 on HIF entries 

could be to measure cell size and number of developing grains, which has previously 

been associated with grain morphology variation in wheat (Brinton et al., 2017).  

Given the dramatic genomic structural variation and relatively few variable 

visual phenotypes in the HIF population, there is likely more phenotypic variation than 

what meets the eye. For example, TraesCS5A02G107800 orthologs VTC2 and VTC5 

in Arabidopsis, and OsGGP in rice catalyze the first step in the ascorbate (AsA) 

biosynthetic pathway (Gao et al., 2011; Höller et al., 2015; Lim et al., 2016). AsA is 
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an essential signal-transducing molecule for regular plant development, and loss-of-

function OsGGP plants have significantly reduced biomass (80% loss), panicle 

number, and panicle weight. Knockout VTC2 and VTC5 plants and AsA deficiency 

have been associated with reduced growth by some studies, or more recently with an 

independent cryptic mutation (Gao et al., 2011; Lim et al., 2016). While we did not 

detect biomass variation on the order of magnitude measured in rice, hidden variation 

or homoeologous masking is likely at play. A future study of signal-transducing 

molecule concentrations or hormone panels of the HIF population would likely unveil 

additional candidate genes. 

 

Wheat positional cloning recommendations 

Positional cloning in wheat has lagged behind the progress made in other 

staple crops in large part due to the redundant polyploid genome’s masking of 

quantitative variation and the delayed availability of an annotated genome sequence. 

Even in an isogenic background the missing chromosome 5A short arm was associated 

with only subtle phenotypic variation. Wheat deletion lines are classically associated 

with aberrant morphological variation or infertility, but our results demonstrate that 

large structural variation can go undetected for years, across environments, research 

projects, and lab groups. Recent studies of fifteen bread wheat cultivar genome 

assemblies showed that only 59% of each cultivar’s genome was identical-by-state 

with other sequenced cultivars and detected extensive genomic rearrangements, 

underscoring the structural diversity of wheat (Brinton et al., 2020; Walkowiak et al., 

2020). Our study illustrates that approaching positional cloning based on stable and 
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robust biparental QTL mapping may overlook some hurdles unique to wheat’s 

resilient polyploid genome. If one is going to invest the considerable resources 

necessary for successful positional cloning in wheat, or other polyploid crops, we 

propose the following recommendations: 

• Move from a SNP to haplotype-based approach to identify genetic 

diversity. Genetic markers are often associated with a trait of interest but are 

not causal. In a fine-mapping context this can overlook linkage, especially with 

broad genomic regions spanning the centromere such as the GW 5A QTL, and 

result in selection of false-positives (Platten et al., 2019). Haplotype blocks can 

identify genetic structural variation more comprehensively and precisely, as 

demonstrated by the recent release of fifteen cultivar genome assemblies and 

accompanying visualization platform (Brinton et al., 2020; Walkowiak et al., 

2020). Exome sequence capture data are available for far more wheat cultivars 

than genome assemblies, but safeguards need to be in place to detect and flag 

structural variation, for example in W7984 exome and regulatory-capture 

(Gardiner et al., 2019; He et al., 2019a).  

• Invest in sequencing to detect structural variants. While the cost of whole 

genome sequencing in wheat is not yet feasible for individual breeding 

programs, long-read sequencing and greater fold coverage (e.g., 10) has 

become increasingly affordable. Longer sequencing reads can detect even 

small- (30 – 10,000 bp) to mid-scale (10,000 – 30,000 bp) structural variants, 

which impact trait diversity and are shown to be widespread in polyploid 

species (Gabur et al., 2019; Mahmoud et al., 2019; Chawla et al., 2021). For 
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example, a recent study of Brassica napus L. found that up to 10% of all genes 

were affected by small- to mid-scale structural variants, including flowering-

time pathway genes which can influence agronomic traits (Chawla et al., 

2021). Obtaining long-read sequencing (small- to mid-scale structural variants) 

or 10-fold coverage (large-scale structural variants) of parental lines for a 

mapping population could become a pre-requisite first-step in positional 

cloning population development.  

• Use the transcriptome to identify candidate genes. RNA-seq of isogenic 

material can identify differential expression and coding region allelic variation. 

This method alerted us to variants of interest arguably faster than pursuing 

additional HIF recombinants in the QTgw.cnl-5A ten Mbp region. 

Measurements across multiple timepoints (ie. > five) can open the door to 

developing gene networks for candidate gene discovery (Borrill et al., 2020). It 

is also notable that wheat transcriptome studies have reported large-scale 

structural variants, including inter-homoeolog exchanges (He et al., 2017). 

• Traits with broad overlapping QTL may not be pleiotropic. The traditional 

yield components (spikes/ m2, grain number/spike, and grain weight) are 

polygenic traits themselves. For example, in our study we showed that GL and 

GW can independently contribute to TGW. However, our hypothesis that a 

gene contributing to GW drove the TGW variation on chromosome arm 5AL 

overlooked the association with GW and chromosome arm 5AS. Eventually, in 

an isogenic background we identified additive and hidden phenotypic variation 

associated with structural variation, rather than a single gene. Another recent 
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example that has disrupted pleiotropic assumptions based on single-marker 

trait associations was identified in a highly conserved region of chromosome 

6A with a haplotype-led approach (Brinton et al., 2020). 

 

With an annotated reference genome and advancing gene editing techniques, 

positional cloning in wheat may become routine but pinpointing quantitative 

phenotypic variation and causal genomic loci requires a more tactical approach in 

polyploids. Incorporating strategies that are sensitive to structural variation with 

classic positional cloning population development approaches will reduce the 

likelihood of mapping in the wrong direction. Fewer roadblocks to identifying a 

candidate gene will also lead to more efficient selection from mutant/TILLING 

populations or transgenic approaches during sequencing and functional validation 

(Krasileva et al., 2017). A comprehensive review of the latest advances of genomics 

and phenomics for trait discovery in polyploid wheat and gene functional 

characterization is given in (Borrill et al., 2018) and (Adamski et al., 2020) 

 

Conclusion  

The outcomes of this research challenge whether a causal gene variant 

approach to characterizing wheat grain yield components offers an efficient and 

sustainable path to genetic gains and food security. We set out to identify the causal 

variant underlying a previously characterized grain weight and morphology QTL, 

QTgw.cnl-5A, using a well vetted positional based cloning approach. We leveraged a 

HIF population, SNP genomic data, phenotypic associations, early grain development 
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expression profiles, and predicted gene function to determine that QTgw.cnl-5A was a 

result of strong LD with chromosome arm 5AS presence and absence (SynOpDH r2 = 

0.95, HIF r2 = 0.91). Our results highlight that chromosome structural variation 

linkages can overpower the considerable resources required for positional cloning, and 

that wheat harbors hidden phenotypic variation. Chromosome structural variation is 

common in among polyploids, and the results and recommendations presented will be 

immensely useful for aiding future causal variant discovery. We also identified nine 

candidate genes on chromosome arm 5AS that may impact yield components, 

however their practical application to breeding remains to be functionally validated. 

Given the resources required for individual gene validation, uncertain impact on final 

grain yield, and unknown response in a different genetic background, we argue that 

causal variant discovery for a complex quantitative trait like wheat yield requires an 

update to traditional positional based cloning approaches. Altogether, our findings 

demonstrate the phenotypic resiliency associated with polyploid genomic structural 

variation and provide recommendations for variant discovery strategies.   
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CHAPTER 3 

 

COUNTING ON CROSSOVERS: CONTROLLED RECOMBINATION FOR 

PLANT BREEDING 2 

 

Abstract 

Crossovers, the genetic exchange between homologous chromosomes, are strongly 

biased toward sub-telomeric regions in plant species. Manipulating the rate and 

positions of crossovers to increase the genetic variation accessible to breeders is a 

longstanding goal. Use of genome editing reagents that induce double-stranded breaks 

or modify the epigenome at desired sites of recombination, and manipulation of 

crossover factors, are increasingly applicable approaches for achieving this goal. 

These strategies for ‘controlled recombination’ have the potential to reduce the time 

and expense associated with traditional breeding, reveal currently inaccessible genetic 

diversity and increase control over inheritance of preferred haplotypes. Considerable 

challenges to address include translating knowledge from models to crop species and 

determining best stages of the breeding cycle to control recombination. 

 

 

 

2 Originally published as Taagen, E., Bogdanove, A. J. & Sorrells, M. E. (2020). 

Counting on Crossovers: Controlled Recombination for Plant Breeding. Trends in 

Science. https://doi.org/10.1016/j.tplants.2019.12.017 
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Counting on Crossovers  

Plant breeders rely on natural recombination of genetic information during 

crossovers (COs) to generate novel and favorable haplotypes. A minimum of one CO 

for each chromosome pair, termed the obligate CO, is required for proper segregation, 

and rarely three COs are exceeded per meiosis (Chelysheva et al., 2010; Mercier et al., 

2015). In addition to their frequency being tightly regulated, distribution of COs is 

uneven along chromosomes, regardless of the genome size (Higgins et al., 2014; 

Darrier et al., 2017; Wang & Copenhaver, 2018). The frequency and position of COs 

govern a breeder’s ability to disrupt linkage drag, that is, to incorporate novel genetic 

variants without simultaneously introgressing large segments from a donor 

chromosome. The low-frequency and patterning of COs has traditionally required 

breeders to work with large populations over many generations to capture desirable 

haplotypes. Manipulation of pro and anti-CO factors, and use of site-directed 

nucleases and epigenetic modifiers are a novel and increasingly applicable approaches 

for manipulating recombination or CO frequency and distribution (Hayut et al., 2017; 

Corem et al., 2018; Fernandes et al., 2018b; Mieulet et al., 2018; Serra et al., 2018; 

Underwood et al., 2018). We refer to the use of these approaches collectively as 

‘controlled recombination’. Controlled recombination has the potential to reduce cost 

and time for high resolution mapping to identify genes of interest. Likewise, it may 

facilitate reintroduction of genetic variance at sites of selective sweeps and 

introgression of diverse alleles from wild crop relatives for varietal development (Tam 

et al., 2011; Presting, 2018; Rey et al., 2018). In this opinion piece, we review the 

mechanisms underlying recombination and CO patterns in plants in the context of how 



 

73 

they can or might be manipulated, and discuss how controlled recombination could be 

directly applied to crop breeding programs. Important questions and technical hurdles 

that need to be addressed before the full potential of controlled recombination of plant 

breeding can be realized are also presented.  

 

DNA double-stranded breaks and regulation of COs in plants 

 DNA double-stranded breaks (DSBs) are the precursor to a reciprocal genetic 

exchange between homologous chromosomes. During prophase I of meiosis, hundreds 

of DSBs occur along the chromosomes, catalyzed by the evolutionarily 

conserved SPORULATION-DEFICIENT11 (SPO11) protein and several other 

associated proteins (Keeney et al., 1997; Wang & Copenhaver, 2018). Homologous 

recombination (HR) mediated repair of a DSB can result in COs or non-crossovers 

(NCOs) (Wang & Copenhaver, 2018). The two recombinases RAD51 and Disrupted 

Meiotic cDNA1 (DMC1) assist the 3’ single-strand DNA ends of DSBs to invade 

either the intact sister chromatid or homologous chromosome for a repair template 

(Lao et al., 2013; Brown & Bishop, 2014; Singh et al., 2017; Wang & Copenhaver, 

2018). This invasion forms a D-loop intermediate and is primed for DNA synthesis 

using the complementary strand of the invaded chromatid as a template. At this stage 

the predominant repair mechanism in plants is for the extended invading strand to 

disassociate and re-anneal to the other end of the original DSB, called synthesis 

dependent strand annealing (SDSA), which results in NCOs (Wang & Copenhaver, 

2018). Alternatively, DNA synthesis proceeds, then second-end capture and double 

Holliday junction (dHJ) intermediates facilitate reciprocal exchange of DNA between 
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homologous chromosomes, forming a CO (Figure 3.1) (Wang & Copenhaver, 2018). 

There are two independent pathways that promote CO formation in plants: the major 

Class I pathway, which is sensitive to interference, and the minor Class II pathway, 

which is insensitive (Copenhaver et al., 2002; De Los Santos et al., 2003; Wang & 

Copenhaver, 2018). In addition, there are at least three independent pathways that 

suppress COs (Table 3.1). Together, pro and anti-CO pathways in plants usually result 

in one to three crossovers per chromosome per meiosis (Mercier et al., 2015). For a 

comprehensive review of meiotic recombination in plants see (Wang & Copenhaver, 

2018). 

 

Figure 3.1 

Figure 3.1: Given a region of heterozygous homologous chromosomes there are 

various tools and approaches that can be applied to stimulate COs during meiotic 

recombination. Arabidopsis plants with loss of non-CG methylation and H3K9me2 are 

known to have increased DSBs and COs genome-wide, and notably within 

pericentromeric regions (Underwood et al., 2018). Disruption of any of the three 
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characterized anti-CO factors, RECQ4, FANCM, and FIGL1, through targeted 

knockouts or knockdowns offers ways to increase COs 2-3 fold in plants (Mieulet et 

al., 2018). Using a site-directed nuclease such as Cas9, or fusions of epigenetic 

modifiers or proteins like SPO11 to site-specific DNA binding reagents (e.g. dCas9; 

see text), allows for precisely targeted stimulation of recombination and increased rate 

of COs (Sarno et al., 2017). The CRISPR-Cas9 system itself is also an attractive 

method for programmed positions of DSBs via the Cas9 nuclease (Sadhu et al., 2016; 

Hayut et al., 2017). Mutating genes involved in homoeologous pairing pathways has 

been proposed as a method for encouraging COs between more distant crop relatives 

(Tam et al., 2011; Rey et al., 2018). For a comprehensive review of plant meiotic 

recombination see (Wang & Copenhaver, 2018). This figure was created using 

BioRender (https://biorender.com/). 

 

Factor Interactions Anti-CO mechanism References 

RECQ4 

Forms the BTR 

complex with 

TOP3α & RMI1 

Unwinds D-loops to suppress 

Class I COs  

(Lande & Thompson, 1990; 

Hartung & Puchta, 2006; Hartung 

et al., 2007; Fasching et al., 2015; 

Séguéla-Arnaud et al., 2015; 

Fernandes et al., 2018b; Mieulet 

et al., 2018; De Maagd et al., 

2019)  

FANCM  

Direct DNA-binding 

cofactor with MHF1 

& MHF2  

May unwind D-loops, limits 

Class II COs & promotes 

SDSA 

(Crismani et al., 2012; Girard et 

al., 2014, 2015; Fernandes et al., 

2018b) 

FIDGETIN-

LIKE-1 

(FIGL1)  

Forms complex with 

FIDGETIN-LIKE-1 

INTERACTING 

PROTEIN (FLIP), 

suppress RAD51 & 

DMC1 

Constrains strand invasion  
(Girard et al., 2015; Fernandes et 

al., 2018a; b; Mieulet et al., 2018) 

Table 3.1 

Table 3.1: Conserved anti-CO factors, studied in Arabidopsis, rice, pea & tomato 

 

Genome editing tools for controlled recombination  

Given that COs determine the amount of genetic diversity accessible to 

breeders, manipulation of both meiotic and somatic recombination frequency and 

patterning is a longstanding research focus. The focus of many plant and animal 

breeders is quickly turning to precision genome editing tools such as zinc-finger 

nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and the 

https://biorender.com/
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CRISPR-Cas system (Klug, 2010; Bogdanove & Voytas, 2011; Jiang & Marraffini, 

2015), or variants of these fused to base editors, epigenetic modifiers or other proteins, 

to manipulate recombination frequency and patterns through DSB mutations (Sadhu et 

al., 2016; Hayut et al., 2017; Sarno et al., 2017; Mieulet et al., 2018). In addition to 

their high specificity, these reagents can be designed (e.g., TALENs) or multiplexed 

(e.g., CRISPER-Cas) to simultaneously target multiple copies of a gene, which is 

particularly useful for breeding polyploid crops with homoeologous gene copies. The 

growing collection of tools can be used to target DSBs or epigenetic modifications to 

sites of desired recombination or to perturb pro or ant-CO pathway genes (Figure 3.1). 

Simulations of controlled COs facilitated by such tools for inbred and hybrid crops as 

well as livestock predict doubling of genetic gain in a single breeding cycle (Bernardo, 

2017; Gonen et al., 2017; Brandariz & Bernardo, 2019; Ru & Bernardo, 2019). A 

seminal study of controlled recombination using CRISPR-Cas based editing has been 

conducted in yeast (Saccharomyces cerevisiae Hansen), and included the development 

of high resolution genetic mapping populations from a single mitosis (Sadhu et al., 

2016). Many DNA repair proteins are conserved across eukaryotes, yet pathway 

preference and efficiency differ between yeast and plants. To date, successful plant 

breeding applications of controlled recombination using genome editing tools have 

been directed at tomato fruit color quality traits via germinally transmitted targeted 

somatic HR (Hayut et al., 2017). Thus, while the yeast and initial plant studies suggest 

exciting potential for controlled recombination in plant breeding using genome editing 

tools, the extent to which this potential will be fully realized is yet to be determined, 

and more research is warranted.  
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Manipulation of CO frequency 

 A particularly attractive method of increasing the frequency of COs is to knock 

out CO suppression genes, several of which are listed in Table 3.1. In rice (Oryza 

sativa L.), pea (Pisum sativum L.) and tomato (Solanum lycopersicum L.), knockouts 

of orthologs of three anti-CO pathway associated genes, originally characterized in 

Arabidopsis, generated by CRISPR-Cas9 or by TILLING dramatically increased the 

recombination and CO rate (Mieulet et al., 2018). For example, mutation of recq4 

orthologs increased COs nearly three-fold compared to WT among these species. 

Notably however, homozygous knockout of FIGL1 in tomato and pea caused sterility, 

highlighting the sometimes challenging nature of translating findings from model to 

crop species (Mieulet et al., 2018). Some anti-CO genes may have pleiotropic effects. 

For example, MEICA1, a recently identified anti-CO factor in rice, was found to be 

essential for normal meiotic recombination (Hu et al., 2017). Though meica1 rice 

plants showed increased frequency of COs, they also exhibited nonhomologous 

chromosome associations, chromosome fragmentations, and high rates of sterility, 

which limit practical breeding applications (Hu et al., 2017).  

 RECQ4, FANCM and FIGL1 regulate HR by different mechanisms and their 

anti-CO effects have been observed to be synergistic in plants (Table 3.1, Figure 3.1). 

A comparison study disrupting one, two or all three pathways in pure lines and hybrid 

Arabidopsis plants reported the greatest increased CO effect with combined figl1 and 

req4 mutations (Fernandes et al., 2018b). Arabidopsis plants with figl1 and flip 

mutations exhibited greater meiotic recombination and a substantially greater number 
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of RAD51and DMC1 foci on chromosomes compared to WT (Fernandes et al., 

2018a). A double mutant of FIGL1 and FANCM showed a synergistic increase in CO 

formation compared to the single mutants and WT, suggesting that FIGL1 acts in 

concert or sequentially with FANCM to limit COs (Girard et al., 2015). Further 

supporting independent mechanisms of CO regulation by FIGL1 and FANCM, figl1 

increased CO frequency in inbred lines and F1 hybrids, while fancm led to significant 

CO increase only in inbred lines, though the synergistic effect was observed in both 

inbreds and F1 hybrids (Girard et al., 2015). Additionally, Class I CO frequency can 

be manipulated by over expressing pro-crossover E3 ligase gene HEI10  (Ziolkowski 

et al., 2017). In Arabidopsis, increasing copies of HEI10 and knocking out RECQ4A 

and RECQ4B additively leads to a 5-fold and 1.5-fold increase in meiotic 

recombination in the chromosome arms and pericentromeric heterochromatin, 

respectively (Serra et al., 2018).  

In a breeding program context, manipulating expression of pro and anti-CO 

genes may be an efficient method for increasing CO frequency during pre-breeding 

(Figure 3.1 & 3.2A). Beyond the pre-breeding stage though an increased CO 

frequency could be problematic for elite line development. Suppression of the elevated 

CO may be necessary, for example via doubled-haploids or as demonstrated in reverse 

breeding (Figure 3.2B) (Wijnker et al., 2012).  
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Figure 3.2 

Figure 3.2: Plant breeding involves recurrent cycles of plant generation, evaluation, 

and selection for genetic improvement resulting in an eventual varietal release. 

Throughout the breeding cycle, applying controlled recombination tools such as 

CRISPR-Cas9 and SPO11-dCas9 for induced DSB or knockouts of H3K9me2 and 

non-CG DNA methylation, homoeologous pairing pathways, or anti-CO genes, has the 

potential to improve genetic gains and reduce the time and cost associated with a 

traditional breeding program (Sadhu et al., 2016; Hayut et al., 2017; Sarno et al., 2017; 

Mieulet et al., 2018; Rey et al., 2018; Underwood et al., 2018; Xue et al., 2018). 

Controlled recombination may accelerate the identification of genes and beneficial 

haplotypes and can be used to improve existing elite cultivars. (A) Manipulating 

recombination may improve pre-breeding by reducing the number of individuals and 

generations necessary for high resolution mapping and identification of genes of 

interest, especially in wild relatives of a crop. (B) Parent selection is a critical decision 

for breeders, and controlled recombination may facilitate optimal recombination of 

linkage groups into a single haplotype. For inbred and hybrid crops, it may be 

advantageous to suppress recombination after desired haplotypes are achieved through 

doubled-haploids or reverse breeding (Wijnker et al., 2012). (C) Some controlled 

recombination methods increase the frequency of DSBs whereas others silence CO 

inhibitors, and the CO efficiency will vary. The breeder can select true COs with the 

optimal combination of marker effects or null segregants. (D). Beneficial causal 

variants identified in controlled recombination experiments might be rapidly and 

precisely introduced with genome editing reagents, such as CRISPR-Cas9, to improve 
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existing elite cultivars. This figure was created using BioRender 

(https://biorender.com/). 

 

 

Controlled somatic recombination  

Repair of spontaneous DSBs continue throughout the plant life cycle in 

somatic cells. Although non-homologous end joining (NHEJ) is the predominant 

repair pathway in somatic cells, controlled DSBs can induce HR between homologous 

chromosomes (Hayut et al., 2017) or between repeats (Puchta, 1999). Induced DSBs 

and recombination in somatic cells should be explored for direct application by 

breeders (Sadhu et al., 2016; Hayut et al., 2017).  

Fine-mapping of causal genetic variants is limited by COs that disrupt linked 

markers, which has traditionally required thousands of gametes and multiple 

generations to achieve (Zhu et al., 2008). In the yeast study cited earlier, mapping 

panels were built by stimulating HR during mitosis using CRISPR-Cas9 induced 

DSBs (Sadhu et al., 2016). Three gRNAs were designed to target heterozygous sites 

across a 2.9 kb manganese-sensitivity QTL on chromosome 7 in biparental diploid 

cells. During a single mitosis, CRISPR-Cas9 induced DSBs resulted in sufficient COs 

and loss-of-heterozygosity to identify the causal variant for manganese-sensitivity 

among 358 lines. The authors note that producing an equivalent number of COs across 

this locus by random meiotic segregation would have required more than 7,500 lines 

(Sadhu et al., 2016). In the tomato fruit color study, a fruit color assay was used to 

measure NHEJ versus HR events from CRISPR-Cas9 targeted somatic cell DSBs in 

the PHYTOENE SYNTHASE (PSY1) gene, which is implicated in carotenoid 

accumulation (Hayut et al., 2017). This method achieved 14% greater HR at DSBs 

https://biorender.com/
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compared to WT (Hayut et al., 2017). Together, the two studies underscore the fact 

that allele-specific DSBs and HR can occur outside of meiotic COs and that 

recombination in somatic cells could be explored in a breeding context. More work 

must be done to determine how broadly applicable this approach could be to different 

crop species. 

 

Fine tuning introgressions of wild germplasm  

Introgression of genetic material from wild crop relatives has been a valuable 

approach to capture allelic diversity for breeding programs, especially for disease 

resistance (Badaeva et al., 2007; Faris et al., 2008; Ren et al., 2017; Mammadov et al., 

2018). Yet, because COs are suppressed between divergent sequences, a high degree 

of linkage-drag associated with such introgression has limited its practical application 

(Mammadov et al., 2018). However, manipulation of DNA mismatch repair and 

homologous chromosome pairing mechanisms can increase COs during meiosis in 

hybrids of elite and wild germplasm (Tam et al., 2011; Rey et al., 2018). A nearly 18% 

increase in CO frequency for an introgression from wild tomato (Solanum 

lycopersicoides L) into a cultivated tomato (Solanum lycopersicum L) was facilitated 

by silencing the DNA mismatch repair system that suppresses homoeologous 

recombination (Tam et al., 2011). Silencing in this study was achieved by RNA 

interference (RNAi), but could just as well be achieved today using fusions of 

nuclease-deactivated Cas9 (dCas9) to transcriptional repressors, also known as 

CRISPR interference, or CRISPRi (Tam et al., 2011; Lowder et al., 2017). In a recent 

study, active CRISPR-Cas was successfully used to promote homoeologous COs in an 
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interspecific hybrid between wild and cultivated tomato by knockout of the anti-CO 

gene RECQ4 (De Maagd et al., 2019). A related approach was effective in 

allopolyploid wheat (Triticum aestivum L.). Recombination between homoeologous 

chromosomes in wheat is suppressed by the Pairing homoeologous 1 (Ph1) locus, 

resulting in diploid-like behavior during meiosis (Rey et al., 2018). It was recently 

determined that the major CO gene ZIP4 is located at the Ph1 locus, and its disruption 

in hexaploid wheat with CRISPR-Cas led to significantly increased homeologous CO 

frequency in hybridizations with rye (Rey et al., 2018). In addition to these 

experimental studies, simulations of controlled recombination in soybean for 

introgressing exotic germplasm into elite cultivars have also been promising [S. Ru 

and R. Bernardo, bioRxiv 701987 unpublished]. Simulated crosses of seven exotic 

soybeans (Glycine max L) to the elite line IA3032 predicted that introgressions of 

specific chromosome segments facilitated by controlled recombination could boost 

yields 8-25% over the IA3032 yield, while the best predicted recombinant inbred lines 

produced without controlled recombination from each biparental cross had negative or 

negligible yield gains over IA3032 [S. Ru and R. Bernardo, bioRxiv 701987 

unpublished]. Though work needs to be done to better understand regulatory 

mechanisms for chromosome pairing across species, the further development of 

strategies to increase CO frequency between elite and wild relatives in different crops 

has exciting potential for increasing genetic gain and accelerating finer introgressions 

of diverse alleles for breeding (Figure 3.2). 
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Enhancing recombination in heterochromatic regions 

COs occur at low and variable rates along chromosomes, and this limits the 

genetic variation captured during a breeding cycle. In most organisms DSBs can occur 

across the entire chromosome, but 80% of COs are concentrated in approximately 

25% of the genome (Blary & Jenczewski, 2019; Fernandes et al., 2019). 

Recombination “hotspots” occur most often in the gene promoters and terminators in 

regions of euchromatin (Choi et al., 2018). How specific sites become recombination 

hotspots is an active area of research. Hotspots can be suppressed by DNA 

methylation (Shilo et al., 2015; Yelina et al., 2015; He et al., 2017; Corem et al., 

2018). Genome-wide DSB maps in yeast, Arabidopsis and maize (Zea mays L.), 

indicate that chromatin accessibility contributes substantially to DSB formation (He et 

al., 2017; Tock & Henderson, 2018; Wolde et al., 2019).  

 Most plant species have strong CO frequency biases away from the 

heterochromatic centromere and telomeres (Higgins et al., 2014; Fernandes et al., 

2019). Suppression of COs in proximity to the centromere is in part due to the 

centromere’s conserved kinetochore assembly function, as centromeric COs have been 

associated with increased rates of mis-segregation and aneuploidy in multiple species 

(Fernandes et al., 2019). Recombination “cold regions” are typically associated with 

inaccessible chromatin and epigenetically silenced pericentromeric regions, although 

this gradient varies across crop species. For example, 82% of COs are concentrated on 

the distal ends of wheat chromosome 3B, 19% of the chromosome total length 

(Darrier et al., 2017). In maize, genes near the centromere are prone to selective 

sweeps due to extremely low rates of recombination and strong selection for specific 
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alleles (Presting, 2018). As much as 20% of the maize and barley (Hordeum vulgare 

L.) total gene content is located in pericentromeric regions, and this limits the pool of 

allelic diversity available to breeders (Consortium, 2012; Bauer et al., 2013). Cold 

regions pose additional challenges for breeders of outcrossing species as deleterious 

mutations are known to accumulate across low recombination regions (Rodgers-

Melnick et al., 2015). The practicality of breeding is directly linked to recombination 

patterns, and controlled recombination to expand the distribution of COs to cold 

regions would be a desirable approach to harness the power of selection.  

 A potential strategy to explore recombination in heterochromatic regions is 

manipulation of the positions of SPO11-induced DSBs. Plants have three SPO11 

paralogs (Kim & Choi, 2019) and transgenic Arabidopsis carrying SPO11-1 

hypomorphic alleles have fewer DSBs compared to WT, resulting in fewer COs and 

an altered distribution of COs (Xue et al., 2018). Notably, significantly fewer COs 

formed in pericentromeric regions of the transgenic plants, emphasizing the potential 

in future studies to control SPO11 DSB locations. Although yeast has very little 

heterochromatin, stimulation of meiotic COs at naturally low recombination regions 

was demonstrated by tethering SPO11 protein to zinc fingers, transcription activator-

like effectors or dCas9 (Sarno et al., 2017). Gene promoters and coding sequences 

previously identified as cold regions exhibited a 2.3-6.3-fold increase in COs, but no 

recombination was observed in gene terminators or centromeres (Sarno et al., 2017). 

Tethering genome editing reagents to SPO11 may prove to be a broadly applicable 

strategy for varying the location of DSBs and associated CO sites and should be 

explored in crop species for increasing the genetic diversity of gametes (Figure 3.1). 
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 Gene conversions (GCs) are another product of meiotic recombination and can 

help break up linkage groups (Wang & Copenhaver, 2018; Gardiner et al., 2019). 

Unlike COs, GCs are the result of the nonreciprocal transfer of short DNA segments 

between loci and they have been repeatedly observed across centromeric regions (Shi 

et al., 2010; Gardiner et al., 2019). The wheat RECQ7 gene, a recently identified 

homolog of the Werner syndrome helicase, appears to be a pro-recombination factor 

that controls GCs (Gardiner et al., 2019). Overexpression of RECQ7 or the expression 

of RECQ7 tethered to a genome editing reagent might be used to generate GCs across 

or at targeted locations anywhere within wheat chromosomes, overcoming the bias for 

recombination toward the chromosome arms to create useful new haplotypes 

(Gardiner et al., 2019). Identification and manipulation of homologs of RECQ7, or 

other genes that control GCs, may offer breeders and geneticists a way to enhance 

allelic diversity in heterochromatic regions in other crop species. 

 

Epigenetic modifications to control recombination 

Epigenomics is an emerging field offering further opportunities for plant 

breeders to manipulate trait variation. Changes to epigenetic marks can influence the 

rate and location of COs, but impact of epigenetic marks on pericentromeric meiotic 

recombination is not fully understood. In Arabidopsis, mutation of the genome-wide 

chromatin remodeler DECREASE IN DNA METHYLATION1 (ddm1), increases 

recombination in euchromatic regions but fails to induce recombination in pericentric 

regions despite demethylation (Melamed-Bessudo & Levy, 2012). The 

heterochromatin that surrounds the centromere in plants is epigenetically silenced by 
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histone 3 lysine 9 dimethylation (H3K9me2) and CG and non-CG DNA methylation 

(Underwood et al., 2018). Arabidopsis mutants of maintenance DNA 

methyltransferase, met1, have no CG methylation and limited H3K9me2 across 

heterochromatic regions, but the DNA remains tightly packed and inaccessible (Tariq 

et al., 2003). However, recently, combined loss of H3K9me2 and non-CG DNA 

methylation (with retention of CG-methylation) in Arabidopsis was shown to 

induce meiotic recombination near centromeres (Underwood et al., 2018). The authors 

note that pericentromeric COs in H3K9me2/non-CG mutants were present in inbred 

and hybrid plants and may represent both Class I and Class II COs. Why 

pericentromeric COs occur in H3K9me2/non-CG mutants but not ddm1 or met1 lines 

is not clear but ostensibly relates to the difference in CG methylation (Underwood et 

al., 2018). 

Despite the recent success of genome-wide epigenetic modification to enhance 

recombination in heterochromatic regions in Arabidopsis, whether this approach will 

translate to crops remains to be determined. Sensitivity to genome-wide modifications 

of methylation patterns varies across plant species. Use of CRISPR-Cas9 to knock out 

two orthologs of DDM1 in tomato resulted in severely altered vegetative and 

reproductive development (Corem et al., 2018). Extensive hypomethylation and 

developmental abnormalities were similarly observed in double mutants of the two 

DDM1 orthologs in maize and rice (Corem et al., 2018). Additionally, while in many 

eukaryotes’ sites of recombination have been associated with features of accessible 

chromatin features such as H3K4me3 sites, maize recombination hotspots do not 

match this pattern and poorly associate with H3K4me3 sites (Shilo et al., 2015; Yelina 
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et al., 2015; He et al., 2017). DNA sequence and shape have been reported to be 

predictive of COs throughout the plant kingdom using machine learning models, but 

which features are most predictive varies (Demirci et al., 2018). Taken together, 

current research suggests that genome-wide manipulation of epigenetic marks holds 

promise as a means to expand CO position and frequency in plant breeding, yet further 

research is needed to determine what modification strategies will be effective, and the 

answer may differ across species.  

Genome editing tools tethered to epigenetic modifiers to target activity to 

specific loci offer a potential alternative to genome-wide perturbation. In particular, a 

recent success in site-specific epigenome editing via dCas9 fusion to DNA and histone 

modifiers such as acetyltransferase or methyltransferase (Hilton et al., 2015; Vojta et 

al., 2016), hold promise for plant breeders to control recombination in a locus specific 

fashion and to improve CO frequencies across heterochromatin.  

 

CRISPR-Cas based approaches for understanding COs 

In addition to their use in genome and epigenome editing, tools based on  

CRISPR-Cas are being developed that will help decode the basic molecular 

mechanisms of meiosis and meiotic recombination in plants and identify stages for 

effective manipulation of CO formation. For example, live-cell CRISPR imaging with 

dCas9 and fluorescence-labelled proteins facilitated visualization of telomere 

movements in tobacco leaf cells (Dreissig et al., 2017). Further application of live-cell 

CRISPR imaging has the potential to guide future studies for more informed targeting 
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and conversion of DSBs to COs. Live-cell CRISPR imaging could also be used for 

visualizing how epigenetic tags affect meiosis. 

 

Practical considerations for controlled recombination in crop breeding  

 Efficient induction of, or selection for, recombination events at critical 

genomic positions would greatly enable breeders and geneticists. Simulations using 

data from multiple bi-parental crosses of self and cross-pollinated crops, including 

soybean, barley, wheat, pea and maize, have identified optimal recombination points 

from estimated genome-wide marker effects that would maximize genetic gain (Figure 

3.2) (Bernardo, 2017; Brandariz & Bernardo, 2019; Ru & Bernardo, 2019). Across all 

traits and populations, predicted genetic gain was greater for two controlled 

recombinations rather than one per chromosome. However, on a linkage group level, 

one controlled recombination outperformed two recombinations in 27% of the cases, 

and a parental genotype outperformed one or two controlled recombinations in about a 

third of all cases (Ru & Bernardo, 2019). The above simulation studies have yet to be 

tested ex silico, but in theory, the breeder could induce a desirable mitotic HR in tissue 

culture, screen plant cells for the ideal genotype, and induce doubled-haploids from 

regenerated plantlets.  

Breeders are often concerned with identifying sources of quantitative variation 

of a trait rather than knocking out genes (Rodríguez-Leal et al., 2017). The CRISPR-

Cas system has been widely used for knockouts in readily transformable species and 

genotypes, but whether it will be adopted for breaking up linkage drag and generating 

novel allelic variation in a breeding context remains unknown. It is important to note 
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that genetic transformation and tissue culture methods are not yet efficient or feasible 

in many crop species (Altpeter et al., 2016). Even within a crop species, such as 

wheat, tissue culture methodology can be genotype specific and restrict the 

introduction of controlled recombination across a breeding program’s germplasm 

(Hayta et al., 2019). It is yet to be determined whether the time and cost of developing 

transformation protocols and expertise, and applying them to a given crop species will 

restrict the breeder’s ability to adopt a controlled recombination approach. The 

challenges may outweigh the advantages, relative to the traditional cost and effort of 

the needed population size and generations to map genes and breed elite lines. 

 Another consideration is that altering CO frequency and distribution may 

increase the frequency of disrupting existing beneficial gene combinations, though it is 

yet to be seen if that will outweigh the advantage of controlling COs. A challenge in 

applying controlled recombination to breeding programs is the effect of ascertainment 

bias on estimating a locus effect, but this bias may be lessened with tools like 

CRISPEY that can identify thousands of variants with a fitness impact  (Sharon et al., 

2018; Ramstein et al., 2019). Additionally, it remains to be determined at which stage 

in the breeding program controlled recombination is the most beneficial, as well as its 

long term effects on genetic gain [E. Tourrette et al. bioRxiv 704544 unpublished]. 

For example, SPO11-dCas9 may be effective only as a pre-breeding tool to develop 

recombinant inbred populations using fewer lines, or to increase the COs in doubled-

haploid populations, but be too variable for elite line production. Studies manipulating 

pro and anti-CO gene expression report a modest (roughly 3-fold) increase in CO 
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frequency, and traditional screening for natural recombinants in a large segregating 

population may be just as efficient or affordable for a breeding program.      

Apart from the technical challenges to overcome and the improvements to 

efficiency that might be needed for controlled recombination to become broadly 

applicable in plant breeding, a potential bottleneck for adoption of the technology will 

be government regulation of gene edited crops. It is critical that such regulation 

reflects the fundamental difference from conventionally genetically modified 

organisms, primarily that no foreign DNA is present in the final product. When the 

editing reagents are introduced via a transgenic construct, this can be achieved by 

obtaining a null segregant (Zhang et al., 2016; Yubing He et al., 2018; Aliaga-Franco 

et al., 2019). Furthermore, non-transgenic methods for reagent delivery are 

increasingly being developed and applied (Zhang et al., 2016). A “product” rather than 

“process” based policy will allow for any potential risks of gene editing to be 

evaluated alongside the benefits of the technology (Scheben & Edwards, 2018). 

 

Concluding Remarks and Future Perspectives 

 Stimulation of recombination by perturbation of pro and anti-CO genes and 

epigenetic modifiers and by targeting DSBs and epigenetic changes using genome 

editing tools is a novel and promising set of approaches that should be explored for 

plant breeding. The direct manipulation of recombination frequency for high-

resolution genetic maps demonstrated in yeast and heterochromatic COs achieved in 

Arabidopsis are inspiring proof of principle advances. The potential to dramatically 

decrease the time and cost required to identify causal variants, break undesired 
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linkages of traits and select preferred haplotypes are compelling motivations to pursue 

further work in this area. Future research should focus on both improving our basic 

understanding of recombination in plants and on translating the knowledge from 

model species to economically important crops. It will be particularly important to 

determine how controlled recombination can most efficiently increase genetic gain 

during the plant breeding cycle. By accelerating fundamental understanding and 

practical advances in plant breeding, continued development and adoption of 

controlled recombination will lay a strong foundation for improving food security and 

human health. 
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CHAPTER 4 

 

IF IT AIN'T BROKE, DON'T FIX IT: EVALUATING THE EFFECT OF 

INCREASED RECOMBINATION ON RESPONSE TO SELECTION FOR WHEAT 

BREEDING 3 

 

Abstract 

Meiotic recombination is a source of allelic diversity, but the low frequency and 

biased distribution of crossovers that occur during meiosis limits the genetic variation 

available to plant breeders. Simulation studies have previously identified that 

increased recombination frequency can retain more genetic variation and drive greater 

genetic gains than wildtype recombination. Our study was motivated by the need to 

define desirable recombination intervals in regions of the genome where we have 

historically detected very few crossovers. We hypothesized that deleterious variants, 

which can negatively impact phenotypes and occur at higher frequencies in low 

recombining regions where they are linked in repulsion with favorable loci, may offer 

a signal for evaluation of shifting recombination distributions. Genomic selection 

breeding simulation models with empirical wheat data were developed to evaluate 

increased recombination frequency, changing recombination distribution, and QTL 

variant annotation on response to selection. Comparing high and low values for a 

range of simulation parameters identified that few combinations retained greater 

genetic variation and fewer still achieved higher genetic gain than the wild type. More 

recombination was associated with loss of genomic prediction accuracy, which often 

outweighed the benefits of disrupting repulsion linkages. Irrespective of 
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recombination frequency or distribution and QTL annotation, enhanced response to 

selection under increased recombination largely depended on polygenic trait 

architecture, high heritability, more repulsion than coupling linkages, and greater than 

six cycles of genomic selection. Altogether, the outcomes of this research discourage a 

controlled recombination approach to genomic selection in wheat as a more efficient 

path to retaining genetic variation and increasing genetic gains compared to existing 

breeding methods.   
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Introduction 

Plant breeders rely on natural recombination of genetic material during meiotic 

segregation to generate novel allelic combinations and select favorable haplotypes. A 

single crossover (CO) between each homologous chromosome pair during meiosis is 

obligate for proper chromosome segregation. Recombination rates above this 

minimum can vary but are limited in most species (Henderson & Bomblies, 2021). 

Additionally, the distribution of COs in many eukaryotes, including plants, are skewed 

away from the pericentromere and toward subtelomeric regions. The low frequency 

and uneven distribution of COs along chromosomes limits the genetic variation 

accessible to plant breeders, which requires working with large populations over many 

cycles of selection to identify new cultivars. 

There are evolutionary advantages as well as costs associated with variation in 

recombination. The benefits of recombination are largely described by two models in 

population and evolutionary genetics: the Hill-Robertson effect and Muller’s Ratchet 

(Hill & Robertson, 1966; Muller, 1964). Recombination can disrupt repulsion linkages 

between favorable and deleterious loci, aiding in the efficiency of selection (i.e., The 

Hill-Robertson effect). In the absence of recombination, a population’s deleterious 

load will steadily increase and can never fall below the lowest load in the original 

population (i.e., Muller’s Ratchet). In regions of low recombination like the 

pericentromere, deleterious mutations may persist and thus are likely to become linked 

in repulsion with positive loci (Rodgers-Melnick et al., 2015; Jordan et al., 2018). 

Significantly increased recombination can come at a cost though, leading to decreased 
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fitness by breaking up beneficial linkages and reduced fertility (Charlesworth & 

Barton, 1996; Mieulet et al., 2018).  

New mutations continuously arise in populations due to errors in DNA 

replication. Their fitness effects can range from lethal to beneficial. The rate of new 

mutations in eukaryotes is estimated to be at least 1 x 10-8 / base pair / meiosis, and it 

is predicted that new mutations in coding regions will be deleterious in some of the 

environments the species inhabits (Ohta, 1972, 1992; Baer et al., 2007). The 

accumulation of deleterious mutations may also be faster in allopolyploids, compared 

to diploids, due to the masking effect of unaltered gene copies (Conover & Wendel, 

2022). Artificial selection and population improvement (i.e., increased fitness) often 

result in inbreeding, which reduces the effective recombination rate (Moyers et al., 

2018). The “cost of domestication” hypothesis suggests that the process of artificial 

selection has increased the proportion of deleterious variants in domesticated genomes 

compared to their wild progenitor (Lu et al., 2006; Moyers et al., 2018). This cost 

reduces the efficiency of selection, for example as the likelihood of deleterious 

variants hitchhiking via linkage disequilibrium (LD) is increased. 

Overcoming the low rate and biased positioning of COs to reduce deleterious 

load and increase the genetic variation accessible to breeders is a longstanding goal. 

Manipulation of pro- and anti-CO factors, and the use of genome editing reagents that 

induce double-stranded DNA breaks or modify the epigenome at desired sites of 

recombination (e.g., CRISPR/Cas system), offer novel approaches for modifying CO 

frequency and distribution. (Hayut et al., 2017; Corem et al., 2018; Fernandes et al., 

2018; Mieulet et al., 2018; Serra et al., 2018; Underwood et al., 2018; Taagen et al., 
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2020). These approaches are collectively referred to as ‘controlled recombination’ and 

transitioning them from a lab setting using model species to a breeder’s field with 

diverse applications may more efficiently harness the power of selection for plant 

breeding (Taagen et al., 2020). For example, mutation of anti-CO factor recq4 

orthologs in rice (Oryza sativa L.), pea (Pisum sativum L.), and tomato (Solanum 

lycopersicum L.), have been shown to increase CO frequency by threefold compared 

to wild type (WT) (Mieulet et al., 2018). In Arabidopsis (Arabidopsis thaliana), 

increased copy-number of pro-CO factor HEI10 and mutation of recq4a and reqc4b 

additively led to five-fold and 1.5-fold increased meiotic recombination in the 

chromosome arms and pericentromeric heterochromatin, respectively (Serra et al., 

2018). Modified recombination distributions and frequencies have also been achieved 

by generating allotriploid hybrids in turnip (Brassica rapa L.), which reported a 

remarkable twenty-fold increased recombination rate in the pericentromere (Pelé et al., 

2017). All together, these methods may open the door to exciting applications for 

breeding, including rapid fine-mapping of genes, facilitating reintroduction of genetic 

variance at sites of selective sweeps, introgression of diverse alleles from wild crop 

relatives, and maintenance of genetic variation during genomic selection (Tam et al., 

2011; Sadhu et al., 2016; Presting, 2018; Rey et al., 2018; Taagen et al., 2020). 

While there are a variety of methods under development to introduce 

controlled recombination to a crop species, determining where in the genome to 

implement controlled recombination is essential to enhancing breeding efficiency and 

genetic gain. At present, controlled recombination for inbred and hybrid crops, as well 

as livestock breeding pipelines has only been tested with simulation models (Battagin 
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et al., 2016; Bernardo, 2017; Gonen et al., 2017; Brandariz & Bernardo, 2019; 

Johnsson et al., 2019; Ru & Bernardo, 2019, 2020; Tourrette et al., 2019; Oyetunde & 

Bernardo, 2020). The consensus from simulations across different species and traits is 

that applying controlled recombination could, at minimum, double genetic gains. 

However, it is notable that few simulations to date have factored in a cost of novel 

technology adoption and feasibility of multiplex genome editing. For example, under 

independent segregation of chromosomes into gametes, the likelihood of generating an 

individual with two desired site-specific COs on all 21 wheat chromosomes is on the 

magnitude of 1 / 221. In addition, many of these simulations rely on RR-BLUP 

(Endelman, 2011) to estimate marker effects and predict ideal CO intervals that 

produce the greatest marker effect sum, which limits the analysis to identifying 

regions where historical recombination has made quantitative trait loci (QTL) effects 

apparent (Bernardo, 2017; Brandariz & Bernardo, 2019; Ru & Bernardo, 2019, 2020; 

Tourrette et al., 2019; Oyetunde & Bernardo, 2020). In regions of low recombination 

where deleterious mutations are more likely to become linked in repulsion, their 

potentially deleterious effects are hidden from RR-BLUP’s estimation of marker 

effects. Using approaches to identify deleterious alleles, such as variant effect 

prediction in coding regions or evolutionary conservation, offers distinct strengths for 

identifying potentially advantageous controlled recombination targets in plant 

breeding (Rodgers-Melnick et al., 2015; Kono et al., 2018, 2019; Johnsson et al., 

2019).  

 Many putative deleterious alleles have been identified in pericentromeric areas 

and shifting the distribution of recombination toward the pericentromere could unlock 
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novel haplotypes and ultimately inform better targets for site specific controlled 

recombination approaches. While these technologies remain under research and 

development, initial reports on them prompted us to test the value of recombination in 

regions of the genome where we suspect it has long been suppressed. We 

hypothesized that deleterious variants, which can occur more frequently in low 

recombining regions and have significant negative effects on phenotype, may offer a 

signal for evaluation of shifting recombination distributions. 

 We used empirical genotype data and deleterious variant annotations from 

wheat (Triticum aestivum L) to simulate a genomic selection breeding program and 

identified the parameter space in which increased recombination maintained genetic 

diversity and increased genetic gain. Previous evaluations of the recombination 

landscape in this diverse wheat population reported that over 75% of the 

recombination events fell within 10% of the distal end of chromosomes, and a higher 

density of putative deleterious variants were detected in the pericentromere versus 

distal arms of chromosomes (Jordan et al., 2018). We evaluated the impact of several 

simulation parameters on population improvement, including the number of QTL per 

chromosome, heritability, the recombination frequency and distribution, whether the 

QTL were annotated as deleterious variants, coupling versus repulsion between QTL, 

and finally the relationship matrix used for estimated marker effects. Altogether, our 

findings highlight the challenging path to the realizing the benefits of increased 

recombination for a genomic selection wheat breeding program and discuss the 

feasibility of technology adoption. 
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Materials and Methods 

We used the programming language R and breeding program simulation tool 

AlphaSimR to evaluate the effects of increased frequency and shifting distribution of 

recombination on a range of population improvement scenarios following a basic 

scheme (Figure 4.1) (R Core Team, 2020; Gaynor et al., 2021). The raw data, scripts 

for the simulations, and supplementary results are available on 

https://github.com/etaagen/dissertation_chapter_4.  

 

Founder SNP, linkage map data, and population structure  

We used a published dataset of 29 genetically and geographically diverse 

wheat accessions for our simulations, previously selected to develop a nested 

association mapping population (Jordan et al., 2018). The high-density SNP data for 

the founder lines was generated using the wheat exome capture assay and mapped to 

the W7984 reference genome and genetic map (Chapman et al., 2015). We retrieved 

SNP and InDel data (Table S2 and S3) from 

http://wheagenomics.plantpath.ksu.edu/nam and removed variants with more than 

60% missing genotypes and annotations of unknown chromosomes. The remaining 

missing genotype calls were imputed with R/qtl2 imputation sim_geno() and 

monomorphic SNPs were removed (Broman et al., 2019).  

The 29 founders were fully inbred, and we designated genotypes as ‘1’ and ‘0’ 

for the major and minor allele, respectively. A principal component (PC) analysis of 

the founders identified that the first PC explained 8% of the total variance and was 

associated with the minor allele count (Supplemental figure_S2.1.pdf). There were 

https://github.com/etaagen/dissertation_chapter_4
http://wheagenomics.plantpath.ksu.edu/nam
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three outlier lines (Cltr_15134, Cltr_11223, and PI_366716) that drove the very high 

observed rate of coupling among minor alleles, and we removed them from the 

founder population (see Simulation parameter: coupling and repulsion). After this 

final data filtering step and re-evaluating major and minor alleles, there were 26 

founder lines, 352,804 total SNPs, 134,803 SNPs on the A genome, 181,012 SNPs on 

the B genome, and 36,989 SNPs on the D genome. 

We also considered a biparental simulation scheme, where we selected the two 

most divergent parents from the 26 founders, PI_220431 and PI_185715, whose 

genotypes were designated as ‘1’ and ‘0’ respectively. The biparental population had 

130,127 total SNPs, 61,387 on the A genome, 53,471 on the B genome, and 15,269 on 

the D genome. The full set of 26 lines and the biparental population served as founders 

for their respective simulation replicate draws.  

 

We use “SNP” to refer to any variant in the founder population, “marker” to refer to 

variants assigned to the SnpChip (i.e., these generate observed genotypes in the 

AlphaSimR simulation), and “QTL” to refer to variants assigned as causal loci. We 

use the term recombination to refer to the meiotic process where a double-stranded 

DNA beak is repaired via homologous recombination, resulting in a CO. 

 

Simulation parameter: SnpChip   

Each replicate of the simulation (see Figure 4.1) began by randomly sampling 

SNPs from each cM bin to serve as the markers on the SnpChip. When markers shared 

the same genetic map position, we jittered them by 0.00001 M. The chromosome 
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length and marker density averaged 1.22 M and 1200 SNPs per chromosome for both 

the full founder and biparental population approaches.  

 

Simulation parameter: QTL  

The QTL effects in AlphaSimR inform the genetic value, which we used to 

simulate a trait phenotype. All effects were additive (no dominance or epistasis). Two 

approaches for assigning QTL were considered, either randomly (R) or if we 

categorized the QTL as potentially harboring a deleterious variant (DV) based on the 

SnpEff annotation (see Simulation parameter: Deleterious variant annotations). We 

simulated either 2 (oligogenic trait) or 200 (polygenic trait) QTL per chromosome, and 

there was no overlap between the SnpChip and QTL. We considered traits with 

heritability values of 0.2 and 0.8. We also included a proof-of-concept simulation 

using the causal variant relationship matrix. This approach did not require a SnpChip 

as it used the QTL directly to estimate marker effects and is reflective of perfect LD 

between the markers and QTL (de Los Campos et al., 2013).  

 

Simulation parameter: deleterious variant annotations 

Annotation of deleterious variants in the founder population from exome 

capture (coding sequence) data were previously published using the SNPeffect 

program (De Baets et al., 2012; Jordan et al., 2018). We considered SNPs with the 

‘high’ SnpEff putative impact criteria as well as the ‘non-synonymous coding’ effect 

to be potentially deleterious variants for DV QTL (see 

http://pcingola.github.io/SnpEff/). These variants were found to be more frequent in 

http://pcingola.github.io/SnpEff/


 

113 

lower recombining regions, which we defined as a 0.2 M bin spanning the centromere 

on each chromosome (Figure 4.2) (Jordan et al., 2018). Under the biparental 

population approach there was a 25% loss in SNP density and 59% loss in potentially 

deleterious SnpEff variants across the lower recombining regions, compared to the full 

26 founder set. Given this reduction in polymorphic sites, the impact of increased 

recombination on DV QTL was only evaluated in the full founder population. 

We interpreted the SnpEff annotation as an imperfect approximation for 

impact on yield. This decision was motivated by yield being a highly complex trait 

that is influenced by genetic variants on every chromosome and at every stage of plant 

growth. While the SnpEff annotation is based on predicted impact on a protein, that 

protein may not impact the phenotype per se, and we varied the pool of potentially 

deleterious variants for DV QTL each replicate of the simulation. Each replicate 

sampled 90% of SNPs with the ‘high’ SnpEff putative impact criteria and 25% of 

SNPs with the ‘non-synonymous coding’ effect (Lu et al., 2006). This resulted in an 

average pool per chromosome of 613 potentially causal SNPs for the DV QTL 

approach. Note that the SnpEff annotations were lowest on the group D chromosomes, 

which reduced the number of polygenic trait QTL on the D genome. To simplify 

simulation comparisons, we set the number of polygenic trait QTL in the R QTL 

simulations to match the DV QTL number, which averaged 200 QTL per A and B 

genome chromosomes, and 60 QTL per D genome chromosome.  
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Simulation parameter: coupling and repulsion  

Recombination can be beneficial for genetic improvement if it breaks up QTL in 

repulsion, but detrimental if it breaks up QTL in coupling. We estimated the amount 

of repulsion in the full founder population by randomly selecting 200 QTL per 

chromosome (R and DV approach) one hundred times and measuring the percent of 

neighboring QTL where minor alleles were in repulsion.  

In AlphaSimR the additive effects of each QTL are sampled from a standard 

normal distribution and the magnitude of the effects is scaled to achieve a user 

specified genetic variance. As we set the full founder genotypes to ‘1’ and ‘0’ for the 

major and minor allele, respectively, we could use the QTL effect sign, positive or 

negative, to introduce different levels of coupling and repulsion between neighboring 

QTL. We set different levels of coupling versus repulsion linkages among the 

founders because we were interested in the importance of starting conditions versus 

ongoing selection effects on the impact of increased recombination. Intuitively, we 

would assume the minor allele to be deleterious (because it would have been selected 

against during evolution). On the other hand, domestication and the transition to new 

agricultural environments may cause changes in the fitness effects of alleles such that 

an allele historically driven to low frequency by evolution may become favorable. To 

test the effect of increased recombination on population improvement we tested five 

different QTL effect sign distribution conditions:  

1. Additive effect signs are positive for all QTL (major allele favorable for all 

QTL) 

2. Random 2/3 of additive effect signs are positive and 1/3 are negative for QTL 
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3. Random 1/2 of additive effect signs are positive and 1/2 are negative for QTL 

4. 1/2 of additive effect signs are positive and 1/2 are negative for QTL, 

alternating positive or negative each QTL 

5. Random 1/3 of additive effect signs are positive and 2/3 are negative for QTL 

The founder and burned-in population (see Breeding and selection scheme) 

genetic variance were always standardized to one by dividing each QTL effect size by 

the square root of the population’s additive genetic variance. The first condition 

presents an extreme scenario of coupling between every QTL, which resulted in 

selection against all minor alleles. The fourth condition presents another extreme 

scenario of repulsion between every QTL. The third scenario is random and assumes 

random coupling or repulsion. The remaining conditions present moderate ratios of 

coupling and repulsion, which test different proportions of selecting against the minor 

allele. In the biparental population approach we only applied conditions three and 

four. 

 

Simulation parameter: recombination  

After the population simulation parameters were set, and the burn-in 

population was generated, we initiated a genomic selection scheme (see Breeding and 

selection scheme). At the start of genomic selection, we introduced a variable that 

scaled the genetic map size by two or twenty-fold, either across the entire 

chromosome or only in in lower recombining regions compared to the WT genetic 

map. These map types were respectively named Chromosome, Pericentromere, and 

WT (Figure 4.2). The size of the genetic map is proportional to the amount of 
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recombination, and we accounted for crossover interference with the Kosambi 

mapping function.  

 

Breeding and selection scheme  

  Once the simulation parameters were assigned for the full founder population, 

we conducted ten cycles of phenotypic selection to burn-in the population. Each cycle 

consisted of 400 random crosses among 80 doubled haploid (DH) parents. Each cross 

produced one F1 progeny used to create one DH. Phenotypic selection was used to 

advance 80 DHs (20% selection intensity) to the next cycle. In the tenth generation all 

400 DHs were advanced and assigned to the training population (TP). For the 

biparental population founders, after the simulation parameters were assigned the 

burn-in was only one cycle and all 400 unselected DHs were used to generate a TP. 

At this point for the full founder or biparental TP, the WT genetic map was 

used, or the increased recombination parameter was applied. The TP also served as the 

first genomic selection candidate population. We conducted ten cycles genomic 

selection, beginning with 400 random crosses that produced one F1 progeny used to 

create one DH each, for a total of 400 DHs. The AlphaSimR function RRBLUP() was 

used to estimate breeding values in the TP, set estimated breeding values of the DHs, 

and select 20 DHs (5% selection intensity) to advance to the next cycle. 160 DHs 

(40% selection intensity) with the greatest estimated breeding value were phenotyped 

and added to the existing TP each cycle, and we dropped the bottom 20% of the 

updated TP each cycle (i.e., the cycle 10 TP consisted of 1200 DHs). 
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Simulation replicates and statistical analysis  

For each cycle of genomic selection we measured the additive genetic variance 

(AlphaSimR function varA()) and calculated the genetic gain (genomic selection cyclex 

population mean genetic value – genomic selection cycle1 population mean genetic 

value) (Gaynor et al., 2021). We evaluated the prediction accuracy of the estimated 

breeding values for the DH population at each cycle of selection by measuring their 

correlation with the true genetic values. We measured the impact of the Bulmer effect 

on genetic variance in the DHs using the AlphaSimR functions varA() and 

genicVarA(). The genicVarA() function calculates the expected variance under Hardy-

Weinberg equilibrium (HWE) for each QTL and reports the sum. It thus removes the 

impact of linkage disequilibrium on genetic variance. As such, we calculated Bulmer 

effect = varA() / genicVarA() / 2 (the factor of 2 is because the DH population is fully 

inbred, and genicVarA() assumes HWE). A stronger Bulmer effect (lower values) 

indicates conditions of greater repulsion linkage between QTL, as shown by (Bulmer, 

1971). We also measured the QTL fixation ratio for small (bottom third), medium 

(middle third), and large effect QTL (top third), and the change in QTL allele 

frequency.  

The complete list of settings included the founder population (all 26 lines or 

biparental), number of QTL per chromosome (2 or 200), heritability (0.2 or 0.8), 

recombination frequency (2X or 20X scale), genetic map type (WT, Pericentromere, 

or Chromosome), QTL type (R or DV), coupling versus repulsion conditions (1, 2, 3, 

4, or 5; only 3 or 4 in biparental), and the relationship matrix (GW or CV), resulting in 

672 unique simulations (Supplemental /results_S2.1/). To account for the stochastic 
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variation among simulations we ran 100 replicates for each setting. We fit univariate 

linear models with the R/lme4 package to the following response variables: genetic 

gain, additive genetic variance, Bulmer effect, prediction accuracy, QTL fixation, and 

QTL allele frequency (Bates et al., 2015). Separate linear models were fit at breeding 

cycles 6 and 10, and for the full founder and biparental simulations (Supplemental 

model_S2.1.md, model_S2.2.md). We chose cycle 6 as it is most comparable to a 

traditional breeding program duration for cultivar release, and cycle 10 for comparison 

over time. The models fit fixed effects to all main effects and first-order interactions 

between number of QTL, heritability, recombination frequency, genetic map type, 

QTL type, coupling versus repulsion conditions, relationship matrix, and allele (only 

for QTL fixation and QTL allele frequency: small, medium, large effect). The 

replicate simulations were fit as random effects. Analysis of variance (ANOVA) of 

each model and marginal means for the primary effects were evaluated. In addition 

post hoc comparison of least-squares means for all significant pairwise contrasts were 

performed with Tukey multiple-test correction, within each model using the R/car and 

R/emmeans packages (Supplemental /results_S2.2/) (Fox & Weisberg, 2019; Lenth et 

al., 2019). In Figures 4.3 & 4.4 we reported the mean of each measurement and did not 

show the standard error because it was smaller than the size of the symbols on each 

plot.  
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Figure 4.1 

 

Figure 4.1: Each simulation replicate begins with a founder population, either the full 

set of 26 wheat accessions or PI_220431 and PI_185715 for a biparental population. 

From observed variants among these founders, marker and QTL variants for 

simulation are selected. Simulation conditions are set (heritability and linkage 

disequilibrium), and the variance is standardized to one. The population is burned in 

using cycles of phenotypic selection and the variance is standardized. A training 

population (TP) is selected. Finally, the recombination is left unchanged or scaled up 

by two or twenty-fold across the low recombining region, or across the entire 

chromosome. Genomic selection is then simulated. 
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Figure 4.2 

 

Figure 4.2: Wildtype (WT) genetic map comparison with Pericentromere (Peri) and 

Chromosome (Chr) genetic map types with 2X (left column) and 20X (right column) 

increased recombination. The X-axis is the position along Chromosome 1A in 

Morgans, and the Y-axis is the SNP count. The red bars represent the 0.2 M low 

recombination regions spanning the centromere on each chromosome that was 

designated for increased recombination in the Pericentromere map type. See 

Supplemental figure_S2.2.pdf for genetic maps of all 21 chromosomes.  

 

 

Results 

Comparing high and low values for a range of simulation parameters (number of QTL, 

heritability, recombination frequency, genetic map type, QTL type, coupling vs. 

repulsion) helped show which variables had the greatest effect on response to 

selection. Using values more extreme than realistic helped us identify mechanisms that 

led to change in the response variables. Recombination can break genetic linkages and 

2X 20X
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change the genetic variance available, but it can also diminish LD between markers 

and QTL. Linkage between markers and QTL is necessary to detect QTL. The CV 

relationship matrix is not affected by LD between markers and QTL, and comparisons 

with the GW relationship matrix results helped us disentangle the effect of LD from 

other variables on increased recombination. Based on evolutionary and population 

genetics models, and existing simulation studies, we expected that elevated 

recombination across the simulation conditions would slow the loss of genetic 

diversity and increase genetic gains over subsequent cycles of genomic selection 

(Muller, 1964; Hill & Robertson, 1966; Gonen et al., 2017; Tourrette et al., 2019). 

Ultimately, we found that there was only a narrow parameter space in which increased 

recombination significantly preserved genetic diversity and increased genetic gains 

compared to WT recombination. Unless otherwise stated, the parameters considered in 

the following sections are full founder population, 200 QTL per chromosome, and 

heritability of 0.8. 

 

Few simulation settings retain genetic variation and fewer still achieve higher 

genetic gain  

We evaluated genetic variation and genetic gain responses to simulation 

parameters at genomic selection cycle 6 (typical breeding program) and 10 for 

comparison over time. In the ANOVA table summaries of the linear models for both 

response variables and cycles, the largest effects and interactions involved coupling 

versus repulsion, the number of QTL, heritability, and the relationship matrix (Table 
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4.1, Supplemental model_S2.1.md, model_S2.2.md). The smallest effects and 

interactions involved recombination frequency, genetic map type, and QTL type. 

In the initial F1 and DH lines there were one or two COs per chromosome per 

meiosis in our WT genetic map, two or three COs in our 2X larger maps, and fourteen 

or fifteen COs in our 20X larger maps (Supplemental script_S2.1.R). Evaluation of 2X 

and 20X recombination rates compared to WT identified that 2X change in 

recombination rarely retained greater genetic variation, which did not increase genetic 

gains (Figures 4.3 & 4.4). For example, at cycle 6 both the Chromosome and 

Pericentromere map type marginal mean genetic variances were at most 12% greater 

than WT. This trend remained at cycle 10. However, this did not translate to 

significantly different genetic gains compared to WT. We only observed 2X 

recombination generate a difference in genetic variation and greater genetic gains 

compared to WT at cycle 10 when QTL were initially in repulsion (conditions 3, 4, 

and 5) and using the CV relationship matrix (Figure 4.3 & 4.4). The same trend for 2X 

recombination was present in the biparental population (Supplemental plots_S2.2.md).  

 Under 20X greater recombination we observed multiple simulation parameters 

that retained more genetic variance and had higher genetic gains than WT. Similar to 

the previous parameters, however, increased genetic variance did not always translate 

to greater genetic gains. For example, at cycle 6 both the Chromosome and 

Pericentromere map type with 20X increased recombination had marginal mean 

genetic variances that were at least 30% greater than WT. This trend was even 

stronger at cycle 10. Yet the marginal mean genetic gains at cycle 10 were nearly 

equivalent for WT and Pericentromere map type, and 2.5% less for the Chromosome 
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map type. Comparison across all marginal mean genetic gains at cycle 10 with 20X 

recombination identified that the only simulation settings where both the Chromosome 

and Pericentromere map type outperformed WT recombination were when the CV 

relationship matrix was used. The GW and CV relationship matrix comparisons 

highlighted that gain under higher recombination (i.e., > 20 M) suffered from LD 

decay between markers and QTL leading to loss of prediction accuracy (see Changing 

recombination frequency or distribution is more efficient when QTL locations are 

known).  

The most efficient response to selection compared to WT recombination was 

under the CV relationship matrix and 20X recombination for high repulsion (condition 

4). For these parameter settings at cycle 10 the Chromosome and Pericentromere map 

types both retained at least 37% more genetic variance than WT. This translated to 

8.3% and 6.5% greater genetic gains in the Chromosome and Pericentromere map 

type, respectively, compared to WT recombination. A similar trend was observed in 

the biparental population condition 4, but total genetic gains and percent differences 

from WT were smaller (Supplemental plots_S2.2.md). 

 

Increased recombination is beneficial under repulsion, and has a marginal 

impact under coupling  

 Thus far we have primarily considered high repulsion simulations (condition 

4), as this condition had the greatest response to selection. We also evaluated moderate 

coupling and repulsion (condition 2 and 5, respectively), random (condition 3), and 

high coupling (condition 1). Given Chromosome or Pericentromere map type, 
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condition 4 had the greatest overall response to selection and difference from WT 

recombination compared to conditions 1, 2, 3, and 5 (Figures 4.3 & 4.4). High 

coupling (condition 1) performed the worst, retaining the least variance and no 

consistent or significant difference in genetic gain compared to WT recombination. 

Focusing on the CV relationship matrix results at cycle 10 under moderate coupling, 

the marginal mean genetic gain compared to WT was at most 2% greater for 

Chromosome and Pericentromere map types. Under moderate repulsion the marginal 

mean genetic gain compared to WT was not significantly different for the 

Pericentromere map type, and 1.6% greater for the Chromosome map type. Under low 

heritability, 20X increased recombination had a negative impact on genetic gain for all 

conditions except high repulsion (see Genetic gain from increased recombination is 

less efficient for low heritability traits). 

We also evaluated the Bulmer effect across genomic selection cycles 

(Supplemental plots_2.1.md). Of the five coupling and repulsion scenarios at each 

cycle, condition 1 had the weakest Bulmer effect, condition 2, 3, and 5 were not 

consistently different, and condition 4 had the strongest Bulmer effect as it had the 

most to gain from recombining away from repulsion linkage. Marginal mean 

comparisons between Chromosome and Pericentromere map types were not 

significantly different for their Bulmer effect, suggesting both recombination 

frequency and distribution approaches are beneficial for breaking up repulsion 

linkages. However, the DV QTL had the strongest Bulmer effects compared to R 

QTL, as variants in regions of low recombination may have more repulsion linkages.   
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In addition, we measured the overall change of QTL allele frequency for large, 

medium, and small effect QTL (Supplemental plots_2.1.md). Large effect QTL had 

the greatest change in allele frequency while small effects experienced little change. 

Under high repulsion we observed the small effect QTL negative allele frequency 

could increase. This phenomenon of increased deleterious variant allele frequency is 

known as genetic hitchhiking and can occur due to LD with targets of selection where 

the combined effect is net positive (Moyers et al., 2018). While there was no 

significant difference due to recombination frequency, distribution, or QTL type on 

the allele frequency change in the full founder population, there was a difference in the 

biparental population. Most notably, for condition 4 in the full founder population 

only small effect QTL negative alleles hitchhiked but in the biparental population both 

small and medium effect QTL negative alleles hitchhiked. 

 

Increased recombination is not beneficial for oligogenic traits   

We tested simulations with 2 and 200 QTL per chromosome to compare how 

oligogenic and polygenic traits respond to changes in recombination, respectively. 

With only 2 QTL per chromosome the QTL became fixed sooner. This often occurred 

before genomic selection cycle 6, and genetic variance and gains plateaued. In fact, 

the rate of fixation of positive and negative QTL alleles showed no response to 

changes in heritability, recombination frequency, map type, QTL type, or relationship 

matrix, and only showed a response to the number of QTL per chromosome 

(Supplemental plots_2.1.md).  
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Genetic gain from increased recombination is less efficient for low heritability 

traits 

In our simulations we modeled additive traits with high (0.8) and low (0.2) 

heritability. More genetic variation was retained for 2X and 20X recombination under 

low heritability, but the relative genetic gain was significantly less than those under 

high heritability simulations (Supplemental plots_2.1.md). For example, at cycle 10 

across all simulation conditions the marginal mean genetic variances were 0.025 for 

low heritability and 0.015 for high heritability. And the marginal mean genetic gains 

were 3.6 and 5.7, respectively. Under low heritability the repulsion scenarios 

(conditions 3, 4, and 5) did not have significantly different genetic gains, and coupling 

conditions performed significantly worse than WT. The low heritability simulation 

settings had a twofold decrease in marginal mean prediction accuracy compared to 

high heritability. Increased recombination and low heritability may retain more genetic 

variation, but this did not translate to significant genetic gains compared to WT. 

 

Changing recombination frequency or distribution is more efficient when QTL 

are well annotated 

The Chromosome map type increased the WT recombination rate without 

changing the distribution, whereas the Pericentromere map type increased the WT 

recombination rate only in regions previously identified to have suppressed 

recombination (Figure 4.2) (Jordan et al., 2018). We expected that irrespective of QTL 

type, the Chromosome map type would perform better than Pericentromere map type 

because the overall genetic map is larger. We also expected the Pericentromere map 
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type to perform better under the DV approach, compared to the R approach because 

the DV QTL are primarily found in the pericentromere.  

Across all simulation conditions, comparison of the marginal mean genetic 

gain at cycle 10 for WT, Pericentromere, and Chromosome map type revealed no 

significant difference (4.66, 4.68, and 4.63, respectively). Under our comparison of 

QTL type, the R QTL had a 6.6% higher marginal mean genetic gain than DV QTL 

(4.8 and 4.5, respectively). As previously noted, a significant difference between map 

types under 20X recombination was associated with polygenic traits, high heritability, 

and high repulsion. Narrowing our focus to analyzing the effect of map type under 

these conditions at cycle 10, we recognized that the relationship matrix played 

significant role in the genetic gain irrespective of map or QTL type. Across these 

simulation settings the marginal mean genetic gain for the GW relationship matrix was 

19% less than the CV relationship matrix genetic gain.  

Taking these observations into account, we compared the effect of map type 

and QTL type for 20X recombination at cycle 10 with a polygenic trait, high 

heritability, and high repulsion. Under the GW relationship matrix, map types 

performed equivalently with R QTL. The Pericentromere map type performed the best 

with DV QTL, while Chromosome map type performed the same as WT (Figure 4.4). 

Under the CV relationship matrix, Chromosome map type always performed slightly 

better than Pericentromere map type, and 12.2% better than WT with R QTL and 

19.2% better than WT with DV QTL. While the Chromosome map type was largest, 

the LD decay between SNP and QTL under the GW relationship matrix neutralized 

the benefits of increased recombination breaking repulsion linkages. The DV QTL 
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marginal mean genetic gains were generally lower than R QTL, but under the CV 

relationship matrix they were higher than R QTL raw values and significantly better 

than WT for both Pericentromere and Chromosome map types. If the precise locations 

of QTL are known, the genetic map size and the distribution of QTL may have 

comparable response to selection. Note that we only evaluated DV QTL in the full 

founder population because the biparental population had too few SNPs and SnpEff 

annotations in the pericentromere. 

 

Prediction accuracy is lower under increased recombination 

Consider the GW relationship matrix for comparing the prediction accuracy 

across simulation parameters, as the CV relationship matrix is reflective of perfect LD 

between the markers and QTL (Supplemental plots_2.1.md). The marginal mean 

prediction accuracy at cycle 6 was 0.45 for WT recombination, 0.43 for 

Pericentromere map type, and 0.41 for Chromosome map type. A similar trend was 

observed at cycle 10. As noted previously, LD diminished between the markers and 

QTL for larger genetic maps, leading to lower prediction accuracy.  
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Effect Df Chi 

Square 

GV, 6 

GV, 

6 

Chi 

Square 

GV, 10 

GV, 

10 

Chi 

Square 

GG, 6 

GG, 

6 

Chi 

Square 

GG, 10 

GG, 

10 

Map type   2 696.67 *** 1617.36 *** 89.44 *** 24.57 *** 

Recombination 1 499.15 *** 939.62 *** 125.42 *** 26.09 *** 

QTL 1 30191.17 *** 41806.41 *** 13597.37 *** 69683.01 *** 

H2 1 7659.54 *** 4447.56 *** 30875.10 *** 47470.85 *** 

Repulsion 4 5681.27 *** 5513.01 *** 45217.37 *** 53692.47 *** 

Matrix 1 6580.72 *** 3268.55 *** 8567.85 *** 6438.86 *** 

QTL type 1 476.03 *** 738.47 *** 195.12 *** 705.99 *** 

Map type : 

Recombination 
2 210.07 *** 467.67 *** 54.95 *** 30.75 *** 

Map type : QTL 2 257.03 *** 999.28 *** 51.16 *** 21.96 *** 

Map type : H2 2 11.63 ** 98.18 *** 17.06 *** 77.59 *** 

Map type : 

Repulsion 
8 140.68 *** 202.90 *** 19.21 * 47.72 *** 

Map type : 

Matrix 
2 59.46 *** 111.13 *** 90.79 *** 173.35 *** 

Map type : QTL 

type 
2 23.84 *** 52.98 *** 10.67 ** 14.16 *** 

Recombination : 

QTL 
1 143.58 *** 441.54 *** 31.97 *** 2.65 NS 

Recombination : 

H2 
1 0.22 NS 29.91 *** 4.99 * 29.01 *** 

Recombination : 

Repulsion 
4 100.82 *** 115.42 *** 29.54 *** 50.74 *** 

Recombination : 

Matrix 
1 46.94 *** 68.24 *** 69.02 *** 114.26 *** 

Recombination : 

QTL type 
1 8.94 ** 8.69 ** 1.26 NS 8.83 ** 

QTL : H2 1 42.57 *** 389.92 *** 13363.78 *** 33221.71 *** 

QTL : Repulsion 4 3966.33 *** 4264.55 *** 20914.58 *** 20284.46 *** 

QTL : Matrix 1 884.27 *** 37.86 *** 328.34 *** 116.74 *** 

QTL : QTL type 1 296.17 *** 635.82 *** 1.43 NS 185.36 *** 

H2 : Repulsion 4 667.76 *** 314.96 *** 921.27 *** 1214.00 *** 

H2 : Matrix 1 861.27 *** 417.54 *** 77.42 *** 36.11 *** 

H2 : QTL type 1 25.15 *** 11.99 *** 26.13 *** 79.61 *** 

Repulsion : 

Matrix 
4 636.97 *** 155.26 *** 1579.54 *** 1117.09 *** 

Repulsion : QTL 

type 
4 2.93 NS 11.90 * 135.04 *** 161.25 *** 

Matrix : QTL 

type 
1 20.54 *** 22.32 *** 12.88 *** 26.49 *** 

 

Table 4.1 

Table 4.1: ANOVA table results for genetic variance (GV) and genetic gain (GG) 

linear models at cycles 6 and 10. Type II Wald chi-square tests significance codes: P-

value < 0.0001 ‘***’, P-value < 0.001 ‘**’, P-value < 0.01 ‘*’, P-value ‘NS’ not 

significant. Degrees of freedom (DF).  
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Figure 4.3 

Figure 4.3: Genetic variance for the full founder population, 200 QTL per 

chromosome, H2 = 0.8. The response is measured at the end of burn-in (0) and each 

cycle of genomic selection (GS) under wildtype (WT) recombination landscape map 

(square), pericentromere (triangle), and full chromosome (circle), 2X (left hand 

columns) and 20X (right hand columns) recombination frequency. The rows compare 

whether a genomewide (GW) or causal variant relationship matrix (CV) was used to 

estimate marker effects. The colors represent the five levels of coupling and repulsion 

(see Methods); dark blue 1: high coupling; yellow 2: moderate coupling; grey 3: 

random coupling or repulsion; red 4: high repulsion; 5 light blue: moderate repulsion. 

Each point represents the mean of 100 simulation replicates and there are no standard 

A)

B)

GS cycle

GS cycle
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error bars because they were smaller than each symbol. The symbols are jittered 

horizontally by the five conditions for easier visualization. A) QTL are assigned at 

random, B) QTL are assigned to deleterious variant annotations.  

 

 

 
Figure 4.4 

Figure 4.4: Genetic gain for the full founder population, 200 QTL per chromosome, 

H2 = 0.8. The response (mean genetic value difference between cycle X and cycle 1) is 

measured at each cycle of genomic selection (GS) under wildtype (WT) recombination 

landscape map (square), pericentromere (triangle), and full chromosome (circle), 2X 

(left hand columns) and 20X (right hand columns) recombination frequency. The rows 

A)

B)

GS cycle

GS cycle
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compare whether a genomewide (GW) or causal variant relationship matrix (CV) was 

used to estimate marker effects. The colors represent the five levels of coupling and 

repulsion (see Methods); dark blue 1: high coupling; yellow 2: moderate coupling; 

grey 3: random coupling or repulsion; red 4: high repulsion; 5 light blue: moderate 

repulsion. Each point represents the mean of 100 simulation replicates and there are no 

standard error bars because they were smaller than each symbol. The symbols are 

jittered horizontally by the five conditions for easier visualization. A) QTL are 

assigned at random, B) QTL are assigned to deleterious variant annotations.  

 

 

 

Discussion    

For the majority of simulation parameter scenarios studied, increased recombination 

did not have a significant impact on genetic gain compared to WT recombination after 

ten cycles of genomic selection. Testing high and low values of simulation parameters 

was important for dissecting which combinations did have an impact on translating 

increased recombination to greater genetic gains.  

  

The variance generated from increased recombination may not increase genetic 

gain  

We observed tradeoffs in genetic gain under increased recombination due to the 

genetic variation generated from breaking repulsion linkages, and the variation 

retained from reduced prediction accuracy. Repulsion versus coupling, the relationship 

matrix, the number of QTL, and heritability had some of the largest effects on our 

measurements of genetic variance and genetic gain under increased recombination.  

The effect of repulsion was most apparent in the 2X increased recombination 

simulations, where only condition 4 (alternating positive and negative effect alleles 

along the chromosome) outperformed WT recombination. This represents an extreme 
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level of repulsion unlikely to arise in an elite breeding program but demonstrated that 

populations with repulsion stand to gain the most from increased recombination. It 

also highlights that for controlled recombination technologies to be adopted by a 

breeding program, they will need to achieve greater than 2X increased recombination. 

While this has been accomplished in Arabidopsis and some crop species, the 

mechanisms and response (i.e., plant viability and recombination frequency achieved) 

are not always conserved (Mieulet et al., 2018). 

Under 20X increased recombination the coupling scenarios occasionally 

performed worse than WT, and likely suffered from disrupted blocks of positive 

alleles. Condition 4 still performed the best at cycle 6 and 10 under 20X 

recombination, which suggests that the benefits of increased recombination may 

depend on initial population conditions more so than conditions that arise inherently 

due to selection. Similar observations about the positive and negative response to 

increased recombination in repulsion and coupling conditions, respectively, have been 

observed but methods to evaluate repulsion linkages in a breeding population are slow 

and not common practice in modern breeding (Inks, 1981; Tourrette et al., 2019).  

When we turned our attention to 20X increased recombination, two competing 

effects became clear. First, increased recombination can break repulsion or coupling 

linkages, changing the genetic variance available and driving genetic gain, and second, 

it can diminish the LD between markers and QTL necessary for genomic prediction. 

For example, the relationship between increased recombination on moderate repulsion, 

random, and coupling conditions and higher genetic gain was primarily evident with 

the CV relationship matrix. With the GW relationship matrix, the Chromosome map 
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type generally performed worse than WT irrespective of repulsion conditions. This 

observation was associated with LD decay between the markers and QTL (data not 

shown), which led to lower prediction accuracy than WT. The poor performance of 

Chromosome map type under the GW relationship matrix was not consistent with 

previous studies, perhaps due to a difference in methodology (Battagin et al., 2016; 

Gonen et al., 2017; Tourrette et al., 2019). To realize gains from higher recombination 

frequencies, i.e., 20X larger genetic maps, knowledge of the locations of QTL would 

be beneficial, as would increasing the marker density beyond the 1200 markers per 

wheat chromosome used here.  

Our designation of the major and minor allele as ‘1’ and ‘0’, respectively, may 

have contributed to plateauing genetic gains in the coupling scenarios as the initial 

positive QTL allele frequencies were greater than 0.5. For conditions 3, 4, and 5 under 

the DV QTL approach, at least half of the causal variants’ negative allele was the 

major allele, which is likely an overestimate of the population’s genetic load. Using an 

evolutionary conservation approach such as a Genomic Evolutionary Rate Profiling 

score to designate the preferred versus deleterious allele for the SnpEff variants would 

be more accurate for characterizing the population’s genetic load, but it is not clear if 

this would have lessened the baseline coupling in the founder population.   

 We learned that increased recombination simulations with polygenic traits (200 

QTL per chromosome) performed better than oligogenic traits (2 QTL per 

chromosome) due to slower rates of QTL fixation. There was no difference in 

response variables from WT recombination across the oligogenic trait simulation 

parameters. For the polygenic trait simulations, allele fixation occurred sooner for WT 
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compared to increased recombination only for the biparental founder population, 

likely due to higher initial LD. The trend that genetic gain increased with more QTL 

had previously been observed by other simulation studies that increased recombination 

frequency (Battagin et al., 2016; Tourrette et al., 2019). When there are many QTL the 

loss of genetic variance is associated with the Bulmer effect, and when there are few 

QTL, the loss is associated with allele frequencies more quickly approaching fixation. 

Consequently, generally increasing the frequency or shifting the distribution of 

recombination may not be appropriate for oligogenic trait architecture. For example, 

controlled recombination simulations that use genome editing to target COs to specific 

intervals along each chromosome, rather than modifying the overall CO rate and 

distribution across many generations, may be suitable for oligogenic traits (Bernardo, 

2017; Brandariz & Bernardo, 2019; Ru & Bernardo, 2019, 2020).  

In our study heritability also mediated the translation of increased 

recombination to greater genetic gains. The polygenic trait and low heritability 

simulation parameters are comparable to the genetic architecture of yield. The 

marginal mean genetic gain of a polygenic trait at cycle 10 with low heritability for the 

Chromosome and Pericentromere map type were actually less than WT. Our results 

suggest that increased recombination is not a promising strategy for low heritability 

quantitative traits, e.g., yield improvement. This is different from previous controlled 

recombination simulation findings in rice and turnip, where the response to increased 

recombination under 0.8 and 0.2 heritability was very similar (Tourrette et al., 2019). 

Differences in our results for low heritability traits from existing studies may be 

explained by variations in methodology.  
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The efficiency of increased recombination may depend on knowledge of QTL 

locations   

 Previous simulations have shown that significantly more recombination in low 

recombining regions increased the efficiency of selection (Gonen et al., 2017; 

Tourrette et al., 2019). However, when marker effects are less sensitive to repulsion 

linkages in regions of low recombination, how accurately can simulations evaluate the 

effect of increased recombination? We developed the Chromosome and 

Pericentromere map types, in combination with the R and DV QTL approach to test 

the value of recombination in regions of the genome where historical recombination 

had not made QTL effects apparent. Note that this approach required a large and 

diverse founder population (i.e., compared to the biparental) to have sufficient marker 

density and SnpEff annotations to designate DV QTL.  

Contrary to our original expectations, we found that the map type and QTL 

type had some of the smallest effects on genetic variation and genetic gain under 

increased recombination. Generally, the R QTL performed better than the DV QTL 

because they are more evenly distributed. However, when the QTL positions are 

known (CV relationship matrix) the DV QTL performed better irrespective of the 

increased map type. Indeed, enhancing recombination in regions where causal variants 

are concentrated is more likely to aid in selection (Gonen et al., 2017).  

While revealing currently inaccessible genetic diversity with more 

recombination in the pericentromere is an exciting prospect, our simulations with data 

from real wheat populations indicate it is most beneficial to know the location of 

causal variants. This information may not be available for many traits in a typical 
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breeding program today, but with advances in genome editing, sequencing, and 

deleterious variant annotation, identification of variants that underlie quantitative traits 

in the coming decades may increase.  

 

Feasibility of increased recombination for wheat genomic selection breeding 

programs 

A primary assumption that we made during our simulations was that increasing 

the frequency and shifting the distribution of recombination in wheat is biologically 

feasible. Assuming a controlled recombination method is successfully applied to 

wheat, our results are markedly less promising than previous simulations with 

comparable parameters, which have reported upwards of 34% greater gains compared 

to WT recombination (Tourrette et al., 2019). While we are not sure why our increased 

recombination simulation study had a lower response to selection, Tourrette et al., 

(2019) did detect a difference in the efficiency of modifying recombination across 

species (turnip versus rice). Working with wheat, our specific founder population 

structure, as well as R packages used to generate controlled recombination simulation 

parameters, could be responsible for the deviation in our results.  

Many of the simulation parameters tested in this study (e.g., the five coupling 

and repulsion conditions) were included because they helped to diagnose the reason 

for limited response to selection under increased recombination. One persistent 

limitation was the accuracy of genomic selection under increased recombination, 

which required retraining our model at each cycle of selection. We recognize that this 

would be an added cost for a breeding program. In addition, a differential response in 
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genetic gain was not always detected by genomic selection cycle 6, hence we ran our 

simulations through cycle 10. However, the results at cycle 6 are more representative 

of the time to deliver a cultivar given traditional breeding methods, and the rate of 

technology advancement. The time to introduce the technology to a breeding program 

(e.g., tissue culture methods) is another cycle of generations to consider. 

The cost and resources required for adopting a genome-editing mediated 

technology may be prohibitive for wheat breeding programs. Our simulations showed 

that the benefits of increased recombination were only realized if the recombination 

rate was 20-fold greater than WT for many generations. However too much 

recombination can cause segregation problems and decrease fertility (Pelé et al., 2017; 

Mieulet et al., 2018). Additionally, requiring many generations of selection may not be 

appropriate for all trait architectures or outweigh the benefits of traditional plant 

breeding methods.  

 

 

Conclusion 

Given the potential applications of controlled recombination to future breeding 

programs, this study was motivated by the need to define desirable recombination 

intervals in regions of the genome where historically very few COs have been 

detected. Ultimately our comparison of the recombination frequency and distribution, 

as well as the QTL annotation to better understand the impact of increased 

recombination had little impact on response to selection. The initial conditions of the 

breeding population, especially repulsion linkages, polygenic trait architecture, and 

heritability had a greater influence on selection under increased recombination. We 
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also identified that the increased genetic variation generated from more recombination 

may be associated with loss of genomic prediction accuracy (GW relationship matrix) 

rather than broken repulsion linkages (CV relationship matrix), which narrows the 

conditions in which controlled recombination may produce greater genetic gains. 

Collectively, the outcomes of this research challenge whether a controlled 

recombination application to genomic selection in wheat offers a more efficient path 

to retaining genetic variation and increasing genetic gains compared to existing 

breeding methods.   
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