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All quantum systems are open to some extent, i.e. they interact with their en-
vironment. In this thesis, we develop novel techniques to control these system-
bath interactions and then demonstrate through experiments their significant
influence on system properties and dynamics.

We develop a novel imaging technique in the context of ultracold lattice
gases. This imaging technique allows us to tune the rate at which the atoms are
measured (which can be thought of as an interaction with the electromagnetic
radiation environment) over several orders of magnitude, without concomitant
heating or loss of the atoms. Using this technical ability, we show that in the
weak measurement limit, the atoms undergo unabated quantum evolution, i.e.
they freely tunnel around the lattice, whereas as the measurement strength is
increased, the tunnelling gets suppressed, the coherence is lost, and the atoms
approach a classical limit of slower diffusion; demonstrating the influence of
the degree of system-bath interactions on the system’s dynamics.

Moreover, the dissipation of open systems also allows for the realization of
driven-dissipative phase transitions. We demonstrate and characterize such
a phase transition in a system of ultrahigh-Q optomechanical Silicon Nitride
membrane resonators, and then employ it to study the influence of system-bath

interactions on criticality and phase transitions. In particular, we develop an



active feedback protocol that allows us to change not only the strength of the
resonators’ interactions with the bath but also the very nature of their inter-
actions (non-Markovian vs Markovian). We experimentally demonstrate that
these can markedly influence the criticality of the driven-dissipative phase tran-
sition through measurements of critical and scaling exponents, which signifi-
cantly change with changing system-bath interactions. Furthermore, we also
demonstrate that the very phases that the system supports can be influenced
by the interactions — a class of non-Markovian interactions is shown to effect a
phase, a nonequilibrium steady state, that has no analog in the Markovian case.

Lastly, we consider a couple of applications of these resonator systems to
enhance force-sensing capabilities. We also discuss the future prospects of such
control techniques and other extensions of the works presented in this thesis for
gaining further insights into the influence of system-bath interactions on system

properties and behavior.
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CHAPTER 1
BRIEF INTRODUCTION

This thesis details the novel experimental approaches of our labs to achieve con-
trol over the system-bath interactions of open quantum systems. It then goes on
to describe three studies of how such interactions with the environment can

significantly influence system properties and dynamics.

Firstly, ‘open” here simply refers to the interaction of a system with its envi-
ronment. In contrast, a ‘closed” or “isolated” quantum system would only inter-
act with itself, much like the universe in its entirety is today thought of as being

‘isolated” and not interacting with anything ‘outside’ itself.

Secondly, our systems of choice are either ultracold atoms, or optomechani-
cal resonators, or a hybrid of the two. (a) Ultracold atoms (and ions) are quan-
tum systems that offer unparalleled and unprecedented control over system
properties as also their dynamic manipulation, and therefore make for a natural
choice to controllably ‘open” up. (b) Optomechanics is a burgeoning research
tield over the last couple of decades that realizes, in the quantum regime, one of
the ubiquitous building blocks of quantum mechanics — the quantum harmonic
oscillator. The simplicity of this building block alone is enough to warrant selec-
tion for studying the effects of system-bath interactions, but additionally, having
borrowed techniques and quantum protocols heavily from the well developed
fields of AMO physics and quantum optics, optomechanics offers a promise of
exquisite quantum control. (c) The combination of these disparate systems (not
used in this thesis, but a huge push within our labs) is inspired and motivated

by considerations well expounded in [1].



Each of the following Chapters begins with an overview. Itis aimed at giving
context to the work presented in the Chapter, and to put the work in perspective
of open systems. Chapters 2 and 3 employ cold atoms, whereas Chapters 4,
5, 6 and 7 employ a widely used optomechanical resonator — a Silicon Nitride
membrane resonator. It should be noted at the outset that the optomechanical
experiments in this thesis are all implemented at the high temperature classical
limit !, though the description is retained to be quantum, given that the results

and experiments can be extended into the quantum regime.

The works presented in this thesis were supported by the ARO MURI
on Non-equilibrium Many-body Dynamics (63834-PH-MUR), the DARPA
QuASAR program through a grant from the ARO, an NSF INSPIRE award, and
the Cornell Center for Materials Research with funding from the NSF MRSEC
program (DMR-1120296).

!Optomechanical experiments in the quantum regime, experiments with the hybrid systems,
and other ultracold atomic experiments would have been possible and completed by now, had
it not been for the extremely difficult and annoying circumstances unnecessarily forced upon
our group since 2014 — the fact that majority of the optomechanical works described in this
thesis, and all of our ongoing work, is possible only because of a yet-active restraining order our
advisor obtained since 2016, allowing our labs to carry on with our research, speaks volumes by
itself. See also [2].



CHAPTER 2
NONDESTRUCTIVE IMAGING OF AN ULTRACOLD LATTICE GAS

2.1 Overview

Imaging of ultracold atoms in the atomic, molecular and optical physics com-
munity has been conventionally associated with a concomitant “destruction” of
the atomic cloud [3]. This is because the most commonly employed techniques
of imaging these clouds, absorption or fluorescence imaging, employ laser light
near one of the atom’s electronic resonances, which causes the atoms to be elec-
tronically excited. In absorption imaging, this absorption of the near-resonant
light casts a shadow in the laser beam, the laser and shadow both being recorded
on a camera that is in-line with the shined laser beam. The shadow constitutes
an ‘image’ of the atoms and thus a measurement of the atomic cloud’s position,
density, and other relevant quantities. In fluorescence imaging, the spontaneous
emission of photons, which accompanies the relaxation of the electrons to their
ground or lower-energy state, is imaged on a camera that is off the laser beam

axis — the image so formed by these photons realizing the measurement.

In either scheme, the spontaneous emission of the photons is accompanied
by an inevitable recoil energy being imparted to the atoms by the photons - in
very much the way as the recoil of a gun imparts energy to a shooter. Each pho-
ton emission and thus recoil ‘kick” increases an atom’s kinetic energy. A good
signal to noise ratio for the images so captured on a typical commercial inex-
pensive CCD camera require on the order of a hundred photons to be scattered
by each atom. Coupled with the a-directionality of spontaneous emission, this

implies an increase in the temperature of the atoms. This increase is significant



compared to the nanoKelvin to microKelvin temperatures of the cold atoms,
rendering inaccessible the target physics, if not simply resulting in the atoms
heating out of the traps being used to suspend them in ultrahigh vacuum. In
experiments that employ small Bose-Einstein condensates (BEC), the imaging
destroys the condensate, meaning that in-situ measurements of the condensate
evolution are impossible. A new one has to be created, and the experiment re-
peated, to realize a stroboscopic imaging, each strobe separated by long duty
cycles of the conventional evaporation-based BEC creation techniques (> 30 s).
So also in lattice gas experiments, where atoms are trapped by the potential
formed by standing waves of light [4]. Here, the depth of the trap needs to be
sufficiently small for the atoms to tunnel across lattice sites at rates requisite for
accessing interesting physics, like that of the Fermi and Bose Hubbard models
[5]. Yet again, this precludes any tolerance to the heating induced by the imag-

ing process, preventing in-situ measurements.

This chapter details our novel scheme that combines fluorescence imaging
with two-photon Raman sideband cooling in a lattice gas [6]. The latter allows
us to not just retain the atoms in the trap, but to do so at the low tempera-
tures they start out at, i.e. at the lowest vibrational level of the lattice trap (as
also the same internal spin state), despite the imaging. Ongoing experiments in
our labs aim to extend this technique so that an adiabatic release of the atoms
from the lattice results in a condensate, consequently allowing for rapid, sub-
second, duty cycles for the creation and recreation of large BECs [7]. Apart from
this atom-recycling, our scheme also enables the use of measurement through
imaging as a controllable knob on the strength of system-bath interactions of a
quantum system (the ultracold lattice gas) — the measurement process and inter-

action of atoms with light may be viewed as an interaction with an environment



[8, 9]. This view and concept has already been illustrated in a subsequent exper-
iment which will be the topic of Chapter 3. Moreover, following our efforts and
work, today, the combination of fluorescence imaging and two-photon Raman
sideband or related cooling techniques has already been deployed by several
labs worldwide, e.g. in single-lattice-site resolution ‘quantum gas microscopes’,

enabling a range of other hitherto inaccessible experiments [10, 11,12, 13, 14, 15].

This chapter has been previously published as Nondestructive imaging of an
ultracold lattice gas, by Y. S. Patil, S. Chakram, L. M. Aycock, and M. Vengalattore,
Physical Review A 90, 033422 (2014). Reproduced here with permission (see Ap-
pendix A), with cosmetic changes. In this work, M.V. conceptualized the imag-
ing scheme; M.V, 5.C., and L. M.A. contributed to the development of the ap-
paratus; Y.S.P. and M.V. performed the experiments, the data analysis and the

simulations; M. V. wrote the paper with help from Y.S.P. and S.C.

2.2 Abstract

We demonstrate the nondestructive imaging of a lattice gas of ultracold bosons.
Atomic fluorescence is induced in the simultaneous presence of degenerate Ra-
man sideband cooling. The combined influence of these processes controllably
cycles an atom between a dark state and a fluorescing state while eliminating
heating and loss. Through spatially resolved sideband spectroscopy following
the imaging sequence, we demonstrate the efficacy of this imaging technique
in various regimes of lattice depth and fluorescence acquisition rate. Our work

provides an important extension of quantum gas imaging to the nondestructive



detection, control, and manipulation of atoms in optical lattices. In addition,
our technique can also be extended to atomic species that are less amenable to

molasses-based lattice imaging.

2.3 Introduction

The creation, control, and manipulation of ultracold atomic gases in tailored op-
tical potentials has spurred enormous interest in harnessing these mesoscopic
quantum systems for the realization of ultracold analogs of correlated elec-
tronic materials [16, 5], studies of nonequilibrium dynamics in isolated quan-
tum many-body systems [17] and quantum metrology [18]. The dilute nature
of these gases and the weak interactions impose stringent restrictions on the en-
ergy, entropy, and means of manipulating and probing these systems. This has
led to the development of techniques to cool and image these gases at ever in-
creasing levels of precision and resolution. In this context, the in situ imaging
of lattice gases at high spatial resolution has emerged as a powerful tool for the
study of Hubbard models [19, 20, 21, 22] and quantum information processing
[23].

In this article, we demonstrate a two-photon imaging technique for ultra-
cold lattice gases. The scheme relies on extracting fluorescence from the atoms
while simultaneously cooling them to the lowest band of the lattice via Raman
sideband cooling (RSC) [6, 24, 25]. Through a combination of sideband spec-
troscopy and time-of-flight measurements, we demonstrate broad regimes of
fluorescence acquisition rates and lattice depths for which the imaging scheme

preserves the spatial location and also retains the atoms in the ground vibra-



tional state. As a result, this imaging scheme enables the imaging of atoms
in shallow lattices with high fidelity. In addition, the two-photon scheme is less
sensitive to details of atomic structure thereby permitting its extension to atomic

species less amenable to molasses-based imaging.

2.4 Implementation of the imaging technique

The principle of the imaging sequence is depicted in Fig. 2.1. Raman sideband
cooling is employed to cool individual atoms within an optical lattice to the
lowest vibrational band while simultaneously pumping the atoms to the high
field seeking state. In the case of 8Rb atoms used in our study, this state is
denoted by |g) = |F = 1,mp = 1;v = 0), where v is the vibrational state of the
atom within a lattice site. Importantly, this state is a dark state with respect to
the optical fields used for Raman cooling. As such, the atoms do not emit any
fluorescence while in this ground state. Fluorescence is induced in these atoms
by shining a circularly polarized (o) beam resonant with the F =1 — F' =0
(D2) transition. Simultaneous use of RSC mitigates the increase in temperature
caused by this fluorescence beam by cycling the atoms back to |g). Due to this
cycling, fluorescence can be repeatedly extracted from the atomic distribution

while leaving the atom in its original state.

For the studies described below, we use three-dimensional (3D) optical lat-
tices that are typically detuned 27 x 160 GHz from the F' = 1 — F’ (D2) transition
of ¥Rb. The lattice provides both the confining potential as well as the coher-
ent two-photon coupling required for sideband cooling [26]. In the absence of

RSC, we measure a heating rate of 11 nK/ms due to the photon scattering from
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Figure 2.1: (a) Lattice imaging scheme : An atom within a lattice site is
cooled to the ground state |g) = [F = 1,mr = +1;v = 0) via RSC.
An auxiliary imaging beam promotes the atom out of this state
to a fluorescing state, which is subsequently cooled back to [g).
Repeated cycles of this process extract fluorescence from the
atom while continually restoring the atom to |g); (b) The near-
resonance optical fields used in the imaging sequence. A cool-
ing beam (RSC) with o, and 7 components cools and optically
pumps the atom into the dark state |g). A o_ beam induces flu-
orescence by bringing the atom out of the dark state. (c) Raman

fluorescence image of a gas of 1.5 x 10° atoms obtained within
15 ms. The field of view is 250um x 250um.

the near-resonant lattice. While this does not pose a limitation for the studies
described in this work, this heating can be significantly reduced by employing

separate optical fields to provide the lattice confinement and the Raman cou-

pling.

Atoms are loaded into this lattice and initialized in the ground state |g) by a
10 ms period of RSC. Based on measurements of the atomic density within the
lattice, we estimate filling fractions on the order of f = 0.20 — 0.25. The average

vibrational occupation number is measured using sideband spectroscopy to be



(n) < 0.01 for the entire range of lattice depths studied here. Fluorescence im-
ages are acquired by switching on the fluorescence beam at a variable intensity.
The images are acquired within exposure times of up to 30 ms following which
the number of atoms and temperature of the atomic distribution are measured
using a combination of time-of-flight absorption imaging and sideband spec-

troscopy.

We perform sideband spectroscopy to accurately quantify local changes in
temperature due to fluorescence imaging. For this, we employ a pair of coun-
terpropagating beams detuned 27x7.5 GHz from the F = 1 — F’ (D2) transition
of ¥Rb. The beams are focused to an approximate waist of 8 um. The measured
sideband asymmetry [27] allows a local extraction of the vibrational occupation
number (Fig. 2.2). An oblique orientation of these beams with respect to the
lattice coordinates ensures sensitivity of the sideband spectra to atomic motion
in all three dimensions. The two-photon pulses are typically 500 us in duration
with typical pump (probe) powers of 10 uW (20 nW). We have verified that the
vibrational occupation number extracted from the sideband spectra is consis-
tent with temperatures measured by time-of-flight imaging following a rapid
(< 1pus) extinction of the lattice *. Also, the observed width of the sidebands
is consistent with our estimate of the coherent Raman coupling induced by the

near-resonant lattice.

!For very large atom numbers (~ 10%) where the atomic cloud size is commensurate with
that of the lattice waist, the time-of-flight measurements indicate slightly elevated temperatures
in comparison to that extracted from the local sideband spectra. This is presumably due to the
inhomogeneous variation of lattice frequencies across the atomic distribution and a reduced
efficacy of RSC for atoms on the periphery. In such cases, we rely on the sideband spectra for a
more reliable estimate of the temperature
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Figure 2.2: Spatially resolved sideband spectroscopy of the lattice gas fol-

lowing the imaging sequence yielding (n) = 0. Ol*g 8? Inset:

A time-of-flight absorption image of the ultracold gas follow-
ing an intense interrogation pulse at the two-photon resonance.
The divot near the center of the atomic distribution shows the
location and relative size of the beams used for sideband spec-
troscopy. The field of view is 600 um x 600 ym.

2.5 Discussion

Our imaging scheme, as constructed, relies on the competition between two
processes: atomic fluorescence at a rate I'; that yields spatial information about
the atomic distribution, and RSC at a cooling rate I'gs¢ that serves to cool the
atoms back to the ground state within each lattice site. While the former de-
pends solely on the intensity of the fluorescence beam, the latter is given by

Trsc ~ Dopr X Q2 =/ T2 + 291%) where Qg is the coherent Raman coupling between

opt
the states |mp,v) and |mp — 1,v — 1), and I',,, is the rate of optical pumping to
the [mrp = +1) state [28]. As the fluorescence rate is increased significantly be-

yond the cooling rate, atoms can be promoted to higher bands within the lattice

and can tunnel to neighboring sites. In addition to modifying the atomic dis-
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tribution, such tunneling can also lead to multiply occupied lattice sites and

subsequent loss due to light-induced collisions.

To identify the regimes of imaging where the scheme is nondestructive, we
use light-induced collisional loss as a diagnostic tool to monitor atomic tunnel-
ing across lattice sites. Further, in order to clearly demarcate atomic dynamics
due to the fluorescence pulse from that due to RSC, we employ a pulsed imag-
ing sequence wherein the fluorescence pulse and RSC are employed in rapid
succession with a variable duty cycle. As expected, the average vibrational oc-
cupation number measured at the end of the fluorescence pulse grows with in-
creasing fluorescence rate [Fig. 2.3(a)]. However, RSC is very efficient at cooling
the atoms back to the ground state at the end of each cycle. At the end of each
RSC cycle, we measure average vibrational occupation numbers (~ 0.01) that
are, within our measurement uncertainty, indistinguishable from those mea-
sured in the absence of the fluorescence pulse (Fig. 2.2). The typical measured
RSC cooling rates of 13 uK/ms are also consistent with that estimated based on

the intensities of the lattice and optical pumping beams.

While simultaneous cooling during fluorescence acquisition leaves the final
vibrational occupation unaltered, the transient increase in temperature during
the fluorescence pulse can cause tunneling of atoms to neighboring lattice sites.
This tunneling rate depends sensitively on both the average vibrational occu-
pation number as well as the lattice depth U, typically parametrized in units
of the recoil energy E, = #%k*/2m. At low rates of fluorescence acquisition ?,

we observe that the total number of atoms is left unchanged subsequent to the

2The fluorescence rate is calibrated by the measured rate of Raman fluorescence acquired by
the camera, and a geometrical estimate of the numerical aperture of our imaging system. This
calibration is very close to the rate estimated from the measured intensity and detuning of the
fluorescence beam.
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Figure 2.3: Regimes of fluorescence acquisition rates for non-destructive

imaging. (a) Measured temperature of the lattice gas in a
pulsed imaging sequence, in units of the vibrational frequency
w;. The temperature during the fluorescence pulse grows (red)
with increasing fluorescence rates while RSC rapidly cools the
atoms back to the ground state (blue). (b) Measured atom num-
ber following the imaging sequence. At low fluorescence rates,
the atom number is conserved indicating negligible levels of
tunneling across sites. As the fluorescence rate is increased, the
increasing temperature during the fluorescence pulse causes
tunneling followed by light-induced loss. The shaded area rep-
resents the critical fluorescence rate for the onset of tunneling
as identified by our measurements of light-induced loss. Inset:
Evolution of atom number immediately following an intense
fluorescence pulse (I'y = 6 x 10° s7') shows that RSC quickly
(within 100 us) binds the atoms to the ground state of a lattice
site thereby drastically suppressing tunneling.
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imaging sequence indicating a negligible level of tunneling across sites. Beyond

a certain fluorescence rate I'y,,,., we observe two-body loss indicating the onset

of tunneling of atoms [Fig. 2.3(b)]. As indicated by the rapid decrease of atoms

for fluorescence rates past this maximal value, two-body loss is a very sensitive

measure of the tunneling rates induced by the imaging sequence (see also Refs.

[29, 30]). The temporal evolution of the atom number following a brief, intense

fluorescence pulse indicates that RSC cools and binds the atoms to the ground

state of a lattice site within 100 us [see inset of Fig. 2.3(b)], again consistent with
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measurements of the cooling rate.

We have performed Monte Carlo simulations of the imaging process that
accurately capture the sensitivity of two-body loss to tunneling events and the
threshold behavior arising from the competition of imaging, RSC, and tunnel-
ing. For the filling fractions used in this work (0.20 — 0.25), the measured critical
fluorescence rate, I'f,,..x, as identified by the onset of light-induced loss, is within
20% of the critical fluorescence rate for the onset of tunneling. We further find
that the filling fraction needs to be reduced by more than an order of magnitude
before there is a significant probability of tunneling events that do not lead to
measurable loss. These findings justify the correspondence between the onset

of tunneling in the lattice gas and our measured onset of two-body loss.
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Figure 2.4: The fraction of atoms remaining after the imaging sequence
(Ny/N;) vs fluorescence rates for lattice depths of Uy/E, =
14.6,24.9,36.7 and 76.2 (left to right). Inset: An estimate of
the maximum fluorescence acquisition rate I';,,,, per atom vs
§ = U()/Er.
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Similar considerations apply to the imaging of atoms in shallow optical lat-
tices (Fig. 2.4). In this case, the rates of tunneling grow exponentially with
decreasing lattice depth [31, 32]. This leads to a reduction of the maximal fluo-
rescence rates that can be used while constraining atomic motion. As expected,
an estimate of this maximum allowable fluorescence rate shows an exponential
decrease with lower lattice depths (see inset of Fig. 2.4). Importantly, we see
that fluorescence acquisition rates greater than 10* photons/s per atom are pos-
sible even for lattice depths around 15 recoil energies. This makes possible the
use of this imaging technique to study lattice gases in regimes where coherent
tunneling of atoms within the lowest band occurs on experimentally relevant
time scales. In addition, it augurs the intriguing possibility of using this imag-
ing scheme to influence or exert spatial control over such coherent tunneling
processes. Nondestructive imaging of atoms in even lower lattice depths could
be made possible by increasing the Raman cooling rates and operating at lower

fluorescence acquisition rates.

At the lowest lattice depths, possible limitations to our imaging scheme in-
clude the reduced fidelity of RSC due to a lower Lamb-Dicke parameter and
off-resonant Raman coupling to higher vibrational bands, an increased suscepti-
bility to photon reabsorption heating [25], and faster rates of tunneling to neigh-
boring lattice sites. As we show in Fig. 2.4, these limitations can be overcome
by a suitable choice of fluorescence acquisition rate and Raman cooling rates.
Already, the lowest lattice depth (s ~ 15) for which we demonstrate nonde-
structive imaging is more than two orders of magnitude below that required for

molasses-based lattice imaging.
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2.6 Conclusions

In summary, we demonstrate a nondestructive imaging technique for ultracold
atoms confined in an optical lattice. The imaging technique is based on extract-
ing fluorescence while simultaneously cooling the atoms to the ground state
of the lattice via Raman sideband cooling. Using a combination of sideband
spectroscopy and time-of-flight imaging, we demonstrate a large operational
regime of fluorescence acquisition rates and lattice depths for which the imag-
ing scheme preserves the spatial location of the atoms while leaving them in
the ground vibrational state. At the largest rates of fluorescence acquisition
(~ 10° photons/s/atom) and the lowest lattice depths, the main loss mecha-
nism occurs due to tunneling of atoms to occupied lattice sites followed by rapid
light-induced loss. By using the light-induced loss as a diagnostic measure of
tunneling, we show that this limitation can be alleviated by a suitable choice
of fluorescence and Raman cooling rates. That said, we note that the imaging
scheme demonstrated here does lead to light-induced loss in lattice sites occu-
pied by multiple atoms. In this regard, it is similar to molasses-based imaging

in its sensitivity to the parity of lattice occupancy.

Our imaging technique represents a powerful extension of lattice imaging to
the nondestructive control and measurement of lattice gases. As such, it is an
enabling technique to extend concepts of single-particle quantum control to the
context of strongly correlated many-body systems. This scheme also permits the
continuous monitoring of the out-of-equilibrium dynamics of ultracold lattice
gases. We also note that while used primarily as a diagnostic tool here, spatially
resolved coherent two-photon processes such as the setup used for sideband

spectroscopy in our work, can also be used for subdiffraction limited quantum
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control of the lattice gas [33, 34]. Lastly, our imaging scheme is also extendable
to atomic species that are less amenable to molasses-based lattice imaging as
well as to lattice geometries [35] where molasses-based imaging can be stymied

by local polarization gradients.
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CHAPTER 3
MEASUREMENT-INDUCED LOCALIZATION OF AN ULTRACOLD
LATTICE GAS

3.1 Overview

Quantum mechanics is one of the two discoveries of the twentieth century that
have revolutionized physics (and civilization). Yet, more than a century later,
it remains poorly understood why and how the ‘bizzare’, or rather unintuitive,
predictions of quantum mechanics do not readily manifest in everyday life; e.g.
why we hardly find any furniture in a superposition of ‘here” and ‘there’, in
common parlance. A prevalent theoretical understanding is that the quantum
state of a system decoheres due to its couplings or interactions with its envi-
ronment [36, 37, 38]. And ideas that such decoherence-inducing interactions
can fundamentally not be avoided have been theoretically explored, e.g. the
inevitability of gravitational interactions for massive systems [39, 40, 41, 42].
The understanding that the quantum entanglement between the system and its
bath is the very underlying cause of the emergent classicality of the system has
been empirically under-studied and unexplored. Moreover, it has also been sug-
gested that the inefficiencies of quantum measurements may play a role in the
observed classicality [43, 44]. Further progress toward a deeper appreciation
and understanding of how the quantum description of a system transforms or
evolves into a classical or thermodynamic description as the system is allowed
to increasingly interact with its bath (the so-called quantum to classical transi-
tion) would necessarily be guided empirically. And one of the aims of studying

“open” quantum systems is indeed to smoothly connect quantum mechanics
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and thermodynamics [45].

So far, experiments and theory are in excellent agreement in the two ex-
tremes of isolated quantum systems (no system-bath interactions), and clas-
sical thermodynamics (the system and bath interact enough to reach equilib-
rium at some ‘temperature’ T'). The experimental study of intermediate regimes
through an at-will control of the quantum system’s interactions with its bath
has, however, been elusive. The work described in this Chapter illustrates
the use of our novel imaging scheme to realize precisely such a control. The
already sophisticated toolbox developed over decades by the atomic physics
community offers an exquisite tunability of the isolated quantum system’s pa-
rameters, like densities, interaction strengths, internal degrees of freedom, etc
[16, 5]. Our position-measurement/imaging scheme now adds to that toolbox
a knob to tune the atomic system’s interactions with its environment (the elec-
tromagnetic radiation), controllably variable over several orders of magnitude
in strength. Our data demonstrates how a quantum coherent evolution (tun-
nelling) of atoms in a lattice is suppressed by the system’s increasing interac-
tions with the environment, morphing the atomic motion toward a classical

limit.

It should be noted that recently, there has been other encouraging exper-
imental progress on a similar front through a study of the thermalization of
quantum systems, incidentally, using a quantum-gas-microscope referenced in
Chapter 2 [46]. See also [47, 48, 49, 50, 51, 52, 53]. It was experimentally con-
tirmed that while the super-system comprising of a system and its bath can be
described as a pure quantum state, the state of the system (a subsystem of the

super-system) can be described as a thermodynamic mixed state. Methods and
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techniques like the ones described in this Chapter enable the controlled study
of such quantum to classical transitions. It is but a concrete illustration of the
possibilities enabled by the realization of a control over a system’s interactions
with its environment, here, simply the total strength of the system-bath inter-
actions. More sophisticated protocols which also allow the control of the very
nature of these interactions (e.g. non-Markovian vs Markovian, nonlinear vs
bilinear) open vast and relatively unexplored vistas, including nonequilibrium
physics. This theme of nonequilibrium open systems and the nature of system-
bath interactions will recur in the following chapters, where we experimentally

explore their influence on system properties and dynamics.

This chapter has been previously published as Measurement-induced localiza-
tion of an ultracold lattice gas, by Y. S. Patil, S. Chakram, and M. Vengalattore, Physi-
cal Review Letters 115, 140402 (2015). Reproduced here with permission (see Ap-
pendix A), with cosmetic changes. In this work, M.Vengalattore and S. Chakram
contributed to the development of the apparatus. M. Vengalattore did the ex-
periments and data analysis. Y. S. Patil performed the simulations. All authors

contributed to the preparation of the manuscript.

3.2 Abstract

The process of measurement can modify the state of a quantum system and its
subsequent evolution. Here, we demonstrate the control of quantum tunneling
in an ultracold lattice gas by the measurement backaction imposed by the act of

imaging the atoms, i.e., light scattering. By varying the rate of light scattering
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from the atomic ensemble, we show the crossover from the weak measurement
regime, where position measurements have little influence on tunneling dy-
namics, to the strong measurement regime, where measurement-induced local-
ization causes a large suppression of tunnelinga manifestation of the quantum
Zeno effect. Our study realizes an experimental demonstration of the paradig-
matic Heisenberg microscope and sheds light on the implications of measure-

ment on the coherent evolution of a quantum system.

3.3 Introduction

A fundamental distinction between a classical and a quantum system is its re-
sponse to a measurement. While a classical system can be measured to arbitrary
precision with negligible concomitant backaction, the act of measurement has
profound consequences on the subsequent evolution of a quantum system [54].
In the extreme limit, a sequence of rapid, projective measurements can freeze
the decay of an unstable quantum system [55, 29, 30, 56], suppress its coherent
evolution [57, 58], or confine such coherences to Hilbert subspaces demarcated
by measurement-induced boundaries [59, 60, 61]. These phenomena are differ-
ent manifestations of the quantum Zeno effect (QZE) [62, 63]. In addition to its
foundational implications on the nature of quantum mechanics and the mea-
surement process, the QZE has also garnered attention as a means of stabilizing
fragile quantum states, studying emergent classicality in a quantum system due
to measurement [64, 65, 66], and for controlling the thermodynamic properties

of an isolated quantum system [67].

In a broader context, a measurement can be regarded as an interaction be-
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tween a quantum system and a bath whose intrinsic, spatial, and dynamical
properties can be precisely engineered. As such, measurements can be used to
coax a quantum system into novel collective phases and nonequilibrium states
that might otherwise be inaccessible through more conventional means of cool-
ing or state preparation. This is of particular relevance for ultracold atomic and
molecular gases in optical lattices which have emerged as pristine realizations
of correlated quantum many-body systems [5]. The inherent control and tun-
ability of various properties of these gases have allowed for a diverse range of
studies focused on the realization of ultracold analogues of correlated electronic
materials [16], studies of nonequilibrium dynamics of isolated quantum many-

body systems [17], and the creation of novel many-particle states of matter.

In this Letter, we use a two-photon in situ lattice imaging technique to
demonstrate the measurement-induced control of quantum tunneling in an ul-
tracold lattice gas. In contrast to molasses-based lattice imaging schemes, our
imaging technique extracts fluorescence from the lattice gas while retaining the
atoms in the ground vibrational band of the lattice [68]. By extending this
technique down to shallow lattice depths with correspondingly large tunneling
rates, we show that the process of imaging has the concomitant effect of dramat-
ically changing the tunneling dynamics. By taking advantage of the large dy-
namic range of photon scattering rates that are made available by our technique,
we observe the continuous crossover of tunneling dynamics from the weak mea-
surement regime, where the act of measurement exerts negligible backaction on
the lattice gas, to the strong measurement or quantum Zeno regime, where the
act of measurement localizes an atom to a lattice site and leads to a strong sup-

pression of tunneling.
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3.4 Our two-photon imaging scheme

The principle of the imaging scheme is depicted in Fig. 3.1. Raman sideband
cooling (RSC) [6, 24, 25, 26] is used to cool atoms within an optical lattice to
the lowest vibrational band while simultaneously pumping them to the high
field seeking spin state [D) = |F = 1,mp = 1;v = 0). This state is decoupled
from the light field and, as such, does not emit fluorescence. As shown in Ref.
[68], fluorescence can be induced by shining an auxiliary imaging beam that
controllably promotes the atoms to a bright state |B) and subsequently recooling

them back to |D) [see Fig. 3.1(a)].

The fluorescence emitted by the atoms can, in principle, be captured by a de-
tector and thus constitutes a position measurement of the emitting atom. While
such position measurements nominally impart energy to the atom as a measure-
ment backaction, the simultaneous use of RSC mitigates this increase in energy
by cycling the atoms back to the lowest vibrational band. Because of this cy-
cling, fluorescence can be repeatedly extracted from an atom while restoring it
to its original state. We introduce a position measurement rate I',, which we de-
fine to be the scattering rate of photons from the imaging beam, and note that
this underestimates the actual scattering rate since it neglects the spontaneous

emissions during the subsequent recooling of atoms to |D).
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Figure 3.1: (a) Lattice imaging scheme : An atom within a lattice site is
cooled to the ground state |[D) = |[F = 1,my = +1;v = 0) via
RSC. This state is nominally a “dark state”, i.e., it does not emit
fluorescence. An auxiliary “imaging” beam promotes the atom
out of this state to a fluorescing state |B) which is subsequently
cooled back to |D). Repeated cycles of this process extract flu-
orescence from the atom while continually restoring the atom
to |D). (b) The imaging scheme thus allows us to distinguish
between two possible states of the atom - a bright state |B) that
can be imaged and a dark state |[D) that cannot be imaged. (c)
Fluorescence images of a lattice gas obtained at increasing lev-
els of the measurement rate I',,. The field of view of each frame
is 250 um x 250 pum.

3.5 Photoassociative loss as a measure of the quantum tunnel-

ing

In shallow lattices, the atoms can coherently tunnel across sites at a rate J that

is exponentially dependent on the lattice parameter s = Uy/E,, where Uj is the
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depth of the lattice and E, is the recoil energy [31]. For the filling fractions in this
Letter (f ~ 0.25), such tunneling events frequently lead to multiply-occupied
lattice sites at a rate I, = 4¢Jf, where ¢ = 6 is the number of nearest neigh-
bors in the 3D lattice [69]. In the presence of the near-resonant light used for
fluorescence imaging, such multiply-occupied sites are susceptible to photoas-
sociation and subsequent atom loss at a rate kpy = 8 f lwo(MIFdr ~ (0.1 = 0.3)[,,
(see Supplemental Material, Section 3.9.3). Here, 8 is the photoassociation rate
coefficient and wy(r) is the ground band Wannier function. Thus, the effective
two-body loss rate is k = I';kpa/(I'; + kpa). For our studies described here, we
typically operate in the regime I, < «kps < I',,. In other words, the formation
of multiply-occupied sites, at the rate I';, is the rate-limiting step for photoasso-
ciative loss, i.e., k = I';. Based on these rates, we identify photoassociation loss
as a sensitive probe of multiply-occupied sites and, hence, the tunneling rate of

atoms within the lattice.

3.6 The quantum zeno effect in our system

Coherent tunneling of atoms within the lattice can be strongly influenced by
continuous projective measurements of atomic position. Depending on the rel-
ative magnitudes of the tunneling rate J and the measurement rate I',,, we can
identify two distinct regimes. In the weak measurement limit I',, < J, the spo-
radic position measurements have negligible influence on tunneling, and the

photoassociation rate « is independent of the measurement rate [Fig. 3.2(a)].

In the strong measurement limit I',, > J, repeated fluorescence emission

events continually project the atom into the same lattice site. In our experiments,
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Figure 3.2: Photoassociation measurements demonstrating the crossover
from the weak measurement regime (I, < J) to the strong
measurement regime (I',, > J). In the former regime, (a), posi-
tion measurements have little influence on tunneling, and the

two-body lifetime 7 = «~

1

is independent of the imaging rate.

In the latter regime (b), measurement-induced localization sup-
presses tunneling rates leading to an increase of the two-body
lifetime. (c) Measurements of two-body lifetime vs measure-
ment rate. These data were obtained at a lattice parameter

s = 8.5(2.0) with 79 = 31(3) ms.

the wavelength of the emitted photon is commensurate with the lattice spacing.
As such, atoms are localized to within a lattice site subsequent to the emission
of a photon. This frequent and stochastic localization [70] leads to an incoher-
ent diffusion of atoms within the lattice at an effective tunneling rate given by
J, ¢r ~ J*/T, [71, 72]. In other words, the effective tunneling rate J, ¢, the rate of

multiply-occupied sites I';, and hence the two-body loss rate x, monotonically
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decreases with increasing measurement rate. In essence, the act of observation
“freezes” the lattice gas [Fig. 3.2(b)]. This quantum phenomenon, which does

not have a classical equivalent, is a manifestation of the QZE.

In our experiments, we prepare ultracold gases in the ground vibrational
band of a 3D lattice (see Supplemental Material). In the absence of the imaging
sequence, the lattice gas has a characteristic two-body lifetime 7, that is depen-
dent on the lattice depth (and corresponding bare tunneling rate) and residual
light scattering due to Raman sideband cooling. In the simultaneous presence
of sideband cooling, the lattice gas is subjected to either continuous or pulsed
position measurements by the lattice imaging sequence at various photon scat-
tering rates. The scattering rate is calibrated based on the measured power,
beam profile and polarization of the imaging beam, and its orientation relative
to the ambient magnetic field. At the lowest rates, allowing for various losses
and stray light scattering, we estimate that this calibration is accurate to within
a factor of 2. This rate can be tuned over a large dynamic range [O(10%)] by vary-
ing the intensity of the imaging beam that induces fluorescence, allowing us to
probe both the weak and strong measurement limits as well as the crossover

regime.

At low rates of imaging, we observe that the two-body lifetime is unchanged
by measurement, reflecting the negligible influence of photon scattering on co-
herent tunneling. However, as the imaging rates increase, the two-body life-
time of the lattice gas grows [Fig. 3.2(c)]. This reflects the crossover from the
weak measurement regime to the strong measurement regime, where now the
measurement-induced localization of the atoms is the dominant influence on

tunneling dynamics. This crossover regime offers a novel platform for quanti-
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tative studies of measurement-induced emergent classicality in a quantum sys-

tem.

As the rate I',, is made much larger than the coherent tunneling rate J, we
observe the expected behavior of the effective tunneling rate J,;; ~ J?/T,,. The
measured lattice lifetime grows in linear proportion to the measurement rate
[Fig. 3.3(a)]. This is a characteristic signature of the quantum Zeno effect; i.e.,
increasing the rate of fluorescence decreases the photoassociation rate. This sup-
pression of tunneling can also be regarded as arising from the spectral broad-
ening of atomic eigenstates within a lattice site when the measurement-induced
width of the eigenstate becomes larger than the bare tunneling rate J. Also, by
confining the lattice gas at varying depths while imaging the atoms at constant
measurement rate, we show the quadratic dependence of the photoassociation
rate with the bare tunneling rates [Fig. 3.3(b)]. The latter are estimated within

the tight-binding model based on our calibration of the imposed lattice depth.
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Figure 3.3: In the strong measurement regime, the effective tunneling rate
is given by J,;; ~ J?/T,. This leads to a two-body lifetime
7 = «! that linearly increases [as seen in (a)] with the mea-
surement rate — a clear signature of the QZE. These data were
obtained for s = 23(2). (b) The quadratic scaling of the effective
tunneling rate (and hence, the photoassociation rate x) with the
bare lattice tunneling rate is demonstrated by measurements
of « for lattice gases confined in different lattice depths. These
data were obtained by imaging the lattice gases at fixed mea-
surement rate I',,. The dashed line shows a quadratic fit to the
data.
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Figure 3.4: Suppression of atomic diffusion due to position measurements.
A brief on-resonant optical pulse depletes the central region of
the lattice gas [indicated by the arrow in (a)]. (b) Cross section
of the atomic ensemble following this pulse. (c) Atoms rapidly
diffuse into this central region in the absence of imaging (blue,
s = 8.5, I, = 0). In contrast, diffusion is suppressed when the
atoms are continuously imaged (red, s = 8.5, T, = 1000 s7").

We note that two-body loss can also be suppressed because of an effective re-
pulsion arising from dissipative two-body interactions such as photoassociation
(also see, for example, Refs. [29, 30, 56]). This can be regarded as a continuous
Zeno effect and is distinct from the imaging-induced localization observed in
this Letter. To further clarify this distinction, we measure the diffusion rate of

atoms within the lattice under the influence of the imaging light. A short, fo-

29



cused burst of on-resonant light is used to deplete the central region of the gas
[Figs. 3.4(a) and 3.4(b)]. Following this, the lattice depth is lowered to s = 8.5 to
allow the atoms to repopulate the central region by tunneling. The population
in this central region is quantified by absorption images of the gas at varying
evolution times. In the absence of imaging, the central region is repopulated
over time scales of 200 — 500 ms. In contrast, atomic diffusion is suppressed
by imaging [Fig. 3.4(c)], clearly demonstrating localization of the atoms due to

light scattering.

3.7 Heating at high measurement rates I,

At first glance, it would appear that an atom can be localized to a lattice site
for arbitrary lengths of time for sufficiently large photon scattering rates. How-
ever, in general, the act of position measurement causes the atoms energy to in-
crease linearly with time [73]. In our scheme, this increase in energy is mitigated
by the simultaneous use of sideband cooling at a rate I'ys¢c. For measurement
rates that are comparable to this cooling rate, there is a significant contribution
from higher vibrational bands with correspondingly larger rates of tunneling
[74]. This causes a deviation from the linear growth of the two-body lifetime
with measurement rate (Fig. 3.5). Monte Carlo simulations of a noninteracting
model of this competition between measurement-induced heating and Raman
cooling are in good qualitative agreement with our observations. In the regime
[ > Tgsc, the measurement-induced heating dominates any cooling mech-
anism, and the atom is completely delocalized because of rapid higher-band
tunneling, leading to high rates of photoassociation [Fig. 3.5 (inset)]. Based on

these considerations, it is clear that the Zeno effect is most readily seen for the
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Figure 3.5: For measurement rates I',, that exceed the Raman cooling rate
['gsc, atoms are promoted to higher vibrational bands because
of the measurement. The increased tunneling rates in these
higher bands cause a deviation from the linear scaling of the
lifetime 7 with T',,. Because of the proportionate relation be-
tween the Raman cooling rate and the lattice depth, this de-
viation occurs more readily for atoms in shallow lattices. The
data shown represent two-body lifetimes in the Zeno regime
for lattice parameters s = 9.5(1.5), (filled square), s = 21(2),
(filled circle). The shaded region represents a Monte Carlo sim-
ulation of a kinetic model of the measurement process. Inset:
Simulated two-body lifetimes vs measurement rate : the on-
set of higher-band tunneling occurs at larger I, for increasing
Raman cooling rates (bottom to top).

regime J < I',, < I'ggc.

3.8 Conclusions

In summary, we use an in situ lattice imaging technique to demonstrate the

measurement-induced localization of an ultracold lattice gas. By varying the

31



rate of imaging, i.e., position measurements, in relation to the tunneling rate
within the lattice, we show the smooth crossover from the weak measurement
regime where the act of observation causes negligible backaction on the lattice
gas, to the strong measurement or Zeno regime where measurement-induced
localization causes a strong suppression of coherent tunneling. The large dy-
namic range and quantum-limited tunability inherent to this imaging scheme
should enable new forms of measurement-induced control of a lattice gas by

spatially and dynamically varying measurement landscapes.

In addition to shedding light on the nature of measurements and their influ-
ence on coherent quantum evolution, we also note the relevance of this study
in the context of state preparation in ultracold many-body systems. While the
isolation of such systems from the environment has notably allowed for the ob-
servation of various forms of long-lived mesoscopic quantum behavior, this de-
coupling also stymies the creation of low entropy states within experimentally
viable time scales. The phenomena observed here could lead to new techniques
of backaction-induced cooling, state preparation, and spatially resolved entropy

segregation in a lattice gas.

3.9 Supplementary Information

3.9.1 Experimental sequence

In our experiments, *’Rb atoms are confined in a 3D optical lattice that is typi-
cally detuned 27x160 GHz from the F = 1 — F’ (D2) transition of ¥’Rb. The opti-

cal lattice provides both the confinement and the coherent two-photon coupling
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required for sideband cooling. In the absence of RSC, the measured heating
rates are on the order of 5 nK/ms, about three orders of magnitude below the
measured Raman cooling rates. By varying the loading conditions, the number
of atoms confined in the lattice can be controlled from 10* — 10%. For the studies
described here, atoms are first cooled to the ground vibrational band (average
vibrational occupancy (n) < 0.01) in a deep lattice (s ~ 50 + 1.5) before the lattice
is slowly ramped down to a final depth in the range s = 6 — 20. Depending
on the final lattice depth, the ambient magnetic field and the optical pumping
rates are adjusted continuously during the ramp so as to ensure high fidelities
of ground state cooling. Typical filling fractions at the end of this sequence is
around f = 0.25(4), as estimated from measurements of atom number and cloud

size.

The atomic ensemble is then subjected to either pulsed or continuous posi-
tion measurements, i.e. imaging, as described in [68], for variable periods of
time. At the end of this imaging sequence, the atom number and temperature
of the ensemble are measured using time-of-flight imaging and sideband spec-

troscopy.

3.9.2 Temperature and lattice depth calibration

The average vibrational occupancy is probed through both time-of-flight mea-
surements as well as sideband spectroscopy. For lattice depths s > 10, both
these measurements coincide at the few percent level. For the lowest lattice
depths (s < 10), thermometry through measurements of sideband asymmetry

was found to be less accurate as the spectral width of the sidebands was com-
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parable to the lattice frequency. For such shallow lattices, we relied primarily

on temperature measurements obtained by time-of-flight absorption imaging.

The lattice depths were calibrated via sideband spectroscopy. These mea-
surements were performed most accurately for the deeper lattices to obtain a
calibration between the measured lattice frequencies and the optical power of
the imposed lattice beams. This calibration was then extrapolated to the low-
est optical powers to overcome the finite resolution of the sideband spectra for

lattice depths s < 10.

3.9.3 Relation between the photoassociation rate « and the

imaging rate I,

In the presence of near-resonant light used for position measurements, pairs of
atoms within the same lattice can undergo photoassociative loss. This two-body

process occurs at a rate
Kpa =B f lwo(MI*d*r (3.1)

where g is the photoassociative rate coefficient and wy(r) is the ground band
Wannier function. The rate coefficient 8 depends both on the excitation rate, i.e.
I, and on details of the excited state potential characteristic of ¥Rb. We can
rewrite the above relation to express the photoassociation rate in terms of the

imaging rate I',, and the lattice parameter s as

eon = e S
PA — m
Lrer m3%a}

(3.2)

where a, is the oscillator length corresponding to the recoil energy, and ../ is the

rate coefficient measured at an excitation rate I',,;. Based on the measurements
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described in D. Hoffman et al, J. Opt. Soc. Am. B 11, 712 (1994), we estimate

or = 0.2 % 107" em?/s for an excitation rate I',,, = 4000 s~'. This yields
f f Yy
kps = (0.1 = 0.3)x T, (3.3)

for the lattice depths used in our work. This relation also implies that
measurement-induced localization through imaging, i.e. light scattering, domi-
nates over the effective interatomic repulsion arising from dissipative photoas-

sociative collisions.

Based on the rates presented above, it is clear that our studies of
measurement-induced localization are performed in the regime I'; < kps < '
In other words, the formation of multiply-occupied lattice sites (at a rate I';) is
the rate-limiting process for two-body loss. Thus, the two-body loss rate is an

accurate probe of the tunneling rate of atoms within the lattice.

3.9.4 Measurement of two-body lifetime

In general, the loss rate of atoms in the lattice is given by the equation N(z) =
—yN(t) — Bn(t)N(t) where n(t) is the density and vy is the 1-body loss rate due to
background collisions, heating of atoms out of the lattice etc. In our system,
the 1-body loss rate ranges from around (30 ms)~' for the most shallow lattices
(s ~ 6) to around (20 s)™! for the deepest lattices (s ~ 50). The number of atoms
N(t) and the density n(f) are measured by analysis of in situ images. After long
evolution times, the lattice gas becomes sufficiently sparse that 1-body processes
dominate. In this regime, the loss of atoms is exponential (see Fig. 3.6) and is
used to constrain the 1-body loss rate y. The loss rate of atoms at short times is

dominated by two-body loss processes as seen in Fig. 3.6. By fitting these data
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to the above equation with y extracted from the long-time data, we extract the

two-body lifetime 7.
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Figure 3.6: Rate of atom loss in the presence of imaging light. At long
evolution times, the loss rate of the lattice gas is well described
by a one-body process (dashed black line). At short evolution
times, the loss rate is more rapid and is well described by a two-
body process (green line) that is used to extract the two-body
lifetime 7.

3.9.5 Details of Monte Carlo Simulations

To assess the competition between Raman sideband cooling and measurement-
induced heating, we performed Monte Carlo simulations of atomic diffusion
within the lattice under the simultaneous influence of these competing effects.
The simulations were performed in the regime J <« I, ~ I'gsc. In this regime,
atomic motion can be accurately modeled as a classical diffusive process gov-

erned by an effective hopping rate J,;; = J?/T,,. The tunneling rate J is a strong
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function of the average vibrational occupancy (n) due to the exponential depen-
dence of tunneling rate with increasing band index. As described in our previ-
ous work [68], the average vibrational occupancy depends on the competition
between sideband cooling and heating due to the imaging process. In our sim-
ulations, we used measurements of average vibrational occupancy for various

parameter ranges of I'gs¢ and I, as described in [68].
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CHAPTER 4
THERMOMECHANICAL TWO-MODE SQUEEZING IN AN
ULTRAHIGH-Q MEMBRANE RESONATOR

4.1 Overview

The efforts outlined in the previous two chapters to realize controllable open
quantum systems focused on taking an isolated quantum system (the ultracold
atoms) and gradually and controllably making them interact with the environ-
ment. A complementary approach is to take systems, like solid state devices,
that conventionally come coupled to the environment, and to isolate them. Such
an approach is natural, given the ubiquitous use of solid state devices in today’s
technology in sensing, computing and communications, and the motivation to
somehow harvest the ultimate quantum nature of these devices may have to of-
fer in potentially improving their sensitivities and efficiencies [75, 76, 77]. More-
over, apart from technological applications, the realization of massive macro-
scopic systems in the quantum regime offer unprecedented opportunities for

fundamental physics.

Rapid progress in micro and nanofabrication technologies over the last two
decades has resulted in our ability to realize, using solid state mechanical de-
vices, one of the ubiquitous building blocks of quantum mechanics — the quan-
tum harmonic oscillator. This progress has been complemented by advances
in materials science, our ability to identify and mitigate coupling channels of
these resonators to the environment, and the ability to cool these oscillators to

the quantum ground state, with or without the use of cryogens. See [78].
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Yet, as quantum as the ground state of such mechanical oscillators may be, it
is a coherent state, whose observables” expectation values closely follow classi-
cal physics. Nonlinear interactions and properties, on the other hand, can bring
forth the non-classical attributes of a quantum system. This Chapter deals with
a simple system that realizes such a nonlinearity — a coupling of the oscillator
to its surroundings, in fact, to a single other oscillator, through a parametric
bilinear coupling H,, « (a + a’)(b + b"), where a and b denote the annihilation
operators of the quantum oscillators. This Chapter describes how a parametric
modulation of this coupling H,, at the sum of the oscillator frequencies results in
correlations between the oscillators” quadratures, which in the quantum regime

correspond to entanglement.

Our system of choice is a square Smm x Smm x 100nm Silicon Nitride mem-
brane resonator [79] supporting several vibrational modes which can be taken to
the quantum regime through optomechanical cooling [78]. We experimentally
realize the mechanical analogue of optical downconversion, i.e. the parametric
amplifier - parametric oscillator (PA-PO) system, which in the optical domain
forms the basis of heralded single photon sources, squeezed vacuum and other
quantum resources with wide ranging applications in quantum information,
cryptography, key distribution, Bell tests, etc [80]. An untapped potential so far

is to enable analogous capabilities in such mechanical systems.

A major distinction between the optical and mechanical realizations de-
scribed above is in the timescales of either system — they are separated by orders
of magnitude. Optical oscillators occur at 100’s of teraHertz (10'? Hz), coupling
to the environment through the use of state-of-the-art high finesse Fabry-Perot

cavities at several kiloHertz. Mechanical oscillators range from a few Hz to sev-
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eral GHz in frequency, with state-of-the-art environmental dissipation rates on
the order of uHz, for MHz oscillators, i.e. with mechanical Q’s of ~ 50 x 10° and
coherence time of hours, at readily accessible cryo-temperatures [81]. In fact, Sil-
icon Nitride string resonators that can undergo hundreds of quantum coherent

oscillations even at room temperature were recently demonstrated [82].

Given existing applications in the communications industry, control elec-
tronics are advanced and well developed in the microwave regime, with rou-
tinely achievable delay resolutions on the order of 10’s of picoseconds (107'? s)
for any experimental control sequences. Coupled with MHz-GHz process-
ing using computers, ASICs and FPGAs, this allows for precise and real-time
quantum control of such devices, including through feedback and feedforward
algorithms. This enables hitherto inaccessible experiments, an illustration of
which is Chapter 5, where we demonstrate feedback protocols to realize non-
Markovian system-bath interactions of our choosing, enabling novel physics.
(In regard to such control, the slower timescales of optomechanical oscillators
pose a technical advantage over optical resonators, which require more rapid
control.) Looking forward, as such nonlinear optomechanical and other solid-
state building blocks are developed and refined in the quantum regime over the
coming decades, their combinatorial fusions will rapidly expand our capabili-

ties, both in technology and in the pursuit of fundamental physics.

This chapter has been previously published as Thermomechanical Two-Mode
Squeezing in an Ultrahigh-Q Membrane Resonator, Y. S. Patil, S. Chakram, L. Chang,
and M. Vengalattore, Physical Review Letters 115, 017202 (2015). Reproduced here
with permission (see Appendix A), with cosmetic changes. In this work, Y. S.

Patil, S. Chakram and L. Chang performed the experimental work and data ac-
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quisition. Y. S. Patil and S. Chakram carried out the data analysis and modeling.
M. Vengalattore supervised all stages of the work. All authors contributed to the

preparation of the manuscript.

The theoretical treatment of the general mechanical PA-PO system realized
in this Chapter was considered as a part of a separate piece of work with S.

Chakram [83], and is included in Appendix B.

4.2 Abstract

We realize a quantum-compatible multimode interaction in an ultrahigh Q me-
chanical resonator via a reservoir-mediated parametric coupling. We use this
interaction to demonstrate nondegenerate parametric amplification and ther-
momechanical noise squeezing, finding excellent agreement with a theoretical
model of this interaction over a large dynamic range. This realization of strong
multimode nonlinearities in a mechanical platform compatible with quantum-
limited optical detection and cooling makes this a powerful system for non-
linear approaches to quantum metrology, transduction between optical and
phononic fields and the quantum manipulation of phononic degrees of free-

dom.
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4.3 Introduction

The control, measurement and manipulation of mesoscopic mechanical res-
onators by coherent optical fields has garnered widespread attention in recent
years for potential applications to quantum metrology as well as to foundational
studies of the quantum-to-classical transition and the quantum mechanics of
macroscopic objects [84, 85, 86, 78]. Notable accomplishments in recent years
include the optical cooling of mechanical modes to the quantum regime [87, 88]
and the detection of mechanical motion with an imprecision below the standard

quantum limit [89, 90].

Building upon these developments, attention has now been directed towards
the creation of nonclassical mechanical states and the manipulation of phononic
fields in a manner akin to quantum optics in nonlinear media. In contrast to
the cooling and detection of mechanical motion, the creation of nonclassical
states requires strong nonlinear interactions involving the mechanical degree
of freedom. Accordingly, several studies have been devoted to the realization
of such interactions through parametric processes [91, 92, 93, 94, 95], optically
mediated nonlinearities [96], dispersive coupling to an auxiliary quantum sys-
tem [97, 98], backaction-evading measurements [99, 100] and active feedback
[101, 102, 103, 104]. Notwithstanding the diversity of such schemes, it has
remained a significant challenge to juxtapose strong, tunable and quantum-
compatible nonlinear interactions with the stringent constraints for ground state

cooling and quantum control of a mechanical resonator.

Here, we demonstrate that strong mechanical nonlinearities can co-exist

with low dissipation by exploiting the concept of reservoir engineering [105,
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106, 107, 108] - the control of interactions within a system by appropriate de-
sign of its environment. While most proposals along these lines have centered
on mechanical control by tuning the properties of an optical reservoir, we show
that reservoir engineering can be effected through purely mechanical means.
This opens the concomitant prospect of realizing a wide range of novel inter-
actions in micro- and nanomechanical systems through appropriate geometric
and material design. In this Letter, a strong nonlinear interaction between dis-
tinct modes of a membrane resonator is realized by the parametric mediation
of a substrate excitation. We use this nonlinearity to demonstrate nondegen-
erate parametric amplification and thermomechanical noise squeezing, find-
ing excellent agreement with a theoretical model of this nonlinear interaction
over a large dynamic range. The combination of strong multimode mechani-
cal nonlinearities, optical addressability of individual mechanical modes, large
fx Qproducts [79], compatibility with optomechanical cooling to the quantum
regime [109, 110] and quantum-limited optical measurement makes this a pow-
erful system for quantum-enhanced metrology and the quantum manipulation

of phononic fields.

4.4 Our experimental system

The mechanical resonators in our study are LPCVD silicon nitride (S5iN) mem-
brane resonators manufactured by NORCADA Inc. The membranes are de-
posited on single crystal silicon wafers and have typical lateral dimensions of
5 mm. In previous work [79], we have identified the role of the substrate in
inducing the hybridization of proximal eigenmodes and in modifying the dis-

sipation of the resultant hybridized modes. This leads to the robust formation
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of a large number of mechanical modes with quality factors 0 ~ 50 x 10° and

fXQ~1x10"Hz.

In addition to modifying the modal geometry and dissipative properties,
the substrate can also mediate and enhance nonlinear interactions between dis-
tinct eigenmodes of the resonator. This is especially significant for parametric
processes that involve the interaction of two membrane modes mediated by a
discrete excitation of the substrate, since the coupling strength is now enhanced
by the quality factor of the relevant substrate mode. In our work, this nonlin-
ear interaction between mechanical modes at frequencies w;, w; is induced by
parametrically actuating the substrate at frequencies near w; + w;, either by a

piezo-electric voltage or a photothermal modulation.

A schematic of the experimental system is shown in Fig. 4.1. The mechan-
ical motion of the membrane is optically detected in a Michelson interferome-
ter with a displacement sensitivity of 0.03 pm/Hz'/? for typical powers of 200
uW incident on the membrane. Distinct eigenmodes are resolved through phase
sensitive lock-in detection. The membrane modes exhibiting the two-mode non-
linearities studied in this work are characterized by eigenfrequencies w;/27 ~ 1.5
MHz, quality factors Q > 10 x 10°, typical mechanical linewidths y;/2r < 100
mHz and |w; — w;| > 10°y; ;. While the large quality factors are crucial to real-
izing long coherence times, the narrow linewidths also pose stringent require-
ments of thermal stability in order to resolve thermomechanical motion and the
presence of non-thermal correlations. To achieve the requisite frequency stabil-
ity, the membrane modes are actively stabilized by photothermal feedback (see

Supplementary Information, Section 4.10.1, see also [111]).
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Figure 4.1: (a) The resonator consists of a high-stress silicon nitride
membrane deposited on a silicon substrate. Distinct eigen-
modes of the membrane resonator (representative eigenfunc-
tions shown) with frequencies w; ; are coupled via a substrate-
mediated interaction. This two-mode interaction can be con-
trolled by actuating the substrate to an amplitude X at fre-
quencies close to w; + w;. (b) Experimental schematic: Mechan-
ical motion of the membrane is optically detected in a Michel-
son interferometer, with the two membrane modes (i, j) dis-
tinguished by phase-sensitive lock-in detection. The eigenfre-
quency of a third, high-Q mechanical mode is continuously
monitored and acts as a mechanical ‘thermometer’. The res-
onator modes are actively frequency stabilized to this ther-
mometer mode by photothermal feedback. In the presence of
this feedback, the frequency stability of each resonator mode
is better than 1 ppb over 1000 seconds. ECDL - External
cavity diode laser; AOM - Acousto-optic modulator; PID —
Proportional-Integral-Derivative controller.

4.5 Effective two-mode parametric coupling model

The substrate-mediated coupling between a pair of membrane modes can be
modeled by an interaction H;; = —g;;Xsx;x; where g;; parametrizes the strength
of the two-mode coupling, Xs is the displacement of the substrate (or ‘pump’)
mode and x;; denotes the displacement of the two membrane modes. This in-
teraction can be attributed to a parametric excitation of a discrete mode of the

substrate at a frequency ws = w; + wj, that couples the membrane modes. Actu-
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ation of the substrate at this frequency thus leads to nondegenerate parametric

amplification of the individual membrane modes.

As is well known in such parametric amplifiers, a sufficiently strong inter-
action (or a large actuation of the pump field) leads to an instability and self-
oscillation of the individual membrane modes. In the case of resonant actu-
ation, our two-mode model predicts a threshold amplitude for self-oscillation

given by (see Supplementary Information, Section 4.10.5),

11 11
Xsan(g) = 24| = X — o 1[— 41
$ms \/g2 XiX; \/g2 0:0; *

where y = (mwy)™' are the on-resonant mechanical susceptibilities of the two

membrane modes and g is the strength of the two-mode coupling. The in-
verse dependence of the threshold pump amplitude on the quality factors of
the high-Q membrane modes leads to strong nonlinear behavior even for pump
displacements on the order of 10 fm. Past the instability threshold, we observe

amplification of the membrane modes by more than 30 dB (see Fig. 4.2(a)).

4.6 Parametric modification of dissipation rates

While the parametric amplification of the membrane modes can be regarded as a
down-conversion of substrate excitations, a related process is the up-conversion
of excitations from the membrane into the substrate. In the absence of sub-
strate motion, actuation of the membrane modes can lead to coherent transfer
of energy from the membrane into the substrate. From the perspective of either
membrane mode, this parametric transfer of energy into the far lossier substrate
results in a dissipation rate that is dependent on the amplitude of the other

membrane mode.
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Figure 4.2: (a) Parametric amplification of a membrane mode due to actu-

ation of the substrate. The vertical line indicates the thresh-
old for parametric instability. The solid green line indicates
the thermomechanical amplitude of the membrane mode. The
dashed grey line shows the detection noise floor. (b) In the
absence of the parametric drive, large amplitude oscillations
of either membrane mode (x;) results in increased dissipation
(and a lower quality factor Q;) of the other mode due to up-
conversion of excitations into the substrate. The variation of
the normalized dissipation (Q;/Q;0), shown above for various
pairs of coupled modes, is well described by a characteris-
tic length scale ¢ (see text). (c) The linear dependence of the
length scale ¢ (extracted from data such as shown in (b)) vs the
threshold amplitude for parametric instability, as predicted by
the two-mode model. See Supplementary Information, Section
4.10.8, for details of the various modes depicted above.

To study this process, the mechanical ring-down time 7 of a membrane mode

J was measured in the presence of a large amplitude actuation of its partner

mode i. Care was taken in these measurements to maintain the amplitude of

mode j in the linear response regime. The two-mode upconversion process re-

sults in an effective quality factor Q;(x;) = w,;7(x;)/2 and an effective mechanical

linewidth y;(x;) = 2/7(x;) that is in excellent agreement with the prediction of
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the two-mode model (see Supplementary Information, Section 4.10.6),

Vs 2y; Xi ?
Vj(xi)f%? 1+ ——1/l-|— 4.2)

Ys 3

where y; < ys are the intrinsic mechanical linewidths of membrane mode j and
the substrate mode (see Fig. 4.2(b)). The length scale ¢ denotes the character-
istic amplitude of mode i when the dissipation rate of the membrane mode j
matches that of the substrate, i.e. the maximal rate of up-conversion of energy
from the membrane into the substrate. Because of the large mismatch between
the intrinsic dissipation rates and masses of the substrate and the membrane,
this up-conversion process requires displacements of the membrane modes that
are more than five orders of magnitude larger than typical thermomechanical
motion (see Fig. 4.2), and much larger than the typical amplitudes of motion

considered in this Letter.

While seemingly distinct processes observed at vastly differing scales of dis-
placement (fm vs nm), nondegenerate parametric amplification and nonlinear
dissipation due to up-conversion of excitations into the substrate both owe
their origins to the two-mode nonlinearity. Indeed, the model predicts that
the length scale ¢ that parametrizes two-mode control of mechanical dissipa-
tion, can be related to the threshold amplitude Xs,, according to the relation
£8) = 3(ys /v (xilxs)'* x X5 m(g). Given that the quantity (ys/y)'*(x;/xs)"?
does not vary significantly for the mode pairs studied (see Supplementary In-
formation, Section 4.10.8), we expect a linear relation between &(g) and X ().
Through independent measurements of parametric amplification thresholds
and nonlinear two-mode dissipation for a wide range of membrane mode pairs,
we have verified this linear dependence (see Fig. 4.2(c)). As can be seen, the var-

ious mode pairs that were studied exhibit interaction strengths that vary over
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three orders of magnitude. The close agreement between our measurements
and the predictions of the model over a large dynamic range of parameters
further affirms the robustness and fidelity of this nonlinear interaction in our

system.

4.7 Realization of a phase-sensitive amplifier

Having established the accuracy of our two-mode model, we now discuss the
dynamics of this nondegenerate parametric amplifier for a pump field driven
below the threshold X ;. In this regime, weak actuation of a membrane mode
i (idler mode) results in the phase coherent production of down-converted
phonons in the other membrane mode j (signal mode). This down-converted
tield, which has a well determined phase relationship with the pump and idler
tields, can coherently interfere with any pre-existing signal field. Thus, the am-
plification of the signal field acquires a strong dependence on the pump phase
¢ according to the relation (see Supplementary Information, Section 4.10.5)

1
G =10 V1 + 122 = 2un cos ¢ (4.3)

where y = Xg/Xs 4 is the pump amplitude normalized to the threshold ampli-
tude for parametric instability, and = (y;/x:)'"* X (X;/X;) where %, ; are the am-
plitudes of the membrane modes in the absence of the pump. As can be seen,
the parameter G;(¢) depends on both the amplitude and phase of the input sig-
nal field. In this sense, Eq. (4.3) can be regarded as the mechanical equivalent
of phase-sensitive amplification observed in nondegenerate optical parametric

amplifiers (see, for example, [112]).
We demonstrate phase-sensitive amplification by simultaneously monitor-
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Figure 4.3: Phase-sensitive amplification, G;(¢), versus the phase of the
pump excitation. Data shown correspond to normalized pump
amplitudes u = X /X5, = 0,0.021,0.038,0.042,0.086, 0.13 (red,
blue, green, black, cyan, orange). For these data, the thresh-
old for parametric self-oscillation corresponds to Xs = 40 fm,
the signal and idler modes are driven to 35(kBT/mw§)” 2 and
400(ksT /mw?)'?, respectively, corresponding to n = 14.4. Inset:
Estimate of the pump amplitude from fits to these data agree
with the actual pump amplitude to within 5%.

ing the amplitudes of the signal and idler fields in the presence of the pump
tield. For these measurements, the signal and idler modes were weakly ac-
tuated while keeping their phases fixed. The pump (substrate) was actuated
to different amplitudes below threshold while its phase, relative to the signal
and idler, was slowly changed. The phase dependent amplification of the sig-
nal mode for different values of the normalized pump amplitude y and pump

phase ¢ is shown in Fig. 4.3. For these data, the signal mode was actuated
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to an amplitude of 35 x (kzT/ mw?)” 2 while the idler mode was actuated to an
amplitude of 400 X (kT /mw?)'?. The data show excellent agreement with the
above expression, with observed parametric deamplification exceeding 20 dB.
The pump amplitudes extracted from fits to these data are in agreement with

the independently measured amplitudes to within 5% (Fig. 4.3 (inset)).

4.8 Demonstration of two-mode thermomechanical squeezing

We make use of this nondegenerate parametric amplifier to demonstrate ther-
momechanical two-mode noise squeezing. In the absence of any actuation,
the signal and idler membrane modes are subject only to thermomechanical
noise. In this situation, if the pump field is driven below threshold, the mem-
brane modes become highly correlated, with the correlations being manifest
as a squeezing of a composite quadrature formed from linear combinations of
quadratures of the individual membrane modes. This is the thermomechanical

analog of two-mode squeezing seen in optical parametric amplifiers [113].

To quantify the degree of two-mode squeezing, we construct cross-
quadratures from the displacements of the membrane modes, according to the
relations x,;, = (@; + a;)/ V2, Yap = Bi £B8))/ V2 where {a;, B} are the respective
quadratures of the individual membrane modes normalized to thermomechan-
ical amplitudes. Phase-space distributions of these quadratures, accumulated
over typical durations of 300 s, are shown in Fig. 4.4. The phase space distribu-
tions, which are symmetric in the absence of down-conversion, acquire a large
ellipticity for increasing amplitudes of the pump field. The data are in excel-

lent agreement with our two-mode thermomechanical noise squeezing model
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Figure 4.4: Steady-state thermomechanical two-mode squeezing. Left:
Phase space distributions of the quadratures «;,a; in the ab-
sence (blue) and presence (red) of the pump field, showing the
emergence of correlations, i.e. noise squeezing, due to nonde-
generate parametric amplification. Right: The standard devia-
tions of the cross-quadratures x,, y;, (red, blue), (amplified) and
Xp, Yo (red, blue) (squeezed) vs pump amplitude. The shaded
curves indicate the no-free-parameter prediction of our noise
squeezing model based on independently measured parame-
ters of our system. The green trace represents the expected
degree of squeezing taking into account a finite measurement
duration (see Supplementary Information, Section 4.10.7).

(see Fig. 4.4 and Supplementary Information, Section 4.10.7). While an arbitrar-
ily large degree of coherent deamplification may be obtained for specific phase
relationships between the signal, idler and pump fields, our noise squeezing
model predicts that the maximal degree of steady-state thermomechanical noise
squeezing is limited by thermal averaging across all possible phases between

the fields. Nonetheless, by harnessing weak measurements and feedback, we
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estimate that mechanical squeezing of more than 40 dB may be obtained with

our demonstrated parameters [101].

4.9 Conclusion

In summary, we realize strong, quantum-compatible multimode interactions in
a macroscopic mechanical resonator through reservoir engineering, and use this
nonlinear coupling to demonstrate nondegenerate parametric amplification and
two-mode squeezing. This combination of strong nonlinear interactions, large
f % Q products (> kpT/h), low dissipation (y < (10 s)™!) and compatibility
with cavity optomechanical cooling and quantum-limited detection, provides
a powerful tool for nonlinear approaches to quantum sensing and QND mea-
surements of mechanical degrees of freedom. In addition, our work also paves
the way towards the quantum manipulation of phononic fields for studies of

macroscopic entanglement.

410 Supplementary Information

4.10.1 Photothermal frequency stabilization

The mechanical modes of the membrane are susceptible to large drifts in fre-
quency due to temperature fluctuations and the differential expansion between
the silicon substrate and the Silicon nitride membrane. We measure drifts on

the order of 500 Hz (10° — 10* y) per Kelvin for the modes studied in this work.
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Thus, resolving thermomechanical motion and non-thermal two-mode correla-
tions requires active sub-linewidth stabilization of the mechanical eigenfrequen-

cies.

The frequencies of the mechanical modes are stabilized by photothermal
control of the silicon substrate. Based on our observation that temperature
fluctuations cause frequency drifts that are highly correlated across the vari-
ous modes of the membrane, we implement active stabilization by continuously
monitoring the frequency of a high-Q membrane mode at 2.736 MHz — far from
the modes that exhibit the two-mode nonlinearity studied in this work. This
‘thermometer mode” has a quality factor in excess of 8 X 10° (y/2r < 340 mHz).
Phase sensitive detection of this mode results in an error signal with an on-
resonant phase slope of 5.91 radians/Hz. Active photothermal stabilization of
the substrate is accomplished with typical optical powers of 600 uW, leading
to rms frequency fluctuations of this thermometer mode below 2 mHz (equiva-
lent to temperature fluctuations of the substrate of less than 2 uK). For the me-
chanical modes relevant to this work, this stabilization translates to frequency

fluctuations less than 0.002 x vy.

4.10.2 Calibration of mechanical motion

Each membrane mode was calibrated with respect to its thermal motion. For
this, the optical beam incident on the membrane was positioned to align with an
antinode of membrane motion. The measured interferometric signal, when con-
verted to a rms membrane displacement, agreed with the expected thermome-

chanical amplitude to within 10%, limited mainly by the uncertainty of the spot
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size at the plane of the membrane. This ruled out any spurious noise sources
that could potentially mask thermomechanical motion. Having established this
calibration, the membrane motion measured for modes probed away from the
antinode were rescaled to the theoretically expected thermal amplitude, thereby
calibrating out the dependence on probe alignment (see for example, [114]). The
thermal motion of all the membrane modes was detected with a lock-in ampli-
fier with a bandwidth exceeding 100y and a sampling rate around 500y, over a

duration of 200/y where y is the damping rate of the relevant mode.

The substrate motion was calibrated by actuating the substrate at frequen-
cies far from any membrane resonance, and assuming that the entire system,
i.e. membrane and substrate, move as a rigid body such that the measured
membrane displacement is equal to the substrate displacement perpendicular
to the substrate plane. This calibration is then extrapolated to the low actuation
voltages required for the measurements described in this work. The extracted
motion Xs is the overall motion of the substrate and is proportional to the force

acting on the substrate mode.

While we do not directly detect the substrate resonance, there are several
pieces of evidence that point to a substrate mode involving in-plane motion,
e.g. shear mode, whose displacement would lead to a parametric modulation
of the membrane tension. Firstly, the threshold actuation force for parametric
instability can be changed over at least an order of magnitude by thermally tun-
ing the signal and idler modes such that their sum frequency varies across this
resonance. Further, finite element simulations accurately predict shear modes of
the substrate at frequencies coincident with the sum frequencies of several pairs

of membrane modes studied in this work (See Fig. 4.5 and Table II). While para-
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metric modulation of the membrane modes could possibly occur even away
from a substrate resonance, the requisite actuation force needed to reach the
parametric instability would be higher by a factor proportional to the quality
factor of the substrate mode. Indeed, we do observe that membrane mode pairs
whose sum frequency is located far from predicted substrate modes, do exhibit

a very high instability threshold.

Ve =2.699MHz _ Ve =2.711MHz

(

VS =2.712MHz

Figure 4.5: Simulated eigenmodes of the substrate near 2.7 MHz.

4.10.3 Measurement of X

The measurement of the threshold displacement amplitude X; ,, is obtained by
a suitable scaling of the measured threshold piezo-actuation voltage V,, as de-
scribed below. These two quantities are linearly related as X5, = oV}, where the
constant @ = 20 fm/mV is obtained by measuring the substrate motion along
the interferometer axis at very large piezo voltages (~ 10 volts) and extrapo-
lating to the threshold piezo voltages required for parametric instability (< 10

mV). Thus, Xs ,, is the gross center-of-mass motion of the substrate at threshold
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and is effectively, a measure of the actuation force at threshold. This is given by

2
Fh = — & Vh = CL’_IXS’;Z (44)
" evs X t

The two-mode model predicts a linear relation between the length scale £(g)

and the threshold force F,,, and hence between &(g) and X5, as well.

1 Xi 1 Xi
E=- L F, o = L X (4.5)
2 N mgwgy; 2 N mgwsy;

As mentioned previously, this relation is only linear within any possible varia-

tion of the prefactor. For the modes studied in this work, the prefactor varies by

around 25%.

Importantly, we note that there is no dependence of this prefactor on the
damping rate of the substrate mode ys. Also, the effective mass of the substrate
mode is related to its physical mass through a geometric factor which we expect
to be of similar magnitude for the substrate modes mediating the parametric

interaction.

The reported substrate displacement X and the normalized pump ampli-
tude p = X5 /X5, is obtained by measuring the applied piezo voltage and nor-
malizing it to the applied voltage at the instability threshold, i.e. Xs = (V/V;,)Xs

and p = Xg/Xg 1 = V/ V.
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4.10.4 Linear relation between &(g) and X ,,(g)

Our two-mode model predicts a linear relation between &(g) and Xs 4(g) given

by &(g) = FXs ,(g) where

1 12, \1/2
S
Yi Xs
el G
(yiy)'* \w; m; 2 .

This factor F, if it varies significantly, will alter the expected linear relation be-
tween &(g) and Xs ,(g). For the data shown in Fig. 4.2, F varies by around 25%
(See Table II). Here, we have assumed that the substrate modes have similar
effective masses and damping (Q ~ 5000). The former assumption is justified
based on COMSOL simulations of the mode shapes. The latter assumption is
supported by our measurement of several flexural substrate modes to be around

10° — 10* within the relevant frequency range.

Moreover, the linear relation between ¢ and Xj ,, continues to hold even if the
parametric resonance at the sum frequency, w;+w; is detuned from the substrate
mode resonance, ws by A. This is because for the detuned case, with y;; <
¥s, both the upconversion and downconversion processes are suppressed by a
factor of /1 +4A?/y} compared to the on-resonant case, resulting in an increase

in both ¢ and X; 4, by the same factor.
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4.10.5 Nondegenerate parametric amplifier below threshold :

Phase-sensitive amplification

We model the nonlinear interaction between membrane modes by a Hamilto-
nian given by H;; = —gXsx,x; where g is the interaction strength, Xs is the dis-
placement of the substrate and x; ; represent the displacement of the membrane
modes. Within the rotating wave approximation, this results in equations of

motion of the form
Litvizi+wizi = %(Fi(t) + EZSZJ-) (4.8)

and similar equations for the other membrane mode and the substrate. Here,
x; = Re(z;) and z is the (complex) displacement of the mode, F; represents both
the classical actuation as well as thermomechanical noise forces and w, y are the
eigenfrequencies and mechanical linewidths. The coupled equations of motion
can be solved using the methods of two time scale perturbation theory [115].

This gives rise to coupled equations of the form

{ . g * r
24; = i [_Ai + i (EA]'AS + Fi)] (4.9)

where z; = Aje™" and A, is the complex amplitude of the mode in a frame ro-
tating at its eigenfrequency. We have ignored terms such as A;, y:A; in the slow
time approximation and F;; are the slowly varying (complex) amplitudes of
the external forces on the individual membrane modes. Even in the absence of
external forces F’ , these coupled equations allow for non-zero steady state am-
plitudes, i.e. parametric self-oscillation, above a threshold substrate amplitude
given by

XS,th =2 — (411)
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While we focus on the below-threshold behavior of this nondegenerate para-
metric amplifier in this work, these coupled equations also accurately describe

various nonlinear aspects of the amplifier above threshold.

In the presence of external actuation of the individual membrane modes and
the substrate (‘pump’) mode, i.e. F;; # 0,Ag # 0, the amplitude of each mode is
a coherent superposition of its individual response to the external force and the
down-converted phonons arising from the two-mode nonlinearity. Thus, the

complex amplitudes in steady state are given by

s ei(¢i—ﬂ/2)( \F + . _lF_leiéqb) (4.12)
i 1 _#2 Xill' MHAXX I '
0T = s
Aj = T (Wl ) (4.13)

where y = X /X 4 is the pump amplitude normalized to the threshold for para-
metric instability and 6¢ = ¢5 — ¢; — ¢; with ¢, ;s being the various phases asso-

ciated with the external forces.

The above equation can be recast in terms of a phase-dependent amplifi-
cation G, ;(6¢) = |A;;l/ IAng where Agj are the steady state amplitudes of the re-
spective modes in the absence of down-conversion, and IAQJ.I = X; ;. This phase-

dependent amplification is then given by

1
Gi(6¢9) = T
~ (2 12 | &
i Fi i Fi
¥ x W&(n_') () o
Xi\IF|] Xj |Fj|
1
¥ = 1__MZ\/1+ 1202 — 2un cos(6¢) (4.14)

where n = (y;/x)"? X (x;/X;) and &;; are the amplitudes of the membrane modes
in the absence of the pump. A no-free-parameter fit of this expression is in

agreement with our data to within 5% (Fig. 4.3).
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As can be seen from the above expression, the phase-dependent amplifica-
tion G;(6¢) is dependent on both the input signal phase and amplitude. For
equal amplitudes of signal and idler (i.e. n = 1), this expression equates to
G; = 1 for ¢ = 0, similar to a degenerate parametric amplifier. However, for
large 7, this expression can be made arbitrarily small and equates to G; = 0 for

¢ =0,u = 1/n (see Fig. 4.6).
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Figure 4.6: Phase-dependent amplification G;(6¢) vs the phase difference
6¢ and the ratio of idler and signal amplitudes n = (v;/x)"* X
(%/%)), for u = 0.05.

4.10.6 Two-mode control of mechanical dissipation

For sufficiently large amplitudes of membrane motion, the two-mode nonlin-
earity can result in the coherent upconversion of excitations into the substrate.
In our system, we typically measure quality factors of Qs ~ 10° - 10* for the sub-

strate modes (e.g. flexural modes), about three orders of magnitude lower than
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those of the membrane. Due to the relatively large dissipation rate of substrate
modes (ys/yi; > 10%), this upconversion process can be regarded as nonlinear
two-mode dissipation where the dissipation rate of a mode i is influenced by

the motion of its partner mode ;.

The modified dissipation rate y;(x;) of a mode i can be most easily seen by
writing the coupled equations of motion for the slowly varying amplitudes 4, 5.
Here, we assume that mode j is actuated externally to a large amplitude in the

absence of substrate (pump) actuation. The coupled equations become

24; + A,

7iXi§|Aj|AS (4.15)

245 + YsAs

—ysXs§|A,-|A,~ (4.16)

where we assume that A; is purely imaginary. Diagonalizing these equations

leads to a modified damping rate of mode i given by

x>

1
Yi(%) = Slystvis \/(7s - ¥)? - Véf—ﬁ (4.17)

where & = $(ys/¥)"*(x;/xs)"* X X5 This can be recast in terms of a normal-
ized quality factor Qi(%;)/Qi0 = (yi(%))/y:)"" where Q;y is the quality factor of

membrane mode i in the absence of the two-mode nonlinearity.

Our data are in excellent agreement with this expression for a wide range
of mode pairs that were seen to exhibit this two-mode nonlinearity (see, for

example, Fig. 4.7).

As can be seen in Fig. 4.7, a significant modification to the dissipation rate
of a membrane mode i requires large amplitude actuation of its partner mode
J, typically over 4-5 orders of magnitude larger than thermomechanical ampli-

tudes and much larger than the typical scale of motion for the studies presented
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Figure 4.7: Modes used in Fig. 4.2(a,b) of the paper. See Table I for details
of these modes.

in this work. Thus, while these measurements constitute an important vali-
dation of our two-mode model, the two-mode contribution to the individual

dissipation rates are negligible for our studies on parametric amplification and

thermomechanical squeezing.

4.10.7 Thermomechanical two-mode squeezing

The nondegenerate parametric amplifier, when driven below threshold, devel-
ops correlations between the non-degenerate modes. These correlations are
manifest as a squeezing of a composite quadrature formed from linear combina-
tions of the individual membrane modes. We analyze the coupled equations for
the membrane mode under the influence of a classical actuation of the substrate

mode below threshold. Furthermore, we assume that the membrane modes are
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subject to thermomechanical noise forces. The influence of such noise forces on

the substrate mode can be neglected due to the large classical drive imposed on

this mode. Finally, for each membrane mode, we distinguish between its mean

amplitude and its fluctuations by writing z; ; = (A; ;+06A; ;)¢ where (6A; ;) = 0.

The coupled equations for the fluctuations can be written as

WOA; —vi 0 1yxi %Aj YHA;
2| 6A; |= Y0 ~vi  WxGEAT || 0A;
5As iysxs5A; iysxsSA;  —ys 0As
0 Iyixi %A s 0 || WoA; Pyx.Fi

0 0 0 6A§ Vs Xs FS
where the thermomechanical noise forces obey
(Fi(t)) = (Fi(OF (")) = 0,
(Fi)F(t + 7)) = 8yimikT 6;;0(7)
Using the decomposition

O0A

5@ + iof
V = V,t+ivg

where 5A = (6A;,0A;,6A5)",

(4.18)

(4.19)

(4.20)

(4.21)

V= é(y,-/\/,-F »YixiF s vsxsFs)', etc. leads to the following equations of motion

od = Myéa+v,

63 = Mﬁég'f' \/]

where
—Yi ‘—Wi)(i§|As| 7i)(i§|Aj|
) NIRRTy
—ysxs Al vsxslAil ~Ys
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YlkBT

and the elements of v,z satisfy (v;) = 0, (v(H)vi(t+ 7)) = 6k,6(r) The spectrum

in steady state is thus given by the matrix equation
Sep(w) = —(M(, s +iwD) ' DM, — iwl)™ (4.25)

where I is the identity and

20 0
D=kT| 0 -2 0 (4.26)
0 0 35

is the diffusion matrix.

The zero-time correlations in steady state can be obtained from the spectrum

using the Wiener-Khintchine theorem, and are given by

kgT 1 i
Gada) = —— [1—5 yrel (—_1)]
miw? 1 — p? 2y \w;
kBT 1 Vi
(5a']6a]> = Wl—lu 1+6/,l +,l122 (——1):|
/1(1 AP o [@
6 16 1 =
(baida ;) 20— ) w] o

where 6 = (y; —y;)/(y; + v;) is the ‘loss asymmetry” and ¥ = (y; + y;)/2.

In our measurements, we quantify the degree of two-mode squeezing by
defining cross-quadratures constructed from {a;;,8;,;} normalized to their re-
spective thermomechanical amplitudes, according to the relations x,;, = (@; +
a;)/ V2, Yap = Bi £ )/ V2. The standard deviations of these cross-quadratures
can be calculated from the above expressions. These are shown in Fig. 4.4 for
the independently measured parameters of our nondegenerate parametric am-
plifier. These data are obtained with a measurement filter bandwidth of Ay = 10

Hz, i.e. Av > 10%y;;/2r. Thus, the correlations calculated above by integrating
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over all frequencies (i.e. infinite bandwidth), are a good approximation to our
measurements. As can be expected, the degree of squeezing increases monoton-

ically with decreasing filter bandwidth, reaching the 6 dB limit for Av < vy, ;/2x.

Due to the diverging mechanical susceptibility and response time near the
parametric instability, the squeezing spectra measured over a finite duration
can deviate significantly from those calculated in steady state. In particular, the
existence of a non-zero loss asymmetry results in a degradation of squeezing
near the instability threshold (as shown by the upturn in the gray theory band
in Fig. 4.4). This was calculated for an infinite measurement duration. The
actual measured degree of squeezing for a finite measurement duration 7,, are
extracted by truncating the integral of the spectral densities by the measurement
duration [83]. This is represented by the green curve in Fig. 4.4 and is seen to

agree with our measurements very accurately.

4.10.8 Table of modes

We include below details of the various mechanical modes used in this study.
The mode indices are identified through a combination of spectroscopy (based
on the known membrane dimensions) and interferometric imaging as shown
in [79]. In cases where the measured eigenfrequency was between two very
closely spaced modes, the identification of the mode index was ambiguous and

we have indicated both candidate modes.

The mode pairs used for the measurements shown in Fig. 4.2 are indicated in
Fig. 4.7. In addition, the data shown in Fig. 4.3, 4.4 of the paper were obtained
with the mode pair {v18,v19}.
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Mode label | Frequency (Hz) | Quality Factor | Linewidth (Hz) | Mode index

vl 1202554 227 % 107 0.0530 (14,15) + (15,14)
%) 1494736 232 % 107 0.0644 (17,19) - (19,17)
V3 1243589.3 2.42 % 107 0.0514 (15,15)

v4 911997 2.17 x 10’ 0.0420 (11,11) or (4,15)
V5 1254745.23 1.43 x 10’ 0.0877 (13,17)

V7 1254672.68 2.00 x 107 0.0627 (17,13)

v6 1442154.99 4.94 x 10° 0.292 (11,22)

V2.2 1494833.76 1.42 x 10’ 0.105 (11,23)

V23 1494669.99 2.60 x 10° 0.575 (23,11)

V2.4 1494880 4.80 x 10° 3.11 (5,25) or (17,19)
v8 1301806.27 2.18 x 10’ 0.0597 (13,18)

v9 1408452.95 1.54 x 10’ 0.0914 (1,24)

v10 1232664.95 1.35x 10’ 0.0913 (9,19)

vll 1479774.69 2.26 x 10’ 0.0655 (14,21)

v12 1280371.09 1.82 x 10’ 0.0704 (21,6)

v13 1409424.06 1.66 x 107 0.0849 (23,7)

v14 1077794.35 2.01 x 10’ 0.0536 (13,13)

v15 1617797.75 8.48 x 10° 0.191 (19,20) - (20,19)
v16 1265534.72 1.02 x 10° 12.4 (21,5)

v17 1448118.81 1.23 x 10’ 0.118 (9,23)

y18 1232863.825 177 x 107 0.0696 (9,19) or (1,21)
y19 1466057.27 1.10 x 107 0.133 (15,20) or (7,24)

Table 4.1: Mode labels, frequencies, quality factors, linewidths and mode

indices of the mechanical modes.
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Mode Vi | Xoan | & Nearest | Detuning \/Wﬁ

Yi Xs

Pair (mV)| (pm) | (nm) | Sub- (Hz) (x10%)
@i, J) strate

Mode

(Hz)

v12,v13 | 40 0.8 |263.4 | 2698891 | -9096 2.34
v14,v15 | 163 | 3.26 | 2188.8| 2698891 | -3299 1.67

v5,v6 30 0.6 | 102.2 | 2698891 | -1991 1.12
v2,vl 15 0.3 |49.8 | 2698891 | -1601 3.37
vl,v2 15 03 |60.6 | 2698891 | -1601 3.03

v22,vl | 43 0.86 | 572.7 | 2698891 | -1503 2.63
vl,v22 | 43 0.86 | 483.7 | 2698891 | -1503 2.36

v9,v8 350 |7 1264.7| 2698891 | 30 2.58
vlil,v10 | 85 | 0.17 | 214.3 | 2710927 | -668 2.54
v17,v16 | 558 | 11.16| 3540.2| 2711884 | 555 0.16
v3,v2 151 | 3.02 | 982.8 | 2711884 | 1769 3.14
v2,v3 151 | 3.02 | 728.1 | 2738167 | 158 3.44
v2,v1 580 | 11.6 | 4338.4| 2738167 | 158 3.12
v2,v5 2233 | 44.66| 5099.9| 2747202 | 2206 2.64

Table 4.2: Coupled mode pairs, piezo-actuation threshold voltages (V,;),
threshold substrate displacements (Xs ), & ;’s, nearest substrate
modes to the parametric resonance, detuning of the nearest
substrate mode from the parametric resonance and the factor
(ys [v)"*(xj/xs)"?, for the mode pairs studied in this work.
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CHAPTER 5
CRITICAL BEHAVIOR OF A DRIVEN DISSIPATIVE SYSTEM :
UNIVERSALITY BEYOND THE MARKOVIAN REGIME

5.1 Overview

One aspect of open quantum systems that has not yet been explicitly mentioned
has been brought about and used in Chapter 4 — open systems can be continu-
ously driven. For many closed systems, a drive can lead to an increase in its
energy, which eventually ‘destroys’ it; e.g., ultracold atoms in shaken optical
lattices heat up and leave the trap; mechanical harmonic oscillators without
damping, when driven, get increasingly displaced so that nonlinearities can-
not be ignored, making them anharmonic. We note that this is not always
the case, e.g. in saturable systems like a two-level atom driven by a coherent
drive at the level spacing. Nonetheless, in open quantum systems, the work
done on the system by the drive can be lost to the environment, while coax-
ing the system into a dynamic equilibrium. This implies a competition between
the drive strength (rate at which energy is pumped into the system) and the
dissipation to the environment (rate at which energy is lost to the surround-
ings). These competing rates can effect a ‘transition’, the suggestively called
driven-dissipative phase transition, which is the subject of study of this Chap-

ter [116, 117,118, 119, 120, 121, 122, 123, 124, 125].

Phase transitions can be influenced by fluctuations, whether the fluctuations
be thermal or quantum, though possibly, quantum phase transitions can dif-
fer from their classical counterparts due to the differing origin of fluctuations

[126, 127, 128]. On the other hand, perhaps the difference between a 7' = 0
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‘true” quantum phase transition, and the T # 0 classical case is not as press-
ing a concern. After all, considerable theoretical and experimental efforts are
geared toward understanding and identifying the signatures and properties of
a true quantum phase transition through finite temperature transitions and ob-
servables [126, 127]. Our focus has thus instead been on the role of the nature of
system-bath interactions on driven-dissipative phase transitions, and the asso-

ciated system properties and dynamics.

To that end, in this Chapter, we use Kibble-Zurek physics and dynamical
hysteresis to probe our system’s critical behavior [129, 130, 131]. We first em-
pirically confirm the Kibble-Zurek paradigm/mechanism, both quantitatively
and qualitatively, for the case of Markovian system-bath interactions, albeit in
the driven-dissipative PA-PO system of Chapter 4. We thereafter employ the
Kibble-Zurek paradigm to infer the change in critical behavior, to wit, the crit-
ical exponents, as the system-bath interactions are made non-Markovian; ef-
fected here by taking advantage of the long system-bath timescales of the Sili-
con Nitride membrane resonators, using feedback. We find that the nature of
system-bath interactions can markedly influence criticality and the associated
scaling laws. Further, we model the evolution under non-Markovian system-
bath coupling, which is tractable for the minimal two-oscillator PA-PO system,
and find an excellent agreement with the experiments. The future implemen-
tation of such non-Markovian interactions, possibly involving arrays or circuits
of solid state quantum oscillators, would allow for exploring the role of spa-
tial dimensionality on criticality, the role of energy flow to and from the bath
on the system dynamics, and the role of system-bath entanglement in quantum
thermodynamics, among numerous other potential experiments. Moreover, it

would also provide further impetus to the longstanding search for a theoretical
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language for describing the physics of nonequilibrium open quantum systems

[132, 133, 134].

This chapter will be submitted for peer-review with requisite modifications
as Critical behavior of a driven dissipative system : Universality beyond the Markovian
regime, by Y. S. Patil, H. F. H. Cheung, T. Villazon, A. G. Date, A. Polkovnikov, A.
Chandran and M. Vengalattore. In this work, Y. S. Patil, H. F. H. Cheung and A.G.
Date performed the experimental work, data acquisition and data analysis. Y.
S. Patil, H. E. H. Cheung, T. Villazon carried out the theoretical modeling and
simulations. A. Polkovnikov and A. Chandran supervised the theoretical mod-
eling. M. Vengalattore supervised all stages of the work. All authors contributed

to the preparation of the manuscript.

5.2 Abstract

Through steady state measurements of divergent susceptibilities and critical
exponents, we experimentally establish a continuous phase transition in a
paradigmatic two-mode driven-dissipative system of a pair of nondegenerate,
parametrically coupled, optomechanical oscillators. We demonstrate that uni-
versality near the transition manifests in the out-of-equilibrium dynamics of
slow ramps across the transition, and is captured qualitatively and quantita-
tively by Kibble-Zurek scaling laws with two scaling parameters. We further
investigate the influence of the system-bath interactions on the critical behavior
by engineering power-law non-Markovian system-bath interactions through an

active feedback protocol. While this non-Markovian system-bath interactions
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changes critical exponents, both the Kibble-Zurek paradigm and universality of
the dynamics remain valid. We thus show that non-equilibrium ramps can be
used to extract universal exponents in driven dissipative systems, opening new
avenues to study the theoretically challenging cases of system-bath interactions

and their influence on critical phenomena.

5.3 Introduction

Phase transitions and criticality in open systems are active areas of research
[135, 136]. Open systems need not fall under conventional universality classes
[137, 138, 139], and it is unclear if conventional paradigms like the Landau-
Ginzburg formalism even apply [140]. The nonequilibrium critical dynamics
of such phase transitions and their universality is even less understood. More-
over, open systems inherently come in huge variety, depending on the nature
of their interactions with the environment. The influence of these system-bath
couplings on the system’s properties and its critical behavior has been studied

only fairly recently [141, 142, 143], and corresponding experiments are scarce.

In this work, we experimentally explore a paradigmatic yet simple realiza-
tion of such an open system, consisting of a pair of signal and idler modes
with annihilation operators a,; at frequencies w,;, parametrically coupled to
each other through a third, coherently driven, pump mode ap at frequency
wp = w + w;. Each mode is also dissipatively coupled to its bath at a finite
temperature, at rates vy, y;, yp, respectively, with y,; < yp. Such an open system
has a myriad of physical realizations in optics, optomechanics, nanomechanics,

cold atoms and cavity QED [144, 91, 145, 146, 147, 148, 149, 150]. In this work,
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we implement it in a pair of mechanical modes of a single LPCVD silicon nitride
membrane resonator on a silicon substrate [150, 79] (also, see Supplementary In-

formation, Section 5.9.12).

In the rotating wave approximation, the coherent evolution of such a system

in a rotating frame is described by the Hamiltonian,
H = —hg(aza;ap + a;aias) - h(Fpa; + Frap)

where g parametrizes the strength of the inter modal coupling, Fp represents
the classical pump drive, and the dissipation is captured through Heisenberg-
Langevin equations (see SI, [151]). Below a critical drive strength of 1 = IIFE_PI =1,
the signal and idler modes dissipate to the environment at a rate faster than
the pump parametrically actuates them, so that each mode remains unoccupied
with (a,;) = 0, where (-) denotes a thermal ensemble average. As the drive
strength is increased beyond criticality, the rate of down conversion into the
signal and idler modes grows larger than the rate of dissipation out to the envi-
ronment, and the system exhibits the onset of a non-zero order, i.e. amplitude
as; = lagle', with ¢, being the modes’ oscillation phases. This phase transition
can be described through an effective potential which reduces to a Mexican hat,
Heie = vo(1 — wlag* + %laj“, for the experimentally realized case of equal signal

and idler damping rates, y,; = yo = 0.50(1) s' (see Supplementary Information,

Section 5.9.2).
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Figure 5.1: (a) Schematic of the phase diagram for the driven-dissipative

transition, in temperature 7' and drive strength u. Temperature
has been normalized to T,;, the temperature at which the sys-
tem is nonlinear even without any drive (u = 0). A sharp phase
transition exists only for 7' = 0, morphing into a crossover for
finite T. Darker shading denotes a growing influence of finite
temperature, with fluctuations dominating inside the dark blue
region (see Supplementary Information, Section 5.9.5). Squares
mark the steady-state experiments realized in this work. The
white arrows depict the finite-time, finite-7" quenches across
the phase transition. (b-d) Establishing the phase transition:
(b) Steady-state order, measured as |a, |, with parametric drive
strength u, (c) Divergent susceptibility of order to external
forces, and (d) Critical slowing down of the system. Dashed
lines show a power-law fit with € = (u — y.,)/u.r, the reduced
distance from criticality. Solid lines show no-free-parameter
estimates of the model described in the text. (Insets) The mea-
sured exponents 8 = 0.49(2),y = 0.99(5) and vz = 1.00(2), with
(x*) o €, 0x;/0F; « |e|™ and 77! « |¢e]'* are all captured well by
the predictions of the model, B,y = 1/2,y,s = 1 and vz,s = 1.
All dashed lines denote fits.
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5.4 Finite temperature phase diagram and steady-state charac-

terization

A schematic of the phase diagram is shown in Fig. 5.1(a), where € = £ is the
reduced distance from criticality, and the temperature at which the modes are
thermalized has been normalized to T, the temperature at which the system is
nonlinear even without any drive (u = 0). The system undergoes a true con-
tinuous phase transition only in the limit of zero temperature, while the phase
boundary is blurred into a crossover at finite temperature. Within the dark blue
region, universal physics of the critical point is obscured by the dominant effects
of a finite temperature. Well outside this region, observables scale in accordance
with a Gaussian theory of fluctuations. See Supplementary Information Section

5.9.5 for details.

We first establish the phase transition through several steady state measure-
ments, wherein the system observables are measured as the pump is contin-
uously driven at a constant strength. The experimental steady-state measure-
ments in this work avoid the crossover regime, as marked by the squares in
Fig. 5.1(a), thereby essentially accessing the T = 0 physics. The measured am-
plitude (x*)!/? o |a,,;| o € yields an exponent of 8 = 0.49(2) [Fig. 5.1(b)], where
Xs; o« (ag; + az’i). Secondly, as is usual in continuous phase transitions, the sus-
ceptibility of the order to external forces is observed to diverge near critical-
ity. This susceptibility is measured by applying a force F, at the signal fre-
quency w, and measuring the steady state response of either of the signal or
idler modes. The extracted exponent of |0x;/0F | o || is y = 0.99(5) [Fig. 5.1(c)].

Finally, we observe that the system exhibits critical slowing down, with the re-
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laxation rate vanishing at criticality. To measure these vanishing rates, the sys-
tem is first allowed to reach its steady state at a particular ¢, following which a
force F is applied. The decay of the perturbed x,; values back to their steady
state is then fit to an exponential. Empirically, the relaxation time diverges as
7 o €[, vz = 1.00(2) [Fig. 5.1(d)] !. Each of the experimentally measured expo-
nents is well captured by the predictions of the model (8 = 1/2,y = L,vz = 1),
whose dynamics is described by ‘Model A’ of Hohenberg-Halperin in the rotat-

ing frame [152] (see Supplementary Information, Section 5.9.2).

5.5 Kibble-Zurek physics

Having established that there is a continuous phase transition in our driven
dissipative system, we turn to critical dynamics and test the Kibble-Zurek (KZ)
paradigm. Our experimental system is ideally suited for the study of finite-time
dynamic protocols, such as KZ, given that its intrinsic timescales are on the
order of seconds. Moreover, our system’s observables (displacements) can be
probed in situ, enabling measurement of system dynamics for each individual

dynamical trajectory, as opposed to just an ensemble measure.

In brief, the KZ paradigm pertains to a system’s evolution as it is slowly
quenched across a continuous phase transition. The system undergoes adiabatic
evolution when sufficiently far away from the critical point, due to its finite and
small relaxation time, small compared to the quench rate inverse. However, as

the quench brings the system close to criticality, it undergoes critical slowing

!In this effectively 0—~dimensional work, an independent explicit correlation length exponent
v is ill-defined. However, following convention, we retain the notation of vz as the relaxation
time exponent.
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down, i.e. the relaxation timescale diverges, and the system deviates from its
equilibrium or steady state. The premise of the KZ paradigm is that beyond this
point, the system “freezes out”, in that the system observables do not change
appreciably with the changing control parameter, and that the system “thaws”
or restarts responding to the changing control parameter only when it is suf-
ticiently far on the other side of criticality, where it again has a small enough
response time. These essential dynamical features of a quench across criticality

are captured in the representative data of our system, shown in Fig. 5.2.

For slow ramps, the dynamics of such KZ quenches becomes universal, and
can be isolated in a scaling limit [153]. In this work, we study linear quenches
of the system across criticality, with () = ér. Typical quenches are denoted
by the white arrows in Fig. 5.1(a), showing that the experiments are restricted
to finite temperature, so that the quenches do not pass through the true crit-
ical point at 7 = 0. Like in quantum phase transitions, this system exhibits
a finite temperature scaling. As such, a two parameter scaling is required to
extract the system’s universal behavior. This universal scaling is exhibited by
the ensemble-averaged signal and idler modes” amplitude-squares in the slow
ramp limit of € — 0. For a Markovian dissipative coupling of the modes to their

environments, this translates to

CO) ~ Cox G (=T 1y, (5.1)

Ikze
where both the temperature 7 and time ¢ scale according to a characteristic
freeze-out or Kibble-Zurek time, tx7., and G is a universal scaling function.

.—1/2
7

Moreover, the KZ paradigm predicts a scaling of tx;, o« &= = and

C; « &% = ¢ /2 (see Supplementary Information, Section 5.9.6).

Fig. 5.3(a) demonstrates this universality over two orders of magnitude of
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Figure 5.2: Experimental protocol (inset): The system is initialized in the
disordered phase and linearly quenched well into the ordered
phase by ramping the strength of the pump drive, u. For hys-
teresis analyses (see text), the quench is reversed till the sys-
tem is again disordered. Kibble-Zurek physics and the mea-
sured growth of order: Despite entering the ordered phase for
1 > e (red curve), we observe that macroscopic order is not
established over a finite “freeze-out” period. The system lags
behind the steady-state response (dashed line) near criticality.
Once sufficiently far away, however, the system enters an adi-
abatic regime where the dynamic response follows the steady-
state response. On the reverse quench toward disorder (violet
curve), the system again deviates from adiabaticity near criti-
cality. The KZ paradigm holds even for such driven-dissipative
continuous phase transitions. Data here is shown for |¢] = 2y,
where v is the mechanical dissipation rate.

the quench rate é. In order to isolate the temporal part of the scaling function
G, the temperature for each quench rate ensemble is varied to hold Tt},, ~
T/é fixed. The inset shows the measured growth of (x*(r)) for various quench
rates, each ensemble consisting of data from 40 — 100 quenches. Slow quenches
reach adiabaticity nearer to criticality (e = 0) than faster quenches, as expected.
In accordance with Eqn.(5.1), the measured growth curves collapse onto each

other over four orders of magnitude of (x*) when the time and amplitude are
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rescaled. The scaling exponents extracted from this collapse yield gz, oc €20

and C; o« & %0 in good agreement with the KZ predictions. The KZ paradigm

is thus shown to extend to this paradigmatic driven dissipative phase transition.
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Figure 5.3: Universality in a driven dissipative phase transition: (a) Mea-
sured growth of order for quenches varying over two orders of
magnitude in quench rate é. Each curve represents the ensem-
ble average (x*) over 40 — 100 iterations. The unscaled growth
curves (inset) collapse onto a universal function when time and
order (x?) are scaled appropriately. Note that because temper-
ature is a relevant parameter for this universal scaling, it is
varied across different quench rates (see text). (b) The quench
dynamics for power-law non-Markovian system-bath interac-
tions is also universal, albeit with modified scaling exponents

(see text).
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5.6 Effects of non-Markovian system-bath interactions

non-Markovian system-bath interactions have been theorized to lead to new

universality classes of phase transitions, to dramatically alter phase diagrams,

and to induce novel dynamics [154, 155, 156, 157, 143]. Anomalous critical ex-

ponents measured in the open Dicke model, which is closely related to the sys-

tem described in this work, have previously been attributed to potential non-
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Markovian system-bath interactions [141, 142]. In this work, we employ active
teedback techniques to implement any non-Markovian system-bath interactions
of our choosing to study their influence on critical phenomena (see Supplemen-
tary Information, Section 5.9.15). Not only can we test KZ universality in the
presence of complex system-bath interactions, but given the precision of our

measurements, also determine any concomitant changes to critical exponents.

An ubiquitous class of non-Markovian system-bath interactions is one with
colored noise, where the environmental noise buffeting the system is character-
ized by a scale-invariant power-law spectrum o« |w|® for small frequencies |w|,
and 0 < s < 1. Following the fluctuation-dissipation relation, the dissipation is
correspondingly modified, with a long-time asymptote given by a power-law
damping kernel y(¢) o« |¢|"1*9 [151]. For such non-Markovian system-bath inter-

actions, the universal dual-scaling of our system is modified as

t

20 ~ Ci X g(— Tﬁggg) (5.2)
Ikz,e ’

where now fxz; « ¢ and C, o« € T (see Supplementary Information, Section

5.9.6).

We experimentally implement such non-Markovian system-bath interac-
tions with s = 0.70(2) for each of the two harmonic oscillators of our system,
where the |w| of the power law spectrum is now referenced to the rotating frame.
We find that the critical pump drive of y., = 1 is unchanged as the integrated
damping strength is unchanged (see Supplementary Information, Section 5.9.3).
Furthermore, for linear KZ quenches with Ttﬁ(szj ; held fixed, the collapse of the
measured growth of order over two orders of magnitude of the quench rate,
shown in Fig. 5.3(b), demonstrates that the dynamics remains universal for the

realized non-Markovian system-bath coupling, albeit with modified exponents.
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The exponents extracted from the collapse, txz o« € %0004 and C, o & 37519 are
modified significantly from their Markovian values, and compare well with the

theoretical expectation of —1/(1 + s) ~ —0.588 and s/(1 + 5) ~ 0.412 respectively.

We can also make explicit measurements of the Kibble-Zurek times, i.e.
when the system begins to develop a macroscopic order, illustrated in Fig. 5.2 as
the “freeze-out” time. Without apriori knowledge or guess of the universal scal-
ing with temperature, we perform quenches at a fixed temperature and measure
those times when the amplitude-rescaled order grows larger than a particular
“macroscopic” value, an ad hoc 107 in this work (see Supplementary Informa-
tion, Section 5.9.10). As shown in Fig. 5.4(a), these explicit txz. measurements
yield a scaling of gz, o« € 0™ and 17, o« €99 for the Markovian and

non-Markovian cases respectively.

The KZ prediction of the scaling exponent of txz, is the same for both the
varying-T and constant-T quench protocols described above, i.e. txz; o ¢ ™=
(see Supplementary Information, Sections 5.9.6 & 5.9.10), thereby relating the
critical exponent vz to our measurements. Based on the explicit 75, measure-
ments, vz is thus measured to significantly change from 1.00(1) in the Marko-
vian case, to 1.44(2) for the realized non-Markovian case. This change is cor-
roborated by the vz exponent extracted from the dual scaling measurements of
the varying-T quenches, i.e. vz = 1.00(2) and vz = 1.50(9), respectively. Both
these measurements can be compared to the theoretical expectation of 1 and
1/0.70 ~ 1.43, respectively (see Supplementary Information, Sections 5.9.2 &
5.9.3). These measurements provide clear evidence of the significant influence
of non-Markovian system-bath interactions on dynamical critical exponents and

universality.
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Figure 5.4: Scaling of the Kibble-Zurek time and hysteretic area in a
driven-dissipative phase transition: (a) Experimentally mea-
sured Kibble-Zurek times fxz. and their scaling with quench
rate €. Critical exponents extracted from this scaling yield
vz = 1.00(1) (Markovian, red) and vz = 1.44(2) (power-law
non-Markovian, blue), in close agreement with theory (see text,
Supplementary Information, Sections 5.9.2 & 5.9.3). (b) Work is
done by the parametric drive u over each cycle of quench into
the ordered phase and then back into the disordered phase.
This work, proportional to the hysteretic area illustrated in
Fig. 5.2, scales as a power-law with the quench rate. The scaling
is influenced by the system-bath interactions, as demonstrated
here for the Markovian (red) and non-Markovian (blue) cases,
and relates to the system’s critical exponents (see text, Supple-
mentary Information, Section 5.9.11). Shaded regions denote
expected hysteretic areas, based on no-free-parameter simula-
tions.

5.7 Universal scaling of the hysteresis-area

In equilibrium phase transitions, the density of defects formed following a lin-
ear finite-time quench into an ordered phase usually follows a scaling law [129].
The energy of this excited state of the system due to its nonadiabatic evolu-
tion during such a quench is approximately proportional to the defect density,

and thus also follows a scaling law. Analogously, in our driven dissipative sys-
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tem, work is done by the parametric drive 4 during the system’s nonadiabatic
evolution. This dissipated energy is proportional to the area E enclosed by the
hysteretic response of (x*) with € between the forward and backward quenches
across criticality, as depicted by the patterned region in Fig. 5.2 (see Supplemen-
tary Information, Section 5.9.11). Note that while hysteresis is typically associ-
ated with discontinuous phase transitions, hysteresis phenomena also occur in

continuous phase transitions if they are crossed at a finite rate [148, 130].

We observe that E indeed scales as a universal power-law with the quench
rate [Fig. 5.4(b)], with E « ¢ *®® and E o« ¢ %71 in the Markovian and power-
law non-Markovian case, respectively (see also [148, 130]). Both, an integral
of the universal scaling forms established earlier and a KZ heuristic capture

"'and ¢ %% in the respective cases (see

power-law behavior of E — predicting €
Supplementary Information, Section 5.9.11). Apart from being another measure
which demonstrates changing critical exponents with changing system-bath in-
teractions, the reduced exponent of E for the non-Markovian case hints at pos-

sible advantages of engineering system-bath interactions to mitigate the effects

of heating in state preparation protocols involving phase transitions.

5.8 Conclusions and outlook

We experimentally realize and establish a driven-dissipative continuous phase
transition, measure its critical exponents through steady state measurements,
demonstrate its universal dynamics, and ascertain the validity of the Kibble-
Zurek paradigm. Furthermore, through active feedback protocols, we ex-

perimentally implement an instance of a generic power-law non-Markovian
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system-bath coupling, and reveal the significant influence of the non-Markovian
system-bath interactions on the system’s dynamical critical exponents. We also
explain the experimental observations through a model including Gaussian
fluctuations (see Supplementary Information). We conclude that in principle,
such non-equilibrium ramps can be used to extract both equilibrium and non-
equilibrium universal exponents in driven dissipative systems. Including the
possibility to extract the nature of system-bath interactions and to determine if

a Markovian approximation is appropriate.

While valid in this work, there is no apriori reason to expect that the KZ
paradigm remains applicable for all non-Markovian system-bath interactions,
and identifying deviations from KZ predictions is a subject of ongoing experi-
mental studies. Further exploration of the influence of non-Markovian system-
bath interactions on critical phenomena, including tests of the KZ paradigm in
its original context of topological defects, can be pursued by considering cou-
pled, spatially extended versions of the two-mode systems described in this
work. More generally, this work can serve as an effective touchstone in the
development of a field theoretic understanding of criticality, universality and
dynamics of open driven-dissipative systems with non-Markovian system-bath
interactions [158, 159]. We also envisage that engineering novel system-bath in-
teractions, either passively or actively, should allow for the robust preparation
and preservation of conventionally fragile states, e.g. squeezed states, poten-

tially useful for enhanced metrology.
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5.9 Supplemental Information

5.9.1 System Hamiltonian

In the lab frame, the signal-idler-pump system is described by the Hamiltonian

h
H = Z hwka,tak - —gxsxixP

kels.P) X0,5X0,iX0,P
— W(Fpe™'al, + Fre™ap)
where g characterizes the bi-linear coupling between the signal and idler modes
through the driven pump mode, xo, X0, Xop represent the zero point motion,
X = xoxlap + aZ), and F, parametrizes the strength of the pump drive. In
a rotating frame of the signal, idler and pump modes, transformed through
U=1T1LU = Il et the Hamiltonian changes as H — H,,, = U'HU —
> hwgalay. Using Ulq Uy = are™, and making the rotating wave approxima-
tion, we get the Hamiltonian in the main text,
H,o = ~Tig(alal ap + abaias) — W(Fpal, + Fpap)
Note that the first term signifies the downconversion from the pump mode into
the signal and idler modes (a!a ap) and the conjugate (a}a;a;) signifies the up-
conversion from the signal and idler modes into the pump mode. The second

term denotes the coherent drive of the pump mode (Fpa), + Fiap).

For future reference, note that x,; = xo(a,; + a.,) and y,; = —ixo(a,; — az )
are independent quadratures of motion. The experimentally measured complex

amplitudes of motion, z,; = x,; + iy,;, are nothing but z,; = 2x,,a;,.
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5.9.2 Markovian case

In this section, we solve for the steady-state solutions to the system’s equations
of motion in the noise-free limit (no fluctuations), for the Markovian case, and
locate the critical point. We also derive the steady-state and dynamical critical

exponents associated with this driven dissipative continuous phase transition.

Equations of motion

The equations of motion for the signal, idler and pump modes are given by the
Heisenberg-Langevin master equation [151]. These include (a) the Hermitian
evolution of the modes, (b) the non-Hermitian dissipation of the modes to their
environment, captured by the terms involving v;;p, (c) the terms if,; », which
account for the stochastic forces acting on the modes because of their coupling
to a finite temperature bath, and (d) the terms iF;, which account for coherent
forces applied on the signal and idler modes —

. . Vs.i . .
as; = zgal.,sap - 7615’,' + ZFS,,' + lfs’,'
(5.3)

ap = igaias - %ap +iFp+ lfp
The stochastic terms are related to the dissipation terms via the fluctuation dis-

sipation relation, and satisfy

KO @)y = vilgs + 1)t = 1)y

_ hws,i,P -
Mupsip = |€XP -1

where k, [ € {s,i, P} and

kgT

In the remainder of this work, unless noted otherwise, we will consider the
experimentally valid high temperature (classical) regime of kzT > fw,;, so that

fgsi ~ kT [(hwg;) > 1 and fy,; o< T. Unless otherwise noted, we also set the
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pump noise to zero (fp — 0), given the relatively large coherent drive Fp.

Effective potential and the Mexican hat

Given that yp > v, in the experiments, we adiabatically eliminate ap from
Eqn.(5.3) by setting ap = y%(igaias + iFp). In the absence of external forces or

fluctuations, i.e. Fy;, f;; — 0, the semi-classical equations of motion (azl. — a:,)

reduce to
i 287 2¢F
as,i = - (L + i|ai,s|2) as,i - & Pa;{s (54)
2 vp Yp
These equations of motion are equivalently given by a,; = —a?{eff/aa:’i, where

Hess is the effective potential of the system,

¥s Yi 2¢*
Heir = =lal* + Zlail* + =|a,|ail*
2 2 ’)/p

+ );%,u(a:af + asa;) (5.5)
Here, u is the normalized parametric drive
F V/s/i
u= —L1. where |F | = 7P4# (5.6)
cr 8

sets the critical pump strength beyond which H,g is minimized for |a,,;| > 0, i.e.
for finite order. For u < 1, Heg is minimized for |a,;| = 0, i.e. disorder. F., is
equivalently obtained by setting f;; — 0, F,; — 0 and solving Eqn.(5.3) for the

onset of nontrivial (la,,| # 0) steady state (¢, = 0) solutions.

The Mexican hat potential is easily evident in the experimentally relevant

x
i,s7

case of symmetric damping of the two modes, y,; = y,. In this case, a,; * —a

and the equations of motion excluding the fluctuations are given by

OH, 2g°
as = - f x_yo(l _,u)as - g |aslzas (57)
(9af; 2 Yp
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And the corresponding effective potential is
2, 288
Hett ~ yo(l — plal” + 5 la| (5.8)
P

which is a Mexican hat for u > 1.

1

In the experiments, y, = 0.50(1) s™'. Unless otherwise noted, we consider

equal signal and idler damping for the remainder of this work.

Predictions of critical exponents

The stable steady state solutions of Eqn.(5.3) are

0 u<l
|as,i| =
VYPYo/28 X Ju—1  p>1
(5.9)
Hyo/2g p<l
lap| =
Yo/28 pu>1

directly yielding 8 = 1/2 for u > 1, where |a, ;| « €’, € = (1 — o) /[ pter = 1 — 1.

We note that in the absence of fluctuations (f;; — 0), Eqn.(5.3) constrains
the phase sum ¢, + ¢; to be equal to the pump phase, but the phase difference
¢s — ¢; is unconstrained, reflecting a spontaneous symmetry breaking. This is
also reflected in the effective potential Hess of Eqn.(5.5), which depends only on
Argla,a;] = ¢, + ¢;. However, at finite temperature, the fluctuations cause the
phase difference to diffuse over time [143], so that there is no “true” sponta-

neous symmetry breaking.

To get the critical exponent y, the susceptibility to a force o« F; € R can be
derived as follows. Eqn.(5.4) is diagonalized by linearizing about the steady

state solution Eqn.(5.9) assuming x,,; = xo. Below criticality, the evolution of
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the cross-quadratures x. = (x, + x;)/ V2 is then given by
o W sourF, +if, (5.10)
X0 2 X0
4iX0Fi u—1 1 2ix0FS
Yo(l =) lel o

0
This gives [0x;/0F | o |e|”” with the exponent y = 1. Here, 2F, = F, + ﬁ/f and
V2fe = (fi = fD £ (fi— fD).

In the absence of external forces and noise, i.e. F.,f. — 0, Eqn.(5.10) also

gives the scaling of the relaxation time with € as

x4() = x(0)e™
X 0) i X0 1y

2
The longest time scale being given by

2 u—1 2 1

="

Yo(l = ) Yo l€l
This gives 7 o |e|”%, vz = 1, as measured and described in the main text.

:xs,i(t) =

Ts,i

5.9.3 Non-Markovian case

In this section, we detail how the system’s equations of motion change in the
non-Markovian case vis-a-vis the Markovian case of the previous section. We
also show how the non-Markovian system-bath interactions change the phase

transition’s dynamical critical exponent.
y
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Equations of motion

For generic non-Markovian system-bath interactions, the equations of motion

in the rotating frame, given by Eqn.(5.3), are modified as

1 t
ds; = igazsap - 5 f dld’}/s’,'(t - t')as,i(t’) + ifs,i (511)

ap =iga;ag — )%ap +iFp+ifp
where v,,(?) is the dissipation kernel [151], and we have assumed that both the
signal and idler are described by the same kernel, as realized in the experiments.

Note that the stochastic force terms satisfy the fluctuation dissipation relation

O f (1)) = %(ﬁth,k + Dyt = 'Dow (5.12)
where k € {s,i} The Markovian case is retrieved by setting the dissipation kernel
as y;.(t) = y,0(t). Note that when evaluating Eqn.(5.12) in the Markovian case,
an appropriate limit of y,(¢) needs to be taken such that it reduces to the delta

function (), also ensuring the usual requirement that y,(7) is causal, i.e. y(f) =

0, YVt < 0.

Predictions of critical exponents (Power law non-Markovian case)

The steady state and noise-free (@, fy — 0) evaluation of the critical drive
strength, above-threshold solutions, and the exponents g and 7y, proceed as
before. The steady state solutions considered in the previous section for the
Markovian case are still valid solutions, for which only the total strength of the
damping matters, given by the integral f dty(t) = y,;. For the non-Markovian
system-bath interactions considered in this work, these are the only stable
steady state solutions. Eqn.(5.11) thus yields the same results as Eqn.(5.3). In

particular, the critical drive strength F,,, and the values of 8 = 1/2, y = 1 remain
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unchanged. Dynamics, on the other hand, is affected by a power law kernel, as
described below. In the remainder of this work, we consider the experimentally
relevant case of symmetric non-Markovian damping for the signal and idler

modes, i.e. y,; = y(t), unless otherwise noted.

Below threshold, we linearize Eqn.(5.11) around the u < 1 solution of

Eqn.(5.9), and then diagonalize to get

1 !
-3 f Ayt - O)x, () + if.

X, =F >
In Fourier space, this simplifies to

Fo(w) = — ify = x.(w) ifs (5.13)
1107]

Yw) | oyor _
2 iz

where y.(w) defines the susceptibility. Here, y(w) is the complex Fourier trans-
form of the kernel y(r). The complex poles w, of y(w) characterize the system
response, with the relaxation rates scaling as — Im[w,]. Note that in general, we
may not always be able to characterize the system response by complex poles of
susceptibilities, e.g. when the susceptibility is not Lorentzian [142], or does not

have well defined poles.

In the Markovian case, ¥(w) = vy Yw € C is the complex extension of the
kernel ¥(w) = yo Yw € R. Thus w, = —i%(1 + u), the least negative imaginary
part of which is —2(1 — u) = -2|¢|', implying that 7 o« €], vz = 1, as otherwise

derived and considered before.

In the non-Markovian experiments, we consider and realize power law non-
Markovian system-bath interactions with a damping kernel y(w) = ¥'(w) +
iy (w), with

—lwl/w,

¥ (w) =y + Yplw/wol’e

being the real part, and %" being the imaginary part. The two are related through
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the Kramers-Kronig relation, giving a low frequency asymptotic form of

Y(w) = ¥o + ¥plw/wol’ (1 - i sgn(w) tan 7rs/2)
which decides the divergence of the relaxation time scale. Note that in this
power-law kernel, the ultraviolet divergence is avoided through an exponential
tail with cutoff frequency w.. The corresponding non-Markovian kernel y(r)

evaluates to

2 -5 S
Y(1) = yoS(t) + ;ypzwowl.* I'(1+s)|x

cos [(1 + 5) arctan(w.?)] X (1 + w??)™F x O[f] (5.14)
where O[] is the Heaviside function, and the kernel asysmptotes to a power-
law decay, for time r > w_!, ie. y(r > w;') o« —|f|7'*. In our experiments,
s =0.70(2), yo = 1.002) s, v, =2.12(4) s!, wp = 1 s7' and w, = 6 s7!. Note that
wy is just a normalization constant, with no physical significance independent
of yp.

x+(w), the susceptibility for real w, is then given by Eqn.(5.13) as
%(1 & 1)+ yylo/wol* (1 — i sgn(@)tans/2) — icw] (5.15)
The characteristic frequency scale of the parametrically driven system near crit-
icality (e — 0), characterized by the full width at half maximum of the suscep-
tibility y_(w), is proportional to |e|'/*, yielding 7 o« |e[™%, vz = 1/s. In the exper-
iments, s = 0.70(2), predicting that vz ~ 1.43(4). This analysis sufficiently ex-
plains the experimentally measured exponent 1.44(2), as described in the main

text.

Note that the experimentally realized power-law non-Markovian kernel con-
tains a Markovian component y,. The Markovian component contributes to a

net positive total damping, fooo dry(t) > 0, which is required for the very exis-
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tence of a continuous phase transition at a parametric drive u.. > 0 (the con-
tribution from the power-law part integrates to zero). Moreover, real systems
usually do have finite damping at low frequency, and the Markovian compo-
nent y, represents a broad class of dissipation kernels where the damping is

frequency independent at low frequency (w — 0).

5.9.4 Divergence of fluctuations in the linearized limit

In this section, we calculate the steady-state behavior of the observable (x?*) for
both the Markovian and non-Markovian cases, and evaluate the power-law of
its divergence at criticality in a Gaussian theory of fluctuations. In later sections,
we will relate this scaling to the the system’s universal nonequilibrium quench

behavior.

The susceptibility y_(w) (Eqn.(5.13)) allows us to evaluate the critical diver-
gence of the amplified quadrature (x?) below criticality, i.e. in the disordered

phase, as

=5 [ doi-@FPsD, @
27 J o
where PSD/ (w) denotes the power spectral density of the noise f_. Following
Eqn.(5.12), note that PSD (w) « (7, + 1) o< T. We evaluate this divergence for

future reference, and define the exponent ¢ as (x?) o || ™.

Markovian case: Following from Eqn.(5.13) and the fact that PSD, is frequency
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independent (the noise is delta-correlated in time),

PSD _—
SD: (@) e [%6]2 + w?

= (x%) o Tlel™

i.e. = 1 for the Markovian case.

Power law non-Markovian case: Like the Markovian case, the divergence of (x*)
for the considered power-law non-Markovian case occurs at w — 0. This is be-
cause for large |w|, [y-(w)* « ﬁ, which has a finite integral over large |w|. For
small |w| — 0, Re[y~'(w)] = Zle| and Im[y='(w)] — #lwl’, for 0 < s < 1. And the
Markovian component of the dissipation, PSD; (w) — constant as w — 0. This

leads to

T
PSD, ~——
O m R
= ()~ Tl )
for 1 > s > 1/2. Therefore, { = 2 — 1/s for the considered power-law non-

Markovian system-bath interactions.

We note in passing that for 0 < s < 1/2, there is no divergence of (x¥*). Such
non-Markovian system-bath interactions are hot beds for possible violations of

the KZ paradigm, and will be explored elsewhere.

5.9.5 Finite temperature phase diagram (Markovian Case)

In this section, we evaluate the interplay between the inherent nonlinearity of
the system and the temperature induced fluctuations near criticality. A ‘true’

critical divergence of (x?) is prevented by the intrinsic nonlinearity. The phase
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transition is sharp only at T = 0, and morphs into a crossover for finite 7.

This is most easily seen through the effective Mexican hat potential de-

scribed earlier, Eqn.(5.8),
2g*
7-{eff = ’)/0(1 - ,u)las|2 + _las|4 (58)
yp
At T = 0, in the absence of fluctuations, |a,;|* = 0 for u < 1. However, as we have
seen in the previous section using the linearized equations of motion below

criticality, finite noise in fact leads to divergent fluctuations near criticality — In

semi-classical terms,
() 1 kT _2aj,
2 el hw el

(las 1y o (5.16)

for | < gy = fig,; ~ kT [Tiw = 2a;,.

The linearized description fails when the quartic term of Eqn.(5.8) (corre-
sponding to the nonlinear term in the equations of motion) is commensurate or
larger in magnitude than the quadratic term (corresponding to the linear term in
the equations of motion). This occurs for yo|1—u| = yole| < %(Iaslz) = Lla,*) /a3,
where a,, = fypryo/2g is the steady-state order at € = +1, on the ordered side (see
Eqn.(5.9)). Using Eqn.(5.16), we find that the fluctuations invalidate the linear
approximation for

Db 5 1ep (5.17)

This sets a natural temperature scale of the system, T,,, as that when Zztzh =
a2 /a2, = 1. Above this temperature, the system is dominated by thermal fluctu-
ations even at u = 0, i.e. even without the divergence induced by the parametric
drive. The ratio @, /|el*, of the linear term to the nonlinear term, is the shad-
ing used in the finite temperature phase diagram in Fig. 5.1(a) of the main-text.

Dark blue shading depicts the region where this ratio is larger than unity.
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Typically, in our experiments, a,, ~ 500 pm/( V2x0) ~ 6 x 10°, where x, =
Vi/(2mw) ~ 60 am is the zero point motion of the oscillator. As such, the T, for
our experiments is given by

kBTnl
2hw

= Tu,~4x10°K

=a’, ~ 36 x 10"

The room temperature steady state measurements reported in Fig. 5.1(a) of the
main text are thus nearly seven orders of magnitude lower in temperature than

T,.

The fluctuations derived in the previous section and used in Eqn.(5.16) are
obtained by linearizing the equations of motion in the disordered phase (u < 1).
In the ordered phase above criticality, the linearization is done about the steady-
state order. It was previously shown that the relevant divergent fluctuation
quadrature is the amplitude sum, which diverges as u x 2@’ /e [83]. The lin-
earization here breaks down when the fluctuations equal the steady-state order,
ie. ux2a /e~ u—1 =g, giving the relevant ratio as u x @, /€, which is plotted

in Fig. 5.1(a) for € > 0.

Note that the lowest experimental temperature realized in this work is room
temperature T ~ 285 K, for which a,,zr = /kBT/ma)ii, whereas ag,; > 2000Xa,, gr-
As such, quantum effects are not observable in the shown phase diagram of

Fig. 5.1(a) - the temperatures would need to be orders of magnitude lower.
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5.9.6 Kibble-Zurek prediction of scaling exponents

In this section, we use the Kibble-Zurek paradigm to relate the steady-state
critical exponents derived in earlier sections to the scaling exponents of the
nonequilibrium quenches across criticality, for both the Markovian and the non-
Markovian cases. The amplitude scaling and the time scaling are successfully
retrieved for either case. We further use the KZ paradigm to predict the temper-

ature scaling required to reveal the universality.

The Kibble-Zurek time ¢ is computed by equating the instantaneous relax-
ation time at a given point during a ramp to the time remaining for the system
to reach criticality. The relaxation time diverges as |e|™%, where v and z are the
conventional critical exponents 2. For a linear quench at rate € with e(r) = é, and
where ey, is defined as €(txz), we have

tkz o |exzl™* = (étgz) ™"

vz Jn
= lkz X € i, €gz OC €17 (5.18)

vz = 1 and 1/s for the Markovian and power-law non-Markovian cases, respec-
tively, and as such, txz o €7 and tky é‘ﬁ, respectively, as quoted in the
main text. Moreover, according to the KZ paradigm, observables “freeze out”
or evolve negligibly for [f| < txz. As such, for a quench of rate ¢, the value of (x*)
at criticality (x*(r = 0)) = C. (Eqn.(5.1)) equates to its value at 7xz. Applying this
KZ heuristic in the ordered phase, where |x| « lel?, we get
Ce = (D, o lerl™ oc €7,
B = 1 for both the Markovian and the power-law non-Markovian cases, whereas

vz = 1 and 1/s respectively, giving C; « €2 and C; « €7 respectively, as quoted

2In this effectively 0—dimensional work, an independent explicit correlation length exponent
v is ill-defined. However, following convention, we retain the notation of vz as the relaxation
time exponent.
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in the main text.

Temperature scaling

If the dynamics of the system is indeed universal, and if the KZ paradigm does
indeed apply, then the temperature scaling in Eqn.(5.1) and Eqn.(5.2) of the main
text can be derived by applying the paradigm on both sides of the criticality.
Given a steady state critical divergence of (x*) « |¢[ in the disordered phase,

the KZ paradigm predicts that
C. o« Tlegs| ™ o T ™% (5.19)

wherein the proportionality to temperature 7 on the disordered side follows
from Maxwell’s equipartition 1mw*(x*) = 1kT for a harmonic oscillator. Equat-
ing this to the scaling derived in the previous section using the KZ paradigm on

the ordered side, i.e. C; « €™z, we have

¢ %
Te& T oc ¢Ton

28+¢ _2
e vi
= T xémn k7

2B+

= Tt

= constant

In the Markovian case, where 8 = 1, { = 1, and vz = 1, this translates to
Ttz, = constant, whereas in the power-law non-Markovian case, where g = 1,
¢ =2-1and vz = 1, the condition is Tr5,' = constant. In order to bring out

the universality in the experiments, we enforce these constraints by varying the

temperature across different quench rates.
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5.9.7 Rescaling arguments for parameter scalings in the Marko-

vian case

In this section, we give a rescaling argument to derive the universal scaling
described in the main text. We note at the outset that the following derivation is
for a linear quench, and does not depend on the initial conditions of the system.
It implicitly assumes that the quench spans from ¢t = —co to t = +co and thus
from € = —co to € = +oo. While this assumption does not correspond to the
experiments (the quenches start at a finite time with € = —1), the behavior near
criticality is independent of the initial conditions for small quench rates ¢ — 0.
More broadly, this argument can be extended in the limit of € — 0 to cases where

le] is bounded, e.g. e(f) = tanh(ér).

The equation of motion (Eqn.(5.7)) including the finite temperature fluctua-

tions is given by

dx(t , lx(n)]?
0~ Vet - 2B sy + Vit (5.20)
wherein for simplicity of notation, we have replaced a; by x, 2%: =2 by 2o
and also included the noise term, for which xfh = % and ¢ is delta correlated,

(EMEP)) = 6(t — t'). We have also assumed a linear quench e(¢) = ét.

Eqn.(5.20) is invariant under the rescaling of time by u, and the parameters
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as

Y= WY (5.21a)
2

¢= L (5.21b)
w

x;s =V \/E Xss (521C)
u
u

X, =V \/j Xen (5.21d)
w

The experiments, wherein the dissipative coupling vy, and the intrinsic-
nonlinearity dependent x,; = +/ypyo/2g are fixed, constrain us to w = 1
(Eqn.(5.21a)) and v = +u (Eqn.(5.21¢)), so that ¢ = u’¢ and x, = uxy. The
latter condition is equivalently stated as 7" = u*T, because thermal motion RMS
x;, and temperature T are related through equipartition as (x? ) oc T. The univer-
sality with quench rate is exposed by choosing the rescaling which eliminates
the ¢ dependence, i.e. u = (K;/€)"? and concomitantly v o< &'/4, where K is a

constant. This thus gives the universal scaling function quoted in the main text

V(PG ET) = (P(p;esT))
= (6T = v s’ e u’T))

= (6T o« €2 (Pt u; Ki; uT))

t
or (&)= CG (— Tty, e)
Ikze ’
where C; « ¢'/2, G oc (x*(t/u; K1;u*T)), and txze < u o ¢'/2 is the Kibble-Zurek
time. Here, G is a universal scaling function that does not depend on micro-

scopic details or the shape of the protocol away from e = 0 [153].
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5.9.8 Extracting exponents through collapse of dynamics

In this section, we describe the analysis of the experimental data for extracting

the KZ scaling exponents through a collapse of the order-growth curves.

The dynamical growth of (x*(r)) measured over varying quench rates é scales

according to the equation
t

PO = Cex 6. Ko

KZ.é
where K, is held constant across different ¢ to eliminate the temperature depen-
dence of G as described in the previous section. The KZ paradigm predictions
for the exponents of 7xz,. and C. with ¢ have been described in previous sections.
To extract these exponents from the collapse of the experimental data, we scale
all the measured growth curves in amplitude and time, with exponents a and b,
over the entire quench, i.e. we define
2 La 2t
X, (15 €)= €% (g)
(Note that the critical point, being at r = 0, does not get scaled in time.) We then
minimize the time-averaged variance over the exponents (a, b), i.e.
. 1 +1> s , . o
Vargn = ncllbn m j:n dt (X, (1) — X, (@)

where the (-)(#') now denotes the average over the various quench rates ¢, at the
rescaled time #'. The range [-T),T,] is the largest common domain of rescaled
time over which experimental data was acquired for all of the quench rates be-
ing collapsed. Note that a perfect collapse would make this variance measure
vanish. The quoted extracted exponent is that (ay, by) which minimizes the vari-
ance. The error bars quoted for the collapse-extracted exponents are determined
by the extremes of the (a, b)-contour defined by Var(a, b) = 2 X Varp,. The eval-

uation of this variance and contour is shown in Fig. 5.5 for the Markovian case.
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Figure 5.5: Time-averaged variance of the rescaled growth curves in the
Markovian case for € = {0.02yy, 0.2y0, 2y,} (see Supplementary
Information, Section 5.9.8). The blue curve defines the contour
Var(a, b) = 2 X Varpin.

For the Markovian case, this collapse was evaluated over 3 quench rates
varying over two orders of magnitude, é = {0.02yy, 0.2y, 2yo}, where v, is the
mechanical dissipation rate. For the non-Markovian case also, the collapse was
evaluated over 3 quench rates varying over two orders of magnitude, with é =
{0.007y0,0.07y0,0.7y0}. The extracted exponents for (C¢, txz:) are, as presented
in the main text, (=0.500(4), 0.500(6)) and (-0.600(14), 0.375(15)), respectively for

the Markovian and non-Markovian cases.

5.9.9 Non-universal contributions

The above-mentioned exponents are in good agreement with the respective the-
oretical predictions of (-1/2,1/2) and (-, =) ~ (-0.588,0.412). In this sec-

145 1+s

tion, we discuss sources of non-universal contributions that may account for
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experimentally measured discrepancies in the exponents, especially in the non-

Markovian case.

The statement of universality is precise in the limit of € — 0, in that the sys-
tem dynamics has a simple description in terms of universal scaling forms given
by Eqgns. (5.1) and (5.2). Naturally, experiments can only finitely approach the
¢ — 0 limit. In this work, the smallest rates are around ¢ = 0.007y,, realized
in the slowest ramps for the non-Markovian case. Indeed, Monte Carlo simu-
lations of the dynamical curves, using the experimentally realized parameters
over an ensemble of 100 iterations for each quench rate, show that the collapse is

optimized for exponents (—0.607(6), 0.390(10)), consistent with the experiment.

In the Markovian case, the extracted exponents match the theoretical predic-
tions better. This may be rationalized as follows. In the Markovian case, the only
relevant intrinsic rate for the system is yy.No other frequency scale competes
with ¢, and the condition ¢ < 7, is well defined, which may be interpreted as
realizing the limit ¢ — 0. On the other hand, in the non-Markovian case, the sys-
tem retains a “memory” of the initial conditions over all finite time scales. For
example, the dynamical decay of the mode amplitudes following a perturbation
is not exponential, as occurs the Markovian case. In fact, it has a power-law tail.
This finite-time influence is only reduced as we consider ramps at slower rates
(smaller ¢’s), but may not sufficiently vanish. The consistent exponents based
on both the Monte-Carlo simulations and the experiments suggest that the finite

¢ may indeed account for the discrepancy from the analytic expectation.

Further, non-universal effects can be enhanced in the non-Markovian case
due to the existence of the competing frequencies ¢, vy, v, and w. (see Eqn.(5.14)

above). Ideally, w, should be much larger than all other frequencies, serving as a
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high-frequency cutoff. And the power-law component of y(¢) should dominate
over its Markovian part (y,; > 7). And to realize the scaling limit, ¢ should
be much smaller than any of these competing frequencies. One can then expect
that the finite-rate ramps across criticality will well approximate and follow the
universal dynamics described above. The finite separation of these frequency
scales in the experiment can thus additionally contribute to the deviations in

measured exponents as compared to the analytic expectations.

5.9.10 Scaling exponents for equal temperature quenches

In this section, we use both rescaling arguments and the Kibble-Zurek paradigm
to predict a universal behavior of quenches performed at equal temperatures,
and its scaling exponents. The universal dynamics of (x*(r)) across criticality
in this case is restricted to the linear regime of the system. We also present

experimental data corroborating this prediction.

Similar rescaling arguments as those described previously can be made for

quenches performed at a constant temperature. In particular, for the regime

2

ss/

of time when the order x*(1) < x2, the nonlinear contribution is negligible

(Eqn.(5.20)), so that

d
2(:) = %(ét)x(t) + Voxa () (5.22)

The rescalings of Eqn.(5.21a), Eqn.(5.21b) and Eqn.(5.21c) apply, and are experi-
mentally constrained to w = 1 and v = 1/ vu by the fixed y, and fixed tempera-
ture, respectively. The universality with quench rate is exposed by choosing the
rescaling which eliminates the ¢ dependence, i.e. u = (K3/é)'* and concomi-

tantly v oc €'/, where Kj is a constant. We thus expect the universal behavior to
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be given by

(P8 = C. 7<( t )

Ikze
with C, o« €12, K o (x*(t/u; K3)), and txz, o u o« €'/, again being the Kibble-
Zurek time. We extract the Kibble-Zurek times from such fixed-temperature
quenches as those times when K = 107°. For this, the experimentally measured

12 and the abscissa of ordinate

(x*(t; €)), normalized to x,,, is scaled by C, o« &
1073 is quoted as the Kibble-Zurek time txz,, as shown in Fig. 5.4(a) of the main
text. We note that the choice of 107 is ad hoc, though bounded on the lower end
by the experimentally realized constant temperature, and on the higher end by

the neglected nonlinear term.

A collapse of the measured order growth curves for constant temperature
quenches is shown in Fig. 5.6. The data collapses very well in the linear regime,
but not at steady state amplitudes above criticality where the nonlinear effects

are dominant.

Kibble-Zurek scaling predictions for constant-T quenches

The Kibble-Zurek paradigm described in earlier sections can also be used to pre-
dict the exponents for the constant temperature quenches. Eqn.(5.19) at constant
temperature implies that

C: x &

And the Kibble-Zurek time scaling of Eqn.(5.18) is still valid. In the Markovian

12 tkze < €12, whereas in

case, for which ¢ = 1, and vz = 1, this gives C; o &
the power-law non-Markovian case, for which { =2 —-1/sand vz = 1/s, we have

C. oc €020 1y oc €0588D for 5 = 0.70(2).
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Figure 5.6: Universality in constant-7 quenches: The dynamics of
growth of order (x*(r)) is universal in the quench rate ¢ — the
distinct growth curves at varying ¢, shown in the inset, col-
lapse into a single curve on rescaling time with the Kibble-
Zurek time txz., and an appropriate scaling of the amplitude.
Note that the collapse for these constant-7" quenches is partial,
occurring only in the linear regime of exponential growth of
order (see Supplementary Information, Section 5.9.10). Shown
for the (a) Markovian case and (b) power-law non-Markovian
case.

5.9.11 Hysteresis area and its scaling

In this section, we discuss the hysteretic area enclosed by the signal/idler am-
plitude curves during the forward-backward ramps. We first establish the phys-
ical basis of the hysteresis area as a measure of the energy dissipated during the
non-adiabatic ramp. We then use the universal scaling of the nonequilibrium
dynamics derived earlier to demonstrate that the hysteretic area also scales as a
power law in the quench rate, and further predict this power. We also present
a Kibble-Zurek heuristic for the hysteretic area, predicting the same power law

scaling.
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Physical basis of the hysteresis area

We can define an (effective) work done on the system by the external drive u in

OH.
szd/,tﬂff
ou

% f dla?,

where we use the Hegs of Eqn.(5.8). This definition of work is analogous to the

the rotating frame as

X

inclusive work in Jarzynski’s [160, 161]. See also [132].

While this definition is valid for any ramp protocol of the drive u, we focus
here on a piece-wise linear cyclic ramp, which starts at u = 0, continues linearly
beyond the phase transition, immediately turns around at some u; > ., = 1 and
returns linearly to i = 0. In the following, we denote this cyclic protocol by the

integral §. In the experiments, we measure the average work as

W)=~ Sgd/ldaslz)
where the average is taken over stochastic realizations of the noise due to the
environment. Thus the net work done by the coupling 1 on the system is pro-

o

portional to the hysteretic area of |a,|* with u. Note that we extend this definition

of work to the non-Markovian case as (W) o 9§ du{lag?).

Given that the protocol is cyclic, it does not change the internal energy of
the system, and (W) is a measure of the energy dissipated during the non-
equilibrium ramp. Throughout this work, we thus denote the hysteretic area

by E.
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Derivation of scaling based on universality

The scaling of the hysteretic area with quench rate ¢ can be obtained using the
universal scaling form that governs the system dynamics. The rescaling argu-
ment used for the Markovian case in previous sections is insensitive to the sign
of € — The argument is equally valid for both a forward and a backward quench
as long as the initial conditions do not matter, which holds true for deep, slow

quenches.

The hysteresis area can be written as

€f
E o f d€<x§ackward(t = G/é; T)> - <x?orward(t = G/é; T)>
-1

We take the scaling limit of ¢ — 0 while holding #/1xz, Tt3%,' fixed and express

(x?) in the universal scaling form, to get

€/é

E ch dGCé[gbackward(t_’ Tt;(‘z_el)

KZ¢é

€/€ a1
_gforward(_ s Tt](sz,g )]
Ikze

(o9
R
(ve f dx €Tvemn [gbackward(x’ )

(%)

_gforward (xa C2)]

. 1428
= F oc € Tz

where C, = Tr)%;! is held constant with varying quench rates, and x = % o

€/€m=. This gives the area scaling to be E oc é7+=.

In Markovian case, 8 = 1/2, vz = 1, so that the area scaling is E « ¢'. For
the the power law non-Markovian case, 8 = 1/2, vz = 1/s, so that the expected
area scaling is E o éfs, which for s = 0.702) gives E o &%, See Fig. 5.7 for
experimental comparison. See also Fig. 5.4 of the main text, shown for quenches

performed at equal temperatures.
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Figure 5.7: Scaling of the hysteretic area in a driven-dissipative phase
transition: Work is done by the parametric drive u over each
cycle of quench into the ordered phase and then back into
the disordered phase. This work, proportional to the hys-
teretic area illustrated in Fig. 5.2, scales as a power-law with
the quench rate. The scaling is influenced by the system-bath
interactions, as demonstrated here for the Markovian (red) and
non-Markovian (blue) cases.

Derivation of scaling using a Kibble-Zurek heuristic

The hysteretic curve can be approximated as a triangle (see Fig. 5.2) with base

determined by the Kibble-Zurek freeze-out, ex; o € ﬁz, and height determined

by the steady-state order, (x*)|-¢,, elzfz =€ %, giving an area scaling of E «

. 1428
€ vz,

5.9.12 Experimental parameters

The mechanical resonator used in this work is a 100 nm thick, L = 5 mm square,

high tensile stress (o ~ 1 GPa), silicon nitride membrane, that was LPCVD
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grown on a silicon substrate by NORCADA, Inc. Such a resonator has eignen-

modes with eigenfrequencies w,,, = 27y /4pL? Vm? + n2, where p ~ 2.7 g/cm’
is the silicon nitride mass density. The eigenmodes at w; ~ 1.233 MHz and
w; ~ 1.466 MHz were used as the signal and idler modes respectively. The nat-
ural linewidths of these modes is y; ~ 27 x 80 mHz and y; ~ 27 x 110 mHz,
corresponding to intrinsic timescales of 7, = 2/y, ~39sand 7; = 2/y; ~ 29,
and quality factors of Q; ~ 15 x 10° and Q; ~ 13 x 10°. The pump mode is an
eigenmode of the silicon substrate, whose modes have typical quality factors of
0, ~ 10° — 10*, more than three orders of magnitude lesser than the signal or
idler modes, i.e. y,;/y, < 1073. Correspondingly, its dynamics are much faster

than the signal and idler modes, allowing for its adiabatic elimination.

5.9.13 Optical detection of the signal and idler modes

The out of plane displacement of the mechanical signal and idler modes are
detected using a Michelson interferometer with a position sensitivity of ~
14 fm/ VHz at the signal and idler frequencies, achieved through a lock-in ampli-
fier (Zurich Instruments, HF2LI). A typical power of 630 uW is incident on the
mechanical silicon nitride membrane, as also in the reference arm of the inter-
ferometer. The light source is an external cavity diode laser operating at 795 nm

with linewidth < 100 kHz.

At low frequencies (< 3 Hz), the optical interferometer used for the detec-
tion of mechanical displacement is susceptible to residual amplitude modula-
tion (RAM) which we ascribe to the gradual temperature fluctuation and tem-

perature dependent birefringence of various optical elements. In our experi-
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ment, this low frequency amplitude noise convolves with the mechanical dis-
placement signal, leading to a 0.75% contamination of the detected membrane
displacement. Consequently, the signal to noise ratio (SNR) for the mechani-
cal thermal motion degrades to 1 as the amplitude of motion approaches 150
times the room temperature thermal amplitude. To ensure that the finite time
quench experiments are conducted with thermal fluctuations that are detected
with SNR > 1, we ensure that the system is driven with a large effective thermal
noise, with the effective temperature being much larger than room temperature

(> 100 times larger).

5.9.14 Feedback stabilization of the signal and idler modes

Due to the differential thermal expansion of the silicon nitride membrane and
the supporting silicon substrate, the signal and idler frequencies change with
ambient temperature. Empirically, this change is by ~ 1.4 linewidths per
milliKelvin. Given that ambient temperatures vary over ~ 200 mK within a day,
precise measurement of thermomechancial motion and steady state responses
requires active feedback to achieve sub-linewidth stabilization of the mode fre-
quencies. We accomplish this using the differential thermal expansion to our
advantage, through photothermal control of the silicon substrate. As also de-
scribed in previous work [150], we continuously monitor the mechanical fre-
quency of a high-Q thermometer mode at 2.736 MHz - far from the signal and
idler frequencies studied in this work. Phase detection of this mode generates
an error signal with an on-resonant slope of 5.91 radians/Hz. Active photother-
mal stabilization is accomplished by feeding back to an optical control beam

of 600uW average power, generated by a diode laser operating at 830 nm, and

111



amplitude controlled using an acousto optic modulator (AOM). The RMS fre-
quency fluctuations of the thermometer mode thus achieved are measured to

be below 2 mHz, equivalent to temperature fluctuations of less than 2 uK.

5.9.15 Feedback protocols
Implementation of arbitrary non-Markovian system-bath interactions

The role of the non-Markovian system-bath interactions is fully captured by
their influence on the equations of motion of the system. Due to the minimalist
nature of this work’s physical realization of the described driven dissipative
phase transition, we can use active feedback to enforce a particular equation of
motion, and thereby simulate a non-Markovian system-bath interaction of our

choosing.

In particular, the evolution of the complex amplitudes of motion z;; is gov-

erned by the equations

. 70,' . k
i = —% (Zsi + X5 Vsi) + leMaI

where V;; is the feedback voltage applied to the piezo transducer that the sili-
con substrate, which hosts the signal and idler modes, is mounted on, and y;
is the experimentally measured transfer function of the applied PZT voltage
into signal and idler motion. Here, the first term refers to the modes” intrinsic

Markovian damping, and the last term fM* refers to the associated Markovian

thermal noise. By comparing to Eqn.(5.11) and enforcing

2 5 1 ("
Vs,i = |:_’y_’zs,i + = f df,)’(l‘ - t,)zs,i(t,) + lfz
75,1Xs,i 2 2 —0c0

we simulate a non-Markovianity of our choice. Here, f. = 2f;; denotes the
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added non-Markovian noise related to our choice of the damping kernel y(z)
through the fluctuation dissipation relation as described in previous sections.
Note that while the first term of V,; counters the intrinsic Markovian damp-
ing and effectively cancels it, V,; does not compensate for the associated noise
fMakTo ensure that it is the non-Markovian noise that dominates the stochas-
tic behavior of the system, we set its effective temperature to be ~ 100 times
the temperature of the intrinsic Markovian noise /¥, thus overwhelming it.
We note that the feedback voltage V,; described here is a complex representa-
tion in a rotating frame of the real-life voltage applied to the piezo transducer,

V,.i(t) = Re[V;,;] cos(ws,it) + Im[V;](sin wy ;1).

In the experiments, we implement this realtime feedback digitally, using NI
LabView. The signal and idler mode motions z,; are continuously measured and
recorded at 1800 Hz. This recorded history of z,,(#') is numerically convolved
with our choice of kernel y(r) as a discrete sum, with the lower limit on the
integral [d being the time at which we start applying the feedback. A pre-
computed non-Markovian noise sequence f; with the appropriate noise spectral

density « ¥’(w) is also added.

To give a sense of the numbers involved in the feedback implemented here
— The feedback rate is ~ 15 Sa/s, which, because of the ultra-high Q resonators
used in this work, is more than a 100 times the modes’ natural linewidths. The
least significant bit of the digital feedback voltage amplitude is ~ 76 nV, more
than a 100 times smaller than the typical non-Markovian noises f; peak-to-peak

voltages of ~ 15 — 20 uV.
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Implementation of matched dissipation

For the experiments in this work, we use the feedback protocol described above
to also match the damping rates of the signal and idler modes. For the Marko-

1

vian experiments, y,; = ¥y = 0.50(1) s™'. For the power-law non-Markovian

experiments, the Markovian component for both modes is y, = 1.00(2) s™'.

Implementation of varying temperatures

We vary the realized temperatures of the experiments by appropriately scaling
the amplitude of the noise forces as f7; o« VT. This realization of the artificial
temperatures is calibrated for each ensemble by measuring the RMS motion in
the presence of the feedback for a time > 200y,'. Each calibration affirms that
our realization of the artificial thermal motion is within 7% of the target, 7%
being the expected statistical uncertainty of RMS motion when monitored over

200y;".

5.9.16 Error in implementation of power law non-Markovian

system-bath interactions

We estimate the error in the power law exponent via step response measure-

1 1

ments. For fixed yp = 0.5 s, y,, = 0411 s, wy = 1 s, w, = 6 57!, we simulate
step responses for non-Markovianity with different s. Shown in the graphs are
the experimental data (grey), and simulations for s = 0.68 (red), s = 0.70 (blue),

and s = 0.72 (green) (see Fig. 5.8).
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Figure 5.8: Error estimates of power law non-Markovian system bath
interactions: Amplitude normalized to single quadrature ther-
mal rms. (a) Zoomed in step responses of experimental data
(grey), simulations for s = 0.68 (red), s = 0.70 (blue), and
s = 0.72 (green). (Inset) Full step response from data and
simulation for s = 0.7. (See Supplementary Information, Sec-
tion 5.9.16) (b) Ringdown measurement for power law non-
Markovian with s = 0.7 - experimental (grey), simulation
(blue), and Markovian ringdown for y, = 0.5 s™!, experimen-
tal (purple) and simulation (black).

We estimate the error in s (s = 0.70(2)) based on the region of simulated step
responses bounding the experimental data to within ~ 1 standard deviation
of the experimental noise. In Fig. 5.8(b), we show the ringdown curves for
both Markovian and power law non-Markovian curves. As shown in the figure,
the power law non-Markovian system decays much slower than the Markovian

system.
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CHAPTER 6
EMERGENT DYNAMICAL ORDER AND TIME TRANSLATION
SYMMETRY BREAKING DUE TO NON-MARKOVIAN SYSTEM-BATH
INTERACTIONS

6.1 Overview

The previous Chapter focused on how the nature of system-bath interactions in
open systems can markedly affect and change the critical behavior of the driven-
dissipative phase transition. We saw how power-law non-Markovian system-
bath interactions changed the critical exponents of the phase transition vis-a-vis
the Markovian counterpart. Yet, in a certain sense, it is not substantial an effect -
the phases on either side of the transition retained their ‘character’, so to speak,
as the system-bath interactions were morphed. Previous works reached similar

conclusions, theoretically [155], somewhat dis-satisfyingly.

The work presented in this Chapter explores the influence of the system-bath
interactions on the properties of the phases themselves. In particular, we exper-
imentally identify and demonstrate how a particular class of non-Markovian
interactions (“exponential non-Markovianity”) can alter the dynamical steady
state of the ordered phase of the two-mode PA-PO system. Here, as will be
explained in detail later, the system-bath interactions are characterized by two
timescales — a coherent timescale on which energy can return back from the
environment to a decaying oscillator (‘coherent” is used loosely here), and an
ultimate decay timescale on which energy is ultimately lost to the bath. The
competition between these two timescales sets the stage for a non-Markovian

interaction-induced phase transition, replete with divergences and scaling in-
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variances. One of the central results of the work presented in this Chapter is
thus the identification of the ability of varying system-bath interactions to effect

different phases in a given, otherwise isolated, system.

The order parameter in this new “U(1) X Z,” phase is the frequency offset A
at which the signal oscillates, offset with respect to the original signal frequency.
Firstly, we find that A breaks a Z, symmetry —it can either oscillate at +|A| or —|A|,
a choice that is made indeterministically due to relevant fluctuations. Secondly,
this oscillation, assumed for the time being to be at a fixed A, breaks a contin-
uous time translation symmetry, much like the crystallization of molten sugar
breaks a continuous translation symmetry of space. The corresponding contin-
uous symmetry that is broken here is the phase of the oscillation, which has a
U(1) symmetry. For a single signal-idler pair, this choice of phase is constant in
time only in the limit of zero temperature; any finite temperature fluctuations
cause the phase to diffuse, correspondingly causing the frequency offset A (the
time derivative of the phase) to meander. In other words, the single signal-idler
pair realizes a ‘true” phase transition only in the 7 = 0 limit. Ongoing theo-
retical and numerical work, considering a spatial multi-dimensional extension
of this system with nearest-neighbor dissipatively-coupled signal-idler pairs is
expected to show spontaneous or ‘true’ continuous time translation symmetry
breaking even at finite temperatures in > 2—D. Such extensions of the system to
arrays would bear on the question of whether long range interactions or local-
ization are indeed needed for breaking time translation symmetry [162, 163]. In
addition, such systems would open an optomechanical platform for the study
of lattice physics and quantum synchronization with non-Markovian open sys-

tems (see also [164, 106, 165]).
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Moreover, in a different context, one of the goals of ‘reservoir engineering’
of open systems has been to realize target ground or steady states that decou-
ple from the environment (sometimes referred to as ‘dark’ states, motivated by
AMO jargon), with the objective that they remain unaffected by environment-
induced decoherence [166, 167, 168, 169]. In a similar vein, our system supports,
for the chosen class of non-Markovian system-bath interactions, a transient two-
mode squeezed state first introduced in Chapter 4 that retains its enhanced cor-
relations or entanglement even at finite temperatures, outperforming its Marko-
vian counterpart. These calculations and the theoretical treatment of the non-
Markovian system-bath interactions employed in this Chapter were evaluated
as a part of a separate piece of work with H. F. H. Cheung [143], and are in-
cluded in Appendix C. Our developed capability to impose non-Markovian
system-bath interactions of choice will allow for the realization of other reser-

voir engineered states with other requisite target properties.

This chapter will be submitted for peer-review with requisite modifications
as Emergent dynamical order and time translation symmetry breaking due to non-
Markovian system-bath interactions, by Y. S. Patil, H. F. H. Cheung and M. Vengalat-
tore. In this work, Y. S. Patil and H. F. H. Cheung performed the experimental
work, data acquisition, data analysis, modeling and simulations. M. Vengalat-
tore supervised all stages of the work. All authors contributed to the prepara-

tion of the manuscript.
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6.2 Abstract

We experimentally determine the phase diagram of an open driven dissipa-
tive system of parametrically coupled non-degenerate mechanical oscillators
by tuning their interactions with the environment from being Markovian to
non-Markovian. For the class of non-Markovian system-bath interactions we
engineer, we observe three distinct phases separated by continuous phase tran-
sitions, confirming that system-bath interactions can significantly modify the
phase diagram, as recently theorized in [143]. The emergent phase on making
the non-Markovian interactions dominant is characterized by a dynamic order
parameter that breaks a U(1) X Z, symmetry, where the U(1) symmetry corre-
sponds to the invariance of the system equations of motion under a continuous
time translation. Our experiments set the stage for using optomechanical sys-
tems in the study of dynamical critical phenomena, and open potential avenues
for the realization of time translation symmetry broken phases through reser-

voir engineering.

6.3 Introduction

Phase transitions occur not only in a myriad of physical systems, but also in
almost every field of the sciences, including physics, cosmology, chemistry, bi-
ology, medicine and even sociology, linking them all through the common un-
derlying principles of self-similarity and universality of critical phenomena. In
the physical sciences, the renormalization group apparatus has been a crowning
jewel of our understanding of critical behavior. Its applicability for intrinsically

nonequilibrium systems like the ubiquitous open system is an active area of

119



research [135, 136]. Such systems can undergo phase transitions, and it is nat-
ural to ask if our conventional paradigms are sufficient to explain their critical

behavior [137, 138, 139].

Recent theoretical considerations suggest that interactions with their envi-
ronment can modify the critical exponents of open systems [141, 142, 155],
leading to new universality classes of phase transitions and novel dynamics
[154, 155, 156, 157]. Moreover, owing to the interplay between these interac-
tions and the system’s intrinsic driven dynamics, the phase diagram can be sig-
nificantly modified. We have previously proposed the emergence of a phase
with novel broken symmetries in a paradigmatic parametrically coupled, two
mode, driven dissipative system [143]. The model may be realized in a myr-
iad of physical systems including optics, optomechanics, nanomechanics, cold
atoms and cavity QED [144, 91, 145, 146, 147, 148, 149, 150], and in this work,
we realize it in an optomechanical system of two coupled oscillators, map out

its phase diagram and study its properties.

6.4 The experimental mechanical nondegenerate parametric

amplifier-oscillator system

Our experimental system consists of two out-of-plane vibrational eigenmodes
of a 100 nm thick, Smm square, silicon nitride membrane resonator, LPCVD
grown on a silicon substrate [150, 79] (also, see Supplementary Information, Sec-
tion 6.9.4). The signal and idler modes are at frequencies w, ~ 1.233 MHz, w; ~
1.466 MHz, and are each coupled to a room temperature thermal reservoir

through weak Markovian interactions, undergoing damping at a rate y,;/2n ~
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100 mHz. Moreover, the two modes are parametrically coupled to each other
through a third, pump mode at their sum frequency, wp ~ 2.699 MHz. The
pump mode is a shear eigenmode of the silicon substrate, and has a dissipa-
tion rate yp ~ 27 x 10° Hz > y,; [150]. A coherent classical drive of the pump
mode parametrically actuates the signal and idler, and constitutes the drive es-
sential for realizing a phase transition in this open driven dissipative system. In
the rotating wave approximation, the coherent evolution of such a system in a
rotating frame is described by the Hamiltonian,
H = —hg(azajap + a;aias) - h(Fpa; + Frap)

where a,; denote the annihilation operators of the signal and idler modes, g
parametrizes the strength of their inter modal coupling, F» represents the clas-
sical pump drive, and the dissipative coupling to the environment is captured
through the Heisenberg-Langevin equations [151] (also, see Supplementary In-

formation, Section 6.9.1).

A crucial ingredient in this work is an ability to imprint and tune non-
Markovian system-bath interactions. We take advantage of the extremely long
dissipation timescales, of the order of seconds, to morph the natural, Marko-
vian interactions into non-Markovian interactions by employing active feed-
back. We measure both quadratures of motion of either mode using an op-
tical Michelson interferometer, and construct the complex amplitudes of mo-
tion, z,; = x,; + iy,; = 2a,;. A recorded history of z;; is used to compute the
feedback force required to effect non-Markovian system-bath interactions, and
the feedback is applied through a piezo transducer that hosts the silicon sub-
strate and resonators. We verify that this protocol successfully imprints a non-
Markovianity of our choosing through mechanical susceptibility measurements

(see Supplementary Information, Section 6.9.8).
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We thus realize the non-Markovian equations of motion
‘
a; = iga, ap — % f dr'y(t — )ag (1) + ify
- (6.1)
ap = —gap +iga;as + iFp
where y(¢) is the non-Markovian dissipation kernel and f;; are the fluctuation
forces associated with the dissipation, related to the kernel y(r) through the
fluctuation dissipation relation (see Supplementary Information, Section 6.9.2).
In this work, we implement non-Markovian dissipation kernels of the form
¥(t) = yot,;'e™/, where 1, defines the reservoir coherence time. y, = fow dry(t)
defines an effective total damping rate, determining the steady-state susceptibil-
ity. Under such exponential non-Markovian system-bath interactions, the equa-
tions of motion are invariant under the transformation (a;, a,) — (a;e™®, ae™?)
for ¢ € [0,27). And for real Fp, which can be assumed real without loss of
generality, the equations of motion are invariant also under the transforma-
tion (a;, ay, ap) — (aj, al, —a;). The equations of motion thus possess both a U(1)
symmetry and a Z, symmetry. Moreover, note that at zero temperature (noise
fsi = 0), the equations have a time translational invariance — a time translated

solution a,;(f) — a,,(t + T) remains a solution for all 7.

6.5 The phase diagram

To map out the phase diagram, y, was held fixed at 1 s™!. For each 7,, the sys-
tem was initialized in the disordered phase at zero pump drive strength, and
then instantaneously quenched to a final non-zero pump drive strength. The
system dynamics and steady state behavior was recorded for each 7,. The phase

diagram so measured is shown in Fig.6.1(a).
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Figure 6.1: Phase diagram: (a) Our open driven dissipative system dis-
plays three distinct phases. For large normalized reservoir
decay rates (yo7,)”!, a disordered parametric amplifier phase
(shaded red) occurs at low drive strengths y = 'F 2 £, whereas
the system enters an ordered phase which breaks the U(1) sym-
metry (shaded green) for drives beyond a critical threshold
drive. For small reservoir decay rates, the system orders into a
U(1)xZ, symmetry broken phase with a dynamic order param-
eter that oscillates at angular frequency A (inset). Data points
denote the extrapolated phase boundaries. (b) Magnitude of
the measured amplitude order in the three phases, at steady
state. Background color shading denotes estimated amplitude
order based on the model in [143]. The phase boundaries be-
tween the PA and ordered phases (red data in (a)) are extracted
by extrapolating the measured amplitude order, as a function
of drive y, to zero. Dotted lines in (a-b) show the phase bound-
aries predicted by the model.

In the regime of small reservoir coherence time (y,7,)™' > 1/2, below a critical

— AFpl _
|Fcrm|

= 1, where the critical pump drive |F,,,| = 17I%, the signal and

drive of u =
idler modes dissipate to the environment at a rate faster than the pump para-
metrically actuates them, and each mode remains disordered with z;; = 0. As
the drive is increased beyond u = 1, the rate of down conversion into the signal
and idler grows larger than the rate of dissipation out to the environment, mark-

ing the onset of a non-zero amplitude order z,; = |z,,le**? [Fig.6.1(b)]. Here,
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the difference between the modes’ oscillation phases ¢ has a U(1) symmetry

[170, 83], because of which we call it the U(1) phase.

This phase boundary between the disordered parametric amplifier (PA)
phase and the U(1) phase, marked by the onset of order, is determined by ex-
trapolating to zero the measured, steady state, amplitude order as a function of
u [red data points in Fig.6.1(a)] (see Supplementary Information, Section 6.9.9).
Independently, we measure the growth rate of order when the system is sud-
denly quenched into the U(1) phase, as a function of the quench depth, and
identify as the critical drive that drive where the growth rate vanishes [blue data
points in Fig.6.1(a)]. This growth rate is determined by the eigenvalues of the
disordered phase above criticality, which in this regime of short reservoir coher-
ence, are real at all drive strengths 4 and lead to an exponential growth of order
(see Supplementary Information, Section 6.9.9). Through both these measure-
ments, we observe that in this regime, the critical pump drive is independent of
the reservoir coherence time, and equals that measured in the Markovian limit
to within 5%. As such, the PA — U(1) phase boundary shown in Fig.6.1(b) occurs

at a constant drive of u = 1.

In the regime of long reservoir coherence times (yo7,)”! < 1/2, two changes
occur prominently. Firstly, the critical drive that separates the PA phase and
the ordered phase no longer occurs at 4 = 1. It reduces inversely with 7,, i.e.
Uer = 2(yot,)”!, and in fact vanishes for very long reservoir coherence times
[Fig.6.1(a)]. As before, we extract this phase boundary both through the am-
plitude growth as a function of drive y, and through a vanishing growth rate.
However, the functional form of the growth in this regime is different than be-

fore. Here, above criticality, the eigenvalues of the mean field solution expanded
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Figure 6.2: (a) Oscillation frequency A, of the order parameter as a func-
tion of the normalized reservoir decay rate (red data, shown
for the 4 € (0,3) data in Fig. 6.1(b)). The solid line denotes
estimates of the model, and the dashed line accounts for ad-
ditional deviations introduced by our experimental realization
(see Supplementary Information, Section 6.9.7). The U(1) to
U(1)xZ, phase boundary (green data in Fig. 6.1(a)) is extracted
by extrapolating A to zero, as a function of the reservoir decay
rate, for small (yo7,)"". (b) The growth of order for a PA to U(1)
transition is exponential, characterized by a real growth rate,
whereas for the PA to U(1) X Z, transition, the growth of order
is an underdamped exponential, characterized by a complex
growth rate. The measured real and imaginary parts of this
growth rate (see text) are shown as red and blue data respec-
tively, for (yor,)”' = 3/16. The phase boundary between the
PA and ordered phases is independently extracted (blue data
in Fig. 6.1(a)) by extrapolating the real part of the growth rate,
as a function of drive y, to zero. Solid lines show the estimates
based on the model. (Inset) Typical time trace of the under-
damped development of U(1) X Z, order. Shown for u = 0.5,
data in red and fit in black. All data is for y, = 157"

around the disordered phase can be complex, resulting in an oscillatory expo-
nential growth of order, whose oscillation frequency is given by the imaginary
part of the eigenvalue, and whose exponential envelope is determined by the
real part [Fig.6.2(b)]. We find that the measured complex eigenvalues are in

excellent agreement with predictions of the model.
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Importantly, the order that develops in this regime is dynamic, with z; =
|25le* /A0 and z; = |z]e¥¢/**A). The signal and idler now oscillate not at their
natural frequencies w;;, but at shifted frequencies w, = w, + A and w; — w; ¥ A.
This ordered phase thus not only breaks a U(1) symmetry in ¢, as before, but also
a discrete Z, symmetry in A, because of which we refer to this as the U(1) X Z,
phase. We further find that A varies continuously with 7, [Fig.6.2(a)] and de-
fines an order parameter separating the U(1) x Z, and U(1) phases. For each
pump drive u, we extract the critical 7, that defines this phase boundary by ex-
trapolating the measured A to zero, according to the equation |A| = 7, /2%~ — 1
[Fig.6.2(a)] [143], and as shown in Fig.6.1(a) by the green data points. Note that
along this phase boundary, the point (yo7,)™! = 1/2, p = 1 defines a multi-critical

point occurring at the intersection of three phases.

In the phase space of drive strength u and reservoir coherence time 7,, we
thus measure three distinct phases of this open driven dissipative system, in-
cluding one with a dynamic order and an exotic U(1) X Z, broken symme-
try. At zero temperature (noiseless case of f;; — 0), the time-periodicity
of this phase breaks the continuous time translation symmetry of the equa-
tions of motion Eqn.(6.1), reflected by the choice of the phase ¢ that has
an associated continuous U(1) symmetry. At finite temperatures, however,
there is no spontaneous symmetry breaking because the fluctuations cause the
phase to diffuse over time, thereby washing away any long-time order, i.e.
lim._,.(cos [¢(t) — #(t + T)]) — 0O; reminiscent of the Mermin-Wagner theorem,
which conventionally relates to spatial order. Spontaneous time translation
symmetry breaking is expected to be retrieved at finite temperatures in a >2-D

multi-dimensional extension of the system, and is the subject of ongoing work.
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6.6 Universal dynamics
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Figure 6.3: Universal critical dynamics: Growth of amplitude order as
the system is quenched in a finite time from the disordered
PA phase into the U(1) x Z, phase at different quench rates.
Each quench starts at zero drive and continues beyond criti-
cality (+ = 0) well into the ordered U(1) X Z, phase at rate ¢,
where € = £ is the reduced drive parameter. Note that while
faster quenches result in faster growth, a rescaling of the ampli-
tude order with quench rate (Iz(t)l2 — ¢ 036003 o Iz(t)lz) causes
the curves to intersect at € = 0 (inset), a classic signature of crit-
icality. (Main figure) If time is also rescaled with quench rate as
t — & 07002 5 1 all growth curves collapse onto a single uni-
versal function in rescaled time, in the limit of slow quenches
¢ — 0. This collapse shown here is for an order of magnitude
in quench rate, and occurs over three orders of magnitude in
rescaled amplitude, as indicated by the arrow, beyond which
the order saturates.

In light of the observation of a dynamic order parameter with a novel bro-
ken symmetry, it is natural to wonder if conventional paradigms continue to be
valid for the phase transition between the PA and the U(1) x Z, phases. Moti-
vated by the novel dynamics of this open driven dissipative phase transition, we
study here its critical dynamics. Well in the regime of long reservoir coherence

times, at (yo7,)"' = 1/5, we perform a finite time linear quench the system from
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a pump drive of u = 0 (PA phase) to deep into the U(1) X Z, phase, and measure
the growth of order during the quench, shown in the inset of Fig. 6.3 for various
quench rates ¢, where € is the reduced distance from criticality, e = Z£=. The
faster the finite time quench, the faster the onset and evolution of order. How-
ever, when the amplitude order and time are both scaled with the quench rate,

all these curves collapse well onto a single universal curve for over more than
three orders of magnitude of rescaled order, i.e.
(2:i(t; Oy o« € x G (1)

where (-) denotes an ensemble average, G is a normalized universal function
with G(0) = 1, a, b are universal scaling exponents, and the system crosses crit-
icality at time ¢ = 0 with e(f) = é. This collapse for an order an magnitude of
quench rates is shown in Fig. 6.3, yielding the empirically extracted exponents
of a = 0.36+0.03 and b = 0.57+0.02. We thus observe universal critical dynamics

even for this driven dissipative phase transition.

6.7 Hysteresis area scaling

While the observed universal dynamics suggests conformity of critical behavior
in this open driven dissipative system to conventional understanding of phase
transitions, there are signatures that the picture is incomplete. The density of
defects formed after a finite time quench across a phase transition has conven-
tionally been used as a measure of the excess heat in the system caused by the
quench. It is also a measure of nonadiabaticity of the system’s evolution dur-
ing a finite time quench. Such excess heat vanishes in the limit of very slow

quenches, and is typically expected to scale as a single power law with quench
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rate.

The hysteretic area of (|z|*) in our system, as it is linearly quenched forward
into the ordered U(1) X Z, phase and then linearly quenched back into the disor-
dered PA phase, can be considered to be a proxy for this excess heat [Fig.6.4(a)].
However, instead of a single power law, we observe a kink in the hysteresis area
as a function of quench rate [Fig.6.4(b)], challenging our current understanding
[148, 130]. We note that for quenches occurring over timescales much longer
than the reservoir coherence times, the system-reservoir interactions are essen-
tially Markovian, and we expect the hysteresis area scaling to revert to the single

power law of the Markovian limit, with exponent 1.

6.8 Conclusion and outlook

In this work, we experimentally measure the phase diagram of a driven dissipa-
tive system that has non-Markovian system-bath interactions. We demonstrate
that the phase diagram is significantly influenced by the characteristics of these
interactions — here, it leads to a new emergent phase that has dynamical or-
der. We further confirm quantitatively that the dynamics is captured by the
model of [143]. Moreover, while the scaling of the amplitudes measured for a
quench across criticality suggests conformance to conventional phase transition
paradigms, which predict such scalings, the hysteresis area data also suggests
that our current understanding presents only an incomplete picture of the criti-

cal behavior of such systems.
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Figure 6.4: Hysteresis area scaling: (a) (Inset) Finite time quench proto-
col from the disordered PA phase into the U(1) X Z, phase (red)
and then back into the disordered phase (violet). (Main figure)
Measured growth of order during the forward quench (red)
and decay of order during the reverse quench (violet), shown
for |¢] = 2y,. Near criticality, the measured order deviates
from the expected adiabatic steady state order (dotted line),
whereas deep in the ordered phase, it adiabatically follows
it. The hysteresis between the forward and reverse quenches
defines a bounded area (shaded region), denoting an excess
heat due to the quench cycle. (b) The observed dependence
of this excess heat on the quench rate deviates significantly
from the expectation of a single power law scaling. The data
suggests one power law (¢ *"2*005) at low quench rates, and a
kinked, inflected transition to a significantly different power
law (¢ 132099 at large quench rates.

6.9 Supplemental Information

6.9.1 System Hamiltonian

In the lab frame, the signal-idler-pump system is described by the Hamiltonian

] h
H = Z hwkaiak - —gxxxixP

kelsd.P) X0,5X0,iX0,P

— W(Fpe™'al, + Fre™ap)
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where g characterizes the bi-linear coupling between the signal and idler modes
through the driven pump mode, x, xo;, X0, represent the zero point motion,
and F, parametrizes the strength of the pump drive. In a rotating frame of the
signal, idler and pump modes, transformed through U = []; Ux = []; emiena
the Hamiltonian changes as H — H,,, = U'HU -3, hwka,tak. Using x; = xox(ay +
a) and U;a, U, = ae™, and making the rotating wave approximation, we get
the Hamiltonian in the main text,

H, = —hg(alalap + alaa,) — W(Fpal, + Fpap) (6.2)
Note that the first term signifies the downconversion from the pump mode into
the signal and idler modes (a}a ap) and the conjugate (a}a;a;) signifies the up-
conversion from the signal and idler modes into the pump mode. The second
term denotes the coherent drive of the pump mode (Fpa), + Fiap). The critical
pump strength for the onset of order can be evaluated through the Heisenberg

equations of motion given by ifia; = [ax, H,o ], i-€.

1 !
as; = igazsap ) f dt'y,(t = t)a. (') +if;
—o0 (6.3)

ap = igaas — 7%ap +iFp+ifp
Here, the dissipation terms of y,; are not accounted for by the Hamiltonian,
but rather derived through a master equation approach [151]. y,;(?) is the non-
Markovian dissipation kernel, and we have made the assumption that both the
signal and idler are described by the same kernel, as realized in the experiments.
For completeness, we note that the Markovian case is a special instance, de-
scribed by a kernel y,;(t) = v,,6(t). We also include in the above equations the
fluctuation forces f;; p associated with the dissipation. These forces are related

to the damping kernel y(7) through the fluctuation dissipation relation as de-

scribed below.
Note that the experimentally measured complex amplitudes of motion z,; =
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Xsi+iys;, where x;; = as,l-+all. and y,; = —i(as,,-—a;i) are the quadratures of motion,

are nothing but z,; = 2a;.

6.9.2 Fluctuation dissipation relation

The noise spectrum associated with a generic system bath coupling is described
in [151]. In this work, where we are concerned with only a narrow band signal
near the modes’ natural frequencies, the power spectral density of the noise

f: = 2f;; is well approximated by

_ o [TEOLO) + L0 £.00)
X(w) =

cos wtdt
2

_ 2N(fg + 1/2)
- mw

Y (w)
where 7y, = (¢"/%T —1)7! is the thermal phonon occupancy, and m is the effective

mass [79].

At high temperatures kzT > hw, y(w) = iff)%/(w). Because the x and y

quadratures are uncorrelated ((f,(1)f,(0)) = (f.()"f.(0)") = 0), their RMS fluc-
tuations equal (x},) = (y7,) = %ﬂ_(ﬁﬂ, +1/2) = % Recall that the displace-

ment in lab frame is the sum of the two quadrature motions, i.e. Re[z,;(1)] =

Ls,ilab = -xs,i(t) Cos(ws,it) + ys,i(t) Sin(ws,it)/ so that we have <Z?,i,lab> = %((-xi,) + ()ﬁ,)) =

= gy +1/2) n’jﬁg, satisfying the equipartition theorem.

6.9.3 Mean field phase diagram

To evaluate the critical drive strength, F.,,,, we solve Eqn.(6.3) for the nontrivial

steady state solutions, |z,,;| # 0, and ansatz z;; to be a constant. For steady state
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observables, only the total strength of the damping matters, given by the inte-
gral f dty,(t) = v,,;. Letting %, f. — 0, and adiabatically eliminating zp, given

that yp > y,;, we get

Yp Vsti

Fcrm =
|Ferml Iz

The drive can now be parametrized in units of this critical pump strength as

K= F”ml Here, we use the subscript m to denote that this critical drive strength
is the same as in the Markovian case of y,;(f) = vy,;6(f). However, as shown
below, a constant z;; is not the only permissible steady state solution for the

non-Markovianity considered in this work. An ansatz of the form

— A
Zsi = Zsi€ Bsit

ip = ZIp

when substituted into the equation of motion Eqn.(6.3) yields

- 1
—iA[Z,-e"A” = - 2 ~ititz. (A + l%z zpe
, 1
—iNZe ™ = —5¢ TMEFA) + i2 2 07tz pe
1 YP__ _ia YP
0 - __ 5+ __i_s i(Aj+At + =
27PZP lzzze 12/1

where y(w) = f dry(H)e™" = yy(1 — iwt,)”" is the fourier transform of kernel y(¢) =
Yo7, e/ These equations always admit the trivial solution z, = z; = 0,Zp = iu.
For the system to have non-zero steady state signal and idler amplitudes, these
equations imply that A, + A; = 0, so that we define A = A; = —A,. They further

imply that

yaA) L NYED N LY
(T—l )(T'HA) 7= |ZP| Zi

Since ¥(-w) = ¥*(w), this simplifies to
& N %
= | zpl?

T2 A
2
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indicating that 2 = %A) — iA is real and positive. Now solving for the signal and

2
2
Iul]
0

= |Zs,i| =

1+ |=

Il
=

idler amplitudes, we get
)
Yo
_Y
Yo

Accordingly, we define the critical pump as u.- = %0/, indicating the onset of
self oscillations. To solve for the oscillation frequency A, we note that ¥, is real

and positive.

1. ALy N
“HA) —iA = 2 —2% A ~1]eRr
YA A= R Y (21+ 272 )

This has solutions A = 0,+7;' /%= — 1. Note that the latter solution is only

r

meaningful for (yo7,)”! < 1/2. Based on these relations, we can characterize the

phases as follows, also shown in Fig.6.5.

3.0
phase
S | Re[]
3 - 0.0
2.0 E,ZJ %
=
2|2 1.0
1 5
<
YoTr -2.0
1.0
-3.0
| —
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1

Figure 6.5: Phase diagram as a function of normalized pump drive u
and normalized reservoir decay rate (y,7,)~'. Color scale cor-
responds to least negative real part of eigenvalues, where the
phase boundaries (dashed lines) correspond to points where
the real part vanishes. See text for explanation of the PA, U(1),
and U(1) X Z, phases. Adapted from [143].
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For (yo7,)™' > 1/2, the coherence time of the reservoir is small compared to
the signal and idler damping times. Here, A = 0 and ¥, = y,. The critical drive
is u.r = 1. For u < 1, the system is in the PA phase, where Z;; = 0, Zp = iu. As
the drive strength is increased beyond ., = 1, the PA phase becomes unstable,
and the stable steady state solution is the parametric oscillator characterized by
Zei = ie*i?? \/ﬁ ,zp = i. The signal-idler phase difference ¢ is unconstrained,
corresponds to a spontaneous breaking of the U(1) symmetry associated with
the choice of this phase, because of which we denote this phase as the U(1)

phase.

For (yor,)™" < 1/2, the coherence time of the reservoir is long compared
to the signal and idler damping times. In this regime there are two kinds
steady state solutions, one with A = 0 and the other with A # 0. For
U < pe = 2(yot,)”!, the only solution is the disordered PA solution with
Zsi = 0, Zp = iu. For drive strength, u. < p < 1, the disordered phase is un-
stable, and the only self oscillatory solution is with non-zero A = ;' \/1= — 1,
where z,; = ie* "2 \Ju—u., 7Zp = iu,. This solution is stable, and in this
phase, the signal and idler modes oscillate at frequencies shifted from their nat-
ural resonance frequencies by an amount A. In addition to the breaking of the
U(1) symmetry associated with the signal-idler phase difference, there is an-
other breaking of a Z, symmetry associated with the choice of the sign of A. As

such, we denote this phase as the U(1) x Z, phase. For u > 1, all the above three

solutions exist, but only the U(1) X Z, solution is stable.
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6.9.4 Optical detection of the signal and idler modes

The out of plane displacement of the mechanical signal and idler modes are
detected using a Michelson interferometer with a position sensitivity of ~
14 fm/ VHz at the signal and idler frequencies. A typical power of 630 uW is
incident on the mechanical silicon nitride membrane, as also in the reference
arm of the interferometer. The light source is an external cavity diode laser op-

erating at 795 nm with linewidth < 100 kHz.

At low frequencies (< 3 Hz), the optical interferometer used for the detec-
tion of mechanical displacement is susceptible to residual amplitude modula-
tion (RAM) which we ascribe to the gradual temperature fluctuation and tem-
perature dependent birefringence of various optical elements. In our experi-
ment, this low frequency amplitude noise convolves with the mechanical dis-
placement signal, leading to a 0.75% contamination of the detected membrane
displacement. Consequently, the signal to noise ratio (SNR) for the mechani-
cal thermal motion degrades to 1 as the amplitude of motion approaches 150
times the room temperature thermal amplitude. To ensure that the finite time
quench experiments are conducted with thermal fluctuations that are detected
with SNR > 1, we ensure that the system is driven with a large effective thermal

noise, with the effective temperature being much larger than room temperature.

6.9.5 Feedback stabilization of the signal and idler modes

Due to the differential thermal expansion of the silicon nitride membrane and
the supporting silicon substrate, the signal and idler frequencies change with

ambient temperature. Empirically, this change is by ~ 1.4 linewidths per

136



milliKelvin. Given that ambient temperatures vary over ~ 200 mK within a day,
precise measurement of thermomechancial motion and steady state responses
requires active feedback to achieve sub-linewidth stabilization of the mode fre-
quencies. We accomplish this using the differential thermal expansion to our
advantage, through photothermal control of the silicon substrate. As also de-
scribed in previous work [150], we continuously monitor the mechanical fre-
quency of a high-Q thermometer mode at 2.736 MHz - far from the signal and
idler frequencies studied in this work. Phase detection of this mode generates
an error signal with an on-resonant slope of 5.91 radians/Hz. Active photother-
mal stabilization is accomplished by feeding back to an optical control beam
of 600uW average power, generated by a diode laser operating at 830 nm, and
amplitude controlled using an acousto optic modulator (AOM). The RMS fre-
quency fluctuations of the thermometer mode thus achieved are measured to
be below 2 mHz, equivalent to temperature fluctuations of the substrate of less

than 2 uK.

6.9.6 Residual frequency drift stabilization

In order to quantitatively map out the phase boundaries, the signal and idler
frequencies need to be stabilized to well within their natural linewidths. While
the photothermal feedback described above is effective in tracking and compen-
sating short term frequency changes, there remains a long term (over 40 — 400 s,
i.e. 20 — 200 y,") residual frequency drift on the order of 0.2y, that can measur-
ably alter the phase diagram. To attain better frequency stability, we identify a
monitor mode that is highly correlated to the signal and idler frequencies. This

monitor mode was offset by ~ 500 linewidths from the signal mode. By tracking
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the signal and idler frequencies using the monitor mode phase response, we fur-
ther suppress even the long term frequency drifts. The pump drive frequency
is also changed such that it is always equals the sum of the tracked signal and

idler frequencies.

6.9.7 Feedback implementation of non-Markovian system-bath

interactions

The role of the non-Markovian system-bath interactions is fully captured by
their influence on the equations of motion of the system. Due to the minimalist
nature of this work’s physical realization of the described driven dissipative
phase transition, we can use active feedback to enforce a particular equation of
motion, and thereby simulate a non-Markovian system-bath interaction of our

choosing.

In particular, the evolution of the complex amplitudes of motion z;;, detected
using the Michelson interferometer and a lock-in amplifier (Zurich Instruments,

HF2LI), is governed by the equations

. Vs.i .
Zsi = _% (Zs,i +Xs,iVS,i) + leMark

where V;; is the feedback voltage applied to the piezo transducer that the sili-
con substrate, which hosts the signal and idler modes, is mounted on, and y;,;
is the experimentally measured transfer function of the applied PZT voltage
into signal and idler motion. Here, the first term refers to the modes’ intrinsic

Markovian damping, and the last term fM** refers to the associated Markovian
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thermal noise. By comparing to Eqn.(6.3) and enforcing
t

2 5,0 1 ’ ’ ’ .
Vs,i = [_Lzs,i + = f dt 7(t -1 )Zs,i(t ) + lfz
ys,i/\/s,i 2 2 —00

we simulate a non-Markovianity of our choice. Here, f. = 2f;; denotes the

added non-Markovian noise related to our choice of the damping kernel y(z)
through the fluctuation dissipation relation as described above. Note that
while the first term of V,; counters the intrinsic Markovian damping and ef-
fectively cancels it, V,; does not compensate for the associated noise fZM‘“k. To
ensure that it is the non-Markovian noise that dominates the stochastic be-
havior of the system, we set its effective temperature to be ~ 100 times the
temperature of the intrinsic Markovian noise fM*, thus overwhelming it. We
note that the feedback voltage V,; described here is a complex representation
in a rotating frame of the real-life voltage applied to the piezo transducer,

V() = Re[V;,;] cos(ws,it) + Im[V;](sin wy ;7).

In the experiments, we implement this realtime feedback digitally, using NI
LabView. The signal and idler mode motions z,; are continuously measured and
recorded at 1800 Hz. This recorded history of z,,(¢') is numerically convolved
with our choice of kernel y(r) as a discrete sum, with the lower limit on the
integral f dt' being the time at which we start applying the feedback. A pre-
computed non-Markovian noise sequence f; with the appropriate noise spectral

density o ¥'(w) is also added.

To give a sense of the numbers involved in the feedback implemented here
— The feedback rate is ~ 15 Sa/s, which, because of the ultra-high Q resonators
used in this work, is more than a 100 times the modes’ natural linewidths. The
least significant bit of the digital feedback voltage amplitude is ~ 76 nV, more

than a 100 times smaller than the typical non-Markovian noises f. peak-to-peak
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voltages of ~ 15 — 20 uV.

Effects of the discretization of feedback

The discrete nature of the feedback described above leads to a systematic de-
viation of the achieved non-Markovian damping kernel from the target kernel.
There are three aspects to this feedback imperfection — a finite time delay, the
approximation of an integral by a discrete trapezoidal sum, and the piece-wise
constant nature of the implemented feedback over each sampling period. We
explain below the contributions of each of the above mentioned effects. Firstly,
if a feedback update based on a measurement at time ¢ = 0 is delayed by time
laelay and is implemented at ¢ = fgeny, it effects a frequency response of ey,
In our experiments, the feedback for each of the signal and idler modes is de-
layed by a mean time of At/2 with a standard deviation of At/20. Here, At is the
sampling period separating two successive samples, and approximately equals
1/15 s. Secondly, the integral is approximated by a discrete sum, and the output
at step n, F[n], is given by
Fn] =(%Z[n]7[0] + Y002 2[n - klylk]
b 320+ 1= NolyINo — 1A

where y[k] = y(t = kAt) = yo7; ! exp(—kAt/7,) is the discretized kernel, z[n] = z(t =
nAt) is the nth complex amplitude sample, and N, is the length of the kernel. We
ensure that NyAt > 7,, and in fact that NyAt is longer than the experimental du-

ration. To evaluate the effective kernel then, we can consider the upper bound

of the above sum to be . The frequency response is thus given by
oA 1 .\ exp((iw‘— 7 HAL)
2 1 -exp((iw—T1,1)Ar)
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Lastly, the feedback force is piece-wise constant over the sampling period of At.

A step output has a frequency response of

eiwAr_ 1
iwAt

P x edr =
The frequency response of the effected feedback kernel is the product of the
three expressions above. The role of this discretization is accounted for when
verifying the feedback induced non-Markovianity as described in the section

below.

Additionally, the sampling period At jitters by ~ 15%, leading to a random
error in the feedback kernel. We expect that this jitter has no first order effect on
the effected kernel, and note that its effects are not apparent in the parameter

regime explored in this work.

Effects of detection frequency offset

A major source of error in the feedback comes from the drifting frequencies
of the signal and idler modes. Such drifts cause an offset between the natural
resonance of the modes and the local oscillator detection frequencies set on the
lock-in amplifier, leading to unwanted changes in the feedback kernel. Recall

that the equation of motion of a single mode is given by

:
t=-2e=3 [ arma-ran)

where yp(f) includes also the part that cancels the Markovian damping as de-

scribed above, with the subscript fb denoting feedback. Because the natural

resonance frequency of the mode need not coincide with the local oscillator de-

tection frequency, either due to an error in initial calibration, or due to frequency

drifts over the experimental timescales, the equation of motion of the detected
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amplitude z(7) is modified to

s = YA 1ft dr'y(t — t')z(t)
{=-gz-idwr— o N Y Z
where Aw is the difference between natural resonance and the local oscillator
detection frequency. The non-zero Aw causes a phase shift in the feedback, and

thus leads to a change in the above-threshold oscillation frequency A, given by

the phase matching condition of

(YS(A) - iA) (@ + iA)

2

being real and positive as discussed above. The ¥,; here denote the modified
dissipation kernels due to the frequency offset and feedback imperfection, and

A denotes the modified oscillation frequency.
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Figure 6.6: Predicted oscillation frequency A vs (yo7,)"'. The black curve
represents on-resonant detection.The colored curves are pre-
dictions for both the signal and idler modes having a local os-
cillator detection frequency offset (Aw, see text) of 0.01y, (red),
0.03yy (blue) and 0.05y, (green). The experimental data (red
points) lie within the band defined by a frequency offset of
0.01 — 0.05yy, the range of estimated frequency offsets for the
experiments.

The change in the above threshold oscillation frequency is pronounced near
the phase boundary (yy7,)™' = 1/2, as shown in Fig. 6.6 and Fig. 6.2(a) of the
main text. This is further corroborated by the fact the susceptibility to frequency

shifts diverges near the phase boundary (y,7,)™' = 1/2 [143]. For the finite time
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linear quench experiments in this work, we operate deep in the U(1) x Z, phase
at (yor,)”!' = 1/5, where the oscillation frequency A is much less susceptible to

the local oscillator detection frequency offset.

6.9.8 Verification of the feedback induced non-Markovianity

b
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Figure 6.7:
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Verifying the feedback fidelity: (a) Steady state susceptibility

measurements with the implemented feedback-induced non-
Markovianity. The measured amplitude response (red) and
phase response (blue) are shown as filled circles, with cal-
culated estimates shown as solid lines. The expected pure
Markovian response is shown as dashed lines for compari-
son. Data shown here for vy = 10y,, and 7, = 1/Y,., Where
Ynar = 21 % 100 mHz is the natural Markovian decay rate. (b)
Real and imaginary parts of the single mode decay rates for the
feedback induced non-Markovian system, for both the signal
(circles) and idler (diamonds) modes. Solid lines and colored
bands show the expected decay rates as a function of (y7,)”",
including the effects of the local oscillator detection frequency
offset and discretization of feedback (see text). The estimated
frequency offset for this data is 0.01y, (0.05y,) for data with
(yor,)"' < 7/16 (> 7/16). (Inset) Typical single mode step re-
sponse, shown here for (yo7,)"! = 5/16, with data (red points)
and predicted response (solid black curve).

To verify the non-Markovian kernel implemented through feedback as de-
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scribed in the previous section, we measure the single mode steady state suscep-
tibility at zero pump drive (u = 0), and find excellent agreement with the target
kernel [see Fig.6.7(a)]. For this measurement, we drive the mode at a constant
drive at near-resonant frequencies and measure its steady state amplitude and
phase response. The non-Markovian amplitude response has two susceptibility
peaks, a precursor to the Z, symmetry breaking in the U(1) XZ, phase. The mea-
sured data (filled circles) and calculated estimates (solid lines) show very good
agreement. In contrast, a pure Markovian amplitude response would have been
lorentzian, as shown by the estimates plotted for reference (dashed lines). The
feedback parameters are yy = 10¥,u, T = 1/¥nar, Where y,,, is the natural or in-

trinsic Markovian damping rate.

In addition, we also measure the single mode decay rate by measuring the
single mode step response [see Fig. 6.7(b)]. Note that in general, the decay rate
is complex, implying a decay accompanied by an oscillatory response. For each
(yot,)"! value, we measure the step response of the signal and idler modes and
tit them for a complex decay rate. As shown, we find very good agreement
between the measured and predicted single mode decay rates. In the shown
predictions, we have include the effects of the technical imperfections discussed

in the previous section.

6.9.9 Extracting phase boundaries

All phase boundaries are extracted by extrapolating to zero the measured data —
the steady state amplitude order, or the growth rate, or the oscillation frequency

A. The steady state amplitude order has a functional form A vu — .., which is
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tit for the measured above-threshold steady state amplitudes to extract ... For
the quenches into the U(1) phase, the growth rate is real [Fig.6.8(a)]. For the
quenches into the U(1) X Z, phase, the growth rate is complex for small pump
drives u, and becomes real for large pump drives [Fig.6.8(b)]. The growth rate

is given by the eigenvalues with the largest real part [143], i.e.

=5 [( Lo 1)+ (£ 1) - 2707r] (ot <172

Her

] (R N R I SRR

We thus fit for u,,, allowing y, and 7, to vary within their error bounds. The

U(1)-U(1)xZ, phase boundary is extracted for each pump drive u by fitting the
oscillation frequency A to the functional form 7! - — 1, where we denote by
T, the reservoir coherence time at the phase boundary [Fig.6.8(c)]. We exclude
the data for (yo7,)"! > 7/16 in the fits, as we observe the measured A to have a
large scatter due to its increased susceptibility to the local oscillator detection
frequency offset, being near the phase boundary, as discusses in the previous
sections. The phase boundary extracted at various pump drives u show that
it is indeed independent of the pump drive strength, and occurs at (yo7,)™' =
0.515 + 0.005, which compares very well with the expectation of 1/2 [Fig.6.1(a)

of main text].

6.9.10 Relation of noise bandwidth and simulation time step

For the purposes of the simulations shown in this work, we consider strictly
non-Markovian system-bath interactions, in that the Markovian dissipation and
forces (y,, and fM*¥) are set to zero. For simulations in reference to experiments,
however, the residual Markovian noise can be accounted for, as in the equations

above. Note that the Markovian forces fM** are zero mean, gaussian and white.
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Figure 6.8: Extraction of phase boundaries: (a) Growth rate of order for a
sudden quench into the U(1) phase as a function of pump drive
u, for the signal (red) and idler (blue) modes. The growth rate is
real in the regime of short reservoir coherence times, (y,7,)”" >
1/2. Data shown here is for (yo7,)"' = 2. (Inset) Steady state
amplitude as a function of pump drive u. (b) Measured growth
rates of order for a sudden quench into the U(1)xZ, phase, with
both the real (red) and imaginary (blue) parts. In this regime of
long reservoir coherence times, (y7,)”' < 1/2, the growth rate
is complex for small pump drives and exhibits an exceptional
point (dashed line) where the complex rates become real. (In-
set) Typical time trace showing the growth of order, here shown
for u = 0.5 and (y7,)"! = 3/16 — measured (red) and fit (solid
black curve). For (a-b), the critical pump drive is extracted by
fitting either the measured amplitude order or the measured
growth rates as a function of pump drive u. The solid curves
denote fits made as described in the text. ¢) Measured, above-
threshold oscillation frequency A vs the normalized reservoir
coherence rate (yo7,)”! for a pump drive of u = 1.2 (red data).
A vanishing A at finite reservoir coherence time 7, defines the
U(1) — U(1) X Z, phase boundary, and is extracted through fits
like the one shown (solid black line).

As such, their bandwidth extends beyond the simulations” Nyquist frequency,
fay = 2. The variance of the displacement induced for a fM** of specified
variance (i.e. temperature) is proportional to the simulation time step At. As
such, the influence of the Markovian thermal forces is effected as a fM** VAt in
the propagation [171]. In contrast, for the choice of exponential dissipation ker-

nel considered here, most of the thermal power of the non-Markovian noise f;
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is contained within a finite bandwidth. Therefore, so long as the simulations’
Nyquist frequency is large enough, the non-Markovian noise forces f. need not
scale with the simulation time step. In the simulations for this work, 7, = 5s
and At = 0.05 s, so that the simulations” Nyquist frequency is 10 Hz, as com-
pared to a frequency window of [-1, 1] Hz which contains about 98% of the
non-Markovian thermal power. We further assume that the pump mode is co-
herently driven to large amplitudes, and has a temperature much smaller than

the signal and idler temperatures, so that we set f, p — 0.

6.9.11 Spectral properties of noise

The thermal noise forces f; are set to satisfy the fluctuation dissipation relations
as discussed in previous sections. While a generic algorithm can be prescribed
to generate thermal forces related to an arbitrary memory kernel starting from
white gaussian noise, we describe here the same for the exponential kernel y(¢) =
Yo7, exp(—t/7,). Given an independent zero mean gaussian noise g[n] of unit

variance, we recursively define noise r[n] at step n as

r[0] = g[O]
An+1] = e rn]+ V1 — e 22tgln + 1]

r[n] then are zero mean, unit variance gaussian variables with correlation

(r[n]rm])y = e~ "-mAT [172].
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CHAPTER 7
BACK-ACTION EVADING MEASUREMENTS OF TWO QUADRATURES
USING A PARAMETRIC COUPLING

7.1 Overview

In the preceding Chapters, we have referred to potential applications of
reservoir-engineered environments to effect enhanced sensing capabilities. This
Chapter gives a concrete theoretical illustration of how the driven PA-PO cou-

pling between two harmonic oscillators can lead to improvements in sensing.

The so-called measurement problem of quantum mechanics illustrates how
a measurement of a system can dramatically perturb it [36]. Such disturbances
of system properties due to measurement back-action lead to a compromise —
the strength of measurement cannot be arbitrarily increased to yield higher pre-
cision — an example of which is the standard quantum limit [173, 174, 54]. Sens-
ing technologies may thus seem to be ultimately limited by the inevitable quan-
tum nature of any system. However, back-action can be reduced or avoided
[175, 176, 173, 99] or compensated [177, 178, 179, 180], by creative design
of the measurement process, or by a clever choice of the measurement itself
[181, 173,174, 54, 182], allowing conventional quantum limits like the standard
quantum limit to be beaten. (These three refer to back-action evading measure-
ments, quantum noise cancellation measurements or quantum non-demolition

measurements, respectively.)

In this work, we employ a well-developed and recently demonstrated two-

tone back-action evasion scheme in optomechanics [173, 183, 99], in conjunction
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with the PA-PO coupling introduced in Chapter 4. We use the coupling to dy-
namically link a quadrature of one oscillator with a quadrature of another, and
show that these two quadratures form a quantum mechanical free subspace,
i.e. the subspace of these two quadratures (out of a total of four quadratures)
evades measurement back-action and follows classical dynamics [182]. In the
context of sensing, we show that by coupling the different quadratures of a
force to the two quadratures of this subspace, we can realize a BAE measure-
ment for both force quadratures, as opposed to just the one achievable without
the nonlinear coupling. Yet another scheme for harnessing the PA-PO nonlin-
earity for enhanced sensing capabilities was developed and implemented along
with H. F. H. Cheung, and is detailed in Appendix D, where we experimentally
demonstrate a > 12dB improvement in displacement sensitivity. Open quantum
systems and the ability to coherently couple them through an active drive thus

affords unique possibilities that can be harnessed for higher sensing precision

and bandwidth.

This chapter will be submitted for peer-review with requisite modifications
as Back-action evading measurements of two quadratures using a parametric coupling,
by Y. S. Patil, S. Chakram and M. Vengalattore. In this work, Y. S. Patil and S.
Chakram performed the calculations and the modeling. M. Vengalattore super-
vised all stages of the work. All authors contributed to the preparation of the

manuscript.
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7.2 Abstract

Single-mode optomechanics probed with backaction evading (BAE) measure-
ments allows for detection sensitivities of one mechanical quadrature that are
beyond the limits set by quantum mechanics, at the expense of amplifying an
unmeasured orthogonal quadrature. By using a parametric coupling between
resonators, in conjunction with a two-tone BAE measurement scheme, we show
that a quantum nondemolition measurement of two (or more) quadratures can
be achieved simultaneously. We explicitly consider such a scheme for two para-
metrically coupled modes of a resonator probed by a Fabry-Perot cavity, and
consider the practicalities of the BAE measurement. Finally, we show that the
scheme is robust to experimental parameters, and does not require any fine-

tuning to achieve backaction evasion.

7.3 Introduction

There has been a tremendous push over the last decade to observe quantum
effects in micro and nano mechanical systems. The technical abilities and mea-
surement precision required for that are being increasingly achieved in a vari-
ety of physical systems [78]. That the compromise between the measurement
strength required for such precision and its concomitant backaction leads to
the standard quantum limit (SQL), is now well accepted [174, 173]. In fact, ra-
diation backaction has been experimentally demonstrated [184], albeit not at
the quantum limit. Recently, considerable effort has also been invested in de-
veloping schemes that surpass the fundamental limits of precision with which

such systems can be measured and controlled, limits set by quantum mechan-
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ics. These schemes are necessarily based on reducing or avoiding backaction
[175, 99, 176], or on backaction cancellation [177, 179, 178, 180]. The detection
sensitivities thusly achievable, coupled with recent advances in optomechanical
cooling [87, 88], reservoir engineering [108, 185, 150], and realizing hybrid quan-
tum systems have opened the floodgates to precision studies of macroscopic
entanglement [186, 187, 188, 189, 190], nonequilibrium dynamics [191, 192],
quantum-to-classical transitions [193, 194, 195] and quantum-enhanced metrol-

ogy [76, 100, 83].

Most of the above schemes, however, are restricted to the measurement of
one quadrature of the system under consideration. Here, we propose to couple
orthogonal quadratures of a perturbation to two distinctly addressable modes
of the same resonator. We show that by introducing an active parametric cou-
pling between two quadratures of these modes, the backaction evading (BAE)
measurement of one allows for a quantum nondemolition (QND) measurement
of both quadratures. This enables both their detection sensitivities to go below

the quantum zero-point limits [178].

The details that follow demonstrate the robust realization of a BAE measure-
ment of two quadratures by parametrically coupling them. The paper is orga-
nized as follows. In Section 7.4, we describe the scheme. In Section 7.5, we con-
sider the practical limits to the two-tone backaction evasion in the presence of
a parametric coupling. Sections 7.6 - 7.7 describe the requisite parameter space
for beyond-SQL sensing, concluding with possible extensions of the scheme.

Detailed calculations have been relegated to the Supplementary Information.
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7.4 Scheme

We consider an experimental setup of a mechanical resonator with two modes
of interest. These modes are coupled to each other through an active paramet-
ric coupling. The parametric coupling strength between the modes depends on
the amplitude of the parametric drive. The motion of both mechanical modes is
coupled to light in a single-mode Fabry-Perot cavity, through the standard dis-
persive optomechanical coupling. This light is used to probe the modes” motion

through homodyne detection. Such a system is described by the Hamiltonian
H = H.p + Hyeer, + Hon (7.1)
Here, the mechanics is captured by
Hyecn = hewib]b; + hw,b'h; + Hy, + Hy — higxs%:%; (7.2)
where w, ; is the mechanical frequency of modes (i, j), %i; = X jop(bi; + lgzj) de-
h

57— denote their respective zero-point

2my jwi, j

scribe the motion of modes, x; ., =
motion, and H,,,, capture their mechanical damping. Importantly, the last term
captures the active parametric coupling of the two mechanical modes through
a classical excitation
xs(t) = Xg sin[(w; + w))t + ¢,] (7.3)
as demonstrated in [150]. Without loss of generality, we set ¢, = 0. The single-
mode optical cavity is captured by
Aoy = ho[a'a —(a'a)] + Hayive + H, (7.4)
where w, is the cavity resonance frequency, a describes the intracavity field, and

H,.. and H, capture the external cavity drive and cavity losses respectively,

with « denoting the cavity linewidth. Note that we have set the energy-zero of
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the cavity to be at fiw.(a'a). The optomechanical interaction is captured by
H,, = -hG%a'a - (@'a)] - hGx;la"a - (a'a)) (7.5)
This optomechanical coupling is dispersive for both modes (i, j), and we retain

different coupling strengths for them, G;;. We subtract the static shift in the

resonator position to get the above equation.

Our objective is to use this system to make a BAE measurement of two
quadratures of an applied perturbation. If such a perturbation couples to both
modes of the resonator considered above, we can probe both these modes to de-
duce the applied perturbation. Two mechanical modes are characterized by four
independent quadratures. To implement a backaction evading measurement
of two of them, the measurement should couple to at most two of these four
quadratures. This allows for the resultant measurement backaction to be only
on the unmeasured conjugate quadratures. The system considered above real-
izes a BAE measurement of two quadratures under the simultaneous influence
of a cavity drive at the mechanical sidebands of mode i at w,. + w; and a nonzero
parametric coupling between the two mechanical modes. This is readily seen
through the Heisenberg-Langevin equations of motion (see Supplementary In-

formation, Section 7.9.1),

7 = MZ+%+ P, (7.6)
Ai —Yil2 —Gpar 0 0 Ai Vx.i
~Gp —yi/2 O 0 X o |
U= o N E R B &)
i 0 0 _71'/2 Gpar Yl ")Yl
v 0 0 G -Vvii2 )Y Dy,

where Z = (X;,X;,Y;,Y,)" is the quadrature vector, ¥ = (Px;, Pxj, Dy, Py;)T de-
scribes the mechanical modes” Langevin noise baths, M is the evolution matrix,

Gpar = 8% XizpXj.p Parametrizes the parametric coupling between the modes,
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and Fz, captures the measurement backaction.

Measurement of the X; quadrature is achieved through the described two-
tone drive [174, 54, 196]. Because X; and X; are dynamically linked, this mea-
surement constitutes a measurement of the X; quadrature as well. Neither of
these quadratures dynamically couple to their conjugates ¥; or ¥;, which re-
side in an exclusive subspace. Due to this, and because equally importantly the
cavity field couples only to X;, and not any other mechanical quadrature, the
backaction on the mechanical modes due to the cavity light is restricted to ¥;,
the quadrature conjugate to X;, The backaction is given by (see Supplementary
Information, Section 7.9.3)

Fz1=(0,0,2G; 51X, 0) (7.8)
where G, 34 parametrizes the backaction coupling between X; and ¥;, and X,
is the X-quadrature of the cavity light. Because of the dynamic coupling be-
tween ¥; and f/j, the measurement of X; has an indirect backaction on f/j. How-
ever, these backactions do not couple back to the measured observables X; ; Eqn.
(7.7). This allows for the BAE and QND measurement of fwo quadratures of the
mechanical modes — X; and X;. Note that the system thus realizes a quantum-

mechanics-free-subspace as formulated by Tsang and Caves [182].

Distinct schemes describing the BAE or weak measurement of two cross-
quadratures of two mechanical modes have been previously considered [197,
198]. However, such schemes pose challenges as described therein — the requi-
site matched frequency-, dissipation- and optomechanical-coupling- asymme-
tries are nontrivial to achieve experimentally. In contrast, the above scheme is
BAE for any nonzero parametric coupling between any two mechanical modes

and is robust to both dissipation asymmetries (y; # ;) and optomechanical cou-
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pling asymmetries (G; # G).

7.5 Residual backaction

In this section, we thoroughly consider the degradation of BAE due to a finite
cavity linewidth and due to the parametric coupling. In the ideal limit of a
good cavity (k/w;; — 0,k/|lw; — w;| — 0) there is no backaction on either X
or X;. This dependence on « is most readily understood through the optome-
chanical coupling term in the Hamiltonian Eqn. (7.32). Averaged over several
oscillation periods, the cavity field X. does not measure ¥;. If there exist any
field-fluctuations at the frequency 2w;, the cavity field does couple to ¥;, thereby
inducing backaction on the conjugate observable X;, degrading the backaction
evasion. Secondly, because of the dynamic coupling between X; and X; Eqn.
(7.7), fluctuations of the latter introduce noise in the former. Both these noise
terms which degrade the BAE can be read off the noise spectral densities given

by (see Supplementary Information Section 7.9.2)

1 0 . A N e ~
Sx(@)= 5 f die (), X0 = (X (@)(w))

Yil2 1 2 2 (7]/2)2 2 1 2 2
w2+(),l_/2)2 [( + neq,i + nbad,i) + w2+(yj/2)2/l ( + neq,j + nbad,j)]

_ i (7.9)
‘1 1 1 #2

_jw 20
1 i3, l+17j

1 0 . N o i ~
Sy =5 f dte” ({7,0), 00 = (P (@) Fi(w))

Yil2
W +(yi/2)?

(/2
w2+ 2 M

2

[(1 + 2n,q; + 2npa; + 2Npaq;) + 2(1 + 2N j + 2Mpaq )]

1 1 2
'1 Tz izH
Vi i

(7.10)
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where Xi(w), Yi(w) are the Fourier components of the quadrature operators. i is

the parametric drive xg normalized to the parametric instability threshold [83],

Xs 2
u= s Xsih = — \Miwyi \Jmjwjy; (7.11)
XS, th gh

In the limit 4 = 0, these noise spectra reduce to those of [183], as expected. It is

for u # 0 that we realize the BAE scheme for two quadratures.

h(,t)i’j -1
neq,i,j: exp kBT -1 (712)

is the equilibrium phonon occupancy of the mechanical modes (i, j) at the sur-

rounding bath temperature 7', and

G2 x? 8 G?
i Vigpt _yznax — i,BA (713)

KYi KYi
both captures the X;—~measurement backaction on ¥; and parametrizes the mea-

npa; =2

surement strength based on the light intensity used.

2
; 1
Npad,i = nBSA’ ( al ) 1+ 2 (714:)

20 42w’
parametrizes, in phonon number, the residual backaction on X; because of the

cavity being ‘bad’, i.e. k/w; # 0.

Corresponding terms for the backaction on ¥; and X; are given by

G2 x2 8G?>
gy = 222, = —22 (7.15)
KYj KYj
2 2
Npa. i K 1 K 1
Mpad,j = BgJ {(w~+w') L +(a)~—w‘) & ] (7.16)
! J 1 + 4(w,-+a)j)2 J ! 1 + 4((1)]'—0),')2

Eqn.s (7.14,7.16) show that the residual backaction is minimized for «/w; < 1
and «/|lw; — w;| < 1. Both these conditions are accessible by current experi-
ments — the former is a prerequisite for optomechanical cooling to the quantum
regime that is increasingly being achieved for a variety of optomechanical sys-
tems, and the latter is also experimentally accessible, as demonstrated in [150].
Intuitively, the latter condition disallows the formation of cavity sidebands at

w, + w;, which would otherwise measure both X; and ¥, thereby preventing
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backaction evasion. As the cavity field does not directly couple to X;, there is
no direct backaction on ¥;. A residual backaction due to the nonideal cavity

however persists, even for mode ;.

Another approach to alleviate the residual backaction on mode j is to make
its optomechanical coupling

G;—0 (7.17)

In this case, both ngs; — 0 and npe; — 0, cf. Eqn.s (7.15,7.16). Such a zero
coupling to mode j can be achieved by having the cavity spatial mode over-
lap with a node of mode j, while still retaining a substantial coupling to mode i.
The hybridization of proximal and nominally degenerate modes of a SiN square
membrane resonator into orthogonal modes shown in [79] ensures that a max-
imal coupling to one mode implies a minimal coupling to the other, because
of the modes” orthogonality. In this sense, «/|w; — w;| < 1 is not a necessary

requirement to achieve the BAE nature of the proposed scheme.

7.6 Beyond SQL

To compare the sensitivity of measurement realized in such a scheme with the
SQL, we consider the measured mechanical noise spectrum, Sx, ,(w). S x,n(w)
is measured through the cavity output spectrum at w, within a bandwidth «.
Assuming a single sided cavity with a shot noise limited drive, the homodyne

detected spectrum equates to [183]

K
Sy m(@) = S x(w) + —————
Xn®@) = S (@) + 2

i,BA
The noise added in the measurement of X; due to residual backaction and cou-

(7.18)

pling to mode j is evaluated in comparison to the added noise at the SQL (Ls¢,.)
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as

i12)?
Liw, ) (% 200 + Tt (4 2has) L @O0
= -1+ :
Lisor(w) s 8npai  (¥i/2)?
I
where we have set n,,; ; = 0 to get to the SQL, and
Yijl2

Lijsor(w) = - (7.20)

w? + (7i,;/2)*
is the measurement noise at the SQL. For an ideal cavity, the backaction noise

goes to zero, i.e. np,q;; — 0. The imprecision noise (< 1/n54;) can also be made
to go to zero by using higher intensity of light. The measurement noise is then
only limited by the quantum motion of the two modes. A larger coupling to
mode j, and in particular to its quantum fluctuations, leads to a larger noise in
X;. These quantum motions are also amplified by the parametric drive, limit-
ing the permissible coupling strength between the modes for realizing sub-SQL

sensing.

Fig. 7.1 illustrates the typical parameter space over which the SQL is beaten.
As seen in Fig. 7.1(b), the quantum motion of mode j leads to an increased
noise in Sy, ,, at w = 0, concentrated within a bandwidth y;. For a fixed para-
metric coupling G, this noise can be spread out over a larger bandwidth by
using larger v, thereby effecting an improved sensitivity at w = 0 — see Fig. 7.2.
As such, even in the presence of a parametric coupling, sub-SQL sensitivity can
be achieved beyond a measurement strength of ng4; = é The backaction eva-
sion and sub-SQL measurement sensitivity remain robust over a large range of

parametric coupling strengths and measurement bandwidths.
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Figure 7.1: Comparison with the SQL, of noise added to the measure-
ment of X; due to residual backaction and coupling to noise
of mode jat T = 0, cf. Eqn. (7.19). (a) Increased coupling
(u) of mode i to mode j is at the expense of increased mea-
surement noise, caused by quantum fluctuations in the latter,
shown here for w = 0, i.e. on resonance. The horizontal line at
1 denotes the SQL. (b) Larger measurement strengths allow for
larger sub-SQL detection bandwidths, shown here for u = 1/4.
The black line denotes the SQL contour. The peak feature at
w = 0 denotes the increased noise, though still sub-SQL, due
to the quantum noise of mode j. This noise is concentrated
in a bandwidth of y;, shown here for y;/y; = 1/4. Guided by
the experimental values of [150], these graphs are evaluated
for k/w; ; = 0.05 and «/(w; — w;) = 0.25.

7.7 Force sensing

Having demonstrated sub-SQL detection sensitivity for X;, we now consider if
such a system can be used for beyond-SQL sensing of both quadratures of a
force. In general, a force couples to motion as an additional term in the Hamil-

tonian, given by

A

H = —-F)%-F©%;

= Hipw = —FOxiop(bie ™" + h.c.) = F(Oxjp(bje™™" + h.c.) (7.21)
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Figure 7.2: Effect of mode j linewidth on the noise added to the measure-
ment of X;. The y i/vi = 1 curve (red) forms the reference. As
mode j becomes broader (see y,/y; = 10, blue), for a constant
parametric coupling strength G,,., lesser noise is parametri-
cally mixed back to mode i within a given bandwidth around
w = 0. As such, the noise grows lower near w = 0. Conversely,
as mode j becomes narrower (see y,/y; = 0.1, green), most of
the noise gets coupled at w = 0, driving up the noise there,
but correspondingly reducing it at farther frequencies. The no-
coupling curve is shown for comparison.

The coupling of this force to our BAE observables £; and £; is o« Im[F(¢)e "] and
Im[F(r)e "] respectively, which can be easily seen as the F—dependent terms in

the equation of motion given by %[I—AI fints Xij1-

The change in mechanical susceptibility induced by the parametric coupling
needs to be accounted for when comparing the sensitivity of this scheme to the
SQL. For the proposed scheme, the modified susceptibility is equal or larger
than its bare value, and therefore implies a sub-SQL force sensitivity at w;. To
see this, consider the susceptibilities in the presence of the parametric coupling,

which can be read off the spectral density (see Supplementary Information, Sec-
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_ (W) i(—w)G par
I Fw) - A
I—Xi( @ j(~)Gar 1 — xi(w)y (—w)G?

par

Xi(w) =

[Im Fj](~w) (7.22)
where y;(w) are the bare susceptibilities of the modes and F;; :=
—@F (e, Clearly, the parametric-coupling modified susceptibility of

mode i,
Xi(w)
1 = xi(w) j(~w)G?,,

Xii,par(w) = (723)

is larger than its bare susceptibility y;(w), enabling sub-SQL detection at w;. For

a sub-SQL force sensing at w;, we correspondingly need
1 . S S
W@ S X Ws o 1a) (i [S X,.m(W, W, nBA,i):| <1
m 2Ljsor(w)

where y;; yqr is the susceptibility of X; to an actuation at mode j in the presence

(7.24)
ZWL isoL(w)

of the parametric coupling. Even though y;; .., diverges as G, approaches the
parametric instability, so does the detected noise S x, ,,(w, i, npa,;), due to para-
metric amplification of quantum noise. In the ideal cavity and strong measure-
ment limit, Eqn. (7.24) reduces to y* > 1 + %. The best sensitivity achievable
at w; is thus the SQL, achieved as u — 1 — there is a compromise between an
increased susceptibility and increased noise for force sensing at w;. The sensi-
tivity at w; being clamped at the SQL is distinct from the usual SQL — Here, the

limit arises because of the quantum fluctuations of the modes, and not due to a

measurement backaction. The backaction is still being evaded.

Such a scheme can be employed to detect both quadratures of a force. In
the above, both %; and %; couple to the same quadrature of the applied force.
However, by changing the phase of the parametric coupling drive Eqn. (7.3),
any quadrature of mode j can be made to replace X;, and its corresponding
orthogonal quadrature to replace ¥;. In particular, a change of phase by 7/2

would couple ¥; to X;, and because ¥; couples to Re F, the system is now coupled
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to both quadratures of the force. This enables the BAE measurement of both

quadratures of the force.

The above analysis does not account for the projection or conditional squeez-
ing caused by the measurement. With an increasing measurement strength on
X;, this projection would indeed cause the detection noise to go below the quan-
tum zero-point limit [183, 199]. This would enable the beyond-SQL detection of

both quadratures of the applied force for a well realized BAE measurement.

7.8 Conclusions

We propose a scheme to avoid measurement backaction on two of four quadra-
tures of two modes of a mechanical resonator. This is achieved through a two-
tone driven-cavity measurement of one of the modes, and a parametric coupling
of the two mechanical modes. We demonstrate the robustness and experimental
amenability of BAE using this scheme, with parameters accessible by current
experiments. We explicitly calculate the requisite measurement strength and
coupling parameters for beating the SQL, and thoroughly consider the effects of
quantum noise of the mechanical modes on sub-SQL sensing. When coupled to
two quadratures of an applied perturbation, this readily realizes a scheme for

beyond-SQL sensing through the BAE of two quadratures.

The nonlinear coupling between resonators used in this work has been pre-
viously shown to be ubiquitous and robust. Parametric couplings between
distinct modes of the same resonator [150], a nanomechanical resonator and
a transmission line resonator, or two distinct electrical resonators [200], can all

be achieved in the quantum regime. By introducing additional parametric cou-
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plings between the resonators, the backaction evasion can be extended to in-
clude more than two observables, so long as the BAE nature of the measurement
is preserved with additional constraints like Eqn.s (7.16, 7.17). This allows for
the generalization of the scheme to larger quantum-mechanics-free-subspaces

and larger sets of observables.

7.9 Supplementary Information

7.9.1 Equations of motion

We drive the cavity with a symmetric two-tone classical drive at the mechanical
sidebands of mode i at w, + w;, which leads to an amplitude modulated drive.
Working in the Heisenberg picture, Hyie = Am(t), with
(din(1)) = dip(0) = gsin(wil)e_i‘”"’ (7.25)
We drive the cavity sufficiently hard that we can linearize the optomechanical
coupling, as is the case experimentally. As such, we split the cavity field as a
steady state classical occupation and quantum fluctuations —
a(r) = a(t) + da(r) (7.26)

where a(t) is determined completely by the cavity response to H,ive as

a(t) = gy cos(wit + 8)e ! (7.27)
where
e = d . |——— > 1 (7.28)
max 40)12 + 2 :
0 = arctan(k/wy) (7.29)
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with w; entering the picture simply because we are driving the cavity at that
detuning. ¢ sets the zero of the reference phase and as such, without loss of
generality, we set it to 0. Retaining terms to first order in G,

[a'a — (@Ta)] = @ (OSa(t) + ADSE () = Gpax cOs(wiH)[€“'Sa(t) + e “'8a ()] (7.30)
The linearized interaction Hamiltonian with respect to Hy = hwata + hwﬁj@i +
hw leoleo ; thus takes the form

Hi = = 7Gxy yilbie™" + B &) X par cos(it)[Salt) + 8a' (0)]

— 116 3B + B ) X gy cOs(wi)[Sa(r) + 6a' (1))
+ ﬁyi,im + ﬁyj,im + PIK,int
— Tig s XiopuXjpi(bie™ " + b &) x (bye™" + ble™ ) sin[(w; + wp)i]  (7.31)
which reduces to
Hiw = — G, pa X [Xi(1 + cos[2wit]) + T; sin[2w;11[6u() + da ()]
— G pa X [Xj(cos[(w; + w)t] + cos[(w; — w;)t])
+ ¥ (sin[(@; + )il + sin[(w; - w)M[da() +5a’ ()]
+ I:Iy,-,int + Flyj,int + FIK,im‘
+ 11G parlibibj(1 = &2+ + hc. + ibib (e — ") + he]  (7.32)
where
bij+b), .

X, =——2 7. = —iJ 7.33
5] \/§ 5] \/z ( )

are the x— and y— quadratures of motion of the two mechanical modes, i.e.
)?i,j(t) = \/ix,-,.,-’zp, (Xi’j(l‘) COS w; ;i + ?,"j(l‘) sin a),-,.,-t) (734)

and the parametric coupling between the mechanical modes is parametrized by

Xs H
Gpar = 87 XiapXiapt = 5 VY (7.35)
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with u as defined in Eqn. (7.11). The Heisenberg equations of motion are thus

sa —gffa — VKD + iGypalbi(1 + €727 + h.c.]

+iGjpalbj(e @) 4 @@ty 4 ] (7.36)
b, = _%13,. — RO + G, pa(1 + €20 [Sa(t) + 8a (1)]
_ Gpar[é—;(l _ ei2(w,-+wj)t) + Bj(e—iijt _ eiZwit)] (737)
l;;‘ _ —&l; _ - (t) —iwjt +iG.; ( i(wi+w;)t + —i(a),'—a)j)t)[é’\ (t) + 6A T(t)]
IT TR \/77,177,/ e 1Gpale e a a
_ Gpar[gj(l _ eiz(ﬂ)i+wj)f) + Bi(eﬂwjl _ e—i2a),-t)] (738)
where ¢ is the noise operator of the cavity drive d;, Eqn. (7.25). Assuming that

the cavity drive is shot noise limited, we have
EWE W)y =6t -1); E W) =0 (7.39)
Similarly, #); ; are the noise operators of the thermal baths of modes (i, j) which

obey

AONTE)) = (egij + DS = 1); AIORE)) = 1pq 0t — 1) (7.40)
in the Markovian limit, where n,,; ; is the occupancy of the resonator modes {i, j}

at the bath temperature 7', given by Eqn. (7.12).

In Eqn.s (7.36-7.38), we retain the off-resonant rotating terms in order to
quantify their role in the degradation of back-action evasion. However, if we

only retain the resonant terms, an intuitive picture is more easily got by writing
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the equations of motion as

A

% = —gffc — kR (7.41)
7, = —%f/c — V&Y™ 426, paX; (7.42)
R, = —%X,- — TR - G X (7.43)
V= —%fn = T = G ¥+ 2GR, (7.44)
%= —%Xj NP (R ¢ (7.45)
¥ = ——Y — T = Gt (7.46)

where X" V" characterize the input noise to the cavity, and similarly,
)A(l?h, f/l.’h,X;h, Y ;.h characterize the thermal bath of the resonator modes. The lat-

ter four equations are Eqn.s (7.6) — (7.8) of the main text.

7.9.2 Mechanical noise spectrum

Eqn.s (7.36) — (7.38) are readily solved in the Fourier space. Defining the me-

chanical and cavity susceptibilities

1
Xl =
1
Xe(w) = ot k)2 (7.47)
R.(w) = (5" fg“ ) (@) = ) \/g F@+w+Ew-w)|  (748)
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@) = = xi@) | 2 (1w + @) + 7] (@ = w)
+ ixi(@)Gipa (Re(w — 20) — Xelw + 27))
= XH@)G par (X (~w) = Bl + 2(w; + )/ V2 = bj(w - 2(w; + w))/ V2}

1, ) ) .
~ Xi@)Gpor—= |~bj(w = 2w) + bj(w + 2w)) = bl(w + 2w)) + bl(w — 2w))}

2
(7.49)

Piw) = ixi@) ) 5 (i1 + @) - (0 - w)
+ Xi(@)Gipa (2Xew) + Xolw = 20) + Xe(w + 2w)
+ i @)Gpar {17 () = bl + 2wi + )] V2 + bj(w - 2Aw; + w)))/ V2
1 A A ~s A
+ L\/(@GPW% {=bj(w - 2w) + bj(w +20)) + bl(w + 2w) - b(w - 2w))]
(7.50)

and similarly the equations for X j(w) and f/j(w). We simultaneously solve these
equations to evaluate the noise spectra Sy, ,(w) and Sy, (w) of Eqn.s (7.9, 7.10) us-

ing the noise properties given by Eqn.s (7.39, 7.40). In doing so, we approximate
& prop & yEq & PP

contributions from terms of the form |y:(w)|*G?

2B — Q)b j(w — Q) ~ 0. These
terms signify contributions of the counter-rotating terms to the parametric cou-
pling, which can be made insignificant in the limit y;,/w; — 0 and |Q| > 2w, ;.
Given that experimentally, y;/w; < 107°, this approximation is greatly valid.
Note that the fluctuations of x5, and thus correspondingly of G, at frequencies
2w;, 2w; and 2(w; + w;) couple these terms to the measured observables X; j(w).

Experimentally, xs is very well described by a large classical narrowband drive,

i.e. o, < Xg, and the above approximation rigorously holds.
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7.9.3 Backaction

Eqn.s (7.37,7.38) clearly show that averaged over several oscillator periods, the
cavity field X, has a nonzero contribution only to Y. Le. there is no X, depen-
dence of X;, X ;jor Y ;. This is the Mathematical statement that the cavity measure-
ment has a backaction only on ¥;, as mentioned in Eqn. (7.8). The backaction

coupling coefficient equates to

Amax
Gi,BA = _Gixi,zpt (751)

Amax
Gj,BA = TGj'xj,pr (752)

7.9.4 Susceptibility to forces

Here, we calculate the spectrum of X; in the presence of an external force and
parametric coupling between the i and j modes. With a force as in Eqn. (7.21),

the equations of motion for the modes change from Eqn.s (7.37, 7.38) to

i Yiz I iw; 7
bi = =T bi+ 2 xizpF (e - Gypurb'
l;j = _%Ei + %xijpl‘F(t)eiwjt - Gparz;zr (753)

where we have omitted the noise, cavity and off-resonant terms to easily get to

the susceptibility. In the Fourier space, these reduce to

\/Exi, j.zpt

h

Solving these equations simultaneously gives Eqn. (7.22).

Xii(@) = xi (@) X ~ [Im F()e"""}(w) = xi ()G parXji(-w)  (7.54)
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APPENDICES

Reproduced below are other works that I contributed substantially to, along
with S. Chakram and H. F. H. Cheung. These works further and complement

the studies reported in the Chapters above.
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APPENDIX B
MULTIMODE PHONONIC CORRELATIONS IN A NONDEGENERATE
PARAMETRIC AMPLIFIER

This chapter has been previously published as Multimode phononic correlations
in a nondegenerate parametric amplifier, S. Chakram, Y. S. Patil and M. Vengalattore,
New Journal of Physics 17, 063018 (2015). Reproduced here with permission (see
Appendix A), with cosmetic changes. In this work, S. Chakram and Y. S. Patil
performed the modeling and the calculations. M. Vengalattore supervised all

stages of the work. All authors contributed to the preparation of the manuscript.

B.1 Abstract

We describe the realization of multimode phononic correlations that arise from
nonlinear interactions in a mechanical nondegenerate parametric amplifier. The
nature of these correlations differs qualitatively depending on the strength of
the driving field in relation to the threshold for parametric instability. Below this
threshold, the correlations are manifest in a combined quadrature of the cou-
pled mechanical modes. In this regime, the system is amenable to back-action
evading measurement schemes for the detection of weak forces. Above thresh-
old, the correlations are manifest in the amplitude difference between the two
mechanical modes, akin to intensity difference squeezing observed in optical
parametric oscillators. We discuss the crossover of correlations between these

two regimes and applications of this quantum-compatible mechanical system

174



to nonlinear metrology and out-of-equilibrium dynamics.

B.2 Introduction

The quantum control, detection and manipulation of macroscopic mechanical
systems has made enormous strides from its origins in the context of grav-
itational wave detection [174, 173, 201] to current efforts on cavity optome-
chanics [202, 203, 204, 78, 86] and quantum non-demolition measurements
[99, 205, 176, 174, 173]. With increasing sophistication of experimental tech-
niques and material platforms amenable to such studies, a broader range of
questions have come into focus including the use of such mesoscopic mechani-
cal systems for studies of macroscopic entanglement [206, 207, 187, 188], out-of-
equilibrium thermodynamics [208, 192] and the quantum-to-classical transition

[42, 193, 194].

A key enabling ingredient for these studies is the realization of mechanical
systems with low dissipation and strong, quantum-compatible nonlinear inter-
actions. While mesoscopic mechanical systems exhibit a wide range of mechan-
ical nonlinearities [115], it is typically the case that such nonlinear effects are
weak and only arise at large amplitudes of motion or are present in highly dis-
sipative systems. In either scenario, these preclude quantum-limited operation.
Alternately, such nonlinear couplings can also be realized through optical medi-
ation [96, 209]. However, the experimental constraints posed by such optically

mediated interactions remain challenging to satisfy.

An alternate avenue to combining low intrinsic dissipation and strong non-

linear interactions exploits the notion of reservoir engineering [105, 106, 107,
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108] - the control of the properties and effective interactions of the system
through appropriate design of its environment. Most proposals to date have
focused on tuning the properties of an optical reservoir that is coupled to the
mechanical system via radiation pressure, a coupling that is typically weak in
current optomechanical systems. However, reservoir engineering can also be ef-
fected through purely mechanical means, i.e. the interactions between distinct
modes of a resonator can be mediated and enhanced by discrete excitations of a
massive supporting substrate. This has recently been realized experimentally in
an ultrahigh Q membrane resonator in [150], where mechanical parametric non-
linearities, down-conversion and two-mode thermomechanical noise squeezing
is demonstrated in a system compatible with established techniques of radi-
ation pressure cooling to the quantum regime [87, 88] and quantum-limited
optical detection [89, 90]. Such non-linear phenomena have also been engi-
neered through a geometric coupling between distinct electromechanical beam

resonators [95, 210].

The engineering of strong two-mode parametric nonlinearities in quantum-
compatible mechanical resonators [150] has set the stage for the creation of non-
classical mechanical states and the manipulation of phononic fields in a man-
ner akin to that in optical parametric amplifiers and oscillators (OPA /OPOs) in
quantum optics. In OPA/OPOs, nonclassical correlations between distinct op-
tical fields can be realized at the single photon level as a result of the coherent
down-conversion of a high frequency photon into two lower frequency photons.
OPA /OPOs have also been used to generate squeezed light [144], demonstrate
continuous variable EPR entanglement [211, 212] and have several applications
in quantum information [213], communication [214, 215] and metrology [216].

Similarly, the realization of quantum-compatible nonlinear phononic processes
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in mechanical systems offers rich prospects for studies of nonlinear metrology,
the robust generation of entangled mechanical states and the quantum dynam-

ics of mesoscopic mechanical systems.

Apart from realizing mechanical analogs of the phenomena in OPA /OPOs,
parametric nonlinear process in quantum-compatible mechanical systems also
offer unique opportunities in their own right. Unlike in OPA /OPOs where the
intracavity fields can only be indirectly detected, mechanical systems allow for
the direct nondestructive detection of their displacement - the phononic analog
of the intracavity light field. This allows for novel implementations of interfero-
metric schemes in mechanical systems that surpass the standard quantum limit
[217]. Furthermore, the extremely low rates of thermalization realized in these
mechanical systems [79] open novel avenues for studies of non-equilibrium
physics of open quantum systems. For instance, the parametric two-mode non-
linearity described in this work can be harnessed for studies of critical dynamics
and entanglement, and the robust generation of non-gaussian states by appro-

priate reservoir engineering [218, 219].

Given this range of opportunities, we present a comprehensive description
of this two-mode nonlinearity describing various regimes of operation. We em-
phasize the nature and fidelity of the multimode phononic correlations arising
from the nonlinear coupling. While we have focused on nonlinearities that have
been engineered through coupling to a reservoir of substrate modes [150], our
analysis and the calculated squeezing spectra are also valid for nonlinear inter-

actions engineered through other means [95].

The paper is organized as follows — In section B.3 we describe the two-mode

nonlinearity arising from the parametric interaction between the resonator and
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its supporting substrate. This interaction realizes a phononic version of a nonde-
generate parametric amplifier involving a substrate excitation (pump) and two
resonator modes (signal, idler). Such amplifiers are characterized by a threshold
pump amplitude beyond which the system is susceptible to self-oscillation. In
section B.4 we describe the behavior of this system below threshold. We discuss
the onset of two-mode squeezing and calculate the limits of such squeezing in
the presence of dissipation, frequency asymmetries and finite pump detuning
from parametric resonance. In section B.5, we describe the behavior of this sys-
tem above threshold where the parametric oscillator exhibits amplitude differ-
ence squeezing. Finally, in section B.6 we describe the crossover regime around
the instability threshold and applications of this system to nonlinear metrology

and mesoscopic quantum dynamics.

B.3 Nondegenerate parametric amplifier: Model and Phe-

nomenology

We begin by describing the phenomenology of the two-mode parametric non-
linearity. To motivate the discussion, we consider the physical system described
in previous work [150]. The mechanical resonator consists of a silicon nitride
(SiN) membrane under high tensile stress that is deposited on a single-crystal
silicon substrate. These membranes are a promising optomechanical platform
due to their low optical absorption and ultralow dissipation [220, 221]. Their
excellent mechanical properties are due to a combination of high intrinsic stress
and substrate-induced suppression of anchor loss. This leads to the robust for-

mation of a large number of mechanical modes with low dissipation and high
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degree of isolation from the environment [79]. Furthermore, the supporting
substrate can parametrically mediate multimode interactions within the mem-
brane. As shown in [150], such nonlinear interactions are especially significant
when the parametric resonance coincides with a discrete excitation of the sub-
strate, as the coupling strength is now enhanced by the quality factor of the

mediating excitation (see Fig. B.1).

We describe the parametric two-mode nonlinearity by an interaction of the
form H = —gXsx;x; where g parametrizes the strength of the interaction, Xs
is the amplitude of the substrate excitation and x;; are the amplitudes of the

individual membrane resonator modes.

Within the rotating wave approximation, this results in equations of motion
of the form,
X+ vk +wix = —(Fit) + 5 Xsx))
m; 2
.. . ) 1 g
Xs + vsXs + wsXs = —(Fs(1) + Sxix))
M 2
with the corresponding equation for mode j obtained by substituting i < jin
equation (B.1). Here, we have taken x;;, Xs to denote the (complex) displace-
ments of the individual modes. The external actuating force and thermome-
chanical noise forces acting on the various modes are together represented by
Fi;s, and w; ;s, vi;s and m; ;s are the eigenfrequencies, mechanical linewidths
and the masses of the modes. For now, we assume that ws = w; + wj, i.e. the
pump actuation is at the parametric resonance. Lastly, in keeping with the ex-
perimental scenario, we assume that the dissipation rate of the substrate exci-

tation is significantly larger than that of the membrane modes (Qs = ws/ys ~

103 - 104, Qi,j = wi,j/yi,j ~ 107)
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Figure B.1: (a) Distinct eigenmodes of the membrane resonator are cou-
pled through parametric excitation of the supporting sub-
strate. (b) The strength of the two-mode interaction is en-
hanced when the parametric interaction between membrane
eigenmodes at w;; is mediated by a substrate excitation at
ws = W; + wj.

The coupled equations of motion can be solved using the methods of two
timescale perturbation theory [115]. This gives first order coupled equations of

the form,
24; = i [_Ai + i%XiA;AS + iXiFi(t)]

24

.8 w .~
j Yi [—Aj +ioXAAs +ixGF j(t)]
245 = s [_AS + i%XSAiAj +iys Fs (l)]

where x; = A, k € [i,j,S]. Also, Fy, k € [i,j,S] are the slowly varying
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(complex) amplitudes of the external forces on the individual modes, and y; =
(mywyyy)™! are the magnitudes of the on-resonant susceptibility of the various

modes. We have ignored terms such as Ay, y;A; in the slow time approximation.

As the actuating force on the substrate is increased from zero, the substrate
(pump) displacement increases in linear proportion until it reaches a threshold

amplitude
2 o 1
8 VX iXj Qi Q Jj

Below this critical amplitude, the steady-state amplitudes of the membrane

|AS,cr| =Xs FS,cr

modes (signal, idler), denoted by A; j, remain at zero and the system realizes
a nondegenerate parametric amplifier. Once the parametric drive exceeds the
critical value, the membrane modes exhibit an instability to self-oscillation with
A;; # 0, and the system realizes a phononic version of an optical parametric
oscillator. At the threshold, the system is characterized by a divergent mechan-
ical susceptibility and response time. The behavior of the parametric system
in the vicinity of this threshold can be described in terms of a nonequilibrium

continuous phase transition.

As can be seen from the above expression, the two-mode coupling is en-
hanced by the quality factors of the individual resonator modes, resulting in

strong multimode interaction strengths even in the presence of low dissipation.

As the pump actuation is further increased, the substrate amplitude remains

at the threshold value while the signal and idler amplitudes grow as

2
— = Ju-1 (B.1)
8 VXj,tXS

This behavior of the pump, signal and idler mode amplitudes as a function of

A )l =

the normalized drive, u = % is shown in Fig. B.2.
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Figure B.2: Pump (blue) and Signal/Idler (red) amplitudes as a function

of the normalized parametric drive, u = %

This parametric process can be viewed as the down-conversion of one
phonon from the pump mode to a pair of phonons, one in each of the signal
and idler modes. At the quantum limit, this results in the entanglement of mo-
tion of these modes. In the classical regime, this down-conversion is manifest
as correlations in the mechanical motion of the two modes. Below threshold,
the nonlinear interaction realizes a parametric amplifier with a gain that is de-
pendent on the relation between the phases of the resonator modes and that of
the pump. This phase-dependent gain results in thermomechanical squeezing
of composite quadratures formed from linear combinations of the quadratures

of the individual mechanical modes [150, 95].

Above threshold, the rate of phonon down-conversion exceeds the intrinsic
loss from either resonator mode, leading to self-oscillation. In this regime, the
correlated production of down-converted phonons manifests as a reduction in
the variance (squeezing) of the difference in the amplitude fluctuations of the

signal and idler modes. This is the thermomechanical analog of intensity differ-
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ence squeezing in optical parametric oscillators.

B.4 Below threshold dynamics : Two-mode squeezing

In this section, we evaluate the dynamics of the nondegenerate parametric am-
plifier that arise for pump actuation below the instability threshold. In this
regime, the system exhibits correlations between the displacements of the signal
and idler modes. These correlations are manifest as two-mode squeezing of a

combined quadrature composed from the individual modes.

In general, the correlations can be obtained using the coupled equations for
the membrane modes in the simultaneous presence of a classical pump actu-
ation and thermomechanical Langevin forces. The detailed derivation of the
noise spectra is given in B.8.1 and we only briefly outline the procedure here.
The analysis of the thermal fluctuation spectra is analogous to that for quan-
tum fluctuations of optical parametric amplifiers [113, 222, 223]. This similarity
is due to both quantum and thermal fluctuations being approximated as gaus-
sian. In addition, both the thermal Langevin forces in mechanical systems and
the quantum noise in OPA /OPOs are typically assumed to be Markovian. This
approximation has been shown to breakdown in the thermal baths of mechan-
ical resonators [218]. The consequences of this breakdown and the nature of
the squeezing spectra in the presence of non-Markovian corrections to thermal

fluctuations will be described elsewhere.

We separate the mean displacement and fluctuations about the mean, by
writing x;; = (A;; + 6A;)e” " with (6A;;) = 0. Further, the fluctuations are

decomposed into their quadrature components as 04;; = da;; + i9B;;. Below
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threshold, the fluctuations of the individual quadratures are given by equations

(B.14, B.15) of B.8.1 with A, ; = 0.

We then define cross-quadratures constructed from {a; ;,8; ;}, here normal-
ized to their respective thermomechanical amplitudes, according to the rela-

tions,
Xy = (a,-ian,-)/\/z
ve = (Bi£B)/V2

The two-mode correlations are manifest as amplification and squeezing of the
above quadratures. We represent the fluctuations in these cross-quadratures,
along with the fluctuation of the substrate mode in the form of the column vec-
tors X = (6x,,6x_,6x5)", Y = (6y,,6y_,dys)’. These are related to the original

quadrature fluctuations 6@, 6ﬁ via,

1 10
- 1
X=Réa; Y=RsB; R = —|1 -1 0
V2
0 0 1

Finally, the correlations of the cross quadratures are obtained through a corre-
sponding transformation of the spectral densities S, s(w), for example,

Sx(w) = (X(w)X(w)) = RS,R” (B.2)
along with the analogous equation for Y (X — ¥ & « — pin the above).
As shown in B.8.1, the degree of squeezing is obtained through the variances

of these cross quadratures by integrating the spectra in equation (B.2) over the

measurement bandwidth.

While this outlines the basis of the calculation, the appearance of such two-
mode correlations can be intuitively seen as the result of a coherent interference

between the response of the individual resonator modes due to thermomechani-
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cal noise and the down-converted field arising from the two-mode nonlinearity.
This interference results in a reduction of thermomechanical motion along one

quadrature at the expense of amplified motion in the orthogonal quadrature.

In general, the degree of two-mode noise squeezing is sensitive to various
experimental considerations such as the ‘loss asymmetry’ arising from mis-
matched dissipation rates of the individual membrane modes, their frequency
difference and the detuning of the parametric drive from the two-mode res-
onance. Below, we evaluate the effect of these considerations on the degree
of squeezing and find the robust formation of two-mode squeezed states for a

wide range of experimental parameters.

B.4.1 Matched losses and frequencies

For notational convenience, we introduce the loss asymmetry parameter 6, =
(vi —v))/(yi + v;) and frequency mismatch parameter 6,, = (w; — w;)/(w; + w;). To
build an intuition for quadrature squeezing below threshold, we first consider
the simplest case of distinct resonator modes with identical frequencies (w; =

w; = wor §,, = 0) and identical dissipation rates (y; = y; = y or 6, = 0).

For this case, the evolution matrices in equation (B.16) of B.8.1 reduce to,

-y Fypn O
1
M5 = S| Fwo—y 0 (B.3)
0 0 —¥s

The spectral density of fluctuations of the collective quadratures is evaluated
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from equation (B.17) and equation (B.2) to yield

(y2 (1 i,u);z +4w2) 0 0
- — Y
SX/Y - Ju 0 W 0 (B4)
Y.
0 N )

The variances of the normalized collective quadratures of the mechanical modes
are then given by,

1
Oy el (B.5)

+, X+

= Ty u

We see that x_, y, are amplified quadratures with variances that grow as u — 1,
while x,,y_ are squeezed quadratures showing reduction in the variance below
the thermomechanical limit. For pump actuation close to parametric threshold
(u — 1), we obtain a peak noise squeezing of 1, similar to the bound observed in
optical parametric amplifiers [224]. The degree of two-mode squeezing versus

parametric drive is shown in Fig. B.3.

The existence of a bound for the peak noise squeezing can be intuited by
looking at the equations of motion for the collective quadratures, through a ro-

tation of the original equations of motion, i.e.

X = MXx+V,X (B6)

Y MY +Vy (B.7)

where,

(1 + ) 0 0

1
My,;y = RMa/ﬁRT = ) 0 y(lFuw O
0 0 Vs

and v’ = Rv represents thermomechanical noise forces.

Two-mode squeezing arises from the fact that while the thermomechanical

noise forces remain the same in the presence or absence of the parametric drive,
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Figure B.3: Normalized variances of amplified and squeezed collective
quadratures as a function of the normalized parametric drive.
Black lines indicate the variances for matched frequencies (6,, =
0 ) and loss rates (6, = 0). Solid lines indicate the amplified
(blue) and squeezed (red) variances for ¢, = 0.5, 6, = —0.5. The
dashed lines indicate the amplified and squeezed variances for
0, = 6, # 0, the case of matched asymmetries where the peak
noise squeezing again approaches a factor of  as u — 1. The
dashed horizontal line represents the thermomechanical vari-
ance given by “Z

mw? "

the dissipation of the squeezed quadrature goes to twice its bare value near
parametric threshold. This results in a reduction in the variance of the squeezed
quadrature by a factor of 2. Simultaneously, the decay rate of the amplified
quadrature goes to zero, signaling the onset of the parametric instability. The
onset of the instability thus explains the 3 dB bound for squeezing through this

parametric process.

The variances of the cross-quadratures are calculated by integrating the
noise over all frequencies, i.e. they are measured with infinite bandwidth. As
the measurement bandwidth decreases, the peak noise squeezing approaches 6

dB, i.e.
Sx+,x+(w = 0’ /"l) _ 1 pu—1 1
Six(@=0,u=0) (1+pu)? 4

(B.8)
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B.4.2 Effect of mismatched frequencies and loss rates

We now consider the case where the frequencies and the damping rate of the
two resonators are not the same, i.e. d,,6, # 0. In this situation, the collective
quadratures x. and y. are no longer decoupled from each other. This coupling
between the collective quadratures has been noted to be detrimental to entan-
glement [103], and backaction evasion [209] protocols. It also results in a degra-
dation of peak two-mode thermomechanical squeezing. This is a result of the
coupled quadratures x,, x_ and y_, y, being respectively amplified and squeezed

in the presence of the parametric drive.

As before, the variances of the collective quadratures are obtained using
equation (B.17), subsequent rotation using equation (B.2) and integration over

frequency. These are now given by

O-yi,yt O-XIyx*

1 6w(6w_6) 1-062
1+ 2 Y + Y
1—u2{ e “M\1-a

with the cross correlation between (x,, x_), (y+,y-) given by,
26 -5)
20— (1 - )
The variances of the amplified and squeezed collective quadratures for the case

O-)’Jr»)’— =0x x. =

where (6, # 0,0, # 0, §, # J,), are shown in Fig. B.3. As can be seen, the
presence of loss asymmetry or a frequency mismatch results in a degradation
of noise squeezing. In this case, optimal squeezing is obtained for a paramet-
ric drive that is significantly below the instability threshold. We also find that
the coupling between the amplified and squeezed quadratures leads to a diver-

gence of the squeezed quadrature at the instability threshold.

The dependence of the peak squeezing on the loss asymmetry and frequency
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mismatch parameters are summarized in Fig. B.4. Fig. B.4(a) shows a plot of the
peak squeezing as a function of the loss asymmetry for the case of distinct me-
chanical modes with the same frequency (¢6,, = 0), showing a linear degradation
of peak squeezing with loss asymmetry. Correspondingly, Fig. B.4(b) shows the
peak squeezing as a function of the frequency mismatch parameter (d,) for the

case of no loss asymmetry (6, = 0).
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Figure B.4: (a) Peak noise squeezing as a function of loss asymmetry ¢,
for 6, = 0 with the squeezing going linearly from 1 — 1 as
d, = 0 — 1. (b) Peak squeezing as a function of the frequency
asymmetry ¢, for 6, = 0. (c) Peak squeezing as a function of

0, and 6.

Importantly, as can be seen in Fig. B.4(c), we find that the 3 dB squeezing

bound can be regained even in the presence of loss asymmetry as long as 8, = d,,.
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In this case, the normalized cross correlations between amplified and squeezed
collective quadratures vanish, and equation (B.9) reduces to equation (B.5). This
results in a noise squeezing that is identical to that for the case of symmetric

losses and frequencies.

B.4.3 Effect of pump detuning

Finally, we consider the thermomechanical squeezing bound when the pump
drive is detuned from parametric resonance. In this case, the drive frequency
is given by w; = ws + A, where A is the drive detuning. This case is of interest
since a detuned parametric drive introduces a dynamic coupling between the
6a@ and 6f quadratures. In turn, this leads to correlations between the amplified
and squeezed quadratures. Due to these correlations, the amplified quadrature
contains information about the squeezed quadrature that can be used for en-
hanced localization through weak measurements and optimal estimation [101].
Thus, a detuned parametric drive can allow for enhanced noise squeezing in the
presence of feedback. An additional point of interest in this case is that special
choices of the drive detuning lead to some of the collective quadratures becom-

ing quantum non-demolition observables [103].

The equations satisfied by the slowly varying complex amplitudes (A; ;) are
again given by equations (B.1-B.1), with the only difference now being that the
pump actuation Fs(¢) is a slowly varying function of time, F(t) = |Fsle™™'. The
pump amplitude resulting from this drive force, As(z) is given by,

As = ixs Fs(1) = ixs|Fsle™" = ilAgle™ (B.9)

Here, as we are most interested in pump detunings that are comparable to
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the resonator linewidths, we have made the assumption that A < ys and that
the pump amplitude is hence related to the instantaneous parametric actuation

through the on-resonant susceptibility.

The two-mode correlations are computed in B.8.2, and are given for 6, = §,, =

O-Xi,xi = 2
maw

O-y:,y:

0 by

(A +raFu?-2)
+
A A (A + A0) At

and

O-Xi’yi

kgTy 2Ayu
=0y, x,
mw? | A,A_ (A, + A0) e

where 12 = y? (1 + ,uz) — A% £ 2y \[y2u? — A2,

Note that x; and y_ are amplified quadratures while x_ and y. are squeezed.
As mentioned earlier, a nonzero detuning introduces correlations between
(x+,y+) and (x_,y-), i.e. between amplified and squeezed quadratures. This
is distinct from the case of loss asymmetry or frequency mismatch considered
previously, where correlations were introduced between (x., x_) and (y.,y-). As
can be seen from the above expressions, these correlations between the x. and

y: quadratures are proportional to the drive detuning.

This coupling between amplified and squeezed quadratures also results in
a decrease in the peak squeezing at non-zero detunings, as can be seen in Fig.
B.5(a). As expected, for the detuned case, the amplified quadrature diverges at
p = 1+ (A/y), the instability threshold for A # 0.

The peak squeezing as a function of the detuning, normalized with respect
to the decay rate (for no loss asymmetry or frequency mismatch) is shown in

Fig. B.5(b). We see that squeezing is almost completely lost when the detuning
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Figure B.5: (a) Normalized variance of the fluctuations in the y, (ampli-
tied,blue) and y- (squeezed,red) quadratures for the case of
zero detuning (solid lines) and a detuning of A = y (dashed
lines). The amplified quadrature diverges at the instability
threshold. For A = 0, this occurs at u = 1 (solid black vertical
line). For A = v, this occurs at 4 = /1 + (A/y)?2 = V2 (dashed
black vertical line). The black horizontal line is at 1/2. (b) Peak
noise squeezing as a function of normalized detuning %. Both
these graphs are shown for the case of no loss or frequency
asymmetry, i.e. 6, = ¢, = 0.

becomes comparable to the linewidth of the signal and idler modes.

B.5 Above threshold dynamics : Amplitude difference squeez-
ing

For pump actuation above the parametric instability threshold, the two-mode

nonlinearity results in parametric self-oscillation of the individual membrane

modes. In this regime, the correlated production of down-converted phonons

in the signal and idler modes results in a reduction of fluctuations in the am-
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plitude difference between these two modes. This is the phononic version of
intensity difference squeezing observed in optical parametric oscillators [222].
As in the optical case, this form of difference squeezing is of interest in nonlinear
interferometric schemes [217] capable of measurement sensitivities surpassing

the standard quantum limit.

In this section, we discuss the dynamics of the two-mode nonlinearity above
threshold and compute the amplitude fluctuations of the mechanical modes.
Additionally, we discuss the fluctuations of their phases. While energy conser-
vation dictates that the sum of the frequencies of the signal and idler modes
equal that of the pump drive, it is also the case that the sum of the phases of the
signal and idler modes above threshold remain locked to the phase of the pump
drive. This follows from equation (B.1), which in steady state can be rewritten

in terms of the normalized drive p and the drive force phase @5 (Fs = |Fs|e'®s) as

8 Xs
2 IAS,cr|

Defining the phases of the resonator modes as A;; = ilA; jle'"/, we see that ¢; +

—(u— 1) = AA;
¢; = ¢s. However, the difference in the phases is not constrained and is free to

fluctuate.

Asbefore, we quantify these fluctuations in the amplitudes and phases about
their steady state values by decomposing the complex amplitude fluctuations
SA into a; and 6B; quadratures. The equations of motion of 6@ and 63 are given

by equations (B.14, B.15) in Supplementary Information, Section B.8.1, after sub-
stituting |Ag| = /Z_Z,/ and A;; = /Z’j—ZSS Vi — 1. Here, we have defined the cou-

g
2mpwy ”

pling parameter x; =

We choose the drive and resonator mode phases such that ¢;; = ¢s = 0.

Given this choice of phases, the complex mean amplitudes 4, ; and the fluctua-
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tions are as shown in the inset of Fig. B.6. With this convention, the amplitude

fluctuations are given by d3; ;. The fluctuations in the phase are obtained from

(5(1/,', J
Aij”

5&’1"]‘ through (S(]S,"j =
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Figure B.6: Variance of the fluctuations in the difference y_ (red) and sum
v+ (blue) quadratures vs the parametric drive 4. The dashed
lines are computed for 6, = §,, = 0. The solid lines are com-
puted for 6, = 0.31, 6, = 0.09, corresponding to the experimen-
tal parameters in [150]. The amplitude difference quadrature is
squeezed for all values above threshold to a value of 5. As can
be seen, amplitude difference squeezing is extremely robust
to experimental imperfections such as a frequency mismatch
or loss asymmetry. Inset: Schematic of the mean value of the
membrane mode amplitude A, ; and the fluctuations de;; and
0B . 58 represent amplitude fluctuations while 6@ are related
to fluctuations of the phase.

Similar to the below threshold case, the correlations of the fluctuations in the
signal and idler modes resulting from the pump drive are manifest in combined

quadratures,

Ox,

1
—(0a; £ 6aj) x O
\/i J

1
6y + - =
V2

where 6R, are the amplitude sum and difference quadratures and 6¢. are the

(8B; % 6B)) = 6R.
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phase sum and difference quadratures. The spectrum of fluctuations of a. and

JB. are given by equation (B.17).

In contrast to the dynamics below threshold, the fluctuations of the pump
mode above threshold have an influence on the correlations generated between
the membrane modes. On the one hand, the substrate fluctuations are smaller
than those of the membrane modes by a term proportional to the respective
mass ratios. Thus, one might assume that these tiny fluctuations should have
a negligible influence on the membrane modes. However, the substrate mode
fluctuations affect the membrane modes through terms that are proportional to
the steady state amplitudes of the latter. These amplitudes are larger than the
pump mode amplitude by the mass ratio of the substrate and membrane modes.
These ratios cancel each other and lead to pump mode thermal fluctuations in-
fluencing the signal and idler modes through terms that are of the same order as
the coupling between the signal and idler modes. Thus, the degree of amplitude

difference squeezing is independent of the resonator to substrate mass ratio.

Consistent with the experimental system under consideration [150], we as-
sume that the damping rate of the substrate excitation is 3-4 orders of magni-
tude larger than those of the membrane. In this regime, the pump fluctuations
respond instantaneously to those of the membrane modes and can thus be adi-
abatically eliminated. We use this to simplify the analysis and ignore the time
derivative of the pump fluctuations (As) in equation (B.11). Aside from this
modification, we extract the fluctuations of the signal and idler modes as be-

fore.
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B.5.1 Matched losses and frequencies

We first consider the case where the damping rates and the frequencies are
matched. In this limit, we obtain the following spectral densities for the col-

lective quadratures normalized with respect to the thermal motion amplitude.

Svw) = 5 ) (y)
)
P
Sx(w) = o (Pe+a?)
0oz

We obtain the variances of the fluctuations by integrating the spectra. For the Y

quadrature, which relates to amplitude fluctuations, these evaluate to

o
Y4+ 2 (ll _ 1)

1

Ty-3- = 5

These variances are plotted as a function of the parametric drive in Fig. B.6.

Above threshold, the amplitude difference between the signal and idler
modes is always half the thermal variance. This is the mechanical analogue
of intensity difference squeezing seen in optical parametric oscillators. We find
that while the individual amplitudes are sensitive to fluctuations of the pump
mode, the amplitude difference is insensitive to fluctuations of the pump mode
and the degree of squeezing is independent of the pump drive. On the other
hand, the variance of the amplitude sum diverges as 4 — 1* and decreases with

increasing drive, approaching half the thermal variance as y — oo.

The other notable feature of above threshold dynamics is that the phase dif-

ference between the signal and idler modes is unspecified and hence free to
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fluctuate. The fluctuation in the phase difference is given by

X,
S¢_,¢_(w) = (A(ﬂ)z)sx_,x_(w)

2
(A)(CZ)Z ) (27:;)2 )

where A(u) is the amplitude of the membrane modes (identical for the case of

matched loss rates), x2, = 2% is the thermal variance. The integral of the fluctu-

ation spectrum diverges as w2, indicating that the difference phase undergoes
diffusion. The time scale 7 for this diffusion can be estimated by calculating
the variance while imposing a low frequency cut off (¥) to the integral of the

spectral density, i.e.

00

<6¢%> = 2\[;{ S¢_’¢_(0_))da)

T

X )K
A2 ) 22

If the parametric nonlinearity were used to actuate the membrane modes to an

amplitude of 10° x (x7)!/?, a phase fluctuation of 1 mrad would require a mea-
surement duration of 10 ringdown periods or around 100 seconds for the modes
considered in [150]. Thus, while S 4 (w) diverges, it does not necessarily lead

to large fluctuations of the difference phase over experimental time scales.

B.5.2 Effect of mismatched frequencies and loss rates

For the case of non-zero loss asymmetry and frequency mismatch (9,,d,, # 0),
the fluctuations of the amplitude difference are no longer decoupled from fluc-
tuations of the amplitude sum. These fluctuations are obtained as in the pre-
vious section. The calculation, while straightforward, is laborious and we only

summarize the results below.

197



The variances of the amplified and squeezed sum and difference quadra-
tures are shown in Fig. B.6 for §, = 0.31 and J,, = 0.09. In this case, the cou-
pling between amplified and squeezed quadratures leads to a divergence in the
squeezed quadrature as u — 1*. Unlike in the case below threshold, the fluctu-
ations for the case of matched asymmetries (6, = ¢, # 0) are not the same as for
the case of 6, = ¢, = 0. Importantly, we note that for pump actuation signifi-
cantly above threshold, the degree of squeezing is impervious to experimental

imperfections such as a loss asymmetry.

B.6 Crossover of correlations at the instability threshold

Finally, we discuss the dynamics of the two-mode nonlinearity in the vicinity
of the parametric instability. The crossover regime is most conveniently por-
trayed by evaluating the variance of y. quadratures in the regimes below and
above threshold. In the former regime, these quadratures represent the two-
mode correlations arising from phase-sensitive parametric amplification. In the
latter regime, these correspond to the sum and difference amplitude fluctua-
tions of the two membrane modes. These are shown in Fig. B.7. In the general
case of mismatched dissipation rates (6, # 0), both these quadratures exhibit

diverging variances at the instability.

As for the divergent phase diffusion discussed earlier, finite time effects need
to be considered to interpret the divergent steady-state variances depicted in
Fig. B.7. For the low frequency, ultrahigh quality factor resonators considered
in this work, the divergent response time in the vicinity of the instability thresh-

old can result in inordinately long thermalization times (~ 10* — 10° seconds).
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Figure B.7: Two-mode correlations in the vicinity of the threshold for para-
metric instability. Variance of the fluctuations of the normal-
ized difference (y_) and sum (y,) quadratures above and below
threshold vs the normalized parametric drive . The dashed
lines represent the variances for 6, = 6, = 0. The solid lines
represent the variances for ¢, = 0.31,6, = 0.09, corresponding

to the experimental parameters in [150]. The dashed horizontal

line represents the thermomechanical variance given by ,];RTTz

For typical measurement durations (~ 100 seconds), the measured squeezing
spectra can deviate appreciably from the spectra computed in steady state. Ex-
pectedly, these deviations are most significant for parametric actuation around

the instability threshold (u ~ 1.0).

The variances measured over a finite time 7,, are extracted by truncating the

integral of the relevant spectral densities by the time of measurement, i.e.

Oup = 2‘[ Sa,ﬁ(a))dw (B].O)

2
These variances, computed for the parameters in [150], result in the solid black
curves shown in Fig. B.8. We see that the singularities in the amplified and

squeezed quadratures seen in the steady state variances (solid blue and red

lines) are washed out at finite measurement durations.
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Figure B.8: Corrections to squeezing spectra due to finite measurement
duration. Normalized variance of amplified (y,) and squeezed
(y-) quadratures for a measurement time of 300 seconds (~ 100
ring down periods) (black solid lines). Also shown for compar-
ison are the corresponding amplified (blue) and squeezed (red)
quadratures in steady state. These are computed for ¢, = 0.31,
0, = 0.09 (y ~ 2r x 100 mHz) and correspond to the exper-
imental parameters in [150]. The divergence at the instability
threshold is attenuated for finite measurement times due to the
divergent response times.

The regime around p = 1 is of interest since the system exhibits me-
chanical bistability and a hysteretic response due to the divergent mechan-
ical susceptibility and diverging response time. This regime offers a clean,
mesoscopic and mechanical realization of a second-order phase transition
[225, 226, 227, 228] and out-of-equilibrium quantum dynamics on experimen-
tally accessible timescales. Furthermore, quantum tunneling between bistable
mechanical states has been discussed in the context of a Duffing nonlinearity
as a means of accessing a quantum-to-classical transition [194]. In the system
considered here and in [150], the presence of a strong two-mode nonlinearity
and compatibility with optomechanical cooling together imply that similar ef-

fects can be accessed even in the regime of low phonon number and motion

200



on the scale of mechanical zero-point fluctuations. The nature of this nonequi-
librium phase transition and the response to critical fluctuations as the phonon
occupancy is gradually reduced by optomechanical cooling will be described

elsewhere.

We also note the close correspondence between the squeezing spectra aris-
ing from the two-mode nonlinearity and the properties of the reservoir to which
the resonator is coupled. In particular, while we have considered the squeezing
spectra in the presence of a Markovian (thermal) reservoir in this work, it is
also known that intrinsic defects or two-level systems (TLS) in amorphous res-
onators such as SiN can couple to mechanical motion [229]. Furthermore, a
reservoir of such TLS can acquire non-Markovian properties in certain regimes.
In addition to studying the effect of such non-Markovian fluctuations on the
second order phase transition and the two-mode correlations near the instabil-
ity, it is an intriguing prospect to use the exquisite sensitivity of this two-mode
nonlinearity as an amplifier of such reservoir interactions to shed light on the

intrinsic material properties of the membrane resonator.

B.7 Conclusions

In summary, we describe a phononic nondegenerate parametric amplifier that
is realized in a membrane resonator through a substrate-mediated nonlinear-
ity. Motivated by recent work [150, 95], we discuss the creation of multimode
phononic correlations arising from this parametric interaction and compute the
squeezing spectra in the presence of thermomechanical noise. We address var-

ious points of experimental relevance including the presence of frequency mis-
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matches and asymmetric dissipation rates between the resonator modes. We
find the robust presence of two-mode phononic correlations for a wide range of

experimental parameters.

Below the threshold for parametric instability, this system exhibits two-
mode noise squeezing of collective quadratures composed from the individ-
ual resonator modes. This regime is conducive to back-action evading (BAE)
schemes for quantum-enhanced metrology. Above threshold, the system ex-
hibits amplitude difference squeezing due to the correlated production of down-
converted phonons in both resonator modes. This regime is promising for non-
linear measurement schemes capable of measurement sensitivities surpassing

the standard quantum limit.

In the crossover regime between these two limits, the response of the system
near the parametric instability threshold is characterized by a divergent me-
chanical susceptibility and a diverging response time. In this regime, the system
exhibits mechanical bistability, a hysteretic response and critical slowing down.
This regime is of interest as it offers a mechanical realization of a second order
phase transition for the investigation of nonequilibrium critical dynamics, the
quantum-to-classical transition and the influence of a non-Markovian reservoir
on such critical phenomena. These results will be discussed elsewhere. Due
to the combined presence of low intrinsic dissipation and optomechanical com-
patibility, such nonlinear mechanical systems are promising for extending these

studies from the classical realm deep into the quantum regime.
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B.8 Supplementary Information

B.8.1 Calculation of fluctuation spectra in the presence of ther-

mal noise

For both the below and the above threshold regimes, we obtain the correlations
that develop between the resonator modes in the presence of the pump drive, by
analyzing the coupled equations for the resonator modes under the influence of
a classical actuation of the pump /substrate mode along with thermomechanical

Langevin noise forces acting on the membrane and substrate modes.

We distinguish between the mean displacement and the fluctuations by writ-
ing x;; = (A;; + 6A; j)e " where (6A;;) = 0. The coupled equations for the

fluctuations can be written as,

WA, —Y; 0 iK,Aj. WoA;
2] SA; |=| YO -y, ik JA;‘ 0A;
OAg iksA; iksA;  —ys SAg
0 ikAs 0 WoA: YyxiFi

+| WiAs 0 0 || 6Ar |+i| yuF,
0 0 0 6A; YsxsFs
where we have defined coupling parameters,

8ViXk _ 8
2 2mka)k

K

. keli,j,S] (B.11)

for notational simplicity. The thermomechanical noise forces are assumed to be

white noise correlated and obey,
(Fi(0)) =Fi(DF (1)) = 0, (B.12)

<F,(I)Fj(t +7)) = 8)/,~ml-kBT5,~j6(T) (Bl?))
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We decompose the complex displacements into real quadratures according to

SA = 6d + i6f and where 6A = (6A;,6A;,6As5)". Correspondingly the noise, v =

ityixiFi,yix iFj, ysxs Fs)'is also decomposed into real and imaginary parts, v
V. + ivg . Expressing equation (B.11) in terms of these quantities gives,
6@ = M,6a@+v, (B.14)
B = MyoB+vy (B.15)
For the general case, valid both above and below threshold,
v FilAs| kilA]
M, s = % FilAsl  —y; o KilAl (B.16)
—Ks |Aj| ~ks|Ail - =ys
and the elements of v, satisfy (v;) = 0, (w(t)vi(t + 7)) = Zf—f}?éklé(r). In writing
equation (B.16), we have made a choice for the pump drive phase (¢s = 0) and
the resonator mode detection phases (¢;; = 0). In general, these phases can
also be chosen such that there is a coupling between the 6@ and 68 quadratures.
When the pump drive phase is not fixed, but evolving in time, for instance with
the pump drive being detuned, this coupling is physical and cannot be made to

vanish through a suitable choice of detection phases.

The noise spectral density in the steady state is obtained by taking the ex-
pectation value after Fourier transforming and inverting equations (B.14, B.15),

and are given by the matrix equation,
1 R -
Sajp(@) = 5=(Mayg + iwl) ‘DM ; — iwl)™! (B.17)

where I is the identity and

2 00
D=(why=ksT| 0 20 (B.18)
0 0 = .
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is a matrix characterizing the diffusion due to thermal forces. The variances in
steady state can be obtained from the spectrum using the Wiener-Khintchine

theorem, by integrating the fluctuations over frequency, i.e.

O'Q/ﬁ = f Sa/ﬁ(w)dw (Blg)

B.8.2 Calculation of fluctuation spectra for finite pump detun-
ing

For finite pump detuning below threshold, the actuating force is a slowly vary-

—iAt

ing function of time, i.e. Fs = |Fsle”™® where the drive frequency w; = ws + A.

This results in a pump amplitude given by Ag = i|Agle™™".

Linearizing about the steady state amplitude, i.e Ay = A; + A(r) where k €
[i, j,S], with A;; = 0, and defining the vectors SA = (5A;, 6A,)" and 6V = (v;,v))T,

the relevant equations of motion for the fluctuations of the resonator modes

reduce to,
> i 0 -
200 = - 7 0A
0 v
0 KilAsle ™|
- OA" + 2V (B.20)
Kjlfisle‘m’ 0

iAr
2

By going to a frame rotating at 3, we rewrite 6A = 6Be” in terms of which

equation (B.20) becomes,

w8 = | 6B — iASB
0 vy
O Ki|A_S | - At
- | 5B + 27e % (B.21)
k|As| 0
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where 6B are the complex amplitudes of motion, measured at frequencies that
are detuned from the individual mechanical modes w;; by 5. We rewrite the
complex amplitudes in terms of the real quadratures «; ;, 5; ; and decompose the
noise term into real and imaginary parts, i.e. 68 = 6@ + i6f and ¥ = #, + iv, in

terms of which the equations of motion become,

: A S
60 = Maod - 558+, (B.22)
> - A
B = Myop+ 56& + Vg (B.23)
where
1 —Yi FiilAs|
My = ) .
FiilAs| —Yj

and the elements of ¥, s satisfy (vi,) = 0,7 € [@,Bl; k € [i, jl and (v, (v, (t+ 7)) =

VBT 5,18, O(T).

P

The coupling between the 6@ and 68 quadratures of the individual oscilla-
tors resulting from the detuned drive is apparent in the above equations. The
steady state correlations between these quadratures can be obtained by form-
ing the following 4 dimensional vectors; Z = (6a;, 6a;, 68;,9B))" = (6@, 6ﬁ)T and

v = (¥, V)", in terms of which the equations of motion become,

Z = MZ+v
oM
T M

and I is the 2 x 2 identity matrix.

The noise spectral densities are obtained by solving equation (B.24) in fourier

space, as before. The spectrum in the steady state is,

S(w)

(Z(w)Z(a))T )

1
2—(M +ioD)'DMT - iwI)™!
T
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where I is the identity and

Vi . 0 0
i (B.24)
0 0 XL 0

miw;

D = (vw!) = kT

0 0 0 %

We construct composite quadratures x,. = (@; + @;)/ V2, y. = B+ )/ V2 as
before and represent the fluctuations in these quadratures by the column matrix,
Z. = (6xy,0x_,8y,,0y-)", which is related to Z by
11

1 1 -1
V210 0 1 1

0 0 1 -1

The correlations of the composite quadratures are therefore given by,
Se(w) = (Ze(w)Zo(w)") = RSR”
We consider the case where the frequencies of the resonator modes are identical

and the losses are symmetric (5, = 6, = 0). For this case, the diffusion matrix

_ ksTy

mw?

The correlations between the composite quadratures in this case are given
by,
S XXy 0 Sx+s)’+ 0

S.(w) = (B.25)

0O S, 0 8§,

where the non zero correlations are as indicated above. There are no correla-
tions between (x,, x_) and (y,, y-), given our choice of detection phases and the

fact that we consider the case 6, = 6, = 0. The correlations in equation (B.25)
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evaluate to,

S . (W) S yeys (W)
ksTy 2 (A2 +92(1 % 1) + 40?)
mw?* g (41{1)2 + /li) (4a)2 + /l%)
Sey (@ = 8y (w)
kgTy 4A (yu + 2iw)
mw* (4(1)2 + /ﬁ) (4w2 + /l%)
= Sy y(-w)=8, ; (-w)

where 22 = y? (1 + ,uz) — A? £ 2y +Jy}u® — A2. The variances in the steady state
obtained using the Weiner-Khintchine theorem are,

ksTy\[(A2+ 2L = 22)
j— + —_—
= mw? A (AL + D) As

S
=
-

|

0-)]$ny
Unlike the case of zero detuning, we obtain non-zero steady state correlations

between the x and y quadratures,

- _ kgTy 2Ayu s
e mw? | A, A (A, +A) "

The correlations between the x. and y. are now proportional to the drive detun-

ing.
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APPENDIX C
EMERGENT PHASES AND NOVEL CRITICAL BEHAVIOR IN A
NON-MARKOVIAN OPEN QUANTUM SYSTEM

This chapter will be published in Physical Review A (2018) as Emergent phases
and novel critical behavior in a non-Markovian open quantum system, by H. F.
H.Cheung, Y. S. Patil and M. Vengalattore. In this work, H. F. H. Cheung and Y. S.
Patil carried out the modeling and performed the calculations. M. Vengalattore
supervised all stages of the work. All authors contributed to the preparation of

the manuscript.

C.1 Abstract

Open quantum systems exhibit a range of novel out-of-equilibrium behavior
due to the interplay between coherent quantum dynamics and dissipation. Of
particular interest in these systems are driven, dissipative transitions, the emer-
gence of dynamical phases with novel broken symmetries, and critical behavior
that lies beyond the conventional paradigm of Landau-Ginzburg phenomenol-
ogy. Here, we consider a parametrically driven two-mode system in the pres-
ence of non-Markovian system-reservoir interactions. We show that the non-
Markovian dynamics modifies the phase diagram of this system resulting in
the emergence of a novel broken symmetry phase in a new universality class
that has no counterpart in the corresponding Markovian system. This emer-

gent phase is accompanied by enhanced two-mode entanglement that remains
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robust at finite temperatures. Such reservoir-engineered dynamical phases can
potentially shed light on universal aspects of dynamical phase transitions in a
wide range of non-equilibrium systems, and aid in the development of tech-
niques for the robust generation of entanglement and quantum correlations at
finite temperatures with potential applications to quantum control, state prepa-

ration and metrology.

C.2 Introduction

Due to the commensurate influence of quantum coherence and dissipation,
the dynamical behavior of open quantum systems conforms neither to the
framework of unitary quantum evolution nor to thermodynamic descriptions
[230, 231]. Motivated by various applications to quantum information science,
experimental realizations of such open systems have been developed in plat-
forms spanning trapped ions [232], circuit-QED systems [233], optomechanical
systems [78] and hybrid quantum systems [1]. The exploration of novel dy-
namical phases and the development of techniques for robust quantum state
preparation and control in these systems presents significant theoretical and ex-
perimental challenges that lie at the interface of atomic physics, quantum optics,

and condensed matter physics.

In addition to the traditional approach of Hamiltonian design, open quan-
tum systems are amenable to control by modifying the nature of their envi-
ronment. As such, the concept of reservoir-engineering [105] has emerged as a
promising paradigm for the realization of novel states of open and driven quan-

tum systems. In certain cases, it has been shown that reservoir-engineering
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can be used to coax the open quantum system into phases that might not
be accessible through more conventional forms of quantum state preparation
[167,106]. Aside from presenting alternate routes to quantum state preparation,
such reservoir-engineered quantum phases present intriguing questions in their
own right. For instance, it is unclear to what extent driven, dissipative transi-
tions in open quantum systems accommodate the central paradigms of scale
invariance, symmetry breaking and universality that underpin our understand-

ing of equilibrium and quantum phase transitions.

Here, we explore the driven, dissipative transitions of a parametrically
driven two-mode quantum system in the presence of a non-Markovian environ-
ment. This is a minimal physical realization of the parametric oscillator model
[170, 234] and is closely connected to the open Dicke model [121, 145, 148], the
superradiant phase transition [116] and the Lipkin-Meshkov-Glick model [235].
In the presence of a Markovian reservoir, it has been shown that this system
exhibits a non-equilibrium phase transition into an ordered state that develops
beyond a critical magnitude of the external drive [228]. Further, recent work
has shown that the presence of a sub-ohmic reservoir modifies the critical expo-
nents of this non-equilibrium transition while preserving the steady-state phase

diagram [155, 236, 142].

In this work, we go beyond these prior results and identify a class of exper-
imentally accessible non-Markovianity that leads to significant changes in the
phase diagram of this system, leading to the emergence of a dynamical phase
with novel broken symmetries and critical behavior that is distinct from that ob-
served in the Markovian system. We also demonstrate that this novel emergent

phase manifests significantly enhanced correlations and entanglement than can
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be realized in the corresponding Markovian system. This two-mode entangle-
ment is shown to persist even at finite temperatures and is a unique feature
of the non-Markovian system-reservoir dynamics that allows for the backflow
of information from the environment back into the system [237, 238]. This ro-
bust entanglement is distinct from Markovian system-reservoir dynamics that
usually results in an irreversible loss of information and correlations into the
environment. As such, our work points to an experimentally realizable instance
where reservoir engineering techniques aid in the creation of robust, finite tem-
perature correlations and entanglement with applications to various forms of

metrology and quantum information processing.

C.3 Model

The Hamiltonian of our system is [150, 83]
H/h = Z iy — xRpRiky — (Fpe ™@r'al, + h.c.)

where the indices k = {i,ks, P} denote the idler, signal and pump modes at fre-
quencies wy, and @, denote their annihilation operators. The second term repre-
sents a two-mode interaction of strength y between the signal and idler modes
mediated by the actively driven pump. The third term represents the classical
drive of the pump mode with magnitude Fp at its resonant frequency wp. The
influence of the reservoir is incorporated through a master equation [151] and

leads to Heisenberg-Langevin equations of the form

1 !
ai = =3 f y(t —1)a(f')dl’ + igalap + if;
1 3 ]
a, = _Ef y(t—t’)as(t')dt’+igajap+ifs
ap = —%ap+iga,~as+in
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where y(f) is the dissipation kernel in the rotating frame, and is related to the
Langevin forces f;; through the fluctuation-dissipation theorem, and the nor-
malized coupling strength is g = yx¢,x0 sx0 p With xq ;5 p, denoting the zero point
amplitudes of the respective modes. In the above, we have made the rotating
wave approximation, assumed that wp = w; + w,; and that the damping rate of
the pump mode yp is much larger than those of the signal and idler modes, in
close accordance with experimental realizations of this model [150]. The equa-
tions of motion are invariant under the transformation (a;,a,) — (a;e™, a,e™®)
for ¢ € [0,27). In addition, the presence of the classical drive at the pump fre-
quency implies that the equations of motion are also invariant under the trans-
formation (&, ay, ap) — (21;, al, —&I,). Thus, the physical system possesses both a

U(1) symmetry and a Z, symmetry.

For a Markovian reservoir, i.e. y(f) = y,d(t), this system exhibits a continu-

ous transition at a critical pump amplitude F,, = 72—;0 from a disordered (para-
metric amplifier) phase to an ordered phase characterized by parametric self-
oscillation of the signal and idler modes. This transition is accompanied by
the spontaneous breaking of the U(1) symmetry related to the difference be-
tween signal and idler phases [170, 83]. Similar phenomenology also arises in

the closely related open Dicke model [121, 149].

Here, we consider the case where the signal and idler modes are in contact

e—l/Tr

with a reservoir through a dissipation kernel y(f) = v,

— where 71, represents
the coherence time or ‘memory’ of the non-Markovian reservoir. This form of
non-Markovian dynamics arises naturally in the context of several cavity op-
tomechanical systems [239, 150, 83, 218] as well as hybrid systems in which

an optomechanical system is coupled to coherent ensembles of quantum spins
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Figure C.1: (a) Schematic of the two-mode system. (b) The phase dia-
gram as a function of the drive strength u = Fp/F, and the
normalized reservoir decay rate (y,7,)"'. The color scale indi-
cates the least negative real part of the eigenvalues A of the
dynamical matrix (see text). Critical points and phase bound-
aries (white dashed lines) correspond to the vanishing of this
real part, i.e. a divergent relaxation time. The non-Markovian
system-reservoir dynamics leads to the formation of excep-
tional points both in the disordered phase and the U(1) phase.
The trajectory of these exceptional points is indicated by the
green dashed lines. (see text).

[240, 241].

C.4 Mean field solutions and the phase diagram

The Heisenberg-Langevin equations yield distinct steady state dynamical

phases for this system. Such steady state solutions for the signal and idler
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modes can be represented by the form a;; = |a; e+ e ', The Heisenberg-
Langevin equations can be linearized around these steady state solutions and
cast in Fourier space as —iwa = Xa + v (see Supplementary Information, Sec-
tion C.9.3). Here, a = (a;, a,, ap)’, and the noise forces v are zero-mean gaussian
variables whose correlation function is related to the dissipation kernel via the
fluctuation-dissipation theorem. The eigenvalues A of the inverse susceptibility
matrix (or the dynamical matrix) —X — iwl determine the low energy eigenspec-
trum and steady-state phase diagram of this system. Phase boundaries between
dynamical states of distinct symmetries are associated with a vanishing of the
least negative real part of the eigenvalues 4, i.e. a divergent relaxation time
[122, 242]. The stability of the mean field dynamical phases to generic perturba-
tions is indicated by non-positive real parts of the eigenvalues. The mean field
solutions of this non-Markovian system allow for three stable dynamical phases

(Fig. C.1).

Disordered Phase : - In the limit of small pump drive, the intrinsic dissipation
dominates the dynamics of the system. The steady state solution has a vanishing
amplitude of the signal and idler modes. The nonlinear interaction between the
two modes realizes a parametric amplifier with a phase-dependent gain that
induces squeezing of composite quadratures formed from linear combinations
of the signal and idler quadratures [83]. We denote this regime as the disordered

or parametric amplifier (PA) phase.

U(1) Phase : - We first consider the regime of small reservoir coherence time,
ie. (yor,)"' > 1. Note that the Markovian regime is obtained in the limit
(yo1,)"" — co. For a normalized pump drive u = Fp/F., > 1, the signal and

idler modes exhibit parametric self-oscillation at their resonant frequencies w; .
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The steady-state solutions are g, ; = i @eii‘ﬁ/ 2 Ju = 1. The U(1) symmetry corre-
sponding to the unconstrained phase difference ¢ between the signal and idler
modes is spontaneously broken at the phase boundary y., = 1. As such, we
denote this as the U(1) phase. These solutions are consistent with the corre-

sponding phases in a purely Markovian system.

U(1) X Z, Phase : - In contrast, as the coherence time 7, is increased, the sys-
tem is qualitatively modified due to the competing effects of dissipation and
reservoir coherence. As the timescales of these processes become commen-
surate, the eigenvalues morph into complex conjugate pairs analogous to 7~
symmetry breaking. For (yy7,)"! < 3, a new limit cycle solution emerges given
by the solution @; o« ie?e™™ \Ju = p.,, @, o« ie”>e™ \Ju = p,,, or by the solution
a; o« ie®?e™ \Ju =, a, o ie”?e” M \Ju=u,. These solutions correspond re-
spectively to a clockwise or counter-clockwise precession of the relative phase
between these modes at an emergent limit cycle frequency A = ;' /2% — 1 that
depends solely on the environmental parameters. The underlying Z, symme-
try reflecting these two choices is thus spontaneously broken in this limit cycle

phase. Further, the critical drive strength monotonically decreases as pc, = .

In this emergent limit cycle phase, the signal and idler modes exhibit self-
oscillatory behavior not at their nominal resonances but at shifted frequencies
w; = w; = A, w; = w, F A, with the choice of +A corresponding to a spontaneous
breaking of a Z, symmetry. In contrast to the fixed phase difference between the
signal and idler modes in the U(1) phase, the phases of these modes now oscil-
late at a rate A in this limit cycle phase. To further establish that this is a distinct
phase, we calculate the dynamical states for a fixed drive u > 1 as the reservoir

coherence time is reduced (Fig. C.3). We find that below the phase boundary
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Figure C.2: (a) Schematic distinction between the U(1) and the U(1) X Z,
phases. The former phase is characterized by self-oscillation
of the signal and idler modes with a spontaneously chosen
phase difference ¢ between these modes. In contrast, the latter
phase is further characterized by a limit cycle at an oscillation
frequency A. There are two possible manifestations of such a
limit cycle, corresponding to the choice of the sign of the limit
cycle frequency. A particular choice of this sign spontaneously
breaks the Z, symmetry.

(yot,)™' = 1, the limit cycle frequency A continuously grows from zero with its
magnitude increasing as the square root of the distance from the critical point.
We also compute the spectrum of A using a linearized equation, and find that
its variance diverges at the U(1) — U(1) X Z, phase boundary, (y,7,)™" = % (see
Fig. C.3), Supplementary Information, Section C.9.6). The square root depen-
dence of A below the critical point and the divergence of its noise spectrum are

characteristic of a continuous phase transition with an order parameter A.
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Figure C.3: (b) The transition between the U(1) and the U(1) X Z, phase
versus the normalized reservoir decay rate, (yo7,)”'. The crit-
ical point occurs at (y7,)"" = 1, corresponding to a divergent
variance, Var(A), of the limit cycle frequency A. Below this crit-
ical point, these modes no longer self-oscillate at their nominal
resonances but shift to w; - w; + A,w;, = w, ¥ A, correspond-
ing to a breaking of the Z, symmetry (see inset, bottom). In
contrast to the spontaneously chosen but constant phase dif-
ference between the two modes in the U(1) phase, the phases
of these modes now oscillate (see inset, top) at the frequency
A that continuously grows from zero below the critical point.
The calculations in this figure are performed for y = 2.

C.5 Effect of fluctuations and stability of the mean field phases

Here, we examine the stability of the mean field phases to generic gaussian per-
turbations. As described in the previous section, the stability of the mean field
dynamical phases can be analyzed by evaluating the eigenspectrum of the dy-
namical matrix that governs the response of the various modes to perturbations.
In particular, the stability of each of the dynamical phases is indicated by non-
positive real parts of the eigenvalues A of the dynamical matrix [122]. In other

words, the mean field states are stable if the system responds to such perturba-
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tions by relaxing back to its steady state with a finite damping rate. Similarly,
phase boundaries are indicated in such an analysis by a vanishing real part of
the least negative eigenvalue, i.e. a divergent relaxation time. While these calcu-
lations are detailed in the Supplementary Information Section C.9.3, we outline

the procedure and discuss the main implications of these results below.

The Heisenberg-Langevin equations can be linearized around each distinct
steady state solution as a;,p = @;,p + a;,p, Where @, ; p are the respective mean
tield solutions in the three dynamical phases. Cast in matrix form, the response
of the fluctuations da;,p to the noise forces is governed by the susceptibility
matrix (also referred to as the dynamical matrix [122]). As shown in [83], this
analysis is more conveniently performed for the respective cross-quadratures of
the signal and idler modes and takes the form 6% = —(Z(w) + iwI)~'¥ (see Supple-
mentary Information, Section C.9.3). The poles of the susceptibility matrix are
given by complex frequencies w satisfying Det[X(w) + iwl] = 0 and the eigenval-
ues of the inverse susceptibility matrix are defined as A = —iw. The real part of
these eigenvalues correspond to the damping rate of the system’s response to

generic perturbations.

This analysis, performed by linearizing the system around the disordered

(PA) phase, yields the eigenvalues A, = 2 [ - W \/(,u yozT )? = 5=| Deep
in the Markovian regime, (y,7,)"' > 1, these eigenvalues are purely real and
negative for p < 1 indicating the stability of this phase. As the reservoir coher-
ence time is increased, the eigenvalues remain real and negative in the vicinity
of the critical point u = 1 (orange curves in Fig. C.4). Similar analysis can

also be performed by linearizing the system around the mean field solutions for

the U(1) and U(1) x Z, phases indicating that these solutions too are stable to
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generic perturbations in their respective domains. This stability is illustrated
for the three phases for representative choices of the parameter (y,7,)”! in Fig.

C4.

220



(b)

Figure C.4:

The behavior of the low lying eigenspectrum corresponding to

the disordered phase (orange), U(1) phase (green) and U(1)xZ,
phase (blue). The eigenvalues are obtained by linearizing the
equations of motion around the steady state solutions in the
three different phases. Shown here are two eigenvalues with
the lowest negative real parts for each phase. Figures (a) to
(c) demonstrate the trend with increasing reservoir coherence
time 7, showing the relative positions of the exceptional point
(blue circle) and the critical point (green circle) vs the drive
strength . For the disordered phase (orange traces), the imag-
inary part of the eigenvalue is represented as the width of
the eigenmode. The exceptional point corresponds to a coa-
lescence of the eigenvalues and eigenmodes and a vanishing
imaginary part. The critical point occurs when the disordered
phase becomes unstable (Re[1] > 0) and gives way to the bro-
ken symmetry phases. (a) In the regime 3 < (yo7,)"' < 2, the
exceptional point occurs before the critical point governing the
transition to the U(1) phase. The eigenvalues are purely real in
the vicinity of the critical point. As such, the critical behav-
ior in this regime can be mapped onto a supercritical pitch-
fork bifurcation. (b) At (y,7,)"! = %, the exceptional point and
the critical point coincide, i.e. the real and imaginary parts
of the eigenvalues vanish simultaneously at the critical point,
indicating the emergence of the U(1) x Z, phase. (c) Deep in
the non-Markovian regime, i.e. (yo7,)”" < %, the critical point
occurs before the exceptional point and the transition to the
U(1) X Z, phase occurs when the eigenvalues are purely imag-
inary. Here, the critical behavior corresponds to a supercritical
Hopf bifurcation. The displayed eigenspectra correspond to
(@) (yot,)~' = 1.25, (b) (yo7,)! = 0.50, and (c) (yo7,)~! = 0.15.
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In addition to confirming the stability of the mean field phases, the above
analysis also sheds light on other features of this system that arise from the non-
Markovian system-reservoir interactions. In particular, it reveals the emergence
of new phenomenology associated with the presence of exceptional points
[243, 244] in the phase diagram. For (y,7,)"' > 2, the eigenvalues correspond-
ing to the disordered phase are purely real and the system can be mapped onto
the Markovian system. However, as the coherence time of the reservoir is in-
creased, the eigenvalues morph into complex conjugate pairs for sufficiently
small drive u. This qualitative shift in the nature of the eigenvalues from purely
real to complex conjugate values occurs at a distinct point in the system where
two eigenvalues (and their corresponding eigenmodes) coalesce. Such distinct
points are referred to as exceptional points and are associated with unique topo-

logical properties akin to a Berry’s phase [244].

In the disordered phase, we find that the locus of exceptional points is de-
scribed by the contour (uyo7, + 2)* — 8yo7, = 0 (see Supplementary Information,
Section C.9.5). Similarly, the contour of exceptional points in the U(1) phase is
described by the equation 4 +4y,7,(4—8u)+((2u—3)yo7,)* = 0. As seen in Fig. C.1,
the trajectories of these exceptional points within the disordered and U(1) phase
meet at the multicritical point 4 = 1, (yo7,)”" = 1. At this multicritical point, the
exceptional points coincide with a critical point, i.e. both the real and imaginary
parts of the eigenvalues A simultaneously vanish, heralding the emergence of

the U(1) x Z, phase.

The relative positions of the exceptional points and the phase boundary is
shown in Fig. C.4 for various regimes of reservoir coherence times. For small

reservoir coherence time with (yo7,)™! > %, the exceptional point occurs for
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pump drives u < 1. As such, the eigenvalues of the disordered phase are purely
real near the critical point (Fig. C.4(a)). As the reservoir coherence time is in-
creased, the exceptional point approaches the critical point ¢ = 1 from below. In
contrast, for large reservoir coherence times (yo7,)™" < %, the exceptional point
occurs for values of pump drive beyond the critical pump strength. As such,
the eigenvalues corresponding to the disordered phase are purely imaginary
at the critical point separating the disordered phase from the U(1) x Z, phase
(Fig. C.4(c)). At the multicritical point (yo7,)”! = 1, the critical point y,, = 1
coincides with the exceptional point and the real and imaginary parts of A, si-
multaneously vanish (Fig. C.4(b)), leading to non-reciprocal behavior and the

simultaneous breaking of a discrete (Z,) symmetry in addition to the U(1) sym-

metry related to the signal-idler phase difference.

C.6 Novel critical behavior

In addition to the emergence of the novel U(1) x Z, phase, the presence of the

non-Markovian system-reservoir interactions also result in novel critical behav-

ior in this system. Note that the phase diagram defines three phase transitions :

the PA — U(1) transition, the PA — U(1) X Z, transition, and the U(1) — U(1) X Z,

transition. These phase boundaries meet at the multicritical point defined by
1

the parameters y = 1,(yo7,)”" = 3. Below, we discuss the critical behavior at

each of these phase boundaries.

The PA — U(1) phase transition : - In the Markovian limit of this system, i.e.
(yot,)"" > 1, the transition into the U(1) phase occurs at the normalized drive

amplitude u = 1. Accordingly, we can define the reduced distance from critical-
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ity as € = (u — 1). The eigenvalues A corresponding to the disordered phase are
purely real in the vicinity of the phase boundary. Moreover, the least negative
eigenvalue scales near the critical point as A(€) ~ ¢, thereby defining the critical
exponent vz = 1 in this regime. Further, the steady-state amplitudes of the sig-
nal and idler modes in the U(1) phase scale as |a;,| ~ e, defining the critical
exponent 8 = 1/2. Lastly, the variance of this steady-state amplitude and the
susceptibility of this order parameter diverges near the phase boundary accord-
ing to the relation Var(a;,) ~ le|™!, defining the critical exponent y = 1. These
exponents are identical to the PA — U(1) phase transition in the Markovian sys-
tem. We also note that this phase transition can also be viewed as a supercritical

pitchfork bifurcation [245].

The PA — U(1) X Z, phase transition : - In the regime (yo7,)™" < %, the transi-
tion between the disordered phase and the U(1) x Z, phase occurs at the critical
point u., = 70% Defining the reduced distance from criticality as € = ";—“, the
eigenvalues A corresponding to the disordered phase are purely imaginary in
the vicinity of this critical point, i.e. A(e) ~ € + i(A + O(¢)). Due to the non-zero
limit cycle frequency A near the critical point, this transition corresponds to a

supercritical Hopf bifurcation [246, 247] with an additional Z, symmetry.

From the above discussions, it can be seen that the transition out of the dis-
ordered phase morphs from a supercritical pitchfork bifurcation for (yo7,)™"' > 3
to a supercritical Hopf bifurcation for (yo7,)™! < % At the multicritical point
u = 1L, (yr1,)" = 1/2, the eigenvalues corresponding to the disordered phase
coalesce and the critical point coincides with an exceptional point, i.e. both

the real and imaginary parts of the eigenvalues simultaneously vanish with

A ~ €+ 2iV]el. As such, in addition to the divergent relaxation time represented
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by the vanishing real part of the eigenvalue, the vanishing imaginary part sets
an additional divergent timescale near criticality. This latter divergence corre-
sponds to the period of the limit cycle in the U(1) X Z, phase at this multicrit-
ical point. Further, this divergent period of the limit cycle at the critical point
also implies that the transition cannot be mapped onto to a conventional super-
critical Hopf bifurcation. The dual divergence of the relaxation and oscillation
timescales, corresponding to the coincidence of a critical point with an excep-
tional point, is a unique feature of the non-Markovian dynamics. Additionally,
the variance of the steady-state amplitudes at the multicritical point diverges as

Var(a; ) ~ |e| 2, defining the critical exponent y = 2.

The U(1)-U(1)XZ, phase transition : - The phase transition between these two
phases can be accessed by tuning the normalized system-reservoir coherence
time (yo7,)"'. The phase transition occurs at (y,7,)”" = %, and the appropriate
reduced distance from criticality is given by € = 2(yo7,)™" — 1. As described ear-
lier, the limit cycle frequency A grows as O(Vle]) and the amplitude of the limit
cycle is independent of the distance to the critical point. Again, these scaling
relations are distinct from limit cycle behaviors found in other driven dissipa-
tive systems or a conventional supercritical Hopf bifurcation where instead, the
frequency of the limit cycle scales as O(1) near criticality while the amplitude of

the limit cycle scales as O(Ve) [245, 123, 248].
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C.7 Enhanced squeezing and correlations due to non-Markovian

dynamics

Next, we discuss the two-mode squeezing and entanglement in this system and
the effect of non-Markovian dynamics on the observed entanglement. As is
well known from prior work on this model [170, 83], the two-mode interaction
results in correlations, squeezing and entanglement between quadratures of the
signal and idler modes. In comparison to the corresponding Markovian sys-
tem, the presence of the non-Markovian system-reservoir interactions and the
appearance of the exceptional point near the U(1) — U(1) X Z, phase boundary

result in an enhanced degree of entanglement between the two modes.

As shown in [83], the fluctuation spectra and two-mode correlations are ob-
tained from the power spectral densities of the cross-quadratures via the rela-

tion Sy y(w) = 5-(Exy + ia)I)“D(i;Y — iwl)™!, where the diffusion matrix is given

by
4¢% ~, —
| e D 0 0
D= 0 25/ () (ghs + 3) 0 (C1)
0 0 38y (i + 1)
7 YP(Nypp + 5

where 7' (w) = Re[¥(w)] = yom and the thermal phonon numbers are re-
lated to the effective temperature of the modes, i.e. 7y, p = (exp(hz;LT"’) - D\
The steady state variances of the cross-quadratures can be obtained from the

fluctuation spectrum using the Wiener-Khintchine theorem by integrating the

fluctuations,

oxr= [ Su@io
Below threshold, the squeezed and amplified variances (normalized to the
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thermal variances) are respectively given by

2(yot,)™!
Osq -
(I + ) 2(yor,)" + 1)
B 2(yot,)"!
Tamp =

(I = Qo)™ —p)
The squeezed variance at steady state is minimized at u = ., = min(1, 2(yo7,)™").

In particular, close to the multicritical point u., = 1, (yo7,)™" = %, we obtain a

steady state squeezing limit o, = 1, outperforming the Markovian steady-state

. . . _ 1
squeezing limit of oy, = 5.

Above threshold, in the U(1) phase, the normalized variances of the cross-

quadratures are given by
e + 3 20 = D + (rot) ™)
g+ 5 uQROoT) T +2u—1)
(yor,) ™!
uQyot)H +2u— 1)

O, — ©

e +5 20— 1+ (yor)™)

oy, =

+

v +

o =
: g+ 3 QOot) ™ + 20 = 3)
1V (’}/OTr)_l
(1= DCOyot)™" +2u-3)
o — (VoTr)_l
. 1+ 2(yo7,)"!

where x.,y. are the cross-quadratures composed of symmetric and anti-
symmetric combinations of the signal and idler quadratures (see Supplemen-

tary Information, Section C.9.4). Here, we have assumed that 71, = 7i; = 7.

In the U(1) X Z, phase, the non-zero limit cycle frequency A introduces a
coupling between the nominally orthogonal cross-quadratures. Aside from this

modification, the computation of the various variances proceeds as before.

By dynamically varying the pump drive strength u on timescales short com-

pared to y;' and 7,, we can achieve a degree of transient squeezing much
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Figure C.5: (Left) The logarithmic negativity &y as a measure of the bi-
partite entanglement [249, 250] between the signal and idler
modes vs the drive strength u and the normalized reservoir
decay rate (yor,)"". (Right) In the U(1) x Z, phase, the en-
tanglement between the two modes extends well beyond the
quantum regime and can be observed even for large thermal
occupancy of the two modes. The logarithmic negativity is
shown for increasing thermal occupancy 7, vs drive strength
for (yo1,)”" = 1. For comparison, the logarithmic negativity for
a Markovian system with 7, = 5 is shown by the dashed line.

larger than that achievable in steady state [251] (see also Appendix D). In
fact, the variance of the transiently squeezed cross-quadratures scales as (7i,, +
%)#m o l% for large drive strength, in contrast to the Markovian scal-
ing (i + 3)7,; o 3, where iy, is the average thermal population of the signal
and idler modes (see Supplementary Information, Section C.9.4, [83], [251], Ap-
pendix D). This enhancement over a Markovian system is also reflected in the
logarithmic negativity &y = —1log, [min(%‘;, 1)], where o, is the zero point
variance of the cross-quadratures. As can be seen in Fig. C.5, this enhanced de-

gree of entanglement persists even at large thermal occupancy of the signal and

idler modes. We speculate that this enhancement is due to the topological prop-
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erties of the exceptional point and the non-reciprocal behavior of the system in

its vicinity.

C.8 Conclusions

In summary, we consider a parametrically driven two-mode quantum system
and identify a class of non-Markovian system-reservoir interactions that results
in the emergence of a novel broken symmetry phase in this quantum system. We
analyze the phase diagram of this system and show that the emergent phase is
accompanied by the appearance of exceptional points in the system. This emer-
gent phase manifests a larger degree of two-mode entanglement than would be
observed in the corresponding Markovian system. We note that the two-mode
system and the form of non-Markovianity considered here are readily accessible
in cavity optomechanical systems as well as various hybrid quantum systems,
paving the way for experimental demonstrations of these predictions well into
the quantum regime. Future work will extend this analysis to the regime of spa-
tially multimode optomechanical systems and discuss the interplay between
non-Markovian correlations, optomechanical synchronization, spatial fluctua-
tions and driven, dissipative dynamics. In addition to realizing metrologically
relevant optomechanical states, we suggest that this interplay also offers a new
arena for disorder-free optomechanical realizations of dynamical phases with
novel broken symmetries such as have been recently observed in spin systems

[163, 162].
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C.9 Supplementary Information

C.9.1 Equations of motion

The Hamiltonian for the two-mode driven dissipative system is given by [170,
150, 83]

H/h = Z Wl — xipRiks — (Fpeal, + h.c.) (C.2)
k={i,s,P}

In the interaction picture with Hy/h = 3, wk&,t&k, and making the rotating wave
approximation, the interaction Hamiltonian transforms to H/i = —g(&l'&j&p +
a;asa,-) -(F p&; + h.c.) where g = yxo,x0sX0p and xox denotes the zero-point am-
plitude of the respective modes. Here, we have assumed that the pump mode

is actuated by a resonant, classical force and that wp = w; + w;.

Further, the influence of the reservoir on these modes is incorporated
through noise operators f and takes the form H,/hi = — Zk(&z f« + h.c.). For
the signal and idler modes, these noise forces are zero-mean, gaussian random
variables whose two-point correlation is related to the dissipation kernel y(?) in
accordance with the fluctuation dissipation theorem. Here, we assume that the
signal and idler modes are in contact with a colored reservoir with a dissipation
kernel given by y(1—t') = yo1; " exp(—(t—1')/7,)®(t — ') where ©(¢) is the Heaviside
step function. Accordingly, these noise forces satisfy the following relations,

(i) = 0, and (KO (1)) = 6 X (i + 1) 22e™ V7 where iy, = (exp(ie) — 1),

In accordance with typical experimental situations in optomechanical sys-
tems [150], we assume that the pump mode is in contact with a Markovian
reservoir and that its damping rate is much larger than those of the signal and

idler modes, i.e. yp > 7yy. This leads to the Heisenberg-Langevin equations of
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the form

1 !
a = -3 f y(t - )a;(t)dt’ + igalap + if; (C.3)
-
a, = -3 f v(t —t)a,(t)dt’ + igajap +if; (C.4)
ap = —%Clp + iga,‘as +iFp (C5)

Here, we are ignoring the Langevin forces on the pump. As explained in [83],
the pump noise can be ignored in evaluating the dynamical steady-state phases
or the degree of two-mode correlations below threshold. Above threshold, this
pump noise has an appreciable effect on the two-mode squeezing. In our cal-
culations of the squeezing spectra above threshold, this pump noise is included
by assuming that the pump mode is in contact with a Markovian reservoir as

explained in [83].

These equations can be recast by defining the dimensionless amplitudes

Ai,s = aw\/j—fﬁ and Ap = ap% to obtain
. 1] ! ~
A = 51 f y(t — A )l + iyoAAp + iyoﬁ]
(C.6)
. 1] ! ~
A = 5= f Y(t = DA()dE + iyoA;Ap + i’)’ofs]
(C.7)
: 1 . .
Ap = 5 [=ypAp + iypAiA; + iypu] (C.8)
where £, =y, 1\;—5}% fis and we have defined the normalized drive strength u =
Fp/F.. where F,, = 72;“.
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C.9.2 Steady state dynamical phases and mean field phase dia-

gram

We consider the situation where the signal and idler modes are not driven, i.e.
they are only subject to the Langevin forces originating from their coupling to
the colored reservoir. In contrast, the pump mode is actively driven by a classi-
cal force represented by the normalized drive u. In various regimes of the drive
strength 1 and the reservoir coherence time 7,, we consider dynamical steady-
state phases represented by the ansatz

Ay = A (C.9)

AP = Ap (ClO)

Substituting this ansatz into Eqns. (C.6 — C.8), we obtain

- 1 ... - .
_iNAe ™t = —Ee“Af’Aiif(A,-)+i7§A’;Ape‘AS’ (C.11)
_ . 1 .. .
_iMAe = —Ee"AS’Asi/(AS)+i)§A;‘Ape’A"’ (C.12)
1 -
0 = —E’)/pAp + i%AiAse_l(AH—AS)t + l%ﬂ
(C.13)

Here, we have used the fourier transform of the dissipation kernel, y(w) =

[dry(®)e = yo(1 - iwt,)™.

These equations always admit the trivial solution A; = A; = 0,Ap = iu. For
dynamical steady-states with finite signal and idler amplitudes, the above equa-
tions require A; +A; = 0. Hence, below we define A = A; = —A,. Eqns. (C.11,C.12)

together yield the following condition

yA) NMIED N - Yoo
(T - lA) (T + ZA) A; = ZlAPl A, (C.14)

Since y(—w) = ¥*(w), this requires steady-state phases with non-zero signal and
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idler mode amplitudes to satisfy the condition

~ 2 2
(%A) - iA) - %APF (C.15)

= X _jA is real and positive. Further, Eqns. (C.11,C.12) in

indicating that 2 = 2
combination with Eqn. (C.13) yields the following expression for the signal and

idler amplitudes,

~ \2 2

(@) 1+ 2| 2 1A, R + |2 |Ai,s|4]:u2 (C.16)

Yo Yo Yo

= Al = o fu- 2 (C.17)
Yo

Accordingly, we define the critical pump amplitude p., = %o/y0 as the drive
strength beyond which the signal and idler modes develop a non-zero ampli-

tude, i.e. the onset of parametric self-oscillation.

Lastly, given the constraint from Eqn. (C.15) that ¥,/2 be real-valued and

positive, we obtain

1. . |7 (1 votr
“HA) —iA = = Al= “1)er C.18
VB A= ST (21+73A2 ) (C.18)

yielding A = 0, or A = 7;' /%%~ — 1. Note that the latter solution is only mean-

ingful for yy > 27

Based on these relations, we can identify three distinct dynamical phases in

this system.

e In the regime y, < 27, ', the coherence time of the reservoir is small com-
pared to the intrinsic damping time of the signal/idler modes. Here, we
obtain the condition A = 0 and ¥, = ¥(0) = y,. Hence, the critical drive
strength is given by u., = 1. In this regime, for drive strengths u < 1,
the only stable phase is the trivial solution A; = A; = 0,Ap = iu. This is

the disordered or parametric amplifier phase. As the drive strength is in-
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creased beyond p., = 1, the parametric amplifier phase becomes unstable
(Fig. C.4(a)) and gives way to the parametric oscillator phase character-
ized by A;, = ie*®/> \Ju—1,Ap = i. The signal-idler phase difference ¢ is
unconstrained and the emergence of this parametric oscillator phase is ac-
companied by the spontaneous breaking of the U(1) symmetry associated

with the choice of this phase. As such, we denote this to be the U(1) phase.

e In the regime y, > 27!, the coherence time of the reservoir is long com-
pared to the damping time of the signal/idler modes. As seen from
Egns. (C.17, C.18), in this regime the critical point shifts to u., = 2(yo7,)™! <
1. For u < p,,, the only stable phase is the disordered or trivial solution
with A;; = 0. For drive strengths y,.. < y, the disordered phase is unsta-
ble and gives way to a self-oscillating phase with non-zero A, given by
Aiy = e P \r =T, Ap = ipe, with A = 771 (/2% — 1. In this dynamical
phase, the signal and idler modes undergo self-oscillation at frequencies
that are shifted away from their nominal frequencies by an amount A. In
addition to the breaking of the U(1) symmetry associated with the choice
of the signal-idler phase difference ¢, this phase also breaks the discrete Z,
symmetry associated with the sign of the frequency shift A. As such, we
denote this dynamical phase as the U(1) x Z, phase. For u > 1, all three
solutions exist but the trivial solution and the U(1) solution are unstable,

with the U(1) x Z, solution remaining as the only stable dynamical phase.

These three dynamical phases along with the phase boundaries demarcating

these phases are shown in Fig. C.1 of the main text.
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C.9.3 Exceptional points and stability of mean field dynamical

phases

The stability of the mean-field dynamical phases to generic perturbations is
demonstrated by evaluating the eigenvalues of the susceptibility matrix X + iwl
as discussed in the main text. In particular, a stable dynamical phase is indicated
by a susceptibility matrix whose eigenvalues have non-positive real parts. We
outline the calculation of these eigenvalues for each dynamical phase below. We
tirst distinguish between the mean amplitudes and the fluctuations by writing
Ais = (Ais+0A;,)e " with the mean amplitudes in each dynamical phase given

by the expressions in the previous section. The equations of motion Eqns. (C.6

— C.8) yield
SA; t Iyt 1) 0 iZAS@ 1) || SA()
0| A, | = [ mdt’ 0 -3yt —1) iRAS(—1) || 6A)
SAp A1t -1) iZASt-1) -Z61-1) S0Ap(t)
0 iBAp 0 || 64 Yofi(0)
+ | %4, 0 0 || 0A: +% Yofu(®) (C.19)
0 0 O 0A}, Ypl

As shown in [83], the complex fluctuations can be decomposed into real quadra-

tures in the form §A = 6@ + i3 such that the above equation can be recast as

5d

f di'M,(t — t)éa(t') + v, (1) (C.20)

[ee]

5B f df' My(t — £)SR(E) + va(2) (C.21)

0]
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where v, 4 are the Langevin noise terms and
—y®  FYlApls®) yolAle()
1 _ _
Mag(D) = 5| Fyldpls®) =) yoldis() (C.22)

~yplAdS(r)  —yplAdo(t)  —ypd()
Further, we define cross-quadratures of the signal and idler modes according to

the relations x. = (o; + @,)/ V2,y. = Bi £ B5)/ V2 such that the two-mode cor-
relations due to parametric down-conversion are manifest as amplification and
squeezing of the above quadratures. The fluctuations of these cross-quadratures

are related to the original quadrature fluctuations 6@, 68 via the relations

1 1 0
. 1
6X =Réd@; 6Y=Rsf: R=—| 1 -1 o (C.23)
V2
0 0 V2

where 6X = (6x,,0x_,0xp)’,8Y = (6y,,0y_,6yp)". The fluctuations of the cross-

quadratures are governed by the equation

0,0X = f dt'Zx(t — )X (1) + vx(1) (C.24)

[Se]

0,0Y = f dt'Zy(t —t)OY () + vy(?) (C.25)

[Se]

where Zyy = RM, sR” and vxy = Rv, . By moving to the frequency domain, the
above equations can be recast as

0xX_
oxp .
= - +iwl)"'Vv (C.26)
55

53
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where §x, denotes the fourier transform of dx, etc. and

Xy 0
Y(w) = 3 (C.27)

0 Xy
We note that in the U(1) x Z, phase where A # 0, the susceptibility matrix
does not remain block diagonal due to correlations between the various cross-

quadratures. However, the procedure for evaluating the eigenvalues and stabil-

ity remains the same.

The poles of the susceptibility matrix are defined by complex w satisfying
Det[-X —iwl] = 0 and the eigenvalues of the inverse susceptibility matrix are de-
fined as 1 = —iw. The real part of these eigenvalues corresponds to the damping
rate of the system’s response to generic perturbations. As such, the stability of
the mean field dynamical phases is indicated by a non-positive real part of the
eigenvalues. Critical points governing continuous transitions between distinct
dynamical phases is indicated by a vanishing of this real part or equivalently, a
divergent relaxation time. The linearization around the trivial (parametric am-

plifier) solution yields the eigenvalues
2 2 8
(p—-——)= \/ p+ =)~
YoTr YoTr YoTr

As such, for (yo7,)"! > 2, the eigenvalues are purely real and the system can be

_%
=T (C.28)

mapped onto the Markovian system. As the coherence time of the reservoir is
increased, the eigenvalues morph into complex conjugate pairs for sufficiently
small drive strength u. This change from real eigenvalues to complex conjugate
eigenvalues occurs at a point where the two eigenvalues (and corresponding
eigenmodes) coalesce. Such points are called exceptional points. In this system,
the exceptional point approaches the critical point from below as the coherence
time 7, is increased. For (y7,)™" = 3, the exceptional point and the critical point

coincide at u = 1. This heralds the emergence of the U(1) X Z, phase. For even
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larger reservoir coherence times, (yo7,)”" < %, the exceptional point occurs be-
yond the critical point governing the transition from the disordered phase to
the U(1) X Z, phase. This behavior of the exceptional point relative to the critical

point is depicted in Fig. C.4 of the main text.

Similar linearization can also be performed around the U(1) and the U(1)XZ,
phases using the formalism described above. The calculations, while straight-
forward, are laborious and are not reproduced here. The real parts of the re-
spective eigenvalues as a function of drive strength 1 and normalized reservoir
coherence time (y,7,)”! are shown in Fig. C.4. As can be seen, the real parts
of the eigenvalues of the susceptibility matrix for these phases are negative for
large u indicating that these dynamical phases are indeed stable to generic per-

turbations.

The Markovian case is retrieved from Eqn.(C.28) in the limit 7, — 0, i.e.
Ay = 7—20(/1 —1). Note that - — 1/7, corresponds to the rate at which the reservoir
follows the system, and can be adiabatically eliminated in the limit of small 7,.
The exponent with which A vanishes, A4 ~ |e], where € = (u—pu.,)/u.r is the reduced
distance from criticality, defines the conventional critical exponent vz for the

phase transition: vz = 1 in the Markovian case. In contrast, for (yo7,)™! = 1/2, the

eigenvalues are

A= 2 w- 12 V= Du+3) (C29)
and thus scale near criticality as
i:}f[ei M]z?[ei%\/—_e]~ei2i e (C.30)

Both the real and imaginary part of the eigenvalue vanish at criticality, with the

&

real part being proportional to |e| and the imaginary part being proportional

to Vlel. While the divergent dissipation timescale is set by the vanishing real
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part, and also occurs in the Markovian case, the vanishing imaginary part of A
sets an additional divergent oscillation timescale for the system near criticality.
This novel critical behavior is solely attributable to the non-Markovianity of the

system-bath interactions.

For (yo7,)™! < 1/2, i.e. across the PA — U(1) X Z, phase transition, the eigen-

values are

Ao = 21— ttr) 1A + O = i) (C.31)

where u,., = yoir < land A = 2+u. (1 — p,) = 7,' 2= — 1. In particular, while
the real part does vanish at criticality (u — p.,), its imaginary part remains finite
at A > 0. Assuch, A(e) ~ e +iA ~ € +i0O(1) as € — 0. Due to the finite limit
cycle frequency at the critical point, this phase boundary can be associated with

a supercritical Hopf bifurcation [245].

C.9.4 Two-mode correlations and entanglement in the steady

state and transient regime

As shown in [83], the fluctuation spectra and two-mode correlations are ob-

tained from the power spectral densities of the cross-quadratures via the rela-

tion
Sxy(w) = %(ﬁx,y +iwl) ' DE}, — iwD)! (C.32)
where the diffusion matrix is given by
1 25 () Fin + 5) o0 0
D=3 0 Y (@)(uns + ) 0 (C.33)
0 0 %?’P(ﬁzh,P +3)

239



where 7' (w) = Re[¥(w)] = 70“(:)—“2 and the thermal phonon numbers are re-

lated to the effective temperature of the modes, i.e. 7y 5p = (exp(hZ’BLT’P) - D\
The steady state variances of the cross-quadratures can be obtained from the
fluctuation spectrum using the Wiener-Khintchine theorem by integrating the
fluctuations,

Oxy = f Sx’y(a))da) (C34)

Below threshold, the squeezed and amplified variances (normalized to the

thermal variances) are respectively given by

2(')/077)_1
s C.35
T4 T U )Qyer)  + ) (C35)
-1
Tamp = 2(70Tr) (C36)

(1 = wQ2yot)™ — )

For a given (yo1,)”!, the squeezed variance below threshold is minimized at
= per = min(1,2(yo7,)"). In particular, close to the multicritical point g, =
1,(yot,)™' = 3, we obtain a steady state squeezing limit o, = }, outperforming

1

the Markovian steady-state squeezing limit of oy, = 3.

To achieve a squeezing better than this steady-state minimum, we can im-
plement a transient protocol, where the pump drive strength u is set to a value
larger than p,., for a period of time that is short compared to y;'. Within this
short duration, pump depletion and saturation effects can be neglected. The
amplified quadrature grows with an exponential envelope, and the squeezed
quadrature decays with an exponential envelope to the asymptote given by the
expression above, yielding a dependence of o, o« ;% for large drive amplitudes.
This protocol works when the absolute amplitude of motion is small enough

that the linearization around the disordered solution remains valid.

Note that by setting 7, — 0, we recover the Markovian case expressions.
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In particular, the degree of squeezing is oy, = ﬁ, and the divergence of the

amplified quadrature is o, = 15, = ;) ~ 1g- In other words, the divergence
of the amplified fluctuations has an exponent —1 in |¢| in the Markovian limit.
In contrast, for (yor,)”™' = 1/2, the divergence of o, has an exponent -2, i.e.
Tamp = ﬁ ~ # A change in this exponent compared to the Markovian case
is another signature of novel critical behavior induced by the non-Markovian

system-bath interactions.

Above threshold, in the U(1) phase, the normalized variances of the various

cross-quadratures are given by

e +5 20— D)(u+ (vot) ™) (yor)™!

X, + Cc.37
7 My + % Ryt )P +2u—-1)  puyot) ' +2u—-1) ( )
Ox. > (C.38)

e +5 20— 1+ (yr)™) (yor,)™!

) + C.39

o i+ Qo) +2u-3) " (u—- DQRyoT) " +2u - 3) (€39)
(VoTr)_l
T T T 200 (C40)

where we have assumed that i1, = 7,; = 71y,

In the U(1) x Z, phase, the non-zero frequency shifts A introduce correla-
tions between the nominally uncorrelated Langevin forces in orthogonal cross-
quadratures. In addition, as mentioned previously, this frequency shift also in-
troduces time-dependent correlations between the various cross-quadratures.
Aside from these modifications, the computation of the various variances pro-

ceeds as before. The final expressions are cumbersome and not reproduced here.

Lastly, the logarithmic negativity is obtained from the squeezed variances

, S . . )
Tsq 1)], where o, is the zero point variance of the cross
Ozpm ’

as &y = —1log, [min(

quadratures. These results are shown in Fig. C.5 of the main text.
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C.9.5 Trajectory of exceptional points in the phase diagram

In general, the non-Markovian equations of motion are more challenging
to solve analytically than the Markovian equations. The exponential non-
Markovian kernel y(t — ¢') considered in this work, however, allows for the
definition of auxiliary variables which greatly simplifies calculations. Defin-
ing h;, = f_t . Tlre‘(t‘”/ “a; (')dt’ and its dimensionless version H;, = h""‘\/i_fW’ the

semi-classical equations of motion in Eqns. (C.6 — C.8) are simplified to a set of

tirst order differential equations —
1

A = > [—yOH,- + iyoAAp + i)/oﬁ] (C41)
H;, = —-Hi/t.+Aj/1, (C42)
A, = % [—)/oHs + iyoAiAp + iyofs] (C.43)
H, = —-H,/t,+A,/7, (C.44)
Ap = % [—ypAp + iypAiA; + iypp] (C.45)

These equations can be further simplified in the mean-field, i.e. in the limit of

zero noise, f;; — 0.

In the disordered PA phase below threshold (u < max[1,2/yy7,]), Ap can be
adiabatically eliminated as Ap = iu, as derived earlier. The complex Eqns. (C.41-
C.44) can then be block diagonalized into decoupled blocks formed by the pair
of cross-quadratures (B := A;,—A;,Hp .= H;— H})and (C := A;+ A}, Hc := H; + H}).
Within the parameter space of B, Hg, the equations of motion are simply

B 12 —yo/2 B
_ YoM Yo (C.46)

HB 1/Tr —I/Tr HB

The exceptional points of this dynamical matrix can easily be evaluated by ex-
plicitly solving for the eigenvalues and eigenvectors. We find that they coalesce

along the contour defined by (7,y0u + 2)* — 87,7 = 0. Only one of the roots of
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this quadratic equation ((yo7,)™' = 1 — /2 + /1 — p) is inside disordered phase.
It corresponds to the eigenmode of the system and reservoir with the least neg-
ative real part of the eigenvalue, and is shown by the dotted contour for u < 1

in Fig. C.1 of the main text. The eigenvalues along this contour of exceptional

points is \/yo/(27,) — 1/7, with the eigenvector (/yo7,/2,1)".

We can similarly compute the exceptional points in the U(1) phase (u >
1, (yor,)"" = 1/2). We linearize the equations of motion about the steady state
solution evaluated earlier, i.e. A;; = ie**? \Ju—1,Ap = i. Writing H,, in terms
of real quadratures, i.e. H;; = H,;, + iH,;,, and denoting the deviations from
steady state values with prefix §, the real quadratures oy, = (5y; + dy;)/ V2 (see
also Eqn. (C.23)) and 6H,, = (6H,; + 6H, )/ V2 evolve according to

5y —voRu—=13)/2 —y0/2 || 6y
% _ Yo(2u —3)/2 —vyo/ y (CA7)

H,, /7, —-1/7, H,,
The contour of exceptional points in the U(1) phase is thus defined by 4+7,y,(4 -

810)+((2u—3)yo7,)* = 0. Both roots of this quadratic equation yield valid solutions
in the U(1) phase. One of them ((yo7,)™' = u—1/2+ \/m), which corresponds
to the system and reservoir’s eigenmode with the least negative real part of the
eigenvalue, is shown by the dotted contour for ¢ > 1 in Fig. C.1 of the main text.

The eigenvalues and eigenvectors are, again, +/yo/(27,) — 1/7, and (\/y07,/2,1)7,

respectively.

C.9.6 Critical behavior of the limit cycle frequency A

As described earlier, the limit cycle phase emerges in the regime (y,r,)™' <
1/2. Below this phase boundary, the limit cycle frequency is given by A =

7! /%= — 1. Parametrizing the distance from the phase boundary as € =
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2(yot,)"! — 1, we see that the order parameter A scales as A ~ |g|"/? with the

critical exponent 8 = 1/2.

For noise small compared to the steady state amplitude R, we can approx-
imate the phase fluctuations as d¢;; = da;,/R (see Eqn. (C.23), [83]). We can
thus express the the phase difference as ¢ = ¢; — ¢, = 5¢; — 5¢, = V25x_/R,
where x_ := (a, — ;)/ V2. Its spectrum is S4y = 25, . (), with S, , (w) =

LE . +iwD'DEL - iwD™". The limit cycle frequency A = 1(¢; — ) thus

has a spectrum Sx = “’TZS so(W) = %Sx_,x_ ().

In the U(1) phase, the power spectral density of the cross quadrature dx_

with unit thermal noise is given by

1 4’)/0
27 WA (4 — 41,70 + THY] + 4w?))

S X_,X_ (w) = (C48)

A factor of 1/w? here signifies that the phase difference ¢ « x_ undergoes dif-
fusion. Note also that this quadrature does not have a u dependence. Thus,
the variance of the order parameter and hence, the susceptibility of the order

parameter in the vicinity of the phase boundary is given by

1~ 1 4y,
Var(A) =— | dw—
ar(d) =7 e LJ “on @ = 4ty + 222 + 40?)
1 1
T2R2272(1/(yo1,) — 1/2) (C49)
=Var(A) ~[(yor,)™ = 1/2]" ~ || (C.50)

This yields the critical exponent y = 1.

This divergent variance of the limit cycle frequency is depicted in Fig. C.3 of

the main text.
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C.9.7 RG flow under time rescaling

It is instinctive to think that the finite system-bath interaction timescale 7, would
rescale to zero under a RG flow, thereby taking the system to the Markovian
limit of 7, — 0. In this section, we show that the system has a RG fixed point
(source) in the phase space of (u, (yo7,)”") at the multicritical point (1,1/2) (see
Fig. C.1 of the main text). This fixed point is clearly distinct from the Markovian
fixed point at (yo7,)"! — o0, and as shown below, the flow around this point can

push the system further away from the Markovian limit.

The first order differential equations of motion in the disordered PA phase
in the zero noise limit, derived earlier as Eqn.(C.46), can be recast as a second

order differential equation in B as

. 1.
B = (BF = 2B + 3-(u — DB() (C.51)
T, 27,
Rescaling time by b, as t' = t/b, we get
Laon o Loyt Lo %00 1By
sz(f) = b( > T,)B(t )+ 27,('u DB(") (C.52)

Note that being a linear equation, B is itself not rescaled. In order to maintain

the functional form of Eqn.(C.51), the renormalized parameters (y;, 7;, 4’) should

satisfy
Yo Lo g1, (C.53)
2 T 2 1
Yoy = »Xu-1 (C.54)
27 27,

Note that these two equations are under-determined in (y, 7,,4"). However,
in order to focus on how the system-bath interaction timescale 7, rescales un-
der this time-rescaling, and how the system flows in the (u, (yo7,)"!) parameter
space, we fix the parameter vy, i.e. constrain y; = y,. Note that y, signifies the

total strength of dissipation, i.e. fooo dty(t) = .
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Figure C.6: RG flow of the system following a rescaling of time, shown in
the (u, (yo7,)"!) parameter space. The open red circle marks an
unstable fixed point at the multicritical point (u = 1, (yo7,)™" =
1/2), distinct from the Markovian fixed point that occurs at
(yo1,)"' = co. Contrary to intuition, the flow shows that un-
der time rescaling, the finite system-bath interaction timescale
need not rescale to zero (the Markovian limit).

We solve Eqns.(C.53 — C.54) for (i, 7)) and evaluate the flow as the vector
field (%,u’, %(y(ﬁ;)‘l). This flow is shown in Fig. C.6. The open red circle marks
the unstable fixed point at (u = 1, (yo7,)"! = 1/2), the multicritical point of Fig.
C.1 of the main text. The flow around this fixed point indicates that the ratio

(yot,)"! can flow to either larger or smaller values, i.e. the system can rescale

either toward or farther from the Markovian limit of (y,7,)™! — .

Note that the above analyses is done by linearizing the system around the
disordered PA solution. While this analysis correctly predicts the presence of
the multicritical point at 4 = 1,(yo7,)"! = 1/2 and the emergence of the limit
cycle phase for (yo7,)™' < 1/2, the interpretation of the RG flow deep within
the U(1) phase or the U(1) X Z, phase would require the linearization of the

RG equations about the respective steady solutions in those phases, and is not
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considered here.
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APPENDIX D
DEMONSTRATION OF ENHANCED FORCE SENSITIVITY USING A
TRANSIENT SQUEEZING PROTOCOL

This chapter will be submitted for peer-review with requisite modifications as
Demonstration of enhanced force sensitivity using a transient squeezing protocol, by H.
F. H.Cheung, Y. S. Patil, L. Chang, S. Chakram and M. Vengalattore. In this work, H.
F. H. Cheung, Y. S. Patil, L. Chang and S. Chakram performed the experimental
work and data acquisition. H. F. H. Cheung and Y. S. Patil carried out the data
analysis and modeling. M. Vengalattore supervised all stages of the work. All

authors contributed to the preparation of the manuscript.

D.1 Abstract

Thermal and quantum fluctuations set a fundamental limit on measurement
sensitivities. This has spurred the development of various measurement
schemes and protocols that use entanglement [252, 180], quantum-noise cancel-
lation [253, 254] and multi-particle interactions [255] to improve the sensitivities
beyond this limit. A prominent instance of such a scheme uses a parametric am-
plifier to generate a high degree of squeezing, achieving a sensitivity scaling of
5¢ ~ 1/|A*, where |A| is the amplitude of the measurement resource. Such a
scaling is possible because of the suppression of fluctuations of the measured
observable. In the paradigmatic optical S U(1, 1) interferometer [256], for exam-

ple, intensity noise is suppressed to levels lower than the vacuum shot noise at
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the dark port [257, 216]. Here, we realize a similar scheme in a fundamentally
new platform, using distinct flexural modes of a millimeter-scale mechanical
resonator. Using a parametric amplifier coupling between a pair of its mechan-
ical modes, we realize up to 15.4(3) dB of transient, two-mode noise squeezing,
and consequently demonstrate up to 13.2(5) dB improvement in the displace-
ment sensitivity. Our work extends the realm of such schemes, hitherto only
demonstrated with photons and ultracold atoms, to macroscopic optomechan-
ical systems, and presents new avenues for optomechanical metrology, the ma-
nipulation of nonclassical mechanical states, and studies of the nonequilibrium

dynamics of multimode optomechanical systems.

D.2 Introduction

Optomechanics has emerged as a promising arena for the study of quantum
metrology and the innovation of novel precision measurement technologies
[78], due in part to the wide range of size and mass, long coherence times
that compare favorably with those realized in atomic or solid state spin sys-
tems [79, 258, 259, 260], and the ability to cool, control and measure mechanical
motion with radiation pressure. While optomechanical interactions have thus
far been mainly in the weak coupling regime, recent work has demonstrated
the possibility of realizing strong nonlinear or multimode mechanical interac-
tions via radiation pressure [261], geometric design [95] or reservoir engineering
[150]. In this work, we utilize reservoir-engineered mechanical nonlinearities to

demonstrate correlation-enhanced displacement, force and phase sensitivities.
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D.3 The parametric amplifier coupling

The system in which we implement an enhanced sensing protocol consists of
two distinct mechanical modes of a silicon nitride (SiN) membrane resonator,
hereafter referred to as the ‘signal’ and ‘idler’ modes. A parametric coupling
between these modes can be realized by controllably actuating the silicon sub-
strate that the membrane is deposited on. Experimentally, the motion of either
mode can be spectroscopically resolved and independently measured in both
quadratures via an optical Michelson interferometer, as described in our previ-
ous works [79, 150]. See also Supplementary Information, Section D.9.1. For
the experiments described below, the resonance frequencies and damping rates
of the signal and idler modes are w,/2r = 1.233 MHz, w;/2rn = 1.466 MHz and
vs/2m = 0.083(2) Hz, y;/2n = 0.108(3) Hz. Such ultra-high quality factors ensure
a large dynamic range of amplitudes for our experiments, and also set the ex-
perimental timescales to be on the order of seconds, making the study of the

parametric amplifier dynamics easily accessible.

Before describing the enhanced sensing scheme in the following sections, we
detail the two-mode nonlinear coupling between the two modes. The model,
applicable to a generic pair of parametrically coupled oscillators, is realized
by the interaction Hamiltonian (see also Supplementary Information, Section

D.9.2)

Hine(t) = —gXp(D)X51%i (D.1)
where x;; = x;cos w,t + ys sinwgt and x;; = x; cos w;t + y; sinw;t are the lab-frame
displacements of the signal and idler modes, and (x,,y;) & (x;,y;) their x and y

quadratures. Here, g parametrizes the coupling strength between the modes,

and Xp(¢) is the amplitude of motion of the ‘pump’ mode, which is controlled by
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driving the silicon substrate with a piezoelectric actuator. A parametric ampli-
tier coupling between the modes is realized by driving the pump mode at the
sum frequency wp = w, + w;. We first experimentally ascertain this parametric
amplifier coupling, which allows for the creation of strong correlations between

the modes.

As is well known in quantum optics, the parametric amplifier shows an in-
stability when driven past a critical pump amplitude, Xp,, at which the system
is characterized by a divergent susceptibility and critical dynamics. This insta-
bility can be described in terms of a nonequilibrium continuous phase transition
[225, 228]. When the pump is driven beyond this critical strength, the signal and
idler modes reach a self-oscillatory steady state. The strength of the parametric
drive can thus be parametrized by y = Xp/Xpr, with u = 1 corresponding to the

critical drive strength, or threshold, for the onset of self-oscillation.

Below threshold (1 < 1), the mean amplitudes of the signal and idler modes

Xs+X;
V2
Ys=Yi s—Xi

and y. = =7z are squeezed, whereas the cross-quadratures x_ = XT and

. = y% are amplified, or anti-squeezed. Above threshold, the mean am-

plitudes of the signal and idler modes are non-zero. And the relevant fluc-

are zero, while their fluctuations are correlated — the cross-quadratures x, =

tuations, those about the signal and idler modes’” steady states, are still cor-

_ Org—or;

related — the amplitude difference quadrature (r_ = =7 ) is squeezed, where

Fi = X5+ Yo Orgi = 1g; = (1), and so is the phase sum [83]. On the other
— (5rx+6r,-

hand, the amplitude sum (r+ ===

divergent variance near the critical pump drive, with the latter undergoing a

) and phase difference quadrature have a

diffusive dynamics [83].

The measured variances of these quadratures are plotted in Fig. D.1(a),

251



(a) T T T ™ (b) T T T T T
! zo, yr(p<1) Amplitude
éo ° (i > 1) S 30F o Signal 1° =
T vy (<1 = O Idler Z
,g o y-(p<1) S S
e §1m r(p>1) 2 @
& s 5 20F 1°2
8 b4 g &
g : qgv < . =
[ E— 1 1 Oo o] o® =3
. o - (0] . 3
e 6. 9 \BQO%" z 1 S0f Le¥— Jos e
—~ O 2oy 00 1 = ise Ti =
NR %o@%ﬁ R &b ] = . o2 Invers'e Rise Time RN
3 - | < | 5 . & <& Signal
I |l =z [ & < Idler
. 1 1 QI\ 0o 1 1 1 400
0 1 2 3 1.0 1.5 2.0 2.5 3.0
i i

Figure D.1: The parametric amplifier phase diagram. (a) Two-mode
squeezing below and above the instability threshold (u =
1): normalized standard deviations of squeezed (red) and
amplified (blue) cross-quadratures. The solid lines are no-
free-parameter predictions of our model with independently
measured damping rates and eigenfrequencies, taking into
account finite measurement time and differential substrate
temperature effects (see Supplementary Information, Sections
D.9.3,D.9.4 & D.9.5). (b) Steady state amplitudes of the signal
and idler modes show a power-law growth of 0.53(3) consis-
tent with the prediction of 1/2. The exponential growth rate
(in time) of the signal and idler motions increases linearly with
parametric actuation u. (All signal and idler motions are nor-
malized to their respective thermal motions.)

showing excellent agreement with no-free-parameter calculations of the above
model based on independently measured damping and frequency parameters.
These measurements are performed by allowing the system to relax into a

steady state at constant values of the pump drive u, and acquiring the data at

1

i*

each u for times > 200 y;. The growth of the steady state amplitude of the
modes above threshold, shown in Fig. D.1(b), is measured to have a power-law
growth with exponent 0.53(3), in close agreement with the theoretical prediction

of an exponent of 1/2. The exponential growth rate of the modes” amplitudes
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increases linearly in the drive strength u, also in agreement with the prediction
of the model. Having confirmed the parametric amplifier coupling between the

signal and idler, we now describe the implemented enhanced sensing protocol.

D.4 Scheme

As seen in Fig. D.1(a), the cross-quadrature steady-state squeezing achieved
through a continuous pump drive reaches a 3 dB limit near the threshold, i.e.
(X2 (p))? LN % (x2y2 o To circumvent this limitation, we implement a tran-
sient protocol, schematically shown in Fig. D.2(a). The signal and idler modes
are initialized in a thermal product state for times r < 0. At time ¢ = 0, the para-
metric amplifier is turned on with an amplitude much larger than the critical
drive strength (u > 1), but for a time tpy much shorter than the signal or idler
ringdown times (fpa < y;}) (Fig. D.2(a), row 1). This short burst of parametric
coupling creates a highly two-mode-squeezed state which breaks the aforemen-
tioned 3 dB limit and has high signal-idler correlations. Following this, before
any significant decay of the correlations, the signal mode is actuated by an im-
pulse force (Fig. D.2(a), row 2) that displaces x, (Fig. D.2(a), row 3). By detecting
the quadratures of the idler mode (Fig. D.2(a), row 4), which remain unaffected
by the impulse force, and using the persistent signal-idler correlations to cancel
out the thermal component of the measured signal mode quadratures, we can

achieve enhanced detection sensitivities.
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Figure D.2: Enhanced transient squeezing — scheme, phase space distri-

bution and squeezing dynamics. By transiently applying a
strong parametric amplifier pump drive, we realize two-mode
squeezing beyond the steady-state 3 dB bound. (a) The timing
sequence : The signal and idler modes are both initialized in
a thermal state. At time 7 = 0, a strong pulse realizing a para-
metric amplifier coupling between the modes is applied for a
short time fps, generating strong correlations between them at
the end of the pulse. The signal mode is thereafter subjected
to a force for time . The modes” amplitudes are continu-
ously measured at all times. (b) Phase space distribution of the
15.4(3)dB squeezed states — (x;, x;) (blue) and (y,, y;) (red). The
thermal state (grey) is shown for reference. (c,d) Dynamics of
growth (c) and decay (d) of the two-mode squeezed state. The
parametric amplifier pump is driven transiently with strength
1 = 38(5), and the quadrature variances of 236 iterations is
plotted vs time. For comparison, the steady state bound of 3
dB is indicated in grey. The shaded regions represent no-free-
parameter bounds due to variations in the parametric drive
u across the iterations. (All displacements are normalized to
their respective thermal amplitudes measured at 7 = 0.)
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D.5 Transient squeezing

The dynamics of the transient squeezing achieved through the parametric am-
plifier pulse is governed by the equations of motion for the signal and idler
modes: A, = 5y AL — BA + \75iFY,, where F are the input noises
with correlations (F} (1) F,(t")) = 2{x;, . )6(t — '), and (x7, ) is the thermal vari-
ance of the signal and idler mode displacements, which satisfy equipartition

1
2

2

*s) = 3ksT at temperature T. (See also Supplementary Information,

My " (X
Section D.9.2 for detailed derivations.) While the simultaneous solution to these
equations is straightforward for the experimentally relevant case of mismatched
damping rates (y, # ¥;) [83], we state here the results for identical damping rates

(ys = vi = y) and note that the essential conclusions remain unaltered (see also

Supplementary Information, Section D.9.7).

In units of the initial (r = 0) thermal variance of the modes, the resultant

variances at the end of the parametric amplifier pulse are given by (x?(tpa)) =
1 M —y(1+u) 2 _ 1 MU -1) — Xt — Vst

Tt 1 YA and (y2 (tpa)) = E+Ee7(“ A where x, = % andy, = 7 are

respectively the squeezed and anti-squeezed cross-quadratures. Note that the

1

T3 with a time

squeezed cross-quadrature variance exponentially saturates to
constant [y(1+u)]! < y~!. Alarge parametric amplifier actuation u > 1 thus al-
lows for significant noise squeezing beyond the steady-state 3 dB bound. Note
that the degree of squeezing (and anti-squeezing) can be parametrized by the
power gain of the strong parametric amplifier pulse, G* = (y2(t = 1pa))/{(Y2(t =
0)) ~ e, The amplified quadrature increases in variance as G*, while the
squeezed variance reduces approximately as 1/G?, the approximation being

valid at short times, before the squeezing saturates.
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We demonstrate such dynamics, and the resultant noise reduction by 15.4(3)
dB, in Fig. D.2(b,c). The slow decay of the highly squeezed state back to the
thermal state, shown in Fig. D.2(c), enables a multi fold improvement of the sig-
nal to noise ratio (SNR) for the detection of impulsive forces, and an enhanced

bandwidth of force detection, as demonstrated below.

D.6 Enhanced displacement sensitivity

The two-mode squeezed state generated at time fps by the strong parametric
amplifier pulse has a high degree of correlation ¢, = m%)\(/gw between x,
and x; (see Fig. D.2(b)), where o denotes the respective quadrature variances.
Before these correlations decay and the modes return to their thermal states,
which occurs on the timescale of y~!, we apply a short resonant impulse force on
the signal mode for time fg;ce < y~'. After the impulse force is applied, at time
t = tm > Ipa + tiorce, We measure the signal and idler quadratures, and construct
a least-variance estimator of the force-induced signal displacement, i.e. x, =
Xy — L \/‘;:i:xl-, with all quantities being evaluated at time 1,,,. Transient squeezing
and the resulting signal-idler correlations persist at time t,, (see Fig. D.2(c)), so
that this estimator has a variance much smaller than the thermal variance of
the signal mode. E.g. consider large power gains G* > 1, for which || is near
unity (-1 < ¢, < —0.9995 for the squeezed state shown in Fig. D.2(b)). Assuming
oy, ® 0y, the estimator is x;;p = x; + x; = V2x,, so that (AinF) ~ 2(Ax?). With
the variance (Ax?) being about 1/G* smaller than the thermal variance, we can

realize equally improved displacement sensitivities.

In the experiments, we achieve displacement sensitivities enhanced by up to
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more than a factor of 20 [13.2(5) dB] in variance, well below the thermal noise
limit (see red data in Fig. D.3). Because the other cross-quadrature y_ = %
is also equivalently squeezed, generating correlations ¢, between y, and y;, by

using the corresponding estimator y,r = y, — ¢, \/=*y;, the detection sensitivity

of y, is also enhanced (blue data in Fig. D.3).

In our experiments, for concreteness, and to demonstrate the reliable mea-
surement of a sub-thermal displacement using this protocol, the applied force
was chosen to produce a signal mode displacement approximately half its ther-
mal motion amplitude. The average over approximately two hundred iterations
are shown as red data in the inset of Fig. D.3. The error bars here indicate the
uncertainty of a single measurement, which equals the square root of the corre-
sponding variance plotted on the main graph. The decreasing single-shot uncer-
tainty clearly indicates how the SNR of a measured displacement dramatically
improves with increasing squeezing (increasing power gain G*). The measure-
ments match very well with the gray points shown in the inset, which denote
the expected displacement, calculated using the applied force strength and the
calibrated signal mode susceptibility. The transient squeezing protocol thus re-

liably realizes accurate measurements with sub-thermal standard errors.

D.7 Improved scaling of sensitivity

While the above description of the enhancement explicitly refers only to the
signal mode displacement, the protocol in effect achieves a higher force detec-
tion sensitivity as well, because the two are linked linearly by a susceptibil-

ity. As seen in Fig. D.3, the displacement sensitivity, and therefore that of the

257



| | |
20F
lr ® =& 15} 19
273 10
5] i . o -
= £:..018-88.8-0)
g gop 03
g BZ = 00|
RS —05k o
>~ 1 10 100 1000
o) B G?
]
g
% 01 — o] =
=
o
o
| | | |
1 10 100 1000
G2

Figure D.3: Enhanced displacement sensing. Displacement sensitivities
achieved using the transient squeezing protocol beat the ther-
mal noise limit. The measured variances of the signal mode
x(y) quadrature are shown in red (blue) as a function of the
experimentally measured parametric amplifier power gain G*
(see text). The degree of squeezing increases with gain, and
at the largest gain shown here, the displacement sensitivity is
improved by 13.2(5) dB. (Inset) Detected motion and single-
measurement uncertainty, as a function of power gain. The
signal mode displacement measured here was produced by an
impulse force applied along the x (red) quadrature, calibrated
to displace it by approximately half the thermal motion ampli-
tude. Grey dots represent the expected displacement based on
calibration. The error bars indicate the uncertainty of a single
measurement, which equals the square root of the correspond-
ing variance shown on the main graph. The decreasing single-
shot uncertainty indicates an improved signal to noise ratio at
greater degrees of squeezing (G?). At the largest gain shown
here, the single-shot uncertainty is ~ 0.22 x thermal motion.
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force inducing it, both scale as 1/G, or equivalently, inversely with the signal
mode amplitude after parametric amplification (1/]A,]). This is in contrast to the
amplitude-independent sensitivity that is achieved without the use of the tran-
sient squeezing protocol. Such an improved scaling with amplitude is achiev-
able for any parameter M that, like a force, couples linearly to the signal mode,
Hint o< MA+ M*A} — an impulse of any such M causes a displacement in A, given
by f Adt = f ?Tigtdf o f M*dt. The improvement in the detection sensitivity
scaling of A; thus also results in an improved scaling for the detection of the

parameter M.

Parameters other than a force can demonstrate even better sensitivity scaling
with the amplitude |A|. We consider below a quadratic coupling Hiy o g|A.
Such a coupling effects a change in the frequency of the signal oscillator. Over
a finite duration #y, the resultant frequency change induces an amplitude-
independent phase shift ¢ = g»tin¢ of the signal mode. Such interactions are
realized in mass sensing protocols, where an itinerant mass causes a frequency
change in a calibrated sensor oscillator [262, 263, 264]. A higher sensitivity for
the effected phase shift can thus translate to higher mass sensitivities. More-
over, improvements in scaling with amplitude are of particular importance in
such applications, where larger amplitudes, though preferred, are plagued by
concomitant deleterious effects like Duffing nonlinearities, which adulterate the

measured phase shifts.

The transient squeezing protocol can be adapted to this end, to realize a sen-
sitivity that scales as 1/|A>. At time ¢ = 0, we coherently drive the signal mode
to a complex amplitude iA;y, where A,y € R, while leaving the idler mode in

its thermal state. In this scenario, at the end of the strong parametric ampli-
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Figure D.4: Improved scaling of phase sensitivity: Minimum detectable
phase ¢min using (red) and without using (blue) the transient
squeezing protocol as a function of the power gain G* ex-
perimentally measured in Fig. D.2. Normalized to the ther-
mal noise limited ¢min (blue) at G = 1. The shaded regions
represent no-free-parameter bounds due to variations in the
parametric drive u across the iterations. (Inset) Scaling (@) of
the achievable phase sensitivity with signal mode amplitude,
where ¢min ~ 1/|A4**. The scaling @ shown here is calculated
by increasing the parametric amplifier pulse duration #ps at a
tixed drive strength u to effect increasing |A|, as realized in the
experiment (main graph). The enhanced scaling of a = 1 (scal-
ingas 1/ |A,%) using the transient squeezing protocol reverts to
the @ = 1/2 (scaling as 1/|A,]) at long pulse durations (large
G?) as the squeezed variance saturates to ﬁ The scaling is
recovered by operating at larger drive strengths 1 and shorter
durations tps (see Supplementary Information, Section D.9.9).

tier pulse, the system realizes displaced squeezed states — the cross-quadratures
x., x_ are still respectively highly squeezed and anti-squeezed, with zero means
(x+) = 0, while due to the finite seed iA;, the y-quadratures (y,(tpa)) and (y;(tpa))
take on finite values ~ G%. (See Supplementary Information, Section D.9.8 for

exact and detailed derivations.)
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Having prepared this transient squeezed state, and before it relaxes back to a
thermal state, we couple the signal mode to an impulse for a duration fiy; <y~
such that the signal picks a phase shift ¢. This signal phase shift causes the finite

displacement (y,(tpa)) to get projected on to the x, quadrature, i.e. (x (tpa +tint)) =

G;i’/% sin ¢, while it leaves the idler mode unaffected. We construct the estimator
of the phase-induced signal displacement x4 = x;, — ¢, \/%x,-, where all the
quantities are evaluated at time ps + #int, including the correlation ¢, between x;
and x;. Like before, this estimator has a variance much smaller than the initial
thermal variance of the signal mode, given the persistent correlations. For fpy <

y~!, the standard error (Ax] ,)'/* = V2{AX2Y!? oc et eal2 1 /G. The minimum

detectable phase (SNR = 1) is thus given by
(Ax; 'V 1 1
¢min = - o 2 o 2
d<xs>/d¢|¢:0 G AS,O |As|

showing the enhanced sensitivity and its improved scaling as 1/G?, or equiva-

(D.2)

lently 1/ |A[? (Fig. D.4). At longer parametric pulse durations #ps, the degree of
two-mode squeezing saturates to 1/(1 + u) as described earlier, while the am-
plitude |A,| keeps growing exponentially, causing the sensitivity to revert back
to the former scaling of ¢min « 1/|A,l, as seen in the inset of Fig. D.4 (vertical
cross-section at a fixed u). The enhanced scaling is recovered by operating at
larger drive strengths u and shorter durations ps (see Supplementary Informa-

tion, Section D.9.9).

The improvement in sensitivities and scaling with amplitude in our system
can be generalized to higher order interactions, i.e. Hin o gilAF [265, 266, 255].
For example, for the case of the Duffing nonlinearity, which has k = 4. While
straightforward, such a generalization is beyond the scope of the current work

and will be considered elsewhere.
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D.8 Conclusions

In summary, we implement a transient two-mode squeezing protocol in a sys-
tem of parametrically coupled mechanical modes in a monolithic SiN mem-
brane resonator. We demonstrate a substantial degree of transient two-mode
squeezing, achieving a noise reduction of 15.4(3) dB, well beyond the conven-
tional 3 dB bound, as also a concomitant displacement sensing enhancement of
13.2(5) dB. We further adapt the transient squeezing protocol to effect a phase
sensitivity scaling of ¢min o 1/|A,*. Owing to the large f x Q product of the op-
tomechanical modes, this transient state is long lived, surviving on the order of
10° mechanical periods. Our work extends the optomechanical toolbox for the
quantum manipulation of macroscopic mechanical motion, and enables new
techniques for optomechanical metrology and the manipulation of mechanical
fluctuations. Extending these techniques to the quantum regime should allow
for studies of macroscopic decoherence in highly correlated phononic states.
Even in the classical regime, we note that the emergence and decay of two-mode
correlations and the ensuing thermalization dynamics are intimately tied to the
nature of the reservoir that couples to the optomechanical modes. As such,
ultra-precise measurement schemes, such as those demonstrated in this work,
enable the study of non-equilibrium optomechanical dynamics, the detection
of non-Markovian dynamics [218] arising from non-Ohmic reservoirs, and the
harnessing of such reservoirs for the creation and stabilization of macroscopic

nonclassical states [229].
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D.9 Supplementary Information

D.9.1 Optical detection and stabilization of mechanical modes

The mechanical resonators studied in this work are the eigenmodes of a square
silicon nitride membrane resonator fabricated by NORCADA Inc. The mem-
branes have lateral dimensions of 5 mm and a thickness of 100 nm, with typical
mechanical quality factors in the range of 10’ [79]. The displacement of the
membrane modes are detected using a Michelson optical interferometer with a
position sensitivity of 14 fm/Hz'/? for typical powers of 200 uW incident on the
membrane. An external cavity diode laser operating at a wavelength of 780 nm

provides the light for this interferometer.

Due to the different thermal expansion coefficients of the membrane and
the supporting substrate, temperature fluctuations change the membrane strain
and stress, which in turn change the mechanical modes’ frequencies. Ther-
mal fluctuations thus lead to frequency fluctuations. The precise measure-
ment of thermomechanical motion and two-mode correlations requires active
sub-linewidth stabilization of the mechanical eigenfrequencies. This is accom-
plished by photothermal control of the silicon substrate. As described in previ-
ous work [150], we implement active stabilization by continuously monitoring
the mechanical eigenfrequency of a high-Q membrane mode at 2.736 MHz - far
from the modes of interest in this work. Phase sensitive detection of this mode
generates an error signal with an on-resonant phase slope of 5.91 radians/Hz.
Active photothermal stabilization of the substrate is accomplished with typical
powers of 600 uW, generated by a diode laser at 830 nm. Under this active sta-

bilization, the rms frequency fluctuations of this ‘thermometer mode” are mea-
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sured to be below 0.4 mHz, equivalent to temperature fluctuations of less than 2
uK. For the modes of the interferometer, this translates to frequency fluctuations

less than 0.002 X y.

At low frequencies (< 3 Hz), the optical interferometer used for the detection
of mechanical displacement is susceptible to residual amplitude modulation
(RAM) which we suspect is caused by the gradual temperature fluctuations and
temperature-dependent birefringence of the various optical elements. In our ex-
periments, this low frequency amplitude noise convolves with the mechanical
displacement signal leading to a 0.75% contamination of the detected membrane
displacement and the two-mode correlations. Due to this low-frequency RAM,
the signal-to-noise ratio for the mechanical thermal motion degrades to 1 as the
mechanical amplitude approaches 150 times the room-temperature thermal am-
plitude. This restricts the dynamic range of membrane amplitudes over which
we can study the mechanical PA-PO. In this work, we overcome this limitation
by artificially increasing the mechanical thermal noise (and effective tempera-
ture of the mechanical modes), by driving each mode with gaussian noise cen-
tered at each mechanical eigenfrequency over a bandwidth of 100 Hz, much
larger than the respective mechanical linewidths. Techniques of active RAM
control [267] can be used to extend our measurements to the quantum regime

of mechanical motion.
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D.9.2 Nonlinear interaction and the equations of motion

We consider the equations of motion of the signal, idler and pump modes.

Within the rotating wave approximation, the Hamiltonian (D.1) gives

1 g
.. . 2 %
si T Vsilsi T W Zsi = —(F s.i(f) + EZPZ,',S)

8,0
" . 1 8
ip + ypip +wpzp = —(Fp(t) + Z2,2i)

mp 2

where z,; p denote the complex displacement of each mode and mi; p, wyp, Vsir

and F; p denote respectively the masses, frequencies, damping rates and forces

on each of the modes. These coupled equations of motion can be solved using

two timescale perturbation theory [115] and simplify to the first order coupled

equations,

2As = Vs [_A~s + i%)(sA'i*ANP + i)(st(t):I

=
I

Yi [_Ai + i%)(iz‘is*ffp + lXiFi(l)]

2Ap = yp [_A~P + igXPAsAi + i/\/PFP(t)]

where z; = Aje™, k € {i, s, P}; F; are the slowly varying (complex) amplitudes
of the external forces on the individual modes, and y; = (muwiyr)™! are their
on-resonant susceptibilities. We ignore terms such as Xk, y,-fik in the slow time

approximation. The equations get further simplified to
24, =y [-A; +iA[Ap + iF(1)]
24; = yil-Ai + iAJAp + iFi(1)]
24p = ys[-Ap + iAA; + iFp(D)]
where the motion of the pump Ap is normalized with respect to Ap, — the critical

value which defines the instability threshold u = 1, As,i are normalized with

2
g\XsXis’

¥ are normalized forces on the respective modes, with ¥ () = u(t). Lastly, we

respect to their characteristic steady-state motion above threshold and
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assume that the pump mode, which is a Silicon substrate mode, has a much
larger damping rate than the signal and idler resonator modes [150], i.e. yp ~
(10°-10%)y,, y;, thereby ensuring that the pump motion adiabatically follows the

signal and idler motions, i.e. Ap = iAA; + iFp(2).

D.9.3 Effect of finite substrate temperature

To reduce the contribution of residual amplitude modulation in the optical in-
terferometer to the signal and idler motion readout, all data are acquired by
artificially driving the signal and idler modes to an elevated temperature, corre-
sponding to an effective thermal motion around 40-50 times the room temper-
ature amplitude, by driving the two modes with a gaussian noise source with
a bandwidth about 100 times larger than the respective mechanical linewidths.

The substrate mode, however, is not artificially driven to a larger temperature.

For below threshold steady state (u < 1), the substrate fluctuations do not
couple to signal and idler mode to first order [83]. Above threshold at steady
state (u > 1), however, substrate mode fluctuations couple to the signal and
idler mode. In the matched damping case, because they couple equally, the
_ drydr;

amplitude-difference squeezing (r_ = =5

substrate fluctuations. However, substrate fluctuations couple to the amplitude-

) is independent of and robust to
sum quadrature (r+ = %) For equal substrate, signal, and idler temperatures,
the amplitude-sum variance is bounded at 1/2 in the limit of large parametric
drive strengths, u > 1. However, if the substrate temperature is much lower
than the signal and idler temperatures, the substrate fluctuations are negligi-

ble in comparison, and the amplitude-sum squeezing beats the conventional
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3dB limit — in fact, the amplitude-sum variance equals m This difference in
the signal and idler and substrate temperatures has been accounted for in Fig.

D.1(a) of the main text.

D.9.4 Effect of finite measurement time

To accurately model the measurements described in this work, the effects of
finite measurement duration need to be considered. This is particularly rele-
vant for the high-Q resonators used in this work. In the vicinity of the criti-
cal point 4 = 1, the mechanical parametric amplifier exhibits a divergent re-

sponse time that results in extremely long relaxation times (~ 10* — 10°

sec-
onds). Thus, for typical measurement duration in this work (~ 100 seconds),
the measured squeezing variance can deviate appreciably from those computed

in steady state.

In our model, we take the finite measurement duration into account by com-
puting the variances measured over a measurement time 7,, using the truncated

integral of the relevant spectral density as indicated below [83],

7T/ Tm

D.9.5 Parametric amplifier dynamics and transient squeezing

The lossy system here can be formally modelled as a linear coupling of the me-
chanical modes to an environmental bath of harmonic oscillators. For a Marko-
vian bath, the dynamics for the case of matched frequencies and loss rates is

governed by A;; = —%,uA;.is —SA i+ \YF i’fl., where we have approximated Ap = iy,
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u = Xp/Xp parametrizing the parametric pump drive strength at the sum fre-
quency. This approximation is valid when |A,A;| < u (see Section D.9.6 below).
Defining the cross-quadrature modes A, = (A;+A))/ V2, the equations of motion

are rewritten as

£ ==L+ Dxo+ VIFL 3= 2=y, + VyFL
(D.4)

y- = —%(u +Dy-+ VYFL i = %(,1 — Dx_+ \yFI

where the real quadratures x, y are defined in terms of the complex amplitudes
A, A"asx=(A+A")/2, y = (A—A")/2i, for each, the signal and idler modes, and
xe = (X, £x)/ V2, y. = (s £3;)/ V2, and the noise terms F™, F" are correspond-

ingly defined.

Assuming an initial thermal state for both the signal and idler modes, the dy-
namics of the cross quadrature variances is evaluated to be (Ax2 (1)) = (Ay* (1)) =
ﬁ + J‘Tﬂe‘y(/“”’, which are squeezed, and (Ax*(1)) = (AY2(0)) = ﬁ + /%em“”’,
which are amplified, or anti-squeezed; the variances in these expressions have
been normalized to the thermal variances. While these dynamics are correct
below threshold (u < 1), their validity well above threshold, as in this work, is
restricted to small times, before the onset of pump depletion, which is detailed

in the Section D.9.6 below. Nonetheless, the squeezed quadrature variances re-

duce exponentially to 1/(1 +u), surpassing the steady state 3 dB bound [83, 150].

D.9.6 Pump depletion

The assumption that Ap(f) = iu is a constant over the course of evolution of the
parametric amplifier pulse is invalid for uy = u(t = 0) > 1. As the signal and idler

amplitudes grow, the pump amplitude motion becomes Ag(f) = iu(t) + iA;A; =
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iu(t) — ilA;A,l. This effect, which arises from the interaction of the signal, idler

and pump modes, is referred to as pump depletion.

When the parametric amplifier pulse is switched on, A; and A; initially in-
crease as exp(y(uo—1)t/2), thereby causing Ap(t) to decrease and settle to a steady
state of |Ap(?)| 2% 1 at long times [83]. As such, for uy > 1, the transient squeez-
ing expressions derived assuming a constant Ap(f) = iy, are valid only for small

times (see also [268, 269]).

Considering a case where the signal and idler motions are seeded with com-

plex amplitudes A,y and A;p, a pump depletion by a factor n occurs when

In(10u0)

IA,(DA(D) = n|Fs| = nuo , i.e. when |A pA;ole? " = pu, . For time tpa ~ ,
L0434, y(1+p0)

the squeezed variances reduce to within 10% of ﬁ#o, and for this time #p,,

ot [AgpAiol Ho>1

1~ (1000) 47 == 225 10/4 04
Ho
For the amplitudes in the present study (data in Fig. D.2, Fig. D.3 and Fig. D.4

of the main text), |A;o| = |A;o| = 0.03, and n = 0.01, i.e. there is a mere 1% pump

depletion even at almost saturated squeezing.

Clearly, the degradation of squeezing for fixed u due to pump depletion sets
in sooner for (i) larger seeds |A,l,|A;ol, (ii) larger damping of the signal, idler
and pump modes, and (iii) larger nonlinear signal-idler couplings g (see also
[269]). We note that the deleterious effects of pump depletion can be avoided by

compensating the pump depletion with feedback and other control systems.
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D.9.7 Transient squeezing in the presence of mismatched

damping rates

In the case of mismatched frequencies and damping rates for the signal and
idler modes, the main differences are (i) the minimum variance of the squeezed
quadrature becomes mismatch dependent, but agrees with the expression in

the main text to within 10% for asymmetry parameters |6, — 6,] < 0.20 where

0y = 3513, 5, = % [83], and (ii) the time constants of transient evolu-

tion of the squeezed and amplified quadratures are respectively altered to

Oy

521 £\ J1 = ) foru > 2=
Y

D.9.8 Phase sensitivity

If the signal mode is initialized at time ¢ = 0 to have a mean complex amplitude
(A5(0)) = iA, through a coherent drive, and the idler mode is initialized in its
thermal state with mean amplitude (4,(0)) = 0, the decoupled cross-quadratures
take on the values (x.(0)) = 0,(y.(0)) = Ao/ V2. Propagating Eqn.s (D.4) for a
parametric amplifier pulse duration #ps, we have

Aso

(xa(tpa)) = 05 (pi(tpa)) = —=e"@Vm/2

V2
(x_(tpa)) = 0;  (y_(tpa)) = ‘He—ywlm/z

As,O AS,O

= () =05 (i) = — (T2 4 I s G—2 (D.5)
PA PA 2\/5( ) 2\/5
AS() _ ) _ 1 2 AsO
(xi(tpp)) = 0; (i(tpa)) = —= eYW=Dmal2 _ =~y Dia/2) o G 25
PA PA 2\/5( ) 2\/5

where the approximation is valid for G > 1. The subsequent interaction over

time f; that results in a phase shift of the signal mode by ¢ causes the signal
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quadratures to mix as

AS,O

2V2

(x5(tpa + tine)) = €08 @ (xy(tpa)) + sin ¢ (y,(tpa)) = G sin ¢

(s(tea + tin))) = —sing (x,(tpa)) + €Os ¢ (y;s(tpa))
where we have used Eqn. D.5, and the approximation is valid for G > 1.

Note that the correlations realized by the transient squeezing at time #pa are
between the un-rotated signal quadratures, and the idler quadratures. Thus,
when constructing the reduced-variance estimator based on the quadratures
measured at time fpa + fint, i.€. after the signal phase has rotated by ¢, the ro-
tation by ¢ needs to be accounted for. For ¢ < 1, this effect is negligible and
may be ignored. For larger phase shifts, the rotation-compensation and phase
estimation may be implemented iteratively for yielding higher precision. (Con-
sider, for example, the exaggerated case of ¢ = /2. Correlations between (x;, x;)
& (y,,y;) at time tpa are transformed to correlations between (y;, x;) & (—x;, y;) at

time fpa + fint, after the signal’s rotation by ¢ = 7/2.)

D.9.9 Enhanced scaling with amplitude

In the absence of pump depletion (Section D.9.6), the squeezed variance of x,
and y_ saturates to 1/(1 + ) exponentially, with a time constant [y(1 + p)]™,
as derived earlier. However, the exponential amplification of the signal and
idler modes |A,|, |A;| continues for times even beyond the saturation timescale. In
such a parameter regime of the parametric amplifier pulse durations #ps, while
the absolute phase sensitivity keeps improving with increasing amplitude (i.e.

increasing gain G?), the scaling reverts from a 1/|A,/* dependence to 1/|4,. In
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other words,

>[y(1+)]”!
(AR )V oc 121G RS AALLEN (At Y = N2/(1 + p)

so that
b = <Axi¢>l/2 o« 1/G o« 1 pasly(+w1! e V2/(1 + p) o« 1
mn d<xs>/d¢|¢:0 GAS,O |As|2 i GAS,O |As|l

We can instead choose to increase the amplitude |A,| and the squeezing not
by only increasing tps but also u. We can improve the ultimate squeezing bound
ﬁ by increasing u, while also ensuring that the squeezing does not saturate
in time, by changing tps appropriately. For example, if we choose a parametric
amplifier pulse duration of pa(u) = %, for a chosen k that is held fixed with

increasing u (ku > 1 for squeezing), then

A = 20+ Dp/(1+ ) 702 o 1/G

for 4,G > 1, thereby recovering the 1/|A|* scaling of phase sensitivity with

amplitude.
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