SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NY 14853-3801

TECHNICAL REPORT NO. 1045

May 1993

Delphi: A C-Based Queuing
Network Simulator'

by

F. Chance

"Research supported by the Defense Advanced Research Projects Agency.

ABSTRACT

We describe Delphi, a package for simulating open queuing networks. Multiple product
types with priorities, product scrap and rework, deterministic and probabilistic routing are
supported. Queune control routines are separated from the main code, to facilitate their
replacement by user routines.

Delphi was developed using the Sigma (Schruben 1991) simulation prototyping system,
then converted into portable (!. Delphi should compile and run on virtually any platform
supporting a good subset of the standard C libraries. The source code and supporting

documentation are available via anonymous ftp from gauss.orie.cornell.edu’. This document
is current for Delphi Version 5. Level 7.

Contents

1 INTRODUCTION 4
2 DOCUMENTATION PROCEDURE 4
3 OBTAINING AND COMPILING DELPHI 4
4 PRINTING DELPHI DOCUMENTATION 5
5 VERSION AND LEVEL NUMBERS 7
6 SIMULATING AN M/M/1 QUEUE 7
7 EVENT STRUCTURE OF DELPHI 9
8 JOB TYPE, QUEUE, AND STEP NAMES 9
9 SERVER TYPES AND SERVICE TIME PARAMETERS 11
10 SPECIFYING DISTRIBUTIONS 12
11 ADDING DOWN-TIME TO A MODEL 12
12 ADDING SCRAP TO A MODEL 14

S

13 ADDING REWORK TO A MODEL
14 EXAMPLE OUTPUT STATISTICS
15 PROBABILISTIC ROUTING
16 CALCULATING CONFIDENCE INTERVALS
17 TESTING FOR INITIALIZATION BIAS
18 COMMONLY USED OPTIONS
19 RANDOM NUMBERS
20 ESTIMATED NUMBER OF VISITS
21 PROGRAM VERIFICATION

200 M/M/S QUEUE
202 M/G/1L QUEUE
20.3 M/M/1LINSERIESo
91.4 M/M/1 IN SERIES WITH SCRAP
21.5 M/M/1 IN SERIES WITH REWORK
5

y M/M/1 WITH TWO PRIORITY CLASSES . .
; M/G/1T WITH LOADING AND UNLOADING

AN

G

1.

N
-1

3

22 SUMMARY

16
18
19
19
29
31
33
33
34
34
35
36
37
37

33
39

40

1 INTRODUCTION

Delphi was developed to test initialization bias truncation methods on large, realistic queuing
networks. The inspiration for some of the features supported in Delphi is the semiconductor
manuflacturing simulation described in Hood et al. (1989). although in general Delphi models
less process detail.

2 DOCUMENTATION PROCEDURE

In the belief that written documentation for an evolving program becomes obsolete as soon as
it is printed, this document is meant to teach the basics about Delphi’s operation, introduce
the main command line options, and show how to construct and simulate many small building
block models (single server quenes, small networks, etc). This document is not meant to spell
out the nuts and bolts of each procedure within the code. That documentation is left within
the code itsell.

3 OBTAINING AND COMPILING DELPHI

Delphi is available via anonymous ftp from ’gauss.orie.cornell.edu’. Anonymous ftp is a
program available on most Unix platforms that allows access to a limited amount of data
on another user’s machine, without the need for guest passwords or special login accounts.
Delphi comes packaged in a compressed tar file (that means you must uncompress and un-
tar it after vou ftp it.) tar is a command that either puts lots of little files into one big file,
or the reverse. The following example shows how one can obtain and compile Delphi on a
standard unix machine. Commands that you should type are displayed in bold face.

gauss’, mkdir delphi

gauss? cd delphi

gauss}, ftp gauss.orie.cornell.edu

Connected to gauss.orie.cornell.edu.

220 pivot FTP server (Sun0S 4.1) ready.

Name (gauss.orie.cornell.edu:chance): anonymous
331 Guest login ok, send ident as password.
Password: chance@orie.cornell.edu

230 Guest login ok, access restrictions apply.
ftp> cd pub/delphi

250 CWD command successful.

ftp> binary

200 Type set to I.

ftp> get delphi.tar.Z

200 PORT command successful.

150 Binary data connection for delphi.tar.Z
226 Binary Transfer complete.

local: delphi.tar.Z remote: delphi.tar.Z
44516 bytes received in 0.3 seconds

ftp> quit

221 Goodbye.

gauss), uncompress -f delphi.tar.Z

gauss) tar -xvf delphi.tar

(Tar messages for each file that is extracted.)
gauss’ make delphi

(Compiler messages for each file that is compiled.)
gauss’, delphi

(Current program options displayed).

gauss/,

If Delphi displays a list of options when invoked, it has successfully compiled. Otherwise,
try to obtain help from a local guru, and check that you specified binary before transferring
the file with ftp.

4 PRINTING DELPHI DOCUMENTATION

This document is included with the Delphi distribution in the file delphi.tex. This file is in
INT1X format, so if you have the IATRX processor installed on your system, you can process
and print this document. See Lamport (1986) for details of the INTRX system.

I you do not have the package psfig installed on your system, you will not be able to
print the event graph for Delphi. Figure 1 shows a typical sequence of commands used to
process and print this document on a postscript printer if psfig is not installed. Figure 2
shows a typical sequence of commands on a system with psfig installed.

5 VERSION AND LEVEL NUMBERS

If Delphi is executed with no command line options, it displays a version and level number in
addition to information about input file formats and available options. The version number

vy

gizmo% nopsfig

psfig disabled

gizmoY, texprep

Working. ..

Delphi tex file preparation complete
gizmo% latex delphi.tex

(Messages from Tex)

gizmo) latex delphi.tex

(Rerun to get references correct.)
gizmo¥ dvips delphi.dvi > delphi.ps
gizmoY, lpr delphi.ps

Iigure 1: Typical commands for processing documentation on a system without psfig and
a postscript printer.

gizmoY psfig

psfig enabled

gizmo¥ texprep

Working. ..

Delphi tex file preparation complete
gizmo% latex delphi.tex

(Messages from Tex)

gizmoY) latex delphi.tex

(Rerun to get references correct.)
gizmo% dvips delphi.dvi > delphi.ps
gizmo)% lpr delphi.ps

Figure 2: Typical commands for processing documentation on a system with psfig and a
postscript printer.

6

changes only when modifications are made so that Delphi is no longer reverse-compatible
with the input file format from carlier versions. The level number is incremented whenever
a major modification is completed. Level numbers restart at 0 whenever the version number
is incremented. Thus, input files from earlier versions will not work and must be converted

in some way, but those from the same version but an earlier level are still supported.

6 SIMULATING AN M/AM/1 QUEUE

We begin with the canonical queuing theory example, the M/M/1 queue. Briefly, a sin-
gle server (Lucy) dispenses service (psychiatric help) to customers (Charlie Brown, Linus,
ete.) arriving at randomly spaced intervals. Interarrival times are independent, identically
distributed (i.i.d.) exponential random variables with mean 1/\. Service times are i.i.d.
exponential random variables with mean 1/g. The server never becomes tired, requires sick
leave, down time, coffee breaks, or football practice. We denote the traffic intensity, roughly
a measure of how busy the server will be on a scale from 0 to 1, by p = A/p. The system
is said to be stable (number of customers waiting for help doesn’t tend to infinity), if p < 1.
We will often interchange the terms job and customenr.

For Delphi to simulate this system, we need to tell it the following two types of infor-
mation: system parameters (number of queues, interarrival distribution, etc) and routing
parameters (where each job goes. service time distributions, etc). Suppose we name our
simulation mma1. Delphi will look in the file mm1.del for system information, and in the
file mm1.r1 for routing information. For convenience, these files are included in the Delphi
distribution package. We briefly outline what each contains.

The configuration file mm1.del is shown in Figure 3. The routing file mm1.r1 is shown
i Figure 1.

For our convenience, think of all time units as hours. Suppose the mean time between
arrivals to Lucy’s stand is one hour, and the average customer receives about 39 minutes
(0.65 % I hour) of helpful advice. Here’s what happens when we execute Delphi for 100
customers on our M/M/1 example.

gauss’, delphi 1 mm1 -endjob 100

delphi v5.7: Starting simulation ’mml’.
Successfully read in 1 routing entries, job type 1.
Number of tool groups/queues = 1

Number of replications = 1

Job type 1, priority 1, number of releases 1.

-1

{ This File: mml.del
Creator: Frank Chance
Last Modified: 12-19-92
Description: Input configuration file for DELPHI simulation
of an M/M/1 queue.

{ Jobtype 1 description line. }

{ <Line ID> <jobtype> <priority> <#components>}
] Customers 1 1

{ Release patterns for jobtype 1. }

{ <Line ID> <#jobs to release> <Inter-release distribution> }
r 1 e(1.0)

{ Queue 1 description line. }

{ <Line ID> <Queue Name> <# Servers> <Server Type> }
q Lucy 1 5

Pigure 3: Configuration file for M/M/1 queue.

{ This File: mml.r1
Creator: Frank Chance

Last Modified: 12-19-92

Description: Routing configuration file for DELPHI
simulation of an M/M/1 queue.

by

{ Routing step 1 description line.}

{ <Line ID> <Step> <Queue> <Load> <Process> <Unload> }
p Consult lucy c(0) e(0.65) c(0)

Figure 4: Routing file for M/M/1 queue.

Normal completion, replication 1 of 1, time = 104.707.
delphi v5.7: Simulation ’mml’ exiting normally.

Output statistics are contained in the file mml.run. Use your favorite editor/browser
to view this file. Most statistics are self-explanatory.

To check that simulation does eventually match analytic results, try running the simu-
lation for 10,000 jobs. In our case, A = 1, g = 1/0.65, and p = 0.65. The limiting average
time in system is 1/(g — A) which in our case works out to he approximately 1.857. As you
run for longer and longer periods, the average time in system should converge to 1.857. It
the rate of convergence seems frighteningly slow. this should serve as a lesson in the perils of
simulation. Large amounts of computer time may be necessary to reach accurate conclusions
about simulated systems, even such simple ones as Lucy’s psychiatric service center.

7 EVENT STRUCTURE OF DELPHI

Delphi was originally modeled using the Sigma simulation prototyping system, and thus has
an underlying event graph structure. See the Sigma (Schruben 1991) documentation for a
more complete explanation of event graphs. The event graph for Delphi is shown in Figure 5.

Nodes in the graph represent events, such as job releases. Arcs are shown where the
execution of an event may schedule one or more future events. Conditions on the scheduling
of such events are numbered and described. When an event schedules a future event, there
may be a time delay. These time delays are lettered and described.

8 JOB TYPE, QUEUE, AND STEP NAMES

In the Delphi configuration and routing files, names are assigned for job types, queues, and
process steps. In the example from the previous section the single job type was "Clustomers’,
the queue name was 'Lucy’, and the process step was "Consult’. This section describes the
way Delphi handles these names.

First, names are separated from the other information in the input files by spaces, so
names cannot contain spaces, tabs, or new-lines. Second, names may be any combination of
non-space printable characters up to ten digits long. Only the first ten digits will be used
on reports, and in any internal comparisons.

Third, names are not case sensitive. Thus, "Lucy” and "lucy” both specily the same queue.

Finally, vou cannol have two job types, queunes, or process steps with the same name.
You could have a queue and a process step with the same name, and Delphi would not be

(1) Server free?

{(2) Free before finished?
(3) Jobs waiting?

(4) Jobs waiting?

(5) Free when finished?
(6) Job scrapped?

(7) Job completed?

(8) More steps for job?

(
D /
2
2) 3
(8)
(6)
a (
N D)

SCRAP

A. Time until down.

B. Time between releases.
C. Time unti! up.

D. Time until down.

E. Time until free.

F. Service time.

Figure 5: Delphi event graph.

10

SEIZE

START

FINISH

Q)

Number of

Server Required
Type Description Parameters
1 Batch 3
2 Single-Component 3
3 Conveyor 4
4 Multi-sequence 4
5 Whole Job 3

Table 1: Server types and required parameters.

hindered. but it might be confusing to humans, so it is probably best to make names unique
across all job types. queues, and process steps.

9 SERVER TYPES AND SERVICE TIME PARAMETERS

Five different types of servers are modeled within Delphi. The server type for a queue
is identified in the configuration file config.del. In the routing file config.rj, the correct
number of service time parameters must be specified on the processing line. The server types
and number of parameters needed are listed in Table 1.

Balch servers require three parameters: load time, batch processing time, and unload
time. After appropriate batching has occurred, the service time for a batch is given by the
sum of the three times.

Single-component servers require three parameters: load time, processing time per com-
ponent, and unload time. The service time for a job is the load time plus processing time per
component * number of components plus unload time. If the processing time per component
is a random variable, Delphi will try to compute the distribution of the sum and generate
from that distribution. If that is not possible, it will generate a processing time for each
component and add these together.

Conveyor servers require four parameters: load time, the time for the first component
to complete service, the inter-departure time for subsequent components, and unload time.
The service time for a job is the load time plus the first component time, plus (number of
components-1) times the inter-departure time, plus the unload time.

Mullisequence servers vequire four parameters: load time, total time, longest time, and
unload time. The service time for a job is as for a batch tool, with the processing time
being the total time. However, the server becomes free before the completion of the service
time. Delphi models this type of tool by generating a random variable from the total time

I

Distribution Description

c(value) Constant.
e(mean) Exponential.
ula,b) Uniform between a and b.

{p(mean,pet) Triangular, mean +/- pct%.
up(mean,pct) Uniform, mean +/- pct%.

Table 2: Distributions supported in Delphi.

distribution, then multiplying this realization by the ratio of the mean of the longest time
to the mean of the total time. The tool is freed after the load time plus this calculated time
has passed.

Per-job servers require three parameters: load time. processing time for the job, and
unload time. The service time for a job is the sum of these three times.

10 SPECIFYING DISTRIBUTIONS

Service times and interarrival times in Delphi can be specified as random variables. In gen-
eral, a distribution is specified in the input file in the form dist(parms). The distributions
currently supported appear in Table 2.

11 ADDING DOWN-TIME TO A MODEL

Suppose that every 8 hours, Lucy takes a break that lasts for an exponentially distributed
amount of time, one hour being the mean time away from her duties. The modifications
necessary to our earlier M/M/1 model are included in the files cf-mm1.del and cf~-mm1.r1.
Actually, cf-mm1.r1is exactly the same as mm1.r1, but for simplicity, Delphi requires that
system configuration and routing configuration files use the same prefix.

The file cf-mml.del is marginally more complicated than before, and is displayed in
Figure 6.

We can trv out our new model for ten days by using the command line option -endtime,
as follows.

gauss% delphi 1 cf~-mm1 -endtime 240

delphi v5.7: Starting simulation ’cf-mml’.
Successfully read in 1 routing entries, job type 1.

{ This File: cf-mml.del
Creator: Frank Chance
Last Modified: 12-19-92
Description: Input configuration file for DELPHI simulation

of an M/M/1 queue with clock-time failures.

{ Jobtype 1 description line. }

{ <Line
J

ID> <jobtype> <priority> <#components>}
Customer 1 1

{ Release patterns for jobtype 1. }

{ <Line
T
{ Queue
{ <Line
q
{ Queue
{ <Line
cf

ID> <#jobs to release> <Inter-release distribution> ks
1 e(1.0)
1 description line. }
ID> <Queue> <# Servers> <Server Type> }
Lucy 1 5
1 down-time line. }
ID> <Time-to dist> <Time-offline dist> }
c(1.0) e(1.0)

Figure 6: Configuration file for M/M/1 quene with breakdowns.

13

Number of tool groups/queues = 1

Number of replications = 1

Job type 1, priority 1, number of releases 1.
Normal completion, replication 1 of 1, time = 240.
delphi v5.7: Simulation ’cf-mml’ exiting normally.

As before, detailed output statistics appear in the file cf-mml.run. Down-times within
Delphi can be modeled in one of three ways. The first two are closely related, and we will
denote them by “clock-time” and “busy-time” down-times. For both of these types, a tine-
to distribution and a time-offline distribution are specified. First, a variate is generated from
the time-to distribution. For clock-time down-times, the down-time occurs when this amount
of simulated time has passed. TFor busy-time down-times, the down-time occurs when the
server has been busy processing jobs for this amount of time.

When the down-time occurs, a variate is generated from the time-offline distribution, and
the server is down for that amount of time. The process is then restarted with the generation
of another time-to variate.

Within either clock-time or busy-time down-times, failures, preventive maintenance, and
setups can be simulated. To model a clock-time or busy-time down-time, add an extra line
after the queuning description line in the input configuration file, specifying the time-to and
time-offline distributions. For explicit format instructions, see the output when Delphi is
executed without any command line options.

A third way of modeling breakdowns is to model them as a jobtype that crosses only a
single machine, and has the highest priority of any job. Under this assumption, breakdowns
can queue at a machine, certainly not an intuitive situation. It is possible to model this
assumption in Delphi, however, by creating an extra jobtype for each machine with this type
of down-time.

12 ADDING SCRAP TO A MODEL

Suppose Lucy decides to branch out of the psychiatric counseling business into football
manufacturing. The raw materials for her operation are the leather and the laces, her
operation being to simply insert the laces into the pigskin. Boxes of 10 footballs each arrive
via the postal service at randomly space intervals (exponentially distributed interarrival
times with mean 8 hours). Suppose further that Lucy is a stickler for quality, and enforces
rather strict rules about what can and cannot be sent out the door to the local football
retailers.

Being a small time operator, her entire operation fits under the tree in the backyard,
which is fine if it doesn’t rain that day, but bad news if it rains, because the laces shrink
up and don’t fit properly. Furthermore, there is a small chance that when she is lacing the
footballs, she inadvertently sticks the ball with her lacing needle, and the football is history.

Let’s say that from Lucy’s previous job experience as a weather forecaster, she knows
that one the average, one out of every twenty days is rainy (she obviously does not operate
in Ithaca). Also, from a few days worth of experience with lacing, she has gotten pretty
good, and she only punctures about every one in ten footballs.

The file s-mm1.del is shown in Figure 7.

{ This File: s-mml.del
Creator: Frank Chance
Last Modified: 12-19-92
Description: Input configuration file for DELPHI simulation
of an M/M/1 queue with scrap.

PR

Jobtype 1 description line. }

{ <Line ID> <jobtype> <priority> <#components> }
j Footballs 1 10

{ Release patterns for jobtype 1. }

{ <Line ID> <#jobs to release> <Inter-release distribution> }
T 1 e(8.0)

{ Queue 1 description line. }

{ <Line ID> <Queue> <# Servers> <Server Type> }

q Lacing 1 2

Figure 7: Configuration file for M /M /1 queue with scrap.

The routing file s-mm1.rl is shown in Figure 8.
Note that the specification of scrap in Delphi is more general than the situation we have
described here. The three scrap parameters are

100.0 * P[scrap occurs],
100.0 * Plentire job scrapped

scrap occurs),
scrap occurs, entire job not scrapped].

100.0 % Plcomponent scrapped

We can handle our situation described above by setting the first scrap parameter to 100.0.

{ This File: s-mmi.ri
Creator: Frank Chance
Last Modified: 12-19-92
Description: Routing configuration file for DELPHI
simulation of an M/M/1 queue with scrap.
by
{ Routing step 1 description line.}
{ <Line ID> <Step> <Queue> <Load> <Process> <Unload> }
P Lacing Lacing c(0) e(0.50) c(0)
{ Scrap description line.}
{ <Line ID> <% Scrap Occurs> <Job %> <Component %> }
s 100.0 5.0 10.0

IMigure 8: Routing file for M/M/1 quene with scrap.

We execute the model exactly as before. Output statistics for scrap are included in
s-mml.run.

13 ADDING REWORK TO A MODEL

Lucy’s football manufacturing business expands at a phenomenal rate, and before long, she
is taking orders for private label footballs from the NFL, IK-mart, and the White House.
She hires one of the neighbor kids to stencil on the private label after the lacing operation
is complete. She also wants to cut out scrap completely, so after each box of foothalls has
completed the lacing step, she has someone standing by with some puncture-fixing glue. Any
football that was punctured in the lacing step gets a squirt of glue, then the entire box is
returned to the lacing step, where laces are put into the previously punctured (but now good
as new) foothalls.

Approximately one in ten foothalls is punctured (Lucy’s success rate with the lacing
procedure hasn't increased.) The puncture-fixing operation takes a constant six minutes to
apply per foothall. To lessen confusion in the workplace, the footballs remain in their boxes
of 10, so when any footballs in a box are reworked, the entire box cannot proceed, until all
are ok.

After a box is successfully laced, it proceeds to the private label attacher. This operation
takes a constant 12 minutes per football (0.2 hours).

16

Finally, the box is closed up and Lucy’s patented “seal of quality”™ is put across the top.
This operation takes a constant 6 minutes per job.
The file r-mm1.del is shown in Figure 9.

{ This File: r-mml.del
Creator: Frank Chance
Last Modified: 12-19-92
Description: Input configuration file for DELPHI simulation
of a small system with rework and scrap.

PR

Jobtype 1 description line. }

{ <Line ID> <jobtype> <priority> <#components> }
j Footballs 1 10

{ Release patterns for jobtype 1. }

{ <Line ID> <#jobs to release> <Inter-release distribution> ¥
r 1 e(8.0)

{ Queue description lines. }

{ <Line ID> <Queue Name> <# Servers> <Server Type> }

q Lacing 1 2
q Fixup 1 2
q Add-labels 1 2
q Seal-box 1 5

Figure 9: Configuration file for system with rework and scrap.

The routing file r-mum1.r1 is shown in Figure 10.
Rework percentages are specified much like scrap:

100.0 * P[rework occurs],
100.0 * Plentire job reworked|rework occurs],
100.0 + P[component reworked[rework occurs, entire job not reworked].

Rework stalistics are included in the output file r-mml.run.

17

{ This File: r-mml.rl
Creator: Frank Chance
Last Modified: 12-19-92
Description: Routing configuration file for DELPHI
simulation of small system with
rework and scrap.

+
{ <Line ID> <Step> <Queue> <Load> <Process> <Unload> }
p Lacing Lacing <(0) e(0.50) c(0)
{ <Line ID> <Y% Scrap Occurs> <Job %> <Component %> }
s 100.0 5.0 10.0
{ <Line ID> <Skip-to-step> <} Rework occurs> <Job %> <Comp >3
r Add-labels 100.0 0.0 10.0
{ <Line ID> <Step> <Queue> <Load> <Process> <Unload> }
P Fixup Fixup c(0) <¢(0.10) c(0)
{ <Line ID> <Goto-line> <% of time>}
g Lacing 100.0
{ <Line ID> <Step> <Queue> <Load> <Process> <Unload> }
P Add-labels Add-labels c(0) c(0.20) c(0)
p Seal-box Seal-box c(0) <¢(0.10) c(0)

IMigure 10: Routing file for system with rework and scrap.

14 EXAMPLE OUTPUT STATISTICS

A variety of output statistics are contained in the file config.run. We will consider an output
file for a five thousand job run of the example discussed in the previous section, r-mml.run.
This output file is displayed in Figures 11 through 17.

15 PROBABILISTIC ROUTING

In order for Delphi to be able to handle general networks of queues with Markov routing,
there must be the capability after each processing step at a queue to jump randomly to any
queue within the system. This capability is given by the g’ step in the routing file.

As an example consider a simple three step operation, where the second step is only
performed about one-third of the time. The files g-mm1.del and g-mml.r1 are included
in the De I])ln distribution and nnpl(*mom, such a system.

The routing file g-mm1.rl is shown in Figure 18, along wﬂh explanations of each line.

When this svtem is exeented, all jobs are processed at queue | \[tm bemg processed at
queue 1, jobs are routed directly to queue 3 with probability ().33. otherwise they continue
on to quene 2 with probability 0.67. All jobs are processed at queue 3.

16 CALCULATING CONFIDENCE INTERVALS

Delphi uses two different methods to calculate confidence intervals for time in system and
time at individual queues.

First. to calculate confidence intervals for time at a queue, Delphi uses the queuing
relation L = MV, where L is the expected value of the limiting number at the queune, A is
the arrival rate into the queue, and W is the expected value of the limiting time in queue.
If we let (1) be the number at the queune (waiting plus being served) at time { and the
simulated clock runs from time 0 to time T', we can estimate L by

L = = Q().

If we know), or can estimate it by A, we estimate W by

although the exact effect of dividing by an estimate of A rather than the true A is unknown.

19

---- End-of-Replication Report, (Replication 1 of 1) ---

Run ended at simulated time: 45295.4
Delphi Version 5, Level 7.

Runlist file: r-mml.run

Streams in use: 1 to 8.

Bytes of memory used ¢ 23288

Calls to memory allocation: 147

Times memory re-allocated : 26
Number of batches 1 20
Batch length (in time units) : 2000
Statistics collected after time: O

--- Initialization Bias Test ---

Schruben et al. (1983) 2-sided test for initialization
bias (see Operations Research 31: 1090-1108)

Note: P-values below 0.10 are evidence of
statistically significant differences between
batch means in the output.

Schruben’s Degrees
Jobtype Statistic of Freedom P-value

Footballs 1.80 21 0.09

Figure 11: General information and bias test, 5000 job run of r-mm1.

--- Job Type Statistics ---

Note: Upper and lower bounds are 95} confidence bounds.

-~--- Job Type ---= ~-===-————==—--==- Time in System ----—-=—--=-=---
Number of ---------- Mean ----=== ———-=-- Variance —------
Finished Lower Upper Lower Upper
Name Jobs Bound Mean Bound Bound Var Bound
Footballs 5000 (16.8, 17.9, 19.1) (116.5, 149.9, 183.2)

———————————— Throughput Per Time Unit ----------=

—————— Components ----- —mmmm——-— Jobg —==-————

Job Type Lower Upper Lower Upper
Name Bound Mean Bound Bound Mean Bound

Footballs (0.964, 0.990, 1.016) (0.108, 0.110, 0.113)

-—- Queue Statistics ---

Max ---- Queue Delay Only ---

A h h in Lower Upper
Queue Work Down Free Queue Bound Mean Bound Rank
Lacing 69.6 0.0 30.4 13 (5.42, 6.20, 6.98) 1
Fixup 1.2 0.0 98.8 2 (0.00, 0.00, 0.00) 3
Add-labels 19.8 0.0 80.2 4 (0.31, 0.34, 0.38) 2
Seal-box 1.1 0.0 98.9 1 (0.00, 0.00, 0.00) 4

Figure 12: System and queue delay statistics, 5000 job run of r-mm1.

--- Estimated Time in Queue Plus Service by Job ---

Estimated - Time 1in Queue+Service -~ Rank
Number of Lower Upper % of Within
Queune Visits Bound Mean Bound Total Jobtype

Job Type: Footballs

Lacing 1.66 (14.33, 15.75, 17.17) 87.10 1
Fixup 0.66 (0.09, 0.09, 0.10) 0.52 3
Add-labels 1.00 (2.06, 2.14, 2.21) 11.82 2
Seal-box 1.00 (0.10, 0.10, 0.10) 0.55 3

Job Type Total: 18.08

Figure 13: Time in queue plus service for job, 5000 job run of r-mml.

To arrive at a confidence interval for our estimate of time at queue, we split time into a
series of equal length batches. Suppose the number of batches is N. and the length of each
batch is Ts. We let

1 nl'p

L, = /(Q(1)dl

irB n—1)T4

be the batch mean estimate of L from the nth batch.

Unless otherwise specified, Delphi splits the output for each job type into a default num-
her of batches, and assumes the batch means are approximately independent, identically
distributed normal random variables with unknown mean and variance. Under these as-
sumptions, a f-confidence interval is placed about the average of the batch means.

Let G be the grand batch mean

J AN
(G = 7_; L,.

~

Let 52 he the estimated variance of (4,

--- Random Routing Statistics ---

Routing To Route #Random Out of % Time
Step Step Choices Total Chosen

Job Type: Footballs
Fixup Lacing 3809 3809 100.00

--- Scrap Statistics ---

% Time % Jobs
Routing Number Scrap Completely 7% Components
Step Visits Occurred Scrapped Scrapped
Job Type: Footballs
Lacing 9540 100.00 4.97 9.8b
--- Rework Statistics ---
% Time % Jobs
Routing Number Rework Completely % Components
Step Visits Occurred Reworked Reworked
Job Type: Footballs
Lacing 9540 92.34 0.00 10.17

Figure 14: Rework and scrap statistics, 5000 job run of r-mml.

23

--- Number in System Statistics ---

All Job Types:

in # of Total % Cumulative
System Hits Time Time Percent
0 1349 10598.5885 23.40 23.40

1 2632 10304.4951 22.75 46.15

2 2302 8012.0203 17.69 63.84

3 1743 5424 .4724 11.98 75.81

4 1248 3871.1271 8.55 84 .36

5 881 2808.5863 6.20 90.56

6 579 1905.8735 4.21 94.77

7 352 1136.6482 2.51 97.28

8 199 626.0743 1.38 98.66

9 105 360.6566 0.80 99 .46

10 47 134.8675 0.30 99.75
11 17 63.0146 0.14 99.89
12 8 37.5747 0.08 99.97
13 2 11.3547 0.03 100.00

45295.3539

¥ ok sk sk k ok ok k ok % ok k k ok % >k k k *k k %k k k *k k %k %k *x *k *k k ¥ %k *k

[igure 15: Number in system statistics, 5000 job run of r-mm1.

---- End-of-Run Report (1 Replication(s).) ---

Delphi Version 5, Level 7.

Runlist file: r-mml.run

Streams in use: 1 to 8.

Bytes of memory used ;23288

Calls to memory allocation: 147

Times memory re-allocated : 26
Number of batches 1 20
Batch length (in time units) 1 2000
Statistics collected after time: O

--- Job Type Information ---

Constant Number Release Number Due-Date
Job Type Priority W.I.P. Release Wrap Routing Offset
Name Size Policy? Patterns Policy Entries Time
Footballs 10 1 No 1 Startover 4 N/A
-~~~ Queue Information ---
Note: c = Clock-time, b = Busy-time, A = Both.
S
FPe
a . t Servers
1 Mu for Service
Queue 1 . p Queue Discipline
Lacing 1 FIFO
Fixup 1 FIFO
Add-labels 1 FIFO
Seal-box 1 FIFO
Figure 16: End-of-run report, 5000 job run of r-mm1.

25

--- Command Line Options ---

Dption Enabled Type Argument
-debug No Flag
-debugstart No Value
-nistrace No Flag
-xtrace No Flag
-debugjob No Value
-endtime No Value
-endjob Yes Value 5000.00
-endjobtype Yes Value 1.00
-norunlist No Flag

~reps Yes Value 1.00
-msetrunc No Flag
-pointbias No Flag
-nbatch Yes Value 20.00
-cilevel Yes Value 95.00
~savelnt No Value
~readstate No String
-savestate No Flag
-xbtrace No Flag
-norelease No Flag
-debugq No String
~repfiles No Flag
-debugev No String
-nohead No Flag
-clearstats Yes Value 0.00
~verify No Flag

-Jjtnis No Flag

-pointwalt No Flag

Description

Debug trace.

Starting time for debug trace.
Number in system trace.

Time in system trace.

Specify job for debug trace.
Ending time of simulation.

End run after number of jobs.
Jobtype for ending job.

Do not generate run output.
Number of replications.

Estimate mean-square-errors.
Estimate bias for individual jobs.
Number of batches.

Confidence interval level.
Interval between state-saves.
Read initial state space.

Save state-space at run end.

Time in system trace-batch means.
Do not release jobs into system.
Specify queue for debug trace.
Replic. traces to separate files.
Specify event for debug trace.

No column headings in output.
Clear statistics at this time.
Print stats for easy verification.
Print jobtype # in system stats.
Use waiting times for pointbias.

Figure [7: Delphi option settings, 5000 job run of r-mm]l.

{ This File: g-mml.rl
Creator: Frank Chance
Last Modified: 11-14-92
Description: Routing configuration file for DELPHI
simulation of a small network.

ey gl

Routing step 1 description line.}

{ <Line ID> <Step> <Queue> <Load> <Process> <Unload> }
p Step-1 Queue-1 ¢(0) e(0.65) c(0)

{ Goto description line.}

{ <Line ID> <Goto-line> <% of time>}

g Step-3 33.0

{ Routing step 2 description line.}

{ <Line ID> <Step> <Queue> <Load> <Process> <Unload> }
p Step-2 Queue-2 c(0) e(0.65) c(0)

{ Routing step 3 description line.}

{ <Line ID> <Step> <Queue> <Load> <Process> <Unload> }
p Step-3 Queue-3 c(0) e(0.65) c(0)

Pigure 18: Routing file for three machine network with probabilistic routing.

Then the approximate 95% confidence interval for the expected number at queue 1s

S¢

where {x(c) is the (1 — ¢)/2 quantile of the {-distribution with N degrees of freedom.

(i 4 1n-1(0.05)

Proceeding boldly, we use

>

(ﬁ“r(S¢y
— + tn_1(0.05)
VS

as our confidence interval for estimated time at queue.

To estimate time in system, Delphi uses transaction observations rather than the relation
I = AW. The reason for this choice is that scrapping is possible, and if we were to use
L = AW, we would be estimating the time in system for all jobs, including those that are
scrapped. Usually, we only wish to estimate time in system for those jobs that exit normally
after having complete all their steps.

Time is batched as before. Denote by W, the average time in system of jobs exiting

during the nth batch. Let (! be the grand batch mean

G = v ng] W,

N
l N

L = 7\7-_-12(&-%;,#(%2.

n=]1

Then the approximate 95% confidence interval for the expected time in system is

SG

G4 1v_1(0.05)

Confidence intervals for the variance of the time in system distribution are calculated in
a similar fashion, using batch estimates of the variance.
If ~endtime is specified, the batch size is calculated as

endtime

batch size = .
number batches

(0.8

Il -endjob is specified, the batch size is calculated as

X endjob * mean-time-between-arrivals[endjobtype]
batch size = Sy
number batches

The default number of batches is small, on the conservative side, so the default batch
length is large. It may be possible to increase the number of batches with the -nbatch
command line option, and hence lessen the width of the confidence interval, without lowering
the probability that the confidence interval does cover the true expected value.

The confidence level, unless specified with the -cilevel option, defaults to 95%. That is,
if all the assumptions about the independence and normality of the data were satisfied, the
confidence intervals reported would cover the true values approximately 95% of the time. It
is very important to note that this coverage level is appropriate only for examining confidence
intervals one at a time. If multiple confidence intervals are examined, the probability that
all hold simultancously is at least

I — (1 — cilevel) * number of intervals examined.

Quantiles of the t-distribution are obtained from C versions of the routines VSTUD and
VNORM given in Bratley, Fox and Schrage (1987).

17 TESTING FOR INITIALIZATION BIAS

When using Delphi to estimate steady-stale performance parameters of a system (long-run
performance, independent of any set of initial conditions), it is necessary to consider the
effects of initialization bias. That is, the distribution of the time in system for jobs early on
in the simulation run does not match those later in the run. For example, if the model is
started with no jobs present, early jobs will see very little congestion, and hence will have
lower mean time in system, compared to later jobs.

Plotting the time in system observations, and averaging across replications as described

in Welch (1983), is often a good way to identify the effect of initial conditions on the output.
Another way is to test the hypothesis that the time in system batch means are all statistically
equal. One test of this hypothesis is detailed in Schruben et. al. (1983), and is implemented
in Delphi. Briefly, the test involves forming a test statistic that is sensitive to changes in the
batch means. and which converges in distribution to a known form.

Let W, be the average time in system for jobs in the nth batch, N the number of batches,
§¢ the estimated variance of the grand batch mean, Sy the cumulative sum of batch means,

and Y, the mean of the first & batches,
Sk
The test statistic given in Schruben et. al. (1983) is

Vi =

AL o SRR PAT N

k=1

In this form, the calculation of 7' requires keeping all the batch means until the end of the
run. However, with some algebraic manipulation, we can use the alternate form

i 15 (o (N4 DN -1

N N
! L (4) I <
T = Yy : — Sy 4+ — kSL |,
Nz 6 2 Sty 2 ko

which can be calculated as the simulation runs. Since we perform a 2-sided test (to protect
against both positive and negative initial bias), Delphi uses the absolute value of this test
statistic,)i’l To compute the p-value of the statistic, Delphi calculates the area outside
——['f’| and [I} for the ¢ distribution with N — I degrees of freedom. Since the ¢ distribution
is symmetric, this amounts to calculating

2(| —];171,-—1(lj,i))

where [, () is the distribution function for the ¢ distribution with n degrees of freedom.

The p-value of the statistic is the lowest significance level at which we would reject the
hypothesis that the batch means are equal. The lower the p-value, the more evidence we
have for the existence of statistically significant differences among the batch means.

Since the formation of confidence intervals for the mean time in system depends on
identically distributed batch means, the run length should be increased until the p-value
for the initialization bias test falls below a reasonable level, say 0.10, before other statistics
given in the output file can be viewed with any confidence.

18 COMMONLY USED OPTIONS

The descriptions in this section are valid for the version and level of Delphi given in the
abstract. Delphi requires al least the following basic information: a beginning random
number strean, an input file prefix, and the length of the simulation run. Above we used
the following command to simulate our simple M/AM /1 model.

30

gaussY, delphi 1 mm1 -endjob 10

The first required argument (a 1 in this case) specifies the first stream that is used in
the simulation. In order to make the simulation technique of common random numbers
as applicable as possible, random numbers for different purposes are drawn from as many
distinet independent streams as is possible. In the output file mm1l.run, Delphi displays
exactly how many streams were used in the simulation. In our M/M/1 model, stream one
is used for the arrival process, and stream two is used for the service time process. Thus to
exectte a second, independent run, we should use the command

gaussy delphi 3 mm1 -endjob 10

The second required argument specifies the input file name prefix. Delphi will attempt to
read system configuration data from the file mm1.del. For systems with a single job type,
the routing information is read from the file mm1.rl. If multiple job types are included in
a model, the routing information for job type j is read from file mm1.r;.

Finally, in every simulation we must specily an ending condition. To specify an ending job
number, we use the -endjob number option. Unless -endjobtype type is also specified,
the simulation will terminate when number jobs of job type | have exited the system.

To specify an ending simulation clock time, use the -endtime time option. The simu-
lation will terminate after the first event that occurs on or after time.

Below we list other commonly used options and a brief explanation of their purpose. Let
config he the input file prefix (mm1 in our example above).

All optional arguments to Delphi are not sensitive to case. The required file name,
however, must be entered in the proper case.

-cilevel level Specifies the percent level of the confidence intervals given in the output
statistics. Default is 95, for 95% confidence intervals.

-debug Writes an event by event debugging trace to config.dbg.

-debugev eventname Turns on debug trace, but only for event eventname. May be used
in conjunction with other debug options.

-debugjob job Turns on debug trace, but only for job job. May be used in conjunction
with other debug options.

-debugq queuename Turns on debug trace, but only for queuc queuename. May be used
in conjunction with other debug options.

31

-debugstart time Turns on debug trace, but only after simulation clock reaches time.
May be used in conjunction with other debug options.

-endjob job Simulation ends when job jobs of job type 1 have exited system. To change
the job type counted, use -endjobtype.

-endjobtype jobtype When used in conjunction with -endjob, specifies the job type to

be counted for simulation ending condition.
-endtime time Simulation ends after the first event executed on or after time.

-jtnis Generate and report on number in system for each jobtype separately, as well as for
all joblypes in aggregate.

-nbatch batches Specifies the number of batches to use when calculating batch means

and confidence intervals for time in system. Unless specified, Delphi uses an internal
default. The number of batches used is displayed in config.run.

-nistrace Writes number in system trace for job type j to file config.pj.
-nohead Suppresses the heading normally printed in the debug trace output.

-norelease Suppresses regular job release mechanism. Jobs must be loaded into the system
using the -readstate option.

-norunlist Simulation will not generate config.run. Used in conjunction with -reps when
there are many replications, and output statistics are not needed for each individual
replication.

-readstate file At the beginning of the first replication, Delphi reads in the contents of file,
which should be a listing of jobs in the format generated by the -savestate option.
When each replication is initialized, these jobs are released at the job step specified in

file.

—repfiles Writes output files for different replications to separate files. Runlist output for
replication k is written to configrk.run, debug output to configrk.dbg, and trace
output for jobtype j to configrk.pj.

—reps replications Simulation is replicaled replications times. Output files contain data
from all replications. Use -norunlist to stop generation of config.run after each
replication.

-saveint Specifies the interval between saves of state space information (location of all jobs).

-savestate If-saveint is not specified, at the end of each replication the location of all jobs
is written to config.s1. If -saveint is specified. at the specified intervals the location
of all jobs is written to config.sk, where k is incremented after each save operation.

-trunctime time Specifies the first time when statistics are collected. If -endjob job is
specified. then the simulation will end when job jobs of the appropriate type have
exited after time. Simulation stopping time is unaflected by -trunctime if -endtime

is specified.
-xbtrace Writes time in system batch means trace for job type j to file config.pj.

-xtrace Writes job information trace for job type j to file config.p;.

19 RANDOM NUMBERS

Random numbers in Delphi are generated using the (! version of a generator given in Chap-
ter 7 of Law and Kelton (1991). Over 20,000 non-overlapping random number streams are
provided, to enhance the applicability of common random numbers as a variance reduction
technique (see Chapter 11 of Law and Kelton). Wherever possible within Delphi, separate
streams are used. For example, each queue has separate streams for generation of service,
failure, repair. and maintenance times. The number of streams used during a particular run
is listed in the output file.

20 ESTIMATED NUMBER OF VISITS

[n the output file config.run, Delphi displays for each job type the estimated number of
times the job visits cach queue before exiting the system. These estimates are only for those
jobs that successfully exit the system, not for those that are scrapped along the way.

This section of output statistics is included so that a more complete picture of queuing
bottlenecks can be achieved. For instance, suppose we estimate the delay at queue one to be
ten hours, while at. queue two to be thirty hours. However, if each job visits the first queue
an average of ten times, while visiting the second tool only once, the total delay contributed
by queue one is a much larger percentage of the overall time in system than that contributed
by quene two. It might be more appropriate, then, to concentrate resources on lowering the
delay at quene one

33

21 PROGRAM VERIFICATION

The correctness of the program logic within Delphi can be verified in two ways. Ifirst,
for sufficiently small and uncomplicated models, the limiting expected delay in system can
be calculated analytically, and compared with simulation results for long runs. Second, a
debugging trace can be generated, and compared with predicted behavior. We detail in this
section a list of tests that can be easily performed to check several aspects of Delphi’s logic.

21.1 M/M/S QUEUE

The M/M/s quene has exponentially distributed interarrival and service times, and s servers.
Let A be the arrival rate, i the service rate, and p = A/(sp) the traffic intensity. For either
first-come-first-served (also known as first-in-first-out, abbreviated FIFO), or last-come-first-
served (LIFO) disciplines, the mean of the limiting time in system distribution is given by
s
sp(l —p)?

where

A U A Y

When the service discipline is first-come-first-served, the variance of the limiting time in
svstem distribution is given by
U

(sp)*(L—p)?

When the service discipline is last-come-first-served, the variance is given by

(2 —2p — uy).

~——-—7l3—-'—-—(2 — Uuy).
(sp)?(1 = p)!
In cach of these equations, us is as given above.

These quantities are listed in Table 3 for several arrival and service rates, with varying
number of servers and service discipline. The true mean and variance should be compared to
the estimated mean and variance listed in the Delphi ontput file for runs of several hundred
thousand customers.

Input files for the configurations listed in Table 3 are included in the Delphi distribution as
mmsA .del and mmsA.rl (FIFO version), mmsAL.del and mmsAL.r1 (LIFO version),
mmsB.del and mmsB.rl, etc.

Mean Mean Limiting Limiting Limiting

Number Arrival Service Traffic Time in Time n Time in
Servers Rate Rate Intensity System FIFO System LIFO System
3 A It P Mean Variance Variauce
| 0.5 2.0 0.25 0.667 0.444 0.519
2 2.0 1.53846 0.81 1.913 3.205 22.174

0.5 0.055 0.91 32.100 693.59 6260.97
25 0.2 0.01 0.80 104.182 10149.8 10818.9

Table 3: Verification table for M/M/s Queue

21.2 M/G/1 QUEUE

The M/G/1 quene has exponentially distributed interarrival times, general service times,
and a single server. The service discipline is {i rst-come-first-served. Let A be the arrival rate,
(i the service rate, and p = A/p the traflic intensity. From Equation (6.25) of Prabhu (1981),
the mean of the limiting time in system distribution is given by

AE[SE] l
21 —p) g

or. if we substitute in the variance plus the squared mean for the second moment of the
service time distribution,

A (Var[So] +) e
2(1 —p) "

This limiting value is calculated in Table 4 for several service time distributions and
values of A and jt.

Input files for the configurations listed in Table 4 are included in the Delphi distribution
as mglA.del and mglA.rl, mglB.del and mglB.rl, etc.

21.3 M/M/1 IN SERIES

Consider an assembly line of three machines, with each job having to visit the machines
along the line exactly once, in sequence. If the interarrival time to the first machine or queue
is exponentially distributed, and service times at all machines are exponentially distributed,
then according to Section 1114 of Asmussen (1987), the limiting input process to all queues

Service Mean Mean

Time Arrival Service Traffic Limiting

Distribution Rate Rate Intensity Time in

A I p=Ap System
u(2,4) 0.10 1/3 0.300 3.67
u(h,10) 0.05 1/7.5 0.375 9.83
c(3) 0.10 1/3 0.300 3.64
c(7.5) 0.05 1/7.5 0.375 9.75
up(3,33.3) 0.10 1/3 0.300 3.67
tp(H.,50) 0.067 1/5 0.333 6.30

Table 4: Verification table for M/G/1 Queue

is Poisson (interarrival times are exponentially distributed), and we may calculate limiting
expected time in quene separately for each queue.

Suppose the arvival rate to the system is A = 1.0, and the service rates at the three
queues are o = 2.5, jy = 2.0, and p3 = 2.5. For simplicity, suppose each queue has exactly
one server.

Thus. the total limiting expected time in system should be

1 1]

= 0.674+ 1.040.67
;1—,-,\+/1,2——,\+]1.3~/\ A LU DO

= 2.33

The input files for this scenario are included with the Delphi distribution as series.del
and series.rl.

21.4 M/M/1 IN SERIES WITH SCRAP

We test whole-job scrapping here only, so that we may compare with analytic results for
M/M/1 queues in series.

Suppose we have three machines in series, with some scrap occurring after steps one
and two. If the interarrival times to the first machine are exponentially distributed, and all
service times are exponentially distributed, then we can analyze the limiting expected time
in queue separately for ecach queue, as before. The only modification is that the arrival rate
to each queue changes, as some jobs are removed due to scrapping.

Let the arrival rate to machine one be A, = 1.0. If approximately one out of every ten
jobs is scrapped during processing at machine one, then the arrival rate to machine two is

36

Ay = A #0.9 = 0.9. If approximately one out of every five jobs is scrapped during processing
at machine two, then the arrival rate to machine three is Az = Ay * 0.8 = 0.72.
Suppose as before that the three processing rates arve i = 2.5, piz = 2.0, and pz = 2.5.
Then, the total limiting expected time in system should be

1 1 I
+ + = 0.67+0.91 4+ 0.56
fy— AN fia— Ay s — Az

= 2.14

The input files for this scenario are included with the Delphi distribution as scrap.del
and scrap.rl.

21.5 M/M/1 IN SERIES WITH REWORK

We test whole-job rework here only, so that we may compare with analytic results for M/M/1
queues in series.

Suppose we have two machines in series, with some possibility of rework at step one. By
rework, we mean that there is a certain probability that for every job leaving step one, it
may have to visit a third machine for processing, then pass through step one again.

Suppose all three machines have processing rate @ = 2.0. Let the arrival rate into the
system be A = 1.0. However, that is not the effective arrival rate that machine one sees, due
to the possibility of rework. Let the probability of rework be p = 0.20, that is, approximately
one out of every five jobs will be reworked.

Jobs that are reworked visit a rework machine, then return to machine one. Jobs that
are not. reworked visit machine three, then exit the system.

To calculate the analytic limiting expected time in system, we need first to calculate the
effective arrival rate to all three machines, given that rework can occur.

First. the arrival rate to machine one is incoming jobs at a rale of A, plus reworked jobs
at a rate of pA. plus those jobs that are reworked twice at a rate of p?A, etc. Thus,

W

n=0

]
| —p
= 1.25.

L

The arrival rate to the rework machine is the probability of rework times the effective
arrival rate into machine one,

A= ph

37

= 0.25.

The arrival rate to machine two is the exit rate of machine one (which must be its arrival
rate ;) minus the rate of jobs being reworked (A,
/\2 = Al _ /\7»
= 1.0.

Finally, the expected time in system is the expected number of visits to each queue times
the expected time at queue, added together.

/\j l + /\)- l /\2 l
A=A A=A, A= Ag

= 1.25(1.333) + 0.25 % (0.571) + 1.0 * (1.0)

= 2.3l

The input files for this scenario are included with the Delphi distribution as rework.del
and rework.rl.

21.6 M/M/1 WITH TWO PRIORITY CLASSES

Consider a single server with two classes of jobs, one receiving high priority, the other
receiving low priority. The discipline is head-ol-the-line, in that high priority jobs that
arrive during the service of a low priority job do not interrupt service. Rather, the high
priority job moves ahead of any low priority jobs waiting for service. Within a priority class,
service is first-come-first-served.

Let Ay, A; denote the arrival rates for the two classes. Let pp, pg denote the service
rates for the two classes. Denote the traffic intensities by pg = A/, pr = AL/pr, and
assume py + pr, < L.

We obtain the limiting expected queuing delay {rom Table 4.4 of Prabhu (1981), and
after adding the expected service time, we find the expected time in system for high priority
jobs to be

v 1

Ly
(L—pu) pu

N

and for the low priority jobs to be

v |

+
(L—pu)l —puw—pr) HL

A

33

where

AL Aw
— + =
Hr Hu

Suppose Ay = 0.5, A;, = 0.25, pyy = 2.0, pp, = 0.5. Then v = 1.125, and the expected

V=

time in system for high priority jobs is

1.125 1
— = 2.0
0.75 * 2.0

For low priority jobs, the expected time in system s
1.125 |

2 — 8.0
(075)(0.25) T 0.5

The input files for this scenario are included with the Delphi distribution as priority.del,
priority.rl, and priority.r2.

21.7 M/G/1 WITH LOADING AND UNLOADING

Consider a single server and single job class, but each service time consists of three parts:
loading the job, servicing the job, and unloading the job. The service discipline is first-in-
first-out.

We can use the formula given before for the M/G/1 queue to calculate the limiting
expected time in system, where the service time has three parts,

‘AE[SS] L
2L =p) p

Suppse A = 1.0, and the three parts of the service time are distributed exponentially with
means 1/ = 0.1, 1/, = 0.4, and 1 /43 = 0.2. Then

S T N
N RN
= 0.70.

Now the second moment of the service time,

l‘:{,q(ﬂ = \’73}1‘[»81()] -+ (F}[S()DZ

I R
BT T BTt ST
—= 0.70.

since the service bime is the sum of three independent exponential random variables. The
traffic intensity p = 0.70. Hence the limiting expected time in system should be

1.0 % 0.70

LU0 g0 & 18T
(=070 ’

The input files for this scenario are included with the Delphi distribution as load.del
and load.rl.

22 SUMMARY

Delphi is a quening network simulator written in portable C code. It was developed to provide
a platform for testing various scheduling and simulation algorithms on large, realistic queuing
network models. Delphi is available via anonymous ftp from "gauss.orie.cornell.edu’. There
is no charge for Delphi if it is used for research at any degree granting institution. Before
using Delphi in any commercial enterprise, a license must be obtained from the author.

ACKNOWLEDGMENTS

The anthor would like to thank Sarah Hood, Gerald Feigin, and Dan Friedman of IBM
T. J. Watson Rescarch Center for valuable comments and suggestions regarding semicon-
ductor manufacturing simulation. Lee Schruben of Cornell University was quite helpful in
discussions concerning appropriate statistical outputs.

REFERENCES

S. ASMUSSEN. 1987. Applicd Probability and Queues. New York: John Wiley & Sons.

P. BRATLEY. B. FoX, AND L. SCHRAGE. 1987. A Guide to Simulation. New York:
Springer-Verlag.

S. J. Hoop. A. E. B. AMAMOTO, AND A. T. VANDENBERGE. 1989. A modular structure
for a highly detailed model of semiconductor manufacturing. In: Proceedings of the
1989 Winter Simulation Conference, eds. E. A. MacNair, K. J. Musselman, and P.
Heidelberger, 811-817. Institute of Electrical and Electronics Engineers, Piscataway,
New Jersey.

L. LampoRrt. 1986. IWIpX: A Document Preparation System. Reading, Massachusetts:
Addison-Wesley.

A. M. LAwW AND W. D. KELTON. 1991. Simulation Modeling and Analysis. New York:
MeGraw-Hill.

N.

PrABHU. 1981. Basic Queneing Theory. Technical Report No. 478, School of Operations
Research and Industrial Bngineering, Cornell University, Ithaca, New York.

SCHRUBEN. 1991. Sigma: A Graphical Simulation System. San Francisco: Scientific
Press.

SeHRUBEN. H. SINGH, AND L. TIERNEY. 1983. Optimal Tests for Initialization Bias
in Simulation Output. Operations Research 31: 1167-1178.

CWELCH. 1983, The Statistical Analysis of Simulation Results. The Computer Perfor-

mance Modeling Handbook. New York: Academic Press.

