ILLUSTRATIVE EXAMPLES OF PRINCIPAL COMPONENT ANALYSIS USING SAS/PRINCOMP*

W. T. Federer, C. E. McCulloch and N. J. Miles-McDermott

Abstract

In order to provide a deeper understanding of the workings of principal components, four data sets were constructed by taking linear combinations of values of two uncorrelated variables to form the X-variates for the principal components analysis. The examples highlight some of the properties and limitations of principal component analysis.

This is part of a continuing project that produces annotated computer output for principal components analysis. The complete project will involve processing four examples on SAS/PRINCOMP, BMDP/4M, SPSS-X/FACTOR, GENSTAT / PCP, and SYSTAT / FACTOR. We show here the results from SAS/PRINCOMP, Version 5.

* Supported by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell University.

1. INTRODUCTION

Abstract

Principal components is a form of multivariate statistical analysis and is one method of studying the correlation or covariance structure in a set of measurements on m variables for n observations. For example, a data set may consist of $\mathrm{n}=260$ samples and $m=15$ different fatty acid variables. It may be advantageous to study the structure of the 15 fatty acid variables since some or all of the variables may be measuring the same response. One simple method of studying the correlation structure is to compute the $m(m-1) / 2$ pairwise correlations and note which correlations are close to unity. When a group of variables are all highly inter-correlated, one may be selected for use and the others discarded or the sum of all the variables may be used. When the structure is more complex, the method of principal components analysis (PCA) becomes useful.

In order to. use and interpret a principal components analysis there needs to be some practical meaning associated with the various principal components. In Section 2 we describe the basic features of principal components and in Section 3 we examine some constructed examples using SAS/PRINCOMP to illustrate the interpretations that are possible. In Section 4 we summarize our results.

2. BASIC FEATURES OF PRINCIPAL COMPONENT ANALYSIS

PCA can be performed on either the variances and covariances among the m variables or their correlations. One should always
check which is being used in a particular computer package program. SAS can use either the variances and covariances or the correlations but uses the correlations by default. First we will consider analyses using the matrix of variances and covariances. A PCA generates̀ m new variables, the principal components (PCs), by forming linear combinations of the original variables, $X=$ $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$, as follows:

$$
\begin{aligned}
& P C_{1}=b_{11} x_{1}+b_{12} x_{2}+\ldots+b_{1 m} x_{m}=\underset{\sim \sim}{\mathrm{Xb}_{1}} \\
& \mathrm{PC}_{2}=\mathrm{b}_{21} \mathrm{X}_{1}+\mathrm{b}_{22} \mathrm{X}_{2}+\ldots+\mathrm{b}_{2 \mathrm{~m}} \mathrm{X}_{\mathrm{m}}=\underset{\sim \sim_{2}}{\mathrm{Xb}_{2}} \\
& \vdots \\
& P C_{\mathrm{m}}=\mathrm{b}_{\mathrm{m} 1} \mathrm{X}_{1}+\mathrm{b}_{\mathrm{m} 2} \mathrm{X}_{2}+\ldots+\mathrm{b}_{\mathrm{mm}} \mathrm{X}_{\mathrm{m}}=\underset{\sim \sim}{\mathrm{Xb}_{\mathrm{m}}}
\end{aligned}
$$

where X_{i} have mean zero. In matrix notation,

$$
\begin{aligned}
& \text { and conversely } X=P B^{-1} \quad .
\end{aligned}
$$

The rationale in the selection of the coefficients, $b_{i j}$, that define the linear combinations that are the $P C_{i}$ is to try to capture as much of the variation in the original variables with as few PCs as possible. Since the variance of a linear combination of the Xs can be made arbitrarily large by selecting very large coefficients, the $b_{i j}$ are constrained by convention so that the sum of squares of the coefficients for any PC is unity:

$$
\Sigma_{j=1}^{m} b_{i j}^{2}=1 \quad i=1,2, \ldots, m
$$

Under this constraint, the $b_{i j}$ in PC_{1} are chosen so that $P C_{1}$ has maximal varianče.

If we denote the variance of X_{i} by s_{i}^{2} and if we define the total variance, T, as $T=\Sigma_{i=1}^{m} s_{i}^{2}$, then the proportion of the variance in the original variables that is captured in PC_{1} can be quantified as $\operatorname{var}\left(P_{1}\right) / T$. In selecting the coefficients for $P C_{2}$, they are further constrained by the requirement that PC_{2} be uncorrelated with PC_{1}. Subject to this constraint and the constraint that the squared coefficients sum to one, the coefficients $b_{2 j}$ are selected so as to maximize var $\left(\mathrm{PC}_{2}\right)$. Further coefficients and PCs are selected in a similar manner, by requiring that a PC be uncorrelated with all PCs previously selected and then selecting the coefficients to maximize variance. In this manner, all the PCs are constructed so that they are uncorrelated and so that the first few PCs capture as much variance as possible. The coefficients also have the following interpretation which helps to relate the PCs back to the original variables. The correlation between the $i^{\text {th }}$ PC and the $j^{\text {th }}$ variable is

$$
b_{i j} \sqrt{\operatorname{var}\left(P C_{i}\right)} / s_{j}
$$

After all m PCs have been constructed, the following identity holds:

$$
\operatorname{var}\left(P C_{1}\right)+\operatorname{var}\left(P C_{2}\right)+\ldots+\operatorname{var}\left(P C_{m}\right)=T=\Sigma_{i=1}^{m} s_{i}^{2}
$$

This equation has the interpretation that the PCs divide up the total variance of the Xs completely. It may happen that one or more of the last few PCs have variance zero. In such a case, all the variation in the data can be captured by fewer than m
variables. Actually, a much stronger result is also true; the PCs can also be used to reproduce the actual values of the Xs , not just their variance. We will demonstrate this more explicitly later.

The above properties of PCA are related to a matrix analysis of the variance-covariance matrix of the $X s, S_{X}$. Let D be a diagonal matrix with entries being the eigenvalues, λ_{i}, of S_{x} arranged in order from largest to smallest. Then the following properties hold:
(i) $\lambda_{i}=\operatorname{var}\left(P C_{i}\right)$
(ii) $\quad \operatorname{trace}\left(S_{x}\right)=\Sigma_{i=1}^{m} s_{i}^{2}=T=\Sigma_{i=1}^{m} \lambda_{i}=\Sigma_{i=1}^{m} \operatorname{var}\left(P C_{i}\right)$
(iii) $\operatorname{corr}\left(P C_{i}, X_{j}\right)=\frac{b_{i j} \sqrt{\lambda_{i}}}{s_{j}}$

$$
\text { (iv) } S_{x}=B^{\prime} D B
$$

The statements made above are for the case when the analysis is performed on the variance-covariance matrix of the Xs. The correlation matrix could also be used, which is equivalent to performing a PCA on the variance-covariance matrix of the standardized variables,

$$
y_{i}=\frac{x_{i}-\bar{x}_{i}}{s_{i}}
$$

PCA using the correlation martrix is different in these respects:
(i) The total "variance" is m, the number of variables. (It is not truly variance anymore.)
(ii) The correlation between $P C_{i}$ and X_{j} is given by
$b_{i j} \sqrt{\operatorname{var}\left(P C_{i}\right)}=b_{i j} \sqrt{\lambda_{i}}$. Thus $P C_{i}$ is most highly correlated with the X_{j} having the largest coefficient in $P C_{i}$ in absolute value.

The experimenter must choose whether to use standardized (PCA on a correlation matrix) or unstandardized coefficients (PCA on a variance-covariance matrix). The latter is used when the variables are measured on a comparable basis. This usually means that the variables must be in the same units and have roughly comparable variances. If the variables are measured in different units then the analysis will usually be performed on the standardized scale, otherwise the analysis may only reflect the different scales of measurement. For example, if a number of fatty acid analyses are made, but the variances, s_{i}^{2}, and means, \bar{x}_{i}, are obtained on different bases and by different methods, then standardized variables would be used (PCA on the correlation matrix). To illustrate some of the above ideas, a number of examples have been constructed and these are described in Section 3. In each case, two variables, Z_{1} and Z_{2}, which are uncorrelated, are used to construct X_{i}. Thus, all the variance can be captured with two variables and hence only two of the PCs will have nonzero variances. In matrix analysis terms, only two eigenvalues will be nonzero. An important thing to note is that in general, PCA will not recover the original variables Z_{1} and Z_{2}. Both standardized and nonstandardized computations will be made.

3. EXAMPLES

Throughout the examples we will use the variables Z_{1} and Z_{2} (with $n=11$) from which we will construct $X_{1}, x_{2}, \ldots, x_{m}$. We will perform PCA on the Xs. Thus, in our constructed examples, there will only really be two underlying variables.

Values of Z_{1} and Z_{2}
Z_{1}

$\mathrm{Z}_{2}$$|$| -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 15 | 6 | -1 | -6 | -9 | -10 | -9 | -6 | -1 | 6 | 15 |

Notice that Z_{1} exhibits a linear trend through the 11 samples and Z_{2} exhibits a quadratic trend. They are also chosen to have mean zero and be uncorrelated. Z_{1} and Z_{2} have the following variancecovariance matrix (a variance-covariance matrix has the variance for the $i^{\text {th }}$ variable in the $i^{\text {th }}$ row and $i^{\text {th }}$ column and the covariance between the $i^{\text {th }}$ variable and the $j^{\text {th }}$ variable in the $i^{\text {th }}$ row and $j^{\text {th }}$ column).

$$
\begin{aligned}
& \text { Variance-covariance matrix of } \mathrm{Z}_{1} \text { and } \mathrm{Z}_{2} \\
& \left.\qquad \begin{array}{cc}
11 & 0 \\
0 & 85.8
\end{array}\right]
\end{aligned}
$$

Thus the variance of Z_{1} is 11 and the covariance between Z_{1} and Z_{2} is zero. Also the total variance is $11+85.8=96.8$.

Example 1: In this first example we analyze Z_{1} and Z_{2} as if they were the data. If PCA is performed on the variance-covariance
matrix then the SAS output is as follows (SAS control language for this example and all subsequent examples is in the appendix and the boldface print was typed on computer output to explain the calculation performed):

PCAI: USING VARIANCE-COVARIANCE MATRIX (UNSTANDARDIZED VARIABLES) PRINCIPAL COMPONENT ANALYSIS

11 OBSERVATIONS
2 VARIABLES
SIMPLE STATISTICS

MEAN $=\bar{Z}_{\mathbf{i}}$	0.000000	0.000000
ST DEV $=\mathbf{s}_{\mathbf{i}}$	3.316625	9.262829
	COVARIANCES $=\mathbf{s}_{\mathbf{i j}}$	Z2

Z1
Z2

$$
\begin{array}{rlrl}
11 & =s_{1}^{2} & 0 & =s_{12} \\
0 & =s_{21} & 85.8 & =s_{2}^{2}
\end{array}
$$

TOTAL VARIANCE =
$96.8=T=11+85.8$
EIGENVALUE DIFFERENCE PROPORTION CUMULATIVE

$$
\left(\lambda_{i}=s_{i}^{2}\right) \quad\left(\lambda_{i}^{-\lambda_{i+1}}\right)
$$

PRIN1

$$
0.88636
$$ PRIN2

$$
85.80000 \quad 74.80000
$$

0.88636
11.00000
0.11364
1.00000

$$
\Sigma_{i=1}^{\mathrm{m}} \lambda_{i}=T=85.8+11.0=96.8 \quad \begin{aligned}
& \text { proportion of variance } \\
& \\
& \text { explained by } P C_{i}
\end{aligned}
$$

EIGENVECTORS $=\underset{\sim}{\mathbf{b}}$

$$
\text { PRIN1 }=\underset{\sim}{b_{1}} \quad \text { PRIN2 }=\underset{\sim}{{\underset{\sim}{2}}^{b}}
$$

21
Z2
$b_{11}=0.000000$
$b_{12}=1.000000$
$b_{21}=1.000000$
$P C_{i}=b_{i 1} Z_{1}+b_{i 2} Z_{2}$
$\mathrm{b}_{22}=0.000000 \quad \mathrm{PC} \mathrm{C}_{1}=0 \mathrm{Z}_{1}+1 \mathrm{Z}_{2}$

OBS	Z1	Z2	PRIN1 $=$ PC $_{\mathbf{1}}$	PRIN2 $=P_{2}$
1	-5	15	15	$-5=1(-5)+0(15)=-5$
2	-4	6	6	-4
3	-3	-1	-1	-3
4	-2	-6	-6	-2
5	-1	-9	-9	-1
6	0	-10	-10	0
7	1	-9	-9	1
8	2	-6	-6	2
9	3	-1	-1	3
10	4	6	6	4
11	5	15	15	5

We can interpret the results as follows:

1) The first principal component is $P C_{1}=0 \cdot X_{1}+1 \cdot X_{2}=X_{2}$
2) $\quad \mathrm{PC}_{2}=1 \cdot \mathrm{X}_{1}+0 \cdot \mathrm{X}_{2}=\mathrm{X}_{1}$
3) $\operatorname{Var}\left(P C_{1}\right)=$ eigenvalue $=85.8=\operatorname{Var}\left(X_{2}\right)$
4) $\operatorname{Var}\left(P C_{2}\right)=$ eigenvalue $=11.0=\operatorname{Var}\left(X_{1}\right)$

The PCs will be the same as the X s whenever the Xs are uncorrelated. Since X_{2} has the larger variance, it becomes the first principal component.

If $P C A$ is performed on the correlation matrix we get slightly different results.

Correlation Matrix of Z_{1} and Z_{2}

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

A correlation matrix always has unities along its diagonal and the correlation between the $i^{\text {th }}$ variable and the $j^{\text {th }}$ variable in the $i^{\text {th }}$ row and $j^{\text {th }}$ column. PCA in SAS would yield the following output:

PCA1: USING CORRELATION MATRIX (STANDARDIZED VARIABLES)
PRINCIPAL COMPONENT ANALYSIS

$$
\text { CORRELATIONS }=\mathbf{r}_{\mathbf{i j}}
$$

The principal components are again the Xs (standardized Zs) themselves, but the eigenvalues (var(PCs)) are unity since the variables have been standardized first.

Example 2: Let $X_{1}=Z_{1}, X_{2}=2 Z_{1}$ and $X_{3}=Z_{2}$. If the analysis is performed on the variance-covariance matrix using SAS the results are:

PCA2: USING VARIANCE-COVARIANCE MATRIX (UNSTANDARDIZED VARIABLES) PRINCIPAL COMPONENT ANALYSIS

11 OBSERVATIONS

COVARIANCES

	COVARIANCES		
	X1	X2	X3
X1	11	22	0
X2	22	44	0
X3	0	0	85.8

	COVARIANCES		
	X1	X2	X3
X1	11	22	0
X2	22	44	0
X3	0	0	85.8

PRIN1
PRIN2
PRIN3

3 VARIABLES
SIMPLE STATISTICS
X1 X2 X3

MEAN	0.000000	0.000000	0.000000
ST DEV	3.316625	6.633250	9.262829

MEAN
3.316625
6.633250
9.262829

EIGENVALUE	DIFFERENCE
$\left(\lambda_{i}\right)$	$\left(\lambda_{i} \boldsymbol{\lambda}_{1+1}\right)$

- 55.00000
0.00000
30.80000
0.60938
0.60938

TOTAL VARIANCE =
140.8

Analyzing the correlation matrix gives the following results:

PCA2: USING CORRELATION MATRIX (STANDARDIZED VARIABLES) PRINCIPAL COMPONENT ANALYSIS

CORRELATIONS
X1
X2
X3

1.0000	1.0000	0.0000
1.0000	1.0000	0.0000
0.0000	0.0000	1.0000

EIGENVALUE
$\left(\boldsymbol{\lambda}_{\mathbf{i}}\right)$

DIFFERENCE
PROPORTION
CUMULATIVE

PRIN1
PRIN2
PRIN3

> 2.000000
> 1.000000
> 0.000000
$\left(\lambda_{i}{ }^{-\lambda}{ }_{i+1}\right)$
1.000000
1.000000
0.666667
0.666667
0.333333
1.000000
0.000000
1.000000

	EIGENVECTORS $=\underset{\mathbf{b}}{\boldsymbol{b}}$		
	PRIN1	PRIN2	PRIN3
X1	0.707107	0.000000	-.707107
X2	0.707107	0.000000	0.707107
X3	0.000000	1.000000	0.000000

OBS	X 1	X 2	X 3	$\mathrm{PRIN1}=\mathrm{PC}_{1} \quad \mathrm{PRIN} 2=\mathrm{PC}_{2} \quad$ PRIN3 $=\mathrm{PC}_{3}$		
1	-5	-10	15	-2.1320	1.6194	$-4.44089 \mathrm{E}-16$
2	-4	-8	6	-1.7056	0.6478	$-3.74700 \mathrm{E}-16$
3	-3	-6	-1	-1.2792	-0.1080	$-2.77556 \mathrm{E}-16$
4	-2	-4	-6	-0.8528	-0.6478	$-1.80411 \mathrm{E}-16$
5	-1	-2	-9	-0.4264	-0.9716	$-8.32667 \mathrm{E}-17$
6	0	0	-10	0.0000	-1.0796	0
7	1	2	-9	0.4264	-0.9716	$8.32667 \mathrm{E}-17$
8	2	4	-6	0.8528	-0.6478	$1.80411 \mathrm{E}-16$
9	3	6	-1	1.2792	-0.1080	$2.77556 \mathrm{E}-16$
10	4	8	6	1.7056	0.6478	$3.74700 \mathrm{E}-16$
11	5	10	15	2.1320	1.6194	$4.44089 \mathrm{E}-16$

$$
\begin{aligned}
2.1320 & =.707107\left[\frac{x_{1}-\bar{x}_{1}}{s_{1}}\right]+.707107\left[\frac{x_{2}-\bar{x}_{2}}{s_{2}}\right]+0\left[\frac{x_{3}-\bar{x}_{3}}{s_{3}}\right] \\
& =.707107\left[\frac{5-0}{3.316625}\right]+.70107\left[\frac{10-0}{6.63325}\right]+0\left[\frac{15-0}{9.262829}\right]
\end{aligned}
$$

There are several items to note in these analyses:
i) There are only two nonzero eigenvalues since given X_{1} and X_{3}, X_{2} is computed from X_{1}.
ii) X_{3} is its own principal component since it is uncorrelated with all the other variables.
iii) The sum of the eigenvalues is the sum of the variances, i.e.,

$$
11+44+85.8=140.8
$$

and

$$
1+1+1=3
$$

iv) For the variance-covariance analysis, the ratio of the coefficients of X_{1} and X_{2} in $P C_{2}$ is the same as the ratio of the variables themselves (since $\mathrm{X}_{2}=2 \mathrm{X}_{1}$).
v) Since there are only two nonzero eigenvalues, only two of the PCs have nonzero variances (are nonconstant).
vi) The coefficients help to relate the variables and the PCs. In the variance-covariance analysis,

$$
\begin{aligned}
\operatorname{Corr}\left(\mathrm{PC}_{2}, \mathrm{X}_{1}\right) & =\frac{\left(\text { coefficient of } \mathrm{X}_{1} \text { in } \mathrm{PC}_{2}\right) \sqrt{\operatorname{var}\left(\mathrm{PC}_{2}\right)}}{\sqrt{\operatorname{var(\mathrm {X}_{1})}}} \\
& =\frac{\mathrm{b}_{21} \sqrt{\lambda_{2}}}{\mathrm{~s}_{1}} \\
& =\frac{.447214 \sqrt{55}}{3.16625} \\
& =1 .
\end{aligned}
$$

In the correlation analysis,

$$
\begin{aligned}
\operatorname{Corr}\left(P C_{1}, X_{1}\right) & =b_{11} \sqrt{\lambda_{1}} \\
& =.707107 \sqrt{2} \\
& =1 .
\end{aligned}
$$

Thus, in both these cases, the variable is perfectly correlated with the PC.
vii) The Xs can be reconstructed exactly from the PCs with nonzero eigenvalues. For example, in the variance-covariance analysis, X_{3} is clearly given by $P C_{1} . X_{1}$ and X_{2} can be recovered via the formulas

$$
\begin{aligned}
& X_{1}=P C_{2} / \sqrt{5} \\
& X_{2}=2 \cdot P C_{2} / \sqrt{5}
\end{aligned}
$$

As a numerical example,

$$
-5=-11.180 / \sqrt{5} .
$$

Example 3: For Example 3 we use $X_{1}=Z_{1^{\prime}}, X_{2}=2\left(Z_{1}+5\right), \quad X_{3}=3\left(Z_{1}\right.$ +5) and $X_{4}=Z_{2}$. Thus $X_{1}, \quad X_{2}$ and X_{3} are all created from Z_{1}. The analyses for the variance-covariance matrix (unstandardized analysis) and correlation matrix (standardized analysis) are given below:

PCA3: USING VARIANCE-COVARIANCE MATRIX (UNSTANDARDIZED VARIABLES) PRINCIPAL COMPONENT ANALYSIS

11 OBSERVATIONS
4 VARIABLES

	SIMPLE STATISTICS			X3
	X1	X2	X3	
MEAN	0.000000	10.00000	15.00000	0.000000
ST DEV	3.316625	6.63325	9.94987	9.262829
		COVARIANCES		
		X1		
X1				
X2	11	22	33	0
X3	22	44	66	0
X4	33	66	99	0
	0	0	0	85.8

TOTAL VARIANCE = 239.8
EIGENVALUE DIFFERENCE PROPORTION CUMULATIVE $\left(\lambda_{i}\right) \quad\left(\lambda_{i}-\lambda_{i+1}\right)$

PRIN1
PRIN2
PRIN3 PRIN4
154.0000
85.8000
0.0000
0.0000
68.2000
85.8000
0.0000

EIGENVECTORS $=\underset{\sim}{\mathbf{b}}$

0.6422	0.6422
0.3578	1.0000
0.0000	1.0000
0.0000	1.0000

PRIN2 $=$ PC $_{2}$

PRIN4 $=\mathrm{PC}_{4}$
X1

- 267261
0.000000
0.358569
0.894427
0.000000
0.000000
0.717137
-. 447214
0.534522
0.801784
1.000000
-. 597614
0.000000
0.000000

X4
PRIN1
PRIN2
PRIN3
PRIN4

1	-5	0	0	15	-18.708	15	$2.44249 \mathrm{E}-15$	$-6.66134 \mathrm{E}-16$
2	-4	2	3	6	-14.967	6	$1.99840 \mathrm{E}-15$	$-4.44089 \mathrm{E}-16$
3	-3	4	6	-1	-11.225	-1	$1.77636 \mathrm{E}-15$	$-4.44089 \mathrm{E}-16$
4	-2	6	9	-6	-7.483	-6	$1.11022 \mathrm{E}-15$	$-2.22045 \mathrm{E}-16$
5	-1	8	12	-9	-3.742	-9	$6.66134 \mathrm{E}-16$	$-1.38778 \mathrm{E}-16$
6	0	10	15	-10	0.000	-10	0	
7	1	12	18	-9	3.742	-9	$-6.66134 \mathrm{E}-16$	$1.38778 \mathrm{E}-16$
8	2	14	21	-6	7.483	-6	$-1.11022 \mathrm{E}-15$	$2.22045 \mathrm{E}-16$
9	3	16	24	-1	11.225	-1	$-1.77636 \mathrm{E}-15$	$4.44089 \mathrm{E}-16$
10	4	18	27	6	14.967	6	$-1.99840 \mathrm{E}-15$	$4.44089 \mathrm{E}-16$
11	5	20	30	15	18.708	15	$-2.44249 \mathrm{E}-15$	$6.66134 \mathrm{E}-16$

$18.708=.267\left(\mathrm{X}_{1}-\overline{\mathrm{x}}_{1}\right)+.535\left(\mathrm{X}_{2}-\overline{\mathrm{x}}_{2}\right)+.802\left(\mathrm{X}_{3}-\overline{\mathrm{x}}_{3}\right)+0\left(\mathrm{X}_{4}-\overline{\mathrm{x}}_{4}\right)$
$=.267(5)+.535(20-10)+.802(30-15)$

PCA3: USING CORRELATION MATRIX (STANDARDIZED VARIABLES) PRINCIPAL COMPONENT ANALYSIS

CORRELATIONS
X1 X2
X3
X4

X1
X2
X3
X4
1.0000
1.0000
1.0000
0.0000
1.0000
1.0000
1.0000
1.0000
0.0000
1.0000
0.0000
0.0000
1.0000
EIGENVALUE DIFFERENCE PROPORTION CUMULATIVE

$$
\left(\lambda_{i}-\lambda_{i+1}\right)
$$

PRIN1
3.000000
2.000000
0.750000
0.750000

PRIN2
1.000000
1.000000
0.250000
1.000000

PRIN3
0.000000
0.000000
0.000000
1.000000

PRIN4
-. 000000
-
-. 000000
1.000000

EIGENVECTORS $=\mathbf{b}_{\mathbf{i}}$

PRIN1
PRIN2
PRIN3
PRIN4

X1
X 2
X3
0.577350
0.000000
0.707107
0.408248
0.577350
0.000000
-. 707107
0.408248

X4
0.577350
0.000000
0.000000
$-.816497$
0.000000
1.000000
0.000000
0.000000

OBS X1 X2 X̀3 X4 $\quad \mathrm{PRIN} 1=\mathrm{PC}_{1} \quad \mathrm{PRIN} 2=\mathrm{PC}_{2} \quad \mathrm{PRIN} 3=\mathrm{PC}_{3} \quad \mathrm{PRIN} 4=\mathrm{PC}_{4}$

1	-5	0	0	15	-2.6112	1.6194	$-2.22045 \mathrm{E}-16$	$-2.22045 \mathrm{E}-16$
2	-4	2	3	6	-2.0889	0.6478	$-1.80411 \mathrm{E}-16$	$-5.55112 \mathrm{E}-17$
3	-3	4	6	-1	-1.5667	-0.1080	$-1.38778 \mathrm{E}-16$	$-5.55112 \mathrm{E}-17$
4	-2	6	9	-6	-1.0445	-0.6478	$-9.71445 \mathrm{E}-17$	$-2.77556 \mathrm{E}-17$
5	-1	8	12	-9	-0.5222	-0.9716	$-4.16334 \mathrm{E}-17$	0
6	0	10	15	-10	0.0000	-1.0796		0
7	1	12	18	-9	0.5222	-0.9716	$4.16334 \mathrm{E}-17$	0
8	2	14	21	-6	1.0445	-0.6478	$9.71445 \mathrm{E}-17$	$2.77556 \mathrm{E}-17$
9	3	16	24	-1	1.5667	-0.1080	$1.38778 \mathrm{E}-16$	$5.55112 \mathrm{E}-17$
10	4	18	27	6	2.0889	0.6478	$1.80411 \mathrm{E}-16$	$5.55112 \mathrm{E}-17$
11	5	20	30	15	2.6112	1.6194	$2.22045 \mathrm{E}-16$	$2.22045 \mathrm{E}-16$

$$
\begin{aligned}
2.6112 & =.577\left[\frac{x_{1}-\bar{x}_{1}}{s_{1}}\right]+.577\left[\frac{x_{2}-\bar{x}_{2}}{s_{2}}\right]+.577\left[\frac{x_{3}-\bar{x}_{3}}{s_{3}}\right]+0\left[\frac{x_{4}-\bar{x}_{4}}{s_{4}}\right] \\
& =.577\left[\frac{5-0}{3.317}\right]+.577\left[\frac{20-10}{6.633}\right]+.577\left[\frac{30-15}{9.950}\right]+0\left[\frac{15-0}{9.263}\right]
\end{aligned}
$$

For the variance-covariance analysis, the coefficients in $P C_{1}$ are in the same ratio as their relationship to Z_{1}. In the correlation analysis X_{1}, X_{2} and X_{3} have equal coefficients. In both analyses, as expected, the total variance is equal to the sum of the variances for the PCs. In both cases two PCs, PC_{3} and P_{4}, have zero variance; in the correlation analysis the PCs are identically zero but in the variance-covariance analysis they are constant, but not zero.

Example 4. In this example we take more complicated combinations of Z_{1} and Z_{2}.

$$
\begin{aligned}
& x_{1}=z_{1} \\
& x_{2}=2 z_{1} \\
& x_{3}=3 Z_{1} \\
& x_{4}=z_{1} / 2+z_{2} \\
& x_{5}=z_{1} / 4+z_{2} \\
& x_{6}=z_{1} / 8+z_{2} \\
& x_{7}=z_{2}
\end{aligned}
$$

Note that X_{1}, X_{2} and X_{3} are colinear (they all have correlation unity) and X_{4}, X_{5}, X_{6} and X_{7} have steadily decreasing correlations with X_{1}. The PCAs for the variance-covariance and correlation matrices are given below:

PCA4: USING VÀRIANCE-COVARIANCE MATRIX (UNSTANDARDIZED VARIABLES) PRINCIPAL COMPONENT ANALYSIS

11 OBSERVATIONS
7 VARIABLES

	SIMPLE STATISTICS			X3
	X1	X2	X4	
MEAN	0.000000	0.000000	0.000000	0.000000
ST DEV	3.316625	6.633250	9.949874	9.410101
	$\mathrm{X5}$	X 6	$\mathrm{X7}$	
MEAN	0.000000	0.000000	0.000000	
ST DEV	9.299866	9.272102	9.262829	

COVARIANCES

	XI	X2	X3	X4
X1				5.5
X2	11	22	33	11
X3	22	44	66	16.5
X4	3.5	66	99	88.55
X5	2.75	11	16.5	87.175
X6	1.375	5.5	8.25	86.487
X7	0	2.75	4.125	85.8
		0	0	
X1	X5		X6	X7
X2	2.75	1.375	0	
X3	5.5	2.75	0	
X4	8.25	4.125	0	
X5	87.175	86.487	85.8	
X6	86.487	86.144	85.8	
X7	86.144	85.972	85.8	

TOTAL VARIANCE $=500.8094$

EIGENVALUE	DIFFERENCE		
$\left(\boldsymbol{\lambda}_{\mathbf{i}}\right)$	$\left(\boldsymbol{\lambda}_{\mathbf{i}}-\boldsymbol{\lambda}_{\mathbf{i}+\boldsymbol{1}}\right)$	PROPORTION	CUMULATIVE
347.0151	193.2208		
153.7943	153.7943	0.6929	0.6929
0.0000	0.0000	0.3071	1.0000
0.0000	0.0000	0.0000	1.0000
0.0000	0.0000	0.0000	1.0000
0.0000	0.0000	0.0000	1.0000
0.0000	.	0.0000	1.0000
			1.0000

EIGENVECTORS $=\mathbf{b}_{\mathbf{i}}$

PRIN1
PRIN2
PRIN3
PRIN4

X1 X 2 X3 X4 X5 X6 X7

X1
X 2
X3
X4
X5
X6
X7
0.025018
0.264786
0.529573
0.794359
0.027439
-. 038757
$-.071855$
-. 104954
PRIN6
0.445673
$-.046780$
$-.187931$
0.198440
0.348492
0.202704
$-.749637$
$-.033880$
0.161253
$-.024221$
$-.757301$
0.624127

0.005297	0.081529
0.077591	0.798545
0.000856	-.563782
-.306727	0.100525
-.453794	-.106286
0.830118	-.087701
-.069597	0.093462
PRIN7	

0.850185
0.405822

OBS	X1	X2	X3	X4	X5	X6	X7
1	-5	-10	-15	12.5	13.75	14.375	15
2	-4	-8	-12	4.0	5.00	5.500	6
3	-3	-6	-9	-2.5	-1.75	-1.375	-1
4	-2	-4	-6	-7.0	-6.50	-6.250	-6
5	-1	-2	-3	-9.5	-9.25	-9.125	-9
6	0	0	0	-10.0	-10.00	-10.000	-10
7	1	2	3	-8.5	-8.75	-8.875	-9
8	2	4	6	-5.0	-5.50	-5.750	-6
9	3	6	9	0.5	-0.25	-0.625	-1
10	4	8	12	8.0	7.00	6.500	6
11	5	10	15	17.5	16.25	15.625	15

OBS

$\operatorname{PRIN} 3=\mathrm{PC}_{3} \quad$ PRIN4 $=\mathrm{PC}_{4}$
25.921

$$
\begin{array}{r}
-21.332 \\
-15.937 \\
-10.918 \\
-6.275 \\
-2.009 \\
1.881 \\
5.395 \\
8.533 \\
11.294
\end{array}
$$

$$
2.22045 \mathrm{E}-16
$$

$$
-1.33227 E-15
$$

$$
8.7 .90 \quad-15.937
$$

$$
-4.71845 E-16
$$

$$
-1.44329 \mathrm{E}-15
$$

$$
-4.359 \quad-10.918
$$

$$
-4.02456 \mathrm{E}-16
$$

$$
-1.34615 \mathrm{E}-15
$$

$$
-13.525
$$

$$
-4.16334 E-16
$$

$$
-9.71445 \mathrm{E}-16
$$

$$
-5.13478 \mathrm{E}-16
$$

$$
-5.41234 \mathrm{E}-16
$$

$$
-19.911 \quad 1.881
$$

$$
-2.49800 \mathrm{E}-16
$$

$$
-2.49800 \mathrm{E}-16
$$

$$
-2.91434 \mathrm{E}-16
$$

$$
4.16334 \mathrm{E}-17
$$

$$
-10.368 \quad 8.533
$$

$$
2.77556 \mathrm{E}-17
$$

$$
6.38378 \mathrm{E}-16
$$

$$
0.377
$$

$$
4.02456 \mathrm{E}-16
$$

$$
1.29063 \mathrm{E}-15
$$

$$
1.77636 \mathrm{E}-15
$$

$$
2.44249 \mathrm{E}-15
$$

```
-2.44249E-15
5.55112E-15
-2.44249E-15
    3.55271E-15
    2.49800E-15
    1.55431E-15
        4.44089E-16
    -6.66134E-16
    -1.33227E-15
    -1.77636E-15
    -2.63678E-15
    -3.33067E-15
    -3.33067E-15
        -2.44249E-15
        -2.41474E-15
        .22045E-15
        -1.77636E-15
        -6.66134E-16
    -2.22045E-16
        8.88178E-16
-2.44249E-15
        3.55271E-15
        0=-.0339(5) +..161(10) - . 0242(15) - . 757(17.5)
        +.624(16.25)+.0532(15.625)+.0799(15)
```

10
11
1
2
3
4
5
6
7
8
9

PCA4: USING CORRELATION MATRIX (STANDARDIZED VARIABLES) PRINCIPAL COMPONENT ANALYSIS

CORRELATIONS

 X2X3

X1	1.0000	1.0000	1.0000	0.1762
X2	1.0000	1.0000	1.0000	0.1762
X3	1.0000	1.0000	1.0000	0.1762
X4	0.1762	0.1762	0.1762	1.0000
X5	0.0892	0.0892	0.0892	0.9961
X6	0.0447	0.0447	0.0447	0.9912
X7	0.0000	0.0000	0.0000	0.9843
	X5	X6	X7	
X1	0.0892	0.0447	0.0000	
X2	0.0892	0.0447	0.0000	
X3	0.0892	0.0447	0.0000	
X4	0.9961	0.9912	0.9843	
X5	1.0000	0.9990	0.9960	
X6	0.9990	1.0000	0.9990	
X7	0.9960	0.9990	1.0000	

EIGENVALUE $\left(\lambda_{i}\right)$

PRIN1	4.052167
PRIN2	2.947833
PRIN3	0.000000
PRIN4	0.000000
PRIN5	-.000000
PRIN6	-.000000
PRIN7	-.000000

X1	.0 .144294	0.557325	0.390963	-.117472
X2	0.144294	0.557325	0.390963	-.117472
X3	0.144294	0.557325	-.731868	0.338165
X4	0.493342	-.068313	-.320125	-.802613
X5	0.486325	-.118813	0.055387	0.318377
X6	0.481330	-.144088	0.031700	0.219949
X7	0.475353	-.169177	0.228280	0.253212
	PRIN5	PRIN6	PRIN7	
X1	0.707107	0.023960	-.036628	
X2	-.707107	0.023960	-.036628	
X3	-.000000	-.029031	0.133187	
X4	-.000000	-.071177	0.014612	
X5	0.000000	-.485671	-.639580	
X6	-.000000	0.826522	-.122632	
X7	0.000000	-.271895	0.745160	

DIFFERENCE PROPORTION

 $\left(\lambda_{i}-\lambda_{i+1}\right)$| 1.104335 | 0.578881 |
| :---: | :---: |
| 2.947833 | 0.421119 |
| 0.000000 | 0.000000 |
| 0.000000 | 0.000000 |
| 0.000000 | -.000000 |
| 0.000000 | -.000000 |
| . | -.000000 |

EIGENVECTORS $=\mathbf{b}_{\mathbf{i}}$
PRIN2
PRIN3
0.390963
0.390963
$-.731868$
$-.320125$
0.055387
0.031700
0.228280 PRIN7

CUMULATIVE
0.578881
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

We note several things:
i) In both analyses there are only two eigenvalues that are nonzero indicating that only two variables are needed. This is not readily apparent from the correlation or variance-covariance matrix.
ii) In $P C_{1}, P C_{2}$ and $P C_{3}$ where the standardizrd X_{1}, X_{2} and X_{3} are the same, they have the same coefficients.
iii) Neither PCA recovers Z_{1} and Z_{2}. The PCAs with nonzero variances have elements of both Z_{1} and Z_{2} in them, i.e., neither $P C_{1}$ or PC_{2} is perfectly correlated with one of the Zs .

4. SUMMARY

PCA provides a method of extracting structure from the variance-covariance or correlation matrix. If a multivariate data set is actually constructed in a linear fashion from fewer variables, then PCA will discover that structure. PCA constructs linear combinations of the original data, X, with maximal variance:

$$
P=X B .
$$

This relationship can be inverted to recover the Xs from the PCs (actually only those PCs with nonzero eigenvalues are needed see example 2): Though PCA will often help discover structure in a data set, it does have limitations. It will not necessarily recover the exact underlying variables, even if they were uncorrelated (Example 4). Also, by its construction, PCA is limited to searching for linear structures in the Xs .

APPENDIX

Example 1: Control Language

Control language is typed in upper case and comments are bolded. Refer to SAS User's Guide: Statistics, Version 5 Edition, 1985, for program documentation.

DATA ONE;
TITLE PCAI: USING CORRELATION MATRIX (STANDARDIZED VARIABLES);
INPUT X1 X2; \Rightarrow input variables
CARDS; $\quad \Rightarrow$ signals SAS that data follow
-515
-4 6
-3 -1
-2 -6
-1 -9
$0-10$
1 -9
$2-6$
3-1
46
515
PROC PRINCOMP OUT=FOUR; $\quad \Rightarrow$ requests PCA on correlation matrix with PCs being output to new data set* PROC PRINT DATA=FOUR; $\quad \Rightarrow$ prints out data
*
SAS will compute the PCA on the correlation matrix unless otherwise directed. To request PCA on a variance-covariance matrix use the following procedural call:

PROC PRINCOMP COV OUT=FOUR

Example 2: Control Language

```
DATA ONE;
TITLE PCA2: USING VARIANCE-COVARIANCE MATRIX (UNSTANDARDIZED VARIABLES);
INPUT Z1 Z2;
X1=Z1; }\quad\Longrightarrow\mathrm{ creates }\mp@subsup{\textrm{X}}{1}{},\mp@subsup{\textrm{X}}{2}{},\mathrm{ and }\mp@subsup{\textrm{X}}{3}{
X2=2*Z1;
X3=Z2;
DROP Z1 Z2;
CARDS;
-5 15
-4 6
-3 -1
-2 -6
-1 -9
0 -10
1 -9
2 -6
3-1
46
515
PROC PRINCOMP COV OUT=FOUR;
VAR X1 X2 X3; }\quad=>\mathrm{ tells SAS which variables to use to compute PCA
PROC PRINT DATA=FOUR;
```

```
DATA ONE;
TITLE PC3: USING CORRELATION MATRIX (STANDARDIZED VARIABLES);
INPUT Z1 Z2;
X1=Z1;
X2=2*(Z1+5);
X3=3*(Z1+5);
X4=Z2;
DROP Z1 Z2;
CARDS;
-5 15
-4 6
-3 -1
-2 -6
-1 -9
0 -10
1 -9
2 -6
3-1
46
515
PROC PRINCOMP OUT=FOUR COV;
VAR X1 X2 X3 X4;
PROC PRINT DATA=FOUR;
```

```
Example 4: Control Language
```

```
DATA ONE;
TITLE PC4: USING CORRELATION MATRIX (STANDARDIZED VARIABLES);
INPUT Z1 Z2;
X1=Z1;
X2=2*Z1;
X3=3*Z1;
X4=(Z1/2)+Z2;
X5=(Z1/4)+Z2;
X6=(Z1/8)+Z2;
X7=Z2;
DROP Z1 Z2;
CARDS;
-5 15
-4 6
-3 -1
-2 -6
-1 -9
0-10
1 -9
2 -6
3-1
4
5 15
PROC PRINCOMP OUT=FOUR;
VAR X1 X2 X3 X4 X5 X6 X7;
PROC PRINT DATA=FOUR;
PROC MEANS DATA=FOUR; VAR PRIN1-PRIN7;
```

