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ABSTRACT 

In order to provide a deeper understanding of the 

workings of principal components, four data sets were 

constructed by taking linear combinations of values of 

two uncorrelated variables to form the X-variates for 

the principal components analysis. The examples 

highlight some of the properties and limitations of 

principal component analysis. 

This is part of a continuing project that produces 

annotated computer output for principal components 

analysis. The complete project will involve processing 

four examples on SASIPRINCOMP, BMDPI4M, SPSS-XIFACTOR, 

GENSTAT I PGP, and SYSTAT I FACTOR. We show here the 

results from SASIPRINCOMP, Version 5. 

* Supported by the u.s. Army Research Office through the Mathematical 

Sciences Institute of Cornell University. 



1. INTRODUCTION 

Principal 

analysis and 

components is a form 

is one method of 

of multivariate statistical 

studying the correlation or 

covariance structure in a set of measurements on m variables for 

n observations. For example, 

samples and m = 15 different 

advantageous to study the 

a data set may consist of n = 260 

fatty acid variables. It may be 

structure of the 15 fatty acid 

variables since some or all of the variables may be measuring the 

same response. One simple method of studying the correlation 

structure is to compute the m(m-1)/2 pairwise correlations and 

note which correlations are close to unity. When a group of 

variables are all highly inter-correlated, one may be selected 

for use and the others discarded or the sum of all the variables 

may be used. When the structure is more complex, the method of 

principal components analysis (PCA) becomes useful. 

In order to use and interpret a principal components analysis 

there needs to _ be some practical meaning associated with the 

various principal components. In Section 2 we describe the basic 

features of principal components and in Section 3 we examine some 

constructed examples using SAS/PRINCOMP to illustrate the 

interpretations that are possible. In Section 4 we summarize our 

results. 

2. BASIC FEATURES OF PRINCIPAL COMPONENT ANALYSIS 

PCA can be performed on either the variances and covariances 

among the m variables or their correlations. One should always 
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check which is being used in a particular computer package 

program. SAS can use either the variances and covariances or the 

correlations but uses the correlations by default. First we will 

consider analyses using the matrix of variances and covariances. 

A PCA generates m new variables, the principal components (PCs), 

by forming linear combinations of the original variables, X = 

where x. have mean zero. In matrix notation, J. 

P = (PC1 ,Pc2 , ... ,PCm) =X (b1 ,b2 , ... ,bm) = XB, 

-1 and conversely X = P B 
- -

The rationale in the selection of the coefficients, b .. , that 
J.J 

define the linear combinations that are the PCi is to try to 

capture as much· of the variation in the original variables with 

as few PCs as possible. Since the variance of a linear 

combination of the Xs can be made arbitrarily large by selecting 

very large coefficients, the bij are constrained by convention so 

that the sum of squares of the coefficients for any PC is unity: 

m 2 
~. 1 b .. = 1 

J= J.J 
i = 1,2, ..• ,m 

Under this constraint, the bij in Pc1 are chosen so that PC1 has 

maximal variance. 

-3-



If we denote the variance 2 of x. by s. 
1. 1. 

and if we define the 

total variance, T, m 2 as T = ~. 1 s. , 
1.= 1. 

then the proportion of the 

variance in the original variables that is captured in PC1 can be 

quantified as var(Pc1 )JT. In selecting the coefficients for PC2 , 

they are further constrained by the requirement that Pc2 be 

uncorrelated with PC1 Subject to this constraint and the 

constraint that the squared coefficients sum to one, the 

coefficients are selected so as to maximize var(PC2 ). 

Further coefficients and PCs are selected in a similar manner, by 

requiring that a PC be uncorrelated with all PCs previously 

selected and then selecting the coefficients to maximize 

variance. In this manner, all the PCs are constructed so that 

4lt they are uncorrelated and so that the first few PCs capture as 

much variance as possible. The coefficients also have the 

following interpretation which helps to relate the PCs back to 

the original variables. The correlation between the ith PC and 

the jth variable is 

b .. v'var (PC.) js. 
l.J 1. J 

After all m PCs have been constructed, the following identity 

holds: 
m 

var(PC1 ) + var(PC2 ) + ... + var(PCm) = T = ~i=l 2 s. 
1. 

This equation has the interpretation that the PCs divide up the 

total variance of the Xs completely. It may happen that one or 

more of the last few PCs have variance zero. In such a case, all 

~ the variation in the data can be captured by fewer than m 
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variables. Actually, a much stronger result is also true; the 

~ PCs can also be used to reproduce the actual values of the Xs, 

not just their variance. We will demonstrate this more 

explicitly later. 

The above properties of PCA are related to a matrix analysis 

of the variance-covariance matrix of the Xs, Let D be a 

diagonal matrix with entries being the eigenvalues, A. , 
1 

arranged in order from largest to smallest. 

properties hold: 

(i) 

( ii) 

(iii) 

A . = var (PC. ) 
1 1 

corr (PC. , X.) = 
1 J 

(iv) Sx = B'DB 

b . . ..n:.. 
1J 1 

s. 
J 

Then the following 

The statements made above are for the case when the analysis 

is performed on the variance-covariance matrix of the Xs. The 

correlation matrix could also be used, which is equivalent to 

performing a PCA on the variance-covariance matrix of the 

standardized variables, 

y, = 
1 

x. - x. 
1 1 

s. 
1 

PCA using the correlation martrix is different in these respects: 

(i) The total "variance" is m, the number of variables. 

(It is not truly variance anymore.) 

(ii) The correlation between PC. and x. is given by 
1 J 
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b .. ~var(PC.) =b .. ~. Thus PC1. is most highly correlated 
l.J 1. l.J 1. 

with the X. having the largest coefficient in PC. in 
J 1. 

absolute value. 

The experimenter must choose whether to use standardized (PCA on 

a correlation matrix) or unstandardized coefficients (PCA on a 

variance-covariance matrix). The latter is used when the 

variables are measured on a comparable basis. This usually means 

that the variables must be in the same units and have roughly 

comparable variances. If the variables are measured in different 

units then the analysis will usually be performed on the 

standardized scale, otherwise the analysis may only reflect the 

different scales of measurement. For example, if a number of fat-

ty acid analyses are made, but the variances, 2 
S' I 

1. 
and means, X., 

l 

are obtained on different bases and by different methods, then 

standardized variables would be used (PCA on the correlation 

matrix) . To illustrate some of the above ideas, a number of 

examples have been constructed and these are described in Section 

3. In each case, two variables, z1 and z2 , which are 

uncorrelated, qre used to construct x .. 
1. 

Thus, all the variance 

can be captured with two variables and hence only two of the PCs 

will have nonzero variances. In matrix analysis terms, only two 

eigenvalues will be nonzero. An important thing to note is that 

in general, PCA will not recover the original variables z1 and 

z2 . Both standardized and nonstandardized computations will be 

e made. 
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3. EXAMPLES 

Throughout the examples we will use the variables z1 and z2 

(with n = 11) from which we will construct x1 ,x2 , ... ,Xm. We will 

perform PCA on the Xs. Thus, in our constructed examples, there 

will only really be two underlying variables. 

Values of z1 and z2 

-5 -4 -3 -2 -1 0 1 2 3 4 5 

15 6 -1 -6 -9 -10 -9 -6 -1 6 15 

Notice that z1 exhibits a linear trend through the 11 samples and 

z2 exhibits a quadratic trend. They are also chosen to have mean 

zero and be uncorrelated. z1 and z2 have the following variance-

covariance matrix (a variance-covariance matrix has the variance 

for the l.th . bl . var1a e.1n row column and the 

covariance between the ith variable and the jth variable in the ith 

row and jth collirnn). 

Variance-covariance matrix of z1 and z2 

( 101 0 ) 
85.8 

Thus the variance of z1 is 11 and the covariance between z1 and z2 

is zero. Also the total variance is 11 + 85.8 = 96.8. 

Example 1: In this first example we analyze z1 and z2 as if they 

were the data. If PCA is performed on the variance-covariance 
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·-
matrix then the SAS output is as follows (SAS control language 

examples is in the appendix 

computer output to explain 

for this example and all subsequent 

and the boldface print was typed on 

the calculation performed): 
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·e 

e 

PCA1: USING VARIANCE-COVARIANCE MATRIX (UNSTANDARDIZED VARIABLES) 
PRINCIPAL COMPONENT ANALYSIS 

PRIN1 
PRIN2 

11 OBSERVATIONS 
2 VARIABLES 

SIMPLE STATISTICS 
Z1 Z2 

MEAN= z. 
1. 

ST DEV = s. 
1. 

Z1 

Z2 

0.000000 

3.316625 

COVARIANCES 

Z1 

11 

0 

TOTAL VARIANCE = 

EIGENVALUE 
2 ("A. = s. ) 

1. 1. 

85.80000 
11.00000 

DIFFERENCE 

("Ai -"Ai+1) 
74.80000 

= 

= 

0.000000 

9.262829 

s .. 
l.J 

Z2 

2 0 sl 

5 21 85.8 

96.8 = T 

PROPORTION 

0.88636 
0.11364 

= 

= 

5 12 
2 

s2 

11 + 85.8 

CUMULATIVE 

0.88636 
1.00000 

m 
~i=1 "Ai = T = 85.8 + 11.0 = 96.8 proportion of variance 

explained by PC. 
1. 

Z1 

Z2 

EIGENVECTORS = b. 
1. 

PRIN1 = b 1 

b11 = 0.000000 

b12 = 1.000000 

PRIN2 = b 2 

b21 = 1.000000 

b22 = 0.000000 

Pci = bi1z1 + bi2z2 
PC1 = oz1 + 1Z2 

OBS Z1 Z2 PRIN1 = Pc1 PRIN2 = PC2 

1 -5 15 15 -5 = 1(-5) + 0(15) = -5 
2 -4 6 6 -4 
3 -3 -1 -1 -3 
4 -2 -6 -6 -2 
5 -1 -9 -9 -1 
6 0 -10 -10 0 
7 1 -9 -9 1 
8 2 -6 -6 2 
9 3 -1 -1 3 

10 4 6 6 4 
11 5 15 15 5 
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We can interpret the results as follows: 

e 1) The first principal component is 

PC1 = O•X + 1•X = x2 1 2 

2) PC2 = 1•X + O•X = X 1 2 1 

3) Var(PC1 ) = eigenvalue 85.8 = Var(X2 ) 

4) Var(PC2 ) = eigenvalue = 11.0 = Var(X1 ) 

The PCs will be the same as the Xs whenever the Xs are 

uncorrelated. Since x2 has the larger variance, it becomes the 

first principal component. 

If PCA is performed on the correlation matrix we get slightly 

different results. 

Correlation Matrix of z1 and z2 

A correlation matrix always has unities along its diagonal and 

th 1 t ' b t th .th ' bl d th .th ' bl ' e corre a 1on e ween e 1 var1a e an e J var1a e 1n 

the ith row and jth column. PCA in SAS would yield the following 

output: 
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PCA1: USING CORRELATION MATRIX (STANDARDIZED VARIABLES) 
PRINCIPAL COMPONENT ANALYSIS 

PRIN1 
PRIN2 

X1 

X2 

OBS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

X1 

X2 

EIGENVALUE 
(A.) 

l. 
1.000000 
1.000000 

m 
~i=1 Ai = m 

CORRELATIONS 

X1 

1.0000 

0.0000 

DIFFERENCE 
(Ai - Ai+1) 

0.000000 

= 

= 

= r .. 
l.J 

X2 

r11 0.0000 

r21 1.0000 

PROPORTION 

0.500000 
0.500000 

= 

= 
r12 

r22 

CUMULATIVE 

0.500000 
1.000000 

EIGENVECTORS = b. 
l. 

PRIN1 = b 1 PRIN2 = b 2 

b11 = 1.000000 b21 = 0.000000 PC. = bi1Zl/S1 + bi2Z2/s2 l. 

b12 = 0.000000 b22 = 1.000000 PC1 = 1Z1/3. 32 + OZ2/9.26 

= z1j3.32 

X1 X2 PRIN1 PRIN2 

-5 15 -1.5076 1.6194 =0(-5)/3.32+1(15)/9.26 
-4 6 -1.2060 0.6478 
-3 -1 -0.9045 -0.1080 
-2 -6 -0.6030 -0.6478 
-1 -9 -0.3015 -0.9716 

0 -10 0.0000 -1.0796 
1 -9 0.3015 -0.9716 
2 -6 0.6030 -0.6478 
3 -1 0.9045 -0.1080 
4 6 1. 2060 0.6478 
5 15 1.5076 1.6194 

The principal components are again the Xs (standardized Zs) 

themselves, but the eigenvalues (var(PCs)) are unity since the 

variables have been standardized first. 

If the analysis is 

performed on the variance-covariance matrix using SAS the results 

are: 
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PCA2: USING VARIANCE-COVARIANCE MATRIX (UNSTANDARDIZED VARIABLES) 
PRINCIPAL COMPONENT ANALYSIS 

PRIN1 
PRIN2 
PRIN3 

OBS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

11 OBSERVATIONS 
3 VARIABLES 

MEAN 
ST DEV 

X1 
X2 
X3 

SIMPLE STATISTICS 
X1 X2 

0.000000 
3.316625 

0.000000 
6.633250 

COVARIANCES 
X1 

11 
22 

0 

TOTAL VARIANCE = 

X2 

22 
44 

0 

140.8 

X3 

0.000000 
9.262829 

X3 

0 
0 

85.8 

EIGENVALUE 
(A.) 

1. 

DIFFERENCE 
(Ai-A1+1) 

PROPORTION CUMULATIVE 

X1 
X2 
X3 

X1 

-5 
-4 
-3 
-2 
-1 

0 
1 
2 
3 
4 
5 

85.80000 
'55.00000 

0.00000 

30.80000 
55.00000 

0.60938 
0.39062 
0.00000 

0.60938 
1.00000 
1.00000 

X2 

-10 
-8 
-6 
-4 
-2 

0 
2 
4 
6 
8 

10 

EIGENVECTORS = b. 
1. 

PRIN1 

0.000000 
0.000000 
1.000000 

X3 

15 
6 

-1 
-6 
-9 

-10 
-9 
-6 
-1 

6 
15 

PRIN2 

0.447214 
0.894427 
0.000000 

PRIN3 

0.894427 
-.447214 
0.000000 

PC3 = .894X1 - .447X2 + ox3 
PRIN1=PC1 PRIN2=PC2 PRIN3=PC3 

15 
6 

-1 
-6 
-9 

-10 
-9 
-6 
-1 

6 
15 

-11.180 
-8.944 
-6.708 
-4.472 
-2.23 6 

0.000 
2.236 
4.472 
6.708 
8.944 

11.180 

1.99840E-15 
1. 55431E-15 
1. 33227E-15 
8.88178E-16 
4.02456E-16 

0 
-4.02456E-16 
-8.88178E-16 
-1.33227E-15 
-1. 55431E-15 
-1.99840E-15 

11.180 = .447(5) + .894(10) + 0(15) 
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Analyzing the correlation matrix gives the following results: 

PCA2: USING CORRELATION MATRIX (STANDARDIZED VARIABLES) 
PRINCIPAL COMPONENT ANALYSIS 

PRIN1 
PRIN2 
PRIN3 

OBS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

X1 
X2 
X3 

X1 
X2 
X3 

X1 

-5 
-4 
-3 
-2 
-1 

0 
1 
2 
3 
4 
5 

EIGENVALUE 
(A.) 

1. 

2.000000 
1.000000 
0.000000 

CORRELATIONS 
X1 X2 

1.0000 
1. 0000 
0.0000 

DIFFERENCE 
(Ai -Ai+1) 

1.000000 
1.000000 

1. 0000 
1. 0000 
0.0000 

PROPORTION 

0.666667 
0.333333 
0.000000 

EIGENVECTORS = b. 
1. 

PRIN1 PRIN2 

X3 

0.0000 
0.0000 
1.0000 

CUMULATIVE 

0.666667 
1.000000 
1.000000 

PRIN3 

0.707107 
0.707107 
0.000000 

0.000000 
0.000000 
1. 000000 

-.707107 
0.707107 
0.000000 

X2 

-10 
-8 
-6 
-4 
-2 

0 
2 
4 
6 
8 

10 

X3 

15 
6 

-1 
-6 
-9 

-10 
-9 
-6 
-1 

6 
15 

PRIN1 =PC1 PRIN2 =PC2 PRIN3 =PC3 

-2.1320 
-1.7056 
-1.2792 
-0.8528 
-0.4264 

0.0000 
0.4264 
0.8528 
1.2792 
1.7056 
2.1320 

1. 6194 
0.6478 

-0.1080 
-0.6478 
-0.9716 
-1.0796 
-0.9716 
-0.6478 
-0.1080 

0.6478 
1. 6194 

-4.44089E-16 
-3.74700E-16 
-2.77556E-16 
-1.80411E-16 
-8.32667E-17 

0 
8.32667E-17 
1.80411E-16 
2.77556E-16 
3.74700E-16 
4.44089E-16 

2.1320 [ x -x1] [x2-x2] + o[x3-sx33] = .707107 1s
1 

+ .707107 s
2 

= .707107[ 5 - 0 ) + .10101[10 - 0 ) + o( 15 - 0 ) 
3.316625 6.63325 9.262829 
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There are several items to note in these analyses: 

i) There are only two nonzero eigenvalues since given x1 and x3 , 

x2 is computed from x1 . 

ii) x3 is its own principal component since it is uncorrelated with 

all the other variables. 

iii) The sum of the eigenvalues is the sum of the variances, i.e., 

and 
11 + 44 + 85.8 = 140.8 

1 + 1 + 1 = 3 • 

iv) For the variance-covariance analysis, the ratio of the 

coefficients of x1 and x2 in Pc2 is the same as the ratio of 

the variables themselves (since x2 = 2X1 ). 

v) Since there are only two nonzero eigenvalues, only two of 

the PCs have nonzero variances (are nonconstant). 

vi) The coefficients help to relate the variables and the PCs. In 

the variance-covariance analysis, 

= 

= 

= 

(coefficient of x1 in PC2 )vvar(PC2 ) 

vvar(X1 ) 

b21~ 
s1 

.447214vss 

3.16625 
1 

In the correlation analysis, 

Corr(PC1 ,X1 ) = b11~ 
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·e 
Thus, in both these cases, the variable is perfectly correlated 

with the PC. 

vii) The Xs can be reconstructed exactly from the PCs with nonzero 

eigenvalues. For example, in the variance-covariance analysis, 

x3 is clearly given by PC1 . x 1 and x 2 can be recovered 

via the formulas 

X = 2•PC /.f5 2 2 

As a numerical example, 

-5 = -11.1ao;~s . 

Example 3: For Example 3 we use x1 = z 1 , x2 = 2(Z1+5), x3 = 3{Z1 

+5) and x4 = z 2 . Thus x1 , x2 and x 3 are all created from z 1 . 

The analyses 

analysis) and 

given below: 

for the variance-covariance matrix (unstandardized 

correlation matrix (standardized analysis) are 
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e 

e 

PCA3: USING VARIANCE-COVARIANCE MATRIX (UNSTANDARDIZED VARIABLES) 
PRINCIPAL COMPONENT ANALYSIS 

11 OBSERVATIONS 
4 VARIABLES 

SIMPLE STATISTICS 
X1 X2 X3 X4 

MEAN 0.000000 10.00000 15.00000 0.000000 
ST DEV 3.316625 6.63325 9.94987 9.262829 

COVARIANCES 
X1 X2 X3 X4 

X1 11 22 33 0 
X2 22 44 66 0 
X3 33 66 99 0 
X4 0 0 0 85.8 

TOTAL VARIANCE = 239.8 

EIGENVALUE DIFFERENCE PROPORTION CUMULATIVE 
(A.) 

1 (Ai - Ai+1) 
PRIN1 154.0000 68.2000 0.6422 0.6422 
PRIN2 85.8000 85.8000 0.3578 1.0000 
PRIN3 0.0000 0.0000 0.0000 1.0000 
PRIN4 0.0000 0.0000 1.0000 

EIGENVECTORS = b. 
1 

PRIN1=PC1 PRIN2=PC2 PRIN3=PC3 PRIN4=PC4 
X1 0.267261 0.000000 0.358569 0.894427 
X2 0.534522 0.000000 0.717137 -.447214 
X3 0.801784 0.000000 -.597614 0.000000 
X4 0.000000 1.000000 0.000000 0.000000 

OBS X1 X2 x3 X4 PRIN1 PRIN2 PRIN3 PRIN4 

1 -5 0 0 15 -18.708 15 2.44249E-15 -6.66134E-16 
2 -4 2 "3 6 -14.967 6 1.99840E-15 -4.44089E-16 
3 -3 4 6 -1 -11.225 -1 1. 77636E-15 -4.44089E-16 
4 -2 6 9 -6 -7.483 -6 1.11022E-15 -2.22045E-16 
5 -1 8 12 -9 -3.742 -9 6.66134E-16 -1. 38778E-16 
6 0 10 15 -10 0.000 -10 0 0 
7 1 12 18 -9 3.742 -9 -6.66134E-16 1.38778E-16 
8 2 14 21 -6 7.483 -6 -1.11022E-15 2.22045E-16 
9 3 16 24 -1 11.225 -1 -1. 77636E-15 4.44089E-16 

10 4 18 27 6 14.967 6 -1.99840E-15 4.44089E-16 
11 5 20 30 15 18.708 15 -2.44249E-15 6.66134E-16 

18.708 

= .267(5) + .535(20-10) + .802(30-15) 

-16-



PCA3: USING CORRELATION MATRIX (STANDARD I ZED VARIABLES) 
PRINCIPAL COMPONENT ANALYSIS 

e CORRELATIONS 
X1 X2 X3 X4 

X1 1.0000 1.0000 1.0000 0.0000 
X2 1.0000 1.0000 1.0000 0.0000 
X3 1.0000 1.0000 1.0000 0.0000 
X4 0.0000 0.0000 0.0000 1.0000 

EIGENVALUE DIFFERENCE PROPORTION CUMULATIVE 
(A..) 

1 (A.i - A.i+1) 
PRIN1 3.000000 2.000000 0.750000 0.750000 
PRIN2 1.000000 1.000000 0.250000 1.000000 
PRIN3 0.000000 0.000000 0.000000 1.000000 
PRIN4 -.000000 -.000000 1. 000000 

EIGENVECTORS = b. 
1 

PRIN1 PRIN2 PRIN3 PRIN4 

X1 0.577350 0.000000 0.707107 0.408248 
X2 0.577350 0.000000 -.707107 0.408248 
X3 0.577350 0.000000 0.000000 -.816497 

e X4 0.000000 1.000000 0.000000 0.000000 

OBS X1 X2 ){3 X4 PRIN1=PC1 PRIN2=PC2 PRIN3=PC3 PRIN4=PC4 

1 -5 0 0 15 -2.6112 1.6194 -2.22045E-16 -2.22045E-16 
2 -4 2 3 6 -2.0889 0.6478 -1.80411E-16 -5.55112£-17 
3 -3 4 6 -1 -1.5667 -0.1080 -1.38778E-16 -5.55112£-17 
4 -2 6 9 -6 -1.0445 -0.6478 -9.71445E-17 -2.77556£-17 
5 -1 8 12 -9 -0.5222 -0.9716 -4.16334E-17 0 
6 0 10 15 -10 0.0000 -1.0796 0 0 
7 1 12 18 -9 0.5222 -0.9716 4.16334E-17 0 
8 2 14 21 -6 1.0445 -0.6478 9.71445E-17 2.77556E-17 
9 3 16 24 -1 1.5667 -0.1080 1.38778E-16 5.55112E-17 

10 4 18 27 6 2.0889 0.6478 1.80411E-16 5.55112E-17 
11 5 20 30 15 2.6112 1.6194 2.22045E-16 2.22045E-16 

2.6112 = [X -X] 
.577 ~1 1 + .577 [x::X2 ] 

[X -X] 
+ .577 :3 3 + 0 [x::X4 ] 

.577[5 - OJ + .577[20-10] • 577 [30-15] [15-0 ] = + 
+ 0 9.263 3.317 6.633 9.950 

e 
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.e 

For the variance-covariance analysis, the coefficients in PC1 are 

in the same ratio as their relationship to z1 . In the 

correlation analysis x 1 , x 2 and x 3 have equal coefficients. In 

both analyses, as expected, the total variance is equal to the 

sum of the variances for the PCs. In both cases two PCs, PC3 and 

PC4 , have zero variance; in the correlation analysis the PCs are 

identically zero but in the variance-covariance analysis they are 

constant, but not zero. 

Example 4. In this example we take more complicated combinations 

of z1 and z2 . 

xl = zl 

x2 = 2Z1 

x3 = 3Z1 

x4 = Z1/2 + z2 

xs = Z1/4 + z2 

x6 = Z1/8 + z2 

x7 = z2 

Note that x 1 , x 2 and x 3 are colinear (they all have correlation 

unity) x6 and x7 have steadily decreasing 

correlations with x1 . The PCAs for the variance-covariance and 

correlation matrices are given below: 
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PCA4: USING VARIANCE-COVARIANCE MATRIX (UNSTANDARDIZED VARIABLES) 
PRINCIPAL COMPONENT ANALYSIS 

·e 11 OBSERVATIONS 
7 VARIABLES 

SIMPLE STATISTICS 
X1 X2 X3 X4 

MEAN 0.000000 0.000000 0.000000 0.000000 
ST DEV 3.316625 6.633250 9.949874 9.410101 

X5 X6 X7 

MEAN 0.000000 0.000000 0.000000 
ST DEV 9.299866 9.272102 9.262829 

COVARIANCES 
X1 X2 X3 X4 

X1 11 22 33 5.5 
X2 22 44 66 11 
X3 33 66 99 16.5 
X4 5.5 11 16.5 88.55 
X5 2.75 5.5 8.25 87.175 
X6 1. 375 2.75 4.125 86.487 
X7 0 0 0 85.8 

e X5 X6 X7 
X1 2.75 1. 375 0 
X2 5.5 2.75 0 
X3 8.25 4.125 0 
X4 87.175 86.487 85.8 
X5 86.487 86.144 85.8 
X6 86.144 85.972 85.8 
X7 85.8 85.8 85.8 

TOTAL VARIANCE = 500.8094 

EIGENVALUE DIFFERENCE PROPORTION CUMULATIVE 
(A..) 

1 (A.i - A.i+1) 

PRIN1 347.0151 193.2208 0.6929 0.6929 
PRIN2 153.7943 153.7943 0.3071 1.0000 
PRIN3 0.0000 0.0000 0.0000 1.0000 
PRIN4 0.0000 0.0000 0.0000 1.0000 
PRINS 0.0000 0.0000 0.0000 1.0000 
PRIN6 0.0000 0.0000 0.0000 1.0000 
PRIN7 0.0000 0.0000 1.0000 

-19-



EIGENVECTORS = b. 
l. 

e PRIN1 PRIN2 PRIN3 PRIN4 

X1 0.025018 0.264786 0.005297 0.081529 
X2 0.050035 0.529573 0.077591 0.798545 
X3 0.075053 0.794359 0.000856 -.563782 
X4 0.504819 0.027439 -.306727 0.100525 
xs 0.498565 -.038757 -.453794 -.106286 
X6 0.495438 -.071855 0.830118 -.087701 
X7 0.492310 -.104954 -.069597 0.093462 

PRINS PRING PRIN7 

X1 -.033880 0.445673 0.850185 
X2 0.161253 -.046780 -.212517 
X3 -.024221 -.187931 -.098000 
X4 -.757301 0.198440 -.165332 
xs 0.624127 0.348492 -.147391 
X6 0.053236 0.202704 -.093099 
X7 0.079938 -.749637 0.405822 

OBS X1 X2 X3 X4 xs X6 X7 

1 -5 -10 -15 12.5 13.75 14.375 15 
2 -4 -8 -12 4.0 5.00 5.500 6 
3 -3 -6 -9 -2.5 -1.75 -1.375 -1 
4 -2 -4 -6 -7.0 -6.50 -6.250 -6 e 5 -1 -2 -3 -9.5 -9.25 -9.125 -9 
6 0 0 0 -10.0 -10.00 -10.000 -10 
7 1 2 3 -8.5 -8.75 -8.875 -9 
8 2 4 6 -5.0 -5.50 -5.750 -6 
9 3 6 9 0.5 -0.25 -0.625 -1 

10 4 8 12 8.0 7.00 6.500 6 
11 5 10 15 17.5 16.25 15.625 15 

OBS PRIN1=PC1 PRIN2=PC2 PRIN3=PC3 PRIN4=PC4 

1 25.921 -21.332 2.22045E-16 -1.33227E-15 
2 8. 7.90 -15.937 -4.71845E-16 -1.44329E-15 
3 -4.359 -10.918 -4.02456E-16 -1.34615E-15 
4 -13.525 -6.275 -4.16334E-16 -9.71445E-16 
5 -18.709 -2.009 -5.13478E-16 -5.41234E-16 
6 -19". 911 1.881 -2.49800E-16 -2.49800E-16 
7 -17.131 5.395 -2.91434E-16 4.16334E-17 
8 -10.368 8.533 2.77556E-17 6.38378E-16 
9 0.377 11.294 4.02456E-16 1. 29063E-15 

10 15.104 13.679 6.38378E-16 1. 77636E-15 
11 33.813 15.688 1. 33227E-15 2.44249E-15 
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OBS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

PRIN5=PC5 

-2.44249E-15 
-1.73472E-15 
-1. 0824 7E-15 
-5.41234E-16 

1.24900E-16 
6.93889E-16 
7.35523E-16 
1.12410E-15 
1.16573E-15 
1.16573E-15 
4.44089E-16 

PRIN6=PC6 

5.55112E-15 
3.55271E-15 
2.49800E-15 
1.55431E-15 
4.44089E-16 

-6.66134E-16 
-1.33227E-15 
-1.77636E-15 
-2.63678E-15 
-3.33067E-15 
-3.33067E-15 

PRIN7=PC7 

-2.44249E-15 
-2.44249E-15 
-2.41474E-15 
-2_. 22045E-15 
-1.77636E-15 
-6.66134E-16 
-2.22045E-16 

8.88178E-16 
2.24820E-15 
3.55271E-15 
5.10703E-15 

0 = -.0339(5) + .161(10) - .0242(15) - .757(17.5) 
+.624(16.25) + .0532(15.625) + .0799(15) 
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• 

OBS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

X1 

-5 
-4 
-3 
-2 
-1 

0 
1 
2 
3 
4 
5 

X2 

-10 
-8 
-6 
-4 
-2 

0 
2 
4 
6 
8 

10 

X3 

-15 
-12 

-9 
-6 
-3 

0 
3 
6 
9 

12 
15 

X4 

12.5 
4.0 

-2.5 
-7.0 
-9.5 

-10.0 
-8.5 
-5.0 
0.5 
8.0 

17.5 

X5 

13.75 
5.00 

-1.75 
-6.50 
-9.25 

-10.00 
-8.75 
-5.50 
-0.25 
7.00 

16.25 

X6 

14.375 
5.500 

-1.375 
-6.250 
-9.125 

-10.000 
-8.875 
-5.750 
-0.625 

6.500 
15.625 

X7 

15 
6 

-1 
-6 
-9 

-10 
-9 
-6 
-1 

6 
15 

OBS PRIN1=PC1 PRIN2=PC2 PRIN3=PC3 PRIN4=PC4 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

OBS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

2.2378 
0.5425 

-0.7368 

-3.2844 1.38778E-16 
8.32667E-17 
7.80626E-18 

2.91434E-16 
9.71445E-17 
2.94903E-17 

-2.3045 
-1.4322 

-1.6003 -0.6677 -1.38778E-17 0 
-1.24900E-16 -2.0479 -0.0108 -6.93889E-17 

-2.0795 
-1.6953 
-0.8951 

0.3209 
1. 9529 
4.0007 

0.5384 
0.9799 
1.3137 
1. 5399 
1. 6584 
1. 6692 

-5.55112E-17 -2.77556E-17 
-6.93889E-17 -5.55112E-17 
-5.55112E-17 -5.55112E-17 
-2.08167E-17 -3.46945E-17 
-1.38778E-17 -2.77556E-17 
-5.55112E-17 2.22045E-16 

PRIN5=PC5 PRIN6=PC6 PRIN7=PC7 

-1.89468E-16 
-4.33274E-17 
-3.59650E-17 
-1.4 7248E-17 
-7.36240E-18 

9.24446E-33 
7.36240E-18 
1. 4 7248E-17 
3.59650E-17 
4.33274E-17 
1.89468E-16 

6.66134E-16 
4.85723E-16 
3.48679E-16 
2.22045E-16 
1.11022E-16 

-9.71445E-17 
-1.24900E-16 
-2.49800E-16 
-3.50414E-16 
-4.71845E-16 
-6.93889E-16 

-4.44089E-16 
-6.66134E-16 
-7.49401E-16 
-7.07767E-16 
-6.10623E-16 
-4.57967E-16 
-1. 38778E-16 
1.94289E-16 
6.38378E-16 
1.15186E-15 
1.99840E-15 

o = .707[5 - o] - .7o7[1o-o J + o[15-o J + o[17.5-o] 
3.317 6.633 9.950 9.410 

+ 0 [16.25-o] + 0 [15.625-o] + 0 [15-o J 
9.300 9.272 9.263 
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We note several things: 

i) In both analyses there are only two eigenvalues that are nonzero 

indicating that only two variables are needed. This is not 

readily apparent from the correlation or variance-covariance 

matrix. 

ii) In Pe1 , Pe2 and Pe3 where the standardizrd x1 , x2 and x3 are 

the same, they have the same coefficients. 

iii) Neither PeA recovers z1 and z2 . The PeAs with nonzero variances 

have elements of both z1 and z2 in them, i.e., neither Pe1 or 

Pe2 is perfectly correlated with one of the Zs. 

4. SUMMARY 

PeA provides a method of extracting structure from the 

variance-covariance or correlation matrix. If a multivariate 

data set is actually constructed in a linear fashion from fewer 

variables, then PeA will discover that structure. PeA constructs 

linear combinations of the original data, X, with maximal 

variance: 
P = XB 

This relationship can be inverted to recover the Xs from the Pes 

(actually only those Pes with nonzero eigenvalues are needed -

see example 2). Though PeA will often help discover structure in 

a data set, it does have limitations. It will not necessarily 

recover the exact underlying variables, even if they were 

uncorrelated (Example 4). Also, by its construction, PeA is 

limited to searching for linear structures in the Xs. 
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Example 1: Control Language 

Control language is typed 
Refer to SAS User's Guide: 
program documentation. 

DATA ONE; 

APPENDIX 

in upper 
Statistics, 

case and comments 
Version 5 Edition, 

are bolded. 
1985, for 

TITLE PCA1: USING CORRELATION MATRIX (STANDARDIZED VARIABLES); 
INPUT X1 X2; ~ input variables 
CARDS; ~ signals SAS that data follow 
-5 15 
-4 6 
-3 -1 
-2 -6 
-1 -9 
0 -10 
1 -9 
2 -6 
3 -1 
4 6 
5 15 
PROC PRINCOMP OUT=FOUR; ~ requests 

with PCs 
~ prints out 

PCA on correlation matrix 

PROC PRINT DATA=FOUR; 

* . SAS Wlll 
directed. 
following 

compute the PCA on the 
To request PCA on a 

procedural call: 

* being output to new data set 
data 

correlation matrix 
variance-covariance 

unless otherwise 
matrix use the 

PROC PRINCOMP COV OUT=FOUR 
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Example 2: Control Language 

DATA ONE; 
TITLE PCA2: USING VARIANCE-COVARIANCE MATRIX (UNSTANDARDIZED VARIABLES); 
INPUT Z1 Z2; 
X1=Z1; ~ creates x1 ,x2 , and x3 
X2=2*Zl; 
X3=Z2; 
DROP Z1 Z2; 
CARDS; 
-5 15 
-4 6 
-3 -1 
-2 -6 
-1 -9 
0 -10 
1 -9 
2 -6 
3 -1 
4 6 
5 15 
PROC PRINCOMP COV OUT=FOUR; 
VAR X1 X2 X3; ~ tells SAS which variables to use to compute PCA 
PROC PRINT DATA=FOUR; 
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~ Example 3: Control Language 

., 

DATA ONE; 
TITLE PC3: USING CORRELATION MATRIX (STANDARDIZED VARIABLES); 
INPUT Z1 Z2; 
X1=Z1; 
X2=2* (Z1+5) i 
X3=3* (Z1+5); 
X4=Z2; 
DROP Z1 Z2; 
CARDS; 
-5 15 
-4 6 
-3 -1 
-2 -6 
-1 -9 
0 -10 
1 -9 
2 -6 
3 -1 
4 6 
5 15 
PROC PRINCOMP OUT=FOUR COV; 
VAR X1 X2 X3 X4; 
PROC PRINT DATA=FOUR; 
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~ Example 4: Control Language 

• 

DATA ONE; 
TITLE PC4: USING CORRELATION MATRIX (STANDARDIZED VARIABLES); 
INPUT Z1 Z2; 
X1=Z1; 
X2=2*Z1; 
X3=3*Z1; 
X4=(Z1/2)+Z2; 
X5=(Z1/4)+Z2; 
X6=(Z1/8)+Z2; 
X7=Z2; 
DROP Z1 Z2; 
CARDS; 
-5 15 
-4 6 
-1 -1 
-2 -6 
-1 -9 
0 -10 
1 -9 
2 -6 
3 -1 
4 6 
5 15 
PROC PRINCOMP OUT=FOUR; 
VAR X1 X2 X3 X4 X5 X6 X7; 
PROC PRINT DATA=FOUR; 
PROC MEANS DATA=FOUR; VAR PRIN1-PRIN7; 
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