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Statistical inference on high-dimensional and noisy data is a central concern of

modern computer science. Often, the main challenges are inherently computa-

tional: the problems are well understood from a purely statistical perspective,

but key statistical primitives – likelihood ratios, Bayes-optimal estimators, etc. –

are intractable to compute on large and high-dimensional data sets.

We develop a unified approach to algorithm design for statistical inference

based on the Sum of Squares method, a powerful tool for convex program-

ming with low-degree polynomials, which generalizes linear programming and

spectral algorithms. We use this approach to design algorithms for a range of

high-dimensional statistical problems, improving on state-of-the-art provable

guarantees in severalwell-studied settings: clusteringdata fromhigh-dimensional

mixture models, community detection in random graphs, and more.

We also prove computational lower bounds for some statistical problems,

including the long-studied planted clique problem. Our lower bounds provide

new strong evidence for the existence of information-computation gaps – that is,

statistical problems which are solvable given infinite computational resources,

but not by efficient algorithms. In particular, we prove new lower bounds against

the powerful Sum of Squares hierarchy of semidefinite programs, via a new

pseudocalibration technique. Because the Sum of Squares hierarchy has provable

guarantees matching those of most known techniques in algorithm design for

inference, our lower bounds strongly suggest that the problems we study are



intractable for polynomial-time algorithms. At very least, improving existing

algorithms for them would require a major breakthrough.

We show that polynomial-size semidefinite programs from the Sumof Squares

hierarchy cannot refute the existence of cliques of size much less than

√
n in n-

node random graphs. Additionally, we prove a lower bound for sparse principal

component analysis (PCA), showing that subexponential-size Sum of Squares

semidefinite programs are needed to improve on the provable guarantees of

existing spectral algorithms for sparse PCA.

Our approach to algorithms and lower bounds suggests a new method to

chart the edge of algorithmic tractability for statistical inference. We propose

a classification of Bayesian inference problems according to solvability by algo-

rithms which compute only simple statistics of input data – triangle counts of

graphs, top eigenvalues of matrices, etc. Our classification accurately predicts

suspected information-computation gaps for many well-studied problems, in-

cluding planted clique, planted constraint satisfaction, community detection in

stochastic block models, component analysis problems, and more. This type of

classification is novel for inference problems, and represents the first approach

to trace the information-computation gaps in of all these problems to the same

underlying mathematical structure.
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CHAPTER 1

INTRODUCTION

Algorithms to extract useful information from noisy and high-dimensional data

are a central concern of modern computer science. Progress in the design of

such algorithms in the last 20 years has revolutionized statistics and artificial

intelligence, enabling ever-more-sophisticated inferences based on ever-larger

data sets—from scientific instruments, sensor networks, mobile phones, and

(above all) the Internet. It is hard to overstate their breadth and depth of

application.

Designing these algorithms remains more art than science. Exploiting the

unprecedented size of data sets now available often involves overcoming serious

challenges. Chiefly:

1. (Computational intractability) Approaches to hypothesis testing and inference

suggested by classical statistics rarely scale well. Efficient algorithms—with

running times which are polynomial or (even better) linear in data-set

size—do not even exist for high-dimensional versions of many basic tasks.

For example, computation of a likelihood ratio or a maximum-likelihood

estimator often appears to require brute-force enumeration of sets which

have size exponential in ambient dimension or number of samples, both

large.

2. (Data sparsity) The classical way to make an inference problem easier is

to gather more data: for simple tasks like estimating a population mean,

more data always increases the accuracy of the standard estimator, in this

case the sample mean. However, for many problems we consider, there is
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not just one parameter, like the population mean, that we wish to estimate:

instead, the complexity of information to be inferred grows with the data

set size. In particular, the amount of data per bit of information to be inferred

often remains constant.

For example, social network graphs have millions or billions of nodes

but often constant average degree: inferring a label (say, Republican or

Democrat) for every node of such a graph from just the graph structure

requires inferring one bit of information per vertex from just a constant

number of edges per vertex.

These challenges are intimately related: computational intractability often origi-

nates with data sparsity. Inferring O(1) bits of information from N →∞ noisy

samples – estimating a population mean from a growing number of samples, for

example – is well studied and often computationally tractable. Inferring Ω(N)

bits from N samples is a different endeavor. In this thesis we will most often be

concerned with the latter sort of inference problem.

While data sparsity is a key source of computational intractability, it is not

the only one. Even simple tasks, like binary hypothesis testing, can lack obvious

efficient algorithms: although binary hypothesis testing has been studied since

the birth of modern statistics, the classical statistical methods are often not

computationally tractable in high-dimensional settings. Indeed, some binary

hypothesis testing problems likely lack efficient algorithms altogether.

In spite of the challenges, theorists and practitioners have discovered clever

and surprising algorithms for some noisy, high-dimensional, and data-sparse

inference problems, while others seem to resist such solutions, despite intensive

effort. The line between efficiently and not efficiently solvable remains murky,
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and in large part investigated only on a problem-by-problem and algorithm-by-

algorithm basis. The aim of this thesis is to develop systematic and principled

approaches to answer the central question:

Which noisy and high-dimensional statistical inference problems admit

computationally-efficient algorithms, and which do not?

A satisfactory theory of algorithms for statistical inference should be able to

predict (without exhaustive study of numerous potential algorithms) whether a

given inference problem is computationally tractable. It should offer evidence,

as rigorous as possible, for the correctness of its prediction. And, it should

explain what makes an inference problem tractable or intractable, by identifying

problem-and algorithm-independent mathematical structures which track the

limits of efficient computation.

Besides addressing core theoretical questions, this kind of theory has the

potential for wide impact on algorithm design for inference. By identifying the

boundaries of algorithmic tractability, we may hope for new algorithms solving

challenging inference problems where current techniques do not yet approach

the limits of efficient computation. On the other hand, providing evidence for

intractability gives algorithm designers a principled way to decide when to stop

designing algorithms and reformulate their problems or devote their efforts

elsewhere.

At present the prevailing mathematical approach to algorithmic statistical

inference is to focus on one problem and one tailor-made algorithm at a time.

While successful on a problem-by-problem basis, this approach falls short of

addressing our main question in several ways. First, it does not suggest a way

3



to predict (in)tractability of a newly-presented inference problem, except by

exhaustive attempts to design an algorithm.1 Should these attempts fail, it

offers no avenue to produce rigorous evidence of intractability. And, without

connecting algorithms for one problem to those for the next, it does not suggest

any problem-independent mathematical structures which could trace out the

tractable/intractable divide.

In this thesis we begin by unifying many algorithms for various inference

problems under one algorithmic umbrella – the Sum of Squares method, or SoS. At

heart, SoS is a method to design convex relaxations for polynomial optimization

problems. In this thesis, we develop an approach to the use of SoS for inference.

We observe that the performance guarantees of a wide range of existing inference

algorithms – in particular spectral and convex-programming methods – are

captured by algorithms using SoS. By developing extensive tools for the analysis

of SoS algorithms we also obtain new polynomial-time provable guarantees for a

number of inference problems.

We then study what makes inference problems intractable for SoS algorithms,

since the broad algorithmic power of SoS makes SoS-intractability a strong

proxy for polynomial-time intractability. We develop pseudocalibration, which

is the first problem-independent approach to proving lower bounds against

convex-programming-based algorithms for inference problems.

Taken together, our algorithms and lower bounds point to a simple problem-

1To the extent that existing methods do offer such predictions, they usually rely on heuristics

carried over from worst-case complexity and algorithm design. For example, it has long been

understood that matrix problems are algorithmically easier to solve than tensor problems; this

is just as true in statistical as in worst-case settings [87, 92]. But ideas rooted in worst-case

complexity do not predict or explain phenomena which appear inherently statistical: for example,

they do not explain why some matrix-based inference problems appear computationally harder

than others, or predict which are the easy ones.
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and algorithm-independent criterion for tractability of a broad class of Bayesian

inference problems. This class includes long-studied high-dimensional hypoth-

esis testing and hidden variable problems involving dense subgraph detection

(e.g. planted clique), component analysis (e.g. sparse PCA), and community

detection in large networks (e.g. the stochastic block model). Prior to this work,

even making plausible non-rigorous guesses about the performance of SoS for

such problems demanded substantial area-specific expertise and creativity; our

work largely reduces this task to rote computation.

We develop a meta-theory of SoS algorithms for such Bayesian problems –

inference problems where hidden variables are distributed according to a prior –

which hinges on a deep and unexpected connection between algorithms based on

convex programs – such as the SoS method – and those based on simple statistics –

subgraph counts in graphs, top eigenvalues of matrices, and the like. Along the

way, we develop a substantial new technical toolkit for rigorous analysis of the

SoS method in inference settings.

Finally, we contribute to algorithm design for inference in problems which do

not fit the Bayesian mold, which is broad but not all-encompassing. We use SoS

to design a new algorithm for learning high-dimensional mixture models, a core

data clustering problem in statistics which dates to foundational work of Pearson

in the 1890s. In some (well-studied) regimes, our algorithm is the first to improve

on the guarantees of naïve greedy clustering methods in polynomial time. We

also use SoS to design algorithms for high-dimensional inference which tolerate

many adversarially-chosen outliers: this robust statistics setting captures learning

in the presence of model misspecification as well as malicious data tampering.

We present a problem with the following structure:
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1. Unify existing algorithms for statistical inference with provable guarantees

under a single umbrella (the SoS method),

2. Employ the resulting technical insight to design new algorithms with

provable guarantees for challenging inference problems, and

3. Probe the limits of efficient computation by investigating what makes these

algorithms break down.

This roughly parallels developments which have been key to the maturation of

several other fields in theoretical computer science.

For example, the unification of approximation algorithms for constraint

satisfaction problems (CSPs) under the umbrella of semidefinite programming

(SDP) led to the revolutionary discovery that the mathematical structures which

make SDPs fail to solve CSPs (within certain approximation ratios) are exactly

what is needed to prove CSPs are NP-hard to approximate (within those same

approximation ratios), under the (increasingly plausible) unique games conjecture

[152]. Subject to the resolution of the unique games conjecture, this led to the

solution of almost every long-standing problem in the field and yielded exactly

the sort of predictive and explanatory theorywhose beginningswe aim to develop

here. It is auspicious (and not entirely coincidental) that our algorithmic umbrella

– the SoS method – is a natural generalization of the SDP method for CSPs.

Organization In the remainder of this introduction, we discuss some of the

main theorems in the thesis (Section 1.1) and some of the mathematical themes

which run through it (Section 1.2). In the subsequent few chapters we describe in

more detail many of the meta-theoretical ideas in this thesis: simple statistics,

the SoS method, proofs-to-algorithms, and pseudocalibration. The rest of the
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thesis has two parts: Part I focuses on algorithms and Part II focuses on lower

bounds and the pseudocalibration method

1.1 Highlights of Results

In the course of developing the broad theory outlined above, we obtain many

new algorithms and lower bounds for challenging inference problems. We are

not yet prepared to describe all of the main results of this thesis rigorously, but

we will take a short tour of some of the highlights.

A Nearly-Tight SoS Lower Bound for Planted Clique Detecting dense sub-

graphs in large random graphs is a core problem in fields from biology (DNA

transcription networks, neuron connectivity graphs) to social networks (detecting

communities) to economics (computation ofNash equilibria, networks of financial

derivatives) to cryptography (hiding secret keys by hiding dense subgraphs).

[82, 148, 130, 97, 86, 20, 16, 100, 15].

The planted clique problem is a simple and long-studied mathematical model

for this task – dense subgraphs are assumed to be cliques, and random graphs

are assumed to have independent edges which each appear with probability
1

2

(as in the Erdős-Rényi G(n , 1

2
) model). Despite its simplicity, the problem has

prompted many interesting developments in algorithm design, and it displays

our first example of the information-computation gap phenomenon, which will

concern us throughout this thesis.2

2It is also closely related to two old questions in the theory of algorithms for random graphs:

(1) What is the size of the largest clique which may be found (with high probability) in polynomial

time in a graph G ∼ G(n , 1

2
)? (2) What is the tightest upper bound which can be certified in
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For every k(n) ∈ �, the planted k-clique problem (phrased as a hypothesis

testing problem) is the following. Given an n-node graph G, distinguish the

following two hypotheses:

H0 : G was sampled from the Erdős-Rényi model G(n , 1

2
), with inde-

pendent edges each appearing with probability
1

2
.

H1 : G was sampled by first choosing a set S of k out of n vertices at

random, adding every edge between vertices in S to form a clique,

then sampling the rest of the edges independently as in G(n , 1

2
).

The hypotheses H0,H1 are statistically indistinguishable (meaning there is simply

not enough information in a single graph G to distinguish them) for any k <

(2 − ε) log n (where ε > 0 is any positive constant). The size of the maximum

clique in G ∼ G(n , 1

2
) is (2 ± o(1)) log n with high probability, meaning that if

k > (2+ ε) log n a brute-force algorithm enumerating all subsets of vertices of size

(2 + ε) log n will successfully distinguish H0 and H1. This algorithm, however,

requires quasipolynomial time; that is, time nO(log n)
.

The smallest k for which H0 and H1 are known to be distinguishable in

polynomial time is k � c
√

n for any constant c > 0: notice that this value of k

is exponentially greater than the smallest such k achievable in quasipolynomial

time, via the brute-force algorithm. This is an information-computation gap, with

an apparent algorithmic threshold for polynomial-time algorithms at k � Θ(
√

n).

Rigorously establishing the existence of such an algorithmic threshold takes

two kinds of evidence.

polynomial time on the size of the largest clique in G ∼ G(n , 1

2
)? That is, what is the least

c � c(n) such that there exists a polynomial-time algorithm outputting a number ALG(G) such
that ALG(G) > max clique(G) for every G, and �

G(n , 1
2
) ALG(G) � c?
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First, to demonstrate tractability above the threshold, there should be an

algorithm. In this case, an algorithm based on maximum eigenvalues of subma-

trices of the adjacency matrix of the graph G distinguishes H0 and H1 for any

k > Ω(
√

n) [9].3

Second, to demonstrate intractability below the threshold, there should be a

lower bound: some evidence that no polynomial-time algorithm distinguishes

H0 and H1 from a single sample G when k < o(
√

n). Since we do not expect to

prove P , NP, the evidence must either be conditional – that is, dependent on

some other unproven conjecture – or apply only to a subset of polynomial-time

algorithms, ideally one as large as possible.

While conditional evidence – usually based on the conjecture P , NP – has

been very successful in establishing worst-case computational intractability, the

resulting reduction-based theory does not seem readily adaptable to the inference

setting. The difficulty is that combinatorial reductions between problems, which

form the core of the theory of NP-completeness, produce problem instances

with detailed combinatorial structure. (In the jargon, the instances are full of

gadgets.) This makes them unlike the instances of an inference problem, which,

as in planted clique, are largely random. In particular, there is no known conditional

lower bound for the planted problem based on any standard complexity hypothesis, and

none appears to be in sight.

We give the strongest-yet unconditional evidence that polynomial-time algo-

rithms do not distinguish H0,H1 for k �
√

n, by ruling out SoS-based algorithms

3This algorithm relies on the classical fact from random matrix theory that the maximum

eigenvalue of a symmetric n × n matrix with ±1 iid entries is O(
√

n); this is one view on the

origin of theΘ(
√

n) threshold. Later on we will identify some alternative characterizations of this

threshold.
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for such k.4 The natural application of SoS to planted clique yields a hierar-

chy of semidefinite-programming (SDP) relaxations of the max clique problem;

the d-th SDP in the hierarchy has nO(d)
variables and is solvable in time nO(d)

.

Since max clique(G) does distinguish H0,H1 for k > (2 + ε) log n, trying to solve

max clique by convex relaxation is a reasonable approach to the problem. This

approach succeeds for any k > Ω(
√

n), because the objective value SoSd(G) of

the d-th SDP on G ∼ G(n , 1

2
) is at most

√
n/2O(d)

, with high probability [71]. We

prove a strong converse, matching the upper bound up to a subpolynomial factor:

Theorem 1.1.1 (SoS Lower Bound for Planted Clique). For every d > 0 and

G ∼ G(n , 1

2
), with high probability SoSd(G) >

√
n/2O(

√
d/log n)

.

To prove this lower bound we introduce the pseudocalibration technique, which

marks a major technical development in our ability to prove lower bounds against

large convex programs for inference problems. (Aswewill see, in a rigorous sense

previous techniques to prove lower bounds for SoS algorithms could not prove a

tight lower bound for planted clique.) It reveals a fascinating connection between

the SoS SDP on the one hand and simple graph statistics – in this case, counts of

small subgraphs – on the other. In particular, it shows that SoS algorithms fail

to distinguish H0,H1 when k �
√

n because no simple subgraph-counting algorithm

can distinguish H0,H1 for such k.

This result almost tightly characterizes the values of k for which the planted-

k-clique problem is solved in polynomial time by SoS. We are able to extend the

ideas to prove similar characterizations for two other important hypothesis testing

problems: sparse principal component analysis and single-spiked tensors, also known

4The strength of our lower bound stems from the power of SoS as an algorithm: in particular,

SoS generalizes all the spectral and convex programming methods for which planted clique lower

bounds are known [71].
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as tensor principal component analysis.5 In fact, the pseudocalibration technique

unifies all existing lower bounds against SoS algorithms for statistical problems

of which the author is aware.

Each of these lower bounds (and nearly-matching algorithms) demonstrate

that the SoS algorithms can solve a particular hypothesis testing problem exactly

when it is also solved by algorithms based on simple statistics: more formally, by

tests which are computed by low-degree polynomials in the problem instance.

(For instance, subgraph counts in a graph G are low-degree polynomials in the

entries of the adjacency matrix of G.)

We discuss pseudocalibration and the challenges of proving Theorem 1.1.1 in

Chapter 4. We prove Theorem 1.1.1 in Chapter 11.

SoS Algorithms for Binary Hypothesis Testing are Only as Good as Low-

Degree Spectral Methods This prompts the question: is there a more general

phenomenon at work, characterizing SoS algorithms for hypothesis testing in

terms of simple statistics? This remains an enticing question. Wemake significant

progress towards resolving it, by characterizing SoS algorithms for a wide range

of binary hypothesis testing problems in terms of simple matrix statistics, a type

of spectral method.

This result is somewhat meta-theoretical, so for now we state an informal

version and leave the formal definitions till later.

Theorem 1.1.2 (SoS versus simple matrix statistics for binary hypothesis testing,

informal). Suppose that (H0,H1) are a pair of distributions on�n
, forming a hypothesis

testing problem where the goal is to distinguish a sample x ∼ H0 from x ∼ H1. Further

5These problems are defined in Section 11.7 and Chapter 6.
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suppose that (1) H0 is a product distribution H0 � ν⊗n
, and (2) there is a polynomial-time

SoS algorithm to distinguish H0 from H′
1
, where H′

1
is the following noisy version of H1:

to sample x′ ∼ H′
1
, first sample x ∼ H1, then obtain x′ from x by resampling a random

0.1-fraction of its coordinates from µ.

Then there is m 6 nO(1)
and a collection of m2

polynomials Qi j : �n → � of degree

O(log n) such that the value of the largest eigenvalue of the matrix Qi j distinguishes H0

and H1.

This theorem applies to nearly any hypothesis testing problem where the null

model H0 is a product distribution and the problem is noise-robust: the noise-

robustness is captured by the replacement of the alternative hypothesis H1 with

a noisy version H′
1
. In particular, the theorem applies to classic high-dimensional

problems like planted clique, sparse principal component analysis, community

detection, random constraint satisfaction, and more. It is also the other main use

of the pseudocalibration technique in the thesis. We prove it in Chapter 12.

Detecting Overlapping Communities in Very Sparse Random Graphs Com-

munity detection is the problem of finding collections of similar nodes in networks.

Communities can of course represent social groups or like individuals in social

networks [140], but community detection finds broad application across the sci-

ences: for instance in image segmentation [163] and in identification of biological

pathways from protein-protein interaction graphs [123, 50]. (See e.g. [1] for

further references.)

The stochastic block model (SBM) is the canonical family of generative models

for random graphs with hidden community structure. The model in its most

elementary form was independently invented in several communities – statistics
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and machine learning, theoretical computer science, and mathematics. Studied

since at least the 1980s, the SBM has been the site of a number of recent

developments identifying a particularly stark information-computation gap.

Consider the following hypothesis testing problem, parameterized by d , k ∈ �

and ε > 0. (Of course eventually one wishes to cluster nodes by community in

addition to testing whether communities exist, but hypothesis testing is almost

always a good starting place.)

H0 : G was sampled from the Erdős-Rényi model G(n , d
n ), with

independent edges each appearing with probability
d
n .

H1 : G was sampled by first choosing a random element σi of [k] for

i ∈ [n], then independently choosing to include each potential edge

{i , j} ⊆
(n
2

)
with probability (1 − ε/k) dn if σi , σ j , and otherwise with

probability (1 + (1 − 1/k)ε) dn .6

The distribution specified by H1 is called the k-community stochastic blockmodel.

A remarkable analysis of this hypothesis testing problem in the regime

d � Θ(1) (which is perhaps the most plausible for applications real-world

networks, which tend to be very sparse) using non-rigorous tools from statistical

physics [59] suggested an enticing conjecture:

Conjecture 1.1.3. There is a polynomial-time algorithm to distinguish H0,H1 with

probability 1 − o(1) if and only if d > (1 + δ)k2/ε2
for some δ > Ω(1).

Since in exponential time it is possible to distinguish H0,H1 for d > C log k
kε2

for some universal constant C [25], Conjecture 1.1.3 predicts an information-

6The coefficients (1 − ε/k) and (1 + (1 − 1/k)ε) are chosen so that the graph models described

in H0 and H1 have the same expected number of edges.
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computation gap for the k-community stochastic block model. Rather remarkable

is the predicted sharpness of the computational threshold: the conjecture claims

that the algorithmic tractability of the hypothesis testing problem differs qualita-

tively for d � 1.01k2/ε2
and d � 0.99k2/ε2

. For historical reasons, in the block

model context d � k2/ε2
is called the “Kesten-Stigum threshold”.

A series of algorithmic innovations in the block model has culminated with

a proof of one side of the conjecture: namely, that there is a polynomial-time

algorithm to detect communities for any d > (1+δ)k2/ε2
[2, 42, 111, 137, 136, 125].

These algorithms are impressive technical achievements, arising from detailed

study of the particulars of the k-community block model. On one hand, their

model-specificity allows them to detect communities up to the Kesten-Stigum

threshold. But on the other hand, it is not immediately clear what these

algorithms and the sharpness of the Kesten-Stigum threshold say about inference

more broadly: for example, what feature of the block model makes for a sharp

computational threshold, while other problems it is possible to trade off statistical

noise and running time (e.g. detecting a planted clique of size

√
n/2d

in time

nO(d)
). Finally, as usual, model-specific algorithm design leaves little avenue to

offer rigorous evidence for the other half of the conjecture: that when d < k2/ε2

no polynomial-time algorithm distinguishes H0,H1 with probability 1 − o(1).

We develop an approach to algorithm design for community detection in the

stochastic block model based explicitly on the combination of simple statistics

and the SoS method. Like the physics-inspired methods, our approach solves

the hypothesis testing problem (and the attendant vertex-clustering/labelling

problem) for any d , k , ε above the Kesten-Stigum threshold. (We also show that

the physics-inspired algorithms themselves can be thought of as simple-statistics-
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based.) Furthermore, our approach is sufficiently model-independent that it

extends easily to design an algorithm for a substantially more complicated (yet

more realistic) version of the block model, in which each node may participate in

several communities simultaneously [6].

Finding rigorous explanations for this and similar non-rigorous predictions

of statistical physics is a significant project in itself. Related predictions and

rigorous confirmations thereof have led recently to breakthroughs in long-

standing questions on random constraint satisfaction problems [69, 70, 164].

We design an algorithm for the following hypothesis testing problem (and,

perhaps more interestingly, for its estimation variant, where the goal is to recover

the latent community structure in the H1 case).

H0 : G was sampled from the Erdős-Rényi model G(n , d
n ), with

independent edges each appearing with probability
d
n .

H1 : G was sampled by first choosing t random elements σ1 �

{σi1, . . . , σit} of [k] for i ∈ [n], then independently choosing to include

each potential edge {i , j} ⊆
(n
2

)
with probability (1+ε(|σi∩σ j |− t/k)) dn .

The randomgraphmodel described byH1 is called themixed-membership stochastic

block model [6]. We prove the following theorem, capturing a Kesten-Stigum-like

sharp threshold for the mixed-membership block model.

Theorem 1.1.4. For every δ > 0, if d > (1 + δ)k2(1 + α)2/ε2
, where α is defined by

k(α+1)
k+α � t, so α ≈ t − 1, there is a polynomial-time algorithm to distinguish H0,H1 with

probability 1 − o(1).

Our theorem generalizes previous work on the k-community block model,
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captured by the limiting case t � 1. Our algorithm works when d > (1 +

δ)k2(1 + α)2/ε2
because for such d, there is a simple statistic which distinguishes

H0,H1. This represents an appealing converse to our SoS lower bounds and the

pseudocalibration technique, which can rule out polynomial-time algorithms

based on SoS exactly when simple statistics fail.7 We show that the Kesten-Stigum

threshold can be explained by such simple statistics.

Theorem 1.1.5. Let �[xi j]6D be the polynomials of degree at most D in n2
variables

{xi j}i , j∈[n] with real coefficients. Let SD ,d ⊆ �[xi j]6D be the set of simple statistics of

degree D for hypothesis tests with respect to H0 � G(n , d/n):

SD � {p ∈ �[xi j]6D : �
G(n ,d/n)

p(G) � 0, �
G(n ,d/n)

p(G)2 � 1} .

Then

max

p∈SD
�

G∼H1(k ,ε)
p(G) �


O(1) if d < k2/ε2,D < n0.01

nΩ(1) if d > k2/ε2,D > O(log n)
.

We discuss this theorem and a similar result we prove for the estimation

problem in the block model (rather than the hypothesis testing problem), in

Chapter 8. In Chapter 2 we will discuss the degree-D polynomials from this

theorem statement at some length. For now we move on to the last stop on our

tour of highlights.

Learning High-Dimensional Mixture Models Clustering is a central concern

in modern statistics and computer science, especially clustering of noisy and

7As of the writing of this thesis it remains an enticing open problem to apply the pseudocali-

bration technique to the block model setting. Though there seems to be no inherent reason why

pseudocalibration could not be applied to prove an SoS lower bound, sparse random graphs pose

many mathematical difficulties, preventing proof techniques developed in the planted clique

setting from applying directly to the stochastic block model. See Appendix A.
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high-dimensional data. We study one of the main problems in the field, which

dates back at least to Pearson in the 1890s: learning in mixture models.

Suppose that X1, . . . ,Xn ∈ �d
(perhaps representing images, or people, or

proteins, etc.) are heterogeneous in that they contain representatives from several

distinct underlying populations, jumbled together in one data set. Another way

of putting it is: X1, . . . ,Xn break up into a set of k clusters, according to which

underlying population they came from. Under what conditions on X1, . . . ,Xn

and the underlying populations is it possible to find the clustering, and to estimate

interesting statistical information about the underlying k populations, such as

the true mean of each?

Modern data is often high-dimensional (if each Xi is an image, it may contain

hundreds of thousands of pixels, for example), and there may be many distinct

populations. So our goal is to design algorithms that recover clusters and

population means given n 6 poly(k , d) samples and running in time poly(k , d).

Amixturemodel is a generative process for this problem. Specifically, suppose

D1, . . . ,Dk are some probability distributions supported on �d
. The (uniform)

mixture model onD1, . . . ,Dk , denoted
1

k
∑

i6kDi , is the probability distribution

which first samples i uniformly from [k], then outputs a sample X ∼ Di .

Without some additional assumptions on the distributions D1, . . . ,Dk , ac-

curate estimation of their means µ1, . . . , µk ∈ �d
from poly(k , d) samples is

information-theoretically impossible, which should not be surprising, given the

wealth of possible distributions Di . Even if each Di is a (spherical) Gaussian

(in which case the mixture is called a mixture of Gaussians) with mean µi , that

is Di � N(µi , Id), if the population means µi are too close together (at, say,
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Euclidean distance 1/poly(k)), k Gaussians can conspire to be indistinguishable

from just a single Gaussian unless n > 2
Ω(k)

[132].

However, a pair of populations with means so close that exponentially-many

samples are needed to distinguish them as distinct populations is a dubious

modeling choice. It is therefore onlymildly restrictive to require that ‖µi−µ j ‖ > ∆

for some ∆ large enough that n 6 poly(k , d) samples X1, . . . ,Xn suffice (at least,

ignoring computation time) to estimate µ1, . . . , µk . For this purpose, in the

Gaussian setting,∆ � Θ(
√

log k) suffices [158]. However, until thework presented

in this thesis, polynomial-time algorithms were known to estimate µ1, . . . , µk

only under the assumption that ∆ > min(d , k)1/4; for smaller ∆ the only available

algorithms required exponential time [174].

We show the following theorem. (In fact, we show a more general version

tolerating a wide range of underlying distributionsDi .)

Theorem 1.1.6 (Special case of main theorem on mixture models, informal). For

every ε > 0, if ∆ > kε then there is an algorithm with running time poly(k , d) which

estimates µ1, . . . , µk up to 1/poly(k) error from n 6 poly(k , d) samples X1, . . . ,Xn ∼
1

k
∑

i6kDi , where Di � N(µi ,Σi) and Σi � Id. Additionally, for some universal

constant C, if ∆ > C
√

log k, then there is an algorithm with quasipolynomial time,

requiring quasipolynomially-many samples, to estimate µ1, . . . , µk up to 1/poly(k)

errors.

This theorem represents the first improvement in the parameter ∆ tolerated

by polynomial-time algorithms in nearly 20 years, for a wide range of d and k,

despite substantial attention in the literature [179, 53, 17, 174, 113, 4, 73, 101, 35,

132, 94, 14, 39, 54, 168, 84, 180, 76, 120, 158, 55].
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The mixture model setting differs from those we have discussed so far in

several ways. The other inference tasks we described so far, planted clique and

the stochastic blockmodel, were cast as binary hypothesis testing problems, while

we have described the mixture models problem as one of parameter estimation.

Of course, both of the other problems have estimation versions: identifying the

vertices in a k-clique in the planted clique problem, or partitioning a sparse

random graph into communities in the stochastic block model.

In general, the “simple statistics+SoS” theory we have been alluding to applies

equally well to the estimation variants of planted clique, stochastic block model,

and similar problems. Crucially, these estimation tasks are Bayesian. Bayesian

estimation problems, like planted clique and the block model, come with a

known (prior) probability distribution on the hidden variables to be estimated,

and the goal is to design an algorithm which solves the estimation problem with

high probability over choice of hidden variables from this prior. While Bayesian

problems cover a wide range of interesting statistical settings, good priors are not

always available, and there is long-running philosophical debate about when it

is appropriate to employ prior-based statistical reasoning.

Learning in mixture models, as we have defined it here, requires designing an

algorithm that tolerates adversarial choice of hidden variables, subject to some

deterministic conditions – in this case the hidden variables are µ1, . . . , µk ∈ �d

(or more generally the distributions D1, . . . ,Dk), and the condition is that

‖µi − µ j ‖ > ∆. The algorithm should succeed with high probability over

X1, . . . ,Xn , for any such choice of µ1, . . . , µk .

Our algorithm still uses the SoS method and incorporates simple statistics,

but requires substantial additional innovations. In particular, we employ the
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proofs-to-algorithms method, which we lay out in Section 3.5. The success of

the SoS method even for this kind of prior-free estimation problem suggests its

power as a unifying tool beyond the Bayesian setting. We prove Theorem 1.1.6 in

Chapter 9.

1.2 Themes

As important as the main results in this thesis are the threads that bind them into

the start of a coherent theory of algorithms for statistical inference. We address a

few of those themes now.

Simple proofs beget polynomial-time algorithms Our starting point is an

approach to algorithm design for statistical inference based on simple proofs and

convex programs. Imagine binary hypothesis testing with a null hypothesis H0

and an alternative H1, both specified by probability distributions on (for example)

�n
.

Under the assumption that both hypotheses are equally likely to be true, from

a statistical point of view the optimal hypothesis test is the likelihood ratio test –

given x ∈ �n
, if �H0

(x) < �H1
(x) the test outputs alternative, and otherwise the

test outputs null. The trouble is that for many interesting alternative models,

efficient algorithms to evaluate �H1
(x)may or may not exist – for example, if x is

the adjacencymatrix of a graph and H1 is the hypothesis that x was sampled from

a distribution on graphs containing planted dense subgraphs, then computing

�H1
(x) amounts to detecting dense subgraphs of a random graph.

To prove that it is possible to test H1 against H0 given arbitrary computational
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resources, one shows that

(∗) �H1
(x) � �H0

(x) for typical x ∼ H1 and �H0
(x) � �H1

(x) for

typical x ∼ H0.

In general such a proof says little about efficient algorithms. But if, to prove (∗),

one shows that for typical x ∼ H0 there is a simple enough witness wx to the

inequality �H1
(x) � �H0

(x), then often one has also designed a polynomial-time

algorithm for (one-sided) hypothesis testing: given x, the algorithm searches

for the witness wx . This strategy works if, for example, there is a convex set

Wx ⊆ �nO(1)
with a polynomial-time separation oracle such that any w ∈ Wx

certifies �H1
(x) � �H0

(x).

The SoS method offers a powerful strategy for such proofs of statements

like (∗). In particular, it offers a restricted proof system which automatically

comes with simple witnesses: if an inequality f 6 1 is provable in the SoS proof

system, then there is always a simple witness, which we call an SoS proof. For

each f , 1 (thinking of f � �H1
(x) and 1 � �H2

(x), the set of simple witnesses

to f 6 1 forms a convex set W f ,1 ; testing whether this set is empty via convex

programming yields algorithms for hypothesis testing.

We demonstrate this approach to hypothesis testing in Chapter 6, and we

discuss in Section 3.5 how it may be extended from hypothesis testing to hidden-

variable estimation problems, an extension we use in Chapter 9 to design

algorithms for clustering (Theorem 1.1.6) and outlier-robust estimation.

SoS proofs and low-degree matrix polynomials Next, we investigate just how

simple the witnesses wx and the algorithms to find them can be. Inspecting the
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SoS proofs constructed for a wide range of inference problems, we observe that

the full power of convex programming is often unnecessary. We show that SoS

proofs wx can frequently be boiled down to maximum eigenvalues of low-degree

matrix-valued polynomials: that is, λmax(M(x)) where M : �n → �nO(1)×nO(1)
is a

symmetric matrix whose entries are n-variate polynomials in x of degree O(1).

These matrix polynomials give rise to non-traditional spectral algorithms.

Spectral methods typically focus on a few very specific matrices, like adjacency

matrices of graphs, or covariance matrices of vector-valued data, whose entries

are linear or quadratic functions of input data x By contrast, our methods use

a variety of polynomials of higher degree, in many cases obtaining provably

stronger statistical guarantees than the traditional approaches. (Expert readers

may already know that SoS proofs themselves involve inequalities among low-

degree polynomials: it is important not to conflate the latter polynomials, in some

symbolic variables y, with low degree polynomials in the problem instance x.)

This simplification of SoS proofs for certain inference problems offers an

avenue to design truly fast algorithms – having practical, nearly-linear running

times – whose guarantees match those achieved by slower convex-programming

methods. In Chapters 6 and 7 we design such algorithms for hypothesis testing

and hidden-variable estimation in spiked tensor models and for detecting hidden

sparse vectors. The latter algorithm, from Chapter 7, demonstrates another

important principle: the spectra of simple, low-degree matrix polynomials like

M(x) above can leverage mathematical structure in hidden variables which is

more typically exploited only by tailor-made algorithms. For example, sparsity in

hidden variables is often leveraged in algorithm design by using some form of

`1 regularization, such as in the LASSO method, and by thresholding – setting
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small coordinates to 0. Here we achieve essentially the same guarantees with

low-degree polynomials.

We investigate in Chapter 12 just how far this kind of simplification can be

pushed by proving a meta-theorem on SoS proofs for hypothesis testing and

spectra of such low-degree matrix polynomials – Theorem 1.1.2. This theorem

applies to all of the Bayesian problems considered in this thesis – that is, every

problem except those in Chapter 9, where we are reminded that in settings where

hidden variables are chosen adversarially instead of sampled from a nice prior

distribution, the full power of SoS convex programming holds major advantages

over simpler algorithms.

Simple statistics The next theme, whichwe explore in detail in Chapter 2, arises

by a further simplification of the kind of hypothesis testing algorithms under

study. In particular, we consider the bold hypothesis that simple statistics are

just as power full a class of hypothesis tests as SoS proofs and convex programs.

A simple statistic is a low-degree scalar-valued polynomials p(x) : �n → �, by

contrast to the matrix-valued polynomials above.

Because of the power method for computation of maximum eigenvalues,

the maximum (magnitude) eigenvalue of an n × n symmetric matrix M (with a

big enough spectral gap) is a degree O(log n) polynomial in its entries, so the

degree-O(1) spectral methods described above are largely captured by degree

O(log n) simple statistics.8

In Chapter 8, we study community detection and estimation in sparse random

8In fact, only a subtle distinction between the maximum magnitude eigenvalue maxi |λi | and
and the maximum eigenvalue maxi λi prevents them from being captured outright.
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graphs with this hypothesis in mind. We show that the most powerful existing

algorithms for these sparse graph problems, which were originally inspired by

seemingly far-afield ideas from statistical physics (message-passing algorithms

and the replica method [58]), are captured by simple statistics. We prove

Theorem 1.1.4 by designing an algorithm for mixed-membership community

detection built explicitly around simple statistics.

By the end of Part I we will have seen in three separate settings that simple

statistics capture much of the power of the strongest-known polynomial time

algorithms – including those based on SoS – for inference problems that touch

three major themes in high-dimensional statistics: non-convex optimization (the

spiked tensormodel, Chapter 6), detection of sparse hidden variables (the planted

sparse vector problem, Chapter 7), and sparsity in the data itself (sparse random

graphs and community detection, Chapter 8).

In Chapter 4 and Part II we develop a technique, pseudocalibration, which

offers some explanation as to why simple statistics are so powerful. We have just

described a series of ideas in algorithm design which starts with SoS proofs and

ends with algorithms based on simple statistics. If simple statistics are optimal

among polynomial-time algorithms for (some) high-dimensional hypothesis

testing problems,9 we should aim to prove converse results: when algorithms

based on simple statistics break down, so do (seemingly) more powerful SoS

algorithms. While pseudocalibration remains a technically challenging technique,

we are able to use it to prove our lower bound for planted clique (Theorem 1.1.1)

and our reduction from SoS to low-degree spectral algorithms (Theorem 1.1.2).

We discuss the idea further, and why was needed to overcome previous barriers

9There are also simple-statistics-based algorithms for parameter estimation problems; see

Chapter 8 for example.
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to provable lower bounds for SoS-based algorithms, in Chapter 4.
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CHAPTER 2

SIMPLE STATISTICS

In this chapter we introduce the simplest version of one of our central theses:

For Bayesian inference problems, the success or failure of algorithms

based on simple statistics tracks the bounds of algorithmic tractability

in general.

This idea will show up throughout the thesis, and can be applied to simple

and complex statistical problems. In this chapter we will focus on binary (simple

versus simple) hypothesis testing.

2.1 Basics

We start with a couple definitions. Let Ω be a (finite or infinite) alphabet – for

example {0, 1} or �. We always assume Ω is a group. The following definition

is a small modification of the usual notion of degree of a polynomial function

f : Ωn → �.

Definition 2.1.1 (Coordinate Degree). Let n ∈ � and f : Ωn → �. The

coordinate degree of f is the minimum D such that there is a collection of

functions fi : Ωn → � where f �
∑

fi and each fi(x) depends on at most D

coordinates.

For finite Ω, the notion of coordinate degree agrees, up to factors of |Ω|, with

the usual notion of the degree of a function f : Ωn → � from discrete Fourier
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analysis. 1

Definition 2.1.2 (Simple Statistic). Let n ∈ � and let ν be a probability distribution

distribution on Ωn
. A function f : Ωn → � is a D-simple statistic (with respect

to ν) for some D ∈ � it has coordinate degree at most D and it is normalized

with respect to ν – formally, �x∼ν f (x) � 0 and �x∼ν f (x)2 � 1.

Simple statistics are everywhere. For example, consider the problem of

detecting the presence of an unusually-dense subgraph in a dense random graph.

Often, large graphs which contain dense subgraphs also contain a higher-than-

expected number of small dense graphs: triangles, 4-cliques, and so on, and

these subgraph counts can be used to distinguish such graphs from a null model.

The function f (G) � (# of triangles in G) has coordinate degree 3 (as a function

of the edges of G), so after centering and normalization it is a 3-simple statistic.

A more sophisticated example is the maximum eigenvalue of the adjacency

matrix of a graph G, which is also often used to detect anomalous structures in a

graph – sparse cuts, dense subgraphs, and more. The maximum eigenvalue of an

n × n symmetric matrix M can be approximated as (Tr M`)1/`, for ` � O(log n).

For any distribution ν, normalizing the function Tr M`
with respect to ν makes it

an `-simple statistic.

Common non-examples of D-simple statistics (for small D) are values of

optimization problems involving a graph G. For example, max clique(G) is not a

low coordinate-degree polynomial in the edges of G.

1On the other hand, if Ω � �, the function f (x) � ∑
i , j∈[n] exi+x j

has coordinate degree 2, even

though the function ex
is not a polynomial function. As a result, coordinate degree is invariant under

one-to-one coordinate-wise transformations ofΩ. This is important, since soon we will use coordinate

degree as a proxy for computational complexity: the computational complexity of a problem is

unchanged by (computably) invertible coordinate-wise transformation of inputs, and proxies for

computational complexity should share this property.
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Even the optimal values of convex programs are not a priori simple statistics,

despite often being computable in polynomial time. For example, consider

the standard linear programming or semidefinite programming relaxation of

max clique(G). Computing this value involves running a simplex, ellipsiod,

or interior-point algorithm: there is no clear reason for the output of such an

algorithm to be expressible as a low degree function.

Nonetheless, one of the main themes of this thesis is an intimate relationship between

simple statistics and convex programs for inference. This phenomenon largely does

not appear in classical worst-case analysis of convex-programming algorithms; it

appears to be unique to inference and other average-case settings where inputs

to algorithms are drawn from nicely structured probability distributions.

Let ν and µ be distributions distribution on Ωn
. These induce a hypothesis

testing problem: for X ∈ Ωn
, decide between the following two hypotheses:

H0 : X ∼ ν

H1 : X ∼ µ .

H0 is called the null hypothesis, and H1 is called the alternative hypothesis. We will

sometimes abuse notation by conflating ν with H0 and µ with H1.

A test is a function t : Ωn → {0, 1}. We say it is a successful hypothesis

test for the pair (H0,H1) if, for a uniformly random bit b, when X is sampled

according to Hb , we have �b �X∼Hb (t(X) , b) 6 o(1) [96].2

2In this account we are conflating so-called type 1 and type 2 errors; if one prefers to avoid the

assumption that X is drawn according to a uniform choice of H0 or H1, one may study separately

the error quantities �X∼H0
(t(X) � 1) and �X∼H1

(t(X) � 0), but these will play a limited role in

this thesis.
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We are interested in the question: what is the minimal running time T(n) such

that there is a successful test successful test t computable in time T?

From the perspective of classical statistics, the question of whether there exists

a successful hypothesis test (irrespective of running time) for the pair (H0,H1) is

completely resolved by the Neyman-Pearson lemma:

Lemma 2.1.3 (Neyman-Pearson (simplified) [141]). For a fixed pair of null and

alternative hypotheses H0,H1, the text t minimizing �b �X∼Hb (t(X) , b) is the

likelihood ratio test:

t(X) �


1 if

�H
1
(X)

�H
0
(X) > 1

0 otherwise.

The Neyman-Pearson lemma and its likelihood ratio test reduce the question

of whether or not (H0,H1) has a successful hypothesis test to the problem of

analyzing one canonical test. But very often the running time of naïve algorithms

to compute the likelihood ratio �H1
(X)/�H0

(X) is exponential in n. Is there a

similarly canonical test when we restrict attention to efficient algorithms?

We propose that the optimal D-simple statistic is the canonical object to analyze

when studying tests with running time approximately nO(D)
. Since simple

statistics need not be 0/1-valued, we introduce a measure of the success of a

simple statistic at solving a hypothesis testing problem.

Definition 2.1.4 (Success for simple statistics). Let n ,Ω be as above. A D-

simple statistic f (with respect to H0) is successful for the hypothesis testing

problem (H0,H1) if �X∼H1
f (X) → ∞ as n → ∞. (Recall that by definition,

�H0
f (X) � 0,�H0

f (X)2 � 1.

Hypothesis 2.1.5 (Optimality of Simple Statistics, Informal). For sufficiently-nice
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hypothesis testing problems (H0,H1), there is a successful test with running time n ˜O(D)

if and only if (H0,H1) admits a successful D-simple statistic.

This hypothesis is not meant to be interpreted literally (hence the nebulous

"sufficiently nice"), and indeed it is plainly falsifiable (in small ways) for some

canonical problems.3 Its purpose is heuristic, to provide a plausible first answer

to coarse-grained questions like: for each particular choice of null and alternative

hypotheses (H0,H1), does every successful test for (H0,H1) require 2
nΩ(1)

time or

is there a successful quasipolynomial-time or polynomial-time test?

As we will see later in this chapter, there is a simple characterization the

optimal D-simple statistic for a hypothesis testing problem (H0,H1) (in terms of

maximizing �H1
f , not necessarily in terms of running time or other measures

of optimality) which allows the smallest D for which there is a successful D-

simple statistic to be determined by some straightforward computations, for

nice-enough hypothesis testing problems. Together with Hypothesis 2.1.5 these

computations yield predictions for the computational complexities of many

canonical high-dimensional inference problems: planted clique, sparse principal

component analysis, community detection, random constraint satisfaction, and

more. Remarkably, these predictions align with proven algorithms and lower bounds

for all of these problems, in polynomial-time, quasipolynomial time, and subexponential

time regimes, despite the fact that those algorithms and lower bounds were historically

developed with problem-specific techniques.

We state a more formal conjecture below, but let us describe the idea behind

3For example, for the planted clique problem, there is an important (log n)-simple statistic

involving the top eigenvalue of the adjacency matrix; since this top eigenvalue can be computed

in polynomial time it really corresponds to an algorithmwith running time 2
O(log n) � nO(1)

rather

than nO(log n)
.
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Hypothesis 2.1.5.

First of all, in the case |Ω| � O(1), there is an nO(D)
-size basis (of monomials)

for the functions of coordinate degree D. So, a D-simple statistic can be computed

by an nO(D)
-size circuit by evaluating every degree-D monomial. Recall that the

definition of a D-simple statistic requires that �x∼H0
f (x) � 0,�x∼H0

f (x)2 � 1).

So the gap between the expectation of f under H1 and under H0 grows without

bound as n → ∞, while its standard deviation under H0 remains equal to 1.

Thus we would expect that there is a threshold value c(n) such that the test

which outputs 1 if and only if f (x) > c(n) is successful. (The existence of such a

threshold would follow from mild additional concentration assumptions on f , in

particular a bound on �µ f (x)2; this kind of concentration is never an obstacle in

practice.)

Since in typical n-dimensional settings evaluation of a likelihood ratio naïvely

requires 2
Ω(n)

time, any successful test with subexponential running time is

already interesting. For polynomial-time algorithms we will study D-simple

statistics for D � O(1) or D � O(log n).

The other side of the hypothesis is much bolder. If (H0,H1) do not admit a

successful D-simple statistic for some small D, it is not at all obvious that there

should be no successful algorithm. Amain contribution of this thesis is a growing

mass of evidence, primarily in the form of Sum of Squares lower bounds, that

this is indeed the case.

In the remainder of this chapter we accomplish the following. First, we will

present one formalization of the lower-bound side of Hypothesis 2.1.5. Then, we

characterize the optimal D-simple statistic in terms of the likelihood ratio. Finally,
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we make things more concrete by deriving a simple formula for the optimal

D-simple statistic for the planted clique problem. We will see the predictions of

Hypothesis 2.1.5 borne out as successful O(log n)-simple statistics exist only to

detect planted cliques of size at least ≈
√

n.

2.2 Conjecture: Bounded Almost-Independence Fools P

Hypothesis 2.1.5 is heuristic. In this section we formalize one side of the

hypothesis in a conjecture: nonexistence of successful (log n)1.01
-simple statistics

implies nonexistence of polynomial time algorithms. That is: super-logarithmic

almost-independence fools polynomial time.

Because this conjecture is stronger than P , NP it is too much to hope for a

proof. However, we can aim for as long as possible a list of examples: classes

of hypothesis testing problems (H0,H1) and candidate polynomial-time tests

which can be shown unsuccessful if H1 is (log n)1.01
-wise independent. The

pseudocalibration technique, presented later in this thesis, shows results of this

nature for SoS-based hypothesis testing algorithms.

The mathematical setting we construct for the conjecture is designed to

capture many inference problems from the high-dimensional zoo, including

among others planted clique, densest-k-subgraph, random constraint satisfaction,

community detection, and sparse principal component analysis. For all of these

problems it (essentially) correctly predicts what extensive literature suggests to

be the parameter regimes which are hard for polynomial time algorithms.

To state a formal conjecture we must impose some appropriate constraints on

32



the hypothesis testing problems considered, for which we need a few definitions.

Definition 2.2.1 (Noise operator). LetΩ be a finite set or�, and let ν be a product

distribution on Ωn
. For any other distribution µ on Ωn

and any positive δ > 0,

we denote by Tδµ the distribution on Ωn
which is given by first sampling x ∼ µ,

then sampling y ∼ ν, then independently for each coordinate i, replacing xi with

yi with probability δ.

This kind of noise operation has the effect of destroying algebraic structure

which may be present in x ∼ µ and exploitable by efficient algorithms. For

example, if µ is a distribution on satisfiable systems of linear equations mod

2, and ν is primarily supported on unsatisfiable such systems, it is possible to

distinguish these distributions viaGaussian elimination. This becomes impossible

when considering Tδµ versus ν instead.

Definition 2.2.2 (Sn-symmetry). LetΩ be a finite set or�, and k be a fixed integer.

Let N �
(n

k

)
. We say a distribution µ on Ω is Sn-invariant if for every π ∈ Sn and

x ∈ ΩN
we have �µ(x) � �µ(π · x), where π acts by permuting coordinates.

In the special case k � 2 and Ω � {0, 1}, we may think of ΩN
as the space of

n-node undirected graphs. Sn-symmetry of a distribution µ on ΩN
amounts to

exchangability of µ as a random graph model.

Now we state the main definition needed for the conjecture: a slight strength-

ening of the assumption in Hypothesis 2.1.5.

Definition 2.2.3 (Bounded almost independence). Let Ω be a finite set or �, and

let k be a fixed integer. Let N �
(n

k

)
. Let ν be a product distribution onΩN

. Let µ

be another distribution on ΩN
. We say µ is D-wise almost independent (with

respect to ν) if for every D-simple statistic f , we have �x∼µ f (x) � O(1).
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If �x∼µ f (x) � O(1) is replaced with �x∼µ f (x) � 0 we would recover the

usual definition of D-wise independence.

Finally, we state the main conjecture of this section. Like most complexity-

theoretic conjectures we do not expect to prove it, as it is much stronger than, say,

P , NP, but we may hope to amass evidence in its favor.

Conjecture 2.2.4 (Super-logarithmic almost independence fools polynomial time).

Let Ω be a finite set or �, and let k be a fixed integer. Let N �
(n

k

)
. Let ν be a product

distribution onΩN
. Let µ be another distribution onΩN

. Suppose that µ is Sn-invariant

and (log n)1+Ω(1)-wise almost independent with respect to ν. Then no polynomial-time

computable test distinguishes Tδµ and ν with probability 1 − o(1), for any δ > 0.

Formally, for all δ > 0 and every polynomial-time computable t : ΩN → {0, 1} there

exits δ′ > 0 such that for every large enough n,

1

2

�
x∼ν
(t(x) � 0) + 1

2

�
x∼µ
(t(x) � 1) 6 1 − δ′ .

If Ω � � and ν is standard Gaussian in every coordinate, we also conjecture

that Tδ can be replaced with the usual Ornstein-Uhlenbeck noise operator Uδ

(which applies a small amount of noise to every coordinate, rather than resampling

a small fraction of coordinates).

We assume Sn-invariance in Conjecture 2.2.4 primarily because all of the

canonical inference problemswe study to support special cases of Conjecture 2.2.4

are Sn-invariant. That said, we are not aware of any counterexample to the

conjecture when the Sn-invariance condition is dropped.

For simplicity, in Conjecture 2.2.4 we have restricted attention to the

polynomial-time regime. However, there are counterparts for other running times.

For example, an analogous conjecture saying that (nc)-wise almost-independence
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fools 2
no(c)

-time algorithms and applying the result to random constraint sat-

isfaction (CSP) would correctly predict lower bounds against subexponential-

time SoS algorithms for random CSPs (for which matching algorithms are

known) [81, 153, 107]. Together with Theorem 1.1.5 on simple statistics for the

k-community stochastic block model, Conjecture 2.2.4 implies Theorem 1.1.3 on

the information-computation gap of the block model.

2.3 The Low-Degree Likelihood Ratio

We turn to the question: given a hypothesis testing problem (H0,H1), how does

one determine whether there is successful D-simple statistic? We will see that

this amounts to same question as: how close to a low-coordinate-degree function

is the likelihood ratio?

Fix a pair of distributions ν, µ on Ωn
and keep in mind the hypothesis

testing problem where ν is the null distribution and µ is the alternative. Any

distribution ν on Ωn
induces an inner product of functions f , 1 : Ωn → � given

by 〈 f , 1〉ν � �x∼ν f (x)1(x). We define f 6νD
to be the projection of a function f

to the span of coordinate-degree-D functions, where the projection is orthogonal

with respect to the inner product 〈·, ·〉ν. When clear from context, we often drop

the subscript ν.

Our main theorem in this section shows that to decide whether or not any

D-simple statistic f achieves �x∼µ f (x) → ∞ it suffices to check one canonical

statistic: the low-degree likelihood ratio.

Theorem 2.3.1 (Optimality of low-degree likelihood ratio). Let LR(x) : Ωn → �

(which stands for likelihood ratio) be given by LR(x) � �µ(x)
�ν(x) . For every D, the optimal
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D-simple statistic is the centered, low-degree likelihood ratio LR6D − 1. Formally,

arg max

f D-simple

�
x∼ν

f (x) � LR6D − 1

and

max

f D-simple

�
µ

f (x) � 〈LR6D − 1, LR6D − 1〉1/2 � ‖LR6D − 1‖ .

The centering LR(x) − 1 comes from the simple observation that �ν LR(x) �∑
x �µ(x) � 1.

This theorem is an appealing counterpart to the Neyman-Pearson lemma for

D-simple statistics: the Neyman-Pearson lemma says that the optimal hypothesis

test is given by thresholding the value of LR(x), and Theorem 2.3.1 shows that

the projections of the likelihood ratio are optimal D-simple statistics.

The proof of Theorem 2.3.1 amounts to some simple linear algebra, using the

definition of orthogonal projection and the observation that for any function f ,

�
x∼µ

f (x) � �
x∼ν

LR(x) f (x) � 〈LR(x), f (x)〉ν .

We leave the details to the reader.

Theorem2.3.1 offers an avenue to determine, for a concrete pair of distributions

ν, µ and particular D, whether or not there is a successful D-simple statistic. Fix

some D, and suppose that f0, . . . , fm : Ωn → � are an orthonormal basis for the

coordinate-degree D functions (with respect to 〈·, ·〉ν), and that f0(x) � 1 is the

constant function. That is, 〈 fi , f j〉ν � �x∼ν fi(x) f j(x) � δi j . Then by measuring

the norm of LR6D − 1 in this basis, we find

‖LR6D − 1‖2 �

∑
16i6m

〈 fi , LR6D − 1〉2 .
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By definition,

〈 fi , LR6D − 1〉 � �
x∼ν
(LR6D(x) − 1) · fi(x) � �

x∼ν
LR(x) fi(x)

because LR − (LR6D − 1) is orthogonal to fi by hypothesis. Again by definition,

�x∼ν LR(x) fi(x) � �x∼µ fi(x). Together with Theorem 2.3.1, we arrive at:

max

f D-simple

�
µ

f �

( ∑
16i6m

(�
µ

fi)2
)

1/2

. (2.3.1)

By (2.3.1), to decide whether or not there is a successful D-simple statistic for the

pair (ν, µ), one only needs to be able to compute�µ fi for some orthonormal basis

functions fi , themselves depending only on the null distribution ν. For a variety

of null distributions, in particular for product distributions, such functions fi are

simply Fourier bases, which can be constructed by well-known tools [142].

2.4 Example: Planted Clique

To see all these ideas in action, we will work out an example. Recall the planted

clique problem, involving an n-node graph G:

H0 : G was sampled from the Erdős-Rényi model G(n , 1

2
), with inde-

pendent edges each appearing with probability
1

2
.

H1 : G was sampled adding each vertex of G to a set S independently

with probability k/n, adding every edge between vertices in S to form

a clique, then sampling the rest of the edges independently as in

G(n , 1

2
).

Denote by ν the null distribution G(n , 1/2) and µk the alternative distribution

H1. In this section we prove the following lemma about optimal D-simple
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statistics for planted clique. A refined version of this lemma is the first step in

a (much more complicated) SoS lower bound for the planted clique problem,

presented later in this thesis.

Lemma 2.4.1. For every ε > 0, if k � n1/2−ε
, then

max

f (C log n)-simple

�
G∼µk

f (G) 6 O(1)

for every C > 0. On the other hand, if k > 1.01

√
n, then there is C > 0 such that

max

f (C log n)-simple

�
G∼µk

f (G) → ∞ .

More refined versions of this lemma allow 1.01

√
n to be relaxed to Ω(

√
n),

and to treat k in the interval [n1/2−ε ,Ω(
√

n)] (though some questions about what

precisely happens in this interval remain open for such k).

Proof. From Boolean Fourier analysis [142] we recall that the functions {χα(G) �∏
{i , j}∈α(2Gi j−1)}α⊆(n

2
),|α |6D formanorthonormal basis for the degree-D functions

f : {0, 1}(n2) → �. (Here Gi j is the 0/1 indicator for the presence of the edge i j in

G.) So by (2.3.1), we just need to compute �G∼µ χα(G) for each such α.

Fix α ⊆
(n
2

)
. Consider the process of sampling a graph G ∼ µ by first sampling

the clique vertices S ⊆ [n]. Conditioned on S the edges of G become independent,

so � χα(G) � �S
∏

i j∈α �[(2Gi j − 1) | S]. If i or j is not in S, then the edge i , j is

included in G with probability 1/2, so �[(2Gi j − 1) | {i , j} 1 S] � 0.

Thus, χα has nonzero conditional expectation only if all of V(α) def

� {i ∈

[n] : exists j ∈ [n] s.t. i j ∈ α} is in S. This occurs with probability precisely

(k/n)|V(α). And, if V(α) ⊆ S, every edge with endpoints in V(α) appears in G, so

the conditional expectation of χα(G) is 1. We find that �µ χα(G) � (k/n)|V(α)|.
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Now we need to estimate

∑
0<|α |6D(�µ χα(G))2 �

∑
|α |6D(k/n)2|V(α)|. We start

with the upper bound, when k � n1/2−ε
for some ε > 0 and D � C log n for

some C > 0. Every α with |α | 6 D has |V(α)| 6 2D � 2C log n. And, for

every t 6 2C log n there are at most nt tmin(2C log n ,2t2)
sets α with |V(α)| � t and

|α | 6 C log n. So,∑
0<|α |6D

(�
µ
χα(G))2 6

∑
t6
√

C log n

n−2εt · t2t2

+

∑
√

C log n6t62C log n

n−εt · tC log n .

Standard manipulations bound both the above sums by O(1).

On the other hand, if k > 1.01

√
n, then just by considering the contri-

butions to the sum from α’s which form a cycle it is easy to show that∑
|α |6100 log n(�µ χα(G))2→∞. �
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CHAPTER 3

THE SOSMETHOD FOR ALGORITHMDESIGN

The next goal is to describe the SoS method. As a prerequisite, we introduce

two statistical tasks generalizing hypothesis testing: refutation and estimation.

We need to extend the setting from the last chapter to include hidden variables.

LetΩ,Σbe (finite or infinite) sets, and n ,m ∈ �. Let µ be aprobability distribution

on Ωn × Σm
, and ν a distribution on Ωn

. We think of µ as a distribution on pairs

{y , x} where y ∈ Ωn
and x ∈ Σm

. If we project µ onto the marginal distribution

on y we recover the hypothesis testing settings of the last chapter. Instead,

we will consider algorithmic tasks in which an algorithm sees a sample y and

accomplishes some task related to x.

3.1 Refutation

Definition 3.1.1. An α-refutation algorithm for (µ, ν) takes input y ∈ Ωn
and

outputs a number A(y) such that A(y) > maxx∈Σm log�µ(y , x) and �y∼ν(A(y) >

α) 6 o(1). Notice that the second probability is over y ∼ ν, even though A(y)

is an upper bound on probabilities related to µ. Informally, and for the right

choices of α, the algorithm A is certifying that typical y ∼ ν is extremely unlikely

to have come from µ.

Often, maxx∈Σm log�µ(y , x) corresponds to a natural combinatorial or analytic

property of y, and the refutation problem requires certifying that y does not have

some combinatorial or analytic structure. Some examples may be helpful.

Example 3.1.2 (Planted k-clique, refutation version). Recall the planted k-clique
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alternative distribution µ on n-node graphs G. First include each vertex inde-

pendently in a set S with probability k/n, then sample a random graph with

a clique on S and the rest of the edges independent as in G(n , 1/2). Here, the

hidden variable x ∈ {0, 1}n is the indicator vector for S, and the observed variable

y ∈ {0, 1}(n2) is the (adjacency matrix of the) graph G. We have

�
µ
(G, S) � �

µ
(S) · �

µ
(G | S) �

(
k
n

) |S | (
1 − k

n

)n−|S | (
1

2

)(n
2
)−(|S |

2
)
.

if S is a G-clique and 0 otherwise. So when S is a G-clique,

log�
µ
(G, S) �

(
|S |
2

)
log 2 − |S | log

(n
k

)
− |S | log(1 − k/n) + f (n , k)

for some function f (n , k) not depending on S, and otherwise log�µ(G,X) � −∞.

For |S | � log n and some constant C,

|S |2/C + f (n , k) 6 log�
µ
(G, S) 6 C |S |2 + f (n , k) ,

so the refutation problem is (for such |S |) equivalent to certifying upper bounds

on the size of the maximum clique in G ∼ G(n , 1

2
) (the latter appears because

G(n , 1

2
) is typically the null distribution for planted clique).

Relation to Hypothesis Testing A refutation algorithm for distributions ν, µ

can also be used to solve the hypothesis testing problem, assuming that there is

an efficient algorithm to compute �ν(y). Often ν – the distribution of the null

hypothesis – is a product distribution, or is uniform over some set of known size,

making this task trivial.

In the case of planted clique this connection is intuitively clear. Graphs

from µ (typically) contain cliques of size k − O(
√

k) and graphs from G(n , 1/2)

typically contain no clique larger than 2.1 · log n. Any refutation algorithmwhich
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successfully certifies that graphs from G(n , 1/2) do not contain cliques of size

0.9k also indicates by its success or failure which distribution its input came from.

It is possible to derive a reduction from hypothesis testing to refutation in

an very generic setting (at least for finite Ω and Σ), via the following familiar

variational formula from the theory of exponential families [177]:

log�
µ
(y) � log

∑
x∈Σm

�
µ
(x , y) � max

µ′∈∆Σm
�

x∼µ′
log�

µ
(x , y) + H(µ′)

where ∆Σm is the set of distributions onΣm
and H is the Shannon entropy. For any

pair of distributions µ, ν, the associated refutation problem requires certifying

an upper bound on maxx log�µ(x , y) given y ∼ ν.1

3.2 Estimation

Once again, let µ � {x , y} be a joint probability distribution on Σm × Ωn
. Let

` : Σm × Σm → [0, 1] be a loss function.

Definition 3.2.1. An α-estimation algorithm for the pair (µ, `) takes input y ∈ Ωn

and returns x̂ ∈ Σm
such that �x[`(x , x̂) |y] 6 α ..

As a simple example we can return to planted clique, where the natural loss

function on a pair of subsets x , x̂ ⊆ [n] is the 0/1 loss: `(x , x̂) � 0 if x � x′ and

otherwise `(x , x̂) � 1. An α-estimation algorithm for planted clique returns a

subset of vertices, and by Markov’s inequality it finds the correct planted clique

with probability at least 1 − α.
1This reduction is loose only for hypothesis testing problems where the entropy term H(µ′)

and the likelihood term �µ(x , y) are of comparable magnitues, and so log�µ(y) is not well

approximated by maxx log�µ(x , y). Such situations do arise – for example in the sparse stochastic

block model, where refutation and hypothesis testing are less closely related than for most other

problems in this thesis.
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Relation to Hypothesis Testing Like refutation, estimation is typically more

difficult than hypothesis testing. In hypothesis testing, the goal is to test the

y-marginal of µ � {x , y} against a null distribution ν on Ωn
. Generally, the

corresponding estimation problem for µ involves a loss function ` such that with

high probability over y ∼ µ any x̂ achieving small loss is also a polynomial-time-

verifiable witness to the inequality �µ(y) � �ν(y).

Again, it is useful to keep examples in mind: in the planted clique problem,

a successful estimation algorithm recovers a clique of size much more than

2 log n from graphs from the alternative distribution. Any y-clique x of super-

logarithmic size provides a strong certifiable lower bound on the alternative

probability �H1
(y) > �H1

(y , x).

3.3 SoS Proofs and Refutation

We start by introducing SoS as a method to design refutation algorithms. As in

the last section, suppose µ is a probability distribution on Ωn × Σm
. We make

three additional mild assumptions:

• Σ ⊆ � is a low-degree algebraic set. That is, there are some low-degree

polynomials p1, . . . , pk ∈ �[x] such that Σ � {x ∈ � : pi(x) � 0}. For

concreteness, deg pi 6 d for some d ∈ �.

• For every y ∈ Ωn
, the set {x ∈ Σm

: �µ(y , x) > 0} is also a low degree

algebraic set. That is, there are some polynomials p1, . . . , pk ∈ �[x1, . . . , xn]

such that

{x ∈ Σm
: �
µ
(y , x) > 0} � {x ∈ Σm

: p1(x) � 0, . . . , pk(x) � 0} .
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and deg pi(x) 6 d.

• For x such that �µ(y , x) > 0, the value log�µ(y , x) can be computed by a

low degree polynomial. Formally, there is a polynomial p ∈ �[x1, . . . , xn]

such that deg p 6 d and for all x ∈ Σm
such that log�µ(y , x) is finite,

p(x) � log�µ(y , x).

Most of the inference problems in this thesis fit these assumptions. Using planted

clique as our example, we check that:

• The hidden variables lie in {0, 1}n , which is defined by the degree d � 2

polynomial equations x2

i − xi � 0.

• �µ(y , x) is only nonzero if x is (the indicator vector of) a y-clique. The

set of y-cliques is defined by the degree-2 equations {x ∈ {0, 1}n : xi x j �

0 if i / j in y}.

• As we saw in Example 3.1.2, when x is the indicator vector of a y-clique,

log�µ(y , x) is a degree 2 polynomial in the number of nonzero entries in x,

which is itself the degree one polynomial

∑
i∈[n] xi .

Under these assumptions, we candescribe a canonical SoS refutation algorithm.

The starting point is the following polynomial optimization problem. Suppose

p1, . . . , pk is a collection of degree d polynomials defining the set {x ∈ Σm
:

log�µ(y , x) is finite}. Let p(x) � log�µ(y , x) for x for which this quantity is

finite, and assume deg p 6 d. The refutation problem for y ∈ Ωn
is precisely the

problem

max p(x) such that p1(x) � 0, . . . , pk(x) � 0 . (3.3.1)
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An SoS proof is a short certificate of an upper bound on the value of (3.3.1).

An SoS proof of degree d that (3.3.1) 6 c is a collection of polynomials q1, . . . , qk ∈

�[x1, . . . , xm] such that deg qi · pi 6 d for all i 6 k, and collections of polynomials

s1, . . . , sr , s′
1
, . . . , s′r ∈ �[x1, . . . , xm], such that deg si 6 d/2 and deg s′i(x)

2p(x) 6

d, with the property that

−1 �

∑
i6k

pi(x) · qi(x) +
∑
i6r

si(x)2 + (p(x) − c)
∑
i6r

s′i(x)
2

(3.3.2)

If such polynomials exist, then clearly p(x) 6 c for all x ∈ Σm
, since for every

such x the first two terms on the right-hand side are nonnegative, so if the last

term were nonnegative for any x there would be a contradiction. Furthermore, it

is algorithmically easy to verify that (3.3.2) holds for given qi , si , s′i (in (km)O(d)

time), by expanding all the polynomials in a fixed basis (the monomial basis, for

example).

The Positivstellensatz of Krivine and Stengle says that for every p1, . . . , pm , p , c,

there exists x such that pi(x) � 0 but p(x) > c, or there is an SoS proof that

p(x) 6 c if pi(x) � 0 for all i [110, 167]. This result says nothing, however, about

the degree of that SoS proof. For most applications in theoretical computer

science and combinatorial optimization, degree-n proofs capture the power of

all SoS proofs for an n-variable problem; in particular this is true in the case of

polynomial optimization over the n-dimensional boolean hypercube.

We will be most interested in proofs whose degree d is constant compared to

the number of variables xi and constraints pi . SoS proofs are useful for algorithm

design because there is an efficient algorithm to find an SoS proof q1, . . . , qk , s1, . . . , sr ,

if it exists.2 Using semidefinite programming, given c , p , p1, . . . , pk it is possible

to decide in time (km)O(d) whether there is a degree-d SoS proof which certifies

2Strictly speaking, this is true only up to small numerical errors, and only under mild niceness
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p(x) 6 c, for x as in (3.3.2). We typically think of our refutation problem instances

as having size mΘ(1)
, so if k 6 mO(1)

and d 6 O(1) this kind of algorithm runs in

polynomial time.

We defer a (more) formal discussion of SoS proofs and algorithms for finding

them to Section 3.5 and Chapter 5, and instead turn to an example.

Example 3.3.1 (O(
√

n) refutation for planted clique using SoS). As we discussed

in Example 3.1.2, the refutation problem for planted clique is equivalent (up to

small factors) to certifying upper bounds on the size of the maximum clique in a

graph G ∼ G(n , 1

2
). If we work out the polynomial program (as in (3.3.1)) for this

task, we find it takes the form

max

©«
∑
i∈[n]

xi
ª®¬

2

such that x2

i − xi � 0 and xi x j � 0 if i / j . (3.3.3)

We will construct a constant-degree SoS proof that this maximum is at most

O(
√

n). A tighter analysis is possible, showing that the maximum is at most

√
n/2d

for degree O(d) SoS [71].

Our main tool is the classic fact from random matrix theory that with

high probability over G ∼ G(n , 1/2), the adjacency matrix A of G satisfies

(2
√

n − C)Id +
1

2
J � A for any constant C and large-enough n, where Id is the

n × n identity matrix, J is the n × n matrix of all-1s, and the relation � denotes

that the left-hand side minus the right-hand side is a positive semidefinite (PSD)

matrix. Since any PSD matrix M � 0 can be written as M �
∑

i6r viv>i for some

vectors v1, . . . , vr (here r 6 n is the rank of M), we find that there are vectors vi

such that

(2
√

n − C)Id +
1

2

J − A �

∑
i6r

viv>i

conditions on p , p1 , . . . , pk . This kind of niceness will always be satisfied in this thesis. See

[143, 156] for details.

46



and hence if we consider the polynomial 〈x , ((2
√

n − C)Id +
1

2
J − A)x〉, there are

polynomials vi(x) � 〈vi , x〉 such that

〈x , ((2
√

n − C)Id +
1

2

J − A)x〉 �
∑
i6r

vi(x)2 .

To turn these polynomials into an SoS proof takes just a few more manipula-

tions. As an aside, we do not wish to give the impression that constructing SoS

proofs is at all magical: one ofmain appeals of the SoS paradigm is that SoS proofs

can usually be constructed in a modular and composable way, mimicking the

usual proposition/lemma/theorem structure of mathematical proofs in general.

The best examples in this thesis of the latter are in Section 3.5 and Chapter 9.

Here, for brevity and because the SoS proof is fairly simple, we opt for a one-shot

style of construction.

We start by noting that (∑i xi)2 can be expanded as(∑
i

xi

)
2

�

∑
i j

xix j �
∑
i∼ j

xi x j +
∑
i/ j

xixi +
∑

i

x2

i .

Next, we use that 〈x ,Ax〉 � ∑
i∼ j xi x j � (2

√
n−10)∑i x2

i +
1

2

∑
i j xix j −

∑
i6r vi(x)2

for some linear functions vi(x) to obtain that(∑
i

xi

)
2

� (2
√

n − 9)
∑

i

x2

i +
1

2

∑
i j

xix j −
∑
i6r

vi(x)2 +
∑
i/ j

xixi

which rearranges to

1

2

(∑
i

xi

)
2

� (2
√

n − 9)
∑

i

x2

i −
∑
i6r

vi(x)2 +
∑
i/ j

xixi .

Thus,(
1

2

∑
i

xi + 1

) (∑
i

xi − 4

√
n

)
�

1

2

(∑
i

xi

)
2

− (2
√

n − 1)
∑

i

xi − 4

√
n
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� (2
√

n − 9)
∑

i

x2

i −
∑
i6r

vi(x)2 +
∑
i/ j

xi xi

− (2
√

n − 1)
∑

i

xi − 4

√
n

� −8

∑
i

x2

i −
∑
i6r

vi(x)2 +
∑
i/ j

xi x j − 4

√
n + r(x)

for somepolynomial r(x) � ∑
ri(x)(x2

i −xi)withdeg ri(x) 6 O(1). This rearranges

to

−1 �
1

4

√
n


(
1

2

∑
i

x2

i + 1

) (∑
i

xi − 4

√
n

)
+ r′(x) +

∑
i∼ j

xix j − s(x)


for s(x) � ∑
si(x)2 a constant-degree sum-of-squares polynomial and r′(x) �∑

r′i(x)(x
2

i − xi) another constant-degree polynomial. This is an SoS proof that

(3.3.3) has maximum value at most 4

√
n.

Relation to simple statistics Much of this thesis, particularly Part II, is con-

cerned with the relationship between SoS proofs and simple statistics. We are

not prepared here to explore this relationship deeply, but we can already note

one key theme: the polynomials in the SoS proof we produced for planted clique either

have coefficients which are themselves low-degree in (the adjacency matrix of) the instance

G, or come from a PSD factorization of a matrix whose entries are such low-degree

polynomials.

This kind of SoS proof will surface again and again. Eventually, when we

prove Theorem 12.1.5 in Chapter 12, we begin to unravel why this kind of SoS

proof composed of simple statistics is so universal. Many interesting questions

about just how universal this sort of SoS proof is remain open.
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More examples For another simple SoS refutation algorithm, see Chapter 6.

Numerous refutation algorithms in the literature can be phrased as SoS refutation

algorithms – indeed, our planted clique example above was originally a spectral

algorithm due to [9] – and this is crucial to the ability of the SoS method to unify

existing approaches to algorithm design in statistical inference. A partial list of

examples includes matrix completion [157], randomCSPs [7, 153], decomposition

of random overcomplete tensors [77], sparse PCA [62], and many more.

3.4 Pseudodistributions and Estimation

Next we discuss design of estimation algorithms using the SoS method. For this

purpose, we need to introduce pseudodistributions, which are dual objects to SoS

proofs.

Let �[x1, . . . , xn]6d be the polynomials of degree at most d in variables

x1, . . . , xn , with real cofficients. A degree-d pseudodistribution
˜� on variables

x1, . . . , xn is a linear map from to �which is normalized and positive semidefinite.

Formally,
˜�[1] � 1, where on the left side we write 1 for the polynomial which

takes the constant value 1, and
˜� p(x)2 > 0 for every p ∈ �[x1, . . . , xn]6d/2. We

sometimes use the word pseudoexpectation instead of pseudodistribution; for us

these are interchangeable.

We say a pseudodistribution satisfies a constraint p � 0 if for every polynomial

q such that deg(p · q) 6 d we have
˜� q · q � 0. A pseudodistribution satisfies an

inequality p > 0 if for every polynomial s(x) � ∑
si(x)2 which is a sum of squares

with deg s · p 6 d it holds that
˜� p · s > 0. (We defer to Chapter 5 the meaning of

a pseudodistribution satisfying a set of inequalities {p1(x) > 0, . . . , pm(x) > 0}.)
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Pseudodistributions are dual to SoS proofs, in the following sense: for

polynomials p1, . . . , pm , p and c ∈ �, if there is a pseudodistribution satisfying

pi(x) � 0, p(x) − c > 0, then there is no SoS proof of p(x) 6 c subject to pi(x) � 0.

To see this, just apply the pseudodistribution to the left and right-hand sides of

any putative SoS proof:

˜�[−1] � ˜�[s(x)(p(x) − c)] +
∑

i

˜�[ri(x)pi(x)] +
∑

˜�[si(x)2] .

By linearity,
˜�[−1] � − ˜�[1] � −1, but by PSD-ness, the right-hand side is non-

negative, which is a contradiction. In fact, under mild conditions on p , p1, . . . , pm

there is a strongduality betweenpseudodistributions and SoSproofs: for technical

details we refer the reader to [34].

Most importantly, as in the case of SoS proofs, under mild conditions on

p , p1, . . . , pm , there is an (nm)O(d)-time algorithm to find a degree-d pseudodistri-

bution satisfying p(x)− c > 0, pi(x) � 0, if it exists. (Indeed, since pseudodistribu-

tions and SoS proofs are convex duals, there is an algorithm which either returns

an SoS refutation or a pseudodistribution.) Again we defer further discussion

of this algorithm to Chapter 5, and turn to the matter of designing SoS-based

estimation algorithms.

Returning to the optimization formulation (3.3.1) from the last section, for

now we are going to consider estimation problems where small loss ` is achieved

by any x which is even approximately optimal for (3.3.1). Formally, these are

problems where maximum likelihood estimation is a good strategy for achieving

small loss – in Section 3.5 and Chapters 8 and 9 we will discuss ways to use the

SoS method to design estimation algorithms in more complicated settings where

maximum likelihood may not be the right approach.
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The simplest SoS algorithms for estimation under a distribution µ fit the

following mold. Given a problem instance y ∈ Ωn
, using semidefinite pro-

gramming, find the pseudodistribution in variables x1, . . . , xn which maximizes

˜� logµ �(y , x) (remember that throughout we are assuming that log µ�(y , x)

becomes a polynomial, under some low-degree polynomial constraints of the

form pi(x) � 0). Then, round that pseudodistribution to obtain an estimator x̂ for

x.

Designing a rounding scheme sometimes requires creative algorithm design –

indeed rounding algorithms for semidefinite programming even in simple settings

like constraint satisfaction has been the subject of much study [78, 33, 154]. For

the inference problems we consider in this thesis, however, there are usually

straightforward rounding schemes. (One exception to this theme is whenwe need

to estimate several exchangeable hidden variables at once – when the posterior

distribution of x given y contains too much symmetry rounding can become

more difficult. We develop some general-purpose tools for rounding in this

situation in Chapter 8.)

For concreteness, we continue our planted clique example from previous

sections.

Example 3.4.1 (Finding an O(
√

n)-sized planted clique). Suppose µ is the al-

ternative/planted distribution for planted k-clique: remember that this is a

distribution on n-node graphs G with planted k-cliques S. Given a graph G, our

estimation algorithm is:

1. Find the degree-O(1) pseudodistribution on variables x1, . . . , xn maximiz-

ing
˜�
∑

i∈[n] xi which satisfies x2

i − xi � 0 for all i ∈ [n] and xix j � 0 for all

i , j nonadjacent in G.
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2. Output
˜� x

Our algorithm outputs a vector
˜� x ∈ �n

which (we will show) is close in an

`2 sense to the indicator vector of the planted clique in G. Given such a vector,

producing the set of vertices forming the clique is straightforward, so we leave

out the details.

The key fact we use to analyze this algorithm is that with high probability

over G and S,(∑
i<S

xi

)
2

�

∑
i/ j

pi j(x)xi x j +
∑
i∈[n]

ri(x)(x2

i − xi) + O(
√

n)
∑
i<S

xi − s(x)

for some O(1)-degree polynomials pi j , ri , s, where s is a sum of squares. (The

proof follows similar manipulations as our refutation example Example 3.3.1,

using that the graph G \ S is distributed as G(n − |S |, 1/2).)

The other fact we use is a version of pseudoexpectation Cauchy-Schwarz, which

says that if p is a degree-d/2 polynomial and
˜� is a degree-d pseudoexpec-

tation, then ( ˜� p(x))2 6 ˜� p(x)2. We prove this and other basic facts about

pseudoexpectations in Chapter 5.

With these in hand, analyzing our algorithm is now straightforward. Let

xS be the indicator vector of the planted clique in a graph G, and suppose that

k � |S | > C
√

n for a big enough constant C. Because
˜�
∑

i xi is maximal, we

know
˜�
∑

i xi > k. Also,(
˜�

∑
i<S

xi

)
2

6 ˜�

(∑
i<S

xi

)
2

6 O(
√

n) ˜�

∑
i<S

xi

using positive semidefinite-ness and the expansion above for

(∑
i<S xi

)
2

. This
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rearranges to
˜�
∑

i<S xi 6 O(
√

n). Now we can put it together:

〈xS , ˜� x〉 � ˜�

∑
i∈S

xi � ˜�

∑
i∈[n]

xi − ˜�

∑
i<S

xi > ˜�

∑
i∈[n]

xi − O(
√

n) .

On the other hand, ‖xS‖ �
√

k, and ‖ ˜� x‖ �

√∑
i( ˜� xi)2 6

√∑
i

˜� xi . So all

together, xS and
˜� x have Euclidean correlation close to 1 so long as k �

√
n.

That is,

〈xS , ˜� x〉
‖xS‖‖ ˜� x‖

> 1 − O(
√

n)
k

.

3.5 Proofs to Algorithms

Maximum-likelihood estimation is not the only way to solve estimation problems.

In this section we describe a very flexible and general-purpose method for

designing SoS-based estimation algorithms, called proofs to algorithms. To illustrate

it, we design and analyze an algorithm for a non-Bayesian inference problem,

robust mean estimation; a more sophisticated version of this algorithm appears in

Chapter 9. For us, non-Bayesianmeans that there is an adversary in the picture,

who chooses hidden variables and perhaps some observed.

Our setting is estimation as before, except now there is no need for a prior

distribution. So, we imagine there are hidden variables, or parameters x ∈ Σm
,

and observed variables y ∈ Ωn
, and for every x there is a distribution µx on Ωn

.

Now the goal is to design an algorithm which for any x, given a sample y ∼ µx

estimates x with respect to some loss function `.3

Proofs-to-algorithms starts with the concept of statistical identifiability. In order

for a successful estimation algorithm to exist for the estimation problem specified

3Traditional notation calls the parameters θ; we have opted here to maintain consistency with

earlier chapters.
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by the distributions µx and loss function `, it must be information-theoretically

possible (that is, given infinite computational resources) to successfully recover x̂

with `(x , x̂) small given y ∼ µx , with high probability over y.

That is, there must exist a map x̂(y) such that for all x, with high probability

over y ∼ µx , `(x , x̂) is sufficiently small. This would be violated if, for instance,

there exist x0, x1 such that µx0
� µx1

but no x simultaneously makes `(x , x0)

and `(x , x1) small. If such a map x̂ does exist, we say that x is (approximately)

identifiable from y.

As with the likelihood ratio test and hypothesis testing, proving identifiability

for an inference problem µx , ` usually says nothing about efficient algorithms for

estimating x given y. The insight in proofs-to-algorithms is: if identifiability can be

proved in a restricted proof system, then x can be estimated from y by a computationally

efficient algorithm.

Of course, the restricted proof system we have in mind is the low degree

SoS proof system. In Chapter 5 we will formalize SoS as a proof system, and in

designing our algorithms in Chapter 9 we will actually proceed by designing

formal proofs in the system.

For now, though, we hope that the following example clarifies the proofs-

to-algorithms idea. When reading it, keep in mind that the plan is to start by

proving identifiability in as simple a fashion as possible, then adapt that proof to

SoS, and design an algorithm around the resulting SoS proof. The final algorithm

still uses semidefinite programming to find a pseudodistribution
˜� and then

rounds it, but unlike in the last section, the convex program it employs is not

constructed by relaxing the maximum-likelihood problem.
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Example 3.5.1 (Robust mean estimation, simplified version in one dimension).

As our example, we study a simplified version of the robust mean estimation

problem, treated in detail later in Chapter 9. LetD be a probability distribution on

�d
with mean µ and covariance Σ � Id. Let ε > 0. Samples x1, . . . , x(1−ε)n ∼ D

are generated and handed to an adversary, who may add εn arbitrary samples

of her own and then scramble the order of the samples. We call the resulting

samples x1, . . . , xn ε-corrupted. The goal is to estimate µ given the ε-corrupted

samples.

To illustrate the proofs-to-algorithms method, we treat this problem in

dimension d � 1 for now. Of course we are eventually interested in the large-d

version, since this is where the problem becomes computationally challenging;

we discuss this more in Chapter 9. When we do so, we employ a more formal

framework to construct an SoS proof of identifiability, but herewe trade directness

for generality.

The first step is to prove that the mean µ is identifiable from x1, . . . , xn . The

goal is to do so using only simple inequalities, so that the proof will ultimately

be captured by low-degree SoS. For this we prove the following lemma.

Lemma 3.5.2. Suppose n →∞ and X1, . . . ,Xn are ε-corrupted from a distributionD

with mean µ and covariance Σ � Id. With probability at least 0.99, if S ⊆ [n] is any set

of size |S | � (1 − ε)n with bounded empirical variance

�
i∼S
(Xi − µS)2 6 2

where µS � �i∼S Xi , then |µS − µ| 6 O(
√
ε). Furthermore, if T ⊆ [n] is the subset of

non-adversarial samples then T has bounded empirical variance with probability at least

0.99.
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Lemma 3.5.2 implies that µ is identifiable up to O(
√
ε) error: it says that

finding a subset of samples S with bounded empirical variance suffices to estimate

µ, and with high probability such a bounded empirical variance subset exists. As

an aside, O(
√
ε) error is not too impressive in this one-dimensional context, but

in Chapter 9 we show that this lemma generalizes to any d, with error remaining

O(
√
ε), independent of d. (We also show how to improve the error to ε1−δ

for

any constant δ > 0.)

Proof of Lemma 3.5.2. The fact that the set of non-adversarial samples T has

bounded empirical variance follows from standard concentration. Furthermore,

for n →∞, the empirical mean µT of the non-tampered samples is close to the

ground-truth mean: |µT − µ| 6 o(1).

Let S ⊆ [n] with |S | > (1 − ε)n be any other set of samples with bounded

empirical variance. It will suffice to show that |µT − µS | 6 O(
√
ε).

Since |S ∩ T | > 1− 2ε, there is a coupling of the random variables X, which is

a random draw from S, and X′, which is a random draw from T, such that X,X′

are equal with probability at least 1 − 2ε. We expand |µS − µT | in terms of this

coupling and apply two inequalities: Cauchy-Schwarz followed by the triangle

inequality.

|µS − µT | � |� 1X,X′ ·(X − X′)|

6
(
� 12

X,X′
)
1/2 ·

(
�(X − X′)2

)
1/2

6
√

2ε ·
(
�(X − X′)2

)
1/2

6
√

2ε ·
[ (
�(X − µS)2

)
1/2

+
(
�(X′ − µT)2

)
1/2

+ |µS − µT |
]
.
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This rearranges to

|µS − µT | 6
√

2ε

1 −
√

2ε
·
[ (
�(X − µS)2

)
1/2

+
(
�(X′ − µT)2

)
1/2]
6

2

√
2ε

1 −
√

2ε
6 O(

√
ε)

using bounded variance. �

Next, we encode subsets of samples of samples with bounded empirical

variance as the solutions to a system of polynomial equations and inequalities.

Our variables are w1, . . . ,wn ; we think of wi as the 0/1 indicator of the presence

of sample i in a set S. Subsets of (1 − ε)n samples with bounded variance are in

one-to-one correspondence with solutions to the following:

w2

i − wi � 0 for all i ∈ [n] (3.5.1)∑
i∈[n]

wi � (1 − ε)n (3.5.2)

1

(1 − ε)n
∑
i∈[n]

wi(Xi − µ(w))2 6 2 (3.5.3)

where µ(w) is shorthand for the polynomial µ(w) � 1

(1−ε)n
∑

i∈[n] wiXi .

Lemma 3.5.3. There is a constant d such that with probability 0.99 over ε-corrupted

samples X1, . . . ,Xn , every degree-d pseudodistribution on variables w1, . . . ,wn which

satisfies (3.5.1), (3.5.2), and (3.5.3) has | ˜� µ(w) − µ| 6 O(
√
ε).

Since a pseudoexpectation
˜� as described by the lemma can be found by

semidefinite programming in polynomial time (should it exist), this gives a

polynomial time algorithm for one-dimensional robust mean estimation.

The proof of Lemma 3.5.3 follows the proof of Lemma 3.5.2, but uses

SoS/pseudodistribution versions of the key inequalities; to do this through-

out the proof we have to phrase the quantities used in the proof of Lemma 3.5.2

as polynomials. This is what we mean by “making a proof SoS”.
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Most steps in this kind of proof can be accomplished either “in the primal”

by reasoning about pseudoexpectations or “in the dual” by reasoning about SoS

proofs and polynomials. We have chosen what is convenient for each step but

these choices are mostly arbitrary.

We will need a few facts before we start the proof. The proofs of these are all

either in Chapter 5 or they are simple algebraic exercises.

1. SoSCauchy SchwarzFor indeterminates x1, . . . , xn , y1, . . . yn there is adegree-

4 sum of squares polynomial s(x) such that(∑
i6n

xi yi

)
2

+ s(x) �
(∑

i6n

x2

i

) (∑
i6n

y2

i

)
.

2. Pseudoexpectation Triangle Inequality There is a constant C such that for every

pseudoexpectation
˜� of degree d and polynomials p , q , r of degree at most

d/2,
˜�(p + q + r)2 6 C( ˜� p2

+ ˜� q2

+ ˜� r2) .

3. For any set T ⊆ [n] of size |T | � (1 − ε)n,∑
i∈[n]
(wi − 1i∈T)4 � O(εn) − s(x) + r(x)

where r(x) � r0(x)(
∑

i∈[n] wi − (1− ε)n)+
∑

ri(x)(w2

i − wi) for some polyno-

mials r0, . . . , rn of constant degree at most 8 and s(x) a sum of squares of

constant degree.

Proof of Lemma 3.5.3. As before, we start by expanding

[(1 − ε)n]2 ˜�(µ(w) − µT)2 � ˜�
©«
∑
i∈[n]
(wi − 1i∈T)2 · (wi − 1i∈T)Xi

ª®¬
2
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Here, (wi − 1i∈T)2 is playing the role of 1X,X′ from the proof of Lemma 3.5.2, and

(wi − 1i∈T)Xi plays the roll of X − X′. The equation is true because
˜� satisfies

w2

i − wi � 0, and hence
˜�(wi − 1i∈T)3p(x) � ˜�(wi − 1i∈T)p(x) for any polynomial

p. By SoS Cauchy-Schwarz, the above is at most

˜�
©«
∑
i∈[n]
(wi − 1i∈T)4

ª®¬ ©«
∑
i∈[n]
(wi − 1i∈T)2X2

i
ª®¬ . (3.5.4)

By our fact above,

∑
i∈[n](wi − 1i∈T)4 � O(εn) − s(x) + r(x), where r(x) �

r0(x)(
∑

i∈[n] wi − (1 − ε)n) +
∑

ri(x)(w2

i − wi) for some constant-degree poly-

nomials r0, . . . , rn and s(x) is a constant-degree sum of squares. So, the above is

at most

O(εn) · ˜�

∑
i∈[n]
(wi − 1i∈T)2X2

i

We can expand as

(wi − 1i∈T)Xi � wi(Xi − µ(w)) − 1i∈T(Xi − µT) + (1 − ε)n(µ(w) − µT)

and apply the pseudoexpectation triangle inequality to conclude that

˜�

∑
i∈[n]
(wi − 1i∈T)2X2

i 6O(1) ·
∑
i∈[n]

˜�wi(Xi − µ(w))2 + ˜� 1i∈T(Xi − µT)2

+ O(n) · ˜�(µ(w) − µT)2

The conclusion follows by rearranging and using the bounded variance assump-

tion, which implies
˜�
∑

wi(Xi − µ(w))2 6 2(1 − ε)n. �
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CHAPTER 4

SOS LOWER BOUNDS AND PSEUDOCALIBRATION

The last topic we address before beginning the mathematical body of this

thesis is the pseudocalibration technique for proving lower bounds against SoS

refutation algorithms, which we study in detail in Part II. Because of the broad

algorithmic power of SoS, lower bounds like these are among the strongest sorts

of evidence presently available for the existence of information-computation gaps.

At heart, pseudocalibration is a tool for proving integrality gaps of large convex

programs, a project of interest beyond the statistical inference setting. Most

currently-known lower bounds against high-degree SoS programs – in constraint

satisfaction [81], combinatorial optimization [172], and inference – were either

initially proved via pseudocalibration or can be retroactively interpreted as such.1

It is even useful for proving lower bounds against convex programs beyond SoS,

such as for extension complexity of CSPs [44].

The main idea behind pseudocalibration is: hypothesis testing problems which

lack successful O(d log n)-simple statistics have refutation versions which are hard for

degree-d SoS. That is, pseudocalibration leverages the existence of a hypothesis

testing problem which is hard for very simplistic algorithms – D-simple statistics

– to prove refutation lower bounds against a much more sophisticated algorithm,

the SoS method. The success of pseudocalibration offers the most important

evidence we have in favor of Conjecture 2.2.4 about hardness of D-wise almost-

independent distributions.

1A major exception to this rule are SoS lower bounds proved via a symmetry reduction strategy,

such as Grigoriev’s lower bound for the knapsack problem [80] and Potechin’s Turàn problem

lower bounds [149]. These lower bounds are have a different flavor from the ones we consider in

this chapter: they are usually proved for very particular polynomial optimization problems rather

than distributions over polynomial optimization problems, and they are usually only interesting

for constant or slightly super-constant SoS degree d.
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Much about pseudocalibration remains mysterious. As we see in this chapter,

it offers a recipe for the first key step in proving an SoS lower bound, suggesting

how to construct awitness – in this case apseudodistribution – to thenon-existence

of good SoS proofs/refutations. However, we lack satisfying explanations of why

this recipe works, and we lack general-purpose proof techniques to analyze the

complicated mathematical objects it produces, which are randommatrices whose

entries have complex combinatorial dependencies. In Part II we are nonetheless

able to use pseudocalibration to prove two of the major results in this thesis,

on SoS refutations for planted clique and on equivalence of SoS and spectral

methods for hypothesis testing. But many open problems remain, some of which

we discuss in Appendix A.

To put pseudocalibration in context requires a little mathematical background

and a short, opinionated history of lower bounds for convex-programming-based

refutation algorithms.

4.1 Background and History

Proving lower bounds for SoS refutation algorithms requires ruling out the

existence strong SoS-provable bounds on the optimum values of random op-

timization problems. Two good examples to keep in mind are the refutation

versions of planted clique and planted 3-XOR.We have already discussed planted

clique at some length; the next example describes 3-XOR.

Example 4.1.1 (3-XOR, refutation version). Refutation of random 3-XOR instances

is the most fundamental CSP refutation problem. It can be obtained via a

hypothesis testing problem as in Chapter 3; here we jump to the conclusion and

state the problem directly.

61



Let x1, . . . , xn be Boolean variables. Let ∆ � ∆(n) > 0, and let S ⊆
(n
3

)
be a

uniformly random collection of ∆n triples. For each triple i jk ∈ S, let ai jk be a

uniformly random bit. The refutation problem is to certify an upper bound on

1

∆n
max

x∈{±1}n

∑
i jk∈S

1ai jk�xi x j xk .

It is not hard to show by standard Chernoff bounds that for any sufficiently-large

constant ∆ � ∆(ε), the true maximum over x ∈ {±1}n is at most 1/2 + ε. (For

each fixed S, a a random x ∈ {±1}n satisfies half the clauses ai jk � xix j xk in

expectation.)

Since 1ai jk�xi x j xk is a polynomial in xi , x j , xk ,

1ai jk�xi x j xk (x) �
ai jk xix j xk + 1

2

,

we obtain a polynomial optimization problem with degree-3 polynomials and

constraints x2

i � 1, which define the set {±1}n .

Using duality of pseudodistributions and SoS proofs, producing a degree-d

pseudodistribution
˜� satisfying {p1(x) � 0, . . . , pm(x) � 0} with

˜� p(x) > c rules

out degree-d SoS proofs certifying maxp1(x),...,pm(x)�0
p(x) 6 c − ε for any ε > 0.2

Typically, SoS lower bounds for refutation problems are proved in just this way,

producing for each problem instance (e.g. graph G for planted clique, or clauses

S, α for 3-XOR) a pseudodistribution
˜�.3

2There is a small subtlety here regarding whether whether this just requires
˜� p(x) > c or

instead requires
˜� p(x)s(x) > c ˜� s(x) for any SoS polynomial s(x). At the level of discussion in

this chapter this distinction is not important; for details see Chapter 5.

3In Chapter 12 we develop a technique which avoids the need to produce one pseudodistribu-

tion per instance, instead producing an object which acts sufficiently like a pseudodistribution on

average. Most of the discussion in this chapter applies to the latter style of lower bound proof as

well.
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Relation to integrality gaps for linear and semidefinite programs In the end,

constructing a pseudoexpectation as above amounts to proving that that the

semidefinite programs (SDPs) underlying the SoS method suffer from large inte-

grality gaps. The SDPs are relaxations of polynomial optimization problems like

maxp1(x),...,pm(x)�0
p(x)whose solutions are (isomorphic to) pseudodistributions.

Consider our running example of planted clique, where the SDP would be a

relaxation of:

max

∑
i∈[n]

xi such that x2

i � xi , xi x j � 0 for i / j (4.1.1)

for some graph G. In this case, the convex program whose solutions are degree-d

pseudodistributions is an SDP over matrices indexed by

( n
6d

)
, the subsets of [n]

of size at most d, whose intended integral solutions are d-th tensor powers x⊗d

of indicator vectors of G-cliques:

max

∑
i∈n

X{i}{i}

such that XS,T � XU,V if S ∪ T � U ∪ V

and X∅,∅ � 1

and XS,T � 0 if S ∪ T is not a G-clique

and X � 0 .

The integrality gap perspective on SoS lower bounds says that the goal is

to prove for d � O(1) that with high probability over G this SDP has a feasible

solution X∗ with

∑
i∈[n] X∗{i},{i} > Ω(

√
n), even though no integral solution has

objective value more than (2 + ε) log n.

Integrality gaps for convex relaxations, in particular for linear programs,

have been studied for decades. The gaps need here differ from what is typically

63



produced in two major ways. First, the problem instances are not under our

control: they are sampled from a distribution which is specified by the refutation

problem at hand (G ∼ G(n , 1/2) for planted clique, random clauses S, a for 3-XOR).

Second, even for moderately large d, the constraints of the SDPs to which wemust

produce feasible solutions are extremely complicated: while the linear programs

studied in combinatorial optimization might have O(n) or O(n2) constraints for

a combinatorial problem over {±1}n , our SDPs have nO(d)
variables and a similar

number of linear constraints. These constraints may interact with each other

and with the constraint X � 0 in surprising and subtle ways. Together, these

differences mean that a more systematic approach is needed to prove SoS lower

bounds for refutation problems than is needed to prove more elementary LP or

SDP integrality gaps.

Prior SoS Lower Bounds: CSPs Prior to our work, the only tight SoS lower

bounds for SoS degrees d > 4 were for random 3-XOR and other CSPs and CSP-

like problems [81, 160, 172, 28]. This theorem of Grigoriev (later independently

re-disocvered by Schoenebeck) is representative:

Theorem 4.1.2 ([81, 160]). For a large enough constant ∆, with high probability over

S, a as above, there exists a degree-Ω(n) pseudoexpectation on variables x1, . . . , xn

satisfying {x2

i � xi} such that 1

∆n
˜�
∑

i jk∈S 1ai jk�xi x j xk � 1.

The theorem is tight up to the constant hidden by theΩ(n), because degree-n

SoS certifies every true inequality in n Boolean variables, and even degree-4 SoS

certifies
1

∆n
∑

i jk∈S
˜� 1ai jk�xi x j xk 6 1.

The proofs of Theorem 4.1.2 and other lower bounds for CSP refutation (such

as [28, 107]) crucially use locality of constraints like ai jk xi x jxk � 1. The constraints
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are local in that each involves only 3 variables at once, but there is a stronger

notion of locality: roughly, in a random 3-XOR instance, the value of each variable

strongly affects a small number of other nearby variables (nearby in, say, the

clause-variable incidence graph) and does not affect the remaining variables at

all.

This idea can be made formal by two (equivalent) routes. One path is Grig-

oriev’s original connection between SoS and the width of resolution derivations,

together with the fact that expansion of a random constraint graph ensures that

values for most variables are not derivable in low width from values from most

others. The other path is via simple statistics and the observation (provable by a

calculation that involves, unsurprisingly, low-width resolution proofs) that even

in a distribution over random 3-XOR instances for which there exists a satisfying

assignment x, for most pairs of variables xi , x j no function of low-degree in

S, a , xi correctly outputs the value of x j .

Pursuing this further would take us too far afield here: instead, we turn to the

breakdown of this kind of locality for planted clique and other dense problems.

4.2 The Challenge of Non-Locality

The success of SoS in solving some inference problems which appeared beyond

the reach of other methods,4 together with its strength as an algorithm in

related domains5 generated around 2013 a great deal of interest in the question:

can SoS proofs of constant degree refute the existence of o(
√

n)-size cliques in

4Dictionary learning and planted sparse vector recovery, for example [31, 30].

5Particularly combinatorial optimization and for problems surrounding the unique games

conjecture [27].
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G ∼ G(n , 1/2)?6

Prior refutation lower bounds for SoS in the CSP setting were often proved by

starting with pseudodistribution constructions which successfully proved lower

bounds against weaker proof systems than SoS (such as the Sherali-Adams and

Lovasz-Schrĳver proof systems) and strengthening their analyses. Two groups of

researchers – Meka, Potechin, and Wigderson, and, separately, Deshpande and

Montanari – took this route, attempting to adapt a previous lower bound due

to Feige and Krauthgamer for weaker, Lovasz-Schrĳver proofs [71]. They made

substantial headway, but did not succeed in proving a tight lower bound:

Theorem 4.2.1 (Meka, Potechin, Wigderson [128]). For every d ∈ �, with high

probability over G ∼ G(n , 1/2) there is a degree-d pseudodistribution
˜� satisfying

{x2

i − xi � 0, xix j � 0 if xi / x j in G} with ˜�
∑

i∈[n] xi > n1/d/(log n)O(1).7

This theorem rules out the possibility that constant-degree SoS can refute

existence of sub-polynomial-size cliques, but it does not finish the story. Any

substantial improvement to Theorem 4.2.1 comes up against a major obstacle: the

pseudodistribution construction of Feige and Krauthgamer fails the positivity

constraint
˜� p(x)2 > 0 when parameters are set so that

˜�
∑

xi � n1/(d−1)
.

Breakdown of the Feige-Krauthgamer Witness Feige and Krauthgamer sug-

gested the following natural potential pseudodistribution
˜�, which respects all

the local consequences of the constraints xix j � 0 for i / j in G. Given a graph

G and a clique-size parameter k � k(n), for each S ∈
( n
6d

)
, set

˜�G xS � (k/n)|S |

6Strictly speaking this question remains unresolved: even in light of our main result Theo-

rem 1.1.1 it remains possible even in light of results in this thesis that constant degree SoS could

refute existence of cliques of size roughly

√
n/2
√

log n
.

7Deshpande and Montanari [63] improved this result quantitatively for the case d � 4, but still

came short of a tight lower bound. See more discussion in [89].
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if S is a G-clique and otherwise
˜�G xS � 0. Notice that

˜�
∑

xi � k, and clearly

˜� p(x)xi x j � 0 if i / j in G.

Kelner gave the following counter-example to positivity of
˜� when k � n1/3

for d > 4 [104], which shows that the Feige-Krauthgamer construction fails

to account for some non-local consequences of the constraints xix j � 0. For

simplicity we describe the counterexample for d > 6.

Fact 4.2.2 (Kelner [104]). Let G be an n-node graph. For every i ∈ [n], let ri ∈ {±1}n

be the vector with ri( j) � 1 if i ∼ j, ri( j) � −1 if i / j, and ri(i) � 1. Every degree-6

pseudoexpectation
˜� which satisfies {x2

i � xi , xix j � 0 if i / j} has ˜�
∑

i∈[n]〈ri , x〉4 >
˜�(∑i∈[n] xi)5.

Proof. We start by considering

∑
i∈[n] xi 〈ri , x〉4. Expanding,

∑
i∈[n] xi 〈ri , x〉4 �∑

i ,s ,t ,u ,v∈[n] xixs xt xu xv ri(s)ri(t)ri(u)ri(v). Since ˜� satisfies xix j � 0 for i / j, for

every i , s , t , u , v which is not a G-clique, we have

˜� xixs xt xu xv ri(s)ri(t)ri(u)ri(v) � ˜� xixs xt xu xv .

On the other hand, if {i , s , t , u , v} is a G-clique, then ri(s)ri(t)ri(u)ri(v) � 1. So

all together,

˜�

∑
i ,s ,t ,u ,v∈[n]

xi 〈ri , x〉4 � ˜�

∑
i ,s ,t ,u ,v∈[n]

xixs xt xuxv � ˜�

(∑
i

xi

)
5

.

Now, since
˜� satisfies x2

i − xi � 0, we claim that

˜�〈ri , x〉4 > ˜� xi 〈ri , x〉4

for all i, since (1 − x) �x2

i �xi
(1 − x)2. This finishes the proof. �

The proof of Fact 4.2.2 constructs an SoS proof whose coefficients are simple

statistics which derives a nontrivial relationship between two polynomials which
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each involve all the variables x1, . . . , xn . (Note that when the polynomial 〈ri , x〉4

is evaluated at the indicator vector x of a clique S, it counts the number of

4-cliques in S with all vertices adjacent to i.) The candidate pseudoexpectation

construction of Feige and Krauthgamer does not account for this sort of non-local

SoS proof:

Fact 4.2.3. Let ˜�G be the Feige-Krauthgamer functional for a graph G. If d � 4 and

k � n1/3
, then �G∼G(n ,1/2) ˜�G

∑
i∈[n]〈ri , x〉 � �G∼G(n ,1/2) ˜�G

(∑
i∈[n] xi

)
5

.

The proof is a straightforward calculation, so we leave it out. An intuitive

explanation of the whole problem is that degree-6 SoS proves that 4-cliques which

are contained in a phantom k-clique also participate, on average, inmore 5-cliques

than a typical 4-clique in G(n , 1/2), but the Feige-Krauthgamer construction is

not accounting for this.

Together, Kelner’s observations show that the Feige-Krauthgamer functional

cannot be used to prove a tight SoS lower bound for planted clique: it must

fail the positivity requirement. With a little additional work, it is possible to

conclude that there is a constant-degree polynomial q(x)whose coefficients are

constant-degree functions of the entries of the adjacency matrix of the graph G,

such that �G(n ,1/2) ˜� q(x)2 � 0.

The difficulty runs deeper than just one polynomial such as

∑
i∈[n]〈ri , x〉4 or

just the planted clique problem – as one might imagine there are many other

SoS-provable inequalities between nontrivial, non-local polynomials, even just

for planted clique. Other dense problems – component analysis problems, for

example – suffer from similar difficulties. There are several interpretations of the

origin of this difficulty – see e.g. the introduction of [29]. For now we move on to

the solution proposed by pseudocalibration.
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4.3 The Pseudocalibration Recipe

Pseudocalibration is a recipe which turns a nice-enough alternative distribution

into a candidate pseudoexpectation for use in proving a refutation lower bound.

Imagineweare facedwith a refutationproblem (perhaps it came fromahypothesis

testing problem as in Chapter 3, but it may also stand on its own): for some

distribution ν on ΩN
and some polynomials p , p1, . . . , pm of degree at most d in

variables y1, . . . , yN , x1, . . . , xn , we are interested degree-d SoS-certifiable upper

bounds on

max

x∈�n
p(y , x) s.t p1(y , x) � 0, . . . , pm(y , x) � 0 (4.3.1)

when y ∼ ν. (We could have inequalities pi(y , x) > 0 but we avoid this here for

simplicity.)

If we would like to show that degree-d SoS with high probability (or in

expectation) fails to certify an upper bound of c − ε on (4.3.1), we need to invent

for each y a degree-d pseudodistribution
˜�y in variables x1, . . . , xn which satisfies

{p1(y , x) � 0, . . . , pm(y , x) � 0} and has
˜�y p(y , x) > c with high probability. As

Section 4.2 made clear, in many interesting cases there is no obvious choice for

˜�y .

Now hypothesis testing enters the picture. Thinking of ν as a null model,

suppose that µ is another (alternative) distribution on ΩN
supported on y for

which there exists x such that (4.3.1) is satisfied by y , x and p(y , x) > c. By abuse

of notation, we also write µ for the joint distribution on ΩN ×�n
supported on

pairs y , x where x is such a satisfying solution. (In most of the literature on

pseudocalibration, the distribution µ is called the planted distribution.) In the

case of planted clique, we will take µ to be the usual planted k-clique distribution.
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The distribution µ induces the following map from ΩN
to linear functionals

on degree-d polynomials in x: for y ∈ ΩN
, letΛ(y) : �[x]6d → �be the operator

such that

Λ(y)[q(x)] �
�µ(y)
�ν(y)

· �
µ
[q(x) | y] .

Notice the appearance of the likelihood ratio

�µ(y)
�ν(y) , familiar from hypothesis

testing.

Λ has some initially promising properties which make it look like a good

candidate for a pseudodistribution. First of all, since x in the support of the

conditional distribution {x | y}µ always satisfies p1(y , x) � 0, . . . , pm(y , x) �

0, for each y we will have Λ(y)[pi(y , x)q(x)] � 0 for every q. Furthermore,

Λ(y)[q(x)2] > 0, again because �µ[q(x)2 | y] > 0. All of these follow from one

key observation: for any polynomial q(y , x),

�
ν
Λ(y)[q(y , x)] � �

x ,y∼µ
q(y , x) . (4.3.2)

But Λ has a fatal flaw, as might have been guessed when the likelihood ratio

appeared. In short, if the lower bound we hope to prove is interesting, then

for most y ∼ ν there should not actually be x which makes the value of (4.3.1)

greater than c. On the other hand, µ is supported on y which do have such x.

The consequence is that the function

�µ(y)
�ν(y) takes nonzero values only on a small

amount of ΩN
, as measured by ν. This makes Λ(y) a poorly-behaved random

variable – one way to see this is that Λ(y)[1], that is Λ(y) applied to the constant

polynomial, is usually either zero or much larger than 1. Normalizing Λ(y)will

not help, as this will destroy Λ(y)[p(y , x)] > c.

The key insight is that to eliminate the challenge imposed by the sort of SoS

proof from Section 4.2, whose coefficients are low degree polynomials in y, we
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do not need (4.3.2) to hold for every polynomial q(y , x) – only for those with

degree at most d in x and degree at most D � d in y. This opens an avenue to

address the difficulty with Λ’s poor behavior. If Λ′(y) is any map from ΩN
to

linear functionals which agrees in expectationwith Λ(y) for polynomials which

are degree-d in x and degree-D in y, then

�
ν
Λ′(y)[q(y , x)] � �

µ
q(y , x) (4.3.3)

and so, in particular�ν Λ
′(y)[r(y , x)2] > 0 for any r(y , x)which is degree at most

d/2 in x and at most D/2 in y.8

Now we have to make a choice: how to choose Λ′ satisfying (4.3.3)? One

canonical possibility, recalling the problem with Λ that it took large values

on a small portion of ΩN
and small ones elsewhere, is to choose Λ′(y) to

minimize the variance of Λ′(y)[q(x)] with respect to y ∼ ν. With a small amount

of linear algebra, it is possible to see that the minimizing choice is to take

Λ′(y)[q(x)] � (Λ(y)[q(x)])6D
, where the superscript 6 D denotes the orthogonal

projection (with respect to ν) of the function y 7→ Λ(y)[q(x)] to the span of

degree-D polynomials in y1, . . . , yN .

Let us see what effect this choice has on the variance of Λ′. As a test case,

consider Λ′(y)[1], which caused so much trouble previously. It is Λ′(y)[1] �(
�µ(y)
�ν(y)

)6D
(y) – the low-degree likelihood ratio from Chapter 2. And by definition,

if there are no successful D-simple statistics to distinguish µ from ν, then the

variance of Λ′(y)[1] is O(1). Since �ν Λ′(y)[1] � 1, if the variance is O(1) then

there is some hope we have solved the issues with Λ.9 This is the first hint of

8The authors of [29], adopting naming conventions from Bayesian statistics, called (4.3.3) being

calibrated to µ with respect to simple tests q; together with “pseudo” from pseudodistribution this

is the origin of the name pseudocalibration.

9In all our uses of this technique, we are able to adjust problem parameters – for example

adjust the choice of clique size k in our planted clique lower bound – to make this variance o(1).
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fundamental connection between failure of simple statistics for hypothesis testing and

SoS lower bounds for refutation

Of course, defining such Λ′ does not yet show an SoS lower bound – just that

the difficulties from Section 4.2 may no longer be problematic. One needs to check

that Λ′ satisfies the properties of a pseudoexpectation: that it is nonnegative, and

that Λ′(y)[pi(y , x)q(x)] � 0, or adjust Λ′ accordingly if it does not. In Chapters 11

and 12 we show two different approaches to working formally with Λ′.

The merit of pseudocalibration is to offer a plausible guess – a canonical

starting point – for SoS refutation lower bounds. This starting point, the degree-D

operator Λ′, is used in some form in every SoS refutation lower bound we know

how to prove – for constraint satisfaction, component analysis, and planted clique,

making it appear to be a unifying approach to SoS lower bounds. But there is a

lot left to do: we do not have canonical proof techniques for analyzing Λ′, nor do

we know beyond guesswork how to choose a good planted distribution µ or the

right threshold D. See Appendix A for more that we do not (yet) know about

pseudocalibration.
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CHAPTER 5

PRELIMINARIES

SoS Proofs and the SoS Algorithm

SoS proofs, pseudodistributions, and duality theorems are covered extensively

in other texts, so we will be brief here. For the most complete treatment which

takes a similar perspective to ours here, see [34].

Definition 5.0.1 (SoS polynomial). A polynomial p ∈ �[x] is an SoS (sometimes

we just write “p is SoS”) if it can be expressed as p(x) � ∑
i6m qi(x)2 for some

q1, . . . , qm ∈ �[x].

Definition 5.0.2 (SoS refutation and SoS proof). Let p1, . . . , pm ∈ �[x1, . . . , xn]6d

be polynomials with real coefficients of degree at most d. We say there is a

degree d SoS refutation of the system {p1(x) > 0, . . . , pm(x) > 0} if there exist

SoS polynomials {rS(x)}S⊆[m] such that

−1 �

∑
S⊆[m]

rS(x) ·
∏
i∈S

pi(x)

and each of the polynomials rS(x) ·
∏

i∈S pi(x) has degree at most d.

We say that there is a degree d SoS proof of q(x) > 0 from {p1(x) >

0, . . . , pm(x) > 0} if there exist SoS polynomials {rS}S⊆[m] such that q(x) �∑
S⊆[m] rS(x)

∏
i∈S pi(x), and each of the polynomials rS(x) ·

∏
i∈S pi(x) has degree

at most d. If this is the case, we write

{p1 > 0, . . . , pm > 0} `d q > 0 .
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We will often use without mention various valid deduction rules for SoS

proofs – see [34]. We often include equations as well as inequalities in our SoS

proofs; p(x) � 0 is shorthand for {p(x) > 0,−p(x) > 0}.

Definition 5.0.3 (Pseudoexpectation). A degree-d pseudoexpectation
˜� on vari-

ables x � x1, . . . , xn is a linear map
˜� : �[x]6d → �which is normalized and

nonnegative:

˜�[1] � 1 and
˜�[p(x)2] > 0 .

Definition 5.0.4 (Satisfying inequalities). A degree-d pseudoexpectation
˜� satis-

fies {p1(x) > 0, . . . , pm(x) > 0} if for every SoS polynomial q and every S ⊆ [m]

such that q(x)∏i∈S pi(x) has degree at most d, we have
˜� q(x)∏i∈S pi(x) > 0.

See [34] for a proof of the following theorem.

Theorem 5.0.5 (Duality). Suppose {p1 > 0, . . . , pm > 0} with pi ∈ �[x]6d contains

the inequality ‖x‖2 6 M for some M ∈ �. For every q ∈ �[x]6d , either

• there is for every ε > 0 either a degree-d SoS proof {p1 > 0, . . . , pm > 0} `d q >

−ε, or

• there is a degree-d pseudoexpectation
˜� satisfying {p1 > 0, . . . , pm > 0} with

˜� q(x) 6 0.

The main utility of SoS proofs and pseudoexpectations comes from the fact

that for many systems p1, . . . , pm which arise in theoretical computer science, the

above duality theorem can be made algorithmic: that is, there is generally an

(mn)O(d)-time algorithm to decide, given q, which of the alternatives obtains. The

reason, roughly, is that the set of SoS using axioms {p1(x) > 0, . . . , pm(x) > 0} is
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an (mn)O(d)-variable semidefinite program, whose dual is the set of pseudoex-

pectations satisfying {p1(x) > 0, . . . , pm(x) > 0}. Because of wide flexibility in

designing numerically-unstable families of polynomials p1, . . . , pm , it is possible

for these semidefinite programs not to be solvable by known, efficient algorithms

[143, 156].

However, such issues do not arise for any of the SoS programs we use in this

paper – when necessary we occasionally note why this is the case in the text.

Hence, we often use without mention the fact that for nice-enough systems of

inequalities {p1 > 0, . . . , pm > 0}, there is a polynomial-time algorithm to decide

whether or not there exists an SoS refutation of {p1 > 0, . . . , pm > 0}.

5.0.1 Useful SoS Inequalities

We record some broadly useful SoS inequalities. More specialized statements

can be found in Chapter 10.

Lemma 5.0.6. For indeterminates x1, . . . , xn , y1, . . . , yn ,

`4 〈x , y〉2 6 ‖x‖2‖y‖2 .

Proof. Following [121], Lemma A.1, we see that the difference between the right

and left hand sides is

‖x‖2‖y‖2 − 〈x , y〉2 �

∑
i j

(xi y j − x j yi)2

which is a sum of squares. �

Lemma 5.0.7. For indeterminates x1, . . . , xn and an n × n matrix M,

`2 〈x ,Mx〉 6 ‖M‖ · ‖x‖2 .
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Proof. The matrix ‖M‖ · Id −M � 0 is PSD, so the difference between right-and

left-hand sides is a sum of squares. �

Concentration and Matrix Concentration

We will frequently use without comment standard concentration inequalities

such as Markov’s, Chebyshev’s, and Chernoff-style bounds – we refer the reader

to [43] for a thorough introduction.

We will also frequently use matrix concentration inequalities. When we use

specialized results we state them in the text, one workhorse which we state here

is the matrix Bernstein inequality. This statement is borrowed from Theorem

1.6.2 of Tropp [170].

Theorem 5.0.8 (Matrix Bernstein). Let S1, . . . , Sm be independent square random

matrices with dimension n. Assume that each matrix has bounded deviation from its

mean: ‖Si − � Si ‖ 6 R for all i. Form the sum Z �
∑

i Si and introduce a variance

parameter

σ2

� max{‖�(Z −�Z)(Z −�Z)T ‖ , ‖�(Z −�Z)T(Z −�Z)‖} .

Then

�{‖Z −�Z‖ > t} 6 2n exp

(
t2/2

σ2 + Rt/3

)
for all t > 0 .
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Part I

Algorithms from Low-Degree

Polynomials
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CHAPTER 6

CASE STUDY: THE SPIKED TENSORMODEL

In this chapterwewill take a detailed look at one example set of Bayesian inference

problems, coming from the spiked tensor model. The spiked tensor model is of

considerable interest in its own right: it is a model for higher-order versions of

principal component analysis (tensor PCA), it appears in statistical physics as the

spherical p-spin model, and it is an simple testing ground to study algorithms

for tensor problems which can often be extended to solve more sophisticated

problems like tensor decomposition and tensor completion [121, 150]. It is also

a dense version of one of the classic random models in theoretical computer

science: random constraint satisfaction.

Most of the central themes of this thesis appear in (relatively) simple form

in this chapter. We will see an example of polynomial-time algorithm design

for refutation and estimation problems via construction of an SoS proof which

itself uses ideas from random matrix theory. We will see that spiked tensor

models have an information-computation gap, as evidenced by SoS lower bounds

we prove via the pseudocalibration method. And, we will see that that the

algorithms design and lower bounds we prove are consistent with our hypothesis

on optimality of simple statistics, when we analyze (via routine calculations)

which spiked tensor models permit successful simple statistics.

Definition 6.0.1 (Single-spike k-tensor model). Let k , n ∈ � and λ � λ(n) > 0,

and let P be a distribution on unit vectors in�n
. The single-spike tensor model is

a probability distribution over pairs {v , T} where v ∈ �n
and T is a k-tensor in

(�n)⊗k
. The marginal distribution of v is P, and to sample T given v, first sample

G ∈ (�n)⊗k
with iid standard Gaussian entries (subject to symmetry: formally,
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for every multiset α ⊂ [n] of size k sample a Gaussian Gα ∼ N(0, 1)), and let

T � λ · v⊗k
+ G .

We call λ the signal strength or signal-to-noise ratio (SNR).

Two particularly interesting choices of the prior P uniform (Haar) distribution

on the unit sphere and the Rademacher prior, uniform over {±1/
√

n}.

A 2-tensor is a matrix, and for the case k � 2 the single-spike model becomes

the long-studied spiked GOE (for “Gaussian Orthogonal Ensemble”) model from

random matrix theory. As often happens in algorithms, the k � 2 case differs

substantially from k > 3, because many problems which can be solved with

eigenvalue computations when k � 2 have no obvious analogous algorithms

when k > 3. For this chapter it is best to think of k > 3; in fact k � 3 and k � 4 are

perhaps the best cases to keep in mind, as once they are understood the behavior

of larger k is easy to work out.

If we introduce a null model, we get a hypothesis testing problem for every

P, λ, k , n. Given a tensor T ∈ (�n)⊗k
, distinguish the following:

H0 : T was sampled (symmetrically) with iid entries fromN(0, 1)

H1 : T was sampled from the single-spike k-tensor model with signal

strength λ and prior P.

For each fixed k , P, n, as λ increases the distributions specified by H0 and H1

become less alike, so performing hypothesis testing becomes easier. One way to

phrase the main question about efficient algorithms for hypothesis testing is the

following.
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Question 6.0.2 (Hypothesis testing for the single-spike tensor model). Fix a prior

P, an integer k ∈ �, and a running time t : � → �.1 Let b ∈ {0, 1} be a

uniformly random bit. Suppose a tensor T is drawn from the Hb . What is the

least λ such that there exists an algorithm A(T) running in time t(n) such that

�b ,T(A(T) � b) > 1 − o(1)?

There are also certification/refutation and estimation problems associated with

the spiked tensor model.

Question 6.0.3 (Refutation for the single-spike tensor model). Fix k ∈ � and

a running time t(n). What is the least α � α(n) such that there exists an

algorithm A(T) running in time t(n) which outputs a real number such that

A(T) > max‖x‖�1
〈T, x⊗k〉 for every T, and �H0

(A(T) > α) 6 o(1)?

Question 6.0.4 (Estimation for the single-spike tensor model). Fix a prior P, an

integer k ∈ �, and a running time t(n). What is the smallest λ such that there

exists an algorithm A(T) which outputs a unit vector in �n
and runs in time t(n),

with �x ,T∼H1
〈x ,A(T)〉 > 1 − o(1) (if k is odd) or �x ,T∼H1

〈x ,A(T)〉2 > 1 − o(1) (if k

is even)?

When the running times t(n) are 2
Cn

for large-enough C, for most interesting

priors P we enter by-now well-understood statistical territory. The reason is

that in large-enough exponential time a few key primitives can be computed,

including:

1Whenever we talk abstractly about a time function in this thesis, we mean to restrict attention

to “nice” time functions, to avoid unnecessary mathematical pathologies. See e.g [26], lecture 11,

or any modern introduction to theoretical computer science. Talking about running times also

implicitly requires a machine model with respect to which running time is defined; throughout

the thesis the real RAMmodel is a good choice.
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• the likelihood ratio �H1
(T)/�H0

(T) (needed for the statistically-optimal

hypothesis test, the likelihood ratio test),

• the maximum-likelihood and maximum-a-posteriori estimators of the hid-

den spike, respectively argmaxx∈�n �H1
(T | x) and argmaxx∈�n �H1

(x | T),

• moments of the posterior distribution, �H1
[x | T],�H1

[xx> | T], etc.

Consequently, answers to all of the above questions are essentially understood

when t(n) > 2
Cn

for big-enough C, at least for most reasonable priors P, including

uniform (Haar-distributed) and Rademacher [147, 19]. For example, consider the

following rather precise theorem of Perry, Wein, and Bandeira, addressing the

hypothesis testing question.

Theorem 6.0.5 (Theorem 1.4 in [147]). Suppose t(n) > 2
Cn

for large-enough C. Fix

any ε > 0 and let P be the Rademacher prior. Let λ(n , k) be the minimum SNR for

successful hypothesis testing. Then

lim

k→∞

limn→∞ λ · n−1/2

2

√
k! log k

� 1 .

The theorem says that the minimal λ is 2

√
k! log k · n1/2

, to leading order

in both k and n. Analogous results are known for certifying and estimation.

In particular, for some (known and explicit) constant C(k), it is known that

�T∼H0
max‖x‖�1

〈T, x⊗k〉 � (C(k) ± o(1))
√

n.

When t(n) 6 2
o(n)

, however, the game changes entirely, since straightforward

algorithms statistically-optimal hypothesis testing and estimation no longer exist:

lack of running time, rather than lack of statistical information, becomes the

main roadblock. The emerging picture for running times from subexponential to

polynomial is:
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Hypothesis 6.0.6. For every k ∈ � and 1 > ε > 0, spiked tensor problems with

λ � n
k
4
−ε·

(
k
4
−1

2

)
are solvable in time t(n) � 2

˜O(nε)
, and not faster.

In particular, when k � 3 and t(n) � poly(n), spiked tensor problems appear

to be solvable if and only if λ > Ω(n3/4), despite their exponential-time solvability

for λ � Θ(
√

n) – this is another information-computation gap. In Section 6.5

below we will see that Hypothesis 6.0.6 is a special case for spiked tensor models

of Hypothesis 2.1.5 on simple statistics and efficient algorithms.

6.1 Main Results

This thesis contributes several theorems in support of Hypothesis 6.0.6. (We

also discuss some related works which fill out the picture.) The algorithms and

analyses we describe are our first formal example of the connection between

convex programs and simple statistics: they all involve the construction either of

dual certificates, a.k.a. SoS proofs, or primal solutions, a.k.a. pseudodistributions which

are themselves composed of simple statistics.

The first theorem concerns polynomial-time algorithms.

Theorem 6.1.1. For every k ∈ �, there are polynomial-time SoS algorithms for

O(n
k
4 (log n)1/4)-refutation and for estimation with λ � ω(n

k
4 (log n)1/4 for spiked

k-tensor problems (with any prior P).

The second theorem concerns lower bounds for SoS-based refutation algorithms.

Theorem 6.1.2. There is an absolute constant ε∗ > 0 such that for every e ∈ [0, ε∗],

with high probability over a Gaussian 3-tensor T ∼ H0, the minimum degree of an SoS

proof certifying max‖x‖2�1
〈T, x⊗3〉 6 n3/4−ε

is nΩ(ε).
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The third theorem concerns the question: are the signal-to-noise ratios achieved

by polynomial-time SoS algorithms achievable by algorithms with practical

polynomial running times? We answer this question affirmatively for the single-

spike tensor model, giving linear time algorithms for estimation and hypothesis

testing, and a subquadratic-time algorithm for refutation, all inspired by our

polynomial-time SoS algorithms. For simplicity, we just treat the case k � 3.

Theorem 6.1.3. There is an n4(log n)O(1)-time O(n3/4(log n)1/4)-refutation refutation

in the spiked tensor model (where the input size is n3
). And, for every ε > 0, if

λ > n3/4(log n)/ε, there is a linear-time estimation algorithm which given T ∼ H1

outputs a unit vector v′ such that 〈v , v′〉 > 1 − O(ε) with high probability.

The last original theorem of this chapter (which is proved by a straightforward

calculation) establishes the simple statistics picture for the spiked tensor model.

It shows that successful D-simple statistics for small D appear only when

λ > Ω(n3/4), and furthermore captures a SNR vs complexity tradeoff: as D

increases, smaller λ’s admit D-simple statistics. This theorem demonstrates

that Hypothesis 6.0.6 and Theorems 6.1.1 to 6.1.3 and 6.1.5 which support it are

predicted by Hypothesis 2.1.5 on the optimality of simple statistics for inference

problems. Recall the definition of D-simple statistics from Chapter 2.

Theorem 6.1.4. Let ν be the distribution on �(n3) which places a standard Gaussian in

each entry; that is, ν is the null distribution H0 for the spiked tensor problem. Let µ be

the spiked tensor distribution with Rademacher prior and SNR λ. For every D ∈ �, if
λ

n3/4 6
1

DO(1) , then every D-simple statistic f has �T∼µ f (T) 6 O(1). On the other hand,

there is a constant c such that if
λ

n3/4 > 1/Dc
and D � ω(1) then there is a D-simple

statistic f with limn→∞�T∼µ f (T) � ∞.

Finally, the following theorem, which constitutes related work proved in-

83



dependently by Bhattiprolu-Guruswami-Lee and Raghavendra-Rao-Schramm,

essentially completes the picture, by giving an SoS algorithm matching the lower

bound in Theorem 6.1.2 (up to constants in the exponent of the SoS degree d 2).

Theorem 6.1.5 (High degree SoS refutation algorithms for 3-tensors, Bhattipro-

lu-Guruswami-Lee version [40, 153]). For every d 6 n, degree-d SoS certifies that

max

‖x‖�1

〈T, x⊗3〉 6
2

O(d) · (log n)O(1) · n3/4

d1/4

with high probability for a 3-tensor T ∼ H0 with iid standard Gaussian entries.

6.2 Overview of Proofs

The proofs of our algorithmic results Theorem 6.1.1 and Theorem 6.1.3 both boil

down to analyzing the spectrum of carefully-constructed randommatrices whose

entries are low degree functions of an input tensor T. In the case of Theorem 6.1.1

these random matrices serve as dual certificates to an SoS semidefinite program

(that is, they are SoS proofs), while in the case of Theorem 6.1.3 the matrices are

directly constructed by the algorithm.

In both cases, the main innovation over prior work is the appearance of

matrices which are not simple flattenings of an input tensor T: the entries of

these matrices are nontrivial degree-2 functions of T. This is the key to obtaining

the results in Theorem 6.1.1 for odd values of k, where there is good reason to

believe that simpler matrices cannot provide as strong refutation guarantees [92].

Of course, not just any degree-2 matrix-valued function of T has a spectrum

suitable for refutation or estimation: constructing an SoS-provable upper bound

2We suspect that Theorem 6.1.5 has the right constants in the exponent, and Theorem 6.1.2

could in theory be tightened.
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on max‖x‖�1
〈T, x⊗3〉 in the proof of Theorem 6.1.1 leads us to the right random

matrix.

The proof of Theorem 6.1.2 is much more technical, and we do not give all

the details here. (A nearly identical argument is presented in full in Chapter 11.)

The strategy to show that with high probability no degree-d SoS proof certifies

max‖x‖�1
〈T, x⊗3〉 6 c for some c > 0 and T with Gaussian entries goes via

duality. That is, we show that with high probability over T there exists a degree-d

pseudodistribution which satisfies {‖x‖2 � 1} and has
˜�〈T, x⊗3〉 > c.

The difficulty in this strategy twofold. First, there is no obvious construction of

a linear mapLT : �[x]6d → �which could be a pseudodistribution as described

above. (We discuss in detail why naïve constructions of suchmaps fail in a similar

context in Chapter 11 so we will not duplicate the effort here.) The pseudocalibra-

tion technique enters the picture here: it leverages the non-existence of successful

O(d)-simple statistics to construct a good pseudoexpectation candidate.

The second difficulty is proving that this candidate L is in fact a pseudoex-

pectation (with high probability over T). We associate to LT a moment matrix

MT ∈ �nd×nd
– the goal will be to show that with high probability of T, MT � 0.

MT is a randommatrix, and its entries are degree O(d) polynomials in the entries

of the tensor T.

Showing that MT � 0 is a technical challenge, for two reasons. First, its entries

are not independent random variables, so standard theorems on the its spectrum

do not apply, and neither do the standard matrix concentration tools we use

for Theorem 6.1.1 and Theorem 6.1.3. Second, proving that M � 0 requires

controlling all of the eigenvalues of M, while most matrix concentration tools are
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designed only to control the maximum eigenvalue of M.

In the remainder of the chapter, we prove Theorem 6.1.1, Theorem 6.1.3

and Theorem 6.1.4. First, to give some context for the proofs of Theorems 6.1.1

and 6.1.3 we describe some straightforward but suboptimal refutation algorithms

for the spiked tensor model.

6.2.1 Elementary Refutation Algorithms for Spiked Tensors

Focusing on the refutation problem and the case k � 3, we describe some

elementary polynomial-time refutation algorithms for the spiked tensor model,

as baselines for comparison. The goal is, given a Gaussian random 3-tensor T,

output an upper bound on max‖x‖�1
〈T, x⊗3〉.

The 2-norm bound As a first attempt, observe that for unit vectors x ∈ �n
,

〈T, x⊗3〉 6 ‖T‖ · ‖x‖3 �
©«

∑
i jk∈[n]

T2

i jk
ª®¬

1/2

,

and the 2-norm of T is clearly polynomial-time computable. For T withN(0, 1) en-

tries, ‖T‖ ≈ n3/2
with high probability, so this gives an n3/2

-refutation algorithm.

Since 〈T, x⊗3〉2 � ‖T‖2‖x‖6, this bound is certifiable by degree-6 SoS.

The spectral bound An spectral improvement on the 2-norm bound is possible

as follows.

〈T, x⊗3〉 6 max

y∈�n ,z∈�n2

y>Tz
‖y‖‖z‖ � σmax(T)

where in the second expression we abuse notation and use T also for some n × n2

matrix “flattening” of T. For T withN(0, 1) entries, the maximum singular value
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of this matrix is Θ(n)with high probability [175]. The spectral upper bound is

also certifiable by constant degree SoS proofs.

For even k, an analogous spectral bound does obtain the guarantees of

Theorem 6.3.1 [159]. The failure of this bound for odd k is because of the fact

that the maximum singular value of a random rectangular matrix scales (to first

order) as the square root of the longer dimension [175].

For 3-tensors neither 2-norm nor the spectral bound matches the

n3/4(log n)O(1)-certification we eventually show is achieved by constant-degree

SoS.

6.3 SoS Algorithms for Spiked Tensors

In this section we prove Theorem 6.1.1. For brevity we prove the case k � 3; for

details concerning larger k we refer the reader to [92].

6.3.1 Refutation

We start with refutation.

Theorem 6.3.1 (Formal version of Theorem 6.1.1, refutation). Let T ∈ (�n)⊗3
have

iid entries fromN(0, 1). Then `6 〈T, x⊗3〉2 6 O(n3/2(log n)1/2) · ‖x‖6 with probability

1 − o(1).

As a corollary of Theorem 6.3.1, if T is drawn from the symmetrized Gaussian

distribution (so e.g. Ti jk � Tk ji) the conclusion of the theorem still holds, because
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such T can be decomposed as a sum T �
∑
π∈S3

π · A + E, where A is a tensor

with iid entries fromN(0, 1/|S3 |) and E is a sparse error tensor. The details may

be found in [92].

Remark 6.3.2 (Connection to simple statistics). The statement of Theorem 6.3.1

says that with high probability over T as in Theorem 6.3.1 there exist polynomials

q1, . . . , qm with

‖x‖6O(n3/2(log n)1/2) − 〈T, x⊗3〉2 �

∑
i∈[m]

qi(x)2

where degx qi(x)2 6 6. If the left side of the above is expanded in the monomial

basis in x, each coefficient is an O(1)-degree function in T. Our proof of

Theorem 6.3.1 will establish that each qi(x) can be taken to depend on T in the

following way: qi(x) � 〈vi , x⊗3〉, where vi � vi(T) is an eigenvector of a matrix

whose entries are O(1)-degree functions of T; that is, up to normalization, a

matrix of simple statistics.

We will use the following lemmas to prove Theorem 6.3.1.

Lemma 6.3.3. Let M ∈ �n×n
have iid entries fromN(0, 1). Then `4 �M 〈x ,Mx〉2 6

‖x‖4.

Proof. By expanding the polynomial 〈x ,Mx〉2, we find

�
M
〈x ,Mx〉2 �

∑
i jkl∈[n]

(�Mi jMkl) · xix jxk x` �
∑

i j

x2

i x2

j � ‖x‖
4

because �Mi j Mkl � 0 unless i j � kl, and in that case �M2

i j � 1. �

Lemma 6.3.4. Let M1, . . . ,Mn be n × n matrices, each with iid entries fromN(0, 1).

Then ∑
i∈[n]

Mi ⊗Mi −�
∑
i∈[n]

Mi ⊗Mi

 6 O(n3/2(log n)1/2)

with probability 1 − o(1), where ‖ · ‖ denotes the spectral norm.
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Lemma 6.3.4 follows from standard matrix concentration arguments (in this

case the matrix Bernsetein inequality), which can be found in Section 6.7.

Proof of Theorem 6.3.1. Let Ti ∈ �n×n
denote the i-th matrix slice of the tensor T;

that is (Ti) jk � Ti jk . By SoS Cauchy-Schwarz (Lemma 5.0.6),

`6 〈T, x⊗3〉2 �
©«
∑
i∈[n]

xi 〈x , Tix〉
ª®¬

2

6
©«
∑
i∈[n]

x2

i
ª®¬ ©«

∑
i∈[n]
〈x , Ti x〉2

ª®¬ � ‖x‖2
∑
i∈[n]
〈x , Tix〉2 .

By Lemma 6.3.3,

`4
∑
i∈[n]
〈x , Ti x〉2 � n‖x‖4 +

〈
x⊗2

©«
∑
i∈[n]

Ti ⊗ Ti −�Ti ⊗ Ti
ª®¬ x⊗2

〉
.

And by Lemma 6.3.4 together with Lemma 5.0.7,

`4
∑
i∈[n]

〈
x⊗2

©«
∑
i∈[n]

Ti ⊗ Ti −�Ti ⊗ Ti
ª®¬ x⊗2

〉
6 ‖x‖4 ·

∑
i∈[n]

Ti ⊗ Ti −�Ti ⊗ Ti


6 O(n3/2(log n)1/2) · ‖x‖4

with high probability, so putting the inequalities together finishes the proof. �

6.3.2 Estimation

Although estimation and refutation are formally of incomparable difficulty,

refutation algorithms which use convex programs can generally be transformed

into estimation algorithms, as in this estimation algorithm for the single-spike

tensor model.

Algorithm 6.3.5 (Single-spike tensor model, estimation). On input a 3-tensor T ∈

(�n)⊗3
, using semidefinite programming, find the degree-6 pseudo-distribution

{x} satisfying {‖x‖2 � 1} which maximizes
˜�〈T, x⊗3〉. Output

˜� x/‖ ˜� x‖.
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Theorem 6.3.6 (Formal version of Theorem 6.1.1, estimation). Let T′ ∈ (�n)⊗3

have iid entries fromN(0, 1) and let v be a unit vector. Suppose λ > n3/4(log n)1/4/ε.

With probability 1 − o(1) over T′, on input T � λv⊗3 + T′, Algorithm 6.3.5 returns a

unit vector v′ with 〈v , v′〉 > 1 − O(ε).

Proof of Theorem 6.3.6. By Theorem 6.3.1, we may assume that for every degree-

6 pseudoexpectation
˜� which satisfies {‖x‖2 � 1} it holds that

˜�〈T, x⊗3〉 6

O(n3/4(log n)1/4). Let ˜� denote the pseudoexpectation found by Algorithm 6.3.5.

Since it is maximal,

˜�〈T, x⊗3〉 > 〈T, v⊗3〉 � λ + 〈T′, v⊗3〉 > λ − O(n3/4(log n)1/4)

since the point-mass distribution with all mass on v is itself a pseudodistribution.

On the other hand,

˜�〈T, x⊗3〉 � λ ˜�〈v , x〉3 + ˜�〈T′, x⊗3〉 6 λ ˜�〈v , x〉3 + O(n3/4(log n)1/4) .

Putting these together and rearranging,

˜�〈v , x〉3 > 1 −
O(n3/4(log n)1/4

λ
> 1 − O(ε) .

By Lemma 10.0.3, which relates 〈v , x〉3 to 〈v , x〉,

〈v , ˜� x〉 � ˜�〈v , x〉 > 1 − O(2ε) � 1 − O(ε) .

Since ‖ ˜� x‖ 6 ( ˜� ‖x‖2)1/2 � 1, this completes the proof. �

6.4 Spectral Algorithms for Spiked Tensors

In this section we prove Theorem 6.1.3. The key idea behind the proof is to use

the fact that the dual certificates used in the last section are actually explict, low
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degree matrix-valued functions of an input tensor T. By evaluating the spectra

of these functions directly we design algorithms with guarantees matching those

achievable by polynomial-time SoS, but without incurring the running-time cost

of a generic SDP solver.

The catch, in the case of estimation, is that the dual certificate constructions

from the previous section apply only to T from the null model H0. It will take

some additional analysis to show that the same matrix-valued functions also

allow us to perform estimation when T is from the alternative/spiked model H1.

Running times for this style of algorithm hit a natural barrier at the time

required for spectral computationss on matrices of dimensions matching those

of the dual SDP certificates which the algorithm constructs. Since the algorithm

in Theorem 6.3.1 uses a degree-6 SoS SDP, we might not expect to beat the

time required for a matrix-vector multiply in n3
dimensions. For our refutation

algorithm we will be able to use an n2 × n2
matrix rather than an n3 × n3

one,

because although we have used degree-6 SoS in Theorem 6.3.1, the heart of the

SoS proof is really degree-4. This leads to the
˜O(n4) running time for refutation.

To obtain a linear-time algorithm for estimation, we construct a smaller

matrix-valued polynomial whose spectrum is not useful for refutation, but is

nonetheless useful for estimation. While this matrix is not difficult to construct

for the spiked tensor model, in the next chapter we will see another estimation

problem (the planted sparse vector problem) where an analogous but less obvious

construction is needed.

We prove Theorem 6.1.3 in two parts.

Proof of Theorem 6.1.3, refutation. Let M � �A ⊗ A, where A is an n × n matrix
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with iid entries fromN(0, 1). Since the SoS proof system is sound, the proof of

Theorem 6.3.1 also shows that for any tensor T,

max

‖x‖�1

〈T, x⊗3〉 6 ©«n +

∑
i∈[n]

Ti ⊗ Ti − n ·M

ª®¬
1/2

and that the latter quantity is at most O(n3/4(log n)1/4)with probability 1 − o(1)

for random T. Since constructing the matrix

∑
i∈[n] Ti ⊗ Ti − n ·M can be done in

time O(n4) and is spectral norm can be computed in time O(n4(log n)O(1)), the

proof is complete. �

Linear-Time Algorithm Spiked Tensor Estimation

Algorithm 6.4.1. Input: T � λ · v⊗3 + A.

• Compute the partial trace M :� Tr�n
∑

i Ti ⊗ Ti �
∑

i Tr(Ti) · Ti ∈ �n×n
,

where Ti are the first-mode slices of T.

• Output the top eigenvector v′ of M with sign chosen such that 〈T, (v′)⊗3〉 > 0.

Theorem 6.4.2. When A has iid standard Gaussian entries and λ > n3/4
log n/ε,

Theorem 6.4.1 recovers v′ with 〈v , v′〉 > 1 − O(ε2 + n−1/4ε) with high probability over

A.

Theorem 6.4.3. Theorem 6.4.1 can be implemented in linear time and sublinear space.

Theorem 6.4.2 is proved by routine matrix concentration.

To implement the algorithm in linear time it is enough to show that the

(sublinear-sized) matrix M has constant spectral gap; then a standard application

of the matrix power method computes the top eigenvector.

92



Lemma 6.4.4. For any v, with high probability over A, the following occur:∑
i

Tr(Ai) · Ai

 6 O(n3/2
log

2 n)∑
i

v(i) · Ai

 6 O(
√

n log n)∑
i

Tr(Ai)v(i) · vv>
 6 O(

√
n log n) .

All the matrices in the lemma are sums of independent matrices, so the proof is

routine applications of the Matrix Bernstein inequality Theorem 5.0.8; we omit it

for brevity.

Proof of Theorem 6.4.2. We expand the partial trace Tr�n
∑

i Ti ⊗ Ti .

Tr�n

∑
i

Ti ⊗ Ti �
∑

i

Tr(Ti) · Ti

�

∑
i

Tr(λ · v(i)vv> + Ai) · (λ · v(i)vv> + Ai)

�

∑
i

(λv(i)‖v‖2 + Tr(Ai)) · (λ · v(i)vv> + Ai)

� λ2vv> + λ

(∑
i

v(i) · Ai +
∑

i

Tr(Ai)v(i)vv>
)
+

∑
i

Tr(Ai) · Ai .

Applying Lemma 6.4.4 and the triangle inequality, we see thatλ
(∑

i

v(i) · Ai +
∑

i

Tr(Ai)v(i)vv>
)
+

∑
i

Tr(Ai) · Ai


6 O(n3/2(log n)2 + λ

√
n log n)

with high probability. Thus, for λ � n3/4
log n/ε, the matrix M/λ2

satisfies

M
λ2

� vv> + E

where ‖E‖ 6 O(ε2+n−1/4ε), and the result followsby standardmanipulations. �
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Proof of Theorem 6.4.3. Carrying over the expansion of the partial trace from above,

thematrixTr�n
∑

i Ti⊗Ti has spectral gapΩ(1/ε) and so thematrix powermethod

finds the top eigenvector in O(log(n/ε)) iterations. This matrix has dimension

n × n, so a single iteration takes O(n2) time, which is sublinear in the input size

n3
. Finally, to construct Tr�n

∑
i Ti ⊗ Ti we use

Tr�n

∑
i

Ti ⊗ Ti �
∑

i

Tr(Ti) · Ti

and note that to construct the right-hand side it is enough to examine each entry

of T just O(1) times and perform O(n3) additions. At no point do we need to

store more than O(n2)matrix entries at the same time. �

6.5 Spiked Tensors and Simple Statistics

In this section we prove Theorem 6.1.4. To prove the theorem we need a

combinatorial fact.

Fact 6.5.1. LetHt ,s ,D be the number of 3-uniform multi-hypergraphs on n vertices with

exactly t hyperedges, at most D unique hyperedges, all even-degree nodes, and exactly s

nodes of nonzero degree. Then (1) if s > 3t/2 or s > 3D we haveHt ,s � 0, (2) for all

s , t we haveHs ,t 6 ns t3s
, and (3)Ht ,3t/2 > tΩ(t)

Proof. We start with (1) and (2). To choose such a hypergraph, we first specify

s nodes. There are at most ns
choices. Then there are at most t3s

choices of t

hyperedges. Furthermore, the even-degree requirement ensures that every node

of nonzero degree has degree at least 2, so there can be at most 3t/2 nodes of

nonzero degree.
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Finally, (3) follows from standard estimates on the number of t-edge graphs.

�

Proof of Theorem 6.1.4. We recall that the Hermite polynomials are an orthonor-

mal basis for the square-integrable functions of a multivariate Gaussian. (For

background on the Hermite polynomials, see e.g. [142].) Let UD be the set of

multi-indices α over

(n
3

)
such that the Hermite polynomial Hα has coordinate

degree at most D. Equivalently, UD are the multi-indices α over [n]3 such that at

most D entries of α are nonzero.

Using (2.3.1) from Chapter 2, we just need to compute∑
α∈UD ,α,0

(
�

T∼µ
Hα(T)

)
2

. (6.5.1)

It is an elementary fact about univariateHermite polynomials hi that if 1 ∼ N(0, 1),

for every c ∈ �we have � hi(1 + c) � c i
. It follows that

�
T∼µ

Hα(T) �
(
λ

n3/2

) |α |
if α, viewed as a 3-uniform multi-hypergraph, has all even vertex degrees, and

otherwise �T∼µ Hα(T) � 0. Here |α | � ∑
β∈(n

3
) αβ is equivalently the total number

of hyperedges in α.

What is the contribution to the sum in (6.5.1) from α with |α | � t? Such

α’s are in one-to-one correspondence with 3-uniform multi-hypergraphs on n

vertices with exactly t hyperedges, all of whose nodes have even degree and

which have at most D nodes of nonzero degree. LetHt ,s be the number of such

multi-hypergraphs where exactly s nodes have nonzero degree. Then

(6.5.1) �

∞∑
t�1

(
λ

n3/2

)
2t

·
∑

s63D

Ht ,s ,
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where we have used Fact 6.5.1 to remove the terms for s > 3D. By Fact 6.5.1,

∞∑
t�1

(
λ

n3/2

)
2t

·
∑

s63D

Ht ,s 6
3D∑
t�1

(
λ

n3/2

)
2t

·
∑

s63t/2
ns t3s

+

∞∑
t�3D+1

(
λ

n3/2

)
2t

·
∑

s63D

ns t3s

6
3D∑
t�1

(
λ

n3/2

)
2t

· tO(t)n3t/2
+

∞∑
t�3D+1

(
λ

n3/2

)
2t

3Dn3t/2t3D

6
3D∑
t�1

(
λ2

n3/2

) t

· tO(t)
+ D ·

∞∑
t�3D+1

(
λ2

n3/2

) t

· t3D

6
3D∑
t�1

(
λ2D
n3/2

) t

+ 3D ·
∞∑

t�3D+1

(
λ2

n3/2

) t

· t3D

Standard manipulations show that the above is O(1) so long as
λ2

n3/2 6

D/(log D)O(1). The lower bound follows along similar lines, using (3) from

Fact 6.5.1. �

6.6 SoS Lower Bounds for Spiked Tensors

In this section we give an overview of the proof of Theorem 6.1.2. The techniques

involved in proving the main lemmas are almost technically identical to to prove

nearly-tight SoS lower bounds for planted clique [29]: these arguments are

presented in Chapter 11.

To state a formal version of Theorem 6.1.2 PCA it is useful to define a Boolean

version of the problem. For technical convenience we actually prove an SoS lower

bound for this problem; then standard techniques (see [88]) allow us to prove the

main theorem for Gaussian tensors.

Problem 6.6.1 (Spiked k-Tensor, signal-strength λ, boolean version). Distinguish

the following two distributions on Ωk
def

� {±1}(nk).
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• the uniform distribution ν: A ∼ Ω chosen uniformly at random.

• the planted distribution µ: Choose v ∼ {±1}n and let B � v⊗k
. Sample A by

rerandomizing every coordinate of B with probability 1 − λn−k/2
.

We show that the natural SoS relaxation of this problem suffers from a large

integrality gap, when λ is slightly less than nk/4
, even when the degree of the

SoS relaxation is nΩ(1). (When λ � nk/4−ε
, algorithms with running time 2

nO(ε)

are known for k � O(1).

Theorem 6.6.2 (Formal version of Theorem 6.1.2). Let k � O(1). For A ∈ Ωk , let

SoSd(A)
def

� max

˜�

˜�〈x⊗k ,A〉 s.t. ˜� is a degree-d pseudoexpectation satisfying {‖x‖2 � 1} .

There is a constant c so that for every small enough ε > 0, if d 6 nc·ε
, then for large

enough n,

�
A∼Ω
{SoSd(A) > nk/4−ε} > 1 − o(1)

and

�
A∼Ω

SoSd(A) > nk/4−ε .

Moreover, the latter also holds for A with iid entries fromN(0, 1).3

To prove the theorem we will exhibit for a typical sample A from the uniform

distribution a degree nΩ(ε) pseudodistribution ˜� which satisfies {‖x‖2 � 1}

and has
˜�〈x⊗k ,A〉 > nk/4−ε

. The following lemma ensures that the pseudo-

distribution we exhibit will be PSD. The function Λ6D
in the lemma is the

pseudocalibrated candidate pseudoexpectation.

Lemma 6.6.3. Let d ∈ � and let Nd �
∑

s6d n(n − 1) · · · (n − (s − 1)) be the number

of 6 d-tuples with unique entries from [n]. There is a constant ε∗ independent of n such

3For technical reasons we do not prove a tail bound type statement for Gaussian A, but we

conjecture that this is also true.
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that for any ε < ε∗ also independent of n, the following is true. Let λ � nk/4−ε
. Let

µ(A) be the density of the following distribution (with respect to the uniform distribution

on Ω � {±1}(nk)).

The Planted Distribution: Choose v ∼ {±1}n uniformly. Let B � v⊗k
. Sample

A by

• replacing every coordinate of B with a random draw from {±1} independently with

probability 1 − λn−k/2
,

• then choosing a subset S ⊆ [n] by including every coordinate with probability n−ε,

• then replacing every entry of B with some index outside S independently with a

uniform draw from {±1}.

Let Λ : Ω→ �Nd×Nd
be the following function

Λ(A) � µ(A) · �
v |A

v⊗62d

Here we abuse notation and denote by x6⊗2d
the matrix indexed by tuples of length 6 d

with unique entries from [n]. For D ∈ �, let Λ6D
be the projection of Λ into the

degree-D real-valued polynomials on {±1}(nk). There is a universal constant C so that if

Cd/ε < D < nε/C, then for large enough n

�
A∼Ω
{Λ6D(A) � 0} > 1 − o(1) .

For a tensor A, the moment matrix of the pseudodistribution we exhibit will

be Λ6D(A). We will need it to satisfy the constraint {‖x‖2 � 1}. This follows

from the following general lemma. (The lemma is much more general than what

we state here, and uses only the vector space structures of space of real matrices

and matrix-valued functions.)
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Lemma 6.6.4. Let k ∈ �. Let V be a linear subspace of �N×M
. Let Ω � {±1}(nk). Let

Λ : Ω → V . Let Λ6D
be the entrywise orthogonal projection of Λ to polynomials of

degree at most D. Then for every A ∈ Ω, the matrix Λ6D(A) ∈ V .

Proof. The function Λ is an element of the vector space �N×M ⊗ �Ω. The

projection ΠV : �N×M → V and the projection Π6D from �Ω to the degree-D

polynomials commute as projections on �N×M ⊗ �Ω, since they act on separate

tensor coordinates. It follows that Λ6D ∈ V ⊗ (�Ω)6D
takes values in V . �

Last, wewill require a couple of scalar functions ofΛ6D
to bewell concentrated.

Lemma 6.6.5. Let Λ, d , ε,D be as in Lemma 6.6.3. The function Λ6D
satisfies

• �A∼Ω{Λ6D
∅,∅ (A) � 1 ± o(1)} > 1 − o(1) (Here Λ∅,∅ � 1 is the upper-left-most

entry of Λ.)

• �A∼Ω{〈Λ6D(A),A〉 � (1 ± o(1)) · n3k/4−ε} > 1 − o(1) (Here we are abusing

notation to write 〈Λ6D(A),A〉 for the inner product of the part of Λ6D
indexed by

monomials of degree k and A.)

The Boolean case of Theorem 6.6.2 follows from combining the lemmas. The

Gaussian case can be proved in a black-box fashion from the Boolean case by the

following proposition.

Proposition 6.6.6. Let k ∈ � and let A ∼ {±1}(nk) be a symmetric random Boolean

tensor. Suppose that for every A ∈ {±1}(nk) there is a degree-d pseudodistribution
˜�

satisfying {‖x‖2 � 1} such that

�
A

˜�〈x⊗k ,A〉 � C .
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Let T ∼ N(0, 1)(nk) be a Gaussian random tensor. Then

�
T

max

˜�

˜�〈x⊗k , T〉 > Ω(C)

where the maximization is over pseudodistributions of degree d which satisfy {‖x‖2 � 1}.

Proof. For a tensor T ∈ (�n)⊗k
, let A(T) have entries A(T)α � sign(Tα). Now

consider

�
T

˜�A(T)〈x⊗k , T〉 �
∑
α

�
T

˜�A(T) xαTα

where α ranges over multi-indices of size k over [n]. We rearrange each term

above to

�
A(T)
( ˜�A(T) xα) · �

Tα |A(T)
Tα � �

A(T)
( ˜�A(T) xα) · A(T)α · � |1 |

where 1 ∼ N(0, 1). Since � |1 | is a constant independent of n, all of this is

Ω(1) ·
∑
α

�
A

˜�A xα · Aα � C . �

6.7 Matrix Concentration Bounds for Spiked Tensors

Theorem 6.7.1 (Restatement of Lemma 6.3.4). Let c ∈ {1, 2} and d > 1 an integer.

Let A1, . . . ,Anc be iid random matrices in {±1}nd×nd
or with independent entries from

N(0, 1). Then, with probability 1 − O(n−100), ∑
i∈[nc]

Ai ⊗ Ai −�Ai ⊗ Ai

 - √dn(2d+c)/2 · (log n)1/2 .

Now we prove Theorem 6.7.1. Let A1, . . . ,Anc be as in Theorem 6.7.1. We

first need to get a handle on their norms individually, for which we need the

following lemma.
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Lemma 6.7.2. Let A be a random matrix in {±1}nd×nd
or with independent entries from

N(0, 1). For all t > 1, the probability of the event {‖A‖ > tnd/2} is at most 2
−t2nd/K

for

some absolute constant K.

Proof. The subgaussian norm of the rows of A is constant and they are identically

and isotropically distributed. Hence Theorem 5.39 of [175] applies to give the

result. �

Since the norms of the matrices A1, . . . ,Anc are concentrated around nd/2
(by

Theorem 6.7.2), it will be enough to prove Theorem 6.7.1 after truncating the

matrices A1, . . . ,Anc . For t > 1, define iid randommatrices A′
1
, . . . ,A′nc such that

A′i
def

�


Ai if ‖Ai ‖ 6 tnd/2,

0 otherwise

for some t to be chosen later. Theorem 6.7.2 allows us to show that the random

matrices Ai ⊗Ai and A′i ⊗A′i have almost the same expectation. For the remainder

of this section, let K be the absolute constant from Theorem 6.7.2.

Lemma 6.7.3. For every i ∈ [nc] and all t > 1, the expectations of Ai ⊗Ai and A′i ⊗A′i

satisfy �[Ai ⊗ Ai] −�[A′i ⊗ A′i]
 6 O(1) · 2−tnd/K .

Proof. Using Jensen’s inequality and that Ai � A′i unless ‖Ai ‖ > tnd/2
, we have

‖�Ai ⊗ Ai − A′i ⊗ A′i ‖ 6 � ‖Ai ⊗ Ai − A′i ⊗ A′i ‖ Jensen’s inequality

�

∫ ∞

tnd/2
�(‖Ai ‖ >

√
s) ds since Ai � A′i unless ‖Ai ‖ > tnd/2

6

∫ ∞

tnd/2
2
−s/K ds by Theorem 6.7.2
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6
∞∑

i�0

2
−tnd/2/K · 2−i/K

discretizing the integral

� O(2−tnd/2/K) as desired. �

Lemma 6.7.4. Let B′
1
, . . . , B′nc be i.i.d. matrices such that B′i � A′i ⊗ A′i −�[A

′
i ⊗ A′i].

Then for every C > 1 with C 6 3t2nc/2
,

�


 ∑

i∈[nc]
B′i

 > C · n(2d+c)/2
 6 2n2d · exp

(
−C2

6t4

)
.

Proof. For R � 2t2nd
, the random matrices B′

1
, . . . , B′nc satisfy {‖B′i ‖ 6 R} with

probability 1. Therefore, by the Bernstein bound for non-symmetric matrices

[170, Theorem 1.6], Theorem 5.0.8,

�

{∑nc

i�1

B′i

 > s
}
6 2n2d · exp

(
−s2/2

σ2 + Rs/3

)
,

where σ2 � max{‖∑i � B′i(B
′
i)
>‖ , ‖∑i �(B′i)

>B′i ‖} 6 nc · R2
. For s � C · n(2d+c)/2

,

the probability is bounded by

�

{∑n

i�1

B′i

 > s
}
6 2n2d · exp

(
−C2 · n(2d+c)/2

4t4 · n2d+c + 2t2C · n(4d+c)/2/3

)
.

Since our parameters satisfy t2C · n(4d+c)/2/3 6 t4n(2d+c)
, this probability is

bounded by

�

{∑n

i�1

B′i

 > s
}
6 2n2d · exp

(
−C2

6t4

)
. �

At this point, we have all components of the proof of Theorem 6.7.1.

Proof of Theorem 6.7.1. By Theorem 6.7.4,

�

{∑
i
A′i ⊗ A′i −

∑
i
�[A′i ⊗ A′i]

 > C · n(2d+c)/2

}
6 2n2d · exp

(
−C2

Kt4

)
.
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At the same time, by Theorem 6.7.2 and a union bound,

�

{
A1 � A′

1
, . . . ,An � A′nc

}
> 1 − nc · 2−t2nd/K .

By Theorem 6.7.3 and triangle inequality,∑
i
�[Ai ⊗ Ai] −

∑
i
�[A′i ⊗ A′i]

 6 nc · 2−tnd/K .

Together, these bounds imply

�

{∑
i
Ai ⊗ Ai −

∑
i
�[Ai ⊗ Ai]

 > C · n(2d+c)/2
+ nc · 2−tnd/K

}
6 2n2d · exp

(
−C2

Kt4

)
+ nc · 2−t2nd/K .

We choose t � 1 and C � 100

√
2Kd log n and assume that n is large enough

so that C · n(2d+c)/2 > nc · 2−tnd/K
and 2n2d · exp

(
−C2

Kt4

)
> nc · 2−t2nd/K

. Then the

probability satisfies

�

{∑
i
Ai ⊗ Ai −

∑
i
�[Ai ⊗ Ai]

 > 20n(2d+c)/2√
2Kd log n

}
6 4n−100 . �

6.8 Chapter Notes

Attributions. The original results presented in this chapter first appeared in

[92, 91, 88], joint works with (collectively) Pravesh Kothari, Aaron Potechin,

Prasad Raghavendra, Tselil Schramm, Jonathan Shi, and David Steurer.

Tensor principal component analysis and origins of the spiked tensor model.

The spiked tensor model was introduced to the computer science literature by

Montanari and Richard [159] as a statistical model for tensor principal component
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analysis. (Consequently in recent literature the problems considered in this

chapter often go under the name “tensor PCA”.)

Principal component analysis (PCA), the process of identifying a direction

of largest possible variance from a matrix of pairwise correlations, is among

the most basic tools for data analysis in a wide range of disciplines. In recent

years, variants of PCA have been proposed that promise to give better statistical

guarantees for many applications. These variants include restricting directions

to the nonnegative orthant (nonnegative matrix factorization) or to directions

that are sparse linear combinations of a fixed basis (“sparse principal component

analysis”).

Often we have access to not only pairwise but also higher-order correlations.

In this case, analog of PCA is to find a direction with largest possible third

moment or other higher-order moment (higher-order PCA or tensor PCA), a

problem which amounts to optimizing a random degree-3 or higher polynomial..

The spiked tensor model offers a simple average-case setting in which to study

this problem: so long as λ �
√

n, the spike is the unique maximum of the

degree-k random polynomial 〈T, x⊗k〉.

Montanari and Richard showed a version of Theorem 6.1.1 which applies only

to even k (and offers sub-optimal guarantees for odd k).

Relation to random constraint satisfaction. The spiked and Gaussian tensor

models are related to dense random constraint satisfaction problems (CSPs), most

closely random k-XOR (sometimes called k-LIN). (See [7, 153] for definitions.)

The spiked k-tensor model with SNR λ behaves like random k-XORwith about λ2

clauses, and all of the theorems stated in this section have analogues for random
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k-XOR. Random k-XOR is fundamental among random CSPs in the dense regime

(many more clauses than variables) because refutation and estimation algorithms

for random/planted k-XOR can be transformed into algorithms for any other

random CSP [7].

The proofs of algorithmic results for k-XOR have a similar flavor to the

proofs we presented here, although some matrix concentration arguments must

be changed to accommodate sparse random matrices. SoS lower bounds for

k-XOR and other CSPs can also be proved using pseudocalibration (though

this is a reinterpretation of arguments originally constructed with other ideas)

[81, 107, 28]) – however, the technical arguments for PSDness of the associated

moment matrix differ substantially.

Further related work Random tensors make appearances in fields besides

theoretical computer sicnece. As one example, they appear in statistical physics

in study of spherical p-spin models. While Gaussian tensors (corresponding to

our null model H0 in this chapter) have been studied for some time [129], spiked

models have just recently entered consideration [18, 117].

Simultaneously with [92] (in which Theorem 6.1.1 first appears), Barak and

Moitra used similar ideas to design an SoS algorithm for a related tensor problem:

tensor completion [32]. Subsequent papers built (substantially) on these ideas

to solve a number of tensor-based inference problems with the SoS method

– some ideas from these papers are presented in later chapters of this thesis

[91, 150, 134, 77, 121].

The lower bound Theorem 6.1.2, proved in [88] using ideas from [29], was

anticipated by a simpler lower bound proved in [92] which rules out only to
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degree-4 SoS proofs to improve on n3/4
-refutation for the spiked tensor model.
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CHAPTER 7

DETECTING SPARSE VECTORS

Estimation of sparse structures is a key tool in high-dimensional statistics –

the so-called “bet on sparsity” principle suggests that for many high-dimensional

estimation tasks, the ground truth to be estimated is sparse in some basis [74].

Leveraging this sparsity has led to some of the most impressive accomplishments

of machine learning and signal processing, like compressed sensing and matrix

completion. Many algorithmswhich exploit sparse structure in data employ some

form of `1 regularization, as in LASSO regression, or thresholding technique, as

in sparse principal component analysis [62].

In this chapter, we give a spectral algorithm for the planted sparse vector

problem. Our algorithm has performance guarantees similar to those of the SoS

method, which offers the best guarantees for this problem known to be achievable

in polynomial time.

For simplicity, we study a hypothesis testing version of the problem. The

input is a basis for a d-dimensional subspace V of �n
, and the goal is to test the

following two hypotheses:

H0 : V is a uniformly random d-dimensional subspace.

H1 : V is the span of a uniformly random (d−1)-dimensional subspace

and a random vector v ∈ �n
with εn nonzero coordinates.

Estimation and refutation versions of this problem are also of interest – we refer

the reader to [30, 92] – but the main ideas are captured by our hypothesis testing

algorithm.
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Like the spectral algorithms for spiked tensors in the last chapter, our algorithm

here is based on spectra of matrices whose entries are low-degree polynomials

in the problem input (viewed as usual as a matrix or tensor). Together with

our spectral algorithms for spiked tensors, this sets it apart from traditional

spectral methods, which typically focus on a small number of canonical matrices

– adjacency and Laplacian matrices of graphs, for example – whose entries are

typically linear functions of problem inputs.

Designing algorithms using these high(er) degree matrix-valued functions

expands the algorithm-design possibilities but also introduces new technical

challenges, especially because the entries of the resulting random matrices

have complex dependencies. As with spiked tensors, we will be guided by an

SoS-based algorithm and its analysis. And again we will obtain an algoirithm

with nearly linear running time, whose guarantees match or nearly-match those

obtained by SoS. The SoS algorithm in question is due to work of Barak, Kelner,

and Steurer [30].

7.1 Main Result

Detecting a planted sparse vector problem gets more difficult as the subspace

dimension d � d(n) grows by comparison to the ambient dimension n, and as the

vector v becomes less sparse. Our algorithm for this problem runs in nearly linear

time in the input size, and matches the best guarantees known to be achievable

by polynomial-time algorithms, up to a polylogarithmic factor in the subspace

dimension [30]. In what follows, we use the notation 1(n) 6 ˜O( f (n)) to denote

that there is a constant C such that for every large-enough n, 1(n) 6 f (n)(log(n))C.
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Theorem 7.1.1 (Planted sparse vector in nearly-linear time). For every ε > 0 there

exists an algorithm which, given d orthonormal vectors v1, . . . , vd in �n
, outputs null

or alternative, solving the planted sparse vector hypothesis testing problem correctly

with probability 1 − o(1) so long as d 6
√

n/(log n)O(1). The running time of the

algorithm is
˜O(nd).

7.2 Algorithm Overview

Sparsity, p-norms, and leverage scores We will describe the connections be-

tween our algorithm and SoS below, as well as the ideas necessary to obtain

near-linear running time. First we describe the algorithm directly and see how

simple statistics can leverage sparsity.

Recall that for a vector v ∈ �n
and p ∈ �, the p norm is given by ‖v‖p �(∑

i6n |vi |p
)
1/p

. If v is chosen as a unit vector, ‖v‖2 � 1, then its p norms for p , 2

reveal information about its sparsity. In particular, we extensively use the idea

that if v has only εn nonzero entries, then its 4-norm is at least (εn)−1
; compare

this to the 4-norm of a random unit vector w in �n
, which is about n−1

.

Our algorithm will attempt to detect, given a subspace V of �n
, whether V

contains a unit vector v of 4-norm (εn)−1
. But how to access this information

with only simple statistics?

The algorithm recieves as input d orthonormal vectors v1, . . . , vd which span

a subspace V . Let us first imagine a simpler situation: the algorithm recieves

a matrix V � (v1, . . . , vd) where v2, . . . , vd ∼ N(0, 1

n Id) and v1 either is also

random fromN(0, 1

n Id) or is a unit vector with at most εn nonzero entries. (Of
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course this hypothesis testing problem is very easy, but we will gain some insight

from it nonetheless.)

Our first observation is that the distribution of 2-norms of the rows of the

matrix V are affected by the presence of the sparse vector v. If v is a typical

εn-sparse vector, its nonzero entries have magnitude roughly

√
εn. If v(i) is

nonzero, then ‖ai ‖2 ≈ d−1

n +
1

εn , while if v(i) is zero, ‖ai ‖2 ≈ d
n . (The quantities

‖ai ‖ are well studied – in this context they are called leverage scores.)

While this difference may seem small, it is enough to noticeably affect the

distribution of ‖ai ‖2 across 1 6 i 6 n. A direct computation shows that for an

appropriate choice of α ≈ d/n, the polynomial

f (V) �
∑
i6n

(‖ai ‖2 − α)‖ai ‖2

has expectation zero and variance O(d3/n3) if v1 ∼ N(0, 1

n Id), but has expectation

Ω(εn)−1
if v1 is εn-sparse. This makes it a successful simple statistic (after

normalization) so long as d � n1/3
.

Finally, f (V) depends only on the norms ‖ai ‖2, which are invariant under

rotations of Span{v1, . . . , vd}, so even if given VR for some d × d orthogonal

matrix R this still yields a successful simple statistic. While the existence of a

sparse vector is apparent from the matrix V , for, say, random R the matrix VR is

almost a random orthonormal basis of Span{v1, . . . , vd}. (Eventually we show

that any orthogonal basis suffices.)

Our main result improves over this initial simple statistic to tolerate larger

subspace dimension – d 6
√

n/(log n)O(1) – by employing the top eigenvalue of

the matrix

∑
i6n(‖ai ‖2 − d

n )aiai
T
. This matrix has the advantage that its spectrum

can also be used to solve the estimation problem; see [91].
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Next, we describe how one might invent the matrix

∑
i6n(‖ai ‖2 − d

n )ai a>i by

studying the SoS algorithm of [30] and its analysis.

From degree-4 SoS to nearly-linear time: compressing matrices with partial

traces The SoS algorithm of [30]which guides the development of our algorithm

for recovery of planted sparse vectors uses degree-4 SoS – the underlying SDP

involves n2 × n2
matrices. Our algorithms will avoid the use of semidefinite

programming; we will also have to avoid doing even elementary linear-algebraic

operations in n2
dimensions (like matrix-vector multiplication, for example) to

obtain a nearly-linear running time. We already did this once in Chapter 6 in

designing our nearly-linear time algorithm; now we discuss the technique used

to arrive at an n × n matrix from an n2 × n2
one a little further.

In both the spiked tensor model from Chapter 6 and our planted sparse vector

algorithm, eventually we obtain a large matrix (suggested by a degree-4 SoS

algorithm) which consists of a rank-one spike obscured by random noise. We

show that in some situations, this large matrix can be compressed significantly

without loss in the signal by applying partial trace operations. In these situations,

the partial trace yields a smaller, n × n matrix with the same signal-to-noise ratio

as the large matrix suggested by degree-4 SoS, even in situations when lower

degree sum-of-squares approaches are known to fail (as for the planted sparse

vector and spiked tensor problems).1

The partial trace Tr�d : �d2×d2 → �d×d
is the linear operator that satisfies

Tr�d A⊗B � (Tr A) ·B for all A, B ∈ �d×d
. To see how the partial trace can be used

1 For both problemswe usematrices with dimensions corresponding to degree-2 SoS programs.

An argument of Spielman et al. ([165], Theorem 9) shows that degree-2 sum-of-squares can only

find sparse vectors with sparsity k 6 ˜O(
√

n), wherease we achieve sparsity as large as k � Θ(n).
For spiked tensors, the degree-2 SoS program cannot even express the objective function.
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to compress large matrices to smaller ones with little loss, consider the following

problem: Given a matrix M ∈ �d2×d2

of the form M � τ · (v ⊗ v)(v ⊗ v)> + A ⊗ B

for some unit vector v ∈ �d
and matrices A, B ∈ �d×d

, we wish to recover the

vector v. (This is a simplified version of the situation in Chapter 6 and in planted

sparse vector.)

It is straightforward to see that the matrix A ⊗ B has spectral norm ‖A ⊗ B‖ �

‖A‖ · ‖B‖, and so when τ � ‖A‖‖B‖, the matrix M has a noticeable spectral gap,

and the top eigenvector of M will be close to v ⊗ v. If | Tr A| ≈ ‖A‖, the matrix

Tr�d M � τ · vv> + Tr(A) · B has a matching spectral gap, and we can still recover

v, but now we only need to compute the top eigenvector of a d × d (as opposed to

d2 × d2
) matrix.2

If A is a Wigner matrix (e.g. a symmetric matrix with iid ±1 entries), then

both Tr(A), ‖A‖ ≈
√

n, and the above condition is indeed met. In our average

case/machine learning settings the “noise” component is not as simple as A ⊗ B

with A a Wigner matrix. Nonetheless, we are able to ensure that the noise

displays a similar behavior under partial trace operations. In Chapter 6 this trick

succeeded without further work: for planted sparse vector we will have to center

the matrix eigenvalue distribution in order to obtain the kinds of cancellations in

the noise described here.

Partial trace operations have previously been applied for rounding SoS

relaxations. Specifically, the operation of reweighing and conditioning, used in

rounding algorithms for sum-of-squares such as [33, 155, 30, 31, 119], corresponds

to applying a partial trace operation to the moments matrix returned by the

2In some of our applications, the matrix M is only represented implicitly and has size super-

linear in the size of the input, but nevertheless we can compute the top eigenvector of the partial

trace Tr�d M in nearly-linear time.
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sum-of-squares relaxation.

SoS analysis Recall that in this problem we are given a linear subspace U

(represented by some basis) that is spanned by a k-sparse unit vector v0 ∈ �d

and random unit vectors v1, . . . , vd−1
∈ �d

. The goal is to recover the vector v0

approximately.

Let A ∈ �n×d
be a matrix whose columns form an orthonormal basis for

U. Our starting point is the polynomial f (x) � ‖Ax‖4
4
�

∑n
i�1
(Ax)4i . Previous

work showed that for d �
√

n the maximizer of this polynomial over the sphere

corresponds to a vector close to v0 and that degree-4 sum-of-squares is able

to capture this fact [27, 30]. Indeed, typical random vectors v in �n
satisfy

‖v‖4
4
≈ 1/n whereas our planted vector satisfies ‖v0‖4

4
> 1/k � 1/n, and this

degree-4 information is leveraged by the SoS algorithms.

The polynomial f has a convenient matrix representation M �
∑n

i�1
(aia>i )

⊗2
,

where a1, . . . , an are the rows of the generator matrix A. It turns out that the

eigenvalues of this matrix indeed give information about the planted sparse

vector v0. In particular, the vector x0 ∈ �d
with Ax0 � v0 witnesses that M has

an eigenvalue of at least 1/k because M’s quadratic form with the vector x⊗2

0

satisfies 〈x⊗2

0
,Mx⊗2

0
〉 � ‖v0‖4

4
> 1/k. If we let M′ be the corresponding matrix

for the subspace U without the planted sparse vector, M′ turns out to have only

eigenvalues of at most O(1/n) up to a single spurious eigenvalue with eigenvector

far from any vector of the form x ⊗ x [27].

It follows that in order to hypothesis test between a random subspace with a

planted sparse vector (alternative hypothesis) and a completely random subspace

(null hypothesis), it is enough to compute the second-largest eigenvalue of a
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d2
-by-d2

matrix (representing the 4-norm polynomial over the subspace as above).

Improvements The best running time we can hope for with this basic approach

is O(d4) (the size of the matrix). Since we are interested in d 6 O(
√

n), the

resulting running time O(nd2) would be subquadratic but still super-linear in

the input size n · d (for representing a d-dimensional subspace of �n
). To speed

things up, we use the partial trace approach outlined above. We will begin

by applying the partial trace approach naively, obtaining reasonable bounds,

and then show that a small modification to the matrix before the partial trace

operation allows us to achieve even smaller signal-to-noise ratios.

In the alternative case, we may approximate M ≈ 1

k (x0x>
0
)⊗2 + Z, where x0

is the vector of coefficients of v0 in the basis representation given by A (so that

Ax0 � v0), and Z is the noise matrix. Since ‖x0‖ � 1, the partial trace operation

preserves the projector (x0x>
0
)⊗2

in the sense that Tr�d (x0x>
0
)⊗2 � x0x>

0
. Hence,

with our heuristic approximation for M above, we could show that the top

eigenvector of Tr�d M is close to x0 by showing that the spectral norm bound

‖Tr�d Z‖ 6 o(1/k).

The partial trace of our matrix M �
∑n

i�1
(aia>i ) ⊗ (aia>i ) is easy to compute

directly,

N � Tr�d M �

n∑
i�1

‖ai ‖2
2
· aia>i .

In the alternative case (random subspace with planted sparse vector), a direct

computation shows that

λalt > 〈x0,Nx0〉 ≈ d
n ·

(
1 +

n
d ‖v0‖4

4

)
> d

n

(
1 +

n
dk

)
.

Hence, a natural approach to distinguish between the alternative case and null

cases is to upper bound the spectral norm of N in the null case.
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In order to simplify the bound on the spectral norm of N in the null case,

suppose that the columns of A are iid samples from the Gaussian distribution

N(0, 1

d Id) (rather than an orthogonal basis for the random subspace)–Section 7.3.1

establishes that this simplification is legitimate. In this simplified setup, the

matrix N in the null case is the sum of n iid matrices {‖ai ‖2 · aia>i }, and we can

upper bound its spectral norm λnull by d/n · (1+O(
√

d/n)) using standard matrix

concentration bounds. Hence, using the spectral norm of N, we will be able to

distinguish between the null and alternative cases so long as√
d/n � n/(dk) �⇒ λnull � λalt .

For linear sparsity k � ε · n, this inequality is true so long as d � (n/ε2)1/3, which

is somewhat worse than the bound

√
n bound on the dimension that we are

aiming for.

Recall that Tr B �
∑

i λi(B) for a symmetric matrix B. As discussed above,

the partial trace approach works best when the noise behaves as the tensor of

two Wigner matrices, in that there are cancellations when the eigenvalues of

the noise are summed. In our case, the noise terms (ai a>i ) ⊗ (ai a>i ) do not have

this property, as in fact Tr aia>i � ‖ai ‖2 ≈ d/n. Thus, in order to improve the

dimension bound, we will center the eigenvalue distribution of the noise part of

the matrix. This will cause it to behave more like a Wigner matrix, in that the

spectral norm of the noise will not increase after a partial trace. Consider the

partial trace of a matrix of the form

M − α · Id ⊗
∑

i

ai a>i ,

for some constant α > 0. The partial trace of this matrix is

N′ �
n∑

i�1

(‖ai ‖2
2
− α) · aia>i .
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We choose the constant α ≈ d/n such that our matrix N′ has expectation 0

in the null case, when the subspace is completely random. In the alternative

case, the Rayleigh quotient of N′ at x0 simply shifts as compared to N, and we

have λalt > 〈x0,N′x0〉 ≈ ‖v0‖4
4
> 1/k. On the other hand, in the null case, this

centering operation causes significant cancellations in the eigenvalues of the

partial trace matrix (instead of just shifting the eigenvalues). In the null case, N′

has spectral norm λnull 6 O(d/n3/2) for d �
√

n. Therefore, the spectral norm of

the matrix N′ allows us to distinguish between the alternative and null case as

long as d/n3/2 � 1/k, which is satisfied as long as k � n and d �
√

n.

7.3 Algorithm and Analysis

Theorem 7.1.1 follows immediately from the following two lemmas, together

with two observations:

1. The top eigenvalue of the matrix

∑
i6n(‖ai ‖2 − d

n )ai a>i can be computed

(with sufficient accuracy) in
˜O(nd) time.

2. Any unit vector v ∈ �n
with εn nonzero entries has ‖v‖4

4
�

∑
i6n v(i)4 > 1

εn .

The first lemma bounds the spectral norm of the matrix

∑
i6n(‖ai ‖2 − d

n )aiai
T

in the null case.

Lemma 7.3.1. Let v1, . . . , vd ∈ �n
be d random (Haar-distributed) orthonormal

vectors. Let V � (v1, . . . , vd) ∈ �n×d
be the matrix whose columns are v1, . . . , vd . Let

a1, . . . , an ∈ �d
be the rows of V . With high probability,

∑
i6n(‖ai ‖2 − d

n )ai ai
T
 6

max(d/n3/2, d2/n2) · (log n)O(1).
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The second lemma shows that the same matrix has a large eigenvalue when

v1, . . . , vd span a sparse vector.

Lemma 7.3.2. Suppose v ∈ �n
has at most εn nonzero entries, and 11, . . . , 1d−1

∼

N(0, Id). Let v1, . . . , vd be an orthonormal basis for Span{v , 11, . . . , 1d−1
}. Let

V � (v1, . . . , vd) and let a1, . . . , an be the rows of the matrix V . With high probability,

the matrix

∑
i6n(‖ai ‖2 − d

n )aia>i has an eigenvalue of magnitude at least Ω(‖v‖4
4
) −

˜O
(

d(d+
√

n)
n2

)
− O(‖v‖2

4
) ·
√

d
n − 1

n . .

Proof of Theorem 7.1.1. The algorithm is simply to output alternative if the maxi-

mum eigenvalue of

∑
i6n(‖ai ‖2− d

n )ai a>i is at least (1/εn)−d/n and null otherwise.

This algorithm achieves the guarantees of the theorem so long as

C‖v‖4
4
) − ˜O

(
d(d +

√
n)

n2

)
− O(‖v‖2

4
) ·
√

d
n
− 1

n
� max(d/n3/2, d2/n2) · (log n)O(1)

for some small-enough constant C. Since ‖v‖4
4
> (εn)−1

, for every small-enough

εwe can choose d 6
√

n/(log n)O(1) so that the right-hand side is o(1/n)while the

left isΩ(εn)−1
. To implement it in nearly-linear time, it is enough to do (log n)O(1)

matrix-vector multiplications by the matrix

∑
i6n(‖ai ‖2 − d/n)aiai

T
(using the

power method with a random starting point), each of which can be accomplished

in linear time. �

7.3.1 Basis Swap Lemmas

The main technical difficulty in proving Lemmas 7.3.1 and 7.3.2 is to exchange

the arbitrary basis v1, . . . , vd for the subspace V for a nice basis, where one of the

basis vectors is the sparse vector v (if it exists) and the entries of the (other) basis

vectors are iid Gaussian vectors. The following lemmas will accomplish this.
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In the sequel, we write w.ov.p. for "with overwhelming probability," meaning

probability 1 − n−ω(1).

First, the most critical fact: orthogonalizing does not change the leverage

scores too much, in either the null or alternative models. 3

Lemma 7.3.3. Let v ∈ �n
be a unit vector and let b1, . . . , bn ∈ �d−1

be iid from

N(0, 1

n Idd−1
). Let ai ∈ �d

be given by ai :� (v(i) bi). Let A :�
∑

i aia>i . Let c ∈ �d−1

be given by c :�
∑

i v(i)bi . Then for every index i ∈ [n], w.ov.p.,��‖A−1/2ai ‖2 − ‖ai ‖2
�� 6 ˜O

(
d +
√

n
n

)
· ‖ai ‖2 .

Lemma 7.3.4. Let a1, . . . , an ∈ �d
be independent random vectors from N(0, 1

n Id)

with d 6 n and let A �
∑n

i�1
aia>i . Then for every index i ∈ [n], with overwhelming

probability 1 − dω(1),��〈a j ,A−1a j〉 − ‖a j ‖2
�� 6 ˜O

(
d +
√

n
n

)
· ‖a j ‖2 .

The proof uses standard concentration and matrix inversion formulas, and

can be found in Section 7.3.4. We also need the following lemmas, which follow

from [175], theorem 5.9 – again there is one lemma for the null model and one

for the alternative.

Lemma 7.3.5. Let v ∈ �n
be a unit vector. Let b1, . . . , bn ∈ �d−1

be iid

from N(0, 1

n Idd−1
). Let ai ∈ �d

be given by ai :� (v(i) bi). Then w.ov.p.

‖∑n
i�1

aia>i − Idd ‖ 6 ˜O(d/n)1/2. In particular, when d � o(n), this implies that w.ov.p.

‖(∑n
i�1

aia>i )
−1 − Idd ‖ 6 ˜O(d/n)1/2 and ‖(∑n

i�1
ai a>i )

−1/2 − Idd ‖ 6 ˜O(d/n)1/2.

Fact 7.3.6 (Special case of [176], Theorem 5.58). Let b1, . . . , bn ∼ N(0, 1

n Id) be iid.

3Strictly speaking the good basis does not have leverage scores since it is not orthogonal, but

we can still talk about the norms of the rows of the matrix whose columns are the basis vectors.
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Then with high probability, ∑
i6n

bibi
T − Id

 6 O

(√
d
n

)
.

7.3.2 Analysis for null model

In this section we prove Lemma 7.3.1. The following is the key fact.

Fact 7.3.7. Let b1, . . . , bn ∼ N(0, 1

n Idd) be independent d-dimensional Gaussian vectors,

with d 6 n. With high probability,∑(‖bi ‖2 − d
n )bi bi

T
 6 max

(
d

n3/2 ,
d2

n2

,
d
√

log n

n3/2

)
· (log n)O(1)

where ‖ · ‖ is the spectral norm, so long as d �
√

n.

Proof. Let B � C max( dn ,
log n

n ) for a big-enough C we choose later. We can replace

bi with b′i � bi · 1‖bi ‖26B, since by standard concentration for big-enough C, we

have �(‖bi ‖2 > C max(d/n , log n/n) 6 n−10
. Then we note that the matrices

(‖b′i ‖
2 − d

n )(b′i)(b
′
i)

T
are iid, so we can apply a matrix Bernstein bound. We bound

the covariance of the sum:

�

∑
i6n

(
‖b′i ‖

2 − d
n

)
2

‖b′i ‖
2(b′i)(b

′
i)

T � �
∑
i6n

(
‖b′i ‖

2 − d
n

)
2

‖b′i ‖
2bibi

T

� B · �
∑
i6n

(
‖b′i ‖

2 − d
n

)
2

bibi
T

� B · O
(

d
n2

)
· �

∑
i6n

bibi
T
+ O(n−8)

where in the last step we have replaced b′i by bi and exploited that the variance

of ‖bi ‖2 is quite small to replace (‖bi ‖2 − d/n)2 with O(d/n2). (Because of

the presence of bibi
T
, we are not really working with the variance per se, and
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some algebra is required to confirm this step, which we have omitted; see [91].)

Finally, � bib>i �
1

n Id, so we conclude that

�∑
i6n

(
‖b′i ‖

2 − d
n

)
2

‖b′i ‖
2(b′i)(b

′
i)

T
 6

Bd/n2 + O(n−8) (the important term is the first one).

Applying Theorem 5.0.8, we conclude that for any t,

�

{∑(‖bi ‖2 − d
n )bibi

T
 > t

}
6 O(log d) · exp

(
−Ω(t2)

Bd
n2

+ n−8 + t · d2

n2

)
and so the conclusion follows. �

Now we can prove Lemma 7.3.1.

Proof of Lemma 7.3.1. We can sample the vectors v1, . . . , vd by first sampling an

n × d matrix of iid Gaussians G with entries fromN(0, 1

n ), then taking v1, . . . , vd

to be the columns of G(G>G)−1/2
. Let b1, . . . , bn be the rows of G, and a1, . . . , an

be the rows of G(G>G)−1/2
. With high probability, by Fact 7.3.7,∑

i6n

(‖bi ‖2 − d
n )bi bi

T

 6 max

(
d

n3/2 ,
d2

n2

,
d
√

log n

n3/2

)
· (log n)O(1) .

Now we apply Lemma 7.3.4 to find that∑
i6n

(‖bi ‖2 − ‖ai ‖2)bibi
T � ˜O

(
d
n
· d +

√
n

n

) ∑
i6n

bibi
T

with high probability. Sincewith high probability

∑
i6n bibi

T � O(1), we conclude

that ∑
i6n

(‖bi ‖2 − d
n )bibi

T −
∑
i6n

(‖ai ‖2 − d
n )bibi

T

 6 ˜O
(

d(d +
√

n)
n2

)
with high probability. Since ai � (

∑
i6n bibi

T)−1/2bi and the matrix (∑i6n bi bi
T) �

O(1), the lemma follows. �
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7.3.3 Analysis for alternative model

Proof of Lemma 7.3.2. Let b1, . . . , bn be the rows of the matrix (v , 11, . . . , 1d). By

rotation invariance, we can take ai � (
∑

bib>i )
−1/2bi . Since with high probability

by Lemma 7.3.5

∑
i6n bib>i � Id ± ˜O(

√
d/n), it will be enough to show that∑

i6n(‖ai ‖2 − d
n )bib>i has a large-enough eigenvalue.

Consider the test vector e1 ∈ �d
, the first standard basis vector. We analyze the

quadratic form

∑
i6n(‖ai ‖2 − d

n )〈bi , e1〉2. By Lemma 7.3.3, with high probability�����∑
i6n

(‖ai ‖2 − d
n )〈bi , e1〉2 −

∑
i6n

(‖bi ‖2 − d
n )〈bi , e1〉2

����� 6∑
i6n

˜O((d+
√

n)/n)‖bi ‖2〈bi , e1〉2

By standard concentration, this is at most
˜O(d(d +

√
n)/n2)with high probability.

So with high probability,∑
i6n

(‖ai ‖2 − d
n )〈bi , e1〉2 >

∑
i6n

(‖bi ‖2 − d
n )〈bi , e1〉2 − ˜O(d(d +

√
n)/n2)

Expanding ‖bi ‖2 �
∑

j6d 〈bi , e j〉2, the first term on the right hand side equals∑
i6n

〈bi , e1〉4 +
∑
i6n

©«
∑

d> j>1

〈bi , e j〉2 − d
n
ª®¬ 〈bi , e1〉2 .

Now recall that 〈bi , e1〉 � v(i), the i-th entry of the sparse vector. So this is equal

to ‖v‖4
4
+

∑∑
i6n

(∑
d> j>1

b2

i j −
d
n

)
v(i)2 where bi j are iid Gaussians N(0, 1/n).

This is a sum of independent random variables (b2

i j − d/n)v(i)2; By standard

concentration, it is atmost 1/n+O(
√

d/n)‖v‖2
4
inmagnitudewith high probability.

Putting it together, we get that with high probability

∑
i6n(‖ai ‖2 − d/n)aiai

T

has an eigenvalue of magnitude at least

Ω(‖v‖4
4
) − ˜O

(
d(d +

√
n)

n2

)
− O(‖v‖2

4
) ·
√

d
n
− 1

n
.

�
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7.3.4 Concentration bounds for basis swap

Here we prove (restatements of) Lemmas 7.3.3 and 7.3.4.

Lemma 7.3.8. Let a1, . . . , an ∈ �d
be independent random vectors fromN(0, 1

n Id)with

d 6 n and let A �
∑n

i�1
aia>i . Then for every unit vector x ∈ �d

, with overwhelming

probability 1 − d−ω(1),��〈x ,A−1x〉 − ‖x‖2
�� 6 ˜O

(
d +
√

n
n

)
· ‖x‖2 .

Proof. Let x ∈ �d
. By scale invariance, we may assume ‖x‖ � 1.

By standard matrix concentration bounds, the matrix B � Id − A has spectral

norm ‖B‖ 6 ˜O(d/n)1/2 w.ov.p. [175, Corollary 5.50]. Since A−1 � (Id − B)−1 �∑∞
k�0

Bk
, the spectral norm of A−1 − Id − B is at most

∑∞
k�2
‖B‖k (whenever the

series converges). Hence, ‖A−1 − Id − B‖ 6 ˜O(d/n)w.ov.p..

It follows that it is enough to show that |〈x , Bx〉| 6 ˜O(1/n)1/2 w.ov.p.. The

random variable n− n〈x , Bx〉 � ∑n
i�1
〈
√

n · ai , x〉2 is χ2
-distributed with n degrees

of freedom. Thus, by standard concentration bounds, n |〈x , Bx〉| 6 ˜O(
√

n)w.ov.p.

[115].

We conclude that with overwhelming probability 1 − d−ω(1),��〈x ,A−1x〉 − ‖x‖2
�� 6 |〈x , Bx〉| + ˜O(d/n) 6 ˜O

(
d +
√

n
n

)
.

�

Lemma 7.3.9 (Restatement of Lemma 7.3.4). Let a1, . . . , an ∈ �d
be independent

random vectors from N(0, 1

n Id) with d 6 n and let A �
∑n

i�1
ai a>i . Then for every

index i ∈ [n], with overwhelming probability 1 − dω(1),��〈a j ,A−1a j〉 − ‖a j ‖2
�� 6 ˜O

(
d +
√

n
n

)
· ‖a j ‖2 .
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Proof. Let A− j �
∑

i, j aia>i . By Sherman–Morrison,

A−1

� (A− j + a ja>j )
−1

� A−1

− j −
1

1 + a>j A−1

− j a j
A−1

− j a ja>j A−1

− j

Thus, 〈a j ,A−1a j〉 � 〈a j ,A−1

− j a j〉 − 〈a j ,A−1

− j a j〉2/(1 + 〈a j ,A−1

− j a j〉). Since ‖ n
n−1

A− j −

Id‖ � ˜O(d/n)1/2 w.ov.p., we also have ‖A−1

− j ‖ 6 2 with overwhelming probability.

Therefore, w.ov.p.,���〈a j ,A−1a j〉 − 〈a j ,A−1

− j a j〉
��� 6 〈a j ,A−1

− j a j〉2 6 4‖a j ‖4 6 ˜O(d/n) · ‖a j ‖2 .

At the same time, by Lemma 7.3.8, w.ov.p.,���〈a j , n
n−1

A−1

− j a j〉 − ‖a j ‖2
��� 6 ˜O

(
d +
√

n
n

)
· ‖a j ‖2 .

We conclude that, w.ov.p.,��〈a j ,A−1a j〉 − ‖a j ‖2
�� 6 ���〈a j ,A−1a j〉 − 〈a j ,A−1

− j a j〉
��� + ���〈a j ,A−1

− j a j〉 − n−1

n ‖a j ‖2
��� + 1

n ‖a j ‖2

6 ˜O
(

d +
√

n
n

)
.

�

Lemma 7.3.10. Let A be a block matrix where one of the diagonal blocks is the 1 × 1

identity; that is,

A �
©«
‖v‖2 c>

c B

ª®¬ �
©«

1 c>

c B

ª®¬ .
for some matrix B and vector c. Let x be a vector which decomposes as x � (x(1) x′)

where x(1) � 〈x , e1〉 for e1 the first standard basis vector.

Then

〈x ,A−1x〉 � 〈x′,
(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
x′〉+2x(1)〈

(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
c , x′〉+(1−c>B−1c)−1x(1)2 .
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Proof. By the formula for block matrix inverses,

A−1

�
©«
(1 − c>B−1c)−1 cT(B − cc>)−1

(B − cc>)−1c (B − cc>)−1

ª®¬ .
The result follows by Sherman-Morrison applied to (B− cc>)−1

and the definition

of x. �

Lemma 7.3.11 (Restatement of Lemma 7.3.3). Let v ∈ �n
be a unit vector and

let b1, . . . , bn ∈ �d−1
have iid entries from N(0, 1/n). Let ai ∈ �d

be given by

ai :� (v(i) bi). Let A :�
∑

i aiaT
i . Let c ∈ �d−1

be given by c :�
∑

i v(i)bi . Then for

every index i ∈ [n], w.ov.p.,��〈ai ,A−1ai〉 − ‖ai ‖2
�� 6 ˜O

(
d +
√

n
n

)
· ‖ai ‖2 .

Proof. Let B :�
∑

i bibT
i . By standard concentration, ‖B−1 − Id‖ 6 ˜O(d/n)1/2

w.ov.p. [175, Corollary 5.50]. At the same time, since v has unit norm, the entries

of c are iid samples from N(0, 1/n), and hence n‖c‖2 is χ2
-distributed with d

degrees of freedom. Thus w.ov.p. ‖c‖2 6 d
n + ˜O(dn)−1/2

. Together these imply

the following useful estimates, all of which hold w.ov.p.:

|c>B−1c | 6 ‖c‖2‖B−1‖op 6
d
n
+ ˜O

(
d
n

)
3/2

‖B−1cc>B−1‖op 6 ‖c‖2‖B−1‖2op 6
d
n
+ ˜O

(
d
n

)
3/2

B−1cc>B−1

1 − c>B−1c


op
6

d
n
+ ˜O

(
d
n

)
3/2

,

where the first two use Cauchy-Schwarz and the last follows from the first two.

We turn now to the expansion of 〈ai ,A−1ai〉 offered by Lemma 7.3.10,

〈ai ,A−1ai〉 �〈bi ,

(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
bi〉 (7.3.1)

124



+ 2v(i)〈
(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
c , bi〉 (7.3.2)

+ (1 − c>B−1c)−1v(i)2 . (7.3.3)

Addressing 7.3.1 first, by the above estimates and Lemma 7.3.4 applied to

〈bi , B−1bi〉, ����〈bi ,

(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
bi〉 − ‖bi ‖2

���� 6 ˜O
(

d +
√

n
n

)
· ‖bi ‖2

w.ov.p.. For 7.3.2, we pull out the important factor of ‖c‖ and separate v(i) from

bi : w.ov.p.,����2v(i)〈
(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
c , bi〉

���� � ����2‖c‖v(i)〈(B−1

+
B−1cc>B−1

1 − c>B−1c

)
c
‖c‖ , bi〉

����
6

����‖c‖2 (
v(i)2 + 〈

(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
c
‖c‖ , bi〉2

)����
6 ˜O

(
d
n

)
(v(i)2 + ‖bi ‖2)

� ˜O
(

d
n

)
‖ai ‖2 ,

where the last inequality follows from our estimates above and Cauchy-Schwarz.

Finally, for 7.3.3, since (1 − c>B−1c) > 1 − ˜O(d/n)w.ov.p., we have that

|(1 − c>B−1c)−1v(i)2 − v(i)2 | 6 ˜O
(

d
n

)
v(i)2 .

Putting it all together,��〈ai ,A−1ai〉 − ‖ai ‖2
�� 6 ����〈bi ,

(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
bi〉 − ‖bi ‖2

����
+

����2v(i)〈
(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
c , bi〉

����
+ |(1 − c>B−1c)−1v(i)2 − v(i)2 |

6 ˜O
(

d +
√

n
n

)
· ‖ai ‖2 . �
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Table 7.1: Comparison of algorithms for the planted sparse vector problem with

ambient dimension n, subspace dimension d, and relative sparsity ε.
Reference Technique Runtime Largest d Largest ε

Demanet, Hand [60] linear programming poly any Ω(1/
√

d)
Barak, Kelner, Steurer [30] SoS, general SDP poly Ω(

√
n) Ω(1)

Qu, Sun, Wright [151] alternating minimization
˜O(n2d5) Ω(n1/4) Ω(1)

this work SoS, partial traces
˜O(nd) ˜Ω(

√
n) Ω(1)

7.4 Chapter Notes

Attributions The material in this chapter is adapted from [91], joint work with

Tselil Schramm, Jonathan Shi, and David Steurer.

History and Related Work The problem of finding a sparse vector planted

in a random linear subspace was introduced by Spielman, Wang, and Wright

as a way of learning sparse dictionaries [165]. Subsequent works have found

further applications and begun studying the problem in its own right [60, 30, 151].

Several kinds of algorithms have been proposed for this problem based on linear

programming (LP), basic semidefinite programming (SDP), sum-of-squares, and

non-convex gradient descent (alternating directions method).

An inherent limitation of simpler convexmethods (LP and basic SDP) [165, 56]

is that they require the relative sparsity of the planted vector to be polynomial in

the subspace dimension (less than n/
√

d non-zero coordinates).

Sum-of-squares and non-convex methods do not share this limitation. They

can recover planted vectors with constant relative sparsity even if the subspace

has polynomial dimension (up to dimension O(n1/2) for sum-of-squares [30] and

up to O(n1/4) for non-convex methods [151]).
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CHAPTER 8

SIMPLE STATISTICS, SOS, AND SHARP THRESHOLDS: ALGORITHMS

AND LOWER BOUNDS FOR COMMUNITY DETECTION

In this chapter, we make a detailed study of community detection and stochas-

tic block models from the perspective of simple statistics and the SoS method. We

design a new algorithm for estimating latent community structure in very sparse

(constant average degree) graphs with overlapping communities. Along the

way, we develop a theory of estimation via simple statistics to complement our

hypothesis testing theory from Chapter 2, and we make progress in explaining

one of the most striking information-computation gaps: the sharp easy-to-hard

phase transition threshold in stochastic block models known as the Kesten-Stigum

threshold.

Our overlapping community recovery algorithm also uses the SoS method in

a novel way in the inference context – instead of using a relaxation of a maximum

likelihood problem as described in Chapter 3, we use SoS to de-noise an initial

estimate of the hidden variables. For this we design a new SoS algorithm for

tensor decomposition in a high-noise regime, which we believe is of independent

interest. This approach to using SoS for estimation removes some of the creativity

involved in constructing dual witnesses/SoS proofs as we did in Chapter 6.

Stochastic block models are probability distributions on graphs with latent

community structure. In the simplest case, the block model is a distribution µ on

pairs (G, x)where x ∈ {0, 1}n is a partition of n vertices into two communities,

and G is a random graphwith edgesmore likely to appear between vertices on the

same side of the parition than between vertices on opposite sides. Richer models

support more than two communities and allow nodes to participate in multiple
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communities. As usual, block models induce hypothesis testing, estimation, and

refutation problems – in this chapter we focus on estimation, where the goal is to

estimate the hidden community structure given access to the graph.

In the constant-average-degree regime, we show that the best previous

algorithms can be interpreted in terms of simple statistics [125, 138, 3]. Moreover,

for the case of richer community structures like multiple communities and

especially overlapping communities, our simple-statistics-plus-SoS estimation

method achieves significantly stronger recovery guarantees.1

Chapter Overview In the remainder of this introduction we discuss our results

and their relation to previous work in more detail. In Section 9.2 (Techniques)

we describe a theory of estimation via simple statistics, and we illustrate the

idea by recovering a famous result in the theory of spiked random matrices

with a much simplified proof: the Baik-Ben-Arous-Peché push-out effect [22]. In

Section 8.3 (Warmup) we re-prove (up to some loss in the running time) the result

of Mossel-Neeman-Sly on the two-community block model as an application

of our meta-algorithm, again with very simple proofs. In Section 8.4 (Matrix

estimation) we re-interpret the best existing results on the block model, due to

Abbe and Sandon, as applications of our meta-algorithm.

In Section 8.5 (Tensor estimation) we apply our meta-algorithm to the mixed-

membership blockmodel. Following that, in Section 8.6 (Lower bounds) we prove

that no algorithm captured by our meta-algorithm can recover communities in

the block model past the Kesten-Stigum threshold.

1 If we represent the community structure by k vectors y1 , . . . , yk ∈ {0, 1}n that indicate

community memberships, then previous algorithms [3] do not aim to recover these vectors but,

roughly speaking, only a random linear combination of them. While for some settings it is in

fact impossible to estimate the individual vectors, we show that in many settings it is possible to

estimate them (in particular for symmetric block models).
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In Section 8.7 (Tensor decomposition), which can be read independently of

much of the rest of the paper, we give a new algorithm for tensor decomposition

and prove its correctness; this algorithm is used by our meta-algorithm as a black

box.

8.1 Results

8.1.1 Bayesian estimation via simple statistics

We first describe an approach to estimation algorithm design hat is enough to

capture the best known algorithms for the stochastic block model with k disjoint

communities, which we now define. Let ε, d > 0. Draw y uniformly from [k]n .

For each pair i , j, add the edge {i , j} to a graph on n vertices with probability

(1+ (1− 1

k )ε)
d
n if yi � y j and (1− ε

k )
d
n otherwise. The resulting graph has expected

average degree d.

A series of recent works has explored the problem of estimating y in these

models for the sparsest-possible graphs. The emerging picture, first conjectured

via techniques from statistical physics in the work [58], is that in the k-community

block model it is possible to recover a nontrivial estimate of y via a polynomial

time algorithm if and only if d � (1 + δ) k2

ε2
for δ > Ω(1). This is called the

Kesten-Stigum threshold. The algorithmic side of this conjecture was confirmed

by [125, 138] for k � 2 and [3] for general k.

By taking a simple statistics perspective, we are able to design an algorithm

with similarly-precise guarantees for a more complex estimation problem, which
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is more realistic for real-world networks: the mixed-membership block model [6]

which we now define informally. Let α > 0 be an overlap parameter. Draw y

from

(k
t

)n
, where t �

k(α+1)
k+α ≈ α + 1; that is for each of n nodes pick a set S j of

roughly α + 1 communities.2 For each pair i , j, add an edge to the graph with

probability (1 + ( |Si∩S j |
t2
− 1

k )ε)
d
n . (That is, with probability which increases as i

and j participate in more communities together.) In the limit α→ 0 this becomes

the k-community block model.

Returning to the estimationproblems ingeneral, (but keeping inmind theblock

model), let p(x , y) be a joint probability distribution over observable variables

x ∈ �n
and hidden variables y ∈ �m

. Nature draws (x , y) from the distribution

p, we observe x and our goal is to provide an estimate ŷ(x) for y, with quality

measured by some loss function `. Often themean square error�p(x ,y)
 ŷ(x) − y

2

is a reasonable loss function. For this measure, the information-theoretically

optimal estimate is the mean of the posterior distribution ŷ(x) � �p(y |x) y. This

approach has two issues that we address in the current work.

The first issue is that, as we have discussed before, naively computing the

mean of the posterior distribution takes time exponential in the dimension of

y. For example, if y ∈ {±1}m , then �p(y |x) y �
∑

y∈{±1}m y · p(y | x); there are 2
m

terms in this sum. There are many well-known algorithmic approaches that aim

to address this issue or related ones, for example, belief propagation [75, 145] or

expectation maximization [61]. While these approaches appear to work well in

practice, they are notoriously difficult to analyze.

2In actuality one draws for each node i ∈ [n] a probability vector σi ∈ ∆k−1
from the Dirichlet

distribution with parameter α; we describe a nearly-equivalent model here for the sake of

simplicity—see Section 8.1.2 for details. Our guarantees for recovery in the mixed-membership

model also apply to the model here because it has the same second moments as the Dirichlet

distribution.
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Our strategy is to analytically determine a low-degree polynomial f (x) so

that �p(x ,y)
 f (x) − y

2

is as small as possible and use the fact that low-degree

polynomials can be evaluated efficiently (even for high dimensions n).3 Up to

normalization, f is simple statistic. Because the maximum eigenvector of an n-

dimensional linear operator with a spectral gap is an O(log n)-degree polynomial

of its entries, this approach captures spectral properties of linear operators whose

entries are low-degree polynomials of observable variables x. Examples of such

operators include adjacency matrices (when x is a graph), empirical covariance

matrices (when x is a list of vectors), as well as more sophisticated objects

such as linearized belief propagation operators (e.g., [2]) and the Hashimoto

non-backtracking operator.

The second issue is that even if we could compute the posterior mean exactly,

it may not contain any information about the hidden variable y and the mean

square error is not the right measure to assess the quality of the estimator. This

situation typically arises if there are symmetries in the posterior distribution.

For example, in the stochastic block model with two communities we have

�p(y |x) y � 0 regardless of the observations x because p(y | x) � p(−y |x). A

simple way to resolve this issue is to estimate higher-order moments of the hidden

variables. For stochastic block models with disjoint communities, the second

moment �p(y |x) y yT
would suffice. (For overlapping communities, we need third

moments �p(y |x) y⊗3
due to more substantial symmetries.)

For now, we think of y as an m-dimensional vector and x as an n-dimensional

vector (in the blockmodel on N nodes, this would correspond to m ≈ kN and

n � N2
). Our estimation algorithms follow a two-step strategy:

3Our polynomials typically have logarithmic degree and naive evaluation takes time nO(log n)
.

However, we show that under mild conditions it is possible to approximately evaluate these

polynomials in polynomial time using the idea of color coding [11].
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1. Given x ∼ p(x |y), evaluate a fixed, low-degree polynomial P(x) taking

values in (�m)⊗` . (Usually ` is 2 or 3.)

2. Apply a robust eigenvector or SDP-based algorithm (if ` � 2), or a robust

tensor decomposition algorithm (if ` � 3 or higher) to P to obtain an

estimator ŷ for y.

The polynomial P(x) should be an optimal low-degree approximation to y⊗` , in

the following sense: if n is sufficiently large that some low-degree polynomial

Q(x) has constant correlation with y⊗`

�
x ,y
〈Q , y⊗`〉 > Ω(1) · (�

x
‖Q‖2)1/2(� ‖y⊗`‖2)1/2 ,

then P has this guarantee. (The inner products and norms are all Euclidean.)

A prerequisite for applying this approach to a particular inference problem

p(x , y) is that it be possible to estimate y given �
[
y⊗` | x

]
for some constant

`. For such a problem, the optimal Bayesian inference procedure (ignoring

computational constraints) can be captured by computing F(x) � �
[
y⊗` | x

]
,

then using it to estimate y. When p(x , y) is such that it is information-theoretically

possible to estimate y from x, these posterior moments will generally satisfy

�〈F(x), y⊗`〉 > Ω(1) · (� ‖F(x)‖2)1/2(� ‖y⊗`‖2)1/2, for some constant `. Our

observation is thatwhen F is approximately a low-degree function, this estimation

procedure can be carried out via an efficient algorithm.

Matrix estimation and prior results for block models In the case ` � 2, where

one uses the covariance �
[
y yT | x

]
to estimate y, the preceding discussion is

captured by the following theorem.

Theorem 8.1.1 (Bayesian estimation meta-theorem—2nd moment). Let δ > 0 and

p(x , y) be a distribution over vectors x ∈ {0, 1}n and unit vectors y ∈ �d
. Assume
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p(x) > 2
−nO(1)

for all x ∈ {0, 1}n .4 Suppose there exists a matrix-valued degree-D

polynomial P(x) such that

�
p(x ,y)
〈P(x), y yT〉 > δ ·

(
�

p(x)
‖P(x)‖2F

)
1/2

. (8.1.1)

Then, there exists δ′ > δO(1) > 0 and an estimator ŷ(x) computable by a circuit of size

nO(D)
such that

�
p(x ,y)
〈 ŷ(x), y〉2 > δ′ . (8.1.2)

To apply this theorem to thepreviously-discussed setting of samples x1, . . . , xN

generated from p(x | y), assume the samples x1, . . . , xN are in some fixed way

packaged into a single n-length vector x.

One curious aspect of the theorem statement is that it yields a nonuniform

algorithm—a family of circuits—rather than a uniform algorithm. If the coeffi-

cients of the polynomial P can themselves be computed in polynomial time, then

the conclusion of the algorithm is that an nO(D)
-time algorithm exists with the

same guarantees.

As previouslymentioned, themeta-algorithmhas a parameter D, the degree of

the polynomial P. If D � n, then whenever it is information-theoretically possible

to estimate y from�[y y> | x], the meta-algorithm can do so (in exponential time).

This follows from the fact that every function in n Booleanvariables is apolynomial

of degree at most n. It is also notable that, while a degree D polynomial can be

evaluated by an nO(D)
-size circuit, some degree-D polynomials can be evaluated

by much smaller circuits. We exploit such polynomials for the block model

(computable via color coding), obtaining nO(1)
-time algorithms from degree log n

4This mild condition on the marginal distribution of x allows us to rule out pathological

situations where a low-degree polynomial in x may be hard to evaluate accurately enough because

of coefficients with super-polynomial bit-complexity.
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polynomials. By using very particular polynomials, which can be computed via

powers of non-backtracking operators, previous works on the block model are able

to give algorithms with near-linear running times [138, 3].5

Using the appropriate polynomial P, this theorem captures the best known

guarantees for partial recovery in the k-community stochastic block model. Via

the same polynomial, applied in the mixed-membership setting, it also yields

our first nontrivial algorithm for the mixed-membership model. However, as we

discuss later, the recovery guarantees are weak compared to our main theorem.

Recalling the ε, d , k block model from the previous section, let y ∈ �n
be the

centered indicator vector of, say, community 1.

Theorem 8.1.2 (Implicit in [125, 138, 3], special case of our main theorem, Theo-

rem 8.1.4). Let δ def

� 1− k2(α+1)2
ε2d . If x is sampled according to the n-node, k-community,

ε-biased, α-mixed-membership block model with average degree d and y is the centered

indicator vector of community 1, there is a n × n-matrix valued polynomial P of degree

O(log n)/δO(1)
such that

�
x
〈P(x), y yT〉 >

(
δ

k(α + 1)

)O(1)
(� ‖P(x)‖2)1/2(� ‖y yT‖2)1/2 .

Together with Theorem 8.1.1, up to questions of nO(log n)
versus nO(1)

running

times, when α → 0 this captures the previous best efficient algorithms for the

k-community block model. (Once one has a unit vector correlated with y, it is not

5In this work we choose to work with self-avoidingwalks rather than non-backtracking ones;

while the corresponding polynomials cannot to our knowledge be evaluated in near-linear time,

the analysis of these polynomials is much simpler than the analysis needed to understand

non-backtracking walks. This helps to make the analysis of our algorithms much simpler than

what is required by previous works, at the cost of large polynomial running times. It is an

interesting question to reduce the running times of our algorithm for the mixed-membership

block model to near-linear via non-backtracking walks, but since our aim here is to distinguish

what is computable in polynomial time versus, say, exponential time, we do not pursue that

improvement here.
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hard to approximately identify the vertices in community 1.) While the previous

works [125, 138, 3] did not consider the mixed-membership blockmodel, this

theorem is easily obtained using techniques present in those works (as we show

in our meta-algorithm, in Section 8.4).6

Symmetries in theposterior, tensor estimation, and improved error guarantees

We turn next to our main theorem on the mixed-membership model, which

offers substantial improvement on the correlation which can be obtained via

Theorem 8.1.2. The matrix-based algorithm discussed above, Theorem 8.1.2,

contains a curious asymmetry; namely the arbitrary choice of community 1. The

block model distributions are symmetric under relabeling of the communities,

which means that any estimator P(x) of y yT
is also an estimator of y′y′T, where

y′ is the centered indicator of community j > 1. Since one wants to estimate

all the vectors y1, . . . , yk (with yi corresponding to the i-th community), it is

more natural to consider the polynomial P to be an estimator of the matrix

M �
∑

i∈[k] yi yi
T
.7 Unsurprisingly, P is a better estimator of M than it is of y1. In

fact, with the same notation as in the theorems,

�
x ,y
〈P(x),M(y)〉 > δO(1)(� ‖P(x)‖2)1/2(� ‖M(y)‖2)1/2 ,

removing the kO(1)
factor in the denominator. This guarantee is stronger: now the

error in the estimator depends only on the distance δ of the parameters ε, d , k , α

6In fact, if one is willing to lose an additional 2
−k

in the correlation obtained in this theorem,

one can obtain a similar result for the mixed-membership model by reducing it to the disjoint-

communities with K ≈ 2
k
communities, one for each subset of k communities. This works

when each node participates in a subset of communities; if one uses the Dirichlet version of the

mixed-membership model then suitable discretization would be necessary.

7In more general versions of the blockmodel studied in [3], where each pair i , j of communities

may have a different edge probability Qi j it is not always possible to estimate all of y1 , . . . , yk .

We view it as an interesting open problem to extract as much information about y1 , . . . , yk as

possible in that setting; the guarantee of [3] amounts, roughly, to finidng a single vector in the

linear span of y1 , . . . , yk .
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from the critical threshold
k2(α+1)2
ε2d � 1 rather than additionally on k.

If given the matrix M exactly, one way to extract an estimator ŷi for some

yi is just to sample a random unit vector in the span of the top k eigenvectors

of M. Such an estimator ŷi would have �〈 ŷi , yi〉2 > 1

kO(1) ‖yi ‖, recovering the

guarantees of the theorems above but not offering an estimator ŷi whose distance

to yi depends only on the distance δ above the critical threshold. Indeed, without

exploiting additional structure of the vectors yi is unclear how to remove this

1/kO(1)
factor. As a thought experiment, if one had the matrix M′ �

∑
i6k ai ai

T
,

where a1, . . . , ak were random unit vectors, then a1, . . . , ak would be nearly

orthonormal and one could learn essentially only their linear span. (From the

linear span it is only possible to find âi with correlation 〈âi , ai〉2 > 1/kO(1)
.)

In the interest of generality we would like to avoid using such additional

structure: while in the disjoint-community model the vectors yi have disjoint

support (after un-centering them), no such special structure is evident in the

mixed-membership setting. Indeed, when α is comparable to k, the vectors yi

are similar to independent random vectors of the appropriate norm.

To address this issue we turn to tensor methods. To illustrate the main idea

simply: if a1, . . . , ak are orthonormal, then it is possible to recover a1, . . . , ak

exactly from the 3-tensor T �
∑

i6k a⊗3

i . More abstractly, the meta-algorithm

which uses 3rd moments is able to estimate hidden variables whose posterior

distributions have a high degree of symmetry, without errors which worsen as

the posteriors become more symmetric.

Theorem 8.1.3 (Bayesian estimation meta-theorem—3rd moment). Let

p(x , y1, . . . , yk) be a joint distribution over vectors x ∈ {0, 1}n and exchangable,8

8 Here, exchangeable means that for every x ∈ {0, 1}n and every permutation π : [k] → [k],
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orthonormal9 vectors y1, . . . , yk ∈ �d
. Assume the marginal distribution of x satisfies

p(x) > 2
−nO(1)

for all x ∈ {0, 1}n .10 Suppose there exists a tensor-valued degree-D

polynomial P(x) such that

�
p(x ,y1 ,...,yk)

〈P(x),
k∑

i�1

y⊗3

i 〉 > δ ·
(
�

p(x)
‖P(x)‖2

)
1/2
·
√

k . (8.1.3)

(Here, ‖·‖ is the norm induced by the inner product 〈·, ·〉. The factor

√
k normalizes

the inequality because ‖∑k
i�1

y⊗3

i ‖ �
√

k by orthonormality.) Then, there exists δ′ >

δO(1) > 0 and a circuit of size nO(D)
that given x ∈ {0, 1}n outputs a list of unit vectors

z1, . . . , zm with m 6 npoly(1/δ)
so that

�
p(x ,y1 ,...,yk)

�
i∼[k]

max

j∈[m]
〈yi , z j〉2 > δ′ . (8.1.4)

That the meta-algorithm captured by this theorem outputs a list of n1/poly(δ)

vectors rather than just k vectors is an artifact of the algorithmic difficulty of

multilinear algebra as compared to linear algebra. However, in most Bayesian

estimation problems it is possible by using a very small number of additional

samples (amounting to a low-order additive term in the total sample complexity)

to cross-validate the vectors in the list z1, . . . , zm and throw out those which

are not correlated with some y1, . . . , yk . Our eventual algorithm for tensor

decomposition (see Section 8.1.3 and Section 8.7) bakes this step in by assuming

access to an oracle which evaluates the function v 7→ ∑
i∈[k]〈v , yi〉4.

A key component of the algorithm underlying Theorem 8.1.3 is a new algo-

rithm for very robust orthogonal tensor decomposition.11 Previous algorithms

we have p(y1 , . . . , yk | x) � p(yπ(1) , . . . , yπ(k) | x).
9 Here, we say the vector-valued random variables y1 , . . . , yk are orthonormal if with proba-

bility 1 over the distribution p we have 〈yi , y j〉 � 0 for all i , j and ‖yi ‖2 � 1.

10As in the previous theorem, this mild condition on the marginal distribution of x allows us

to rule out pathological situations where a low-degree polynomial in x may be hard to evaluate

accurately enough because of coefficients with super-polynomial bit-complexity.

11An orthogonal 3-tensor is

∑m
i�1

a⊗3

i , where a1 , . . . , am are orthonormal.
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for tensor decomposition require that the input tensor is close (in an appropriate

norm) to only one orthogonal tensor. By contrast, our tensor decomposition

algorithm is able to operate on a tensor T which is just δ � 1 correlated to

the orthogonal tensor

∑
y⊗3

i , and in particular might also be δ-correlated with

1/δ other orthogonal tensors. If one views tensor decomposition as a decoding

task, taking a tensor T and decoding it into its rank-one components, then our

guarantees are analogous to list-decoding. Our algorithm in this setting involves

a novel entropy-maximization program which, among other things, ensures that

given a tensor T which for example is δ-correlated with two distinct orthogonal

tensors A and B, the algorithm produces a list of vectors correlated with both the

components of A and those of B.

Applying this meta-theorem (plus a simple cross-validation scheme to prune

the vectors in the n1/poly(δ)
-length list) to the mixed-membership block model

(and its special case, the k-disjoint-communities blockmodel) yields the following

theorem. (See Section 8.1.2 for formal statements.)

Theorem 8.1.4 (Main theorem on the mixed-membership block model, informal).

Let ε, d , k , α be paramters of themixed-membership blockmodel, and let δ � 1− k2(α+1)2
ε2d >

Ω(1). Let yi be the centered indicator vector of the i-th community. There is an n1/poly(δ)
-

time algorithm which, given a sample x from the ε, d , k , α block model, recovers vectors

ŷ1(x), . . . , ŷk(x) such that there is a permutation π : [k] → [k] with

�〈 ŷπ(i), yi〉2 > δO(1)(� ‖ ŷπ(i)‖2)1/2(� ‖yi ‖2)1/2 .

The eventual goal, as we discuss in Section 8.1.2, is to label each vertex by a

probability vector τi which is correlated with the underlying label σi , but given

the ŷ vectors from this theorem this is easily accomplished.
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Comparison to the method of moments Another approach for designing

statistical estimators for provable guarantees is the method of moments. Typically

one considers parameters θ (which need not have a prior distribution p(θ))

and iid samples x1, . . . , xn ∼ p(x |θ). Generally one shows that the moments of

the distribution {x |θ} are related to some function of θ: for example perhaps

�[xx> | θ] � f (θ). Then one uses the samples xi to estimate the moment

M � �[xx> | θ], and finally to estimate θ by f −1(M).

While the method of moments is quite flexible, for the high-noise problems

we consider here it is not clear that it can achieve optimal sample complexity. For

example, in our algorithms (and existing sample-optimal algorithms for the block

model) it is important to exploit the flexibility to compute any polynomial of

the samples jointly—given n samples our algorithms can evaluate a polynomial

P(x1, . . . , xn), and P often will not be an empirical average of some simpler

function like

∑
i6n q(xi). The best algorithm for the mixed-membership block

model before our work uses the method of moments and consequently requires

much denser graphs than our method [12].

8.1.2 Detecting overlapping communities

We turn now to discuss our results for stochastic block models in more detail and

compare them to the existing literature.

The stochastic block model is a widely studied (family of) model(s) of random

graphs containing latent community structure. It is most common to study

the block model in the sparse graph setting: many large real-world networks

are sparse, and the sparse graph setting is nearly always more mathematically
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challenging than the dense setting. A series of recent works has for the first time

obtained algorithms which recover communities in block model graphs under

(conjecturally) optimal sparsity conditions. For an excellent survey, see [1].

Such sharp results remain limited to relatively simple versions of the block

model; where, in particular, each vertex is assigned a single community in an iid

fashion. A separate line of work has developed more sophisticated and realistic

random graph models with latent community structure, with the goal of greater

applicability to real-life networks. Themixed-membership stochastic blockmodel

[6] is one such natural extension of the stochastic block model that allows for

communities to overlap, as they do in large networks found in the wild.

In addition to the number of vertices n, the average degree d, the correlation

parameter ε, and the number of communities k, this model has an overlap

parameter α > 0 that controls howmany communities a typical vertex participates

in. Roughly speaking, the model generates an n-vertex graph by choosing k

communities as random vertex subsets of size (1 + α)n/k and choosing dn/2

random edges, favoring pairs of vertices that have many communities in common.

Definition 8.1.5 (Mixed-membership stochastic block model). The mixed-

membership stochastic block model SBM(n , d , ε, k , α) is the following distri-

bution over n-vertex graphs G and k-dimensional probability vectors σ1, . . . , σn

for the vertices:

• draw σ1, . . . , σn independently from Dir(α) the symmetric k-dimensional

Dirichlet distribution with parameter α > 0,12

• for every potential edge {i , j}, add it to G with probability
d
n ·

(
1+

(
〈σi , σ j〉 −

12In the symmetric k-dimensional Dirichlet distribution with parameter α > 0, the probability

of a probability vector σ is proportional to

∏k
t�1
σ(t)α/k−1

. By passing to the limit, we define

Dir(0) to be the uniform distribution over the coordinate vectors 11 , . . . , 1k .
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1

k

)
ε
)
.

Due to symmetry, 〈σi , σ j〉 has expected value
1

k , which means that the

expected degree of every vertex in this graph is d. In the limit α → 0, the

Dirichlet distribution is equivalent to the uniform distribution over coordinate

vectors 11, . . . , 1k and the model becomes SBM(n , d , ε, k), the stochastic block

model with k disjoint communities. For α � k, the Dirichlet distribution is

uniform over the open (k − 1)-simplex [178]. For general values of α, a probability

vector from Dir(α) turns out to have expected collision probability (1− 1

k )
1

α+1
+

1

k ,

which means that we can think of the probability vector being concentrated on

about α + 1 coordinates.13 This property of the Dirichlet distribution is what

determines the threshold for our algorithm. Correspondingly, our algorithm

and analysis extends to a large class of distributions over probability vectors that

share this property.

Measuring correlation with community structures In the constant-average-

degree regime of the block model, recovering the label of every vertex correctly

is information-theoretically impossible. For example, no information is present

in a typical sample about the label of any isolated vertex, and in a typical sample

a constant fraction of the vertices are isolated. Instead, at least in the k-disjoint-

community setting, normally one looks to label vertices by labels 1, . . . , k so that

(up to a global permutation), this labeling has positive correlation with the true

community labels.

When the communities are disjoint, one can measure such correlation using

the sizes of |S j ∩ Ŝ j |, where S j ⊆ [n] is the set of nodes in community j and Ŝ j is

13When k and α are comparable in magnitude, it is important to interpret this more accurately

as (α + 1) · k
k+α coordinates.

141



an estimated set of nodes in community j. The original definition of overlap, the

typical measure of labeling-accuracy in the constant-degree regime, takes this

approach [58].

For present purposes this definition must be somewhat adapted, since in the

mixed-membership block model there is no longer a good notion of a discrete

set of nodes S j for each community j ∈ [k]. We define a smoother notion of

correlation with underlying community labels to accommodate that the labels σi

are vectors in ∆k−1
. In discrete settings, for example when α→ 0 (in which case

one recovers the k-disjoint-community model), or more generally when each σi

is the uniform distribution over some number of communities, our correlation

measure recovers the usual notion of overlap.

Let σ � (σ1, . . . , σn) and τ � (τ1, . . . , τn) be labelings of the vertices 1, . . . , n

by by k-dimensional probability vectors. We define the correlation corr(σ, τ) as

max

π
�

i∼n
〈σi , τπ(i)〉 −

1

k
(8.1.5)

where π ranges over permutations of the k underlying communities. This notion

of correlation is closely related to the overlap of the distributions σi , τi .

To illustrate this notion of correlation, consider the case of disjoint communities

(i.e., α � 0), where the ground-truth labels τi are indicator vectors in k dimensions.

Then, if�i 〈σi , τπ(i)〉 − 1

k > δ, by looking at the large coordinates of σi it is possible

to correctly identify the community memberships of a δO(1) + 1

k fraction of the

vertices, which is a δO(1)
fraction more than would be identified by randomly

assigning labels to the vertices without looking at the graph.

When the ground truth labels τi are spread over more than one coordinate—

say, for example, they are uniform over t coordinates—the best recovery algorithm
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cannot find σ’s with correlation better than

corr(σ, τ) � 1

t
− 1

k
,

which is achieved by σ � τ. This is because in this case τ has collision probability

〈τ, τ〉 � 1

t .

Main result for mixed-membership models The following theorem gives a

precise bound on the number of edges that allows us to find in polynomial time

a labeling of the vertices of an n-node mixed membership block model having

nontrivial correlation with the true underlying labels. Here, the parameters

d , ε, k , α of the mixed-membership stochastic block model may even depend on

the number of vertices n.

Theorem 8.1.6 (Mixed-membership SBM—significant correlation). Let d , ε, k , α

be such that k 6 no(1)
, α 6 no(1)

, and ε2d 6 no(1)
. Suppose δ

def

� 1 − k2(α+1)2
ε2d > 0.

(Equivalently for small δ, suppose ε2d > (1 + δ) · k2(α + 1)2.) Then, there exists

δ′ > δO(1) > 0 and an n1/poly(δ)
-time algorithm that given an n-vertex graph G outputs

τ1, . . . , τn ∈ ∆k−1
such that

�
(G,σ)∼SBM(n ,d ,ε,k ,α)

corr(σ, τ) > δ′ ·
(
1

t
− 1

k

)
(8.1.6)

where t � (α+ 1) · k
k+α (samples from the α, k Dirichlet distribution are roughly uniform

over t out of k coordinates). In particular, as δ → 1 we have � corr(σ, τ) → 1

t − 1

k ,

while � corr(σ, σ) � 1

t − 1

k .

Note that in the above theorem, the correlation δ′ that our algorithm achieves

depends only on δ (the distance to the threshold) and in particular is independent

of n and k (aside from, for the latter, the dependence on k via δ). For disjoint
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communities (α � 0), our algorithm achieves constant correlation with the

planted labeling if ε2d/k2
is bounded away from 1 from below.

We conjecture that the threshold achieved by our algorithm is best-possible

for polynomial-time algorithms. Concretely, if d , ε, k , α are constants such that

ε2d < k2(α + 1)2, then we conjecture that for every polynomial-time algorithm

that given a graph G outputs τ1, . . . , τn ∈ ∆k−1
,

lim

n→∞
�

(G,σ)∼SBM(n ,d ,ε,k ,α)
corr(σ, τ) � 0 . (8.1.7)

This conjecture is a natural extension of a conjecture for disjoint communities

(α � 0), which says that beyond the Kesten–Stigum threshold, i.e., ε2d < k2
,

no polynomial-time algorithm can achieve correlation bounded away from 0

with the true labeling [135]. For large enough values of k, this conjecture

predicts a computation-information gap because the condition ε2d > Ω(k log k)

is enough for achieving constant correlation information-theoretically (and in

fact by a simple exponential-time algorithm). We discuss these ideas further in

Section 8.1.4.

Comparison with previous matrix-based algorithms We offer a reinterpreta-

tion in the simple statistics framework of the algorithms of Mossel-Neeman-Sly

and Abbe-Sandon. This will permit us to compare our algorithm for the mixed-

membership model with what could be achieved by the methods in these prior

works, and to point out one respect in which our algorithm improves on previous

ones even for the disjoint-communities block model. The result we discuss here

is a slightly generalized version of Theorem 8.1.2.

Let U be a (possibly infinite or continuous) universe of labels, and let W
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assign to every x , y ∈ U a nonnegative real number W(x , y) � W(y , x) > 0.

Let µ be a probability distribution on U , which induces the inner product of

functions f , 1 : U → � given by 〈 f , 1〉 � �x∼µ f (x)1(x). The function W can be

considered as linear operator on { f : U → �}, and under mild assumptions it

has eigenvalues λ1, λ2, . . . with respect to the inner product 〈·, ·〉.

The pair µ,W along with an average degree parameter d induce a generalized

stochastic block model, where labels for nodes are drawn from µ and an edge

between a pair of nodes with labels x and y is present with probability
d
n ·W(x , y).

When U is ∆k−1
and µ is the Dirichlet distribution, this captures the mixed-

membership block model.

Assume λ1 � 1 and that µ and W are sufficiently nice (see Section 8.4 for all

the details). Then one can rephrase results of Abbe and Sandon in this setting as

follows.

Theorem 8.1.7 (Implicit in [3]). Suppose the operator W has eigenvalues 1 � λ1 >

λ2 > · · · > λr (each possibly with higher multiplicity) and δ
def

� 1 − 1

dλ2

2

> 0. Let Π be

the projector to the second eigenspace of the operator W . For types x1, . . . , xn ∼ U , let

A ∈ �n×n
be the random matrix Ai j � Π(xi , x j), where we abuse notation and think of

Π : U ×U → �. There is an algorithm with running time npoly(1/δ)
which outputs an

n × n matrix P such that for x ,G ∼ G(n , d ,W, µ),

�
x ,G

Tr P · A > δO(1) · ( �
x ,G
‖A‖2)1/2( �

x ,G
‖P‖2)1/2 .

In one way or another, existing algorithms for the block model in the constant-

degree regime are all based on estimating the random matrix A from the above

theorem, then extracting from an estimator for A some labeling of vertices by

communities. In our mixed-membership setting, one may show that the matrix
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A is

∑
s∈[k] vs vs

T
, where vs ∈ �n

has entries vs(i) � σi(s) − 1

k . Furthermore, as we

show in Section 8.4, the condition dλ2

2
> 1 translates for the mixed-membership

model to the condition ε2d > k(α + 1)2, which means that under the same

hypotheses as our main theorem on the mixed-membership model it is possible

in polynomial time to evaluate a constant-correlation estimator for

∑
s∈[k] vs vs

T
.

As we discussed in Section 8.1.1, however, extracting estimates for v1, . . . , vk (or,

almost equivalently, estimates for σ1, . . . , σn) from this matrix seems to incur an

inherent 1/k loss in the correlation. Thus, the final guarantee one could obtain

for the mixed-membership block model using the techniques in previous work

would be estimates τ1, . . . , τn for σ1, . . . , σn such that corr(σ, τ) >
(
δ
k

)O(1)
.14 We

avoid this loss in our main theorem via tensor methods.

Although this 1/k multiplicative loss in the correlation with the underlying

labeling is not inherent in the disjoint-community setting (roughly speaking this

is because the matrix A is a 0/1 block-diagonal matrix), previous algorithms

nonetheless incur such loss. (In part this is related to the generality of the work

of Abbe and Sandon: they aim to allow W where A might only have rank one,

while in our settings A always has rank k − 1. For low-rank A this 1/k loss is

probably necessary for polynomial time algorithms.)

Thus our main theorem on the mixed membership model offers an im-

provement on the guarantees in the previous literature even for the disjoint-

communities setting: when W only has entries 1 − ε and ε we obtain a labeling

of the vertices whose correlation with the underlying labeling depends only on

14In fact, it is not clear one can obtain even this guarantee using strictly matrix methods. Strictly

speaking, in estimating, say, v1 using the above described matrix method, one obtains a unit

vector v such that 〈v , v1〉2 > Ω(1) · ‖v1‖2. Without knowing whether v or −v is the correct vector

it is not clear how to transform estimates for the vs ’s to estimates for the σ’s. However, matrix

methods cannot distinguish between vs and −vs . In our main algorithm we avoid this issue

because the 3rd moments

∑
v⊗3

s are not sign-invariant.
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δ. This allows the number k of communities to grow with n without incurring

any loss in the correlation (so long as the average degree of the graph grows

accordingly).

For further discussion of the these results and a proof of the above theorem,

see Section 8.4.

Comparison to previous tensor algorithm for mixed-membership models

Above we discussed a reinterpretation (allowing a continuous spaceU of labels)

of existing algorithms for the constant-average-degree block model which would

give an algorithm for the mixed-membership model, and discussed the advan-

tages of our algorithm over this one. Now we turn to algorithms in the literature

which are specifically designed for stochastic block models with overlapping

communities.

The best such algorithm requires ε2d > O(log n)O(1) · k2(α + 1)2 [12]. Our

bound saves the O(log n)O(1) factor. (This situation is analogous to the standard

block model, where simpler algorithms based on eigenvectors of the adjacency

matrix require the graph degree to be logarithmic.) Notably, like ours this

algorithm is based on estimating the tensor T �
∑

s∈[k] v
⊗3

s , where vs ∈ �n
has

entries vs(i) � σi(s) − 1

k . However, the algorithm differs from ours in two key

respects.

1. The algorithm [12] estimates the tensor T using a 3-tensor analogue of a high

power of the adjacency matrix of an input graph, while we use self-avoiding

walks (which are rather like a tensor analogue of the nonbacktracking

operator).

2. The tensor decomposition algorithm used in [12] to decompose the (estima-
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tor for the) tensor T tolerates much less error than our tensor decomposition

algorithm; the result is that a higher-degree graph is needed in order to

obtain a better estimator for the tensor T.

The setting considered by [12] does allow a more sophisticated version of the

Dirichlet distribution thanwe allow, inwhich different communities have different

sizes. It is an interesting open problem to extend the guarantees of our algorithm

to that setting.

8.1.3 Low-correlation tensor decomposition

Tensordecomposition is the followingproblem. For someunit vectors a1, . . . , am ∈

�n
and a constant k (often k � 3 or 4), one is given the tensor T �

∑m
i�1

a⊗k
i + E,

where E is some error tensor. The goal is to recover vectors b1, . . . , bm ∈ �n

which are as close as possible to a1, . . . , am .

Tensor decomposition has become a common primitive used by algorithms

for parameter learning and estimation problems [51, 13, 76, 79, 31, 121, 161]. In

the simplest examples, the hidden variables are orthogonal vectors a1, . . . , am

and there is a simple function of the observed variables which estimates the

tensor

∑
i6m a⊗k

i (often an empirical k-th moment of observed variables suffices).

Applying a tensor decomposition algorithm to such an estimate yields estimates

of the vectors a1, . . . , am .

We focus on the case that a1, . . . , am are orthonormal. Algorithms for this case

are already useful for a variety of learning problems, and it is often possible to

reducemore complicated problems to the orthonormal case using a small amount
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of side information about a1, . . . , am (in particular their covariance

∑m
i�1

ai ai
T
). In

this setting the critical question is: how much error E (and measured in what

way) can the tensor decomposition algorithm tolerate and still produce useful

outputs b1, . . . , bm?

When we use tensor decomposition in our meta-algorithm, the error E will be

incurredwhen estimating

∑m
i�1

a⊗k
i fromobservable samples. Usingmore samples

would decrease the magnitude of T −∑m
i�1

a⊗k
i , but because our goal is to obtain

algorithms with optimal sample complexity we need a tensor decomposition

algorithm which is robust to greater errors than those in the existing literature.

Our main theorem on tensor decomposition is the following.

Theorem 8.1.8 (Informal). For every δ > 0, there is a randomized algorithm with

running time n1/poly(δ)
that given a 3-tensor T ∈ (�n)⊗3

and a parameter k out-

puts npoly(1/δ)
unit vectors b1, . . . , bm with the following property: if T satisfies

〈T,∑k
i�1

a⊗3

i 〉 > δ · ‖T‖ ·
√

k for some orthonormal vectors a1, . . . , ak , then

�
i∼[k]

max

j∈[m]
〈ai , b j〉2 > δO(1) .

Furthermore, if the algorithm is allowed to make n1/poly(δ)
calls to an oracle O which

correctly answers queries of the form “does the unit vector v satisfy

∑m
i�1
〈ai , v〉4 >

δO(1)
?”, then it outputs just k orthonormal vectors, b1, . . . , bk such that there is a

permutation π : [k] → [k] with

�
i∈[k]
〈ai , bπ(i)〉2 > δO(1) .

(These guarantees hold in expectation over the randomness used in the decomposition

algorithm.)

(For a more formal statement, and in particular the formal requirements for

the oracle O, see Section 8.7.)
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Rescaling T as necessary, one may reinterpret the condition 〈T,∑k
i�1

a⊗3

i 〉 >

δ · ‖T‖ ·
√

k as T �
∑k

i�1
a⊗3

i + E, where 〈E,∑m
i�1

a⊗3

i 〉 � 0 and ‖E‖ 6
√

k/δ and

‖ · ‖ is the Euclidean norm. In particular, E may have Euclidean norm which is a

large constant factor 1/δ larger than the Euclidean norm of the tensor

∑m
i�1

a⊗3

i

that the algorithm is trying to decompose! (One way such error could arise is if

T is actually correlated with 1/δ unrelated orthogonal tensors; our algorithm in

that case ensures that the list of outputs vectors is correlated with every one of

these orthogonal tensors.)

In all previous algorithms of which we are aware (even for the case of

orthogonal a1, . . . , am), the error E must have spectral norm (after flattening to

an n2 × n2
matrix) at most ε for ε < 1

2
,15 or E must have Euclidean norm at

most ε
√

m [161]. The second requirement is strictly stronger than ours (thus

our algorithm has weaker requirements and so stronger guarantees). The first,

on the spectral norm of E when flattened to a matrix, is incomparable to the

condition in our theorem. However, when E satisfies such a spectral bound it

is possible to decompose T using (sophisticated) spectral methods [121, 161].

In our setting such methods seem unable to avoid producing only vectors b

which are correlated with E but not with any a1, . . . , am . In other words, such

methods would overfit to the error E. To avoid this, our algorithm uses a novel

maximum-entropy convex program (see Section 8.7 for details).

One a priori unusual requirement of our tensor decomposition algorithm is

access to the oracle O. In any tensor decomposition setting where E satisfies

‖E‖in j � max‖x‖�1
〈E, x⊗3〉 6 o(1), the oracle O can be implemented just be evalu-

ating 〈T, v⊗3〉 � ∑k
i�1
〈ai , v〉3 + o(1). All previous works on tensor decomposition

of which we are aware either assume that the injective norm ‖E‖in j is bounded as

15Or, mildly more generally, E should have SoS norm less than ε [121].
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above, or (as in [161]) can accomplish this with a small amount of preprocessing

on the tensor T. Our setting allows, for example, E � 100 ·v⊗3
for some unit vector

v, and does not appear to admit the possibility of such preprocessing, hence the

need for an auxiliary implementation of O. In our learning applications we are

able to implement O by straightforward holdout set/cross-validation methods.

8.1.4 Information-computation gaps and concrete lower bounds

In this work, we show an unconditional lower bound for simple statistics for the

stochastic block model with k communities at the Kesten–Stigum threshold. For

k > 4, this threshold is bounded away from the information-theoretic threshold

[2]. In this way, our lower bounds gives evidence for an inherent gap between

the information-theoretical and computational thresholds. Recall the definitions

of simple statistics from Chapter 2.

Theorem 8.1.9. Let d , ε, k be constants. Then,

max

p∈�[x]6`

�x∼SBM(n ,d ,ε,k) p(x)(
�x∼G(n ,d/n) p(x)2

)
1/2 �


> nΩ(1) if ε2d > k2, ` > O(log n)

6 O(1) if ε2d < k2, ` 6 n0.01

(8.1.8)

The difference between O(1) and nΩ(1) shows the Kesten-Stigum phase transi-

tion is visible to simple statistics, offering the means to connect the Kesten-Stigum

threshold to other information-computation gaps in this thesis (for spiked tensors,

planted clique, and so on).

Wealso study lowdegreepolynomials for estimation (as opposed tohypothesis

testing against G(n , d/n)) at the Kesten-Stigum threshold. For this we prove the

following theorem.
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Theorem 8.1.10. Let d , ε, k , δ be constants such that ε2d < (1 − δ)k2
. Let

f : {0, 1}n×n → � be any function, let i , j ∈ [n] be distinct. Then if f satisfies

�
x∼G(n , dn )

f (x) � 0 and is correlated with the indicator 1σi�σ j that i and j are in the

same community in the following sense:

�x∼SBM(n ,d ,ε,k) f (x)(1σi�σ j − 1

k )
(�

x∼G(n , dn )
f (x)2)1/2

> Ω(1)

then deg f > nc(d ,ε,k)
for some c(d , ε, k) > 0.

There is one subtle difference between the polynomials ruled out by this

theorem and those which could be used by our algorithmic techniques. Namely,

this theorem rules out any f whose correlation with the indicator 1σi�σ j is large

compared to f ’s standard deviation under G(n , d/n), whereas our meta-algorithm

needs a polynomial f where this correlation is large compared to f ’s standard

deviation under the block model. In implementing our approach for the block

model and for other problems, we have found that these twomeasures of standard

deviation are always equal (up to low-order additive terms) for the polynomials

which turn out to provide sample-optimal constant-correlation estimators of

hidden variables.

Interesting open problems are to prove a version of the above theorem where

standard deviation is measured according to the block model and to formalize

the idea that �SBM f (x)2 should be related to �G(n ,d/n) f (x)2 for good estimators

f . It would also be quite interesting to see how large the function c(d , ε, k) can

be made: the above theorem shows that when d < (1 − δ)k2/ε2
the degree of any

good estimator of 1σi�σ j must be polynomial in n—perhaps it must be linear, or

even quadratic in n.
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8.2 Techniques

To illustrate the idea of low-degree estimators for posterior moments, let’s first

consider the most basic stochastic block model with k � 2 disjoint communities

(α � 0). (Our discussion will be similar to the analysis in [138].) Let y ∈ {±1}n

be chosen uniformly at random and let x ∈ {0, 1}n×n
be the adjacency matrix of

a graph such that for every pair i < j ∈ [n], we have xi j � 1 with probability

(1 + εyi y j) dn . Our goal is to find a matrix-valued low-degree polynomial P(x)

that correlates with y yT
. It turns out to be sufficient to construct for every pair

i , j ∈ [n] a low-degree polynomial that correlates with yi y j .

The linear polynomial pi j(x) � n
εd

(
xi j − d

n

)
is an unbiased estimator for yi y j

in the sense that �[pi j(x) | y] � yi y j . By itself, this estimator is not particular

useful because its variance � pi j(x)2 ≈ n
ε2d is much larger than the quantity yi y j

we are trying to estimate. However, if we let α ⊆ [n]2 be a length-` path between

i and j (in the complete graph), then we can combine the unbiased estimators

along the path α and obtain a polynomial

pα(x) �
∏
ab∈α

pab(x) (8.2.1)

that is still an unbiased estimator �[pα(x) | yi , y j] � �
[∏

ab∈α ya yb | yi , y j
]
�

yi y j . This estimator has much higher variance � pα(x)2 ≈ ( n
ε2d)`. But we can

hope to reduce this variance by averaging over all such paths. The number

of such paths is roughly n`−1
(because there are ` − 1 intermediate vertices to

choose). Hence, if these estimators {pα(x)}α were pairwise independent, this

averaging would reduce the variance by a multiplicative factor n`−1
, giving us a

final variance of ( n
ε2d)` · n

1−` � ( 1

ε2d )
` · n. We can see that above the Kesten–Stigum

threshold, i.e., ε2d > 1+ δ for δ > 0, this heuristic variance bound ( 1

ε2d )
` · n 6 1 is
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good enough for estimating the quantity yi · y j for paths of length ` > log
1+δ n.

Two steps remain to turn this heuristic argument into a polynomial-time

algorithm for estimating the matrix y yT
. First, it turns out to be important to

consider only paths that are self-avoiding. As we will see next, estimators from

such paths are pairwise independent enough to make our heuristic variance

bound go through. Second, a naive evaluation of the final polynomial takes

quasi-polynomial time because it has logarithmic degree (and a quasi-polynomial

number of non-zero coefficients in the monomial basis). We describe the high-

level ideas for avoiding quasi-polynomial running time later in this section

(Section 8.2.5).

8.2.1 Approximately pairwise-independent estimators

Let SAW`(i , j) be the set of self-avoiding walks α ⊆ [n]2 of length ` between i

and j. Consider the unbiased estimator p(x) � 1

|SAW`(i , j)|
∑
α∈SAW`(i , j) pα(x) for

yi y j . Above the Kesten–Stigum threshold and for ` > O(log n), we can use

the following lemma to show that p(x) has variance O(1) and achieves constant

correlation with z � yi y j . We remark that the previous heuristic variance bound

corresponds to the contribution of the terms with α � β in the left-hand side of

Eq. (8.2.2).

Lemma8.2.1 (Constant-correlation estimator). Let (x , z) be distributed over {0, 1}n×

�. Let {pα}α∈I be a collection of real-valued n-variate polynomials with the following

properties:

1. unbiased estimators: �[pα(x) | z] � z for every α ∈ I
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2. approximate pairwise independence: for δ > 0,∑
α,β∈I

� pα(x) · pβ(x) 6 1

δ2
· |I|2� z2

(8.2.2)

Then, the polynomial p �
1

|I|
∑
α∈I pα satisfies � p(x) · z > δ ·

(
� p(x)2 · � z2

)
1/2

.

Remark 8.2.2. In applying the lemma we often substitute for Eq. (8.2.2) the

equivalent condition

� z2 ·
∑
α,β∈I

� pα(x) · pβ(x) 6
1

δ2

·
∑
α,β∈I
(� pα(x)z) · (� pβ(x)z)

which is conveniently invariant to rescaling of the pα’s.

Proof. Since the polynomial p is an unbiased estimator for z, we have � p(x)z �

� z2
. By Eq. (8.2.2), � p(x)2 6 (1/δ2) ·� z2

. Taken together, we obtain the desired

conclusion. �

In Section 8.3.1, we present the short combinatorial argument that shows that

above the Kesten–Stigum bound the estimators for self-avoiding walks satisfy

the conditions Eq. (8.2.2) of the lemma.

We remark that if instead of self-avoiding walks we were to average over all

length-` walks between i and j, then the polynomial p(x) computes up to scaling

nothing but the (i , j)-entry of the `-th power of the centered adjacency x − d
n 1 1T

.

For ` ≈ log n, the `-th power of this matrix converges to vvT
, where v is the top

eigenvector of the centered adjacency matrix. For constant degree d � O(log n),

it is well-known that this eigenvector fails to provide a good approximation to

the true labeling. In particular, the corresponding polynomial fails to satisfy the

conditions of Lemma 8.2.1 close to the Kesten–Stigum threshold.
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8.2.2 Low-degree estimators for higher-order moments

Let’s turn to the general mixed-membership stochastic block model

SBM(n , d , ε, k , α0). Let (G, σ) be graph G and community structure σ �

(σ1, . . . , σn) drawn from this model. Recall that σ1, . . . , σn are k-dimensional

probability vectors, each roughly uniform over α0 + 1 of the coordinates. Let

x ∈ {0, 1}n×n
be the adjacency matrix of G and let y1, . . . , yk ∈ �n

be centered

community indicator vectors, so that (ys)i � (σi)s − 1

k .

It’s instructive to see that, unlike for disjoint communities, second moments

are not that useful for overlapping communities. As a thought experiment

suppose we are given the matrix

∑k
s�1
(ys)(ys)T (which we can estimate using the

path polynomials described earlier).

In case of disjoint communities, this matrix allows us to “read off” the

community structure directly (because two vertices are in the same community if

and only if the entry in the matrix is 1 − O(1/k)).

For overlapping communities (say the extreme case α0 � k for simplicity),

we can think of each σi as a random perturbation of the uniform distribution

so that (σi)s � (1 + ξi ,s) 1k for iid Gaussians {ξi ,s} with small variance. Then,

the centered community indicator vectors y1, . . . , yk are iid centered, spherical

Gaussian vectors. In particular, the covariance matrix

∑k
s�1

ys ys
T
essentially only

determines the subspace spanned by the vectors y1, . . . , yk but not the vectors

themselves. (This phenomenon is sometimes called the “rotation problem” for

matrix factorizations.)

In contrast, classical factor analysis results show that if wewere given the third

moment tensor

∑k
s�1

y⊗3

s , we could efficiently reconstruct the vectors y1, . . . , yk
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[85, 118]. This fact is the reason for aiming to estimate higher order moments in

order to recover overlapping communities.

In the same way that a single edge xi , j − d
n gives an unbiased estimator for the

(i , j)-entry of the secondmoment matrix, a 3-star (xi ,c − d
n )(x j,c − d

n )(xk ,c − d
n ) gives

an unbiased estimator for the (i , j, k)-entry of the third moment tensor

∑k
s�1

y⊗3

s .

This observation is key for the previous best algorithm for mixed-membership

community detection [12]. However, even after averaging over all possible centers

c, the variance of this estimator is far too large for sparse graphs. In order to

decrease this variance, previous algorithms [12] project the tensor to the top

eigenspace of the centered adjacency matrix of the graph. In terms of polynomial

estimators this projection corresponds to averaging over all length-`-armed

3-stars16 for ` � log n. Even for disjoint communities, this polynomial estimator

would fail to achieve the Kesten–Stigum bound.

In order to improve the quality of this polynomial estimator, informed by the

shape of threshold-achieving estimator for second moments, we average only

over such long-armed 3-stars that are self-avoiding. We show that the resulting

estimator achieves constant correlation with the desired third moment tensor

precisely up to the Kesten–Stigum bound (Section 8.5.2).

8.2.3 Correlation-preserving projection

A recurring theme in our algorithms is that we can compute an approximation

vector P that is correlated with some unknown ground-truth vector Y in the

Euclidean sense 〈P,Y〉 > δ · ‖P‖ · ‖Y‖, where the norm ‖·‖ is induced by the inner

16A length-`-armed 3-star between i , j, k ∈ [n] consists of three length-` walks between i , j, k
and a common center c ∈ [n]
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product 〈·, ·〉. (Typically, we obtain P by evaluating a low-degree polynomial

in the observable variables and Y is the second or third moment of the hidden

variables.)

In this situation, we often seek to improve the quality of the approximation

P—not in the sense of increasing the correlation, but in the sense of finding a

new approximation Q that is “more similar” to Y while roughly preserving the

correlation, so that 〈Q ,Y〉 > δO(1) · ‖Q‖ · ‖Y‖. As a concrete example, we may

know that Y is a positive semidefinite matrix with all-ones on the diagonal and

our goal is to take an arbitrary matrix P correlated with Y and compute a new

matrix Q that is still correlated with Y but in addition is positive semidefinite and

has all-ones on the diagonal. More generally, we may know that Y is contained in

some convex set C and the goal is “project” P into the set C while preserving the

correlation. We note that the perhapsmost natural choice of Q as the vector closest

to P in C does not work in general. (For example, if Y � (1, 0), C � {(a , b) | a 6 1},

and P � (δ ·M,M), then the closest vector to P in C is (1,M), which has poor

correlation with Y for large M.)

Theorem 8.2.3 (Correlation-preserving projection). Let C be a convex set and Y ∈ C.

Let P be a vector with 〈P,Y〉 > δ · ‖P‖ · ‖Y‖. Then, if we let Q be the vector that

minimizes ‖Q‖ subject to Q ∈ C and 〈P,Q〉 > δ · ‖P‖ · ‖Y‖, we have

〈Q ,Y〉 > δ/2 · ‖Q‖ · ‖Y‖ . (8.2.3)

Furthermore, Q satisfies ‖Q‖ > δ‖Y‖.

Proof. By construction, Q is the Euclidean projection of 0 into the set C′ :�

{Q ∈ C | 〈P,Q〉 > δ‖P‖ · ‖Y‖}. It’s a basic geometric fact (sometimes called

Pythagorean inequality) that a Euclidean projection into a set decreases distances
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to points into the set. Therefore, ‖Y − Q‖2 6 ‖Y − 0‖2 (using that Y ∈ C′).

Thus, 〈Y,Q〉 > ‖Q‖2/2. On the other hand, 〈P,Q〉 > δ‖P‖ · ‖Y‖ means that

‖Q‖ > δ‖Y‖ by Cauchy–Schwarz. We conclude 〈Y,Q〉 > δ/2 · ‖Y‖ · ‖Q‖. �

In our applications the convex set C typically consists of probability distribu-

tions or similar objects (for example, quantum analogues like density matrices

or pseudo-distributions—the sum-of-squares analogue of distributions). Then,

the norm minimization in Theorem 8.2.3 can be viewed as maximizing the Rényi

entropy of the distribution Q. From this perspective, maximizing the entropy

within the set C′ ensures that the correlation with Y is not lost.

8.2.4 Low-correlation tensor decomposition

Earlier we described how to efficiently compute a 3-tensor P that has correlation

δ > 0 with a 3-tensor

∑k
i�1

y⊗3

i , where y1, . . . , yk are unknown orthonormal

vectors we want to estimate (Section 8.2.2). Here, the correlation δ depends on

how far we are from the threshold and may be minuscule (say 0.001).

It remains to decompose the tensor P into a short list of vectors L so as to

ensure that �i∈[k]max ŷ∈L〈 ŷ , y〉 > δO(1)
. (Ideally of course |L | � k. In the block

model context this guarantee requires a small amount of additional work to

cross-validate vectors in a larger list.) To the best of our knowledge, previous

tensor decomposition algorithms do not achieve this kind of guarantee and

require that the correlation of P with the orthogonal tensor

∑k
i�1

y⊗3

i is close to 1

(sometimes even within polynomial factors 1/nO(1)
).

In the current work, we achieve this guarantee building on previous sum-
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of-squares based tensor decomposition algorithms [31, 121]. These algorithms

optimize over moments of pseudo-distributions (a generalization of probability

distributions) and then apply Jennrich’s classical tensor decomposition algorithms

to these “pseudo-moments”. The advantage of this approach is that it provably

works even in situations where Jennrich’s algorithm fails when applied to the

original tensor.

As a thought experiment, suppose we are able to find pseudo-moments M

that are correlated with the orthogonal tensor

∑k
i�1

y⊗3

i . Extending previous

techniques [121], we show that Jennrich’s algorithm applied to M is able to

recover vectors that have constant correlation with a constant fraction of the

vectors y1, . . . , yk .

A priori it is not clear how to find such pseudo-moments M because we don’t

know the orthogonal tensor

∑k
i�1

y⊗3

i , we only know a 3-tensor P that is slightly

correlated with it. Here, the correlation-preserving projection discussed in the

previous section comes in: by Theorem 8.2.3 we can efficiently project P into

the set of pseudo-moments in a way that preserves correlation. In this way, we

obtain pseudo-moments M that are correlated with the unknown orthogonal

tensor

∑k
i�1

y⊗3

i .

When P is a 3-tensor as above, we encounter technical difficulties inherent

to odd-order tensors. (This is a common phenomenon in the tensor-algorithms

literature.) To avoid these difficulties we give a simple algorithm, again using the

correlation-preserving projection idea, to lift a 3-tensor P which is δ-correlated

with an orthogonal tensor A to a 4-tensor P′ which is δO(1)
-correlated with an

appropriate orthogonal 4-tensor. See Section 8.7.2.

160



8.2.5 From quasi-polynomial time to polynomial time

In this section, we describe how to evaluate certain logarithmic-degree polynomi-

als in polynomial-time (as opposed to quasi-polynomial time). The idea is to use

color coding [11].17

For a coloring c : [n] → [`] and a subgraph α ⊆ [n]2 on ` vertices, let

Fc ,α �
``

`! · 1c(α)�[`] be a scaled indicator variable of the event that α is colorful.

Theorem 8.2.4 (Evaluating colorful-path polynomials). There exists a nO(1) ·exp(`)-

time algorithm that given vertices i , j ∈ [n], a coloring c : [n] → [`] and an adjacency

matrix x ∈ {0, 1}n×n
evaluates the polynomial

pc(x) :�
1

|SAW`(i , j)|

∑
α∈SAW`(i , j)

pα(x) · Fc ,a . (8.2.4)

(Here, pα ∝
∏

ab∈α(xab − d
n ) is the polynomial in Eq. (8.2.1).)

Proof. We can reduce this problem to computing the `-th power of the following

n ·2`-by-n ·2` matrix: The rows and columns are indexed by pairs (a , S) of vertices

a ∈ [n] and color sets S ⊆ [`]. The entry for column (a , S) and row (b , T) is equal

to xab − d
n if T � S ∪ {c(a)} and 0 otherwise. If we compute the `-th power of

this matrix, then the entry for column (i , ∅) and row ( j, [`]) is the sum over all

colorful `-paths from i to j. �

For a fixed coloring c, the polynomial pc does not provide a good approxi-

mation for the polynomial p(x) :�
1

|SAW`(i , j)|
∑
α∈SAW`(i , j) pα(x). In order to get a

good approximation, we will choose random colorings and average over them.

17We thank Avi Wigderson for suggesting that color coding may be helpful in this context.
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If we let c be a random coloring, then by construction �c Fc ,α � 1 for every

simple `-path α. Therefore, �c pc(x) � p(x) for every x ∈ {0, 1}n×n
. We would

like to estimate the variance of pc(x). Here, it turns out to be important to consider

a typical x drawn from stochastic block model distribution SBM.

�
x∼SBM(n ,d ,ε)

�
c

pc(x)2 �
1

|SAW`(i , j)|2
∑

α,β∈SAW`(i , j)
�
c

Fc ,α · Fc ,β · �
x∼SBM

pα(x)pβ(x)

(8.2.5)

6 e2` · 1

|SAW`(i , j)|

∑
α,β∈SAW`(i , j)

|�
x

pα(x)pβ(x)| . (8.2.6)

For the last step, we use that �c F2

c ,α 6 e2`
(because ``/`! 6 e`).

The right-hand side of Eq. (8.2.6) corresponds precisely to our notion of

approximate pairwise independence in Lemma 8.2.1. Therefore, if we are within

the Kesten–Stigum bound, ε2d > 1 + δ, the right-hand side of Eq. (8.2.6) is

bounded by e2` · 1/δO(1)
.

We conclude that with high probability over x, the variance of pc(x) for

random c is bounded by eO(`)
. It follows that by averaging over eO(`)

random

colorings we obtain a low-variance estimator for p(x).

8.2.6 Illustration: push-out effect in spiked Wigner matrices

We turn to a first demonstration of our meta-algorithm beyond the stochastic

block model: deriving the critical signal-to-noise ratio for (Gaussian) Wigner

matrices (i.e. symmetric matrices with iid entries) with rank-one spikes. This

section demonstrates the use of Theorem 8.1.1; more sophisticated versions of

the same ideas (for example our 3rd-moment meta-theorem, Theorem 8.1.3) will

be used in the course of our block model algorithms.
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Consider the following Bayesian estimation problem: We are given a spiked

Wigner matrix A � λvvT + W so that W is a random symmetric matrix with

Gaussian entries Wi j ∼ N(0, 1

n ) and v ∼ N(0, 1

n Id). The goal is to estimate v,

i.e., compute a unit vector v̂ so that 〈v , v̂〉2 > Ω(1). Since the spectral norm of a

Wignermatrix satisfies�‖W ‖ �
√

2, it follows that for λ >
√

2, the top eigenvector

v̂ of A satisfies 〈v , v̂〉2 > Ω(1). However, it turns out that we can estimate the

spike v even for smaller values of λ: a remarkable property of spiked Wigner

matrices is that as soon as λ > 1, the top eigenvector v̂ becomes correlated with

the spike v [22]. (This property is sometimes called the “pushout effect”.)

Unfortunately known proofs of this property a quite involved. In the

following, we apply Theorem 8.1.1 to give an alternative proof of the fact that

it is possible to efficiently estimate the spike v as soon as λ > 1. Our algorithm

is more involved and less efficient than computing the top eigenvector of A.

The advantage is that its analysis is substantially simpler compared to previous

analyses.

Theorem 8.2.5 (implicit in [22]). If λ � 1 + δ for some 1 > δ > 0, there is a degree

δ−O(1) · log n matrix-valued polynomial f (A) � { fi j(A)}i j6n such that

�W,v Tr f (A)vv>

(� ‖ f (A)‖2F)1/2 · (� ‖vv>‖2F)1/2
> δO(1) .

Together with Theorem 8.1.1, the above theorem gives an algorithm with

running time nlog n/δO(1)
to find v̂ with nontrivial �〈v̂ , v〉2.18

The analysis of [22] establishes the above theorem for the polynomial f (A) �

A`
with ` � δ−O(1) · log n. Our proof chooses a different polynomial, which

18While this algorithm is much slower than the eigenvector-based algorithm—even after

using color coding to improve the nlog n/δO(1)
running time to n1/δO(1)

—the latter requires many

sophisticated innovations and ideas from random matrix theory. This algorithm, by contrast, can

be derived and analyzed with our meta-theorem, little innovation required.
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affords a substantially simpler analysis.

Proof of Theorem 8.2.5. For α ⊆
(n
2

)
, let χα(A) �

∏
{i , j}∈α Ai j . Let L � log n/δC

for

C a large enough constant. For i j ∈ [n], let SAWi j(L) be the collection of all

self-avoiding paths from i to j in the complete graph on n vertices. Observe that

nL−1

λL χα for α ∈ SAWi j(L) is an unbiased estimator of viv j :

�
[
χα(A) | vi , v j

]
� �

v

[∏
k`∈α
�
W
(Wk` + λvk v`) | vi , v j

]
� λLviv j �

∏
k∈α\{i , j}

v2

k �
λL

nL−1

·vi v j .

We further claim that the collection { nL−1

λL χα}α∈SAWi j(L) is approximately pairwise

independent in the sense of Lemma 8.2.1. To show this we must check that

n2(L−1)

λ2L

∑
α,β

� χαχβ 6
1

δ2

|SAWi j(L)|2� v2

i v2

j �
1

δ2

|SAWi j(L)|2 ·
1

n2

.

The dominant contributers to the sum are α, βwhich intersect only on the vertices

i and j. In that case,

n2(L−1)

λ2L � χαχβ � n2(L−1)�
∏

k∈α∪β
v2

k � � v2

i v2

j .

The only other terms which might contribute to the same order are α, β such that

α ∩ β is a union of two paths, one starting at i and one at j. If the lengths of these

paths are t and t′, respectively, and t′ + t′ < L, then

n2(L−1)

λ2L � χαχβ �
n2(L−1)

λ2(t+t′) �v


∏

(k ,`)∈α∩β
(�
W

A2

k`) ·
∏

(k ,`)∈α4β
vk v`

 �
nt+t′

λt+t′ ·(1+O(λ2/n))t+t′

where we have used that �
[
A2

k` | vk , v`
]
�

1

n (1 + O(λ2/n)) · � v2

i v2

j .

There are at most |SAWi j(L)|2/nt+t′
choices for such pairs α, β, so long as

t + t′ < L. If t + t′ � L, then there are n times more choices than the above bound.

All together,

n2(L−1)

λ2L

∑
α,β∈SAWi j(L)

� χαχβ 6 |SAWi j(L)|·
©«
(

L∑
t�0

1

λt

)
2

+
n
λL

ª®¬·� v2

i v2

j 6
1 + o(1)
1 − 1/λ ·|SAWi j(L)|·� v2

i v2

j
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wherewehave used that λ � 1+δ > 1 and chosen C large enough that n/λL 6 1/n.

Rewriting in terms of δ � λ − 1 and applying Lemma 8.2.1 finishes the proof. �

8.3 Warmup: stochastic block model with two communities

We demonstrate our meta-algorithm by applying it to the two-community

stochastic block model. The algorithm achieves here the same threshold for

partial recovery as the best previous algorithms [136, 125], which is also known

to be the information-theoretic threshold [139].

While the original works involved a great deal of ingenuity, the merit of our

techniques is to provide a simple and automatic way to discover and analyze an

algorithm achieving the same guarantees.

Definition 8.3.1 (Two-community stochastic block model). For parameters ε, d >

0, let SBM(n , d , ε) be the following distribution on pairs (x , y)where x ∈ {0, 1}(n2)

is the adjacency matrix of an n-vertex graph and y ∈ {±1}n is a labeling of the n

vertices. First, sample y ∼ {±1}n uniformly. Then, independently for every pair

i < j, add the edge {i , j} with probability (1 + ε) dn if yi � y j and with probability

(1 − ε) dn if yi , y j .

The following theorem gives the best bounds for polynomial-time algorithms

for partial recovery in this model. (We remark that the algorithms in [136, 124]

actually run in time close to linear. In this work, we content ourselves with

coarser running time bounds.)

Theorem 8.3.2 ([136, 124]). Let ε ∈ �, d ∈ � with δ B 1 − 1

ε2d and d 6 no(1)
. Then,

there exists a randomized polynomial-time algorithm A that given a graph x ∈ {0, 1}(n2)
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outputs a labeling ỹ(x) such that for all sufficiently large n > n0(ε, d),

�
(x ,y)∼SBM(n ,d ,ε)

〈 ỹ(x), y〉2 > δO(1) · n2 .

Here, the factor n2
in the conclusion of the theorem normalizes the vectors

ỹ(x) and y because ‖ ỹ(x)‖2 · ‖y‖2 � n2
.

In the remainder of this section, we will prove the above theorem by specializ-

ing ourmeta-algorithm for two-community stochastic blockmodel. For simplicity,

we will here only analyze a version of algorithm that runs in quasi-polynomial

time. See Section 8.2.5 for how to improve the running time to n1/poly(δ)
.

Algorithm 8.3.3. For a given n-vertex graph x ∈ {0, 1}(n2) with average degree d

and some parameter δ > 0, execute the following steps:19

1. evaluate the following matrix-valued polynomial P(x) � (Pi j(x))

Pi j(x) B
∑

α∈SAW`(i , j)
pα(x) . (8.3.1)

Here as in Section 9.2, SAW`(i , j) ⊆
(n
2

) `
consists of all sets of vertex

pairs that form a simple (self-avoiding) path between i and j of length

` � Θ(log n)/δO(1)
.20 The polynomial pα is a product of centered edge

indicators, so that pα(x) �
∏

ab∈α

(
xab − d

n

)
.21

2. compute a matrix Y with minimum Frobenius norm satisfying the con-

straints 
diag(Y) � 1

1

‖P(x)‖F ·n · 〈P(x),Y〉 > δ
′

Y � 0


. (8.3.2)

19The right choice of δ′ will depend in a simple way on the parameters ε and d.
20In particular, the paths in SAW`(i , j) are not necessarily paths in the graph x but in the

complete graph on n vertices.

21Up to scaling, this polynomial is a d/n-biased Fourier character of sparse Erdős-Rényi graph.
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and output a vector ỹ ∈ {±1}n obtained by taking coordinate-wise signs of

a centered Gaussian vector with covariance Y.22

The matrix P(x) is essentially the same as the matrix based on self-avoiding

walks analyzed in [136]. The main departure from previous algorithms lies in

the second step of our algorithm.

As stated, the first step of the algorithm takes quasi-polynomial because it

involves a sum over n` terms (for ` � Θ(log n)/δO(1)
). In prior works this running

time is improved by using non-backtracking paths instead of self-avoiding paths.

Non-backtracking paths can be counted in nO(1)
time using matrix multiplication,

but relating the non-backtracking path polynomial to the self-avoiding path

polynomial requires intensive moment-method calculations. An alternative,

described in Section 8.2.5, is to compute the self-avoiding path polynomial P

using color-coding, requiring time nO(1)+1/δO(1)
, still polynomial time for any

constant δ > 0.

The second step of the algorithm is a convex optimization problem over an

explicitly represented spectrahedron. Therefore, this step can be carried out in

polynomial time.

We break the analysis of the algorithm into two parts corresponding to the

following lemmas. The first lemma shows that if ε2d > 1 then the matrix P(x) has

constant correlation with y yT
for (x , y) ∼ SBM(n , d , ε) and n sufficiently large.

(Notice that this the main preconditon to apply meta-Theorem 8.1.1.)

Lemma 8.3.4 (Low-degree estimator for posterior second moment). Let ε ∈ � and

d ∈ �, and assume d � no(1)
. If δ

def

� 1 − 1

ε2d > 0 and n > n0(ε, d , δ) is sufficiently

22In other words, we apply the hyperplane rounding algorithm of Goemans and Williamson.
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large, then the matrix-valued polynomial P(x) in Eq. (8.3.1) satisfies

�
(x ,y)∼SBM(n ,d ,ε)

〈P(x), y yT〉 > δO(1) ·
(

�
x∼SBM(n ,d ,ε)

‖P(x)‖2F
)

1/2
· n (8.3.3)

(Here, the factor n in the conclusion normalizes the matrix y yT
because ‖y yT‖F � n.)

By application of Markov’s inequality to the conclusion of this theorem one

shows that with P has Ω(1)-correlation with y y> with Ω(1)-probability. As we

have noted several times, the same theorem would hold if we replaced P, an aver-

age over self-avoiding walk polynomials, with an average over nonbacktracking

walk polynomials. This would have the advantage that the resulting polynomial

can be evaluated in nO(1)
time (i.e. with running time independent of δ), rather

than nO(log n)/poly(δ)
for P (which can be improved to npoly(1/δ)

via color coding),

but at the cost of complicating the moment-method analysis. Since we are aiming

for the simplest possible proofs here we use P as is.

The second lemma shows that given a matrix P that has constant correlation

with y yT
for an unknown labeling y ∈ {±1}n , we can efficiently compute a

labeling ỹ ∈ {±1}n that has constant correlation with y. We remark that for this

particular situation simpler and faster algorithms work (e.g., choose a random

vector in the span of the top 1/δO(1)
eigenvectors of P); these are captured by the

meta-Theorem 8.1.1, which we could use in place of the next lemma. (We are

presenting this lemma, which involves a more complex and slower algorithm, in

order to have a self-contained analysis in this warmup and because it illustrates a

simple form of a semidefinite programming technique that is important for our

tensor decomposition algorithm, which we use for overlapping communities.)

Lemma 8.3.5 (Partial recovery from posterior moment estimate). Let P ∈ �n×n

be a matrix and y ∈ {±1}n be a vector with δ′ B 1

‖P‖·n 〈P, y yT〉. Let Y be the matrix
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of minimum Frobenius such that Y � 0, diagY � 1, and 1

‖P‖·n 〈Y, P〉 > δ′ (i.e., the

constraints Eq. (8.3.2)). Then, the vector ỹ obtained by taking coordinate-wise signs of a

Gaussian vector with mean 0 and covariance Y satisfies

�〈 ỹ , y〉2 > Ω(δ′)2 · n2 .

(Here, the factor n2
in the conclusion normalizes the vectors ỹ , y because ‖ ỹ‖2 · ‖y‖2 �

n2
.)

Proof. By Theorem 8.2.3, the matrix Y satisfis 〈Y, y yT〉 > (δ′/2)‖Y‖ · ‖y‖2 and

‖Y‖ > δ · ‖y‖2. In particular, 〈Y, y yT〉 > δ2n2/2. The analysis of round-

ing algorithm for the Grothendieck problem on psd matrices [10], shows that

�〈 ỹ , y〉2 > 2

π 〈Y, y yT〉 > Ω(δ2) · n2
. (Here, we use that y yT

is a psd matrix.) �

Taken together, the above lemmas imply a quasi-polynomial time algorithm

for partial recovery in SBM(n , d , ε)when ε2d > 1.

Proof of Theorem 8.3.2 (quasi-polynomial time version). Let (x , y) ∼ SBM(n , d , ε)

with δ B 1 − 1/ε2d > 0. Run Algorithm 8.3.3 on x with the parameter δ′

chosen as
1

10
times the correlation factor in the conclusion of Lemma 8.3.4.

Then, byLemma8.3.4,�(x ,y)∼SBM(n ,d ,ε)〈P(x), y yT〉 > 10δ′·�x∼SBM(n ,d ,ε)‖P(x)‖·

n. By a variant of Markov inequality Theorem 8.8.1, the matrix P(x) satisfies with

constant probability 〈P(x), y yT〉 > δ′ · ‖P(x)‖ · n. In this event, by Lemma 8.3.5,

the final labeling ỹ satisfies � ỹ 〈 ỹ , y〉2 > Ω(δ′)2 · n2
. Since this event has constant

probability, the total expected correlation satisfies �(x ,y)∼SBM(n ,d ,ε)〈 ỹ(x), y〉2 >

Ω(δ′)2 · n2
as desired. �

It remains to prove Lemma 8.3.4.
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8.3.1 Low-degree estimate for posterior second moment

We will apply Lemma 8.2.1 to prove Lemma 8.3.4. The next two lemmas verify

that the conditions of that lemma hold; they immediately imply Lemma 8.3.4.

Lemma 8.3.6 (Unbiased estimators for yi y j). For i , j ∈ [n] distinct, let SAW`(i , j) be

the set of all simple paths from i to j in the complete graph on n vertices of length `. Let xi j

be the i j-th entry of the adjacency matrix of G ∼ SBM(n , d , ε), and for α ∈ SAW`(i , j),

let pα(x) �
∏

ab∈α(xab − d
n ). Then for any yi , y j ∈ {±1} and α ∈ SAW`(i , j),( n
εd

) `
�

[
pα(x) | yi y j

]
� yi y j .

Thus, each simple path α from i to j in the complete graph provides an

unbiased estimator (n/εd)`pα(x) of yi y j . It is straightforward to compute that

each has variance

(
n
ε2d

) `
. If they were pairwise independent, they could be

averaged to give an estimator with variance
1

|SAW`(i , j)| ·
(

n
ε2d

) `
� n(ε2d)−`, since

there are n`−1
simple paths from i to j. If ` is logarithmic in n, this becomes

small. The estimators are not strictly pairwise independent, but they do satisfy

an approximate pairwise independence property which will be enough for us.

Lemma 8.3.7 (Approximate conditional independence). Suppose δ def

� 1 − 1

ε2d >

Ω(1) and d � no(1)
. For i , j ∈ [n] distinct, let SAW`(i , j) be the set of all simple

paths from i to j in the complete graph on n vertices of length ` � Θ(log n)/δC

for a large-enough constant C. Let xi j be the i j-th entry of the adjacency matrix of

G ∼ SBM(n , d , ε). Let pα(x) �
∏

ab∈α(xab − d
n ). Then

� y2

i y2

j

∑
α,β∈SAW`(i , j)

� pα(x)pβ(x) 6 δ−O(1)·
∑

α,β∈SAW`(i , j)

(
� pα(x)yi y j

) (
� pβ(x)yi y j

)
.

Toprove the lemmaswewill use the following fact; the proof is straightforward.
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Fact 8.3.8. For x , y ∼ SBM, the entries of x are all independent conditioned on y, and

a , b distinct,

�
[
xab − d

n | ya , yb
]
�
εd
n
·ya yb and �

[(
xab − d

n

)
2

| ya , yb

]
�

d
n

(
1 + εya yb + O(d/n)

)
.

We can prove both of the lemmas.

Proof of Lemma 8.3.6. We condition on y and expand the expectation.

�
[
pα(x) | yi y j

]
� �

y

[∏
ab∈α
�[xab − d

n | y]
]
�

(
εd
n

) `
�
y

[∏
ab∈α

ya yb

]
by Fact 8.3.8.

Because α is a path from i to j, every index a ∈ [n] except for i and j appears

exactly twice in the product. So, removing the conditioning on ya for all a , i , j,

we obtain �
[
pα(x) | yi y j

]
�

(
εd
n

) `
· yi y j as desired. �

The proof of Lemma 8.3.7 is the heart of the proof, and will use the crucial

assumption ε2d > 1.

Proof of Lemma 8.3.7. Let α, β ∈ SAW`(i , j), and suppose that α and β share r

edges. Let α4β denote the symmetric difference of α and β. Then

� pα(x)pβ(x) � �
y


∏

ab∈α∩β
�
x

[
(xab − d

n )
2 |ya , yb

]
·

∏
ab∈α4β

�
x

[
xab − d

n |ya , yb
]

�

(
d
n

)
2`−r

ε2`−2r �
y


∏

ab∈α∩β
(1 + εya yb + O(d/n)) ·

∏
ab∈α4β

ya yb


using Fact 8.3.8 in the second step. Since α and β are paths, the graph α4β has all

even degrees, so

∏
ab∈α4β ya yb � 1. Furthermore, any subgraph of α ∩ β contains

some odd-degree vertex. So �y
∏

ab∈α∩β(1 + εya yb + O(d/n)) � (1 + O(d/n))r .

All in all, we obtain

� pα(x)pβ(x) �
(

d
n

)
2`−r

ε2`−2r(1 + O(d/n))r (8.3.4)
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Suppose r < `. Paths α, β sharing r edges must share at least r vertices. If

they share exactly r vertices, then the shared vertices must form paths in α and

β beginning at i and j. Since each path has length ` and therefore contains

` − 1 vertices in addition to i and j, there are at most r · n2(`−1)−r
such pairs α, β

(the multiplicative factor r comes because the shared paths starting from i and

j could have lengths between 0 and r). Other pairs α, β share r edges but s

vertices for some s > r. For each s and r, there are at most n2(`−1)−s`O(s−r)
such

pairs, because the shared edges must occur as at most s − r paths. Furthermore,

`O(s−r)n−(s−r) 6 n−Ω(1) when s > r. Putting all of this together,∑
α,β∈SAW`(i , j)

� pα(x)pβ(x) 6 n−2 ·
[
`−1∑
r�0

d2`−rε2`−2r(1 + O(d/n))r
(
r + n−Ω(1)

)
+ (ε2d)` · n

]
� n−2 · (1 + n−Ω(1)) · (εd)2` ·

(∑̀
r�0

r · (ε2d)−r
+ (ε2d)−` · n

)
,

The additive factor of (ε2d)`n in the first line comes from the case r � ` (i.e., α � β),

where there are n`−1
paths. In the second line we have used the assumption

that d � n to simplify the expression. Finally, by convergence of the series∑∞
m�0

m · zm
for |z | < 1, and the choice of ` logarithmic in n, this is at most

(1 + n−Ω(1)) · (εd)2` ·
(

1

1 − 1

ε2d

)O(1)

.

So, now our goal is to show that

∑
α,β∈SAW`(i , j)

(� pα(x)yi y j)(� pβ(x)yi y j) > n−2 · (1+ n−Ω(1)) · (εd)2` ·
(

1

1 − 1

ε2d

)O(1)

.

Each term in the left-hand sum is (εd/n)2` (by Lemma 8.3.6) and there are

Ω(n2`−2) such terms, so the left-hand side of the above is at least Ω((εd)2`/n2).

This proves the Lemma. �
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8.4 Matrix estimation for generalized block models

In this section we phrase a result essentially due to Abbe and Sandon [3] (and

closely related to results by Bordenave et al [42]) in somewhat more general

terms. This turns out to be enough to capture an algorithm to estimate a pairwise-

vertex-similarity matrix in the d , k , α, ε mixed-membership block model when

ε2d > k2(α + 1)2.

Let U be a universe of labels, endowed with some base measure ν, such

that

∫
1 · dν � 1. Let µ be a probability distribution on U , with a density

relative to ν. (We abuse notation by conflating µ and its associated density). Let

W : U ×U → �+ be a bounded nonnegative function with W(x , y) � W(y , x)

for every x , y ∈ U . Consider a random graph model G(n , d ,W, µ) sampled as

follows. For each of n vertices, draw a label xi ∼ µ independently. Then for each

pair i j ∈ [n]2, independently add the edge (i , j) to the graph with probability

d
n W(xi , x j). (This captures the W-random graph models used in literature on

graphons.)

Let F denote the space of square-integrable functions f : U → �, endowed

with the inner product 〈 f , 1〉 � �x∼µ f (x)1(x). That is, f ∈ F if�x∼µ f (x)2 exists.

We assume throughout that

1. (Stochasticity) For every x ∈ U , the average �y∼µ W(x , y) � 1.

2. (Finite rank) W has a finite-rank decomposition W(x , y) � ∑
i6r λi fi(x) fi(y)

where λi ∈ � and fi : U → �. The values λi are the eigenvalues of W

with respect to the inner product generated by µ. The eigenfunctions

are orthonormal with respect to the µ inner product. Notice that the
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assumptions on W imply that its top eigenfunction f1(x) is the constant

function, with eigenvalue λ1 � 1.

3. (Niceness I) Certain rational moments of µ−1
exist; that is�x∼µ µ(x)−t

exists

for t � −3/2,−2.

4. (Niceness II) W and µ are nice enough that W(x , y) 6 1/
√
µ(x)µ(y) and

|W(x , y)| 6 λ2/
√
µ(x)µ(y) for every x , y ∈ U , where W(x , y) � W(x , y)−1.

(Notice that in the case of discrete W and µ this is always true, and for

smooth enough W and µ it is true via a δ-function argument.)

The function W induces a Markov operator W : F → F . If f ∈ F , then

(W f )(x) � �
y∼µ

W(x , y) f (y) .

(We abuse notation by conflating the function W and the Markov operator W .)

Theorem 8.4.1 (Implicit in [3]). Suppose the operator W has eigenvalues 1 � λ1 >

λ2 > · · · > λr (each possibly with higher multiplicity) and δ
def

� 1 − 1

dλ2

2

> 0. Let Π be

the projector to the second eigenspace of the operator W . For types x1, . . . , xn ∼ µ, let

A ∈ �n×n
be the random matrix Ai j � Π(xi , x j), where we abuse notation and think of

Π : U ×U → �. There is an algorithm with running time npoly(1/δ)
which outputs an

n × n matrix P such that for x ,G ∼ G(n , d ,W, µ),

�
x ,G

Tr P · A > δO(1) · ( �
x ,G
‖A‖2)1/2( �

x ,G
‖P‖2)1/2 .

When U is discrete with k elements one recovers the usual k-community

stochastic block model, and the condition λ2

2
> 1 matches the Kesten-Stigum

condition in that setting. When λ2

2
> 1 + δ, the guarantees of Abbe and Sandon

can be obtained by applying the above theorem to obtain an estimator P for the

matrix M �
∑

s∈[k] vs v>s , where vs is the centered indicator vector of community
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s. The estimator P will have at least δO(1)/k correlation with M, and a random

vector in the span of the top k/δO(1)
eigenvectors of M will have correlation

(δ/k)O(1) with some vs . Thresholding that vector leads to the guarantees of

Abbe and Sandon for the k-community block model, with one difference: Abbe

and Sandon’s algorithm runs in O(n log n) time, much faster than the npoly(1/δ)

running time outlined above. In essence, they achieve this by computing an

estimator P′ for M which counts only non-backtracking paths in G (the estimator

P counts self-avoiding paths).

In Section 8.4.1 we prove a corollary of Theorem 8.4.1. This yields the

algorithm discussed Theorem 8.1.2 for the mixed-membership blockmodel. As

discussed before, the quantitative recovery guarantees of this algorithm are

weaker than those of our final algorithm, whose recovery accuracy depends

only on the distance δ of the signal-to-noise ratio of the mixed-membership

blockmodel to 1. In Section 8.4.2 we prove Theorem 8.4.1.

8.4.1 Matrix estimation for the mixed-membership model

We turn to the mixed-membership model and show that Theorem 8.4.1 yields an

algorithm for partial recovery in the mixed-membership block model. However,

the correlation of the vectors output by this algorithm with the underlying

community memberships depends both on the signal-to-noise ratio and the

number k of communiteis. (In particular, when k is super-constant this algorithm

no longer solves the partial recovery task.)

Definition 8.4.2 (Mixed-Membership Block Model). Let G(n , d , ε, α, k) be the

following random graph ensemble. For each node i ∈ [n], sample a probability
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vector σi ∈ �k
>0

with

∑
t∈[k] σi(t) � 1 according to the following (simplified)

Dirichlet distribution.

�(σ) ∝
∏
t∈[k]

σi(t)α/k−1

For each pair of vertices i , i′ ∈ [n], sample communities t ∼ σi and t′ ∼ σi′. If

t � t′, add the edge {i , i′} to G with probability
d
n (1 + (1 − 1

k )ε). If t , t′, add

the edge {i , i′} to G with probability
d
n (1 − ε

k ). (For simplicity, throughout this

paper we consider only the case that the communities have equal sizes and the

connectivity matrix has just two unique entries.)

Theorem 8.4.3 (Constant-degree partial recovery for mixed-membership block

model, k-dependent error). For every δ > 0 and d(n), ε(n), k(n), α(n), there is an

algorithm with running time nO(1)+1/δO(1)
with the following guarantees when

δ
def

� 1 − k2(α + 1)2
ε2d

> 0 and k , α 6 no(1)
and ε2d 6 no(1) .

Let σ,G ∼ G(n , d , ε, k , α) and for s ∈ [k] let vs ∈ �n
be given by vs(i) � σi(s) − 1

k .

The algorithm outputs a vector x such that �〈x , v1〉2 > δ′‖x‖2‖v1‖2, for some

δ′ > (δ/k)O(1).23

Ideally one would prefer an algorithm which outputs τ1, . . . , τn ∈ ∆k−1
with

corr(σ, τ) > δ′/(α+1). If one knew that 〈x , v1〉 > δ′‖x‖‖v‖ rather thanmerely the

guarantee on 〈x , v1〉2 (which does not include a guarantee on the sign of x), then

this could be accomplished by correlation-preserving projection, Theorem 8.2.3.

The tensor methods we use in our final algorithm for the mixed-membership

model are able to obtain a guarantee on 〈x , v1〉 and hence can output probability

vectors τ1, . . . , τn .24

23The requirement ε2d 6 no(1)
is for technical convenience only; as ε2d increases the recovery

problem only becomes easier.

24Such a guarantee could be obtained here by using a cross-validation scheme on x to choose
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To prove Theorem 8.4.3 wewill apply Theorem 8.4.1 and then a simple spectral

rounding algorithm; the next two lemmas capture these two steps.

Lemma 8.4.4 (Mixed-membership block model, matrix estimation). IfU is the

(k − 1)-simplex, µ is the α, k Dirichlet distribution, and W(σ, σ′) � 1 − ε
k + ε〈σ, σ′〉,

then G(n , d ,W, µ) is the mixed-membership block model with parameters k , d , α, ε. In

this case, the second eigenvalue of W has multiplicity k − 1 and has value λ2 �
ε

k(α+1) .

Proof. The first part of the claim follows from the definitions. For the second part,

note that W has the following decomposition

W(σ, τ) � 1 +

∑
i6k

ε(σi − 1

k )(τi − 1

k ) .

The functions σ 7→ σi − 1

k are all orthogonal to the constant function σ 7→ 1 with

respect to µ; i.e.

�
σ∼µ

1 · (σi − 1

k ) � 0

because � σi �
1

k .

It will be enough to test the above Rayleigh quotient

�σ∼µ f (σ) · (W f )(σ)
�σ∼µ f (σ)2

with any function f (σ) in the span of the functions σ 7→ σi − 1

k . If we pick

f (σ) � σ1 − 1

k the remaining calculation is routine, using only the second

moments of the Dirichlet distribution (see Fact 8.4.5 below). �

Fact 8.4.5 (Special case of Fact 8.8.3). Let σ ∈ �k
be distributed according to the α, k

Dirichlet distribution. Let σ̃ � σ − 1

k · 1 be centered. Then �(σ̃)(σ̃)> �
1

k(α+1) ·Π where

Π is the projector to the complement of the all-1s vector in �k
.

between x and −x. Since we are focused on what can be accomplished by matrix estimation

methods generally we leave this to the reader.
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We analyze a simple rounding algorithm.

Lemma 8.4.6. Let M �
∑k

i�1
vi v>i be an n × n symmetric rank-k PSD matrix. Let

P ∈ �n×n
be another symmetric matrix such that 〈P,M〉 > δ‖P‖‖M‖ (where ‖ · ‖ is

the Frobenious norm). Then for at least one vector v among v1, . . . , vk , a random unit

vector x in the span of the top (k/δ)O(1) eigenvectors of P satisfies

�〈x , v〉2 > (δ/k)O(1)‖v‖2 .

Now we can prove Theorem 8.4.3.

Proof of Theorem 8.4.3. Lemma 8.4.4 shows that the conditions of Theorem 8.4.1

hold, and hence (via color coding) there is an npoly(1/δ)
time algorithm to compute

a matrix P such that 〈P,M〉 > δO(1)‖P‖‖M‖ with probability at least δO(1)
, where

M �
∑

s∈[k] vs v>s . (The reader may check that the matrix A of Theorem 8.4.1 is in

this case the matrix M described here.)

Applying Lemma 8.4.6 shows that a random unit vector x in the span of the

top (k/δ)O(1) eigenvectors of P satisfies 〈x , v〉2 > (δ/k)O(1)‖v‖2, where v ∈ �n
has

entries vi � σi(1). (The choice of 1 is without loss of generality.) �

8.4.2 Proof of Theorem 8.4.1

Definition 8.4.7. For a pair of functions A, B : U ×U → �, we denote by AB

their product, whose entries are (AB)(x , y) � �z∼µ A(x , z)B(z , y).

The strategy to prove Theorem 8.4.1 will as usual be to apply Lemma 8.2.1.

We check the conditions of that Lemma in the following Lemmas, deferring their

proofs till the end of this section.
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Lemma 8.4.8. Let Gi j be the 0/1 indicator for the presence of edge i ∼ j in a graph G.

As usual, let SAW`(i , j) be the collection of simple paths of length ` in the complete graph

on n vertices from i to j.

Let x ,G ∼ G(n , d ,W, µ). Let α ∈ SAW`(i , j). Let pα(G) �
∏

ab∈α(Gab − d
n ). Let

W(x , y) � W(x , y) − 1. Then

�
[
pα(G) | xi , x j

]
�

(
d
n

) `
W

`−1(xi , x j)

Lemma 8.4.9. With the same notation as in Lemma 8.4.8, as long as ` > C log n/δO(1)

for a large-enough constant C,(n
d

)
2` ∑
α,β∈SAW`(i , j)

� pα(G)pβ(G) 6 δ−O(1) · |SAW`(i , j)|2 · �W
`−1(xi , x j)2 .

(The constant C depends on W and the moments of µ.)

Proof of Theorem 8.4.1. Let Bi j � λ−(`−1)
2

W
`−1(xi , x j). By Lemma 8.4.8,

Lemma 8.4.9, and Lemma 8.2.1, there is matrix polynomial P(G), computable to

1/poly(n)-accuracy in time npoly(1/δ)
by color coding, such that

�Tr PBT > δO(1)(� ‖P‖2)1/2(� ‖B‖2)1/2 .

At the same time, B − A has entries

(B − A)i j �
∑

36t6r

(
λt

λ2

) `−1

Πt(xi , x j)

where the Πt projects to the t-th eigenspace of W . Since W is bounded, choosing

` a large enough multiple of log n ensures that � ‖B −A‖2 6 n−100� ‖B‖2, so the

theorem now follows by standard manipulations. �
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8.4.3 Proofs of Lemmas

Proof of Lemma 8.4.8. As usual, we simply expand p, obtaining

�
[
pα(G) | xi , x j

]
� �

x

[∏
ab∈α

d
n
· (Wxa ,xb − 1) | xi , x j

]
�

(
d
n

) `
·W `−1(xi , x j) . �

We will need some small facts to help in proving Lemma 8.4.9.

Fact 8.4.10. If ` − t > C log n for large enough C � C(W), then

λ2t
2
�

x ,y∼µ
W

`−t(x , y)2 6 (1 + o(1)) · �
x ,y∼µ

W
`(x , y)2 .

Also, for any t 6 `,

λ2t
2
�

x ,y∼µ
W

`−t(x , y)2 6 r · �
x ,y∼µ

W
`(x , y)2 .

where r is the rank of W .

Proof. Using the eigendecomposition of W , we have that �x ,y∼µ W
`−t(x , y)2 �∑

26i6r λ
2(`−t)
i and similarly �x ,y∼µ W

`(x , y)2 �
∑

26i6r λ
2`
i . If i > 2, then

λ2t
2
λ2(`−t)

i � λ2`
2
(λi/λ2)2(`−t) 6 λ2`

2
/n

by our assumption that `− t > C log n for large enough C. This finishes the proof

of the first claim; the second one is similar. �

Proof of Lemma 8.4.9. Pairs α, β which share only the vertices i , j each contribute

exactly �W
`−1(xi , x j)2 to the left-hand side, by Lemma 8.4.8. Consider next

the contribution of α, β whose shared edges form paths originating at i and j.

Suppose there are t such shared edges. Then

� pαpβ �
(

d
n

)
2`−t

�
x

∏
ab∈α4β

W(xa , xb) ·
∏

ab∈α∩β
(W(xa , xb) + O(d/n))
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�

(
d
n

)
2`−t

(1 + O(d/n))t �W
2(`−t−1)(x , y)2 ,

where for the second equality we used the assumption�x∼µ W(x , y) � 1 for every

y.

If ` − t > C log n for the constant in Fact 8.4.10, then this is at most

(1 + o(1))
(

d
n

)
2`−t

λ−2t
2
�W

2(`−1)(x , y)2, and for every t 6 ` it is at most

r ·
(

d
n

)
2`−t

λ−2t
2
�W

2(`−1)(x , y)2.

There are at most |SAW`(i , j)|2/nt · t choices for such pairs α, β, except when

t � `, in which case there are |SAW`(i , j)|2/nt−1
choices. So the total contribution

from such α, β is at most

|SAW`(i , j)|2 · �
x ,y

W
`−1(x , y)2 · ©«

∑
t6`/2

td−tλ−2t
2

+ nr ·
∑

`>t>`/2
td−tλ−2t

2

ª®¬
6 δ−O(1) |SAW`(i , j)|2 �

x ,y
W

`−1(x , y)2 .

It remains to handle pairs α, β which share t vertices and s edges for t > s. If

t , s 6 ` − 2, then there are only n2(`−1)−s`O(t−s)
choices for such a pair α, β. The

contribution of each such pair we bound as follows

� pαpβ �
(

d
n

)
2`−s

�

∏
ab∈α∩β

�(Gab − d
n )

2 ·
∏

ab∈α4β
Wxa ,xb .

Now, �
[
(Gab − d

n )2 | x
]
�

d
n (W(xa , xb) + O(d/n)) by straightforward calculations,

so the above is

(1 + O(d/n))s
(

d
n

)
2`−s

�
x

∏
ab∈α∩β

W(xa , xb) ·
∏

ab∈α4β
W(xa , xb)

6 (1 + O(d/n))s
(

d
n

)
2`−s

λ2`−s
2

∏
a∈α∪β

µ(xa)−degα,β(a)/2
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where degα,β(a) is the degree of the vertex a in the graph α ∪ β. Any degree-2

vertices simply contribute 1 in the above, since �x∼µ 1/µ(x) � 1. There are at

most t − s vertices of higher degree; they may have degree at most 4. They each

contribute at most some number C � C(µ) by the niceness assumptions on µ. So

the above is at most

(1 + o(1))
(

d
n

)
2`−s

λ2`−s
2

exp{O(t − s)} .

Putting things together as in Lemma 8.3.7 finishes the proof. �

Proof of Lemma 8.4.6. By averaging, there is some v among v1, . . . , vk such that

〈P, vv>〉 > δ
k
· ‖P‖ · ‖M‖ > δ

k
· ‖P‖ · ‖vv>‖

where the second inequality uses M � 0. Renormalizing, we may assume ‖P‖

has Frobenious norm 1 and v is a unit vector; in this case we obtain 〈v , Pv〉 > δ/k.

Writing out the eigendecomposition of P, let P �
∑n

i�1
λiuiu>i and we get

n∑
i�1

λi 〈v , ui〉2 > δ/k

By Cauchy-Schwarz,

n∑
i�1

λi 〈v , ui〉2 6
(

n∑
i�1

λ2

i 〈v , ui〉2
)

1/2

and hence

∑n
i�1
λ2

i 〈v , ui〉2 > (δ/k)2, while

∑n
i�1
λ2

i � 1. Now the Lemma follows

from Markov’s inequality. �
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8.5 Tensor estimation for mixed-membership block models

8.5.1 Main theorem and algorithm

Theorem 8.5.1 (Constant-degree partial recovery for mixed-membership block

model). There is a constant C such that the following holds. Let G(n , d , ε, k , α) be the

mixed-membership block model. For every δ ∈ (0, 1) and d(n), ε(n), k(n), α(n), there is

an algorithm with running time nO(1)+1/δO(1)
with the following guarantees when

δ
def

� 1 − k2(α + 1)2
ε2d

> 0 and k , α 6 no(1)
and ε2d 6 no(1) .

Let σ,G ∼ G(n , d , ε, k , α). Let t � (α + 1) · k
k+α (samples from the α, k Dirichlet

distribution are approximately uniform over t coordinates). Given G, the algorithm

outputs probability vectors τ1, . . . , τn ∈ ∆k−1
such that

� corr(σ, τ) > δC
(
1

t
− 1

k

)
.

(Recall the definition of correlation from (8.1.5).)25

Let c ∈ (0, 1) be a small-enough constant. Let C(c) ∈ � be a large-enough

constant (different from the constant in the theorem statement above). There are

three important parameter regimes:

1. Large δ, when δ ∈ [1 − c , 1).

2. Small δ, when δ ∈ (1 − c , 1/k1/C). This is the main regime of interest. In

particular when k(n) → ∞ this contains most values of δ.

3. Tiny δ, when δ ∈ (0, 1/k1/C]. (This regime only makes sense when k(n) 6

O(1).)
25The requirement ε2d 6 no(1)

is for technical convenience only; as ε2d increases the recovery

problem only becomes easier.
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Let Ginput be an n-node graph.

Algorithm 8.5.2 (Main algorithm for mixed-membership model). Let η > 0 be

chosen so that 1 − k2(α+1)2
ε2d(1−η) > δ

2
and o(1) > η > n−γ for every constant γ > 0.

(This guarantees that enough edges remain in the input after choosing a holdout

set.)

1. Select a partition of [n] into A and A at random with |A| � ηn. Let

G � A ∩ Ginput

2. If δ is large, run Algorithm 8.5.5 on (Ginput,G,A).

3. If δ is small, run Algorithm 8.5.4 on (Ginput,G,A).

4. If δ is tiny, run Algorithm 8.5.3 on (Ginput,G,A).

Algorithm 8.5.3 (Tiny δ). foo

1. Run the algorithm from Theorem 8.4.3 on G with parameters (1−η)d , k , ε, α

to obtain a vector x ∈ �n−ηn
.

2. Evaluate the quantities s(3)x � S3(Ginput\G, x) and s(4)x � S4(Ginput\G, x), the

polynomials from Lemma 8.5.8. If s(4)x < C(n , α, k , ε, d , η), output random

labels τ1, . . . , τn . (The scalar C(n , α, k , ε, d , η) depends in a simple way on

the parameters.)

3. If s(3)x < 0, replace x by −x.

4. Run the cleanup algorithm from Lemma 8.5.11 on the vector x, padded

with zeros to make a length n vector. Output the resulting τ1, . . . , τn .

Algorithm 8.5.4 (Small δ). foo

1. Using color coding, evaluate the degree-log n/poly(δ) polynomial P(G) �
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(Pi jk(G)) from Lemma 8.5.6. (This takes time npoly(1/δ)
.)

2. Run the 3-tensor to 4-tensor lifting algorithm (Theorem 8.7.14) on P(G) to

obtain a 4-tensor T.

3. Run the low-correlation tensor decomposition algorithm (Corollary 8.7.3)

on T, implementing the cross-validation oracle O as follows. For each query

x ∈ �n−ηn
, compute s(4)x � S4(Ginput \ G, x), the quantity from Lemma 8.5.9.

If s(4)x > C(n , d , k , ε, α, η) (distinct from the C above, again depending in

a simple way on the parameters), output YES, otherwise output NO. The

tensor decomposition algorithm returns unit vectors x1, . . . , xk ∈ �n−ηn
.

4. For each x1, . . . , xk , compute s(3)i � S3(Ginput \ G, xi) and s(4)i � S4(Ginput \

G, xi). For any xi for which s(4)i < C(n , d , k , ε, α, η), replace xi with a

uniformly random unit vector. For any xi for which s(3)i < 0, replace xi with

−xi .

5. Run the algorithm from Lemma 8.5.10 on (x1, . . . , xk) (padded with zeros

to make an n × k matrix) and output the resulting τ1, . . . , τn .

Algorithm 8.5.5 (Large δ). foo

1. Using color coding, evaluate the degree-log n/poly(δ) polynomial P(G) �

(Pi jk(G)) from Lemma 8.5.6. (This takes time npoly(1/δ)
.)

2. Run the 3-tensor to 4-tensor lifting algorithm (Theorem 8.7.14) on P(G) to

obtain a 4-tensor T.

3. Run the low-correlation tensor decomposition algorithm on T, obtaining

unit vectors x1, . . . , xk .

4. For each xi , compute the quantity s(4)i � S4(Ginput \G, xi) from Lemma 8.5.9.

If s(4)i < C(n , d , k , ε, α, η), replace xi with a uniformly random unit vector.

(The scalar threshold C(n , d , k , ε, α, η) depends in a simple way on the
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parameters.)

5. For each xi , compute the quantity s(3)i � S3(Ginput \G, xi) from Lemma 8.5.9.

If s(3)i < 0, replace xi with −xi .

6. Run the algorithm from Lemma 8.5.10 on the matrix x � (x1, . . . , xk) and

output the resulting τ1, . . . , τn .

We will analyze each of these algorithms separately, but we state the main

lemmas together because many are shared among tiny, small, and large δ cases.

Two of the algorithms use the low-correlation tensor decomposition algorithm

as a black box; Corollary 8.7.3 in Section 8.7 captures the guarantees of that

algorithm.

The first thing we need is Theorem 8.4.3, which describes a second-moment

based algorithm used as a subroutine by Algorithm 8.5.3. (This subroutine was

already analyzed in Section 8.4.)

Theorem (Restatement of Theorem 8.4.3). For every δ > 0 and

d(n), ε(n), k(n), α(n), there is an algorithm with running time nO(1)+1/δO(1)
with

the following guarantees when

δ
def

� 1 − k2(α + 1)2
ε2d

> 0 and k , α 6 no(1)
and ε2d 6 no(1) .

Let σ,G ∼ G(n , d , ε, k , α) and for s ∈ [k] let vs ∈ �n
be given by vs(i) � σi(s) − 1

k .

The algorithm outputs a vector x such that �〈x , v1〉2 > δ′‖x‖2‖v1‖2, for some

δ′ > (δ/k)O(1).26

The proofs of all the lemmas that follow can be found later in this section.

26The requirement ε2d 6 no(1)
is for technical convenience only; as ε2d increases the recovery

problem only becomes easier.
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Next, we state the tensor estimation lemma used to analyze the tensor P computed

in Algorithm 8.5.4 and Algorithm 8.5.5.

Lemma 8.5.6. Suppose

δ
def

� 1 − k2(α + 1)2
ε2d

> 0 and ε2d 6 n1−Ω(1)
and k , α 6 no(1) .

For a collection σ1, . . . , σn of probability vectors, letV(σ) � ∑
s∈[k] v

⊗3

s , where the vectors

vs ∈ �n
have entries vs(i) � σi(s)− 1

k . Let ws ∈ �n
have entries ws(i) � vs(i)+ 1

k
√
α+1

.

(Note that �〈ws , wt〉 � 0 for s , t.) Let W(σ) � ∑
s∈[k] w

⊗3

s .

If G ∼ G(n , d , ε, α, k), there is a degree O(log n/δO(1)) polynomial P(G) ∈ (�n)⊗3

such that

�σ,G〈P(G),W(σ)〉(
�σ,G ‖P(G)‖2

)
1/2
·
(
�σ,G ‖W(σ)‖2

)
1/2 > δ

O(1)

Furthermore, P can be evaluated up to (1 + 1/poly(n)) multiplicative error (whp) in

time npoly(1/δ)
.

Two of our algorithms use the low-correlation tensor decomposition algorithm

of Corollary 8.7.3. That corollary describes an algorithm which recovers an

underlying orthogonal tensor, but the tensor W is not quite orthogonal. The

following lemma, proved via standard matrix concentration, captures the notion

that W is close to orthogonal.

Lemma 8.5.7. Let σ1, . . . , σn be iid draws from the α, k Dirichlet distribution. Let

ws ∈ �n
be given by ws(i) � σi(s) − 1

k (1 − 1/
√
α + 1). Then as long as k , α 6 no(1)

,

with high probability

(1 + n−Ω(1)) · Id � 1

k

k∑
s�1

ws w>s
� ‖ws ‖2

� (1 + n−Ω(1)) · Id .
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All of the algorithms perform some cross-validation using the holdout set A.

The next two lemmas offer what we need to analyze the cross-validations.

Lemma 8.5.8. Let n0, n1 satisfy n0 + n1 � n. Let A ⊆ [n] have size |A| � n1 > nΩ(1).

Let k � k(n), d � d(n), ε � ε(n), α � α(n) > 0 and α, k , ε2d 6 no(1)
. Let σ ∈ ∆n0

k−1
.

Let vs ∈ �n0
have entries vs(i) � σi(s)− 1

k . Let τ1, . . . , τn1
be iid from the α, k Dirichlet

distribution.

Let G be a random bipartite graph on vertex sets A, [n] \ A, with edges distributed

according to the n , d , ε, k , α mixed-membership model with labels σ, τ. Let x ∈ �n0
.

For a ∈ A, let Pa(G, x) be the expression

Pa(G, x) �
∑

i jk∈A distinct

(Gai − d
n )(Ga j − d

n )(Gak − d
n )xi x jxk .

Let S3(G, x) be

S3(G, x) �
∑
a∈A

Pa(G, x) .

There is a number C � C(n , d , k , ε, α, n1) such that

�
G,τ


������C · S3(G, x) −

∑
s∈[k]

〈vs , x〉3
‖vs ‖3

������ > n−Ω(1)
 6 exp(−nΩ(1)) .

Similarly, there are scalars C(n , d , k , ε, α, n1), C′(n , d , k , ε, α, n1) such that the

following holds. For a ∈ A, let

Qa(G, x) �
∑

i jk`∈A distinct

(Gai − d
n )(Ga j − d

n )(Gak − d
n )(Ga` − d

n )xix jxk x` .

and let

Ra(G, x) �
∑

i j∈A distinct

(Gai − d
n )(Ga j − d

n )xix j .

Finally let

S4(G, x) � C ·
∑
a∈A

Qa(G, x) − C′ ·
(∑

a∈A

Ra(G, x)
)

2

.
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Then

�
G,τ


������S4(G, x) −

∑
s∈[k]

〈vs , x〉4
‖vs ‖4

������ > n−Ω(1)
 6 exp(−nΩ(1)) .

Lemma 8.5.9. Under the same hypotheses as Lemma 8.5.8, there are S3(G, x), S4(G, x),

polynomials of degree 3 and 4, respectively, in x and in the edge indicators of G, such that

�
G,τ


������S4(G, x) −

∑
s∈[k]

〈ws , x〉4
‖ws ‖4

������ > n−Ω(1)
 6 exp(−nΩ(1)) ,

and

�
G,τ


������C · S3(G, x) −

∑
s∈[k]

〈ws , x〉3
‖ws ‖3

������ > n−Ω(1)
 6 exp(−nΩ(1)) ,

where w1, . . . ,wk are the vectors ws(i) � vs(i) + 1

k
√
α+1

.

Finally, all of the algorithms have a cleanup phase to transform n-length

vectors to probability vectors τ1, . . . , τn ∈ ∆k−1
. The following lemma describes

the guarantees of the cleanup algorithm used by the small and large δ algorithms,

which takes as input vectors x correlated with the vectors w.

Lemma 8.5.10. Let δ ∈ (0, 1) and k � k(n) ∈ � and α � α(n) > 0, with α, k 6 no(1)
.

Suppose δ > 1/k1/C
for a big-enough constant C. There is a poly(n)-time algorithm

with the following guarantees.

Let σ1, . . . , σn be iid draws from the α, k Dirichlet distribution. Let v1, . . . , vk ∈ �n

be the vectors given by vs(i) � σi(s) − 1

k . Let w1, . . . ,wk ∈ �n
be the vectors given by

ws(i) � vs(i) + 1

k
√
α+1

, so that �〈ws , wt〉 � 0 for s , t. Let M �
∑

s ws ws
T
. Let E be

the event that

1.

M−1/2ws − ws
(� ‖ws ‖2)1/2

 6 1

poly n for every s ∈ [k].

2. ‖ws ‖ � (1 ± 1/poly(n))(� ‖ws ‖2)1/2 for every s ∈ [k].
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3. ‖vs ‖ � (1 ± 1/poly(n))(� ‖vs ‖2)1/2 for every s ∈ [k].

Suppose x1, . . . , xk ∈ �n
are unit vectors such that for at least δk vectors w1, . . . ,wm

there exists t ∈ [k] such that 〈ws , xt〉 > δ‖ws ‖.

The algorithm takes input x1, . . . , xk and when E happens returns probability vectors

τ1, . . . , τn ∈ ∆k−1
such that

corr(σ, τ) > δO(1)� ‖v‖2 � δO(1)
(

1

α + 1

· k + α
k
− 1

k

)
.

Finally, the last lemma captures the cleanup algorithm used by the tiny-δ

algorithm, which takes a single vector x correlated with v1.

Lemma 8.5.11. Let δ ∈ (0, 1) and k � k(n) ∈ � and α � α(n) > 0, with α, k 6 no(1)
.

Suppose δ 6 k1/C
for any constant C. There is a poly(n)-time algorithm with the

following guarantees.

Let σ1, . . . , σn be iid draws from the α, k Dirichlet distribution. Let v1, . . . , vk ∈ �n

be the vectors given by vs(i) � σi(s) − 1

k . Let x ∈ �n
be a unit vector satisfying

〈x , vs〉 > δ‖vs ‖ for some s ∈ [k]. On input x, the algorithm produces τ1, . . . , τn ∈ ∆k−1

such that

corr(σ, τ) >
(
δ
k

)O(1)
· � ‖v‖2 � δO(1)

(
1

α + 1

· k + α
k
− 1

k

)
.

so long as the event E from Lemma 8.5.10 occurs.

Analysis for tiny δ (Algorithm 8.5.3)

Proof of Theorem 8.5.1, tiny-δ case. Let C ∈ � and 1 > δ > 0 be any fixed constants.

We will prove that if k 6 δC
then the output of Algorithm 8.5.2 satisfies the
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conclusion of Theorem8.5.1. Let x ∈ �(1−η)n be the output of thematrix estimation

algorithm of Theorem 8.4.3. By Markov’s inequality, with probability (δ/k)O(1)

over G and σ1, . . . , σ(1−η)n , the vector x satisfies 〈v , x〉2 > (δ/k)O(1)‖v‖2‖x‖2,

where v ∈ �(1−η)n is the vector v(i) � σi(1) − 1

k . By our assumption k 6 δC
, this

means that with probability δO(1)
the vector x satisfies 〈x , v〉2 > δO(1)‖x‖2‖v‖2.

Now, the labels σ(1−η)n , . . . , σn and the edges from nodes 1, . . . , (1 − η)n

to nodes (1 − η)n , . . . , n are independent of everything above. So, invoking

Lemma 8.5.8, we can assume that the quantity s(4)x computed by Algorithm 8.5.3

satisfies ������s(4)x −
∑
s∈[k]

〈vs , x〉4
‖vs ‖4

������ 6 n−Ω(1) .

Now, if x satisfies 〈vs , x〉2 > δO(1)‖vs ‖2 for some vs , then also s(4)x > δ
O(1)

. On the

other hand, if s(4)x > δ
O(1)

then there is some s such that 〈x , vs〉2 > δO(1)
k ‖vs ‖2. So

choosing the threshold C in Algorithm 8.5.3 appropriately, we have obtained that

with probability δO(1)
the algorithm reaches step 3 with a vector x which satisfies

〈x , vs〉2 > δO(1)‖vs ‖2, and otherwise the algorithm outputs random τ1, . . . , τn .

Step 3 is designed to check the sign of 〈x , vs〉. Call x good if there is s ∈ [k]

such that 〈x , vs〉 > δO(1)‖vs ‖. If |s(3)x | 6 δO(1)
then x there are vs , vt such that

〈vs , x〉 > δO(1)‖vs ‖ and 〈vt , x〉 6 −δO(1)‖vt ‖, so both x and −x are good If

|s(3)x | > δO(1)
then clearly step 3 outputs a good vector. Since after step 3 the vector

x is good, applying Lemma 8.5.11 finishes the proof in the tiny δ case. �

Analysis for small and large δ (Algorithm 8.5.4, Algorithm 8.5.5)

Proof of Theorem 8.5.1, small δ case. Let n0 � (1 − η)n and n1 � ηn with η as in

Algorithm 8.5.2.
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By Markov’s inequality applied to Lemma 8.5.6, with probability δO(1)
the

tensor P satisfies 〈P,W〉 > δO(1)‖P‖‖W ‖, where W ∈ (�n0)⊗3
is as in Lemma 8.5.6.

Let M �
∑

s∈[k] ws w>s , where ws is as in Lemma 8.5.6. The vectors M−1/2ws are

orthonormal, and Lemma 8.5.7 guarantees that ‖ ws
‖ws ‖ −M−1/2ws ‖ 6 n−Ω(1) with

high probability. Let W′ �
∑

s∈[k](M−1/2ws)⊗3
and let W′

4
�

∑
s∈[k](M−1/2ws)⊗4

.

Then also 〈P,W′〉 > δO(1)‖P‖‖W′‖. By the guarantees of the 3-to-4 lifting

algorithm (Theorem 8.7.14), finally we get 〈T,W′
4
〉 > δO(1)‖T‖‖W′

4
‖.

In order to conclude that Algorithm 8.5.4 successfully runs the low-correlation

tensor decomposition algorithm, we have to check correctness of its implementa-

tion of the cross-validation oracle. This follows from Lemma 8.5.7, Lemma 8.5.9,

the size of η, and a union bound over the exp(k/poly(δ)) 6 exp(no(1)) queries

made by the nonadaptive implementation of the low-correlation tensor de-

composition algorithm, and independence of the randomness in the holdout

set.

We conclude that with probability at least δO(1)
, the tensor decomposition

algorithm returns unit vectors x1, . . . , xk ∈ �n0
such that a δO(1)

fraction of

ws among w1, . . . ,wk have xt such that 〈ws , xt〉2 > δO(1)‖ws ‖2. By the same

reasoning as in the tiny δ case, using Lemma 8.5.9 after the sign-checking step

the same guarantee holds with the strengthened conclusion 〈ws , xt〉 > δO(1)‖ws ‖.

Finally, we apply Lemma 8.5.10 (along with elementary concentration arguments

to show that the event E occurs with high probability) to conclude that the last

step of Algorithm 8.5.4 gives τ1, . . . , τn such that (in expectation) corr(σ, τ) >

δO(1)
(

1

α+1
· k

k+α −
1

k

)
as desired. �
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8.5.2 Low-degree estimate for posterior third moment

In this section we prove Lemma 8.5.6. The strategy is to apply Lemma 8.2.1 to

find an estimator for the 3-tensor

∑
s∈[k] v

⊗3

s . With that in hand, combining with

the estimators in Section 8.4 for the second moments

∑
s∈[k] vs vs

T
is enough to

obtain an estimator for W , since∑
s∈[k]

w⊗3

s �

∑
s∈[k]
(vs + c · 1)⊗3

(8.5.1)

�

∑
s∈[k]

v⊗3

s + c(vs ⊗ vs ⊗ 1 + vs ⊗ 1 ⊗ vs + 1 ⊗ vs ⊗ vs) + 1
⊗3

(8.5.2)

where 1 is the all-1s vector, c �
1

k
√
α+1

, and we have used that

∑
s∈[k] vs � 0. Thus

if R is a degree npoly(1/δ)
polynomial such that

〈R,
∑
s∈[k]

v⊗3

s 〉 > δO(1)(� ‖R‖2)1/2(�

∑
s∈[k]

v⊗3

s


2

)1/2

and Q is similar but estimates

∑
s∈[k] vs vs

T
, then R and Q can be combined

according to (8.5.2) to obtain the polynomial P from the lemma statement.

Thus in the remainder of this section we focus on obtaining such a polynomial

R; we change notation to call this polynomial P. The first step will be to define a

collection of polynomials {Gα}α for all distinct i , j, k ∈ [n].

Definition 8.5.12. Any α ⊆
(n
2

)
can be interpreted as a graph on some nodes in

[n]. Such an α is a long-armed star if it consists of three self-avoiding paths,

each with ` edges, joined at one end at a single central vertex, at the other end

terminating at distinct nodes i , j, k ∈ [n]. (See figure.) Let STAR`(i , j, k) be the

set of 3-armed stars with arms of length ` and terminal vertices i , j, k. For any

α ⊆
(n
2

)
let Gα �

∏
ab∈α(xab − d

n ) be the product of centered edge indicators.
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i

j

k

Figure 8.1: A

3-armed star with arms of length 2. We will eventually use arms of length

t ≈ log n.

The next two lemmas check the conditions to apply Lemma 8.2.1 to the sets

{Gα}α∈STAR`(i , j,k).

Lemma 8.5.13 (Unbiased Estimator). Let i , j, k ∈ [n] all be distinct. Let α ∈

STAR`(i , j, k).

For a collection of probability vectors σ1, . . . , σk , let V(σ) � ∑
s∈[k] v

⊗3

s where

vs(i) � σi(s) − 1

k . Let G ∼ G(n , d , ε, α0, k).

�
[
Gα | σi , σ j , σk

]
�

(
εd
n

)
3` (

1

k(α0 + 1)

)
3(`−1)

· C3 · V(σ)i jk .

Here α0 > 0 is the Dirichlet concentration paramter, unrelated to the graph α, and

C3 � 1/(kO(1)αO(1)
0
) is a constant related to third moments of the Dirichlet distribution.

Lemma 8.5.14 (Approximate conditional independence). If

δ
def

� 1 − k2(α0 + 1)2
ε2d

> 0 and k , α0 6 no(1)
and ε2d 6 no(1) .

and ` > C log n/δO(1)
for a large enough constant C, then for G ∼ G(n , d , ε, k , α0),

�

[
V(σ)2i jk

]
·

∑
α,β∈STAR`(i , j,k)

�GαGβ 6 1/δO(1)·
∑

α,β∈STAR`(i , j,k)
�

[
GαV(σ)i , j,k

]
·�

[
GβV(σ)i , j,k

]
.

Now we can prove Lemma 8.5.6.
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Proof of Lemma 8.5.6. As discussed at the beginning of this section, it is enough to

find an estimator for the tensor V(σ). Lemma 8.5.13 and Lemma 8.5.14 show that

Lemma 8.2.1 applies to each set of polynomials STAR`(i , j, k). The conclusion

is that for every distinct i , j, k ∈ [n] there is a degree log n poly(1/δ) polynomial

P(G)i jk so that

�P(G)i jkV(σ)i jk

(�P(G)2i jk)1/2 · (�V(σ)2i jk)1/2
> Ω(1) .

One may check that the entries i , j, k for i , j, k all distinct of the tensor V(σ)

comprise nearly all of its 2-norm. That is,∑
i , j,k distinct

�V(σ)2i , j,k > (1 − o(1))� ‖V(σ)‖2 .

This is sufficient to conclude that the tensor-valued polynomial P(G) whose

(i , j, k)-th entry is Pi , j,k(G)when i , j, k are all distinct and is 0 otherwise is a good

estimator of V(σ) (see Fact 8.8.2). Thus,

�σ,G〈P(G),V(σ)〉(
�σ,G ‖P(G)‖2

)
1/2
·
(
�σ,G ‖V(σ)‖2

)
1/2 > Ω(1) . �

Details of unbiased estimator

We work towards proving Lemma 8.5.13. We will need to assemble a few facts.

The first will help us control moment tensors of the Dirichlet distribution. The

proof can be found in the appendix.

Fact 8.5.15 (Special case of Fact 8.8.3). Let σ be distributed according to the α, k

Dirichlet distribution. Let σ̃ � σ − 1

k 1. There are numbers C2, C3 depending on α, k so

that for every x1, x2, x3 in �
k
with

∑
s∈[k] xi(s) � 0,

�
σ
〈σ̃, x1〉〈σ̃, x2〉 � C2〈x1, x2〉

195



and

�
σ
〈σ̃, x1〉〈σ̃, x2〉〈σ̃, x3〉 � C3

∑
s∈[k]

x1(s)x2(s)x3(s) .

Furthermore,

C2 �
1

k(α + 1) and C3 �
1

kO(1)αO(1) .

Now we can prove Lemma 8.5.13.

Proof of Lemma 8.5.13. For any collection of σ’s and α ∈ STAR`(i , j, k),

�
G
[Gα | σ] �

(
εd
n

)
3` ∏
(a ,b)∈α

〈σ̃a , σ̃b〉

Let a be the central vertex of the star α. Taking expectations over all the vertices

in the arms of the star,

�
[
Gα | σi , σ j , σk

]
�

(
εd
n

)
3` (

1

k(α0 + 1)

)
3(`−1)

�
σa
〈σ̃i , σ̃a〉〈σ̃ j , σ̃a〉〈σ̃k , σ̃a〉 .

Finally, using the second part of Fact 8.5.15 completes the proof. �

Details of approximate conditional independence

We prove Lemma 8.5.14, first gathering some facts. In the sum∑
α,β∈STAR`(i , j,k) G

αGβ
, the terms α, β which (as graphs) share only the vertices

i , j, k will not cause us any trouble, because such Gα
and Gβ

are independent

conditioned on σi , σ j , σk .

Fact 8.5.16. If α, β ∈ STAR`(i , j, k) share only the vertices i , j, k, then for any collection

σ of probability vectors,

�
[
GαGβ | σi , σ j , σk

]
� �

[
Gα | σi , σ j , σk

]
· �

[
Gβ | σi , σ j , σk

]
.
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Proof. To sample Gα
, one needs to know σa for any a ∈ [n] with nonzero degree

in α, and similar for b ∈ [n] and Gβ
. The only overlap is σi , σ j , σk . �

The next fact is the key one. Pairs α, β which share vertices forming paths

originating at i , j, and k make the next-largest contribution (after α, β sharing

only i , j, k) to
∑
α,β �GαGβ

.

Fact 8.5.17. Let i , j, k ∈ [n] be distinct. Let V(σ)i jk be as in the Lemma 8.5.14. Let

C2 ∈ � be as in Fact 8.5.15.

Let α, β ∈ STAR`(i , j, k) share s vertices (in addition to i , j, k) for some s 6 t
2
, and

suppose the shared vertices form paths in α and β starting at i , j, and k. Then

�V(σ)2i jk ·�GαGβ 6 ε−2s
(

d
n

)−s

(1+O(d/n))−s ·
(

1

k(α0 + 1)

)−2s

·�
[
GαV(σ)i jk

]
·�

[
GβV(σ)i jk

]
.

Proof. Let σα∩β be the σ’s corresponding to vertices sharerd by α, β. Let i′, j′, k′

be the last shared vertices along the paths beginning at i , j, k respectively. We

expand GαGβ
and use conditional independence of the Ge ’s given the σ’s:

�GαGβ
� �
σi′ , j′ ,k′

[
�

[
(Gα∩β)2 |σi′ , σ j′ , σk′

]
· �

[
Gα\β | σi′σ j′σk′

]
· �

[
Gβ\α | σi′σ j′σk′

] ]
.

Both Gα\β
and Gβ\α

are long-armed stars with terminal vertices i′, j′, k′. The arm

lengths of Gα\β
total 3` − s. By a similar argument to Lemma 8.5.13, Gα\β

is an

unbiased estimator of V(σ)i′ j′k′ with

�
[
Gα\β | σi′ , σ j′ , σk′

]
�

(
εd
n

)
3`−s (

1

k(α0 + 1)

)
3(`−1)−s

· C3 · V(σ)i′, j′,k′

and the same goes for Gβ\α
. Furthermore,

�
[
(Gα∩β)2 | σi′ , σ j′ , σk′

]
�

(
d
n

) |α∩β |
�


∏

(a ,b)∈α∩β
(1 + ε〈σ̃a , σ̃b〉 + O(d/n))

��� σi′ , σ j′ , σk′

 .
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By our assumption that α ∩ β consists just of paths, every subset of edges in

the graph α ∩ β contains a vertex of degree 1. Hence, �
[
(Gα∩β)2 | σi′ , σ j′ , σk′

]
�

(1 + O(d/n))|α∩β |(d/n)|α∩β |. Putting these together,

�GαGβ
� (1 + O(d/n))sε6`−2s

(
d
n

)
6`−s (

1

k(α0 + 1)

)
6(`−1)−2s

C2

3
�V(σ)2i jk

At the same time, one may apply Lemma 8.5.13 to �GαV(σ)i jk to obtain

�
[
GαV(σ)i jk

]
· �

[
GβV(σ)i jk

]
�

(
εd
n

)
6` (

1

k(α0 + 1)

)
6(`−1)

C2

3
·
(
�

σi ,σ j ,σk
V(σ)2i jk

)
2

.

The lemma follows. �

The last fact will allow us to control α, β which intersect in some way other

than paths starting at i , j, k. The key idea will be that such pairs α, β must share

more vertices than they do edges.

Fact 8.5.18. Let i , j, k ∈ [n] be distinct. Let V(σ)i jk be as in the Lemma 8.5.14. Let

C2 ∈ � be as in Fact 8.5.15. C2 �
1

k(α0+1) .

Let α, β ∈ STAR`(i , j, k) share s vertices (in addition to i , j, k) and r edges. Then

�V(σ)2i jk ·�GαGβ 6 ε−2r
(

d
n

)−r

·C−2s
2
·kO(s−r)(1+α0)O(s−r)·�

[
GαV(σ)i jk

]
·�

[
GβV(σ)i jk

]
.

Proof. Expanding as usual,

�GαGβ
�

(
d
n

)
6`−r

�
σ

∏
ab∈α4β

〈σ̃a , σ̃b〉 ·
∏

ab∈α∩β
(1 + ε〈σ̃a , σ̃b〉 + O(d/n)) .

Any nontrivial edge-induced subgraph of α ∩ β contains a degree-1 vertex; using

this to expand the second product and simplifying with � σ̃a � 0, the above is(
d
n

)
6`−r

�
σ

∏
ab∈α4β

〈σ̃a , σ̃b〉 · (1 + O(d/n))r .
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For every degree-2 vertex in α4β we can use Fact 8.8.3 to take the expectation.

Each such vertex contributes a factor of C2 and there are at least 3`−O(s− r) such

vertices. The remaining expression will be bounded by 1. The fact follows. �

Now we can prove Lemma 8.5.14.

Proof of Lemma 8.5.14. Let us recall that our goal is to show

�

[
V(σ)2i jk

]
·

∑
α,β∈STAR`(i , j,k)

�GαGβ 6 δO(1)·
∑

α,β∈STAR`(i , j,k)
�

[
GαV(σ)i jk

]
·�

[
GβV(σ)i jk

]
where δ � 1 − k2(α0+1)2

ε2d . Let c � �
[
GαV(σ)i jk

]
· �

[
GβV(σ)i jk

]
. (Notice this

number does not depend on α or β.) The right-hand side above simplifies to

|STAR`(i , j, k)|2 · c.

On the left-hand side, what is the contribution from α, β sharing s vertices?

First consider what happens with s 6 t/2 and the intersecting vertices form paths

in α and β starting at i , j, k. Choosing a random pair α, β from STAR`(i , j, k),

the probability that they intersect along paths of length s1, s2, s3 starting at

i , j, k respectively is at most n−s1−s2−s3
. There are at most (1 + s2) choices for

nonnegative integers s1, s2, s3 with s1 + s2 + s3 � s. By Fact 8.5.17, such terms

therefore contribute at most

c·
|STAR`(i , j, k)|2

n−s ·
(
ε
√

d
n (1 + O(d/n))

)−2s

C−2s
2
·s2

� c·|STAR`(i , j, k)|2·(ε2dC2

2
(1+O(d/n)))−s ·s2

where C2 �
1

k(α0+1) . By hypothesis, δ > 0. Consider the sum of all such

contributions for s 6 t/2; this is at most

c · |STAR`(i , j, k)|2 ·
t/2∑
s�0

(1 + s2) ·
(

k2(α0+1)2
ε2d

) s
6 δO(1) · c · |STAR`(i , j, k)|2 .

Next, consider the contribution from α, β which share s vertices in some

pattern other than those considered above. Unless α � β, this means α, β share at
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least one more vertex than the number r of edges that they share. Suppose α , β

and let s − r � q. There are tO(q)
patterns in which such an intersection might

occur, and each occurs for a random pair α, β ∈ STAR`(i , j, k) with probabilty

n−s
. So using Fact 8.5.18, the contribution is at most

c · |STAR`(i , j, k)|2 ·
t∑

q�1

(
ε2d
n

) q

· kO(q)(1 + α0)O(q)tO(q)

By the hypotheses k , α � no(1)
and ε2d � n1−Ω(1)

, this is all o(c |STAR`(i , j, k)|2).

Finally, consider the case α � β. Then, using Fact 8.5.18 again, the contribution

is at most

c · |STAR`(i , j, k)|2
(

ε2d
k2(α0 + 1)2

)−t

kO(1)αO(1)

which is o(c |STAR`(i , j, k)|2) because t � log(n). Putting these things together

gives the lemma. �

8.5.3 Cross validation

In this section we show how to use a holdout set of vertices to cross-validate

candidate community membership vectors. The arguments are all standard,

using straightforward concentration inequalities. At the end we prove the first

part of Lemma 8.5.8, on the estimator S3. The proof of the second part, on S4 is

similar, using standard facts about moments of the Dirichlet distribution (see

Fact 8.8.3). The proof of Lemma 8.5.9 is also similar, using the discussion in

Section 8.5.2 to turn estimators for moments of the v vectors into estimators for

moments of the w vectors—we leave it to the reader.

We will need a few facts to prove the lemma.
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Fact 8.5.19. Let n0, n1,A, k , d , ε, α, σ, v , τ,G, x , P be as in Lemma 8.5.8. Let a ∈ A.

There is a number C � C(k , α) 6 poly(k , α) such that

�
G,τ

Pa(G, x) �
(
εd
n

)
3

· C ·
∑

i jk∈A distinct

∑
s∈[k]

σi(s)σ j(s)σk(s)xi x jxk .

Proof. Immediate from Fact 8.5.15. �

Fact 8.5.20. Let n0, n1,A, k , d , ε, α, σ, v , τ,G, x , P be as in Lemma 8.5.8. Let a ∈ A.

The following variance bound holds.

�
G,τ

Pa(G, x)2 −
(
�

G,τ
Pa(G, x)

)
2

6
poly(k , α, ε, d)

n3

.

Proof. Expanding Pa(G, x) and using that |〈σ, σ′〉| 6 1 for any σ, σ′ ∈ ∆k−1
we get

�
G,τ

Pa(G, x)2 6
(

d
n

)
6 ∑

i jk distinct

i′ j′k′ distinct

��xi x jxk xi′x j′xk′
�� 6 (

d
n

)
6

· n3 · ‖x‖12 .

�

Fact 8.5.21. Let n0, n1,A, k , d , ε, α, σ, v , τ,G, x , P be as in Lemma 8.5.8. Let a ∈ A.

For some constant γ∗(ε, d , k , α) and every γ∗ > γ > 0,

�
G,τ
{|Pa(G, x)| > nγ} 6 exp(−nΩ(γ))

Proof. The fact follows from a standard exponential tail bound on the degree of

vertex a. �

We can put these facts together to prove the S3 portion of Lemma 8.5.8 (as we

discussed above, the S4 portion and Lemma 8.5.9 are similar). The strategy will

be to use the following version of Bernstein’s inequality, applied to the random

variables 〈Ga , v⊗3〉. The proof of the inequality is in the appendix.
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Proposition 8.5.22 (Bernstein wth tails). Let X be a random variable satisfying

�X � 0 and, for some numbers R, δ, δ′ ∈ �,

�{|X | > R} 6 δ and � |X | · 1|X |>R 6 δ
′ .

Let X1, . . . ,Xm be independent realizations of X. Then

�

{����� 1

m

∑
i6m

Xi

����� > t + δ′
}
6 exp

(
−Ω(1) · m · t2

�X2 + t · R

)
+ mδ .

Now we can prove Lemma 8.5.8.

Proof of Lemma 8.5.8. We apply Proposition 8.5.22 to the n1 random variables

Xa �

(
εd
n

)−3

C−1Pa(G, x) for a ∈ A, where C � C(k , α) is the number from

Fact 8.5.20. (For each a ∈ A these are iid over G, τ.) Take t � n3/2−γ′
for a

small-enough constant γ′ so that n1t2/n3 > nγ for some constant γ, using the

assumption n1 > nΩ(1). All together, we get

�
G,τ


������ 1

n1

∑
a∈A

Xa −
∑
s∈[k]

∑
i jk∈A distinct

σs(i)σs( j)σs(k)xix j xk

������ > n3/2−γ′
 6 exp(n−γ′)

for some constants γ, γ′ (possibly different from γ, γ′ above) and large-enough n.

For any unit x ∈ �n0
and σ ∈ ∆n0

k−1
, using that k 6 no(1)

it is not hard to show via

Cauchy-Schwarz that������∑s∈[k]〈vs , x〉3 −
∑
s∈[k]

∑
i jk∈A distinct

σs(i)σs( j)σs(k)xi x jxk

������ 6 n1+o(1) .

The lemma follows. �

8.5.4 Producing probability vectors

In this section we prove Lemma 8.5.10. The proof of Lemma 8.5.11 is very similar

(in fact it is somewhat easier) so we leave it to the reader.
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Lemma (Restatement of Theorem 8.5.10). Let δ ∈ (0, 1) and k � k(n) ∈ � and

α � α(n) > 0, with α, k 6 no(1)
. Suppose δ > 1/k1/C

for a big-enough constant C.

There is a poly(n)-time algorithm with the following guarantees.

Let σ1, . . . , σn be iid draws from the α, k Dirichlet distribution. Let v1, . . . , vk ∈ �n

be the vectors given by vs(i) � σi(s) − 1

k . Let w1, . . . ,wk ∈ �n
be the vectors given by

ws(i) � vs(i) + 1

k
√
α+1

, so that �〈ws , wt〉 � 0 for s , t. Let M �
∑

s ws ws
T
. Let E be

the event that

1.

M−1/2ws − ws
(� ‖ws ‖2)1/2

 6 1

poly n for every s ∈ [k].

2. ‖ws ‖ � (1 ± 1/poly(n))(� ‖ws ‖2)1/2 for every s ∈ [k].

3. ‖vs ‖ � (1 ± 1/poly(n))(� ‖vs ‖2)1/2 for every s ∈ [k].

Suppose x1, . . . , xk ∈ �n
are unit vectors such that for at least δk vectors w1, . . . ,wm

there exists t ∈ [k] such that 〈ws , xt〉 > δ‖ws ‖.

The algorithm takes input x1, . . . , xk and when E happens returns probability vectors

τ1, . . . , τn ∈ ∆k−1
such that

corr(σ, τ) > δO(1)� ‖v‖2 � δO(1)
(

1

α + 1

· k + α
k
− 1

k

)
.

First some preliminaries. Let σ1, . . . , σn be iid from the α, k Dirichlet distribu-

tion. There are two important families of vectors in �n
. Let

vs(i) � σi(s) −
1

k
ws(i) � σi(s) −

1

k

(
1 − 1√

α + 1

)
.

We will also work with a normalized version of the v vectors:

vs �
vs

(� ‖vs ‖2)1/2
.
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By construction, � ‖vs ‖2 � 1. Also by definition,

∑
s vs �

∑
s vs � 0. Thus

�〈∑s vs ,
∑

s vs〉 � k +
∑

s,t �〈vs , vt〉 � 0 and so by symmetry �〈vs , vt〉 � −1

k−1
.

We let

ws � vs +
1√
n
·
√

1

k − 1

so that �〈ws , wt〉 � 0 for s , t. (In the facts which follow we sometimes write v

as v when both normalizations are not needed; this is always noted.)

We will want the following fact; the proof is elementary.

Fact 8.5.23. Let σ, u , v , w as above, and suppose y is an n × k matrix whose rows are in

∆k−1
− 1

k (that is they are shifted probability vectors). Then τ � y +
1

k is a matrix whose

rows are probability vectors, and τ satisfies

〈τ, σ〉 > 〈y , v〉 + n
k
.

The following fact will be useful when δ is small but not tiny; i.e. δ < 1− c for

some fixed constant c but δ � 1/
√

k.

Fact 8.5.24. Suppose that x1, . . . , xk are unit vectors and w1, . . . ,wk are orthonormal.

Also suppose that there is 1 > δ > 0 such that for at least δk vectors ws among

w1, . . . ,wk there exists a vector xt among x1, . . . , xk such that 〈ws , xt〉 > δ. Then there

is a permutation π : [k] → [k] such that if x � (x1, . . . , xk) is an n × k matrix and

similarly for w,

〈x , π · w〉 >
(
δ5 − 1√

k

(
1

1 − δ4

)
1/2)
‖x‖‖w‖ ,

where x � (x1, . . . , xk) is an n × k matrix and similarly for w.

Proof. We will think of π as a matching of w1, . . . ,wk to x1, . . . , xk . Call xt good

for ws if 〈ws , xt〉 > δ. First of all, by orthogonality of vectors w1, . . . ,wk , any
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particular vector xt is good for at most 1/δ2
vectors ws . Hence, there is a set S of

δ4k vectors ws such that for each ws there exists a good xt and all the good xt ’s

are distinct.

Begin by matching each ws ∈ S to its good xt . Let π be the result of extending

that matching randomly to a perfect matching of k to k.

We need to lower bound �
∑

s<S〈ws , xπ(s)〉. Consider that for a particular t,

�−〈xt , wπ−1(t)〉 6 (�〈xt , wπ−1(t)〉2)1/2 .

The distribution of π−1(t) is uniform among all s < S. So

�〈xt , wπ−1(t)〉2 �
1

k − |S |
∑
s<S

〈ws , xt〉2 6
1

k

(
1

1 − δ4

)
since

∑
s∈[k]〈ws , xt〉2 6 1. It follows that

�〈xt , wπ−1(t)〉 > −
1√
k

(
1

1 − δ4

)
1/2

.

Therefore, �
∑

s<S〈ws , xπ(s)〉 > −
√

k
(

1

1−δ4

)
1/2

. Thus there is some choice of π

such that

∑
s<S〈ws , xπ(s)〉 > −

√
k
(

1

1−δ4

)
1/2

. Hence for this π one gets∑
s∈[k]
〈ws , xπ(s)〉 > δ5k −

√
k
(

1

1 − δ4

)
1/2

�

(
δ5 − 1√

k

(
1

1 − δ4

)
1/2)
‖x‖‖w‖ . �

The next fact serves the same purpose as the previous one but in the large δ

case (i.e. δ close to 1).

Fact 8.5.25. Under the same hypotheses as Fact 8.5.24, letting δ � 1 − ε for some ε > 0,

there is a permutation π : [k] → [k] such that 〈x , π · w〉 > (1 − 9ε)‖x‖‖w‖.

Proof. As in the proof of Fact 8.5.24, we construct a matching π by first matching

a set S of at least δ4k > (1 − 4ε)k vectors ws to corresponding xt . Then we match
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the remaining vectors arbitrarily. For any s , t we know 〈ws , xt〉 > −1. So the

result is

〈x , π · w〉 > (1 − 5ε)k − 4εk � (1 − 9ε)k � (1 − 9ε)‖x‖‖w‖ . �

We will also want a way to translate a matrix correlated with w to one

correlated with v, so that we can apply Fact 8.5.23.

Fact 8.5.26. Suppose v is an n × k matrix whose rows are centered probability vectors

and w � v + c is a coordinate-wise additive shift of v. Suppose y is also an n × k matrix

whose rows are centered probability vectors shifted by c in each coordinate (so y − c is a

matrix of centered probability vectors). Then the shifted matrix y − c satisfies

〈y − c , v〉 > 〈y , w〉 − c2nk .

Proof. By definition, 〈y − c , v〉 � 〈y , v〉. Since v � w − c, we get

〈y − c , v〉 � 〈y , v〉 � 〈y , w〉 − c〈y , 1〉 � 〈y , w〉 − c2nk . �

Proof of Lemma 8.5.10. First assume δ < 1 − c for any small constant c. Let π be

the permutation guaranteed by Fact 8.5.24 applied to the vectors x1, . . . , xk and

M−1/2w1, . . . ,M−1/2wk . (Without loss of generality reorder the vectors so that

π is the identity permutation.) Since 1 − c > δ > 1/k1/C
for big-enough C and

small-enough c (which are independent of n , k) and the guarantee of Fact 8.5.24,

by event E we get that

〈x , w〉 > δO(1)‖x‖‖w‖ .

So by taking a correlation-preserving projection of x into the set of matrices

whose rows are shifted probability vectors, we get a matrix y with the guarantee

〈y , w〉 > δO(1)‖y‖‖w‖ and ‖y‖ > δO(1)‖w‖ .
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Applying Fact 8.5.26, we obtain

〈y − c , v〉 > 〈y , w〉 − c2nk � 〈y , w〉 − � ‖w‖
2

k

where c �
1

k
√
α+1

. Putting things together and using � ‖v‖2 6 � ‖w‖2 and the

event E, we get

〈y − c , v〉 > δO(1)� ‖v‖2 .

So applying Fact 8.5.23 finishes the proof in this case.

Now suppose δ > 1 − c for a small-enough constant c. Then using event E

and Fact 8.5.25, there is π such that 〈x , w〉 > (1−O(c))‖x‖(� ‖w‖2) (where again

we have without loss of generality reordered the vectors so that π is the identity

permutation). Now taking the Euclidean projection of x · (� ‖w‖
2)1/2

‖x‖ into the

n × k matrices whose rows are centered probability vectors shifted entrywise by

c �
1

k
√
α+1

, we get a matrix y which again satisfies 〈y , w〉 > (1−O(c))‖y‖‖w‖ and

‖y‖ > (1 − O(c))‖w‖, so (using event E), 〈y , w〉 > (1 − O(c))� ‖w‖2. Removing

the contribution from 〈y , 1〉, this implies that 〈y − c , v〉 > (1 − O(c))� ‖v‖2. For

c small enough, this is at least δO(1)� ‖v‖2. Applying Fact 8.5.23 finishes the

proof. �

8.5.5 Remaining lemmas

We provide sketches of the proofs of Lemma 8.5.7 and Lemma 8.5.10, since the

proofs of these lemmas use only standard techniques.

Proof sketch of Lemma 8.5.7. For σ ∈ �k
, let σ̃ � σ − (1 − 1/

√
α + 1)/k. Standard

calculations show that if σ is drawn from the α, k Dirichlet distribution then

� σ̃σ̃> �
1

k(α+1)Id. It follows by standardmatrix concentration and the assumption

207



k , α 6 no(1)
that the eigenvalues of

1

n
∑

i6n σ̃i σ̃>i are all 1±n−Ω(1), where σ1, . . . , σn

are iid draws from the α, k Dirichlet distribution.

For the second part of the Lemma, use the first part to show that

 vs
‖vs ‖ − w′s

 6
1/poly(k). Then when k > δ−C

for large-enough C, if 〈x , vs〉3 > δO(1)‖vs ‖3 it

follows that also 〈x , ws〉 > δO(1) − 1/poly(k) > δO(1)
. The lemma follows. �

Proof sketch of Lemma 8.5.10. If δ < 1 − Ω(1), then δ2/2 > δO(1)
, so the Lemma

follows from standard concentration and Theorem 8.2.3 on correlation-preserving

projection. On the other hand, if δ > 1 − o(1), then ‖v′ − σ̃‖ 6 o(1) · ‖σ̃‖, so the

same is also true for the projection of v′ into ( ˜∆k−1
)n by convexity and the lemma

follows. �

8.6 Lower bounds against low-degree polynomials at the

Kesten-Stigum threshold

In this section we prove two lower bounds for k-community partial recovery

algorithms based on low-degree polynomials.

8.6.1 Low-degree Fourier spectrum of the k-community block

model

Theorem 8.6.1. Let d , ε, k be constants. Let µ : {0, 1}n×n → � be the relative density

of SBM(n , d , ε, k) with respect to G(n , d
n ). Let µ6` be the projection of µ to the degree-`
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polynomials with respect to the norm induced by G(n , d
n ).27 For any constant δ > 0,

‖µ6`‖ is


> nΩ(1) if ε2d > (1 + δ)k2, ` > O(log n)

6 Oδ,k ,ε,d(1) if ε2d < (1 − δ)k2, ` < n0.01

.

This proves Theorem8.1.9 (see discussion following statement of that theorem).

To prove the theorem we need the following lemmas.

Lemma 8.6.2. Let χα : {0, 1}n×n → � be the
d
n -biased Fourier character. If α ⊆

(n
2

)
,

considered as a graph on n vertices, has any degree-one vertex, then

�
G∼SBM(n ,d ,ε,k)

χα(G) � 0

The proof follows from calculations very similar to those in Section 8.5, so we

omit it.

Proof of Theorem 8.6.1. The bound ‖µ6`‖ > nΩ(1) when ε2d > (1 + δ)k2
and

` � log(n), follows from almost identical calculations to Section 8.5,28 so we omit

this argument and focus on the regime ε2d < (1 − δ)k2
.

By definition and elementary Fourier analysis,

‖µ6`‖2 �

∑
α⊆(n

2
),|α |6`

µ̂(α)2 (8.6.1)

Also by definition,

µ̂(α) � �

G∼G(n , dn )
µ(G)χα(G) � �

G∼SBM(n ,d ,ε,k)
χα

27That is, ‖ f ‖ � (�
G∼G(n , d

n )
f (G)2)1/2.

28The calculations in Section 8.5 are performed for long-armed stars; to prove the present

result the analogous calculations should be performed for cycles of logarithmic lengh. Similar

calculations also appear in many previous works.
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where {χα} are the d
n -biased Fourier characters. Thus, using Lemma 8.6.2 wemay

restrict attion to the contribution of those α ⊆
(n
2

)
with |α | 6 ` and containing no

degree-1 vertices.

Fix such an α, and suppose it has C(α) connected components and V2(α)

vertices of degree 2 (considered again as a graph on [n]). Fact 8.6.3 (following

this proof) together with routine computations shows that(
�

G∼SBM(n ,d ,ε,k)
χα(G)

)
2

6
(
(1 + O( dn ))ε

2 d
n

) |α |
k−2(V2(α)−C(α))

6
(
1 + O( dn )

) |α |
· n−|α | · (1 − δ)|α | · k2(|α |−V2(α)+C(α)) .

Let c(α) �
(
1 + O( dn )

) |α |
· n−|α | · (1− δ)|α | · k2(|α |−V2(α)+C(α))

be this upper bound on

the contribution of α to the right-hand side of (8.6.1). It will be enough to bound

(∗) def

�

∑
α⊆(n

2
)

|α |6`
α has no degree 1 nodes

c(α)

Given any α as in the sum, we may partition it into two vertex-disjoint subgraphs,

α0 and α1, where α0 is a union of cycles and no connected component of α1 is a

cycle, such that α � α0 ∪ α1. Thus,

(∗) 6
(∑
α0

c(α0)
) (∑

α1

c(α1)
)

where α0 ranges over unions of cycles with |α0 | 6 ` and α1 ranges over graphs on

[n]with at most ` where all degrees are at least 2 and containing no connected

component which is a cycle. Lemmas 8.6.4 and 8.6.5, which follow, the terms

above as O(1), which finishes the proof. �

Fact 8.6.3. Let U be a connected graph where all vertices have degree at least 2, and

let t be the number of degree 2 vertices in U. For each vertex v of U let σv ∈ �k
be a
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uniformly random standard basis vector. Let σ̃v � σv − 1

k · 1. Then������� ∏
(u ,v)∈U

〈σ̃v , σ̃u〉

������ 6 k−t+1

Proof. The covariance � σ̃σ̃> �
1

kΠ ∈ �k×k
, where Π is the projector to the

orthogonal complement of the all-1’s vector. Consider marginalizing out the

degree-2 vertices v one by on. Until reaching the last degree-2 vertex, each

marginalization gives a factor of 1/k:

�

∏
(u ,v)∈U

〈σ̃v , σ̃u〉 � k−t �
∏
(u ,v)∈U′

〈σ̃v , σ̃u〉

where U′ is the graph obtained from U by iteratively replacing every degree

2 vertex but for one with an edge connecting its neighbors. (The last degree-2

vertex may lead to a self-loop.) Since |〈σ̃u , σ̃v〉| 6 1, we are done. �

Lemma 8.6.4. For α ⊆
(n
2

)
, let V(α) be the number of vertices in α, let C(α) be the

number of connected components in α. For constants ε, d , k, let c(α) def

�

(
1 + O( dn )

) |α |
·

n−|α | · (1 − δ)|α | · k2(|α |−V2(α)+C(α))
Let ` 6 n0.01

and

U �

{
α ⊆

(
n
2

)
: α has all degrees > 2, has no connected components which are cycles, |α | 6 `

}
.

Then ∑
α∈U

c(α) 6 O(1) .

Proof. We will use a coding argument to bound the number of α ∈ U with V

vertices, E edges, and C connected components. We claim that any such α is

uniquely specified by the following encoding.

To encode α, start by picking an arbitrary vertex v1 in α. List the vertices

v1, . . . , v |V | of α, each requiring log n bits, starting from v1, using the following

rules to pick vi .
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1. If vi−1 has a neighbor not yet appearing in the list v1, . . . , vi−1, let vi be any

such neighbor.

2. Otherwise, if vi−1 has a neighbor v j which

(a) appears in the list v1, . . . , vi−1 and

(b) for which either j � 1 or v j−1 is not adjacent to v j in α, and

(c) for which if j , i′ for i′ 6 i − 1 being the minimal index such that

vi′ , . . . , vi−1 is a path in α (i.e. v j , . . . , vi−1 are not a cycle in α)

then reorder the list as follows. Remove vertices v j , . . . , v j′ where j′ is

the greatest index so that all edges v` , v`+1 exist in α for j 6 ` 6 j′. Also

remove vertices vi′ , . . . , vi−1 where i′ is analogously the minimal index

such that edes v` , v`+1 exist in α for i′ 6 ` 6 i − 1. Then, append the list

v j′ , v j′−1, . . . , v j , vi−1, . . . , vi′. By construction, all of these vertices appear

in a path in α. The new list retains the invariant that every vertex either

preceeds a neighbor in α or has no neighbors in α which have not previous

appeared in the list.

3. Otherwise, let vi be an arbitrary vertex in α in the same connected compo-

nent as vi−1, if some such vertices has not yet appeared in the list.

4. Otherwise, let vi be an arbitrary vertex of α not yet appearing among

v1, . . . , vi−1.

After the list of vertices, append to the encoding the following information. First,

a list of the R (for removed) pairs vi , vi+1 for which there is not an edge (vi , vi+1)

in α. This uses 2R log V bits. Last, a list of the edges in α which are not among

the pairs vi , vi+1 (each edge encoded using 2 log V bits).
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We argue that the number R of removed pairs (and hence the length of their

list in the encoding) is not too great. In particular, we claim R 6 2(E −V). In fact,

this is true connected-component-wise in α. To see it, proceed as follows.

Fix a connected component β of α. Let vt be the first vertex in β to appear

in the list v1, . . . , v |V |. Proceeding in increasing order down the list from vt , let

(vr1
, vr1+1), (vr2

, vr2+1), . . . be the pairs encountered (before leaving β) which do

not correspond to edges in α (and hence will later appear in the list of removed

pairs).

Construct a sequence of subgraphs β j of β as follows. The graph β1 is the line

on vertices vt , . . . , vr1
. To construct the graph β j , start from β j−1 and add the line

from vr j−1+1 to vr j (by definition all these edges appear in β). Since vr j must have

at least degree 2, it has a neighbor u j in β among the vertices va for a < r j aside

from vr j−1. (If vr j had a neighbor not yet appearing in the list, then vr j+1 would

have been that neighbor, contrary to assumption.) Choose any such neighbor

and add it to β j ; this finishes construction of the graph β j . For later use, note that

either adding the edge to u j turns β j \ b j−1 into a cycle or u j is not itself among

the vr ’s, since otherwise in constructing the list we would have done a reordering

operation.

In each of the graphs β j , the number of edges is equal to the number of vertices.

To obtain β, we must add Eβ − Vβ edges (where Eβ is the number of edges in β

and Vβ is the number of vertices). We claim that in so doing at least one half of a

distinct such edge must be added per β j ; we prove this via a charging scheme.

As noted above, each graph β j \ β j−1 either contains vr j−1
as a degree-1 vertex or

it forms cycle. If it contains a degree-1 vertex, by construction this vertex is not

u j′ for any j′ > j, otherwise we would have reordered. So charge β j to the edge
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which must be added to fix the degree-1 vertex.

In the cycle case, either some edge among the Eβ − Vβ additional edges is

added incident to the cycle (in which case we charge β j to this edge), or some u j′

for j′ > j is in β j \ β j−1. If the latter, then β j′ \ β j′−1 contains a degree-1 vertex

and β j \ β j − 1 can be charged to the edge which fixes that degree 1 vertex. Every

additional edge was charged at most twice. Thus, R 6 2(E − V)

It is not hard to check that α can be uniquely decoded from the encoding

previously described. The final result of this encoding scheme is that each α can

be encoded with at most V log n + 6(E − V) log V bits, and so there are at most

nV ·V6(E−V)
choices for α. The contribution of such α to

∑
α∈U c(α) is thus at most

n−(E−V)V6(E−V)(1 − δ/2)Ek2(E−V2+C)

There are at least V −(E−V) degree-2 vertices V2, so E−V2 6 E−(V −(E−V)) 6

2(E − V). Furthermore, C 6 E − V , since no connected component of α is a

cycle. All in all, this is at most (V6k6/n)E−V(1 − δ/2)E. So as long as k ,V 6 n0.01
,

we obtain that this contributes at most n−(E−V)/2(1 − δ/2)E. Summing across all

V, E 6 n0.01
with E > V + 1, the lemma follows. �

Lemma 8.6.5. For α ⊆
(n
2

)
, let V(α) be the number of vertices in α, let C(α) be

the number of connected components in α. For constants 1 > δ > 0 and k, let

c(α) def

�

(
1 + O( dn )

) |α |
· n−|α | · (1− δ)|α | · k2(|α |−V(α)+C(α))

Let ` 6 nξ/k
2

for some ξ > 0

(allowing ξ 6 o(1)) and

U �

{
α ⊆

(
n
2

)
: α is a union of cycles

}
.

Then ∑
α∈U

c(α) 6 exp(k2 · Oδ(1)) .
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Proof. Let Ut be the set of α which are unions of t-cycles (we exclude the empty

α). Let ct �
∑
α∈Ut cα. Then ∑

α∈U

c(α) 6
∏
t6`

(1 + ct) .

Count the α ∈ Ut which contain exactly p cycles of length t by first choosing a

list of pt vertices—there are npt
choices. In doing so we will count each alpha

p!tp
times, since each of the p cycles can be rotated and the cycles can themselves

be exchanged. All in all, there are at most npt/(p!tp) such α, and they contribute

at most

c(α)npt

p!tp 6
(1 − δ/2)pt k2p

p!tp .

for large enough n. Summing over all p > 0, we get

ct 6
∑
p>1

(
(1 − δ/2)k2

t

)p

/p! � exp

(
(1 − δ/2)k2

t

)
− 1

So ∏
t6`

(1 + ct) 6 exp

(∑
t>0

(1 − δ/2)k2

t

)
6 exp(k2 · Oδ(1)) .

�

8.6.2 Lower bound for estimating communities

Theorem 8.6.6. Let d , ε, k , δ be constants such that ε2d < (1 − δ)k2
. Let

f : {0, 1}n×n → � be any function, let i , j ∈ [n] be distinct. Then if f satisfies

�
G∼G(n , dn )

f (G) � 0 and is correlated with the indicator 1σi�σ j that i and j are in the

same community in the following sense:

�G∼SBM(n ,d ,ε,k) f (G)(1σi�σ j − 1

k )
(�

G∼G(n , dn )
f (G)2)1/2

> Ω(1)

then deg f > nc(d ,ε,k)
for some c(d , ε, k) > 0.
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Proof. Let 1(G) � µ(G)�[1σi�σ j − 1

k | G], where µ(G) is the relative density of

SBM(n , d , ε, k). Standard Fourier analysis shows that the optimal degree-`

choice for such f to maximize the above correlation is 16`, the orthogonal

projection of 1 to the degree-` polynomials with respect to the measure G(n , d
n ),

and the correlation is at most ‖16`‖. It suffices to show that for some constant

c(d , ε, k), if ` < nc(d ,ε,k)
then ‖16`‖ 6 o(1).

For this we expand 1 in the Fourier basis, noting that

1̂(α) � �
σ,G∼SBM(n ,d ,ε,k)

〈σ̃i , σ̃ j〉χα(G)

where as usual σ̃i � σi − 1

k · 1 is the centered indicator of i’s community. By-now

routine computations show that

1̂(α)2 6
(
(1 + O(d/n))ε2 d

n

) |α |
· ©«�〈σ̃i , σ̃ j〉 ·

∏
(k ,`)∈α

〈σ̃i , σ̃ j〉
ª®¬

2

We assume that (i , j) < α; it is not hard to check that such α’s dominate the norm

‖16`‖. If some vertex aside from i , j in α has degree 1 then this is zero. Similarly,

if i or j does not appear in α then this is zero. Otherwise,

1̂(α)2 6 ((1 + O(d/n)))|α | n−|α |(1 − δ)|α |k2(|α |−V(α)+C(α)

where as usual V(α) is the number of vertices in α and C(α) is the number

of connected components in α. Let β(α) be the connected component of α

containing i and j (if they are not in the same component the arguments are

mostly unchanged). Then we can bound

‖16`‖2 �

∑
|α |6`

1̂(α)2 6 ‖µ6`‖2 ·
∑
β

((1 + O(d/n)))|β | n−|β |(1 − δ)|β |k2(|β |−V(β)+1

where β ranges over connected graphs with vertices from [n], at most ` edges,

every vertex except i and j having degree at least 2, and containing i and j
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with degree at least 1. There are at most nV−2VO(E−V)
such graphs containing

at V vertices aside from i and j and E edges (by an analogous argument as in

Lemma 8.6.4). The total contribution from such β is therefore at most

k2(E−V+1)VO(E−V)

nE−V+2

Summing over V and E, we get∑
β

((1 + O(d/n)))|β | n−|β |(1 − δ)|β |k2(|β |−V(β)+1 6 n−Ω(1)

so long as ` 6 nc
for small enough c. Using Theorem 8.6.1 to bound ‖µ6`‖

finishes the proof. �

8.7 Tensor decomposition from constant correlation

Problem 8.7.1 (Orthogonal n-dimensional 4-tensor decomposition from constant

correlation). Let a1, . . . , am ∈ �n
be orthonormal, and let A �

∑m
i�1

a⊗4

i . Let

B ∈ (�n)⊗4
satisfy

〈A,B〉
‖A‖‖B‖ > δ � Ω(1).

Let O be an oracle such that for any unit v ∈ �n
,

O(v) �


YES if

∑m
i�1
〈ai , v〉4 > δO(1)

NO otherwise

Input: The tensor B, and if δ < 0.01, access to the oracle O.

Goal: Output orthonormal vectors b1, . . . , bm so that there is a set S ⊆ [m] of size

|S | > δO(1) · m where for every i ∈ S there is j 6 m with 〈b j , ai〉2 > δO(1)
.

We will give an n1/δO(1)
-time algorithm (hence using at most n1/δO(1)

oracle

calls) for this problem based on a maximum-entropy Sum-of-Squares relaxation.
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The main theorem is the following; the subsequent corollary arrives at the final

algorithm.

Theorem 8.7.2. Let A, B and a1, . . . , am and δ 6 0.01 be as in Problem 8.7.1. Let

v1, . . . , vr for r 6 δ4m be orthonormal vectors. There is a randomized algorithm ALG

with running time nO(1)
which takes input B, v1, . . . , vr and outputs a unit vector v,

orthogonal to v1, . . . , vr , with the following guarantee. There is a set S ⊆ [m] of size

|S | > δO(1) · m so that for i ∈ S,

�
{
〈v , ai〉2 > δO(1)} > n−1/poly(δ) .

The following corollary captures the overall algorithm for tensor decomposi-

tion, using the oracle O to filter the output of the algorithm of Theorem 8.7.2.

Corollary 8.7.3. Let a1, . . . , an ,A, B, δ be as in Theorem8.7.2 andO as inProblem8.7.1.

There is a npoly(1/δ)
-time algorithm which takes the tensor B as input and returns

b1, . . . , bm such that with high probability there is a set S ⊆ [m] of size |S | > δO(1)m

which has the guarantee that for all i ∈ S there is j 6 m with 〈ai , b j〉2 > δO(1)
. If

δ 6 1 −Ω(1), the algorithm makes n1/poly(δ)
adaptive queries to the oracle O.

The algorithm can also be implemented with nonadaptive queries as follows. Once the

input B and the random coins of the algorithm are fixed, there is a list of at most npoly(k/δ)
.

Query the oracle O nonadaptively on all these vectors and assemble the answers into a

lookup table; then the decomposition algorithm can be run using access only to the lookup

table.

Proof of Corollary 8.7.3. If δ > 1− ε∗ for a small enough constant ε∗ then the tensor

decomposition algorithm of Schrammand Steurer has the appropriate guarantees.

(See Theorem 4.4 and Lemma 4.9 in [161]. This algorithm has several advantages,
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including that it does not need to solve any semidefinite program, but it cannot

handle the high-error regime we need to address here.)

From here on we assume δ 6 0.01 < 1− ε∗. (Otherwise, we can replace δ with

δC 6 0.01 for large enough C.) Our algorithm is as follows.

Algorithm 8.7.4 (Constant-correlation tensor decomposition). 1. Let V be an

empty set of vectors.

2. For rounds 1, . . . , T � δO(1)m, do:

(a) Use the algorithm of Theorem 8.7.2 on the tensor B to generate

w1, . . . ,wt , where t � n1/δO(1)
.

(b) Call O on successive vectors w1, . . . ,wt , and let w be the first for

which it outputs YES. (If no such vector exists, the algorithm halts and

outputs random orthonormal vectors b1, . . . , bm .)

(c) Add w to V .

3. Let b1, . . . , bm−|V | be random orthonormal vectors, orthogonal to each v ∈ V .

4. Output {b1, . . . , bm−|V |} ∪ V .

Choosing t � n1/δO(1)
large enough, and T � δO(1)m small enough, by Theo-

rem 8.7.2 with high probability in every round 1, . . . , T there is some w among

w1, . . . ,wt for which O outputs YES. Suppose that occurs. In this case, the

algorithm outputs (along with some random vectors bi) a set of vectors V which

are orthonormal, and each v ∈ V satisfies 〈v , ai〉 > δO(1)
for some ai ; say that this

ai is covered by v. Each ai can be covered at most 1/δO(1)
times, by orthonormality

of the set V . So, at least δO(1) |V | � δO(1)m vectors are covered at least once, which

proves the corollary. �

We turn to the proof of Theorem 8.7.2. We will use the following lemmas,
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whose proofs are later in this section. The problem is already interesting when

the list v1, . . . , vr is empty, and we encourange the reader to understand this case

first.

The first lemma says that a pseudodistribution of high entropy (in the 2-norm

sense29) which is correlated with the tensor B must also be nontrivially correlated

with A.

Lemma 8.7.5. Let A, B be as in Problem 8.7.1. Let v1, . . . , vr ∈ �n
be orthonormal,

with r 6 δ4m. Suppose
˜� is the degree-4 pseudodistribution solving

min‖ ˜� x⊗4‖F (8.7.1)

s.t.
˜� satisfies {‖x‖2 6 1, 〈x , v1〉 � 0, . . . , 〈x , vr〉 � 0}

〈 ˜� x⊗4, B〉 > δ
2m ˜� xx>

 6 1

m (8.7.2) ˜� xx> ⊗ xx>
 6 1

m (8.7.3)

Then
˜�
∑

i6m 〈x , ai〉4 > δ2/8. Furthermore, it is possible to find
˜� in polynomial time.30

The second lemma says that given a high-entropy (in the spectral sense of

[121]) pseudodistribution
˜� having nontrivial correlation with some a ∈ �n

,

contracting
˜�with a yields a matrix whose quadratic form is large at a and which

does not have too many large eigenvalues.

Lemma 8.7.6. Let a1, . . . , am ∈ �n
be orthonormal.

Let
˜� be a degree-4 pseudoexpectation such that

29For a distribution µ finitely-supported on a family of orthonormal vectors, the Frobenious

norm ‖�x∼µ x⊗k ‖ is closely related to the collision probability of µ, itself closely related to the

order-2 case of Rényi entropy.

30Up to inverse-polynomial error, which we ignore here. See [121] for the ideas needed to show

polynomial-time solvability.
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1.
˜� satisfies {‖x‖2 6 1}

2.
˜�
∑

i6m 〈x , ai〉4 > δ.

3. ‖ ˜� xx>]‖op , ‖ ˜� xx> ⊗ xx>‖op 6
1

m .31

Let Mi ∈ �n×n
be the matrix

˜�〈x , ai〉2xx>. For every i ∈ [m], the matrix Mi has at

most 4/δ eigenvalues larger than δ
4m . Furthermore,

�
i∼[m]

{
〈ai ,Miai〉 > δ

2m

}
> δ

2
.

The last lemma will help show that a random contraction of a high-entropy

pseudodistribution behaves like one of the contractions from Lemma 8.7.6, with

at least inverse-polynomial probability.

Lemma 8.7.7. Let 1 ∼ N(0,Σ) for some 0 � Σ � Id and let
˜� be a degree-4

pseudoexpectation where

• ˜� satisfies {‖x‖2 6 1}.

•
 ˜� xx>

 6 c.

•
 ˜� xx> ⊗ xx>

 6 c

Then

�
1

 ˜�〈1 , x〉2xx>
 6 O(c · log n) .

Now we can prove Theorem 8.7.2.

Proof of Theorem 8.7.2. The algorithm is as follows:

31Recall that ‖·‖ denotes the operator norm, or maximum singular value, of a matrix.
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Algorithm 8.7.8 (Low-correlation tensor decomposition). 1. Use thefirst part

of Lemma 8.7.5 to obtain a degree-4 pseudoexpectation with

˜�
∑

i∈[m]〈ai , x〉4 > δ2/4 satisfying {‖x‖2 6 1, 〈x , v1〉 � 0, . . . , 〈x , vr〉 � 0}.

2. Sample a random 1 ∼ N(0, Id) and compute the contraction M �

˜�〈1 , x〉2xx>.

3. Output a random unit vector b in the span of the top
32

δ2
eigenvectors of M.

First note that for any v ∈ Span{v1, . . . , vr}, we must have 〈v ,Mv〉 �

˜�〈1 , x〉2〈v , x〉2 � 0, so v lies in the kernel of M. Hence, the ouput of the

algorithm will always be orthogonal to v1, . . . , vr .

Let Π
32/δ2 be the projector to the top 32/δ2

eigenvectors of M. For any unit

vector a with ‖Π
32/δ2 a‖ > δO(1)

, the algorithm will output b with nontrivial

correlation with a. Formally, for any such a,

�
b
〈b , a〉2 > δO(1) .

So, our goal is to show that for a δO(1)
-fraction of the vectors a1, . . . , am ,

�
1
{‖Π

32/δ2 ai ‖ > δO(1)} > n−1/δO(1)
.

For i ∈ [m], let Mi � ˜�〈ai , x〉2xx>. Let i be the index of some ai so that

〈ai ,Mi ai〉 > δ2

16m and rank M
>
δ2

32m
i 6 32

δ2

as in Lemma 8.7.6. (There are Ω(δ2m) possible choices for ai , according to the

Lemma.)

We expand the Gaussian vector 1 from the algorithm as

1 � 10 · ai + 1
′
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where 10 ∼ N(0, 1) and 〈1′, ai〉 � 0. We note for later use that 1′ is a Gaussian

vector independent of 10 and that �(1′)(1′)> � Id. Using this expansion,

M � 12

0

˜�〈ai , x〉2xx> + 2 · 10
˜�〈1′, x〉〈ai , x〉xx> + ˜�〈1′, x〉2xx> .

We will show that all but the first term have small spectral norm. Addressing the

middle term first, by Cauchy-Schwarz, for any unit v ∈ �n
,

˜�〈1′, x〉〈ai , x〉〈v , x〉2 6
(
˜�〈1′, x〉2〈x , v〉2

)
1/2 (

˜�〈ai , x〉2〈v , x〉2
)
1/2
6

 ˜�〈1′, x〉2xx>
1/2·

(
1

m

)
1/2

,

where in the last step we have used that

 ˜� xx> ⊗ xx>
 6 1

m .

By Markov’s inequality and Lemma 8.7.7,

�
1′

{ ˜�〈1′, x〉2xx>
 > t log n

m

}
6 O

(
1

t

)
.

Let t be a large enough constant so that

�
1′

{ ˜�〈1′, x〉2xx>
 6 t log n

m

}
> 0.9 .

For any constant c, with probability n−1/poly(δ)
, the foregoing occurs and 10 (which

is independent of 1′) is large enough that

12

0
· cδ2

m > 1

δ4

M − 12

0
Mi

 .
Choosing c large enough, in this case

M′ def

�
1

12

0

M � Mi + O(δ6/m) .

Hence the vector ai satisfies

1

12

0

〈ai ,Mai〉 > δ2

33m

This means that the projection b of ai into the span of eigenvectors of M′ with

eigenvalue at least δ2/60m has ‖b‖2 > δO(1)
. This finishes the proof. �
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8.7.1 Proofs of Lemmas

These lemmas and their proofs use many ideas from [121]. The main difference

here is that we want to contract the tensor
˜� x⊗4

in 2 modes, to obtain the matrix

˜�〈1 , x〉2xx>. For us this is useful because
˜�〈1 , x〉2xx> � 0. By contrast, the

tools in [121] would only allow us to analyze the contraction
˜�〈h , x ⊗ x〉xx> for

h ∼ N(0, Idn2).

We start with an elementary fact.

Fact 8.7.9. Let a1, . . . , am ∈ �n
be orthonormal. Let Π be the projector to a subspace

of codimension at most δm. Let A �
∑m

i�1
a⊗4

i and ΠA �
∑m

i�1
(Πai)⊗4

. Then

〈A,ΠA〉 > (1 − O(
√
δ))‖A‖ · ‖ΠA‖.

A useful corollary of Fact 8.7.9 is that if T is any 4-tensor satisfying 〈T,ΠA〉 >

δ‖T‖‖ΠA‖ and Π has codimension� δ2m, then 〈T,A〉 > Ω(δ)‖T‖‖A‖.

Proof of Fact 8.7.9. We expand

〈A,ΠA〉 �
∑

i , j6m

〈ai ,Πa j〉4 >
∑

i , j6m

‖Πai ‖8

WritingΠ in the ai basis, we think of ‖Πai ‖4 � Π2

ii , the square of the i-th diagonal

entry of Π. Since Π has codimension at most δm,

rankΠ � TrΠ �

∑
i6n

Πii > n − δm .

Furthermore, for each i, it must be that 0 6 Πii 6 1. By Markov’s inequality, at

most

√
δm diagonal entries of Π can be less than 1 −

√
δ in magnitude. Hence,∑

i6m Π
4

ii > (1 − 4

√
δ)m. On the other hand, ‖A‖2 � m; this proves the fact. �

Now we can prove Lemma 8.7.5.
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Proof of Lemma 8.7.5. We will appeal to Theorem 8.2.3. Let C be the convex set

of all pseudo-moments
˜� x⊗4

such that
˜� is a deg-4 pseudo-distribution that

satisfies the polynomial constraints {‖x‖2 6 1, 〈x , vi〉 � 0} and the operator norm

conditions  ˜� xx>
 6 1

m , ˜� xx> ⊗ xx>
 6 1

m .

LetΠ be the projector to the orthogonal space of v1, . . . , vr . Notice that
1

mΠA ∈ C.

Furthermore, 〈B,ΠA〉 > δ/2 by Fact 8.7.9, the assumption that r 6 δ4m, and the

assumption δ 6 0.01. By Theorem 8.2.3, and Fact 8.7.9 again, the optimizer of

the convex program in the Lemma satisfies 〈 ˜� x⊗4, 1

m A〉 > δ2

8m ) and the result

follows. �

Proof of Lemma 8.7.6. By the assumption ‖ ˜� xx> ⊗ xx>‖ 6 1

m , for every ai it must

be that
˜�〈x , ai〉4 6 1

m . Since
˜�
∑m

i�1
〈x , ai〉4 > δ, at least δm/2 of the ai’s must

satisfy
˜�〈x , ai〉4 > δ

2m . Rewritten, for any such ai we obtain 〈ai ,Miai〉 > δ
2m .

For any Mi ,

Tr Mi � ˜�〈x , ai〉2‖x‖2 � ˜�〈x , ai〉2 6 1

m

because ‖ ˜� xx>‖ 6 1

m . Also, Mi � 0. Hence, Mi can have no more than
4

δ

eigenvalues larger than
δ

4m . �

Nowwe turn to the proof of Lemma 8.7.7. We will need spectral norm bounds

on certain random matrices associated to the random contraction
˜�〈1 , x〉xx>.

The following are closely related to Theorem 6.5 and Corollary 6.6 in [121].

Lemma 8.7.10. Let 1 ∼ N(0, Id) and let ˜� be a degree-4 pseudoexpectation where
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• ˜� satisfies {‖x‖2 � 1}.

•
 ˜� xx>

 6 c.

•
 ˜� xx> ⊗ xx>

 6 c

Then

�
1

 ˜�〈1 , x〉2xx>
 6 O(c · log n) .

Before proving the lemma, we will need a classical decoupling inequality.

Fact 8.7.11 (Special case of Theorem 1 in [57]). Let 1 , h ∼ N(0, Idn) be independent.

Let Mi j for i , j ∈ [n] be a family of matrices. There is a universal constant C so that

�
1

∑i, j

1i1 j ·Mi j

 6 C · �
1 ,h

∑i, j

1ih j ·Mi j

 .
We will also need a theorem from [121].

Fact 8.7.12 (Corollary 6.6 in [121]). Let T ∈ �p ⊗ �q ⊗ �r
be an order-3 tensor. Let

1 ∼ N(0,Σ) for some 0 � Σ � Idr . Then for any t > 0,

�
1

{(Id ⊗ Id ⊗ 1)>T

{1},{2} > t ·max

{
‖T‖{1},{2,3} , ‖T‖{2},{1,3}

}}
6 2(p+q)·e−t2/2 ,

and consequently,

�
1

[(Id ⊗ Id ⊗ 1)>T

{1},{2}

]
6 O(log(p + q))1/2 ·max

{
‖T‖{1},{2,3} , ‖T‖{2},{1,3}

}
Proof of Lemma 8.7.10. We expand the matrix

˜�〈1 , x〉2xx> as

˜�〈1 , x〉2xx> �

∑
i∈[n]

12

i
˜� x2

i xx> +
∑

i, j∈[n]
1i1 j · ˜� xi x j xx> .
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Addressing the first term, by standard concentration, �maxi∈[n] 1
2

i � O(log n).

So,

�
1

∑
i∈[n]

12

i
˜� x2

i xx>

 6 �1
[
max

i∈[n]
12

i ·
 ˜� ‖x‖2xx>

] � O(log n)·
 ˜� xx>

 � O(c·log n) .

The second term we will decouple using Fact 8.7.11.

�
1

∑i, j

1i1 j · ˜� xix j xx>

 6 O(1) · �
1 ,h

∑i, j

1ih j · ˜� xix jxx>

 .
We add some aditional terms to the sum; by similar reasoning to our bound on

the first term they do not contribute too much to the norm.

�
1 ,h

∑i, j

1ih j · ˜� xix jxx>

 6 O(1) · �
1 ,h

 ∑
i , j∈[n]

1ih j · ˜� xi x j xx>

 + O(c · log n) .

We can rewrite the matrix in the first term on the right-hand side as∑
i , j∈[n]

1ih j · ˜� xi x jxx> � ˜�〈1 , x〉〈h , x〉xx> .

Now we can apply Fact 8.7.12 twice in a row; first to 1 and then to h, which

together with our norm bound on � xx> ⊗ xx>, gives

�
1 ,h

 ˜�〈1 , x〉〈h , x〉xx>
 6 O(c · log n) .

Putting all of the above together, we get the lemma. �

Next we prove Lemma 8.7.7 as a corollary of Lemma 8.7.7 which applies

to random contractions which are non-spherical. The proof technique is very

similar to that for Fact 8.7.12.

Proof of Lemma 8.7.7. Let h ∼ N(0, Id − Σ) be independent of 1, and define

1′ � 1 + h and 1′′ � 1 − h, so that 1 �
1

2
(1′ + 1′′). It is sufficient to bound
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�1 ,h
 ˜�〈1′ + 1′′, x〉2xx>


. Expanding and applying triangle inequality,

�
1 ,h

 ˜�〈1′ + 1′′, x〉2xx>
 6 �

1 ,h

 ˜�〈1′, x〉2xx>
+2 �

1 ,h

 ˜�〈1′, x〉〈1′′, x〉xx>
+�

1 ,h

 ˜�〈1′′, x〉2xx>
 .

The first and last terms are O(c · log n) by Lemma 8.7.10. For the middle term,

consider the quadratic form of the matrix
˜�〈1′, x〉〈1′′, x〉xx> on a vector v ∈ �n

:

˜�〈1′, x〉〈1′′, x〉〈x , v〉2 6 ˜�〈1′, x〉2〈x , v〉2 + ˜�〈1′′, x〉2〈x , v〉2

by pseudoexpectation Cauchy-Schwarz. Thus for every 1′, 1′′, ˜�〈1′, x〉〈1′′, x〉xx>
 6  ˜�〈1′, x〉2xx>

 +  ˜�〈1′′, x〉2xx>
 .

Together with Lemma 8.7.10 this concludes the proof. �

8.7.2 Lifting 3-tensors to 4-tensors

Problem 8.7.13 (3-to-4 lifting). Let a1, . . . , am ∈ �n
be orthonormal. Let A3 �∑m

i�1
a⊗3

i and A4 �
∑m

i�1
a⊗4

i . Let B ∈ �n×n×n
satisfy 〈B,A3〉 > δ · ‖A3‖ · ‖B‖.

Input: The tensor B.

Goal: Output B′ satisfying 〈B′,A4〉 > δO(1) · ‖A4‖ · ‖B′‖.

Theorem 8.7.14. There is a polynomial time algorithm, using the sum of squares method,

which solves the 3-to-4 lifting problem.

Proof. Small δ regime: δ < 1 − Ω(1): The algorithm is to output the fourth

moments of the optimizer of the following convex program.

min

˜�

‖ ˜� x⊗3‖

s.t.
˜� is degree-4
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˜� satisfies {‖x‖2 � 1}

〈 ˜� x⊗3, B〉 > δ‖B‖√
m

‖ ˜� x⊗4‖ 6 1√
m
.

To analyze the algorithm we apply Theorem 8.2.3. Let C be the set of degree-4

pseudodistributions satisfying {‖x‖2 � 1} and having ‖ ˜� x⊗4‖ 6 1/
√

m. The

uniform distribution over a1, . . . , am , whose third and fourth moments are
1

m A3

and
1

m A4, respectively, is in C.

Let
˜� be the pseudoexpectation solving the convex program. By Theorem8.2.3,

〈 ˜� x⊗3, 1

m A3〉 >
δ
2

· 1√
m
· ‖ ˜� x⊗3‖ > δ2

2m

At the same time,

〈 ˜� x⊗3, 1

m A3〉 �
1

m

m∑
i�1

˜�〈x , ai〉3 6
1

m

(
˜�

m∑
i�1

〈x , ai〉4
)

1/2

by Cauchy-Schwarz. Putting these together, we obtain

〈 ˜� x⊗4,A4〉 � ˜�

m∑
i�1

〈x , ai〉4 > δ4/4 .

Finally, ‖A4‖ · ‖ ˜� x⊗4‖ 6 1 (since we constrained ‖ ˜� x⊗4‖ 6 1/
√

m), which

finishes the proof.

Large δ regime: δ > 1 − o(1): Modify the convex program from the small-δ

regime to project (B/‖B‖) · 1/
√

m to same convex set C. The normalization is so

that (B/‖B‖) · 1/√m
 �

 1

m · A3

 .
The analysis is similar. �
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8.8 Toolkit and Omitted Proofs

8.8.1 Probability and linear algebra tools

Fact 8.8.1. Consider any inner product 〈·, ·〉 on�n
with associated norm ‖ · ‖. Let X and

Y be jointly-distributed �n
-valued random variables. Suppose that ‖X‖2 6 C� ‖X‖2

with probability 1, and that

�〈X,Y〉
(� ‖X‖2)1/2(� ‖Y‖2)1/2

> δ .

Then

�

{
〈X,Y〉
‖X‖ · ‖Y‖ >

δ
2

}
>

δ2

4C2

.

Proof of Fact 8.8.1. Let 1E be the 0/1 indicator of an event E. Note that

�

[
〈X,Y〉 1〈X,Y〉6 δ

2
·‖X‖·‖Y‖

]
6 δ

2
� ‖X‖ · ‖Y‖

Hence,

�

[
〈X,Y〉 1〈X,Y〉> δ

2
·‖X‖·‖Y‖

]
� �〈X,Y〉−�

[
〈X,Y〉 1〈X,Y〉6 δ

2
·‖X‖·‖Y‖

]
> �〈X,Y〉− δ

2
� ‖X‖·‖Y‖

At the same time,

�

[
〈X,Y〉 1〈X,Y〉> δ

2
·‖X‖·‖Y‖

]
6

(
� ‖X‖2 · ‖Y‖2

)
1/2 ·

(
� 1〈X,Y〉> δ

2
·‖X‖·‖Y‖

)
1/2

�
(
� ‖X‖2 · ‖Y‖2

)
1/2 ·

(
�{〈X,Y〉 > δ

2
· ‖X‖ · ‖Y‖}

)
1/2

6 C(� ‖X‖2)1/2(� ‖Y‖2)1/2 ·
(
�{〈X,Y〉 > δ

2
· ‖X‖ · ‖Y‖}

)
1/2

.

Putting the inequalities together and rearranging finishes the proof. �

Proof of Proposition 8.5.22. We decompose Xi as

Xi � Xi 1|Xi |6R +Xi 1|Xi |>R .
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Let Yi � Xi 1|Xi |6R. Then

|�Yi | � |�Xi −�Xi 1|Xi |>R | 6 δ′

and

�Yi 6 �Y2

i 6 �X2

i .

So we can apply Bernstein’s inequality to
1

m
∑

i6m Yi to obtain that

�

{����� 1

m

∑
i6m

Yi

����� > t + δ′
}
6 exp

(
−Ω(1) · m · t2

�X2 + t · R

)
.

Now, with probability at least 1 − δ we know Xi � Yi , so by a union bound,

�

{����� 1

m

∑
i6m

Xi

����� > t + δ′
}
6 exp

(
−Ω(1) · m · t2

�X2 + t · R

)
+ mδ . �

Fact 8.8.2. Let {X1, . . . ,Xn ,Y1, . . . ,Ym} are jointly distributed real-valued random

variables. Suppose there is S ⊆ [m] with |S | > (1 − om(1)) · m such that for each i ∈ S

there a degree-D polynomials pi satisfying

� pi(X)Yi

(�Y2)1/2(� pi(X)2)1/2
> δ .

Furthermore, suppose

∑
i∈S �Y2

i > (1 − o(1))∑i∈[m]�Y2

i . Let Y ∈ �m
be the vector-

valued random variable with i-th coordinate Yi , and similarly let P(X) have i-th coordinate

pi(X). Then
�〈P(X),Y〉

(� ‖Y‖2)1/2 · (� ‖P(X)‖2)1/2
> (1 − o(1)) · δ

Proof. The proof is by Cauchy-Schwarz.

�〈P(X),Y〉 �
∑
i∈S

� pi(X)Y

> δ
∑
i∈S

(� pi(X)2)1/2(�Y2

i )
1/2

> δ

(
�

∑
i∈S

pi(x)2
)

1/2

· (1 − o(1)) ©«
∑

i∈[m]
Y2

i
ª®¬

1/2

. �
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8.8.2 Tools for symmetric and Dirichlet priors

Proof of Fact 8.5.15. Let X be any �k
-valued random variable which is symmet-

ric in distribution with respect to permutations of coordinates and satisfies∑
s∈[k] X(s) � 0 with probability 1. (The variable σ̃ is one example.)

We prove the claim about �〈X, x〉〈X, y〉〈X, z〉〈X, w〉; the other proofs are

similar. Consider the matrix M � �(X ⊗ X)(X ⊗ X)>. Since x , y , z , w are

orthogonal to the all-1’s vector, we may add 1 ⊗ v, for any v ∈ �n
, to any row or

column of M without affecting the statement to be proved. Adding multiples

of 1 ⊗ ei to rows and columns appropriately makes M a block diagonal matrix,

with the top block indexed by coordinates (i , i) for i ∈ [k] and the bottom block

indexed by pairs (i , j) for i , j.

The resulting top block takes the form cId + c′J, where J is the all-1’s matrix.

The bottom block will be a matrix from the Johnson scheme. Standard results on

eigenvectors of the Johnson scheme (see e.g. [63] and references therein) finish

the proof. The values of constants C for the Dirichlet distribution follow from

the next fact. �

Fact 8.8.3. Let σ ∈ �k
be distributed according to a (symmetric) Dirichlet distribution

with parameter α. That is, �(σ) ∝∏
j∈[k] σ

α−1
.

Let γ ∈ �k
be a k-tuple, and let σγ �

∏
j6k σ

γj

j . Let |γ | � ∑
j6k γj . Then

� σγ �
Γ(kα)

Γ(kα + |γ |) ·
∏

j6k Γ(α + γj)
Γ(α)k

.

Furthermore, let σ̃ ∈ �k
be given by σ̃i � σi − 1

k . Then

� σ̃σ̃> �
Γ(kα)

Γ(kα + 2)

(
Γ(α + 2)
Γ(α) −

Γ(α + 1)2
Γ(α)2

)
·Π �

1

k(kα + 1) ·Π ,
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where Π ∈ �k×k
is the projector to the subspace orthogonal to the all-1s vector.

Proof. We recall the density of the k-dimensional Dirichlet distribution with

parameter vector α1, . . . , αk . Here Γ denotes the usual Gamma function.

�{σ} �
Γ(∑ j6k α j)∏

j6k Γ(α j)
·
∏
j6k

σ
α j−1

j .

In particular,

Γ(∑ j6k α j)∏
j6k Γ(α j)

·
∫ ∏

j6k

σ
α j−1

j dσ � 1

where the integral is takenwith respect to Lebesguemeasure on {σ :

∑
j6k σ j � 1}.

Using this fact we can compute the moments of the symmetric Dirichlet

distribution with parameter α. We show for example how to compute second

moments; the general formula can be proved along the same lines. For s , t ∈ [k],

� σsσt �
Γ(kα)
Γ(α)k

·
∫
σsσt

∏
j6k

σα−1

j

�
Γ(kα)

Γ(kα + 2) ·
Γ(α + 1)2
Γ(α)2 · Γ(kα + 2)

Γ(α)k−2Γ(α + 1)2
·
∫
σ(α+1)−1

s σ(α+1)−1

t

∏
j,s ,t

σα−1

j

�
Γ(kα)

Γ(kα + 2) ·
Γ(α + 1)2
Γ(α)2 .

Similarly,

� σ2

s �
Γ(kα)

Γ(kα + 2) ·
Γ(α + 2)
Γ(α) .

The formula for � σ̃σ̃> follows immediately. �

8.9 Chapter Notes

The material in this chapter is adapted from [93], joint work with David Steurer.
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CHAPTER 9

BEYOND BAYESIAN INFERENCE: MIXTURE MODELS, ROBUSTNESS,

AND SUMOF SQUARES PROOFS

In Chapters 6 to 8 we studied a number of inference problems: spiked

tensor models, planted sparse vectors, and stochastic block models. All of these

problems are Bayesian: that is, hidden variables are distributed according to

prior distributions which are known to the algorithm designer. Bayesian-ness

makes all these problems accessible via the simple statistics approach.

Not every inference problem is Bayesian. In this chapter we study two

important non-Bayesianproblems inhigh-dimensional statistics: learningmixture

models under separation assumptions and mean estimation in the presence of

adversarial data corruption. The SoS algorithms we design for these problems

follow the proofs-to-algorithms methodology from Section 3.5.

9.1 Results

Both of the problems we study have a long history; for now we just note some

highlights and state our main results.

Mixture models Mixture models are fundamental generative models for in-

homogeneous data – data coming from multiple underlying populations. The

problem of learning mixture models dates to Pearson in 1894, who invented the

method of moments in order to separate a mixture of two Gaussians [146]; they

have sinse become ubiquitous in data analysis across many disciplines [169, 126].

In recent years, computer scientists have devised many ingenious algorithms for

234



learning mixture models as it became clear that classical statistical methods (e.g.

maximum likelihood estimation) often suffer from computational intractability,

especially when there are many mixture components or the components are high

dimensional.

A highlight of this work is a series of algorithmic results when the components

of the mixture model are Gaussian [52, 53, 17, 174]. Here the main question is:

how close together can the clusters be – asmeasured by theminimum separation∆

between cluster centers – such that there exists an algorithm to estimate µ1, . . . , µk

from samples x1, . . . , xn in poly(k , d) time (hence also using n � poly(k , d)

samples)? Focusing for simplicity on spherical Gaussian components (i.e. with

covariance equal to the identity matrix Id) and with number of components

similar to the ambient dimension of the data (i.e. k � d) and uniform mixing

weights (i.e. every cluster has roughly the same representation among the

samples), the best result in previous work gives a poly(k)-time algorithm when

∆ > k1/4
.

Separation ∆ � k1/4
represents a natural algorithmic barrier: when ∆ > k1/4

,

every pair of samples from the same cluster are closer to each other in Euclidean distance

than are every pair of samples from distinct clusters (with high probability), while this

is no longer true if ∆ < k1/4
. Thus, when ∆ > k1/4

, a simple greedy algorithm

correctly clusters the samples into their components (this algorithm is some-

times called single-linkage clustering). On the other hand, standard information-

theoretic arguments show that the means remain approximately identifiable from

poly(k , d) samples when ∆ is as small as O(
√

log k), but these methods yield only

exponential-time algorithms.1 Nonetheless, despite substantial attention, this

1Recent and sophisticated arguments show that the means are identifiable (albeit inefficiently)

with error depending only on the number of samples and not on the separation ∆ even when
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∆ � k1/4
barrier representing the breakdown of single-linkage clustering has

stood for nearly 20 years.

We prove the following main theorem, breaking the single-linkage clustering

barrier.

Theorem 9.1.1 (Informal, special case for uniformmixture of spherical Gaussians).

For every γ > 0 there is an algorithm with running time (dk)O(1/γ2)
using at most

n 6 kO(1)dO(1/γ)
samples which, given samples x1, . . . , xn from a uniform mixture

of k spherical Gaussians N(µi , Id) in d dimensions with means µ1, . . . , µk ∈ �d

satisfying ‖µi − µ j ‖ > kγ for each i , j, returns estimators µ̂1, . . . , µ̂k ∈ �d
such that

‖µ̂i − µi ‖ 6 1/poly(k) (with high probability).

We pause here to make several remarks about this theorem. Our algorithm

makes novel use of higher order moments of Gaussian (and sub-Gaussian)

distributions. Most previouswork for efficiently learningwell-separatedmixtures

either used only second-order moment information, and required separation

∆ > Ω(
√

k), or made mild use of log-concavity to improve this to k1/4
, whereas

we use O(1/γ)moments.

The guarantees of our theorem hold well beyond the Gaussian setting; the

theorem applies to any mixture model with kγ separation and whose component

distributionsD1, . . . ,Dk are what we term O(1/γ)-explicitly bounded. We define

this notion formally below, but roughly speaking, a t-explicitly bounded distribu-

tionD has t-th moments obeying a subgaussian-type bound—that is, for every

unit vector u ∈ �d
one has �Y∼D |〈Y, u〉|t 6 t t/2

—and there is a certain kind of

simple certificate of this fact, namely a low-degree Sum of Squares proof. Among

∆ � O(
√

log k) [158].
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other things, this means the theorem also applies to mixtures of symmetric

product distributions with bounded moments.

For mixtures of distributions with sufficiently-many bounded moments (such

as Gaussians), our guarantees go even further. We show that using dO(log k)2

time and dO(log k)
samples, we can recover the means to error 1/poly(k) even if

the separation is only C
√

log k for some universal constant C. Strikingly, [158]

show that any algorithm that can learn the means nontrivially given separation

o(
√

log k)must require super-polynomial samples and time. Our results show

that just above this threshold, it is possible to learn with just quasipolynomially

many samples and time.

Finally, throughout this chapter we state error guarantees roughly in terms

of obtaining µ̂i with ‖µ̂i − µi ‖ 6 1/poly(k) � kγ, meaning that we get `2 error

which is much less than the true separation. In the special case of spherical

Gaussians, we note that we can use our algorithm as a warm-start to recent

algorithms due to [158], and achieve error δ using poly(m , k , 1/δ) additional

runtime and samples for some polynomial independent of γ.

Robust mean estimation Estimators which are robust to outlying or corrupted

samples have been studied in statistics at least since the 1960s [95, 171]. Themodel

we consider in this paper is a slight generalization of Hüber’s contamination

model [95]. We are given X1, . . . ,Xn , originally drawn iid from some unknown

distribution D, but an adversary has changed an ε fraction of these points

adversarially. We call such a set of points ε-corrupted.2 The goal of robust

statistics is to recover statistics of D such as mean and covariance, given ε-

2Hüber’s contamination model essentially only allows the adversary to add corrupted points,

but not remove uncorrupted points.
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corrupted samples fromD.

In classical robust statistics, the robust mean estimation problem is known as

robust estimation of location, and robust covariance estimation is known as robust

estimation of scale. Classical works consider a measure known as breakdown point,

which is (informally) the fraction of samples that an adversarymust corrupt before

the estimator has no provable guarantees. They often design robust estimators

for mean and covariance that achieve optimal error in many fundamental settings.

For instance, given samples from a symmetric sub-Gaussian distribution in k

dimensions such that an ε-fraction are arbitrarily corrupted, an estimator known

as the Tukey median [171] achieves error O(ε), which is information theoretically

optimal. However, these estimators are all NP-hard to compute [99, 36] and the

best known algorithms require exp(d) time in general.

For a long time, all known computationally efficient robust statistics for the

mean or covariance of a d-dimensional Gaussian had error degrading polyno-

mially with the dimension.3 In recent work, [64, 114] gave efficient and robust

estimators for these statistics which achieve substantially better error. In particu-

lar, [64] achieve error O(ε
√

log 1/ε) for estimating the mean of a Gaussian with

identity covariance, and error O(ε log
3/2

1/ε) for robustly estimating the mean of

a Gaussian with unknown variance Σ � I.

Unfortunately, these results are somewhat tailored to Gaussian distributions,

or require covariance very close to identity. For general sub-Gaussiandistributions

with unknown variance Σ � I, the best known efficient algorithms achieve only

O(ε1/2) error [65, 166]. We substantially improve this, under a slightly stronger

condition than sub-Gaussianity. Recall that a distributionD with mean µ over

3We remark that this was the state of affairs even for the Hüber contamination model.
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�d
is sub-Gaussian if for every unit vector u and every t ∈ � even, the following

moment bound holds:

�
X∼D
〈u ,X − µ〉t 6 t t/2 .

Informally stated, our algorithms will work under the condition that this moment

bound can be certified by a low degree SoS proof, for all s 6 t. We call

such distributions t-explicitly bounded (we are ignoring some parameters, see

Definition 9.3.1 for a formal definition). This class captures many natural sub-

Gaussiandistributions, such asGaussians, product distributions of sub-Gaussians,

and rotations thereof (see Appendix 9.7.5). For such distributions, we show:

Theorem 9.1.2 (informal, see Theorem 9.6.1). Fix ε > 0 sufficiently small and let

t > 4. LetD be a O(t)-explicitly bounded distribution over �d
with mean µ∗. There is

an algorithm with sample complexity dO(t)(1/ε)O(1) running time (dtε)O(t) such that

given an ε-corrupted set of samples of sufficiently large size fromD, outputs µ so that

with high probability ‖µ − µ∗‖ 6 O(ε1−1/t).

As with mixture models, we can push our statistical rates further, if we are

willing to tolerate quasipolynomial runtime and sample complexity. In particular,

we can obtain error O(ε
√

log 1/ε)with dO(log 1/ε)
samples and dO(log 1/ε)2

time.

9.1.1 Organization

In Section 9.2 we discuss at a high level the ideas in our algorithms and SoS

proofs. In Section 9.3 we give standard background on SoS proofs. Section 9.4

discusses the important properties of the family of polynomial inequalities we

use in both algorithms. Section 9.5 and Section 9.6 state our algorithms formally
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and analyze them. Finally, Section 9.7 describes the polynomial inequalities our

algorithms employ in more detail.

9.2 Algorithm and Proof Overview

In this section we give a high-level overview of the main ideas in our algorithms.

We use the proofs-to-algorithms method described in Section 3.5. The key step in

desiging our algorithm is to invent proofs of identifiability for the mixture model

and robust statistics settings which can be captured by low degree SoS.

For this overview, we discuss the main idea in our identifiability proofs

informally, using only simple inequalities, like Cauchy-Schwarz and Hölder’s

inequalities. Later we formally show that the proofs are captured in low degree

SoS.

We consider an idealized version of situations we encounter in both the

mixture model and robust estimation settings. Let µ∗ ∈ �d
. Let X1, . . . ,Xn ∈ �d

have the guarantee that for some T ⊆ [n] of size |T | � αn, the vectors {Xi}i∈T

are iid samples fromN(µ∗, Id), a spherical Gaussian centered at µ∗; for the other

vectors we make no assumption. The goal is to estimate the mean µ∗.

Our main idea is to leverage the fact that, as long as αn � dt
, by standard

concentration the empirical moments of T are sub-Gaussian, up to order t. We

show that if S is any other set of αn samples with sub-Gaussian t-th moments,

then if S shares even a small number of samples with T, the empirical mean of S

must be close to the empirical mean of T.

Formally, let S ⊆ [n] and let µ �
1

|S |
∑

i∈S Xi be the empirical mean of S. For
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t ∈ �, consider the following crucial moment inequality, our criterion for a good

subset S:

1

|S |
∑
i∈S

〈Xi − µ, u〉t 6 2 · t t/2 · ‖u‖t for all u ∈ �d . (9.2.1)

This inequality says that every one-dimensional projection u of the samples in S,

centered around their empirical mean, has a sub-Gaussian empirical t-th moment.

(The factor 2 accounts for deviations in the t-th moments of the samples.) By

standard concentration of measure, if αn � dt
the inequality holds for S � T. It

turns out that this property can be enforced by polynomials of degree t.

We would like to show that any S which satisfies (9.2.1) has empirical mean

close to µ∗ using a low-degree SoS proof,. This is in fact true when α � 1 − ε for

small ε, which is at the core of our robust estimation algorithm. However, in

the mixture model setting, when α � 1/(# of components), for each component j

there is a subset T j ⊆ [n] of samples from component j which provides a valid

solution S � T j toA. The empirical mean of T j is close to µ j and hence not close

to µi for any i , j.

We will prove something slightly weaker, which still demonstrates the main

idea in our identifiability proof.

Lemma 9.2.1. With high probability, for every S ⊆ [n] which satisfies (9.2.1), if µ �

1

|S |
∑

i∈S Xi is the empirical mean of samples in S, then ‖µ−µ∗‖ 6 4t1/2 · (|T |/|S∩T |)1/t .

Notice that a random S ⊆ [n] of size αn will have |S ∩ T | ≈ α2n. In this case

the lemma would yield the bound ‖µ − µ∗‖ 6 4t1/2

α1/t . Thinking of α � 1/t, this

bound improves exponentially as t grows. In the d-dimensional k-component

mixture model setting, one has 1/α � poly(k), and thus the bound becomes

‖µ− µ∗‖ 6 4t1/2 · kO(1/t)
. In a mixture model where components are separated by
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kε, such an estimate is nontrivial when ‖µ−µ∗‖ � kε, which requires t � O(1/ε).

This is the origin of the quantitative bounds in our mixture model algorithm.

We turn to the proof of Lemma 9.2.1. As we have already emphasized, the

crucial point is that this proof will be accomplished using only simple inequalities,

avoiding any union bound over all possible subsets S.

Proof of Lemma 9.2.1. Let wi be the 0/1 indicator of i ∈ S. To start the argument,

we expand in terms of samples:

|S ∩ T | · ‖µ − µ∗‖2 �

∑
i∈T

wi ‖µ − µ∗‖2

�

∑
i∈T

wi 〈µ∗ − µ, µ∗ − µ〉 (9.2.2)

�

∑
i∈T

wi
[
〈Xi − µ, µ∗ − µ〉 + 〈µ∗ − Xi , µ

∗ − µ〉
]
. (9.2.3)

The key term to bound is the first one; the second amounts to a deviation term.

By Hölder’s inequality and for even t,

∑
i∈T

wi 〈Xi − µ, µ∗ − µ〉 6
(∑

i∈T

wi

) t−1

t

·
(∑

i∈T

wi 〈Xi − µ, µ∗ − µ〉t
)

1/t

6

(∑
i∈T

wi

) t−1

t

· ©«
∑
i∈[n]

wi 〈Xi − µ, µ∗ − µ〉t
ª®¬

1/t

6

(∑
i∈T

wi

) t−1

t

· 2t1/2 · ‖µ∗ − µ‖

� |S ∩ T |
t−1

t · 2t1/2 · ‖µ∗ − µ‖ .

The second line follows by adding the samples from [n] \ T to the sum; since t

is even this only increases its value. The third line uses the moment inequality

(9.2.1). The last line just uses the definition of w.
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For the second, deviation term, we use Hölder’s inequality again:

∑
i∈T

wi 〈µ∗ − Xi , µ
∗ − µ〉 6

(∑
i∈T

wi

) t−1

t

·
(∑

i∈T

〈µ∗ − Xi , µ
∗ − µ〉t

)
1/t

.

The distribution of µ∗−Xi for i ∈ T isN(0, Id). By standard matrix concentration,

if |T | � αn � dt
,∑

i∈T

[
(Xi − µ∗)⊗t/2] [

(Xi − µ∗)⊗t/2]> � 2|T | �
Y∼N(0,Id)

(
Y⊗t/2

) (
Y⊗t/2

)>
with high probability and hence, using the quadratic form at (µ∗ − µ)⊗t/2

,∑
i∈T

〈µ∗ − Xi , µ
∗ − µ〉t 6 2|T |t t/2 · ‖µ∗ − µ‖t .

Putting these together and simplifying constants, we have obtained that with

high probability,

|S ∩ T | · ‖µ − µ∗‖2 6 4t1/2 |T |1/t · |S ∩ T |(t−1)/t · ‖µ − µ∗‖

which simplifies to

|S ∩ T |1/t · ‖µ − µ∗‖ 6 4t1/2 |T |1/t . �

Once we formalize our identifiability proofs in SoS, the rest of the algorithm

design is standard. The final algorithm solves an SoS SDP and applies stanard

rounding techniques.

9.3 Problem Statements

Throughout the chapter we let d be the dimensionality of the data, and we will

be interested in the regime where d is at least a large constant. We also let ‖v‖
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denote the `2 norm of a vector v, and ‖M‖F to denote the Frobenius norm of a

matrix M; often we just write ‖M‖. We will also give randomized algorithms

for our problems that succeed with probability 1 − poly(1/k , 1/d); by standard

techniques this probability can be boosted to 1 − ξ by increasing the sample and

runtime complexity by a mulitplicative log 1/ξ.

We now formally define the class of distributions we will consider throughout

this chapter. At a high level, we will consider distributions which have bounded

moments, for which there exists a low degree SoS proof of this moment bound.

Formally:

Definition 9.3.1. LetD be a distribution over �d
with mean µ. For c > 1, t ∈ �,

we say that D is t-explicitly bounded with variance proxy σ if for every even

s 6 t there is a degree s SoS proof of

`s EY∼Dk 〈
(
Y − µ

)
, u〉s 6 (σs)s/2‖u‖s .

Equivalently, the polynomial p(u) � (σs)s/2‖u‖s − EY∼Dk 〈
(
Y − µ

)
, u〉s should be

a sum-of-squares. In our typical use case, σ � 1, we will omit it and call the

distribution t-explicitly bounded.

Throughout this paper, since all of our problems are scale invariant, we will

assumewithout loss of generality that σ � 1. This class of distributions captures a

number of natural classes of distributions. Intuitively, if u were truly a vector in�k

(rather than a vector of indeterminants), then this exactly captures sub-Gaussian

type moment. Our requirement is simply that these types of moment bounds not

only hold, but also have a SoS proof.

We remark that our results also hold for somewhat more general settings. It

is not particularly important that the s-th moment bound has a degree s proof;
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our techniques can tolerate degree O(s) proofs. Our techniques also generally

apply for weaker moment bounds. For instance, our techniques naturally extend

to explicitly bounded sub-exponential type distributions in the obvious way. We

omit these details for simplicity.

As we show in Appendix 9.7.5, this class still captures many interesting

types of nice distributions, including Gaussians, product distributions with

sub-Gaussian components, and rotations therof. With this definition in mind, we

can now formally state the problems we consider in this chapter:

Learning well-separated mixture models We first define the class of mixture

models for which our algorithm works:

Definition 9.3.2 (t-explicitly bounded mixture model with separation ∆). Let

µ1, . . . , µk ∈ �d
satisfy ‖µi − µ j ‖ > ∆ for every i , j, and let D1, . . . ,Dk have

means µ1, . . . , µk , so that each Di is t-explicitly bounded. Let λ1, . . . , λk > 0

satisfy

∑
i∈[k] λi � 1. Together these define a mixture distribution on �d

by first

sampling i ∼ λ, then sampling x ∼ Di .

The problem is then:

Problem 9.3.3. Let D be a t-explicitly bounded mixture model in �d
with

separation∆with k components. Given k ,∆, and n independent samples fromD,

output µ̂1, . . . , µ̂m so that with probability at least 0.99, there exists a permutation

π : [k] → [k] so that ‖µi − µ̂π(i)‖ 6 δ for all i � 1, . . . , k.

Robust mean estimation We consider the same basic model of corruption

introduced in [64].
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Definition 9.3.4 (ε-corruption). We say a set of samples X1, . . . ,Xn is ε-corrupted

from a distribution D if they are generated via the following process. First, n

independent samples are drawn from D. Then, an adversary changes εn of

these points arbitrarily, and the altered set of points is then returned to us in an

arbitrary order.

The problem we consider in this setting is the following:

Problem 9.3.5 (Robust mean estimation). LetD be an O(t)-explicitly bounded

distribution over �d
wih mean µ. Given t , ε, and an ε-corrupted set of samples

fromD, output µ̂ satisfying ‖µ − µ̂‖ 6 O(ε1−1/t).

Gaussian distributions are explicitly bounded In Section 9.7.5 we show that

product distributions (and rotations thereof) with bounded t-th moments are

explicitly bounded.

Lemma 9.3.6. Let D be a distribution over �d
so that D is a rotation of a product

distributionD′ where each coordinate X with mean µ ofD satisfies

�[(X − µ)s] 6 2
−s

( s
2

) s/2

ThenD is t-explicitly bounded (with variance proxy 1).

(The factors of
1

2
can be removed for many distributions, including Gaussians.)

9.4 Capturing Empirical Moments with Polynomials

To describe our algorithms we need to describe a system of polynomial equations

and inequalities which capture the following problem: among X1, . . . ,Xn ∈ �d
,
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find a subset of S ⊆ [n] of size αn such that the empirical t-th moments obey a

moment bound:
1

αn
∑

i∈S〈Xi , u〉t 6 t t/2‖u‖t for every u ∈ �d
.

Let k , n ∈ � and let w � (w1, . . . ,wn), µ � (µ1, . . . , µk) be indeterminates.

Let

1. X1, . . . ,Xn ∈ �d

2. α ∈ [0, 1] be a number (the intention is |S | � αn).

3. t ∈ � be a power of 2, the order of moments to control

4. µ1, . . . , µk ∈ �d
, which will eventually be the means of a k-component

mixture model, or when k � 1, the true mean of the distribution whose

mean we robustly estimate.

5. τ > 0 be some error magnitude accounting for fluctuations in the sizes of

clusters (which may be safely ignored at first reading).

Definition 9.4.1. Let A be the following system of equations and inequalities,

depending on all the parameters above.

1. w2

i � wi for all i ∈ [n] (enforcing that w is a 0/1 vector, which we interpret

as the indicator vector of the set S).

2. (1 − τ)αn 6
∑

i∈[n] wi 6 (1 + τ)αn, enforcing that |S | ≈ αn (we will always

choose τ � o(1)).

3. µ · ∑i∈[n] wi �
∑

i∈[n] wiXi , enforcing that µ is the empirical mean of the

samples in S

4.

∑
i∈[n] wi 〈Xi − µ, µ − µ j〉t 6 2 · t t/2 ∑

i∈[n] wi ‖µ − µ j ‖t for every µ j among

µ1, . . . , µm . This enforces that the t-th empirical moment of the samples in

S is bounded in the direction µ − µ j .
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Notice that since we will eventually take µ j’s to be unknown parameters we

are trying to estimate, the algorithm cannot make use ofA directly, since the last

family of inequalities involve the µ j’s. Later in this paper we exhibit a system of

inequalities which requires the empirical t-th moments to obey a sub-Gaussian

type bound in every direction, hence implying the inequalities here without

requiring knowledge of the µ j’s to write down. Formally, we will show:

Lemma 9.4.2. Let α ∈ [0, 1]. Let t ∈ � be a power of 2, t > 4.4 Let 0.1 > τ > 0. Let

X1, . . . ,Xn ∈ �d
. LetD be a 10t-explicitly bounded distribution.

There is a family Â of polynomial equations and inequalities of degree O(t) on

variables w � (w1, . . . ,wn), µ � (µ1, . . . , µk) and at most nO(t)
other variables, whose

coefficients depend on α, t , τ,X1, . . . ,Xn , such that

1. (Satisfiability) If there S ⊆ [n] of size at least (α − τ)n so that {Xi}i∈S is an iid

set of samples from D, and (1 − τ)αn > d100t
, then for d large enough, with

probability at least 1 − d−8
, the system Â has a solution over �which takes w to

be the 0/1 indicator vector of S.

2. (Solvability) For every C ∈ � there is an nO(Ct)
-time algorithm which, when

Â is satisfiable, returns a degree-Ct pseudodistribution which satisfies Â (up to

additive error 2
−n
).

3. (Moment bounds for polynomials of µ) Let f (µ) be a length-d vector of degree-

` polynomials in indeterminates µ � (µ1, . . . , µk). Â implies the following

inequality and the implication has a degree t` SoS proof.

Â `O(t`)
1

αn

∑
i∈[n]

wi 〈Xi − µ, f (µ)〉t 6 2 · t t/2‖ f (µ)‖t .

4The condition t > 4 is merely for technical convenience.
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4. (Booleanness) Â includes the equations w2

i � wi for all i ∈ [n].

5. (Size) Â includes the inequalities (1 − τ)αn 6
∑

wi 6 (1 + τ)αn.

6. (Empirical mean) Â includes the equation µ ·∑i∈[n] wi �
∑

i∈[n] wiXi .

In particular this implies that Â `O(t) A.

The proof of Lemma 9.4.2 can be found in Section 9.7.

Remark 9.4.3 (Numerical accuracy, semidefinite programming, and other mon-

sters). We pause here to address issues of numerical accuracy. Our final al-

gorithms use point 2 in Lemma 9.4.2 (itself implemented using semidefinite

programming) to obtain a pseudodistribution
˜� satisfying Â approximately,

up to error η � 2
−n

in the following sense: for every r a sum of squares and

f1, . . . , f` ∈ A with deg

[
r ·∏ fi 6 Ct

]
, one has

˜� r ·∏i∈A f > −η · ‖r‖, where

‖r‖ is `2 norm of the coefficients of r. Our main analyses of this pseudodistri-

bution employ the implication Â ` B for another family of inequalities B to

conclude that if
˜� satisfies A then it satisfies B, then use the latter to analyze

our rounding algorithms. Because all of the polynomials eventually involved in

the SoS proof Â ` B have coefficients bounded by nB
for some large constant B,

it may be inferred that if
˜� approximately satisfies Â in the sense above, it also

approximately satisfies B, with some error η′ 6 2
−Ω(n)

. The latter is a sufficient

for all of our rounding algorithms.

Aside from mentioning at a couple key points why our SoS proofs have

bounded coefficients, we henceforth ignore all numerical issues. For further

discussion of numerical accuracy and well-conditioned-ness issues in SoS, see

[143, 34, 156].
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9.5 Mixture Models: Algorithm and Analysis

In this section we formally describe and analyze our algorithm for mixture

models. We prove the following theorem.

Theorem 9.5.1 (Main theorem on mixture models). For every large-enough t ∈ �

there is an algorithm with the following guarantees. Let µ1, . . . , µk ∈ �d
, satisfy

‖µi − µ j ‖ > ∆. LetD1, . . . ,Dk be 10t-explicitly bounded, with means µ1, . . . , µk . Let

λ1, . . . , λk > 0 satisfy

∑
λi � 1. Given n > (dt k)O(1) · (maxi∈[m] 1/λi)O(1) samples

from the mixture model given by λ1, . . . , λk ,D1, . . . ,Dk , the algorithm runs in time

nO(t)
and with high probability returns {µ̂1, . . . , µ̂k} (not necessarily in that order) such

that

‖µi − µ̂i ‖ 6
2

Ct kC t t/2

∆t−1

for some universal constant C.

In particular, we note two regimes: if ∆ � kγ for a constant γ > 0, choosing

t � O(1/γ)we get that the `2 error of our estimator is poly(1/k) for any O(1/γ)-

explicitly bounded distribution, and our estimator requires only (dk)O(1) samples

and time. This matches the guarantees of Theorem 9.1.1.

On the other hand, if ∆ � C′
√

log k (for some universal C′) then taking

t � O(log k) gives error

‖µi − µ̂i ‖ 6 kO(1) ·
(√

t
∆

) t

which, for large-enough C′ and t, can be made 1/poly(k). Thus for ∆ � C′
√

log k

and any O(log k)-explicitly bounded distribuion we obtain error 1/poly(k) with

dO(log k)
samples and dO(log k)2

time.
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In this sectionwe describe and analyze our algorithm. To avoid some technical

work we analyze the uniformmixtures setting, with λi � 1/m. For the adaptation

to the nonuniform mixture setting, see [90].

9.5.1 Algorithm and main analysis

We formally describe our mixture model algorithm now. We use the following

lemma, which we prove in Section 9.5.6. The lemma says that given a matrix

which is very close, in Frobenious norm, to the 0/1 indicator matrix of a partition

of [n] it is possible to approximately recover the partition. (The proof is standard.)

Lemma 9.5.2 (Second moment rounding, follows from Theorem 9.5.15). Let

n ,m ∈ � with m � n. There is a polynomial time algorithm RoundSecondMoments

with the following guarantees. Suppose S1, . . . , Sm partition [n] into m pieces, each of

size
n

2m 6 |Si | 6 2n
m . Let A ∈ �n×n

be the 0/1 indicator matrix for the partition S; that

is, Ai j � 1 if i , j ∈ S` for some ` and is 0 otherwise. Let M ∈ �n×n
be a matrix with

‖A −M‖F 6 εn. Given M, with probability at least 1 − ε2m3
the algorithm returns a

partition C1, . . . , Cm of [n] such that up to a global permutation of [m], Ci � Ti ∪ Bi ,

where Ti ⊆ Si and |Ti | > |Si | − ε2m2n and |Bi | 6 ε2m2n.

Algorithm 9.5.3 (Mixture Model Learning). 1: function LearnMixture-

Means(t ,X1, . . . ,Xn , δ, τ)

2: By semidefinite programming (see Lemma 9.4.2, item 2), find a pseudoex-

pectation of degree O(t)which satisfies the structured subset polynomials

from Lemma 9.4.2, with α � n/m such that ‖ ˜�ww>‖F is minimized among

all such pseudoexpectations.

3: Let M ← m · ˜�ww>.

4: Run the algorithm RoundSecondMoments on M to obtain a partition
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C1, . . . , Cm of [n].

5: Run the algorithm EstimateMean from Section 9.6 on each cluster Ci ,

with ε � 2
Ct t t/2m4/∆t

for some universal constant C to obtain a list of mean

estimates µ̂1, . . . , µ̂m .

6: Output µ̂1, . . . , µ̂m .

7: end function

Remark 9.5.4 (On the use of EstimateMean). As described, LearnMixtureMeans

has two phases: a clustering phase and a mean-estimation phase. The clustering

phase is the heart of the algorithm; we will show that after running Round-

SecondMoments the algorithm has obtained clusters C1, . . . , Ck which err from

the ground-truth clustering on only a

2
O(t)t t/2

poly(k)
∆t -fraction of points. To obtain

estimates µ̂i of the underlying means from such a clustering, one simple option

is to output the empirical mean of the clusters. However, without additional

pruning this risks introducing error in the mean estimates which grows with the

ambient dimension d. By using the robust mean estimation algorithm instead to

obtain mean estimates from the clusters we obtain errors in the mean estimates

which depend only on the number of clusters k, the between-cluster separation

∆, and the number t of bounded moments.

Remark 9.5.5 (Running time). We observe that LearnMixtureMeans can be

implemented in time nO(t)
. The main theorem requires n > kO(1)dO(t)

, which

means that the final running time of the algorithm is (kdt)O(t).5
5As discussed in Section 9.4, correctness of our algorithm at the level of numerical accuracy

requires that the coefficients of every polynomial in the SoS program Â (and every polynomial in

the SoS proofs we use to analyze Â) are polynomially bounded. This may not be the case if some

vectors µ1 , . . . , µm have norms ‖µi ‖ > dω(1). This can be fixed by naively clustering the samples

X1 , . . . ,Xn via single-linkage clustering, then running LearnMixtureMeans on each cluster. It is

routine to show that the diameter of each cluster output by a naive clustering algorithm is at

most poly(d , k) under our assumptions, and that with high probability single-linkage clustering

produces a clustering respecting the distributionsDi . Hence, by centering each cluster before

running LearnMixtureMeans we can assume that ‖µi ‖ 6 poly(d , k) for every i 6 d.
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9.5.2 Proof of main theorem

In this sectionwe prove ourmain theoremusing the key lemmata; in the following

sections we prove the lemmata.

Deterministic Conditions We recall the setup. There are k mean vectors

µ1, . . . , µk ∈ �d
, and corresponding distributions D1, . . . ,Dk where D j has

mean µ j . The distributionsD j are 10t-explicitly bounded for a choice of t which

is a power of 2. Vectors X1, . . . ,Xn ∈ �d
are samples from a uniform mixture

ofD1, . . . ,Dk . We will prove that our algorithm succeeds under the following

condition on the samples X1, . . . ,Xn .

(D1) (Empirical moments) For every cluster S j � {Xi : Xi is fromD j}, the

system Â from Lemma 9.4.2 with α � 1/m and τ � ∆−t
has a solution

which takes w ∈ {0, 1}n to be the 0/1 indicator vector of S j .

(D2) (Empirical means) Let µ j be the empirical mean of cluster S j . The µ j’s

satisfy ‖µi − µi ‖ 6 ∆−t
.

We note a few useful consequences of these conditions, especially (D1). First of all,

it implies all clusters have almost the same size: (1−∆−t) · n
k 6 |S j | 6 (1+∆−t) · n

k .

Second, it implies that all clusters have explicitly bounded moments: for every S j ,

`t
k
n

∑
i∈S j

〈Xi − µ j , u〉t 6 2 · t t/2 · ‖u‖t .

Lemmas The following key lemma captures our SoS identifiability proof for

mixture models.
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Lemma 9.5.6. Let µ1, . . . , µk ,D1, . . . ,Dk be as in Theorem 9.5.1, withmean separation

∆. Suppose (D1), (D2) occur for samples X1, . . . ,Xn . Let t ∈ � be a power of two. Let

˜� be a degree-O(t) pseudoexpectation which satisfiesA from Lemma 9.4.2 with α � 1/k

and τ 6 ∆−t
. Then for every j, ` ∈ [k],

˜�〈a j , w〉〈a` , w〉 6 2
8t+8 · t t/2 · n2

k
· 1

∆t .

The other main lemma shows that conditions (D1) and (D2) occur with high

probability.

Lemma 9.5.7 (Concentration formixturemodels). With notation as above, conditions

(D1) and (D2) simultaneously occur with probability at least 1 − 1/d15
over samples

X1, . . . ,Xn , so long as n > dO(t)kO(1)
, for ∆ > 1.

Lemma 9.5.7 follows from Lemma 9.4.2, for (D1), and standard concentration

arguments for (D2). Now we can prove the main theorem.

Proof of Theorem 9.5.1 (uniform mixtures case). Suppose conditions (D1) and (D2)

hold. Our goal will be to bound ‖M − A‖2 6 n · 2
O(t)t t/2k4

∆t , where A is the 0/1

indicator matrix for the ground truth partition S1, . . . , Sk of X1, . . . ,Xn according

to D1, . . . ,Dk . Then by Lemma 9.5.2, the rounding algorithm will return a

partition C1, . . . , Ck of [n] such that C` and S` differ by at most n 2
O(t)t t/2k10

∆t points,

with probability at least 1 − 2
O(t)t t/2k30

∆t . By the guarantees of Theorem 9.6.1

regarding the algorithm EstimateMean, with high probability the resulting error

in the mean estimates µ̂i will satisfy

‖µi − µ̂i ‖ 6
√

t ·
(
2

O(t)t t/2k10

∆t

) t−1

t
6

2
O(t) · t t/2 · k10

∆t−1

.
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We turn to the bound on ‖M − A‖2. First we bound 〈 ˜�ww>,A〉. Getting

started,

˜�
©«
∑
i∈[k]
〈w , ai〉

ª®¬
2

� ˜�
©«
∑
i∈[n]

wi
ª®¬

2

> (1 − ∆−t)2 · n2/k2 .

By Lemma 9.5.6, choosing t later,∑
i, j∈[k]

˜�〈ai , w〉〈a j , w〉 6 n2

2
O(t)t t/2 · k · 1

∆t .

Together, these imply

˜�

∑
i∈[k]
〈w , ai〉2 >

n2

k2

·
[
1 − 2

O(t)t t/2k3

∆t

]
.

At the same time, ‖ ˜�wwT ‖F 6 1

k ‖A‖F by minimality (since the uniform

distribution over cluster indicators satisfiesA), and by routine calculation and

assumption (D1), ‖A‖F 6 n√
k
(1 + O(∆−t)). Together, we have obtained

〈M,A〉 >
(
1 − 2

O(t)t t/2k3

∆t

)
· ‖A‖‖M‖

which can be rearranged to give ‖M − A‖2 6 n · 2
O(t)t t/2k4

∆t . �

9.5.3 Identifiability

In this section we prove Lemma 9.5.6. We use the following helpful lemmas. The

first is in spirit an SoS version of Lemma 9.2.1.

Lemma 9.5.8. Let µ1, . . . , µk ,D1, . . . ,Dk , t be as in Theorem 9.5.1. Let µi be as

in (D1). Suppose (D1) occurs for samples X1, . . . ,Xn . Let A be the system from

Lemma 9.4.2, with α � 1/k and any τ. Then

A `O(t) 〈a j , w〉t ‖µ − µ j ‖2t 6 2
t+2t t/2 · n

k
· 〈a j , w〉t−1 · ‖µ − µ j ‖t .
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The second lemma is an SoS triangle inequality, capturing the consequences

of separation of the means. The proof is standard given Fact 10.0.5.

Lemma 9.5.9. Let a , b ∈ �k
and t ∈ � be a power of 2. Let ∆ � ‖a − b‖. Let

u � (u1, . . . , uk) be indeterminates. Then `t ‖a − u‖t + ‖b − u‖t > 2
−t · ∆t

.

The last lemma helps put the previous two together. Although we have

phrased this lemma to concorde with the mixture model setting, we note that

the proof uses nothing about mixture models and consists only of generic

manipulations of pseudodistributions.

Lemma 9.5.10. Let µ1, . . . , µk ,D1, . . . ,Dk ,X1, . . . ,Xn be as in Theorem 9.5.1. Let

a j be the 0/1 indicator for the set of samples drawn fromD j . Suppose ˜� is a degree-O(t)

pseudodistribution which satisfies

〈a j , w〉 6 n

〈a` , w〉 6 n

‖µ − µ j ‖2t
+ ‖µ − µ`‖2t > A

〈a j , w〉t ‖µ − µ j ‖2t 6 Bn〈a j , w〉t−1‖µ − µ j ‖t

〈a` , w〉t ‖µ − µ`‖2t 6 Bn〈a` , w〉t−1‖µ − µ`‖t

for some scalars A, B > 0. Then

˜�〈a j , w〉〈a` , w〉 6
2n2B√

A
.

Now we have the tools to prove Lemma 9.5.6.

Proof of Lemma 9.5.6. We will verify the conditions to apply Lemma 9.5.10. By

Lemma 9.5.8, when (D1) holds, the pseudoexpectation
˜� satisfies

〈a j , w〉t ‖µ − µ j ‖2t 6 Bn〈a j , w〉t−1‖µ − µ j ‖t
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for B � 4(4t)t/2/k, and similarly with j, ` interposed. Similarly, by separation

of the empirical means,
˜� satisfies ‖µ − µ j ‖2t + ‖µ − µ`‖2t > A for A � 2

−2t∆2t
,

recalling that the empirical means are pairwise separated by at least ∆ − 2∆−t
.

Finally, clearly A `O(1) 〈a j , w〉 6 n and similarly for 〈a` , w〉. So applying

Lemma 9.5.10 we get

˜�〈a j , w〉〈a` , w〉 6
2n2B√

A
6

n2
2

2t+2t t/2

k
· 1

∆t . �

9.5.4 Proof of Lemma 9.5.8

In this subsection we prove Lemma 9.5.8. We use the following helpful lemmata.

The first bounds error from samples selected from the wrong cluster using the

moment inequality.

Lemma 9.5.11. Let j,A ,X1, . . . ,Xn , µ j , µ j be as in Lemma 9.5.8. Then

A `O(t)
©«
∑
i∈S j

wi 〈µ − Xi , µ − µ j〉
ª®¬

t

6 2t t/2 · 〈a j , w〉t−1‖µ − µ j ‖t .

Proof. The proof goes by Hölder’s inequality followed by the moment inequality

inA. Carrying this out, by Fact 10.0.8 and evenness of t,

{w2

i � wi} `O(t)
©«
∑
i∈S j

wi 〈µ − Xi , µ − µ j〉
ª®¬

t

6
©«
∑
i∈S j

wi
ª®¬

t−1

·©«
∑
i∈[n]

wi 〈µ − Xi , µ − µ j〉t
ª®¬ .

Then, using the main inequality inA,

A `O(t)
©«
∑
i∈S j

wi
ª®¬

t−1

· 2t t/2 · ‖µ − µ j ‖t � 2t t/2 · 〈a j , w〉t−1‖µ − µ j ‖t . �

The second lemmabounds error fromdeviations in the empirical t-thmoments

of the samples from the j-th cluster.
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Lemma 9.5.12. Let µ1, . . . , µk ,D1, . . . ,Dk be as in Theorem 9.5.1. Suppose condition

(D1) holds for samples X1, . . . ,Xn . Let w1, . . . ,wn be indeterminates. Let u �

u1, . . . , ud be an indeterminate. Then for every j ∈ [k],

{w2

i � wi} `O(t)
©«
∑
i∈S j

wi 〈Xi − µ j , u〉
ª®¬

t

6 〈a j , w〉t−1 · 2 · n
k
· ‖u‖t .

Proof. The first step is Hölder’s inequality again:

{w2

i � wi} `O(t)
©«
∑
i∈S j

wi 〈Xi − µ j , u〉
ª®¬

t

6 〈a j , w〉t−1 ·
∑
i∈S j

〈Xi − µ j , u〉t .

Finally, condition (D1) yields

{w2

i � wi} `O(t)
©«
∑
i∈S j

wi 〈Xi − µ j , u〉
ª®¬

t

6 〈a j , w〉t−1 · 2 · n
k
· ‖u‖t . �

We can prove Lemma 9.5.8 by putting together Lemma 9.5.11 and

Lemma 9.5.12.

Proof of Lemma 9.5.8. Let j ∈ [k] be a cluster and recall a j ∈ {0, 1}n is the 0/1

indicator for the samples in cluster j. Let S j be the samples in the j-th cluster, with

empirical mean µ j . We begin by writing 〈a j , w〉‖µ − µ j ‖2 in terms of samples

X1, . . . ,Xn .

〈a j , w〉‖µ − µ j ‖2 �

∑
i∈[n]

wi 〈µ − µ j , µ − µ j〉

�

∑
i∈S j

wi 〈µ − Xi , µ − µ j〉 +
∑
i∈[n]

wi 〈Xi − µ j , µ − µ j〉 .

Hence, using (a + b)t 6 2
t(at + bt), we obtain

`O(t) 〈a j , w〉t ‖µ−µ j ‖2t 6 2
t ·©«

∑
i∈S j

wi 〈µ − Xi , µ − µ j〉
ª®¬

t

+2
t ·©«

∑
i∈S j

wi 〈Xi − µ j , µ − µ j〉
ª®¬

t

.
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Now using Lemma 9.5.11 and Lemma 9.5.12,

A `O(t) 〈a j , w〉t ‖µ − µ j ‖2t 6 2
t+2t t/2 · n

k
· 〈a j , w〉t−1 · ‖µ − µ j ‖t

as desired. �

9.5.5 Proof of Lemma 9.5.10

WeproveLemma9.5.10. Theproof only uses standard SoS andpseudodistribution

tools. The main inequality we will use is the following version of Hölder’s

inequality.

Fact 9.5.13 (PseudoexpectationHölder’s, see LemmaA.4 in [30]). Let p be a degree-`

polynomial. Let t ∈ N and let
˜� be a degree-O(t`) pseudoexpectation on indeterminates

x. Then

˜� p(x)t−2 6
(
˜� p(x)t

) t−2

t .

Now we can prove Lemma 9.5.10.

Proof of Lemma 9.5.10. We first establish the following inequality.

˜�〈a j , w〉t 〈a` , w〉t ‖µ − µ j ‖2t 6 B2n2 · ˜�〈a j , w〉t−2〈a` , w〉t . (9.5.1)

(The inequality will also hold by symmetry with j and ` exchanged.) This we do

as follows:

˜�〈a j , w〉t 〈a` , w〉t ‖µ − µ j ‖2t 6 Bn ˜�〈a j , w〉t−1〈a` , w〉t ‖µ − µ j ‖t

6 Bn
(
˜�〈a j , w〉t−2〈a` , w〉t

)
1/2 ·

(
˜�〈a j , w〉t 〈a` , w〉t ‖µ − µ j ‖2t

)
1/2

where the first line is by assumption on
˜� and the second is by pseudoexpectation

Cauchy-Schwarz. Rearranging gives the inequality (9.5.1).
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Now we use this to bound
˜�〈a j , w〉t 〈a` , w〉t . By hypothesis,

˜�〈a j , w〉t 〈a` , w〉t 6
1

A
˜�〈a j , w〉t 〈a` , w〉t(‖µ − µ j ‖2t

+ ‖µ − µ`‖2t) ,

which, followed by (9.5.1) gives

˜�〈a j , w〉t 〈a` , w〉t 6
1

A
· B2n2 · ˜�

[
〈a j , w〉t−2〈a` , w〉t + 〈a` , w〉t−2〈a j , w〉t

]
.

Using 〈a j , w〉, 〈a` , w〉 6 n, we obtain

˜�〈a j , w〉t 〈a` , w〉t 6
2

A
· B2n4 · ˜�〈a j , w〉t−2〈a` , w〉t−2 .

Finally, using Fact 9.5.13, the right side is at most 2B2n4/A ·(
˜�〈a j , w〉t 〈a` , w〉t

) (t−2)/t
, so cancelling terms we get(
˜�〈a j , w〉t 〈a` , w〉t

)
2/t
6

2B2n4

A
.

Raising both sides to the t/2 power gives

˜�〈a j , w〉t 〈a` , w〉t 6
2

t/2Bt n2t

At/2 ,

and finally using Cauchy-Schwarz,

˜�〈a j , w〉〈a` , w〉 6
(
˜�〈a j , w〉t 〈a` , w〉t

)
1/t
6

2n2B√
A
. �

9.5.6 Rounding

In this section we state and analyze our second-moment round algorithm. As

have discussed already, our SoS proofs in the mixture model setting are quite

strong, meaning that the rounding algorithm is relatively naive.

The setting in this section is as follows. Let n ,m ∈ � with m � n. There is a

ground-truth partition of [n] into m parts S1, . . . , Sm such that |Si | � (1 ± δ) n
m .
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Let A ∈ �n×n
be the 0/1 indicator matrix for this partition, so Ai j � 1 if i , j ∈ S`

for some ` and is 0 otherwise. Let M ∈ �n×n
be a matrix such that ‖M −A‖ 6 εn,

where ‖ · ‖ is the Frobenious norm. The algorithm takes M and outputs a partition

C1, . . . , Cm of [m]which makes few errors compared to S1, . . . , Sm .

Algorithm 9.5.14. 1: function RoundSecondMoments(M ∈ �n×n , E ∈ �)

2: Let S � [n]

3: Let v1, . . . , vn be the rows of M

4: for ` � 1, . . . ,m do

5: Choose i ∈ S uniformly at random

6: Let

C` �

{
i′ ∈ S : ‖vi − vi′‖2 6 2

n1/2

E

}
7: Let S← S \ C`

8: end for

9: return The clusters C1, . . . , Cm .

10: end function

We will prove the following theorem.

Theorem 9.5.15. With notation as before Algorithm 9.5.14 with E � m, with probability

at least 1 − ε2m3
Algorithm 9.5.14 returns a partition C1, . . . , Cm of [n] such that (up

to a permutation of [m]), C` � T` ∪ B` , where T` ⊆ S` has size |T` | > |S` | − ε2mn and

|B` | 6 ε2mn.

To get started analyzing the algorithm, we need a definition.

Definition 9.5.16. For cluster S j , let a j ∈ �n
be its 0/1 indicator vector. If i ∈ S j ,

we say it is E-good if ‖vi − a j ‖2 6
√

n/E, and otherwise E-bad, where vi is the i-th

row of M. Let I1 ⊆ [n] denote the set of E-good indices and Ib denote the set of
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E-bad indices. (We will choose E later.) For any j � 1, . . . , k, let I1 , j � I1 ∩ S j

denote the set of good indices from cluster j.

We have:

Lemma 9.5.17. Suppose E as in RoundSecondMoments satisfies E > m/8. Suppose

that in iterations 1, . . . ,m, RoundSecondMoments has chosen only good vectors. Then,

there exists a permutation π : [m] → [m] so that C` � I1 ,π(`) ∪ B`, where B` ⊆ Ib for

all `.

Proof. We proceed inductively. We first prove the base case. WLOG assume that

the algorithm picks v1, and that v1 is good, and is from component j. Then, for

all i ∈ I1 , j , by the triangle inequality we have ‖vi − v1‖2 6 2
n1/2

B , and so I1 , j ⊆ C1.

Moreover, if i ∈ I1 , j′ for some j′ , j, we have

‖vi − v1‖2 > ‖a′j − a j ‖2 − 2

n1/2

E1/2 >
n1/2
√

m
− 2

n1/2

E1/2 > 2

n1/2

E1/2 ,

and so in this case i < C1. Hence C1 � I1 , j ∪ B1 for some B1 ⊆ Ib .

Inductively, suppose that if the algorithm chooses good indices in iterations

1, . . . , a − 1, then there exist distinct j1, . . . , ja−1 so that C` � I1 , j` ∪ B` for B` ⊆ Ib .

We seek to prove that if the algorithm chooses a good index in iteration a, then

Ca � I1 , ja ∪ Ba for some ja < { j1, . . . , ja−1} and Ba ⊆ Ib . Clearly by induction this

proves the Lemma. WLOG assume that the algorithm chooses v1 in iteration a.

Since by assumption 1 is good, and we have removed I1` for ` � 1, . . . , a − 1, then

1 ∈ I1 , ja for some ja < { j1, . . . , ja−1}. Then, the conclusion follows from the same

calculation as in the base case. �

Lemma 9.5.18. There are at most ε2En indices which are E-bad; i.e. |Ib | 6 ε2En.
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Proof. We have

ε2n2 >

M −
∑
i6m

aia>i

2

F

>
∑

j

∑
i∈S j bad

‖vi − a j ‖2
2

>
n
E
|Ib | ,

from which the claim follows by simplifying. �

This in turns implies:

Lemma 9.5.19. With probability at least 1 − ε2m3
, the algorithm RoundSecondMo-

ments chooses good indices in all k iterations.

Proof. By Lemma 9.5.18, in the first iteration the probability that a bad vector is

chosen is at most ε2E. Conditioned on the event that in iterations 1, . . . , a the

algorithm has chosen good vectors, then by Lemma 9.5.17, there is at least one

ja so that no points in I1 , ja have been removed. Thus at least (1 − δ)n/m vectors

remain, and in total there are at most ε2En bad vectors, by Lemma 9.5.18. So,

the probability of choosing a bad vector is at most ε2Em. Therefore, by the chain

rule of conditional expectation and our assumption , the probability we never

choose a bad vector is at least (
1 − ε2Em

)m

Choosing E � m this is (1 − ε2m2)m > 1 − ε2m3
. as claimed. �

Now Theorem 9.5.15 follows from putting together the lemmas.
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9.6 Robust estimation: algorithm and analysis

Our algorithm for robust estimation is very similar to our algorithm for mixture

models. Suppose the underlying distributionD, whose mean µ∗ the algorithm

robustly estimates, is 10t-explicitly bounded. As a reminder, the input to the

algorithm is a list of X1, . . . ,Xn ∈ �d
and a sufficiently-small ε > 0. The guarantee

is that at least (1 − ε)n of the vectors were sampled according toD, but εn of the

vectors were chosen adversarially.

The algorithm solves a semidefinite program to obtain a degree O(t) pseu-

dodistribution which satisfies the systemA from Section 9.4 with α � 1 − ε and

τ � 0. Throughout this section, we will always assume that A is instantiated

with these parameters, and omit them for conciseness. Then the algorithm just

outputs
˜� µ as its estimator for µ∗.

Our main contribution in this section is a formal description of an algorithm

EstimateMean which makes these ideas rigorous, and the proof of the following

theorem about its correctness:

Theorem 9.6.1. Let ε > 0 sufficiently small and t ∈ �. Let D be a 10t-explicitly

bounded distribution over �d
with mean µ∗. Let X1, . . . ,Xn be an ε-corrupted set of

samples from D where n � dO(t)/ε2
. Then, given ε, t and X1, . . . ,Xn , the algorithm

EstimateMean runs in time dO(t)
and outputs µ so that ‖µ − µ∗‖2 6 O(t1/2ε1−1/t),

with probability at least 1 − 1/d.

As a remark, observe that if we set t � 2 log 1/ε, then the error becomes

O(ε
√

log 1/ε). Thus, with n � O(dO(log 1/ε)/ε2) samples and nO(log 1/ε) �

dO(log 1/ε)2
runtime, we achieve the same error bounds for general explicitly
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bounded distributions as the best known polynomial time algorithms achieve for

Gaussian mean estimation.

9.6.1 Additional Preliminaries

Throughout this section, let [n] � S1 ∪ Sb , where S1 is the indices of the

uncorrupted points, and Sb is the indices of the corrupted points, so that

|Sb | � εn by assumption. Moreover, let Y1, . . . ,Yn be iid fromD so that Yi � Xi

for all i ∈ S1 .

We now state some additional tools we will require in our algorithm.

Naive Pruning We will require the following elementary pruning algorithm,

which removes all points which are very far away from the mean. We require

this only to avoid some bit-complexity issues in semidefinite programming; in

particular we just need to ensure that the vectors X1, . . . ,Xn used to form the

SDP have polynomially-bounded norms. Formally:

Lemma 9.6.2 (Naive pruning). Let ε, t , µ∗, and X1, . . . ,Xn be as in Theorem 9.6.1.

There is an algorithm NaivePrune, which given ε, t and X1, . . . ,Xn , runs in time

O(εdn2), and outputs a subset S ⊆ [n] so that with probability 1 − 1/d10
, the following

holds:

• No uncorrupted points are removed, that is S1 ⊆ S, and

• For all i ∈ S, we have ‖Xi − µ∗‖ 6 O(d).

In this case, we say that NaivePrune succeeds.
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This algorithm goes by straightforward outlier-removal. It is very similar the

procedure described in Fact 4.18 of [64] (using bounded t-th moments instead of

sub-Gaussianity), so we omit it.

Satisfiability In our algorithm,wewill use the same set of polynomial equations

Â as in Lemma 9.4.2. However, the data we feed in does not exactly fit the

assumptions in the Lemma. Specifically, because the adversary is allowed to

remove an ε-fraction of good points, the resulting uncorrupted points are no

longer iid from D. Despite this, we are able to specialize Lemma 9.4.2 to this

setting:

Lemma 9.6.3. Fix ε > 0 sufficiently small, and let t ∈ �, t > 4 be a power of 2. LetD

be a 10t-explicitly bounded distribution. Let X1, . . . ,Xn ∈ �d
be an ε-corrupted set of

samples fromD, and let Â be as in Lemma 9.4.2. The conclusion (1 – Satisfiability) of

Lemma 9.4.2 holds, with w taken to be the 0/1 indicator of the (1 − ε)n good samples

among X1, . . . ,Xn .

We sketch the proof of Lemma 9.6.3 in Section 9.7.4.

9.6.2 Formal Algorithm Specification

With these tools in place, we can now formally state the algorithm. The formal

specification of this algorithm is given in Algorithm 9.6.4.

Algorithm 9.6.4 (Robust Mean Estimation). 1: function Estimate-

Mean(ε, t , κ,X1, . . . ,Xn)

2: Preprocess: let X1, . . . ,Xn ← NaivePrune(ε,X1, . . . ,Xn), and let µ̂ be the

empirical mean
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3: Let Xi ← Xi − µ̂

4: By semidefinite programming, find a pseudoexpectation of degree O(t)

which satisfies the structured subset polynomials from Lemma 9.6.3, with

α � (1 − ε)n and τ � 0.

5: return ˜� µ + µ̂.

6: end function

The first two lines of Algorithm 9.6.4 are only necessary for bit complexity

reasons, since we cannot solve SDPs exactly. However, since we can solve them to

doubly-exponential accuracy in polynomial time, it suffices that all the quantities

are at most polynomially bounded (indeed, exponentially bounded suffices)

in norm, which these two lines easily achieve. For the rest of this section, for

simplicity of exposition, we will ignore these issues.

9.6.3 Deterministic conditions

With these tools in place, we may now state the deterministic conditions under

which our algorithm will succeed. Throughout this section, we will condition on

the following events holding simultaneously:

(E1) NaivePrune succeeds,

(E2) The conclusion of Lemma 9.6.3 holds,

(E3) We have the following concentration of the uncorrupted points: 1

n

∑
i∈S1

Xi − µ∗
 6 O(t1/2ε1−1/t) , and
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(E4) We have the following concentration of the empirical t-th moment tensor:

1

n

∑
i∈[n]

[
(Yi − µ∗)⊗t/2] [

(Yi − µ∗)⊗t/2]> � �
X∼D

[
(X − µ∗)⊗t/2] [

(X − µ∗)⊗t/2]>
+0.1·Id ,

for Id is the dt/2 × dt/2
-sized identity matrix.

The following lemma says that with high probability, these conditions hold

simultaneously:

Lemma 9.6.5. Let ε, t , µ∗, and X1, . . . ,Xn ∈ �d
be as in Theorem 9.6.1. Then,

Conditions (E1)-(E4) hold simultaneously with probability at least 1 − 1/d5
.

We defer the proof of this lemma to the Appendix.

For simplicity of notation, throughout the rest of the section, we will assume

that NaivePrune does not remove any points whatsoever. Because we are

conditioning on the event that it removes no uncorrupted points, it is not hard to

see that this is without loss of generality.

9.6.4 Identifiability

Our main identifiability lemma is the following.

Lemma 9.6.6. Let ε, t , µ∗ and X1, . . . ,Xn ∈ �d
be as in Theorem 9.6.1, and suppose

they satisfy (E1)–(E4). Then, we have

A `O(t) ‖µ − µ∗‖2t 6 O(t t/2) · εt−1 · ‖µ − µ∗‖t .

Since this lemma is the core of our analysis for robust estimation, in the

remainder of this section we prove it. The proof uses the following three lemmas
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to control three sources of error in
˜� µ, which we prove in Section 9.6.6. The first,

Lemma 9.6.7 controls sampling error from true samples fromD.

Lemma 9.6.7. Let ε, t , µ∗ and X1, . . . ,Xn ∈ �d
be as in Theorem 9.6.1, and suppose

they satisfy (E1)–(E4) satisfy (E1)–(E4). Then, we have

`O(t)
©«
∑
i∈S1

〈Xi − µ∗, µ − µ∗〉
ª®¬

t

6 O(εt−1) · t t/2 · nt · ‖µ − µ∗‖t .

To describe the second and third error types, we think momentarily of w ∈ �n

as the 0/1 indicator for a set S of samples whose empirical mean will be the

output of the algorithm. (Of course this is not strictly true, but this is a convenient

mindset in constructing SoS proofs.) The second type of error comes from the

possible failure of S to capture some ε fraction of the good samples fromD. Since

D has O(t) bounded moments, if T is a set of m samples fromD, the empirical

mean of any (1 − ε)m of them is at most ε1−1/t
-far from the true mean ofD.

Lemma 9.6.8. Let ε, t , µ∗ and X1, . . . ,Xn ∈ �d
be as in Theorem 9.6.1, and suppose

they satisfy (E1)–(E4). Then, we have

A `O(t)
©«
∑
i∈S1

(wi − 1)〈Xi − µ∗, µ − µ∗〉
ª®¬

t

6 2εt−1nt · t t/2 · ‖µ − µ∗‖t .

The third type of error is similar in spirit: it is the contribution of the original

uncorrupted points that the adversary removed. Formally:

Lemma 9.6.9. Let ε, t , µ∗ and X1, . . . ,Xn ∈ �d
and Y1, . . . ,Yn ∈ �d

be as in

Theorem 9.6.1, and suppose they satisfy (E1)–(E4). Then, we have

A `O(t)

(∑
i∈Sb

〈Yi − µ∗, µ − µ∗〉
) t

6 2εt−1nt · t t/2 · ‖µ − µ∗‖t .
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Finally, the fourth type of error comes from the εn adversarially-chosen vectors.

We prove this lemma by using the bounded-moments inequality inA.

Lemma 9.6.10. Let ε, t , µ∗ and X1, . . . ,Xn ∈ �d
be as in Theorem 9.6.1, and suppose

they satisfy (E1)–(E4). Then, we have

A `O(t)
©«
∑
i<S1

wi 〈Xi − µ∗, µ − µ∗〉
ª®¬

t

6 2εt−1nt · t t/2 · ‖µ − µ∗‖t .

With these lemmas in place, we now have the tools to prove Lemma 9.6.6.

Proof of Lemma 9.6.6. Let Y1, . . . ,Yn ∈ �d
be as in Theorem 9.6.1. We expand the

norm ‖µ − µ∗‖2 as 〈µ − µ∗, µ − µ∗〉 and rewrite

∑
i∈[n] wiµ as

∑
i∈[n] wiXi :∑

i∈[n]
wi ‖µ − µ∗‖2

(a)
�

∑
i∈[n]

wi 〈Xi − µ∗, µ − µ∗〉

(b)
�

∑
i∈S1

wi 〈Xi − µ∗, µ − µ∗〉 +
∑
i∈Sb

wi 〈Xi − µ∗, µ − µ∗〉

(c)
�

∑
i∈S1

〈Xi − µ∗, µ − µ∗〉 +
∑
i∈S1

(wi − 1)〈Xi − µ∗, µ − µ∗〉

+

∑
i∈Sb

wi 〈Xi − µ∗, µ − µ∗〉

(d)
�

∑
i∈[n]
〈Xi − µ∗, µ − µ∗〉 +

∑
i∈S1

(wi − 1)〈Xi − µ∗, µ − µ∗〉

−
∑
i∈Sb

〈Yi − µ∗, µ − µ∗〉 +
∑
i∈Sb

wi 〈Xi − µ∗, µ − µ∗〉 ,

where (a) follows from the mean axioms, (b) follows from splitting up the

uncorrupted and the corrupted samples, (c) follows by adding and subtracting

1 to each term in S1 , and (d) follows from the assumption that Yi � Xi for all

i ∈ [n]. We will rearrange the last term by adding and subtracting µ. Note the

following polynomial identity:

〈Xi − µ∗, µ − µ∗〉 � 〈Xi − µ, µ − µ∗〉 + ‖µ − µ∗‖2
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and put it together with the above to get∑
i∈[n]

wi ‖µ − µ∗‖2 �

∑
i∈S1

〈Xi − µ∗, µ − µ∗〉 +
∑
i∈S1

(wi − 1)〈Xi − µ∗, µ − µ∗〉

−
∑
i∈Sb

〈Yi − µ∗, µ − µ∗〉 +
∑
i∈Sb

wi 〈Xi − µ, µ − µ∗〉 +
∑
i∈Sb

wi ‖µ − µ∗‖2 .

which rearranges to∑
i∈S1

wi ‖µ − µ∗‖2 �

∑
i∈S1

〈Xi − µ∗, µ − µ∗〉 +
∑
i∈S1

(wi − 1)〈Xi − µ∗, µ − µ∗〉

−
∑
i∈Sb

〈Yi − µ∗, µ − µ∗〉 +
∑
i∈Sb

wi 〈Xi − µ, µ − µ∗〉 .

Now we use `t (x + y + z + w)t 6 exp(t) · (xt + yt + zt + wt) for any even t, and

Lemma 9.6.7, Lemma 9.6.8, and Lemma 9.6.10 and simplify to conclude

A `O(t)
©«
∑
i∈S1

wi
ª®¬

t

‖µ − µ∗‖2t 6 exp(t) · t t/2 · nt · εt−1 · ‖µ − µ∗‖t .

Lastly, sinceA `2
∑

i∈T wi > (1 − 2ε)n, we get

A `O(t) ‖µ − µ∗‖2t 6 exp(t) · t t/2 · εt−1 · ‖µ − µ∗‖t ,

as claimed. �

9.6.5 Rounding

The rounding phase of our algorithm is extremely simple. If
˜� satisfiesA, we

have by Lemma 9.6.6 and pseudoexpectation Cauchy-Schwarz that

˜� ‖µ−µ∗‖2t 6 exp(t)·t t/2 ·εt−1 · ˜�
(
‖µ − µ∗‖t

)
6 exp(t)·t t/2 ·εt−1 · ˜�

(
‖µ − µ∗‖2t )1/2

which implies that

˜� ‖µ − µ∗‖2t 6 exp(t) · t t · ε2(t−1) . (9.6.1)
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Once this is known, analyzing ‖ ˜� µ − µ∗‖ is straightforward. By (9.6.1) and

pseudo-Cauchy-Schwarz again,

‖ ˜�[µ] − µ∗‖2 6 ˜� ‖µ − µ∗‖2 6
(
˜� ‖µ − µ∗‖2t )1/t

6 O(t · ε2−2/t) ,

which finishes analyzing the algorithm.

9.6.6 Proofs of Lemmata 9.6.7–9.6.10

We first prove Lemma 9.6.7, which is a relatively straightforward application of

SoS Cauchy Schwarz.

Proof of Lemma 9.6.7. We have

`O(t)
©«
∑
i∈S1

〈Xi − µ∗, µ − µ∗〉
ª®¬

t

�
©«
〈∑

i∈S1

(Xi − µ∗), µ − µ∗
〉ª®¬

t

6

∑i∈S1

(Xi − µ∗)


t

‖µ − µ∗‖t

6
(
n · O

(
ε1−1/t

)
· t1/2

) t
‖µ − µ∗‖t ,

where the last inequality follows from (E3). This completes the proof. �

Before we prove Lemmata 9.6.8–9.6.10, we prove the following lemma which

we will use repeatedly:

Lemma 9.6.11. Let ε, t , µ∗ and Y1, . . . ,Yn ∈ �d
be as in Theorem 9.6.1, and suppose

they satisfy (E4). Then, we have

A `O(t)
∑
i∈[n]
〈Yi − µ∗, µ − µ∗〉t 6 2nt t/2‖µ − µ∗‖t .
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Proof. We have that

`t

∑
i∈[n]
〈Yi − µ∗, µ − µ∗〉t �

[
(µ − µ∗)⊗2

]> ∑
i∈[n]

[
(Yi − µ∗)⊗t/2] [

(Yi − µ∗)⊗t/2]> [
(µ − µ∗)⊗2

]
(a)
6 n

( [
(µ − µ∗)⊗2

]> (
�

X∼D

[
(X − µ∗)⊗t/2] [

(X − µ∗)⊗t/2]>
+ 0.1 · Id

) [
(µ − µ∗)⊗2

] )
� n · �

X∼D
〈X − µ∗, µ − µ∗〉t + n · 0.1 · ‖µ − µ∗‖t

(b)
6 2n · t t/2‖µ − µ∗‖t ,

where (a) follows from (E4) and (b) follows from 10t-explicitly boundedness. �

We now return to the proof of the remaining Lemmata.

Proof of Lemma 9.6.8. We start by applying Hölder’s inequality, Fact 10.0.8, (im-

plicitly using that w2

i � wi `2 (1 − wi)2 � 1 − wi), to get

A `O(t)
©«
∑
i∈S1

(wi − 1)〈Xi − µ∗, µ − µ∗〉
ª®¬

t

�
©«
∑
i∈S1

(1 − wi)〈Xi − µ∗, µ − µ∗〉
ª®¬

t

6
©«
∑
i∈S1

(wi − 1)ª®¬
t−1 ©«

∑
i∈S1

〈Xi − µ∗, µ − µ∗〉t
ª®¬ .

By Lemma 9.6.11, we have

A `O(t)
∑
i∈S1

〈Xi − µ∗, µ − µ∗〉t 6
∑
i∈[n]
〈Yi − µ∗, µ − µ∗〉t

6 2n · t t/2 · ‖µ − µ∗‖t .

At the same time,

A `2
∑
i∈T

(1 − wi) � (1 − ε)n −
∑
i∈[n]

wi +
∑
i<T

wi �
∑
i<T

wi 6 εn .

So putting it together, we have

A `O(t)

(∑
i∈T

(wi − 1)〈Xi − µ∗, µ − µ∗〉
) t

6 2(εn)t−1 · n · t t/2 · ‖µ − µ∗‖t ,

273



as claimed. �

Proof of Lemma 9.6.9. We apply Hölder’s inequality to obtain that

`O(t)

(∑
i∈Sb

〈Xi − µ∗, µ − µ∗〉
) t

6 |Sb |t−1

∑
i∈Sb

〈Yi − µ∗, µ − µ∗〉t

(a)
6 (εn)t−1

∑
i∈[n]
〈Yi − µ∗, µ − µ∗〉t

(b)
6 2(εn)t−1nt t/2‖µ − µ∗‖t ,

where (a) follows from the assumption on the size of Sb and since the additional

terms in the sum are SoS, and (b) follows follows from Lemma 9.6.11. This

completes the proof. �

Proof of Lemma 9.6.10. The proof is very similar to the proof of the two previous

lemmas, except that we use the moment bound inequality inA. Getting started,

by Hölder’s:

A `O(t)

(∑
i∈Sb

wi 〈Xi − µ, µ − µ∗〉
) t

6

(∑
i∈Sb

wi

) t−1
(∑

i∈Sb

wi 〈Xi − µ, µ − µ∗〉t
)

By evenness of t,

`t

∑
i∈Sb

wi 〈Xi − µ, µ − µ∗〉t 6
∑
i∈[n]

wi 〈Xi − µ, µ − µ∗〉t .

Combining this with the moment bound inA,

A `O(t)

(∑
i∈Sb

wi 〈Xi − µ, µ − µ∗〉
) t

6

(∑
i∈Sb

wi

) t−1

· 2 · t t/2 · n · ‖µ − µ∗‖t .

Finally, clearlyA `2
∑

i<T wi 6 εn, which finishes the proof. �
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9.7 Encoding structured subset recovery with polynomials

The goal in this section is to prove Lemma 9.4.2. The eventual system Â of

polynomial inequalities we describe will involve inequalities among matrix-

valued polynomials. We start by justifying the use of such inequalities in the SoS

proof system.

9.7.1 Matrix SoS proofs

Let x � (x1, . . . , xn) be indeterminates. We describe a proof system which can

reason about inequalities of the form M(x) � 0, where M(x) is a symmetric

matrix whose entries are polynomials in x.

Let M1(x), . . . ,Mm(x) be symmetric matrix-valued polynomials of x, with

Mi(x) ∈ �si×si
, and let q1(x), . . . , qm(x) be scalar polynomials. (If si � 1 then Mi

is a scalar valued polynomial.) Let M(x) be another matrix-valued polynomial.

We write

{M1 � 0, . . . ,Mm � 0, q1(x) � 0, . . . , qm(x) � 0} `d M � 0

if there are vector-valued polynomials {r j
S} j6N,S⊆[m] (where the S’s are multisets),

a matrix B, and a matrix Q whose entries are polynomials in the ideal generated

by q1, . . . , qm , such that

M � B>

∑

S⊆[m]

©«
∑

j

(r j
S(x))(r

j
S(x))

>ª®¬ ⊗ [⊗i∈SMi(x)]
 B + Q(x)

and furthermore thatdeg

(∑
j(r

j
S(x))(r

j
S(x))

>
)
⊗[⊗i∈SMi(x)] 6 d for every S ⊆ [m],

anddeg Q 6 d. Observe that in the case M1, . . . ,Mm ,M are actually 1×1matrices,

this reduces to the usual notion of scalar-valued sum of squares proofs.
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Adapting pseudodistributions to the matrix case, we say a pseudodistribution

˜� of degree 2d satisfies the inequalities {M1(x) � 0, . . . ,Mm(x) � 0} if for every

multiset S ⊆ [m] and p ∈ �[x] such that deg

[
p(x)2 · (⊗i∈SMi(x))

]
6 2d,

˜�
[
p(x)2 · (⊗i∈SMi(x))

]
� 0 .

For completeness, we prove the following lemmas in the appendix.

Lemma 9.7.1 (Soundness). Suppose ˜� is a degree-2d pseudodistribution which satisfies

constraints {M1 � 0, . . . ,Mm � 0}, and

{M1 � 0, . . . ,Mm � 0} `
2d M � 0 .

Then
˜� satisfies {M1 � 0, . . . ,Mm � 0,M � 0}.

Lemma 9.7.2. Let f (x) be a degree-` s-vector-valued polynomial in indeterminates x.

Let M(x) be a s × s matrix-valued polynomial of degree `′. Then

{M � 0} ```′ 〈 f (x),M(x) f (x)〉 > 0 .

Polynomial-time algorithms to find pseudodistributions satisfying matrix-SoS

constraints follow similar ideas as in the non-matrix case. In particular, recall

that to enforce a scalar constraint {p(x) > 0}, one imposes the convex constraint

˜� p(x)(x⊗d)(x⊗d)> � 0. Enforcing a constraint {M(x) � 0} can be accomplished

similarly by adding constraints of the form
˜�M(x) � 0, ˜�M(x)p(x) � 0, etc.

9.7.2 Warmup: Gaussian moment matrix-polynomials

In this section we develop the encoding as low degree polynomials of the

following properties of an n-variate vector w and a d-variate vector µ. We will not
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be able to encode exactly these properties, but they will be our starting point. Let

d , n ∈ �, and suppose there are some vectors (a.k.a. samples) X1, . . . ,Xn ∈ �d
.

1. Boolean: w ∈ {0, 1}n .

2. Size: (1 − τ)αn 6
∑

i∈[n] wi 6 (1 + τ)αn.

3. Empirical mean: µ �
1∑

i∈[n] wi

∑
i∈[n] wiXi .

4. t-th Moments: the t-th empirical moments of the vectors selected by the

vector w, centered about µ, are subgaussian. That is,

max

u∈�d

1

αn

∑
i∈[n]

wi 〈Xi − µ, u〉t 6 2 · t t/2‖u‖t .

The second property is already phrased as two polynomial inequalities, and

the third can be rearranged to a polynomial equation. For the first, we use

polynomial equations w2

i � wi for every i ∈ [n]. The moment constraint will be

the most difficult to encode. We give two versions of this encoding: a simple

one which will work when the distribution of the structured subset of samples

to be recovered is Gaussian, and a more complex version which allows for any

explicitly bounded distribution. For now we describe only the Gaussian version.

We state some key lemmas and prove them for the Gaussian case. We carry out

the general case in the following section.

To encode the bounded moment constraint, for this section we let M(w , µ) be

the following matrix-valued polynomial

M(w , µ) � 1

αn

∑
i∈[n]

wi

[ (
Xi − µ

)⊗t/2
] [ (

Xi − µ
)⊗t/2

]>
Definition 9.7.3 (Structured subset axioms, Gaussian version). For parameters

α ∈ [0, 1] (for the size of the subset), t (forwhich empiricalmoment to control), and
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τ > 0 (to account for some empirical deviations), the structured subset axioms are

the following matrix-polynomial inequalities on variables w � (w1, . . . ,wn), µ �

(µ1, . . . , µd).

1. booleanness: w2

i � wi for all i ∈ [n]

2. size: (1 − τ)αn 6
∑

i∈[n] wi 6 (1 + τ)αn

3. t-th moment boundedness: M(w , µ) � 2 · �X∼N(0,Id)
[
X⊗t/2] [

X⊗t/2]>
.

4. µ is the empirical mean: µ ·∑i∈[n] wi �
∑

i∈[n] wiXi .

Notice that in light of the last constraint, values for the variables µ are always

determined by values for the variables w, so strictly speaking µ could be removed

from the program. However, we find it notationally convenient to use µ. We note

also that the final constraint, that µ is the empirical mean, will be used only for

the robust statistics setting but seems unnecessary in the mixture model setting.

Next, we state and prove some key lemmas for this Gaussian setting, as

warmups for the general setting.

Lemma 9.7.4 (Satisfiability, Gaussian case). Let d ∈ � and α � α(d) > 0. Let

t ∈ �. Suppose (1 − τ)αn > d100t
. Let 0.1 > τ > 0. If X1, . . . ,Xn ∈ �d

has a subset

S ⊆ [n] such that {Xi}i∈S are iid samples from N(µ∗, Id) and |S | > (1 − τ)αn, then

with probability at least 1 − d−8
over these samples, the α, t , τ structured subset axioms

are satisfiable.

Proof. Suppose S has size exactly (1 − τ)αn; otherwise replace S with a random

subset of S of size exactly (α − τ)n. As a solution to the polynomials, we will take

w to be the indicator vector of S and µ �
1

|S |
∑

i∈[n] wiXi . The booleanness and
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size axioms are trivially satisfied. The spectral inequality

1

αn

∑
i6[n]

wi

[ (
Xi − µ

)⊗t/2
] [ (

Xi − µ
)⊗t/2

]>
� 2 · �

X∼N(0,Id)

[
X⊗t/2] [

X⊗t/2]>
follows from concentration of the empirical mean to the true mean µ∗ and

standard matrix concentration (see e.g. [170]). �

The next lemma is actually a corollary of Lemma 9.7.2.

Lemma 9.7.5 (Moment bounds for polynomials of µ, Gaussian case). Let f (µ) be

a length-d vector of degree-` polynomials in indeterminates µ � (µ1, . . . , µk). The t-th

moment boundedness axiom implies the following inequality with a degree t` SoS proof.{
M(w , µ) � 2 · �

X∼N(0,Id)

[
X⊗t/2] [

X⊗t/2]>}
`O(t`)

1

αn

∑
i∈[n]

wi 〈Xi − µ, f (µ)〉t 6 2 · �
X∼N(0,Id)

〈X, f (µ)〉t .

9.7.3 Moment polynomials for general distributions

In this section we prove Lemma 9.4.2.

We start by defining polynomial equations Â, for which we introduce some

extra variables For every pair of multi-indices γ, ρ over [k]with degree at most

t/2, we introduce a variable Mγ,ρ. The idea is that M � [Mγ,ρ]γ,ρ forms an

nt/2 × nt/2
matrix. By imposing equations of the form Mγ,ρ � fγ,ρ(w , µ) for some

explicit polynomials fγ,ρ of degree O(t), we can ensure that

〈u⊗t/2,Mu⊗t/2〉 � 2 · t t/2‖u‖t − 1

αn

∑
i∈[n]

wi 〈Xi − µ, u〉t .

(This equation should be interpreted as an equality of polynomials in indeter-

minates u.) Let L be such a family of polynomial equations. Our final system
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Â(α, t , τ) of polynomial equations and inequalities follows. The important

parameters are α, controlling the size of the set of samples to be selected, and t,

howmanymoments to control. The parameter τ is present to account for random

fluctuations in the sizes of the cluster one wants to recover.

Definition 9.7.6. Let Â(α, t , τ) be the set of (matrix)-polynomial equations and

inequalities on variables w , µ,Mγ,ρ containing the following.

1. Booleanness: w2

i � wi for all i ∈ [n]

2. Size: (1 − τ)αn 6
∑

wi 6 (1 + τ)αn.

3. Empirical mean: µ ·∑i∈[n] wi �
∑

i∈[n] wiXi .

4. The equations L on M described above.

5. Positivity: M � 0.

In the remainder of this sectionwe prove the satisfiability andmoment bounds

parts of Lemma 9.4.2. To prove the lemma we will need a couple of simple facts

about SoS proofs.

Fact 9.7.7. Let X1, . . . ,Xm ∈ �d
. Let v ∈ �d

have ‖v‖ 6 1. Let Yi � Xi + v. Let

t ∈ � be even. Suppose there is C ∈ �with C > 1 such that for all s 6 t,

1

m

∑
i∈[m]
‖Xi ‖s 6 Cs

Then

`t
1

m

∑
i∈[n]

[
〈Xi , u〉t − 〈Yi , u〉t

]
6

(
2

tCt−1‖v‖
)
‖u‖t

and similarly for
1

m
∑

i∈[n]
[
〈Yi , u〉t − 〈Xi , u〉t

]
.

280



Proof. Expanding 〈Yi , u〉t , we get

〈Yi , u〉t � 〈Xi + v , u〉t �
∑
s6t

(
t
s

)
〈Xi , v〉s 〈v , u〉t−s .

So,

1

m

∑
i∈[m]

[
〈Xi , u〉t − 〈Yi , u〉t

]
� − 1

m

∑
i∈[m]

∑
s<t

(
t
s

)
〈Xi , u〉s 〈v , u〉t−s .

For each term, by Cauchy-Schwarz, `t 〈Xi , u〉s 〈v , u〉t−s 6 ‖Xi ‖s ‖v‖t−s · ‖u‖t .

Putting these together with the hypothesis on
1

n ‖Xi ‖s and counting terms finishes

the proof. �

Proof of Lemma 9.4.2: Satisfiability. By taking a random subset S if necessary, we

assume |S | � (1−τ)αn � m. We describe a solution to the system Â. Let w be the

0/1 indicator vector for S. Let µ �
1

m
∑

i∈S wiXi . This satisfies the Boolean-ness,

size, and empirical mean axioms.

Describing the assignment to the variables {Mγ,ρ} takes a little more work.

Re-indexing and centering, let Y1 � Xi1−µ, . . . ,Ym � Xim−µ be centered versions

of the samples in S, where S � {i1, . . . , im} and µ remains the empirical mean

1

m
∑

i∈S Xi . First suppose that the following SoS proof exists:

`t
1

αn

∑
i∈S

〈Yi , u〉t 6 2 · t t/2‖u‖t .

Just substituting definitions, we also obtain

`t
1

αn

∑
i∈[n]

wi 〈Xi − µ, u〉t 6 2 · t t/2‖u‖t .

where now w and µ are scalars, not variables, and u are the only variables remaining.

The existence of this SoS proof means there is a matrix P ∈ �dt/2×dt/2
such that

P � 0 and

〈u⊗t/2, Pu⊗t/2〉 � 2t t/2‖u‖t − 1

αn

∑
i∈[n]

wi 〈Xi − µ, u〉t .
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Let Mγ,ρ � Pγ,ρ. Then clearly M � 0 and M, w , µ together satisfy L.

It remains to show that the first SoS proof exists with high probability for

large enough m. Since t is even and 0.1 > τ > 0, it is enough to show that

`t
1

m

∑
i∈[S]
〈Yi , u〉t 6 1.5 · t t/2‖u‖t

Let Zi � Xi − µ∗, where µ∗ is the true mean ofD. Let

a(u) � 1

m

∑
i∈S

[
〈Zi , u〉t − 〈Yi , u〉t

]
b(u) � 1

m

∑
i∈S

〈Zi , u〉t − �
Z∼D−µ∗

〈Z, u〉t .

We show that for d > 2,

`t a(u) 6 1

4
‖u‖t `t b(u) 6 1

4
‖u‖t

so long as the following hold

1. (bounded norms) for every s 6 t it holds that 1

m
∑

i∈[m] ‖Zi ‖s 6 s100s ds/2
.

2. (concentration of empirical mean) ‖µ − µ∗‖ 6 d−5t
.

3. (bounded coefficients) For every multiindex θ of degree |θ | � t, one has�� 1

m
∑

i∈[m] Zθ
i −�Z∼D Zθ

�� 6 d−10t
.

We verify in Fact 9.7.8 following this proof that these holdwith high probability by

standard concentration of measure, for m > d100t
andD 10t-explicitly bounded,

as assumed. Together with the assumption `t �Z∼D−µ∗ 〈Z, u〉t 6 t t/2‖u‖t , this

will conclude the proof.

Starting with a(u), using Fact 9.7.7, it is enough that 2
tCt−1‖v‖ 6 1

4
, where

v � µ − µ∗ and C is such that
1

m
∑

i∈[m] ‖Zi ‖s 6 Cs
. By 1 and 2, we can assume

‖v‖ 6 d−5t
and C � t100d1/2

. Then the conclusion follows for t > 3.
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We turn to b(u). A typical coefficient of b(u) in the monomial basis—say, the

coefficient of uθ for some multiindiex θ of degree |θ | � t, looks like

1

m

∑
i∈[m]

Yθ
i − �Y∼D Yθ .

Byassumption this is atmost d−10t
inmagnitude, so the sumof squared coefficients

of b(u) is at most d−18t
. The bound on b(u) for d > 2. �

Proof of Lemma 9.4.2: Moment bounds. As in the lemma statement, let f (µ) be a

vector of degree-` polynomials in µ. By positivity and Lemma 9.7.2,

M(w , µ) > 0 `O(t`) 〈 f (µ)⊗t/2,M(w , µ) f (µ)⊗t/2〉 > 0 .

Using this in conjunction with the linear equations L,

Â `O(t`) 2t t/2‖ f (µ)‖t − 1

αn

∑
i∈[n]

wi 〈Xi − µ, f (µ)〉t > 0

which is what we wanted to show. �

Fact 9.7.8 (Concentration for items 1, 2,3). Let d , t ∈ �. Let D be a mean-zero

distribution on �d
such that �〈Z, u〉s 6 ss ‖u‖s for all s 6 10t for every u ∈ �d

.

Then for t > 4 and large enough d and m > d100t
, for m independent samples

Z1, . . . , Zm ∼ D,

1. (bounded norms) for every s 6 t it holds that 1

m
∑

i∈[m] ‖Zi ‖s 6 s100s ds/2
.

2. (concentration of empirical mean)

 1

m
∑

i∈[m] Zi
 6 d−5t

.

3. (bounded coefficients) For every multiindex θ of degree |θ | � t, one has�� 1

m
∑

i∈[m] Zθ
i −�Z∼D Zθ

�� 6 d−10t
.

Proof. The proofs are standard applications of central limit theorems, in particular

the Berry-Esseen central limit theorem [37], since all the quantities in question
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are sums of iid random variables with bounded moments. We will prove only

the first statement; the others are similar.

Note that
1

m
∑

i∈[m] ‖Zi ‖s is a sum of iid random variables. Furthermore,

by our moment bound assumption, �Z∼D ‖Z‖s 6 s2s ds/2
. We will apply the

Berry-Esseen central limit theorem [37]. The second and third moments�(‖Z‖s −

� ‖Z‖s)2,�(‖Z‖s −� ‖Z‖s)3 are bounded, respectively, as sO(s)ks
and sO(s)d3s/2

.

By Berry-Esseen,

�


√

m
ds/2 ·

1

m

∑
i∈[m]
‖Zi ‖s > r +

√
m

ds/2 � ‖Z‖
s

 6 e−Ω(r
2)
+ sO(s) · m−1/2 .

�

Finally we remark on the polynomial-time algorithm to find a pseudoexpecta-

tion satisfying Â. As per [34], it is just necessary to ensure that if x � (w , µ), the

polynomials in Â include ‖x‖2 6 M for some large number M. In our case the

equation ‖x‖2 6 (nkm)O(1) can be added without changing any arguments.

9.7.4 Modifications for robust estimation

We briefly sketch how the proof of Lemma 9.4.2 may be modified to prove

Lemma 9.6.3. The main issue is that Â of Lemma 9.4.2 is satisfiable when there

exists an SoS proof

`t
1

(1 − ε)n
∑
i∈[n]

wi 〈Xi − µ, u〉t 6 2t t/2‖u‖t

where µ is the empirical mean of Xi such that wi � 1. In the proof of Lemma 9.4.2

we argued that this holds when w is the indicator for a set of iid samples from a
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10t-explicitly bounded distributionD. However, in the robust setting, w should

be taken to be the indicator of the (1 − ε)n good samples remaining from such a

set of iid samples after εn samples are removed by the adversary. If Y1, . . . ,Yn

are the original samples, with empirical mean µ∗, the proof of Lemma 9.4.2 (with

minor modifications in constants) says that with high probability,

`t
1

n

∑
i∈[n]
〈Yi − µ∗, u〉t 6 1.1t t/2‖u‖t

For small-enough ε, this also means that

`t
1

(1 − ε)n
∑

i good

〈Xi − µ∗, u〉t 6 1.2t t/2‖u‖t .

This almost implies that Â is satisfiable given the ε-corrupted vectors X1, . . . ,Xn

and parameter α � (1 − ε)n, except for that µ∗ � 1

n
∑

i∈[n] Yi and we would like to

replace it with µ �
1

(1−ε)n
∑

i good Xi . This can be accomplished by noting that, as

argued in Section 9.6, with high probability ‖µ − µ∗‖ 6 O(t · ε1−1/t).

9.7.5 Examples of explicitly bounded distributions

In this section, we show that many natural high dimensional distributions are

explicitly bounded. Recall that if a univariate distribution X sub-Gaussian (with

variancy proxy σ) with mean µ then we have the following bound on its even

centered moments for t > 4:

�[(X − µ)t] 6 σt
( t
2

) t/2
,

if t is even.

More generally, we will say a univariate distribution is t-bounded with mean

µ and variance proxy σ if the following general condition holds for all even
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4 6 s 6 t:

�[(X − µ)s] 6 σs
( s
2

) s/2
.

The factor of 1/2 in this expression is not important and can be ignored upon

first reading.

Our main result in this section is that any rotation of products of independent

t-bounded distributions with variance proxy 1/2 is t-explicitly bounded with

variance proxy 1:

Lemma 9.7.9. Let D be a distribution over �d
so that D is a rotation of a product

distributionD′ where each coordinate ofD is a t-bounded univariate distribution with

variance proxy 1/2. ThenD is t-explicitly bounded (with variance proxy 1).

Proof. Since the definition of explicitly bounded is clearly rotation invariant, it

suffices to show thatD′ is t-explicitly bounded. For any vector of indeterminants

u, and for any 4 6 s 6 t even, we have

`s �
X∼D′
〈X − µ, u〉s � �

X∼D′
〈X − �

X′∼D′
X′, u〉s

� �
X∼D′

(
�
X′
〈X − X′, u〉

) s

6 �
X,X′∼D′

〈X − X′, u〉s ,

where X′ is an independent copy of X, and the last line follows from SoS

Cauchy-Schwarz. We then expand the resulting polynomial in the monomial

basis:

�
X,X′∼D′

〈X − X′, u〉s �
∑
α

uα �
X,X′
(X − X′)α

�

∑
α even

uα �
X,X′
(X − X′)α ,
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since all α with odd monomials disappear since X − X′ is a symmetric product

distribution. By t-boundedness, all remaining coefficients are at most scs
, from

which we deduce

`s �
X,X′∼D′

〈X − X′, u〉s 6 ss/2
∑

α even

uα � ss/2‖u‖s ,

which proves thatD′ is t-explicitly bounded, as desired. �

As a corollary observe this trivially implies that all GuassiansN(µ,Σ)with Σ � I

are t-explicitly bounded for all t.

We note that our results are tolerant to constant changes in the variance proxy

(just by scaling down). In particular, this implies that our results immediately

apply for all rotations of products of t-bounded distributions with a loss of at

most 2.

9.8 Omitted Proofs

9.8.1 Sum of squares proofs for matrix positivity

Lemma 9.8.1 (Soundness). Suppose ˜� is a degree-2d pseudodistribution which satisfies

constraints {M1 � 0, . . . ,Mm � 0}, and

{M1 � 0, . . . ,Mm � 0} `
2d M � 0 .

Then
˜� satisfies {M1 � 0, . . . ,Mm � 0,M � 0}.
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Proof. By hypothesis, there are r j
S and B such that

M � B>

∑

S⊆[m]

©«
∑

j

(r j
S(x))(r

j
S(x))

>ª®¬ ⊗ [⊗i∈SMi(x)]
 B .

Now, let T ⊆ [m] and p be a polynomial. Let M′ � ⊗i∈T Mi . Suppose that

deg

(
p2 ·M ⊗M′

)
6 2d. Using the hypothesis on M, we obtain

p2 ·M ⊗M′ � p2 · B>

∑

S⊆[m]

©«
∑

j

(r j
S(x))(r

j
S(x))

>ª®¬ ⊗ [⊗i∈SMi(x)]
 B ⊗M′

� (B ⊗ I)>
p2 ·


∑

S⊆[m]

©«
∑

j

(r j
S(x))(r

j
S(x))

>ª®¬ ⊗ [⊗i∈SMi(x)]
 ⊗M′

 (B ⊗ I) .

Applying
˜� to the above, note that by hypothesis,

˜�

p2 ·

∑

S⊆[m]

©«
∑

j

(r j
S(x))(r

j
S(x))

>ª®¬ ⊗ [⊗i∈SMi(x)]
 ⊗M′

 � 0 .

The lemma follows by linearity. �

Lemma 9.8.2. Let f (x) be a degree-` s-vector-valued polynomial in indeterminates x.

Let M(x) be a s × s matrix-valued polynomial of degree `′. Then

{M � 0} ```′ 〈 f (x),M(x) f (x)〉 > 0 .

Proof. Let u ∈ �s⊗s
have entries ui j � 1 if i � j and otherwise ui j � 0. Then

〈 f (x),M(x) f (x)〉 � u>(M(x) ⊗ f (x) f (x)>)u. �

9.8.2 Omitted Proofs from Section 9.6

Proof of Lemma 9.6.5 We will show that each event (E1)–(E4) holds with

probability at least 1 − d−8
. Clearly for d sufficiently large this implies the
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desired guarantee. That (E1) and (E2) occur with probability 1 − d−8
follow from

Lemmas 9.6.2 and 9.6.3, respectively. It now suffices to show (E3) and (E4) holds

with high probability. Indeed, that (E4) holds with probability 1 − d−8
follows

trivially from the same proof of Lemma 9.4.2 (it is in fact a simpler version of this

fact).

Finally, we show that (E3) holds.

By basic concentration arguments (see e.g. [175]), we know that by our choice

of n, with probability 1 − d−8
we have that 1

n

∑
i∈[n]

Xi − µ∗
 6 ε . (9.8.1)

Condition on the event that this and (E4) simultaneously hold. Recall that Yi for

i � 1, . . . , n are defined so that Yi are iid and Yi � Xi for i ∈ S1 . By the triangle

inequality, we have 1

|S1 |
∑
i∈S1

Xi − µ∗
 6 n
|S1 |

 1

n

∑
i∈[n]

Yi − µ∗
 + |Sb |
|S1 |

 1

|Sb |
∑
i∈Sb

Yi − µ∗


(a)
6

ε
1 − ε +

|Sb |
|S1 |

 1

|Sb |
∑
i∈Sb

Yi − µ∗
 , (9.8.2)

where (a) follows from (9.8.1).

We now bound the second term in the RHS. For any unit vector u ∈ �d
, by

Hölder’s inequality,〈∑
i∈Sb

(Yi − µ∗), u
〉t

6 |Sb |t−1

∑
i∈Sb

〈
(Yi − µ∗), u

〉t

6 |Sb |t−1

∑
i∈[n]

〈
(Yi − µ∗), u

〉t

� |Sb |t−1

[
u⊗t/2]> ∑

i∈[n]

[
(Yi − µ∗)⊗t/2] [

(Yi − µ∗)⊗t/2]> [
u⊗t/2]
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(a)
6 |Sb |t−1 · n ·

[
u⊗t/2]> (

�
Y∼D

[
(Y − µ∗)⊗t/2] [

(Y − µ∗)⊗t/2]>
+ δ · Id

) [
(Y − µ∗)⊗t/2]

� |Sb |t−1 · n ·
(
�

Y∼D

〈
Y − µ∗, u

〉t
+ δ

)
6 |Sb |t−1 · n · (t t/2

+ δ)
(b)
6 2|Sb |t−1 · n · t t/2 ,

where (a) follows from (E4), and (b) follows since δ � t t
. Hence∑

i∈Sb

(Yi − µ∗)
 � max

‖u‖�1

〈∑
i∈Sb

(Yi − µ∗), u
〉
6 O(|Sb |1−1/t · n1/t · t1/2)

Taking the t-th root on both sides and combining it with (9.8.2) yields 1

|S1 |
∑
i∈S1

Xi − µ∗
 6 ε

1 − ε +
ε

1 − ε (n/|Sb |)−1/t · t1/2
� O(ε1−1/t · t1/2) ,

as claimed.

9.9 Chapter Notes

The material in this chapter originally appeared in [90], joint work with Jerry Li.

Similar results appeared contemporaneously in [108, 68]. We highlight one result

of [108]: that any probability distributionD which obeys a certain isoperimetric

inequality called the Poincaré inequality is explicitly bounded for all t. This implies

that strongly log-concave distributions are explicitly bounded; this generalizes

our result on product and rotations of product distributions.
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9.9.1 Related work

Mixture models The literature on mixture models is vast so we cannot attempt

a full survey here. The most directly related line of work to our results studies

mixtures models under mean-separation conditions, and especially mixtures of

Gaussians, where the number k of components of the mixture grows with the

dimension d [52, 53, 17, 174]. The culmination of these works is the algorithm

of Vempala and Wang, which used spectral dimension reduction to improve on

the d1/4
separation required by previous works to k1/4

in `2 distance for k 6 d

spherical Gaussians in d dimensions. Concretely, they show the following:

Theorem 9.9.1 ([174], informal). There is a constant C > 0 and an algorithm with

running time poly(k , d) such that for every µ1, . . . , µk ∈ �d
and σ1, . . . , σk > 0,

satisfying

‖µi − µ j ‖ > C max(σi , σ j)k1/4
log

1/4(d)

with high probability the algorithm produces estimates µ̂1, . . . , µ̂k with ‖µi − µ̂i ‖ 6

1/poly(k), given poly(k , d) samples from a mixture
1

k
∑

i6kN(µi , σiI).

The theorem extends naturally to isotropic log-concave distributions; our

main theorem generalizes to distributions with explicitly bounded moments.

These families of distributions are not strictly comparable.

Other works have relaxed the requirement that the underlying distributions

be Gaussian [113, 4]; to second-moment moment boundedness instead of to

log-concavity; these algorithms typically tolerate separation of order

√
k rather

than k1/4
. Our work can be thought of as a generalization of these algorithms to

use boundedness of higher moments. One recent work in this spirit uses SDPs to

cluster mixture models under separation assumptions [131]; the authors show
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that a standard SDP relaxation of k-means achieves guarantees comparable to

previously-known specially-tailored mixture model algorithms.

Information-theoretic sample complexity: Recent work of [158] considers the

Gaussian mixtures problem in an information-theoretic setting: they show that

there is some constant C so that if the means are pairwise separated by at least

C
√

log k, then the means can be recovered to arbitrary accuracy (given enough

samples). They give an efficient algorithm which, warm-started with sufficiently-

good estimates of the means, improves the accuracy to δ using poly(1/δ, d , k)

additional samples. However, their algorithm for providing this warm start

requires time exponential in the dimension d. Our algorithm requires somewhat

larger separation but runs in polynomial time. Thus by combining the techniques

in the spherical Gaussian setting we can estimate the means with `2 error δ in

polynomial time using an extra poly(1/δ, d , k) samples, when the separation is at

least kγ, for any γ > 0.

Fixed number of Gaussians in many dimensions: Other works address parameter

estimation for mixtures of k � d Gaussians (generally k � O(1) and d grows)

under weak identifiability assumptions [101, 35, 132, 84]. In these works the only

assumptions are that the component Gaussians are statistically distinguishable;

the goal is to recover their parameters of the underlying Gaussians. It was shown

in [132] that algorithms in this setting provably require exp(k) samples and

running time. The question addressed in our paper is whether this lower bound

is avoidable under stronger identifiability assumptions. A related line of work ad-

dresses proper learning of mixtures of Gaussians [73, 54, 168, 120], where the goal

is to output amixture of Gaussians which is close to the unknownmixture in total-

variation distance, avoiding the exp(k) parameter-learning sample-complexity
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lower bound. These algorithms achieve poly(k , d) sample complexity, but they

all require exp(k) running time, and moreover, do not provide any guarantee that

the parameters of the distributions output are close to those for the true mixture.

Tensor-decomposition methods: Another line of algorithms focus on settings

where themeans satisfy algebraic non-degeneracy conditions, which is the case for

instance in smoothed analysis settings [94, 14, 76]. These algorithms are typically

based on finding a rank-one decomposition of the empirical 3rd or 4th moment

tensor of the mixture; they heavily use the special structure of these moments

for Gaussian mixtures. One paper we highlight is [39], which also uses much

higher moments of the distribution. They show that in the smoothed analysis

setting, the `th moment tensor of the distribution has algebraic structure which

can be algorithmically exploited to recover the means. Their main structural

result holds only in the smoothed analysis setting, where samples from a mixture

model on perturbed means are available.

In contrast, we do not assume any non-degeneracy conditions and usemoment

information only about the individual components rather than the full mixture,

which always hold under separation conditions. Moreover, our algorithms do

not need to know the exact structure of the 3rd or 4th moments. In general,

clustering-based algorithms like ours seem more robust to modelling errors than

algebraic or tensor-decomposition methods.

Expectation-maximization (EM): EM is the most popular algorithm for Gaus-

sian mixtures in practice, but it is notoriously difficult to analyze theoretically.

The works [53, 23, 55, 180] offer some theoretical guarantees for EM, but non-

convergence results are a barrier to strong theoretical guarantees [179].
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Robust statistics The literature on robust estimation is too large to do justice to

here. There has been a long line of work on making algorithms tolerant to error in

supervised settings [173, 103], especially for learning halfspaces [162, 105, 21, 67],

and for problems such as PCA [45, 46, 116, 181]. See [64] for a more detailed

discussion on the relationship between these questions (and others) and the

model we consider here.

We consider the classical statistical notion of robustness against corruption,

introduced back in the 70’s in seminal works of [95, 171, 83]. Even for the

mean of a Gaussian distribution, essentially all classical robust estimators are

hard in the worst case to compute ([99, 36]). However, a recent flurry of work

([64, 114, 49, 66, 166]) has given new, computationally efficient, nearly optimal

robust estimators for the mean and covariance of a high dimensional Gaussian

distribution. Given sufficiently-many samples from a sub-Gaussian distribution

with identity covariance, where an ε-fraction are arbitrarily corrupted, these

algorithms can output mean estimates which achieve error at most O(ε
√

log 1/ε)

in `2, which is information-theoretically optimal up to the

√
log 1/ε factor.

However, these mean estimation algorithms heavily rely on knowing that the

covariance is equal (or very close) to the identity. When the distribution is a

general sub-Gaussiandistributionwithunknown covariance, the best knownerror

achieved by an efficient algorithm is O(ε1/2) [166, 65]. Under a slightly stronger

assumption, our algorithm is able to achieve O(ε1−1/t) error in polynomial time,

for arbitrarily large t ∈ �, and error O(ε
√

log 1/ε) in quasipolynomial time for

distributions with O(log 1/ε) bounded moments.

294



CHAPTER 10

SOS TOOLKIT

In this chapter we record a number of useful SoS inequalities, which we have

employed in analysis of the algorithms in this part of the thesis.

Lemma 10.0.1 (Pseudo-Cauchy-Schwarz, Function Version, [27]). Let x , y be

vector-valued polynomials. Then

〈x , y〉 � 1

2

(‖x‖2 + ‖y‖2).

Lemma 10.0.2 (Pseudo-Cauchy-Schwarz, pseudoexpectation version). If ˜� is a

degree-d pseudoexpectation on variables x and p , q ∈ �[x]6d/2 then ( ˜� p(x)q(x))2 6
˜� p(x) · ˜� q(x).

See [30] for the cleanest proofs.

We will need the following inequality relating
˜�〈x , v0〉3 and ˜�〈x , v0〉 when

˜�〈x , v0〉3 is large.

Lemma 10.0.3. Let {x} be a degree-4 pseudo-distribution satisfying {‖x‖2 � 1}, and

let v0 ∈ �n
be a unit vector. Suppose that

˜�〈x , v0〉3 > 1 − ε for some ε > 0. Then

˜�〈x , v0〉 > 1 − 2ε.

Proof. Let p(u) be the univariate polynomial p(u) � 1−2u3 + u. It is easy to check

that p(u) > 0 for u ∈ [−1, 1]. It follows from classical results about univariate

polynomials that p(u) then can be written as

p(u) � s0(u) + s1(u)(1 + u) + s2(u)(1 − u)

for some SoS polynomials s0, s1, s2 of degrees at most 2. (See [144], fact 3.2 for a

precise statement and attributions.)
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Now we consider

˜� p(〈x , v0〉) > ˜�[s1(〈x , v0〉)(1 + 〈x , v0〉)] + ˜�[s2(〈x , v0〉)(1 − 〈x , v0〉)] .

We have by Lemma 10.0.1 that 〈x , v0〉 � 1

2
(‖x‖2 + 1) and also that 〈x , v0〉 �

−1

2
(‖x‖2+1). Multiplying the latter SoS relation by the SoS polynomial s1(〈x , v0〉)

and the former by s2(〈x , v0〉), we get that

˜�[s1(〈x , v0〉)(1 + 〈x , v0〉)] � ˜�[s1(〈x , v0〉)] + ˜�[s1(〈x , v0〉)〈x , v0〉]

> ˜�[s1(〈x , v0〉)] −
1

2

˜�[s1(〈x , v0〉)(‖x‖2 + 1)]

> ˜�[s1(〈x , v0〉)] − ˜�[s1(〈x , v0〉)]

> 0 ,

where in the second-to-last step we have used the assumption that {x} satisfies

{‖x‖2 � 1}. A similar analysis yields

˜�[s2(〈x , v0〉)(1 − 〈x , v0〉)] > 0 .

All together, this means that
˜� p(〈x , v0〉) > 0. Expanding, we get

˜�[1−2〈x , v0〉3+

〈x , v0〉] > 0. Rearranging yields

˜�〈x , v0〉 > 2
˜�〈x , v0〉3 − 1 > 2(1 − ε) − 1 > 1 − 2ε . �

We will need a bound on the pseudo-expectation of a degree-3 polynomial in

terms of the operator norm of its coefficient matrix.

Lemma 10.0.4. Let {x} be a degree-4 pseudo-distribution. Let M ∈ �n2×n
. Then

˜�〈x⊗2,Mx〉 6 ‖M‖( ˜� ‖x‖4)3/4.

Proof. We begin by expanding in the monomial basis and using pseudo-Cauchy-

Schwarz:

˜�〈x⊗2,Mx〉 � ˜�

∑
i jk

M( j,k),ixi x jxk
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� ˜�

∑
i

xi

∑
jk

M( j,k),ix j xk

6 ( ˜� ‖x‖2)1/2
 ˜�

∑
i

©«
∑

jk

M( j,k),i xix j
ª®¬

2
1/2

6 ( ˜� ‖x‖4)1/4
 ˜�

∑
i

©«
∑

jk

M( j,k),i xix j
ª®¬

2
1/2

We observe that MMT
is a matrix representation of

∑
i

(∑
jk M( j,k),i xix j

)
2

. We

know MMT � ‖M‖2Id, so

˜�

∑
i

©«
∑

jk

M( j,k),ixi x j
ª®¬

2

6 ‖M‖2 ˜� ‖x‖4 .

Putting it together, we get
˜�〈x⊗2,Mx〉 6 ‖M‖( ˜� ‖x‖4)3/4 as desired. �

Fact 10.0.5. Let x , y be n-length vectors of indeterminates. Then

`2 ‖x + y‖2 6 2‖x‖2 + 2‖y‖2 .

Proof. The sum of squares proof of Cauchy-Schwarz implies that ‖x‖2 + ‖y‖2 −

2〈x , y〉 is a sum of squares. Now we just expand

‖x + y‖2 � ‖x‖2 + ‖y‖2 + 2〈x , y〉 � 2(‖x‖2 + ‖y‖2) .

�

Fact 10.0.6. Let P(x) ∈ �[x]` be a homogeneous degree ` polynomial in indeterminates

x � x1, . . . , xn . Suppose that the coefficients of P are bounded in 2-norm:∑
α⊆[n]

P̂(α)2 6 C .
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(Here P̂(α) are scalars such that P(x) � ∑
α P̂(α)xα.) Let a , b ∈ � be integers such that

a + b � `. Then

`
max(2a ,2b) P(x) 6

√
C(‖x‖2a

+ ‖x‖2b) .

Proof. Let M be a matrix whose rows and columns are indexed by multisets

S ⊆ [n] of sizes a and b. Thus M has four blocks: an (a , a) block, an (a , b) block,

a (b , a) block, and a (b , b) block. In the (a , b) and (b , a) blocks, put matrices

Mab ,Mba such that 〈x⊗a ,Mabx⊗b〉 � 1

2
.P(x). In the (a , a) and (b , b) blocks, put

√
C · I. Then, letting z � (x⊗a , x⊗b), we get 〈z ,Mz〉 �

√
C(‖x‖2a + ‖x‖2b) − P(x).

Note that ‖Mab ‖ 6
√

C by hypothesis, so M � 0, which completes the proof. �

Fact 10.0.7. Let u � (u1, . . . , uk) be a vector of indeterminantes. Let D be sub-Gaussian

with variancy proxy 1. Let t > 0 be an integer. Then we have

`2t �
X∼D
〈X, u〉2t 6 (2t)! · ‖u‖2t

`2t �
X∼D
〈X, u〉2t > −(2t)! · ‖u‖2t .

Proof. Expand the polynomial in question. We have

�
X∼D
〈X, u〉2t

� �
X∼D

∑
β

uβ �[Xβ] .

Let β range over [k]2t

`2t

∑
β

u2β �X2β 6 (2t)!
∑
β even

uβ 6 ‖u‖2t
2
.

where we have used upper bounds on the Gaussian moments �X2β
and that

every term is a square in u. �

Fact 10.0.8 (SoS Hölder). Let w1, . . . ,wn and x1, . . . , xn be indeterminates. Let q ∈ �

be a power of 2. Then

{w2

i � wi ∀i ∈ [n]} `O(q)

(∑
i6n

wixi

) q

6

(∑
i6n

wi

) q−1

·
(∑

i6n

xq
i

)
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and

{w2

i � wi ∀i ∈ [n]} `O(q)

(∑
i6n

wixi

) q

6

(∑
i6n

wi

) q−1

·
(∑

i6n

wi · xq
i

)
.

Proof. Wewill only prove the first inequality. The second inequality follows since

w2

i � wi `2 wixi � wi · (wixi), applying the first inequality, and observing that

w2

i � wi `q wq
i � wi .

Applying Cauchy-Schwarz (Lemma 5.0.6) and the axioms, we obtain to start

that for any even number t,

{w2

i � wi ∀i ∈ [n]} `O(t)


(∑

i6n

wi xi

)
2

t/2

�


(∑

i6n

w2

i xi

)
2

t/2

6

[(∑
i6n

w2

i

) (∑
i6n

w2

i x2

i

)] t/2

�

(∑
i6n

wi

) t/2 (∑
i6n

wi x2

i

) t/2

.

It follows by indution that

{w2

i � wi ∀i ∈ [n]} `O(t)

[(∑
i6n

wixi

)] q

6

(∑
i6n

wi

) q−2
(∑

i6n

wix
q/2
i

)
2

.

ApplyingLemma5.0.6 onemore time to get

(∑
i6n wix

q/2
i

)
6

(∑
i6n w2

i

) (∑
i6n xq

i

)
and then the axioms w2

i � wi completes the proof. �
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Part II

Pseudocalibration
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CHAPTER 11

SOS LOWER BOUNDS FROM PSEUDOCALIBRATION: PLANTED

CLIQUE AND RELATED PROBLEMS

In this chapter we prove a nearly-tight SoS lower bound for the planted

clique problem. The proof introduces the pseudocalibration technique, which

leverages failure of D-simple statistics to distinguish n-node graphs with planted

n1/2−ε
-cliques from graphs from G(n , 1

2
). We discuss some prior techniques for

SoS lower bounds for planted clique and the fundamental roadblocks they faced

which prevented them from proving the kind of nearly-tight lower bound we

present here. We will see that pseudocalibration overcomes these challenges.

11.1 Main Results

The main theorem in this chapter is the following SoS lower bound for planted

clique.

Theorem11.1.1. There is a constant c > 0 such for every d � d(n) ∈ �, with probability

1 − o(1) over G sampled from G(n , 1/2) there is a degree-d pseudodistribution
˜�G satis-

fying {x2

i � xi}i∈[n] and {xix j � 0}i/ j in G such that
˜�G

∑
i∈[n] xi > n1/2−c(d/log n)1/2

.

Theorem 11.1.1 says that with high probability over G ∼ G(n , 1/2) there is a

degree-d pseudodistributionwhich satisfies constraints as thought it is supported

on G-cliques of expected size n1/2−c(d/log n)1/2
, even though the largest clique in

G has size (2 + o(1)) log n. This means that for every constant ε > 0, SoS degree

Ω(log n) is required to certify that the maximum clique in a random graph G

from G(n , 1/2) has size less than n1/2−ε
.
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It also follows, by the usual duality arguments, that if C � n1/2− c(d/log n)1/2,

then with high probability over G ∼ G(n , 1/2) every set of polynomials qi j(x) for

i / j in G and ri(x) satisfying C −∑
i∈[n] xi �{0,1}n

∑
i/ j xi x jqi j(x) +

∑
i∈[m] ri(x)2

have degree at least d. (The notation �{0,1}n means that the left and right hand

sides are equal when evaluated at any x ∈ {0, 1}n .)

Near-tightness of this theorem follows from the following result of Feige and

Krauthgamer [71].

Theorem 11.1.2 ([71]). There is a constant c > 0 such that for every d � d(n) ∈ �,

with probability 1 − o(1) over G from G(n , 1/2) every degree-d pseudodistribution
˜�G

satisfying {x2

i � xi}i∈[n] and {xix j � 0}i/ j in G has
˜�G

∑
i∈[n] xi 6 n1/2−cd/log n

.

Thus, our main result is tight up to the exponent 1/2 on the term d/log n. It

is an interesting (but quite technical) open problem to remove this remaining gap

between upper and lower bounds.

11.1.1 Extensions to component analysis problems

The techniques which prove Theorem 11.1.1 extend to (at least) two other

important refutation problems, in the spiked tensor model and the sparse spiked

matrix model (a.k.a. sparse principal component analysis, or sparse PCA). We

have already addressed lower bounds for the spiked tensor model in Chapter 6.

The refutation version of sparse principal component analysis asks to certify

upper bounds on the maximum of the quadratic form of a random matrix over

sparse vectors. By standard concentration arguments, if M has standard Gaussian

entries, then max‖x‖�1,|x |06k 〈x ,Mx〉 ≈
√

k log n, where |x |0 denotes the number
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of nonzero entries of x. Polynomial-time algorithms are known which certify

(with high probability) that max‖x‖�1,|x |06k 〈x ,Mx〉 6 ˜O(min(k ,
√

n)) [62]. We

show that improving by any polynomial factor in k or n on the guarantees of

those algorithms requires requires subexponential time.

The subexponential lower boundweprove here is beyond the reach of previous

approaches to hardness of sparse PCA, which typically rely on reduction from

the planted clique problem: because planted clique admits quasipolynomial time

algorithms, those techniques can only show quasipolynomial hardness [38].

Further context for the following theorem is given in Section 11.7, where we

also outline the proof. (The details are very similar to the proof of Theorem 11.1.1;

they can be found in the full version of [88].)

Theorem 11.1.3. If A ∈ �n×n
, let

SoSd ,k(A) � max

˜�

˜�〈x ,Ax〉 s.t. ˜� is degree d and satisfies

{
x3

i � xi , ‖x‖2 � k
}
.

There are absolute constants c , ε∗ > 0 so that for every ρ ∈ (0, 1) and ε ∈ (0, ε∗), if

k � nρ, then for d 6 nc·ε
,

�
A∼{±1}(

n
2
)
{SoSd ,k(A) > min(n1/2−εk , nρ−εk)} > 1 − o(1)

and

�
A∼{±1}(

n
2
)
SoSd ,k(A) > min(n1/2−εk , nρ−εk) .

Furthermore, the latter is true also if A is symmetric with iid entries fromN(0, 1).
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11.2 Preliminaries

11.2.1 General Notation

• We use small Greek letters indicate constants/parameters.

• Pn
d denotes the linear space of all multilinear polynomials of degree at most

d on {0, 1}n .

• We write Q for any event Q to be the 0-1 indicator of whether Q happens.

• For a subset T ⊆
([n]

2

)
of edges of a graph on vertex set [n], we write

V(T) ⊆ [n] to denote the vertices that have at least one edge incident on

them in T.

• For a matrix Q ∈ �N×N
, ‖Q‖ denotes its spectral norm (or the largest

singular value) and ‖Q‖F �

√∑
x ,y∈[N]Q(x , y)2 denotes its Frobenius norm.

• For a graph G, let Cq � Cq(G) � {I ⊆ [n] : I is a q-clique in G}, and let

C6q �
⋃

q′6q Cd′. Let C(G) � C6∞ be the collection of all cliques in G. We

count the empty set and all singletons as cliques.

• We write G(n , 1

2
) to denote the distribution on graphs on the vertex set [n]

where each edge is included with probability 1/2 independently of others.

• We say that an event E with respect to the probability distribution G(n , 1

2
)

happens with high probability (w.h.p.) if �[E] > 1 −Ω(1)/n10 log n
for large

enough n.

• We write f (n) � 1(n) to mean that for every constant c there is an n0 such

that if n > n0, f (n) 6 C1(n).
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11.2.2 Graphs

We identify a graph G with its {−1, 1} adjacency matrix and write Ge ∈ {−1, 1}

for the {−1, 1}-indicator of whether e ∈ [n]×[n] is an edge (indicated by Ge � +1)

in the graph G or not. When G ∼ G(n , 1

2
), Ge are independent {−1, 1}-random

variables.

A graph function is a real-valued function of the variables Ge ∈ {−1, 1} for e ∈([n]
2

)
. For graphs G1,G2, . . . ,Gk

on the vertex set [n], we define ∆(G1,G2, . . . ,Gk)

to be the graph G satisfying Ge � Πi6kGi
e .

Definition 11.2.1 (Vertex Separator). For a graph G on [n] and vertex sets

I , J ⊆ [n], a set of vertices S ⊆ [n] is said to be a minimal vertex separator if S is

a set of smallest possible size such that every path between I and J in G passes

through some vertex of S.

Often, I and J will be allowed to intersect in which case any vertex separator

must contain I ∩ J.

Fact 11.2.2 (Menger’s Theorem). For a graph G on [n] and two subsets of vertices

I , J ⊆ [n], the maximum number of vertex disjoint paths between I and J in G is equal

to the size of any minimal vertex separator between I and J in G.

11.2.3 Fourier Analysis

Any graph function f : G→ � can be represented as a Fourier polynomial in the

variables Ge :

f (G) �
∑

W⊆([n]
2
)

f̂ (W)χW (G),
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where χW (G) is the parity function on edges in W :

χW (G) � Πe∈W Ge .

The parity function χW are an orthonormal basis for functions on G under the

inner product defined by 〈 f , h〉 � �G∼G(n , 1
2
)[ f (G)h(G)] for any graph functions f

and h.

The following fact is easy to verify:

Fact 11.2.3. Let G be a graph on n described by the vector G ∈ {−1, 1}(n2). For any

subset S ⊆ [n] of the vertices, we have the identity:

∑
W⊆(S

2
)
χW (G) �


2
(|S |

2
)

if S is a clique in G,

0 otherwise.

11.3 Definition of Pseudocalibrated ˜� and Proof of Theo-

rem 11.1.1

We now define our pseudo-distribution operator
˜�G. Following the pseudo-

calibration recipe, it is a well-chosen projection of a planted distribution to

low-degree functions. In order to satisfy the constraints xix j � 0 for i / j in

G, we choose for each monomial xS a slightly different set of low degree graph

functions to project to when defining
˜�G[xS].
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Important Parameters The following parameters will be fixed for the rest of

the paper.

• ε ∈ (0, 1/2), which determines the size ω � n1/2−ε
of the planted clique.

• d � d(n) ∈ �, the degree of the SoS relaxation against which we prove a

lower bound.

• τ � τ(n) ∈ �, the degree of our pseudoexpectation
˜� as a function of

G ∼ G(n , 1/2).

We always assume that Cd/ε 6 τ 6 (ε/C) log n and ε > C log log n/log n for

a sufficiently-large constant C. Eventually we will set d � (ε/C)2 log n, (this

yields the parameters stated in Theorem Theorem 11.1.1, since then n1/2−ε �

n1/2−Ω(d/log n)1/2
), which implies that ε � log log n/log n.

11.3.1 Definition of ˜�

Since the pseudoexpectation
˜�whichwe need to produce to prove Theorem 11.1.1

will satisfy {x2

i � xi}, we just need to specify its multilinear moments:
˜�[xI] for

I ⊆ [n] and |I | 6 d. The quantity
˜�[xI] is a function of Ge for e ∈

([n]
2

)
and so

can be written as a polynomial in Ge with coefficients
�˜�[xS](T) for each T ⊆

([n]
2

)
.

We will obtain an explicit expression for these Fourier coefficients as the low-

degree Fourier coefficients of a function associated to the planted distribution

G(n , 1/2, ω).

Definition 11.3.1 ( ˜� of degree d, clique-size ω, truncation τ). Let S ⊆ [n] be a set

of vertices of size |S | 6 d. Let T ⊆
([n]

2

)
be a set of edges. Let χT �

∏
e∈T Ge . Let

�˜�[xS](T) �


�(G,x)∼G(n ,1/2,ω)[χT(G)xS] if |V(T) ∪ S | 6 τ

0 otherwise .
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As usual,
˜�[xS] �

∑
T⊆([n]

2
)
�˜�[xS](T) · χT(G).

By definition,
˜�[xS] is the projection to Span{χT : |V(T) ∪ S | 6 τ} of the

function G 7→ �G(n ,1/2,ω)(G)
�G(n ,1/2)(G) · �x∼G(n ,1/2,ω)[xS | G] which maps a graph G to the

likelihood ratio G times the conditional probability that xS is in a planted clique

in G, according to the planted distribution.

The Fourier coefficients in the definition can in fact be explicitly computed

easily (in fact we have seen this computation before, in Chapter 2):

Lemma 11.3.2. Let T ⊆
([n]

2

)
, S ⊆ [n] andV(T) ⊆ [n] be the vertices incident to edges

in T. Then

�
(H,x)∼G(n ,1/2,ω)

[χT · xS] �
(
ω
n

) |V(T)∪S |
.

Proof. Throughout this proof, we suppress explicit notation for the underlying

random variable which is (H, x) ∼ G(n , 1

2
, ω). We claim that �[χT · xS] �

�[xV(T)∪S � 1]. To see this, note that

�[χT · xS] � �[xV(T)∪S � 1] · �[χT · xS | xV(T)∪S � 0]

+ (1 − �[xV(T)∪S � 1]) · �[χT · xS | xV(T)∪S � 0]. (11.3.1)

We note that the second term above is 0. It’s easy to see if xS � 0. Otherwise,

xV(T) � 0, and there is an edge e ∈ T but not contained in the clique x. Thus,

�[χeχT\e · xS | xV(T)∪S � 0] � 0 .

If xV(T)∪S � 1 then χT � 1, so �[χT · xS | xV(T)∪S � 1] � 1. By a simple

computation,

�[xV(T)∪S � 1] �
(
ω
n

) |V(T)∪S |
. �
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11.3.2 ˜� Satisfies Constraints

We now show that the
˜� defined in the previous section satisfies all the necessary

linear constraints. That is, 1)
˜�[1] ≈ 1, 2)

˜�[∑i∈[n] xi] ≈ ω, and 3)
˜�[xS] � 0 for

every S ⊆ [n]which is not a clique in G.

We analyze
˜�[1] and ˜�[∑i∈[n] xi] in the next lemma and include a proof based

on the moment method in Section 11.6.1.

Lemma 11.3.3. With high probability,
˜�[1] � 1 ± n−Ω(ε) and ˜�[∑i∈[n] xi] � ω · (1 ±

n−Ω(ε)).

The next lemma shows that
˜�[xS] � 0.

Lemma 11.3.4. With probability 1, if S ⊆ [n] of size at most d is not a clique in G, then

˜�[xS] � 0.

Proof. Let S ⊆ [n] have size at most d. Recall that S is a clique in G � 2
−(|S |

2
)∑

T⊆(S
2
) χT .

Becasue the Fourier expansion of
˜�[xS] is truncated using the threshold |V(T) ∪

S | 6 τ, two Fourier characters χT , χT′ have the same coefficient in
˜�[xS] if

T ⊕ T′ ⊆
(S
2

)
. So we can factor

˜�[xS] �S is a clique in G · fS(G) for some function

fS. �

11.3.3 Proof of Main Theorem

Our main technical claim is that
˜� � ˜�G is (approximately) PSD. That is:

Lemma 11.3.5. With high probability over G from G(n , 1/2), every p ∈ Pd satisfies,

˜�G[p(x)2] > 0
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It is easy to complete the proof of Theorem 11.1.1 now:

Proof of Theorem Theorem 11.1.1. By Lemma 11.3.3, Lemma 11.3.4, and

Lemma 11.3.5, there is a universal C so that if Cd/ε 6 τ 6 (1/C)ε log n, (by a

union bound) with high probability the following all hold:

1.
˜�[1] � 1 ± n−Ω(ε).

2.
˜�[xS] � 0 for every S of size at most d not a clique in G.

3.
˜�[∑i xi] > (1 − n−Ω(ε))ω.

4.
˜�[p(x)2] > 0 for every p ∈ Pd .

Thus, choose ε � (C2d/log n)1/2 and τ � (1/C)ε log n. The operator given by

˜�
∗[p(x)] � ˜�[p(x)]/ ˜�[1] is a valid degree-d pseudo-distribution with

˜�
∗[∑i xi] >

Ω(n1/2−Θ(d/log n)1/2) as desired. �

11.3.4 Proof Plan for Lemma 11.3.5

As is standard, we can reduce Lemma 11.3.5 to showing that the associated

moment matrix, is positive semidefinite.

Definition 11.3.6 (Moment Matrix). LetM ∈ �(
[n]
6d)×([n]6d) be given byM(I , J) �

˜�[xI x J].

Thus, Lemma 11.3.5 is equivalent to showing:

Lemma 11.3.7. With high probability,M � 0.
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The proof of Lemma 11.3.7 is the most technical in this thesis, and will require

significant work. At a high level our plan involves first getting an approximate

factorization of the moment matrix M � L Q0L> + error for appropriately

defined matrices L and Q0. This step is the key technical part of the proof – given

such a factorization, our task reduces to showing that Q0 and L L> have large

enough positive eigenvalues to compensate for the error.

The first approximate factorization step will occupy us in Section 11.4. The

technical work in second step involves showing upper bounds on the spectral

norms of appropriately defined pieces of Q0 and is the content of Section 11.5.

11.4 Approximate Factorization of the Moment Matrix

11.4.1 Ribbons and Vertex Separators

In this section we get set up for the first step in the proof of Lemma 11.3.7 by

setting up some definitions. Ribbonswill play a crucial role in our analysis:

Definition 11.4.1 (Ribbon). An (I , J)-ribbonR is a graph with edge set WR ⊆
([n]

2

)
and vertex set VR ⊇ V(WR) ∪ I ∪ J, for two specially identified subsets I , J ⊆ [n],

each of size at most d, called the left and the right ends, respectively. We

sometimes writeV(R) def� VR and call |V(R)| the size of R. Also, we write χR for

the monomial χWR where WR is the edge set of the ribbon R.

In our analysis, (I , J)-ribbons arise as the terms in the Fourier decomposition

of the entryM(I , J) in the moment matrix. It is important to emphasize that

the subsets I and J in an (I , J)-ribbon are allowed to intersect. Also V(R) can
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contain vertices that are not inV(WR) if there are isolated vertices in the ribbon.

Ultimately, we will want to partition a ribbon into three subribbons in such a

way that we can express the moment matrix as the sum of positive semidefinite

matrices, and some error terms. Our partitioning will be based on minimum

vertex separators.

Definition 11.4.2 (Vertex Separator). For an (I , J)-ribbon R with edge set WR , a

subset Q ⊆ V(R) of vertices is a vertex separator if Q separates I and J in WR . A

vertex separator is minimum if there are no other vertex separators with strictly

fewer vertices. The separator size of R is the cardinality of any minimum vertex

separator of R.

The following elementary lemma establishes that a ribbon has a unique

leftmost and rightmost vertex separator of minimum size. We defer its proof to

Section 11.6.2.

Lemma 11.4.3 (Leftmost/Rightmost Vertex Separator). Let R be an (I , J)-ribbon.

There is a unique minimum vertex separator S of R such that S separates I and Q for any

vertex separator Q of R. We call S the leftmost separator in R. We define the rightmost

separator analogously and we denote them by SL(R) and SR(R) respectively.

We illustrate the notion of a leftmost and rightmost vertex separator in the

example below.

Let I � {a , b , c} and let J � {c , x , y , z}. The maximum number of vertex disjoint

paths from I to J is 2 — for example, we could take the path {c} and the

path {b , h , i , j, z}. The leftmost and rightmost separators are SL � {c , i} and

SR � {c , j} respectively. This example illustrates an important point that when I

and J intersect, SL and SR must both contain I ∩ J.
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SL 

SR 

11.4.2 Factorization of Monomials

Our factorization of M will rely on an iterative argument for grouping and

factoring the Fourier characters in the decomposition ofM(I , J).

Definition 11.4.4 (Canonical Factorization). Let R be an (I , J)-ribbon with edge

set WR and vertex set VR . Let V` be the vertices reachable from I without passing

through SL(R), and similarly for Vr , and let Vm � VR \ (V` ∪ Vr). Let W` ⊆ WR

be given by

W` � {(u , v) ∈ WR : u ∈ V` and v ∈ V` ∪ SL}

and similarly for Wr . Finally, let Wm � WR \ (W` ∪Wr).

Let R` be the (I , SL(R))-ribbon with vertex set V` ∪ SL(R) and edge set W`

and similarly for Rr . Let Rm be the (SL(R), SR(R))-ribbon with vertex set Vm and

edge set Wm . The triple (R` ,Rm ,Rr) is the canonical factorization of R.

Some facts about the canonical factorization are worth emphasizing. First,

W` ,Wm and Wr are disjoint and are a partition of WR by construction. Hence

χR � χW` · χWm · χWr . Second, some vertices in I may not be in V` at all. However

any such vertices that are in I but not V` are necessarily in SL and thus will be

contained in R` anyways. This is why we can say that R` is an (I , SL(R))-ribbon.
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The following illustrates what the canonical factorization would look like in our

earlier example:

a 

b 

c 

h 

i 

R L 

c 

j i 

R M 

c 

x 

y 

z 

k 

j 

R R 

We chose this example to illustrate a subtle point. The edge (i , c) has both its

endpoints in both R` and Rm . We could in principle choose to place it in either,

but we have adopted the convention that because both of its endpoints are in SL

we place it in Rm . In this way, there are no edges within SL in R` or within SR in

Rm . Finally, note that there can be isolated vertices in R` or Rr but such vertices

need to be in I or J respectively.

With the definition of the canonical factorization in hand, we will collect some

important properties about it that we will make use of later:

Claim 11.4.5. Let R be an (I , J)-ribbon with canonical factorization (R` ,Rm ,Rr).

Then

|V(R)| � |V(R`)| + |V(Rm)| + |V(Rr)| − |SL(R)| − |SR(R)|.

Proof. It is important to note that SL(R) and SR(R) are not necessarily disjoint

(indeed, this happens in the example above). Nevertheless, we know that by

construction V`, Vm and Vr are disjoint and that SL(R) ∪ SR(R) ⊆ Vm . Every

vertex that appears just once in SL(R) and SR(R) appears twice in the canonical
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factorization. And every vertex that is in SL(R) ∩ SR(R) appears three times.

Thus

|V(R)| � |V(R`)| + |V(Rm)| + |V(Rr)|

− |SL(R)/SR(R)| − |SR(R)/SL(R)| − 2|SL(R) ∩ SR(R)|

which completes the proof. �

In the discussion above, we established some properties that a canonical

factorization must satisfy. Next we show the reverse direction, that any collection

of ribbons that satisfies the below properties must be a canonical factorization.

Consider a collection of ribbons R0,R1,R2, and the following list of properties:

S` , Sr Factorization Conditions for R0,R1,R2 (Here S` , Sr ⊆ [n].)

1. R0 is an (I , S`)-ribbon with SL(R0) � SR(R0) � S` , and all vertices inV(R0)

are either reachable from I without passing through S` or are in I or S`.

Finally, R0 has no edges between vertices in S` .

2. R2 is an (Sr , J)-ribbon with SL(R2) � SR(R2) � Sr , and all vertices inV(R2)

are either reachable from J without passing through Sr or are in J or Sr .

Finally, R2 has no edges between vertices in Sr .

3. R1 is an (S` , Sr)-ribbon with SL(R1) � S` and SR(R1) � Sr . Every vertex in

V(R1) \ (S` ∪ Sr) has degree at least 1.

4. WR0
,WR1

,WR2
are pairwise disjoint. Also, VR0

∩ VR1
� S` ,VR1

∩ VR2
� Sr ,

and VR0
∩ VR2

� S` ∩ Sr .

Lemma 11.4.6. Let R0,R1,R2 be ribbons. Then (R0,R1,R2) is the canonical fac-

torization of the (I , J)-ribbon R with edge set WR0
⊕ WR1

⊕ WR2
and vertex set
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V(R0) ∪ V(R1) ∪ V(R2) if and only if the S` , Sr factorization conditions hold for

R0,R1,R2 for some S` , Sr ⊆ [n].

Proof. If R is a ribbon with leftmost and rightmost vertex separators S` and Sr

and canonical factorization (R0,R1,R2), then many of the conditions above are

automatically satisfied. By construction, WR0
,WR1

,WR2
are pairwise disjoint.

Because any edge with both endpoints in S` is included in Rm we have that there

are no edges between vertices in S` in R0, and similarly for R2. Finally suppose

there is a vertex u in R0. If u is not reachable from I without passing through S`

and is not in I or S` then it would not be included in R0. An identical argument

holds for R2.

All that remains is to verify that SL(R0) � SR(R0) � S` and similarly forR1,R2.

If S` � SL(R) is not a minimum-size vertex separator for R0, then it is also not a

minimum-size vertex separator for R, which is impossible. Similarly, if it is not

the leftmost separator for R0 then it was not the leftmost separator for R. Since

R0 is an (I , S`)-ribbon and S` is a minimum-size separator, it must also be the

right-most minimum-size separator.

Now in the reverse direction, suppose that R0,R1,R2 are ribbons that meet

the S` , Sr factorization conditions. We claim that S` is the leftmost separator

for R. If not, then either their is a smaller vertex separator, or there is a vertex

separator S′` of the same size that separates I and S`. To rule out the former

case, note that since S` and Sr are both minimum vertex separators for R1, we

must have |S` | � |Sr |. Then it follows from the S` , Sr factorization conditions

that there are |S` | vertex disjoint paths from I to J, but this would contradict the

fact that there is a vertex separator with fewer than |S` | vertices. In the latter

case, any other vertex separator S′` of the same size that separates I and S` would
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contradict the condition SL(R0) � S` . An identical argument shows that Sr is the

rightmost separator for R.

Finally, by assumption all the vertices inV(R0) are either reachable from I

without passing through S` or are in I or S` and hence would be included in

R0. Similarly, there are no edges in WR0
with both endpoints in S`. Thus if we

were to compute the canonical factorization for R we would get the same set of

vertices in each ribbon and the same partition of the edges. �

11.4.3 Factorization of Matrix Entries

This leads to our first factorization of the entriesM(I , J) ofM. Unfortunately, the

error terms in this first attempt will be too large. Using canonical factorizations

and Claim 11.4.5, for any I , J ⊆ [n] of size at most d we can write

M(I , J) (11.4.1)

�

∑
R an (I , J)-ribbon with edge set W ,

|V(W)|6τ
canonical factorization (R` ,Rm ,Rr)

(ω
n

) |V(R)|
· χR` · χRm · χRr

�

∑
S` ,Sr⊆[n]
|S` |�|Sr |6d

(ω
n

)− |S` |+|Sr |
2

(11.4.2)

∑
R` ,Rm ,Rr⊆([n]

2
)

satisfying S` , Sr factorization conditions

and |V(R`)∪V(Rm)∪V(Rr)|6τ

(ω
n

) |V(R`)|+|V(Rm)|+|V(Rr)|−
|S` |+|Sr |

2 · χR` · χRm · χRr
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Notice that except for the disjointness condition, the S` , Sr factorization conditions

can be separated into condition 1 for R` , condition 3 for Rm , and condition 2 for

Rr . We use this to rewrite as

�

∑
S` ,Sr⊆[n]
|S` |�|Sr |6d

(ω
n

)− |S` |+|Sr |
2

(11.4.3)

©«
∑

R` having 1

|V(R`)|6τ

(ω
n

) |V(R`)|
χR`

ª®®®¬
©«

∑
Rmhaving 3

|V(Rm)|6τ

(ω
n

) |V(Rm)|−
|S` |+|Sr |

2

χRm

ª®®®¬
©«

∑
Rrhaving 2

|V(Rr)|6τ

(ω
n

) |V(Rr)|
χRr

ª®®®¬
(11.4.4)

−
∑

S` ,Sr⊆[n]
|S` |�|Sr |6d

(ω
n

)− |S` |−|Sr |
2

∑
R` ,Rm ,Rr

satisfying S` , Sr conditions

|V(R`)|,|V(Rm)|,|V(Rr)|6τ,
|V(R`)∪V(Rm)∪V(Rr)|>τ

(ω
n

) |V(R`)|+|V(Rm)|+|V(Rr)|−
|S` |+|Sr |

2 · χR` · χRm · χRr

︸                                                                                                                       ︷︷                                                                                                                       ︸
def

� ξ0(I , J), the error from ribbon size

(11.4.5)

−
∑

S` ,Sr⊆[n]
|S` |�|Sr |6d

(ω
n

)− |S` |−|Sr |
2

∑
R` ,Rm ,Rr satisfying

1,3,2 and not 4

|V(R`)|,|V(Rm)|,|V(Rr)|6τ

(ω
n

) |V(R`)|+|V(Rm)|+|V(Rr)|−
|S` |+|Sr |

2 · χR` · χRm · χRr

︸                                                                                                                      ︷︷                                                                                                                      ︸
def

� E0(I , J), the error from ribbon nondisjointness

.

(11.4.6)

11.4.4 Factorization of the MatrixM

In lines 11.4.5 and 11.4.6 we have defined two error matrices, ξ0, E0 ∈ �(
[n]
6d)×([n]6d).

Inspired by the factorization ofM(I , J) in line 11.4.4, we define another pair of

matrices as follows:

Q0 ∈ �(
[n]
d )×([n]d ) given by Q0(S` , Sr) �

∑
Rm having 3

|V(Rm)|6τ

(ω
n

) |V(Rm)|−
|S` |+|Sr |

2

χRm
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L ∈ �(
[n]
d )×([n]d ) given by L(I , S) �

(ω
n

)− |S |
2

∑
R` having 1

|V(R`)|6τ

(ω
n

) |V(R`)|
χR` .

The powers of (ω/n) are split between Q0 and L so that the typical of eigenvalue

of Q0 will be approximately 1 (although it will be some time before we are

prepared to prove that).

The equation in lines 11.4.4, 11.4.5, and 11.4.6 can be written succinctly as

M � L Q0L> −ξ0 − E0 .

As we will see later, with high probability Q0 � 0, and thus also L Q0L> � 0.

So long as τ is sufficiently large, the spectral norm ‖ξ0‖ of the error term that

accounts for ribbons whose size is too large will be negligible. However, the error

E0 does not turn out to be negligible. To overcome this we will apply a similar

factorization approach to E0 as we did forM; iterating this factorization will

push down the error from ribbon nondisjointness.

We record an elementary fact about Q0:

Lemma 11.4.7. Let Π be the projector to Span{eC : C ∈ C6d}. Then Q0 � ΠQ0 �

Q0Π.

Proof. Suppose S is not a clique in G. We need to show that the row Q0(S, ·) is

zero. For every entry Q0(S, S′), notice that the Fourier coefficients
�Q0(S, S′)(T) ��Q0(S, S′)(T′) if T, T′ ⊆

([n]
2

)
disagree only on edges inside S. (That is, T⊕T′ ⊆

(S
2

)
.)

This means that Q0(S, S′) �S is a clique in G · fS,S′(G) for some function fS,S′. �
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11.4.5 Iterative Factorization of E0

We recall now the definition of the matrix E0 ∈ �(
[n]
6d)×([n]6d).

E0(I , J) �∑
S` ,Sr⊆[n]
|S` |�|Sr |6d

(ω
n

)− |S` |+|Sr |
2

∑
R` ,Rm ,Rr satisfying

1,3,2 and not 4

|V(R`)|,|V(Rm)|,|V(Rr)|6τ

(ω
n

) |V(R`)|+|V(Rr)|+|V(Rm)|−
|S` |+|Sr |

2 · χR` · χRm · χRr .

In what follows, we will show how to factor a slightly more general sort of matrix;

this factorization will be applicable iteratively, starting with E0.

The matrix Ec and its factorization

To express the family of matrices we will factor, we introduce a relaxation of our

definition of ribbon and a corresponding relaxation 3* of condition 3 of the S` , Sr

factorization conditions.

Definition 11.4.8 (Improper Ribbon). An improper (I , J)-ribbon R is an (I , J)-

ribbon R0 together with a setZ(R) ⊆ [n] of vertices disjoint fromV(R0). (Think

of adding the vertices Z(R) to the ribbon R0 as degree-0 nodes.) We write

V(R) � V(R0) ∪ Z(R). When we need to distinguish, we sometimes call

ordinary ribbons “proper”.

Every ribbon is also an improper ribbon by taking Z(·) � ∅, and every

improper ribbon has a corresponding ribbon given by deleting its degree-0

vertices.

Relaxed Factorization Condition for ribbon R1 with S` ,Sr ⊆ [n]

3*. R1 is an improper (S` , Sr)-ribbon.
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Let c be a �-valued function c(R) on (possibly improper) ribbons. Let

Ec ∈ �(
[n]
6d)×([n]6d) be given by

Ec(I , J) �∑
S` ,Sr⊆[n]
|S` |,|Sr |6d

(ω
n

)− |S` |+|Sr |
2

∑
R` ,Rm ,Rr satisfying

1,3*,2 and not 4

|V(R`)|,|V(Rm)|,|V(Rr)|6τ

c(Rm)
(ω

n

) |V(R`)|+|V(Rr)|+|V(Rm)|−
|S` |+|Sr |

2 · χR` · χRm · χRr .

(11.4.7)

Note that 3 is a strictly more restrictive condition than 3*. Hence we can define

the function c0 by c0(Rm) � 1 if Rm satisfies 3 and c0(Rm) � 0 otherwise. Then

E0 � Ec0
. In this subsection, we will show how to factor any matrix of the form

Ec as

Ec � L Qc′ L> −Ec′ − ξc

for some function c′ on ribbons and matrices Qc′ , ξc ∈ �(
[n]
6d)×([n]6d) where ‖ξc ‖ is

negligible with high probability.

Just as our initial factorization of M began with a factorization of each

ribbon appearing in the Fourier expansion, our factorization of Ec depends

on a factorization for each triple (R` ,Rm ,Rr) appearing in 11.4.7. Since they

do not satisfy 4, there must be some vertices occurring in more than one of

V(R`),V(Rm),V(R`). Before, the canonical factorization depended on the

leftmost and rightmost vertex separators in an (I , J)-ribbon R separating I from J.

But now we will be interested in leftmost and rightmost separators that separate

both I and J from each other and from these repeated vertices.

Definition 11.4.9 (Separating Factorization). Let R` ,Rm ,Rr be ribbons satisfying

S` , Sr factorization conditions 1, 3*, 2 but not 4, with |V(R`)|, |V(Rm)|, |V(Rr)| 6

τ. Let R be the (I , J)-ribbon with edge set WR` ⊕ WRm ⊕ WRr and vertex set

321



V(R`) ∪ V(Rm) ∪ V(Rr). (Thus, χR` · χRm · χRr � χR .)

Let S′` be the leftmost minimum-size vertex separator in R which separates

I from J and any vertices appearing in more than one ofV(R`),V(Rm),V(Rr).

Similarly, let S′r be the rightmost minimum-size vertex separator in R separating

J from I and these repeated vertices. (Notice that S′` and S′r could have different

sizes.)

Let V′` be the vertices reachable from I without passing through S′` and

similarly for V′r . Let V′m � VR \ (V′` ∪ V′r). Let W′` � {(u , v) ∈ WR : u ∈ V` , v ∈

V` ∪ S′`} and similarly for W′r , and let W′m � WR \ (W′` ∪W′r).

Let R′` be the (I , S
′
`)-ribbon with vertex set V′` ∪ S′` and edge set W′` and let

R′r be the (S′r , J)-ribbon with vertex set V′r ∪ S′r and edge set W′r . Finally, let R′m
be the improper (S′` , S

′
r)-ribbon with edge set W′m and vertex set (V(R) \ (V′` ∪

V′r)) ∪ S′` ∪ S′r).

Note that χR` · χRm · χRr � χR′` · χR′m · χR′r if R′` ,R
′
m ,R′r is the separating

factorization for R` ,Rm ,Rr . We can use this to rewrite Ec as

Ec(I , J) �∑
S` ,Sr⊆[n]
|S` |,|Sr |6d

(ω
n

)− |S` |+|Sr |
2

∑
R` ,Rm ,Rr satisfying

1,3*,2 and not 4

|V(R`)|,|V(Rm)|,|V(Rr)|6τ
separating factorization

R′` ,R
′
m ,R′r ,S′` ,S

′
r

c(Rm)
(ω

n

) |V(R`)|+|V(Rr)|+|V(Rm)|−
|S` |+|Sr |

2 · χR′` · χR′m · χR′r

(11.4.8)

Our goal is to find some coefficient function c′ on (improper) ribbons and amatrix

Qc′ so that this is approximately equal to L Qc′ L> −Ec′. For c′ yet to be chosen,
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we take

Qc′(S′` , S
′
r)

def

�

∑
R′m having 3*

|V(R′m)|6τ

c′(R′m)
(ω

n

) |V(R′m)|− |S′` |+|S′r |2

χR′m

and have that

L Qc′ L>(I , J) − Ec′(I , J) �∑
S′` ,S

′
r⊆[n]

|S′` |,|S
′
r |6d

(ω
n

)− |S′` |+|S′r |
2

∑
R′` ,R

′
m ,R′r satisfying
1,3*,2, and 4

|V(R′`)|,|V(R
′
m)|,|V(R′r)|6τ

c′(R′m)
(ω

n

) |V(R′`)|+|V(R′r)|+|V(R′m)|− |S′` |+|S′r |2 · χR′` · χR′m · χR′r .

(11.4.9)

We will compare (11.4.8) and (11.4.9) by collecting like terms, but first we handle

the discrepancy in the size bounds on the ribbons with a corresponding error

term ξc . The following matrix is similar to Ec , but places a size bound on the

ribbons in the separating factorization |V(R′`)|, |V(R
′
m)|, |V(R′r)| 6 τ. We define

E′c(I , J) �∑
S` ,Sr⊆[n]
|S` |,|Sr |6d

(ω
n

)− |S` |+|Sr |
2

∑
R` ,Rm ,Rr satisfying

1,3*,2 and not 4

separating factorization

R′` ,R
′
m ,R′r ,S′` ,S

′
r

|V(R′`)|,|V(R
′
m)|,|V(R′r)|6τ

c(Rm)
(ω

n

) |V(R`)|+|V(Rr)|+|V(Rm)|−
|S` |+|Sr |

2 · χR′` · χR′m · χR′r

We take ξc � E′c − Ec and we will show below that with high probability the

error ‖ξc ‖ is negligible. Before doing this, we show that E′c is exactly equal to

L> Qc′ L> −Ec′ for the correct choice of c′.

To collect like terms, it helps to define the following quantity γR′` ,R
′
m ,R′r ,I , J,S′` ,S

′
r .

γR′` ,R
′
m ,R′r ,I , J,S′` ,S

′
r

def

�

∑
R` ,Rm ,Rr satisfying

1,3*,2 and not 4 for some S` ,Sr
separating factorization R′` ,R

′
m ,R′r ,S′` ,S

′
r

c(Rm)
(ω

n

) |V(R`)|+|V(Rm)|+|V(Rr)|+
|S′
`
|+|S′r |
2
−|S` |−|Sr |

.
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Then we can rewrite E′c(I , J) again as

E′c(I , J) �
∑

S′` ,S
′
r⊆[n]

|S′` |,|S
′
r |6d

(ω
n

)− |S′` |+|S′r |
2

∑
R′` ,R

′
m ,R′r

satisfying 1, 3*, 2, 4 for S′` , S
′
r

|V(R′`)|,|V(R
′
m)|,|V(Rr)|6τ

γR′` ,R
′
m ,R′r ,I , J,S′` ,S

′
r · χR′` · χR′m · χR′r

We will obtain E′c � L> Qc′ L> −Ec′ if we define c′(R′m) so that

c′(R′m)
(ω

n

) |V(R′`)|+|V(R′r)|+|V(R′m)|− |S′` |+|S′r |2

� γR′` ,R
′
m ,R′r ,I , J,S′` ,S

′
r

To express this in terms of the function c, we expand out γR′` ,R
′
m ,R′r ,I , J,S′` ,S

′
r . It is

useful to define:

Definition 11.4.10. Let

r � (|V(R`)|+|V(Rm)|+|V(Rr)|−|S` |−|Sr |)−(|V(R′`)|+|V(R
′
m)|+|V(R′r)|−|S′` |−|S

′
r |) .

(The ribbons R` ,Rm ,Rr ,R′` ,R
′
m ,R′r will always be clear from context.)

Note that (V(R`)| + |V(Rm)| + |V(Rr)| − |S` | − |Sr |) is the total number of

verticeswewould have in the (I , J)-ribbonwith vertex setV(R`)∪V(Rm)∪V(R`)

if R` ,Rm ,Rr satisfied condition 4 (which they do not!). Similarly, (|V(R′`)| +

|V(R′m)| + |V(R′r)| − |S′` | − |S
′
r |) is the total number of vertices in the (I , J)-ribbon

with edge setW(R′`)∪W(R
′
m)∪W(R′r) and vertex setV(R′`)∪V(R

′
m)∪V(R′r).

Thus, r is the number of vertices occurring with multiplicity higher than they

should inV(R`) ∪ V(Rm) ∪ V(Rr).

We can rewrite the γ’s as

γR′` ,R
′
m ,R′r ,I , J,S′` ,S

′
r �

(ω
n

) |V(R′`)|+|V(R′m)|+|V(R′r)|− |S′` |+|S′r |2

∑
R` ,Rm ,Rr satisfying

1,3*,2 and not 4 for some S` ,Sr
r intersections outside S` ,Sr

separating factorization R′` ,R
′
m ,R′r S′` ,S

′
r

c(Rm)
(ω

n

) r
.
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Thus, we will have that E′c � L Qc′ L> −Ec′ if and only if for every (S′` , S
′
r)-ribbon

R′m and every R′` ,R
′
r satisfying 1, 2,

c′(R′m) �
∑

R` ,Rm ,Rr satisfying

1,3*,2 and not 4 for some S` ,Sr
r intersections outside S` ,Sr

separating factorization R′` ,R
′
m ,R′r S′` ,S

′
r

c(Rm)
(ω

n

) r
.

Note that for this to happen, the right hand side must be independent of R′` and

R′r . If this is the case, then we can define

c′(R′m)
def

�

∑
R` ,Rm ,Rr satisfying

1,3*,2 and not 4 for some S` ,Sr
r intersections outside S` ,Sr

separating factorization R′` ,R
′
m ,R′r S′` ,S

′
r

c(Rm)
(ω

n

) r
for some R′` ,R

′
r satisfying 1, 2 .

The next claim shows that, indeed, the choice of R′` ,R
′
r does not matter. (This

would not have been true without passing from Ec to E′c .)

Claim 11.4.11. Let R′` ,R
′
m ,R′r satisfy 1, 3*, 2, 4 for some S′` , S

′
r ⊆ [n]. Let R

′′
` and

R′′r also satisfy 1 and 2, respectively, for S′` , S
′
r , respectively. Then∑

R` ,Rm ,Rr satisfying

1,3*,2 and not 4 for some S` ,Sr
r intersections outside S` ,Sr

separating factorization R′` ,R
′
m ,R′r S′` ,S

′
r

c(Rm)
(ω

n

) r
�

∑
R` ,Rm ,Rr satisfying

1,3*,2 and not 4 for some S` ,Sr
r intersections outside S` ,Sr

separating factorization R′′` ,R
′
m ,R

′′
r S′` ,S

′
r

c(Rm)
(ω

n

) r
.

(Notice that the left-hand sum refers to R′` ,R
′
r and the right-hand one to R′′` ,R

′′
r .)

Proof. We prove this by showing that there is an exact match between terms on

the left hand side and terms on the right hand side. Consider a term on the left

hand side. Note that the part of R` between I and S′` must be R′` while the part

of R` between S′` and S` becomes part of R′m . To shift from R′` to R
′′
` , we simply

replace R′` by R
′′
` within R` . Similarly, to shift from R′r to R′′r , we simply replace

R′r by R′′r within Rr .
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To show that this gives an exact match, we need to show that r is unaffected

by these shifts. To see that shifting from R′` to R
′′
` does not affect r, note that

all vertices in V(R′`) \ S′` or V(R
′
`) \ S′` must appear in the corresponding R`

and cannot appear in Rm or Rr . Thus, these vertices always have multiplicity 1

in V(R`) ∪ V(Rm) ∪ V(Rr). All other vertices (including the ones in S′`) may

appear in Rm or Rr as well as R` but whether or not they do so is unaffected by

the shift so their multiplicities inV(R`) ∪ V(Rm) ∪ V(Rr) are unaffected by the

shift and r remains the same. A similar argument holds for shifting from R′r to

R′′r �

Remark 11.4.12. For this argument, it was important to keep track of the isolated

vertices in R′m . If we did not keep track of isolated vertices and instead had them

disappear, we could have a situation where there is a vertex v which appears in

R` and Rm but disappears from R′m and is not in S′`. Since v is no longer in R′m ,

R′′` could contain v. If so, then we cannot shift from R′` to R
′′
` as this would create

a copy of v to the left of S′` but v should be to the right of S′` .

Putting everything together, E′c � L Qc′ L> −Ec′. Since we defined ξc �

E′c − Ec , we get that Ec � L Qc L> −Ec′ − ξc , as needed.

The remaining step will be to show that with high probability, the error term

ξc has negligible norm, which we will accomplish in Section 11.5.5.

Finally, we record the following easy lemma about separating factorizations,

which will be useful in the application of the foregoing to factor E0.

Lemma 11.4.13. Suppose R` ,Rm ,Rr satisfy conditions 1, 3*, 2, but not 4. Let

R′` ,R
′
m ,R′r be their separating factorization, with separators S′` , S

′
r . Then

|S′` | + |S
′
r |

2

− |S` | + |Sr |
2

>
1

2
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Proof. We claim that |S` | + |Sr | + 1 6 |S′` | + |S
′
r | By the violation of condition 4,

we cannot have S` � S′` and Sr � S′r . But since S′` separates I from S` in R` and

R` is an (I , S`)-ribbon whose rightmost vertex separator is also S` , if S` , S′` then

|S` | < |S′` |, and similarly for Sr and S′r . So either |S` | < |S′` | or |Sr | < |S′r |, and

since the separator sizes are integers, so the difference must be at least 1 and we

are done. �

Application to E0 andM

We are ready to define our recursive factorization of E0. Recall that c0(Rm) � 1 if

Rm satisfies 3 and c0(Rm) � 0 otherwise and E0 � Ec0
. Applying the factorization

above to Ec0
we obtain matrices ξ1 � ξc0

,Q1, and Ec1
. Then of course we can

apply the factorization again to Ec1
.

Proceeding inductively, for all i ∈ [1, 2d] let ξi � ξci−1
,Qi , and Eci be the

matrices given by applying the factorization to Eci−1
at step i.

Claim 11.4.14.

M � L(Q0 − Q1 +Q2 − . . . − Q2d−1
+Q

2d) L> −(ξ0 − ξ1 + ξ2 − . . . − ξ2d−1
+ ξ

2d) .

Proof. We have thatM � L(Q0) L> −E0 − ξ0 and Ei−1 � L Qi L> −Ei − ξci−1
�

L Qi L> −Ei − ξi . We prove the claim by starting with the first formula and

appliying the second formula for each i ∈ [1, 2d]. At the end, we are left with an

extra term E
2d . We must show that E

2d � 0.

To see why E
2d � 0, note that every time we have a separating factorization

R′` ,R
′
m ,R′r forR` ,Rm ,Rr , the size of either the left separator or the right separator

must increase (see Lemma 11.4.13). However, the size of these separators is
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always at most d, so the only way we can do this for 2d steps is if we started with

the empty set as the separators and increased the size of either the left or right

separator by 1 each time, but not both. However, this too is impossible as if we

start with the empty set as the separators, after the first step both the new left

separator and the new right separator must have size at least 1. �

11.5 M is PSD

In this sectionwe combine the factorization ofM in terms of thematricesL ,Qi , ξi

that we obtained in Section 11.4 with estimates on the eigenvalues of the Qs and

ξs. The starting point is the following PSDness claim for Q0.

Lemma 11.5.1. Let D ∈ �(
[n]
6d)×([n]6d) be the diagonal matrix with D(S, S) � 2

(|S |
2
)/4 if S

is a clique in G and 0 otherwise. With high probability, Q0 � D.

We also need to bound ‖Qi ‖ for i > 0.

Lemma 11.5.2. Let D ∈ �(
[n]
6d)×([n]6d) be the diagonal matrix with D(S, S) � 2

(S
2
)/4 if S

is a clique and is otherwise zero. With high probability, every Qi for i ∈ [1, 2d] satisfies

−D
8d
� Qi �

D
8d
.

The preceding lemmas are enough to obtain Q0 − . . . + Q2d � D/2, but in the

end we need to work with the matrix L(Q0 − . . . +Q2d) L> −(ξ0 − . . . + ξ2d). The

next two lemmas allow us to make this last step.

Lemma 11.5.3. With high probability, ΠLΠL>Π � Ω(ω/n)d+1 ·Π, where as usual

Π is the projector to Span{eC : C ∈ C6d}.
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Finally, we need a bound on the ξ matrices.

Lemma 11.5.4. With high probability, ‖ξ0 − . . . + ξ2d ‖ 6 n−16d
.

We can now prove Lemma 11.3.7.

Proof of Lemma 11.3.7. By Claim 11.4.14,

M � L(Q0 − Q1 +Q2 − . . . − Q2d−1
+Q

2d) L> −(ξ0 − ξ1 + ξ2 − . . . − ξ2d−1
+ ξ

2d) .

By a union bound, with high probability the conclusions of Lem-

mas 11.5.1, 11.5.2, 11.5.3, and 11.5.4 all hold. By Lemma 11.5.1 and Lemma 11.5.2,

Q0 − Q1 + Q2 − . . . − Q2d−1
+ Q

2d �
D
2

� Π
2

.

where as usual Π is the projector to Span eC : C ∈ C6d . Thus by Lemma 11.5.3,

we obtain L(Q0 − . . . + Q2d) L> � Ω(ω/n)d+1 ·Π. Finally, by Lemma 11.5.4 we

have

M � Π · M ·Π � Ω
(ω

n

)d+1

·Π − n−16d ·Π � 0 . �

In the next subsections, we prove the foregoing lemmas.

11.5.1 Ribbons and Spectral Norms

We will require bounds on the spectral norm of certain random matrices. Our

random matrices arise out of decompositions of the moment matrix from Defini-

tion 11.3.6 and are functions of a graph G on vertex set [n]. Our norm bounds

will hold for what we call graphical matrices, that are are defined to capture the

matrices that are invariant under a permutation of the vertices of G and are in

fact "minimal" such matrices.
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We first define the shape of a ribbon that identifies the structure of a ribbon up

to relabelling.

Definition 11.5.5 (Shape of a Ribbon). For an (I , J)-ribbon R, consider the graph

U on the vertex set [|V(R)|]whose edges are

E(U) � {(i , j) : there is an edge in R from the i-th to the j-th least element ofV(R)} .

(Here we are considering V(R) to have the usual ordering inherited from

[n].) Also, let U have two distinguished subsets of vertices A and B, where

A � {i : the i-th element ofV(R) is in I}, and similarly for B and J. We call U

the shape of R and write shape(R) � U.

We record some observations on shapes of ribbons.

• If R is a ribbon (not an improper ribbon), its shape satisfies the condition

that every vertex outside A ∪ B has degree at least 1.

• If, for example, R is an (I , J) ribbon where I ∩ J � {1} (which must be the

least element in both I and J), then in order for the (I′, J′)-ribbon R′ to have

the same shape asR it is necessary that |I′∩ J′| � 1. More broadly, specifying

the shape of a ribbon in particular specifies the pattern of intersection of its

endpoints.

• A matrix M ∈ �( n
6d)×( n

6d) whose entries are given by M(I , J) �∑
R an (I , J)-ribbon with shape U χR satisfies the assumptions of Lemma 11.5.8.

In the following sections, our main strategy will be to decompose the

matrices Qi into matrices of this form.

We are now ready to define graphical matrices.
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Definition 11.5.6 (Graphical Matrices). Let U be a graph on the vertex set [t]

with two distinguished sets of vertices A, B ⊆ [t]. Let T (U) be the collection of

all I , J ribbons with shape U. The graphical matrix M ∈ �(
[n]
|A|)×([n]|B |)

of shape U is

defined by

M(I , J) �
∑

R:R is an (I , J)-ribbon and shape(R)�U

χR .

Example 11.5.7. When U is a graph on 2 vertices with distinguished sets {1}

and {2} of size 1 each and a single edge connecting vertex 1 and 2, the graphical

matrix of shape U is just the standard {−1, 1}-adjacency matrix of the graph G.

The following lemmawill be ourmain tool. It is in essence due toMedarametla

and Potechin [127] and special cases of the bound have been proven and used in

[89, 63]. We give a proof in the appendix for completeness.

Lemma 11.5.8. Let U be a graph on t 6 O(log n) vertices, with two distinguished

subsets of vertices A and B, and suppose:

• U admits p vertex-disjoint paths from A \ B to B \ A.

• |A ∩ B | � r.

• Every vertex outside A ∪ B has degree at least 1.

Let M � M(G) be the graphical matrix with shape U. Then, whp, ‖M‖ 6 n
t−p−r

2 ·

2
O(t) · (log n)O(t−r+p)

.

Remark 11.5.9. Lemma 11.5.8 can be seen as a generalization of the standard upper

bound on the spectral norm of the adjacency matrix. Example 11.5.7 shows how

adjacency matrix is a graphical matrix with a shape U on 2 vertices with a single

edge connecting them, thus t � 2, r � 0 and p � 1. Lemma 11.5.8 thus shows

an upper bound of

√
n poly log (n) on the spectral norm of the adjacency matrix

which is tight up to a poly log (n) factor.
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11.5.2 Positivity for Q0 — Proof of Lemma 11.5.1

In this section we prove Lemma 11.5.1, which we restate here.

Lemma (Restatement of Theorem 11.5.1). Let D ∈ �(
[n]
6d)×([n]6d) be the diagonal matrix

with D(S, S) � 2
(|S |

2
)/4 if S is a clique in G and 0 otherwise. With high probability,

Q0 � D.

Proof of Lemma 11.5.1. To begin, we split Q0 into its diagonal Qdiag

0
and its off-

diagonal Qoff-diag

0
parts.

Qdiag

0
(S` , Sr) �


Q0(S` , Sr) if S` � Sr

0 otherwise.

Qoff-diag

0
(S` , Sr) �


Q0(S` , Sr) if S` , Sr

0 otherwise.

Then Q0 � Qdiag

0
+ Qoff-diag

0
. Expanding Qdiag

0
,

Qdiag

0
(S, S) �

2
(|S |

2
) ·S is a clique ·

©«
1 +

∑
R nonempty, having 3

and no edges inside S
|S |<|R|6τ

(ω
n

) |V(R)|−|S |
· χR

ª®®®®®®¬
� 2
(|S |

2
) ·S is a clique ·(1 ± n−Ω(ε))

for all S ∈
([n]

d

)
with high probability by a similar argument as in Lemma 11.3.3

and a union bound.

Next, we bound ‖Qoff-diag

0
‖ be decomposing it according to ribbon shape.

Fix s , t 6 τ. Let U(s ,t)
1

, . . . ,U(s ,t)q be all the graphs on vertex set [t] with two

distinguished sets of vertices A, B, both of size s, with |A ∩ B | 6 s − 1, and where

there are s − |A ∩ B | vertex-disjoint paths from A \ B to B \A. Let M(s ,t)i be given

by

M(s ,t)i (S` , Sr) �
∑

R an (S` , Sr)-ribbon with shape U(s ,t)i

χR .
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Then

Qoff-diag

0
�

∑
s6d
t6τ
i6q

(ω
n

) t−s
·M(s ,t)i .

We can apply Lemma 11.5.8 to conclude that with probability at least 1 −

O(n−100 log n),(ωn ) t−s
·M(s ,t)i

 6 (ω
n

) t−s
·n t−s

2 ·2O(t)·(log n)O(t−|A∩B |+|A\B |) 6 n−ε(t−s)·2O(t)·(log n)O(t−s) ,

where to conclude the bound on the exponent in (log n)O(t−|A∩B |+|A\B |)
we have

used that t > 2s − |A ∩ B |.

Notice that for fixed s and t, there are at most 2
(t

2
)+O(t)

unique shapes

U(s ,t)
1

, . . . ,U(s ,t)q . Thus, a union bound followed by the triangle inequality, we

obtain that for fixed s and t, with probability at least 1 − O(n−99 log n),(ωn ) t−s ∑
i6q

M(s ,t)i

 6 2
(t

2
)+O(t) · n−ε(t−s) · 2O(t) · (log n)O(t−s) .

Under our assumptions on the parameters d , τ, and ε, this is at most 2
(s

2
)/(100τ).

Summing over all t 6 τ, for a fixed s we have
(ω

n

) t−s ∑
t6τ
i6q

M(s ,t)i

 6 2
(s

2
)

100

.

Notice that the above matrix is exactly the block of Qoff-diag

0
corresponding to

subsets of size s. Together with our bound on Qdiag

0
, this proves the lemma. �

11.5.3 Norm Bounds for Qi — Proof of Lemma 11.5.2

In this section we prove Lemma 11.5.2, restated here.
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Lemma (Restatement of Theorem 11.5.2). Let D ∈ �(
[n]
6d)×([n]6d) be the diagonal matrix

with D(S, S) � 2
(S

2
)/4 if S is a clique and is otherwise zero. With high probability, every

Qi for i ∈ [1, 2d] satisfies
−D
8d
� Qi �

D
8d
.

We will need to bound the coefficients ci(R′m) used to define the matrices Qi

which we set up in Section 11.4.

Lemma 11.5.10. Let c1, . . . , c2d be the coefficient functions defined in Section 11.4. For

all improper (S` , Sr)-ribbons Rm admitting exactly p vertex-disjoint paths from S` to Sr ,

and all i 6 2d, writing s �
|S` |+|Sr |

2
,

ci(Rm) 6
(ω

n

) s
· n

p−|Z(Rm )|−i/2
2

+εs .

recalling that ω � n1/2−ε
. Furthermore, if Rm and R′m have the same shape, then

ci(Rm) � ci(R′m).

With this lemma in hand we can prove Lemma 11.5.2.

Proof of Lemma 11.5.2. Fix some 0 < i 6 2d. We will use Lemma 11.5.8, which

requires that we first decompose each Qi into simpler matrices. First of all, for a

proper ribbon Rm , let

c̃i(Rm) �
∑

R′m an improper ribbon whose largest proper subribbon is Rm

(ω
n

) |Z(R′m)|
· ci(R′m) .

Note that we include Rm itself in this sum as a proper ribbon is also an

improper ribbon.

Claim 11.5.11. c̃i(Rm) 6 2(ω/n)s ·n
p−i/2

2
+εs

, where p is the number of vertex-disjoint

paths from S` to Sr in Rm .
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Proof. Consider all of the improper ribbons R′m with k isolated vertices whose

largest proper subribbon is Rm . For each such ribbon R′m , by Lemma 11.5.10,

(ω/n)k ci(R′m) 6
(
ω
n

) k+s · n
p−k−i/2

2
+εs

. There are at most nk
such improper ribbons.

Adding all of their contributions together gives at most(
ω√
n

) k (ω
n

) s
· n

p−i/2
2

+εs < 2
−k(ω/n)s · n

p−i/2
2

+εs

Summing this up over all k > 0 gives the result. �

Now fix s` , sr 6 d and t 6 τ and let U(s` ,sr ,t)
1

, . . . ,U(s` ,sr ,t)
q be all graphs on the

vertex set [t]with two distinguished subsets of vertices: A of size s` and B of size

sr . Let

M(s` ,sr ,t)
j (S` , Sr) �

∑
R is an (S` , Sr)-ribbon with shape U(s` ,sr ,t)

j

c̃i(R) ·
(ω

n

) t−s
· χR

� c̃i(U(s` ,sr ,t)
j )

∑
R is an (S` , Sr)-ribbon with shape U(s` ,sr ,t)

j

(ω
n

) t−s
· χR ,

where s �
s`+sr

2
and we have used the fact that c̃i(R) depends only on the shape

of R.

Let r � |A ∩ B | where A, B are the distinguished sets of vertices for U(s` ,sr ,t)
j ,

and let p̃ be the number of vertex-disjoint paths from A \ B to B \ A, so that

p � r + p̃. We can apply Lemma 11.5.8 and our bound on c̃i to get that with

probability 1 − O(n−100 log n),M(s` ,sr ,t)
j

 6 (ω
n

) t−s
· n

p̃+r−i/2
2

+εs · n
t−p̃−r

2 · 2O(t) · (log n)O(t−r+p̃)

� n−ε(t−s)−i/4 · 2O(t) · (log n)O(t−r+p̃)

� n−ε(t−s)−i/4 · 2O(t) · (log n)O(t−s) ,

where in the last step we have used that t > 2s − r and p̃ 6 s − r.
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By inspection,

Qi �
∑

s` ,sr6d
t6τ
j6q

M(s` ,sr ,t)
j .

For a fixed t there are at most 2
(t

2
)+O(t)

choices for U, so q 6 2
(t

2
)+O(t)

. Now we

fix s` , sr and sum over t to obtain the block of Qi corresponding to size-s` and

size-sr subsets. By triangle inequality and a union bound, with probability at

least 1 − O(n−97 log n),
∑
t6τ
j6q

M(s` ,sr ,t)
j

 6 2
(t

2
)+O(t) · n−ε(t−s)−i/4 · 2O(t) · (log n)O(t−s) .

From our assumptions on d , τ, and ε, this is at most 2
(s`

2
)/2+(sr

2
)/2/100d3

.

As usual, let Π be the projector to Span{eC : C ∈ C6d}. Note that ΠQi �

QiΠ � Qi , since Qi(I , J) � 0 whenever I or J is not a clique. So, to show that

D/8d � Qi � −D/8d, it is sufficient to show that for all vectors v with v � Πv it

happens that |v>Qi v | 6 vT(D/8d)v. To see this, let vk be the part of v indexed

by cliques of size exactly k. Now,

|v>Qi v | 6
d∑

k1�0

d∑
k2�0

vk1



∑
t6τ
j6q

M(k1 ,k2 ,t)
j


vk2


6

d∑
k1�0

d∑
k2�0

1

100d3

(
2
(k1

2
)/2+(k2

2
)/2 vk1

 vk2

)
6

d∑
k1�0

d∑
k2�0

1

200d3

(
2
(k1

2
) vk1

2

+ 2
(k2

2
)vk2

2

)
6

d∑
k�0

2
(k

2
)

100d2

‖vk ‖2 6 v>(D/8d)v

�
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Coefficient Decay in the Factorization: Proof of Lemma 11.5.10

We turn to the proof of Lemma 11.5.10, for which we want the following

characterization of the effect of the separating factorization on the underlying

graph of a ribbon.

We require the following combinatorial quantities:

Definitions for Lemma 11.5.12

1. I , J, S` , Sr ⊆ [n] of size at most d.

2. Ribbons R` ,Rm ,Rr satisfying 1,3*,2 but not 4 for S` , Sr , I , J ⊆ [n]. (Remem-

ber that Rm may be improper.)

3. Ribbons R′` ,R
′
m ,R′r which are the separating factorization of R` ,Rm ,Rr ,

with separators S′` , S
′
r . (Remember that R′m may be improper.)

4. p, the number of vertex-disjoint paths from S` to Sr in Rm .

5. p′, the number of vertex-disjoint paths from S′` to S′r in R′m .

6. r � (|V(R`)| + |V(Rm)| + |V(R`)| − |S` | − |Sr |) − (|V(R′`)| + |V(R
′
m)| +

|V(R′`)| − |S
′
` | − |S

′
r |), the number of intersections among R` , Rm , Rr .

7. D � Z(R′m) \ Z(Rm), the newly degree-0 (we write isolated) vertices in R′m .

8. U ⊆ V(R`) ∪ V(Rm) ∪ V(Rr), the set of vertices appearing in more than

one ofV(R`),V(Rm), andV(Rr). Note that U ⊆ V(R′m).

Lemma 11.5.12.

|S′` | + |S
′
r | − (|S` | + |Sr |)︸                         ︷︷                         ︸

increase in separator size

+ p − p′︸︷︷︸
lost paths between separators

+ |D|︸︷︷︸
new isolated vertices

6 r︸︷︷︸
number of intersections

.

The following series of claims will help us in the proof of Lemma 11.5.12
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Claim 11.5.13. I ∩V(R′m) ⊆ S′` and J ∩V(R′m) ⊆ S′r .

Proof of claim. If u ∈ I ∩ V(R′m) then since I ⊆ V(R′`), we have u ∈ V(R′`) ∩

V(R′m) � S′` , and similarly for the second part. �

Next we have a simple analysis of which vertices may possibly be newly

isolated.

Claim 11.5.14. D ⊆ U.

Proof of claim. Let u ∈ D. If u ∈ S` or u ∈ Sr we are done. Otherwise, if u ∈ I

or u ∈ J, then u appeared in more than one of V(R`),V(Rm),V(Rr) by the

definition of the canonical factorization.

If neither of these cases hold, then u was incident to an edge in at least one of

R` ,Rm ,Rr . Since that edge does not exist in R′m , it must have appeared at least

twice among the edge sets of R` ,Rm ,Rr , and therefore u appeared at least twice

among the vertex sets, thus proving the claim. �

Next we show that some vertices in U cannot become isolated.

Claim 11.5.15. By Menger’s theorem, there are |S′` | vertex-disjoint paths from

U ∩V(R`) to I in R` . Let u(1)` , . . . , u
(|S′` |)
` be distinct vertices so that u(i) is the last

vertex in U along the i-th vertex disjoint path. Let u(1)r , . . . , u(|S
′
r |)

r be similarly

defined. None of the vertices u may be inD.

Proof of claim. Fix one of these vertices u, and consider its neighbor v one step

farther along the path to I (or J). By definition, the vertex v does not appear in

more than one ofV(R`),V(Rm),V(Rr). If v ∈ R′m , then the edge (u , v)must be
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in R′m , and so u is not isolated in R′m . If v < R′m , then u must be in S′` ∪ S′r , in

which case by definition u < D. �

We set up sets q of vertices to divide up the intersecting vertices among

R` ,Rm ,Rr according to which ribbons witness the intersection.

Claim 11.5.16. Let

q`,m ,r
def

� (V(Rr) ∩ V(Rm) ∩ V(R`)) \ (S` ∪ Sr)

q`,r
def

� (V(R`) ∩ V(Rr)) \ V(Rm)

q`,m
def

� (V(R`) ∩ V(Rm)) \ (S` ∪V(Rr))

qr,m
def

� (V(Rr) ∩ V(Rm)) \ (Sr ∪V(R`)) .

The sets q are pairwise disjoint, and

r � 2|q`,m ,r | + |q`,r | + |q`,m | + |qr,m | + |S` ∩ (V(Rr) \ Sr)| + |Sr ∩ (V(R`) \ S`)| .

Also, U � q`,m ,r ∪ q`,r ∪ q`,m ∪ qr,m ∪ S` ∪ Sr .

Proof. By inspection. �

We are prepared to prove Lemma 11.5.12.

Proof of Lemma 11.5.12. We start by bounding the number of vertices in U \D. By

Claim 11.5.15, there are at least |{u(1)` , . . . , u
(|S′` |)
` , u(1)r , . . . , u |S

′
r |

r }| such vertices.

Let a be the number of pairs i , j so that u(i)` � u( j)r . Then there are vertex-

disjoint paths w1, . . . ,wa from S′` to S′r . The path w corresponding to u(i)` � u( j)r

is given by following u(i)` ’s path from I toU , ending at u(i)` , then following u( j)r ’s

path from U to J. This gives a path from I to J, which must have a subpath from

S′` to S′r .
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Now consider the p vertex-disjoint paths from S` to Sr in Rm . We claim that

p − |S` ∩ Sr | 6 |q`,m ,r | + |S` ∩V(Rr) \ Sr | + |Sr ∩V(R`) \ S` |

+ |U \ ({u(1)` , . . . , u
(|S′` |)
` , u(1)r , . . . , u |S

′
r |

r } ∪D)| + (p′ − a) (11.5.1)

In words, every nontrivial path from S` to Sr contributes to at least one of:

• |q`,m ,r |, the number of 3-way intersections,

• intersections between S` and V(Rr) (but not Sr), intersections between

V(R`) and Sr (but not S`),

• vertices in U which are guaranteed not to become isolated (and which we

have not yet accounted for), or

• vertex-disjoint paths from S′` to S′r (which we have not yet accounted for).

Fix one such path. If it intersects q`,m ,r , Sl ∩ V(Rr), or Sr ∩ V(Rl) we are

done, so suppose otherwise. If it is contained entirely in q`,m ∪ qr,m ∪ (S` \

V(Rr))∪ (Sr \V(Rl)), then there is some edge along the path connecting a vertex

inV(R`) ∩V(Rm) \ V(Rr) with one inV(Rr) ∩V(Rm) \ V(R`). That edge can

occur nowhere else among R` ,Rm ,Rr , and so the incident vertices must not be

inD. At the same time, if there is any vertex along the path which is outside U,

then the nearest vertices along the path to either side which do lie in U also must

be outsideD.

In either case, there are two vertices along the path in U \D. If either of these

is not among the u vertices, we are done. If both are, then by definition of the u

vertices this creates a path from I to J, and so from S′` to S′r . Furthermore, this

path must be vertex disjoint from the paths w1, . . . ,wa previously constructed,
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since the u vertices involved in those paths wereV(R`) ∩ V(Rr). This proves

(11.5.1).

It’s time to put things together. By Claim 11.5.14, we can bound |D| by

|D| 6 |U | − |U \D|.

We have |U \D| > |S′` | + |S
′
r | − a + |U \ ({u(1)` , . . . , u

(|S′` |)
` , u(1)r , . . . , u |S

′
r |

r } ∪D)|, and

|U | � |q`,m ,r | + |q`,r | + |q`,m | + |qr,m | + |S` ∪ Sr |. This gives us

|D| 6 |q`,m ,r | + |q`,r | + |q`,m | + |qr,m | + |S` ∪ Sr | − |S′` | − |S
′
r | + a−

|U \ ({u(1)` , . . . , u
(|S′` |)
` , u(1)r , . . . , u |S

′
r |

r } ∪D)| .

Adding (11.5.1) to both sides and rearranging, we get

p − p′ + |D| 6 2|q`,m ,r | + |S` ∩ (V(Rr) \ Sr)| + |Sr ∩ (V(R`) \ S`)| + |q`,r | + |q`,m | + |qr,m |

+ |S` ∪ Sr | − |S′` | − |S
′
r | + |S` ∩ Sr | ,

and substituting r � 2|q`,m ,r | + |S` ∩ (V(Rr) \ Sr)| + |Sr ∩ (V(R`) \ S`)| + |q`,r | +

|q`,m | + |qr,m | gives

p − p′ + |D| 6 r + |S` ∪ Sr | − |S′` | − |S
′
r | + |S` ∩ Sr | .

Notice that |S` ∪ Sr | + |S` ∩ Sr | � |S` | + |Sr |, so we can rearrange to obtain the

lemma. �

Now we can prove Lemma 11.5.10.

Proof of Lemma 11.5.10. First of all, we note that ci(Rm) depends only on the shape

of Rm by symmetry of our construction. We turn to the quantitative bound.

The proof is by induction. The coefficients c0(Rm) are nonzero only for ribbons

Rm which have Z(Rm) � ∅ and admitting |S` | � |Sr | � p paths from S` to Sr .
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Thus in the case that i � 0, the statement reduces to c0(Rm) 6 1, which is true by

definition.

Suppose the lemma holds for ci , and consider ci+1. By definition, for an

(improper) S′` , S
′
r-ribbon R′m and ribbons R′` ,R

′
r satisfying 1 and 2,

ci+1(R′m) �
∑

R` ,Rm ,Rr satisfying

1,3*,2 and not 4 for some S` ,Sr
r intersections outside S` ,Sr

separating factorization R′` ,R
′
m ,R′r ,S′` ,S

′
r

ci(Rm)
(ω

n

) r
. (11.5.2)

We introduce the shorthand s′ �
|S′` |+|S

′
r |

2
. Consider first a particular term

in the sum, ci(Rm)(ω/n)r , where Rm is an improper S` , Sr ribbon, and let

|D| � |Z(R′m) \ Z(Rm)|. By induction and Lemma 11.5.12,(ω
n

) r
· ci(Rm)

6
(ω

n

) r
·
(ω

n

) s
· n

p−|Z(Rm )|−i/2
2

+εs
by induction

�

(ω
n

) s′

·
(ω

n

) r−s′+s
· ·n

p−|Z(Rm )|−i/2
2

+εs

�

(ω
n

) s′

· n−ε(r−s′+s) · n−
1

2
(r−s′+s) · n

p−|Z(Rm )|−i/2
2

+εs
using ω � n1/2−ε

6
(ω

n

) s′

· n−ε(r−s′+s) · n−
1

2
(s′−s+p−p′+|D|) · n

p−|Z(Rm )|−i/2
2

+εs
by Lemma 11.5.12

�

(ω
n

) s′

· n−ε(r−s′+s) · n
p′−|Z(R′m )|−i/2−s′+s

2
+εs

canceling terms, using |Z(R′m)| � |D| + |Z(Rm)|

� n−εr ·
(ω

n

) s′

· n
p′−|Z(R′m )|−i/2−(s′−s)

2
+εs′

6 n−εr ·
(ω

n

) s′

· n
p′−|Z(R′m )|−(i+1)/2

2
+εs′

using s′ − s > 1/2, by Lemma 11.4.13

Next we assess how many nonzero terms are in the sum (11.5.2) for a fixed r

and a fixed R′m . For each vertex of R′m , there are 7 possibilities for which ribbon(s)

it came from in {R` ,Rm ,Rr} so there are at most 7
τ
choices overall (recall that
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R′m has at most τ vertices for the terms we are looking at). Once we have chosen

which ribbon(s) each vertex of R′m came from, everything is fixed except for

possible edges of R′m which appear at least twice in R`, Rm , and Rr . There are

two possibilities for each possible edge of R′m which appears twice in R`, Rm ,

and Rr and four possibilities for each possible edge of R′m which appers three

times in R`, Rm , and Rr . However, note that any such edge must be between

an intersected vertex and either another intersected vertex or a vertex in S` ∪ Sr .

Thus, there are at most rτ possible edges of R′m which appear at least twice in R` ,

Rm , and Rr and the total number of possibilities for these edges is at most 4
rτ
.

All together there are at most 2
O(rτ)

nonzero terms for fixed r. This means

that the total contribution from such terms is at most

2
O(rτ) · n−εr ·

(ω
n

) s′

· n
p′−|Z(R′m )|−(i+1)/2

2
+εs′

As long as τ 6 (ε/C) log n for some universal constant C, we have 2
O(rτ) · n−εr �

1/τ for all r > 1. All in all, we obtain

ci+1(R′m) 6
(ω

n

) s′

· n
p′−|Z(R′m )|−(i+1)/2

2
+εs′

which completes the induction. �

11.5.4 L L> is Well-Conditioned — Proof of Lemma 11.5.3

In this section we prove Lemma 11.5.3, restated here.

Lemma (Restatement of Theorem 11.5.3). With high probability, ΠLΠL>Π �

Ω(ω/n)d+1 ·Π, where as usual Π is the projector to Span{eC : C ∈ C6d}.
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Proof of Lemma 11.5.3. We recall the definition of L.

L(I , S) �
(ω

n

)− |S |
2

∑
R having 1

|V(R`)|6τ

(ω
n

) |V(R`)|
χR` .

Consider a diagonal entry L(S, S). Since every ribbon R appearing in its

expansion must have 1, in particular it has no edges inside S. Thus, by the same

argument as in Lemma 11.3.3, with probability at least 1 − O(n−10 log n),

L(S, S) �
(ω

n

) |S |
2 (1 ± n−Ω(ε)) .

Let Loff-diag

be given by

Loff-diag(I , S) �


L(I , S) if I , S

0 otherwise

.

We will consider the block of Loff-diag

with rows indexed by sets of size s` and

columns indexed by sets of size sr for some s` , sr 6 d. For a fixed t 6 τ, let

U(s` ,sr ,t)
1

, . . . ,U(s` ,sr ,t)
q be all the graphs on vertex set [t]with distinguished subsets

of vertices A, B of size s` , sr respectively, and where

• A , B,

• there are no edges inside B,

• every vertex in U outside A∪B is reachable from A without passing through

B, and

• B is the unique minimum-size vertex separator in U separating A from B.

Then let M(s` ,sr ,t)
i be given by

M(s` ,sr ,t)
i (I , S) �

(ω
n

) t− sr
2 ·

∑
R an (I , S)-ribbon with shape U(s` ,sr ,t)

i

χR .
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By assumption on U(s` ,sr ,t)
i , there are sr vertex-disjoint paths from A to B. Let

r � |A ∩ B |. By Lemma 11.5.8, with probability at least 1 − O(n−100 log n),M(s` ,sr ,t)
i

 6 (ω
n

) sr
2 ·

(ω
n

) t−sr
· n

t−sr
2 · 2O(t) · (log n)O(t−r+(sr−r))

�

(ω
n

) sr
2 · n−ε(t−sr) · 2O(t) · (log n)O(t−sr) ,

where in the last step we have used that t > s` + sr − r and sr 6 s` , which holds

by the vertex-separator requirement on B. There are at most 2
(t

2
)−(sr

2
)+O(t)

choices

for U(s` ,sr ,t)
i when s` , sr , t are fixed, by the requirement that U have no edges

inside B. Summing over all q for a fixed t, we get by triangle inequality∑i6q

M(s` ,sr ,t)
i

 6 (ω
n

) sr
2 · 2(t2)−(

sr
2
)+O(t) · n−ε(t−sr) · (log n)O(t−sr)

with probability 1 − O(n−99 log n). By our assumptions on d , τ, and ε, this is at

most (ω/n)sr/2 · 1/d4
.

The following standard manipulations now prove the lemma. Let D′ ∈ �(
[n]
6d)

be the diagonal matrix with D′(S, S) � (ω/n)|S |/2 if S is a clique in G and 0

otherwise. Then we can decompose L � D + E + Loff-diag

, where E is a diagonal

matrix with |E(S, S)| 6 n−Ω(ε) · (ω/n)|S |/2. Then we have

ΠLΠL>Π � D2

+Π(DΠLoff-diag

+DΠE + EΠD + EΠLoff-diag

+Loff-diag

ΠD + Loff-diag

ΠE

+ EΠE + Loff-diag

ΠLoff-diag)Π

Each of the above matrices aside from D2
is a d × d block matrix, where the

(s` , sr) block is

([n]
s`

)
×

([n]
sr

)
dimensional and has norm at most (ω/n)(s`+sr)/2 · d−4

.

By the same argument as in the proof of Lemma 11.5.2, using Cauchy-Schwarz to

combine the d2
blocks, we obtain the lemma. �
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11.5.5 High-Degree Matrices Have Small Norms

In this section we prove Lemma 11.5.4, restated here:

Lemma (Restatement of Theorem 11.5.4). With high probability, ‖ξ0 − . . . + ξ2d ‖ 6

n−16d
.

We recall the definition of ξi . For a coefficient function on ribbons ci−1(Rm),

we have a matrix E given by

E(I , J) �∑
S` ,Sr⊆[n]
|S` |,|Sr |6d

(ω
n

)− |S` |+|Sr |
2

∑
R` ,Rm ,Rr satisfying

1,3*,2 and not 4

|V(R`)|,|V(Rm)|,|V(Rr)|6τ
separating factorization

R′` ,R
′
m ,R′r ,S′` ,S

′
r

ci−1(Rm)
(ω

n

) |V(R`)|+|V(Rr)|+|V(Rm)|−
|S` |+|Sr |

2 · χR′` · χR′m · χR′r ,

and another one, E′, given by

E′(I , J) �∑
S` ,Sr⊆[n]
|S` |,|Sr |6d

(ω
n

)− |S` |+|Sr |
2

∑
R` ,Rm ,Rr satisfying

1,3*,2 and not 4

separating factorization

R′` ,R
′
m ,R′r ,S′` ,S

′
r

|V(R′`)|,|V(R
′
m)|,|V(R′r)|6τ

ci−1(Rm)
(ω

n

) |V(R`)|+|V(Rr)|+|V(Rm)|−
|S` |+|Sr |

2 · χR′` · χR′m · χR′r .

Then the matrix ξi is given by E − E′.

We will actually prove a bound on the Frobenious norm of each matrix ξi .

The following will allow us to control the magnitude of the entries. It follows

immediately fromour concentration bound Lemma 11.6.1, which is proved via the

moment method. (Under the slightly stronger assumption τ � ε log n/log log n,

it would also follow from standard hypercontractivity.)
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Lemma 11.5.17. Suppose cT are a collection of coefficients, one for each T ⊆
([n]

2

)
, and

there is a constant C such that

1. If |T | > Cτ then cT � 0.

2. Otherwise, |cT | 6 (ω/n)|T |/C−Cd
.

Then with probability at least 1−O(n−100 log n) it occurs that
���∑T⊆([n]

2
) cT · χT

��� 6 n−20d
.

Wewill also need several facts about the coefficients of ribbons in the expansion

of each matrix ξi .

Lemma 11.5.18. Every triple R` ,Rm ,Rr appearing with nonzero coefficient in ξc

satisfies |V(R`)| + |V(Rm)| + |V(Rr)| � Θ(τ).

Proof. To appear with nonzero coefficient, the triple R` ,Rm ,Rr with separating

factorization R′` ,R
′
m ,R′r must either have

|V(R`)|, |V(Rm)|, |V(Rr)| 6 τ but |V(R′`)| > τ or |V(R′m)| > τ or |V(R′`)| > τ ,

or

|V(R′`)|, |V(R
′
m)|, |V(R′r)| 6 τ but |V(R`)| > τ or |V(Rm)| > τ or |V(R`)| > τ .

In the first case, we must have one of |V(R`)| > τ/3 or |V(Rm)| > τ/3 or

|V(Rr)| > τ/3. In the second, we must have |V(R`)|, |V(Rm)|,V(Rr)| 6 3τ. �

We are prepared to prove Lemma 11.5.4.

Proof of Lemma 11.5.4. We will apply Lemma 11.5.17 to ξi(I , J) for each i 6 2d

and I , J ⊆ [n]with |I |, | J | 6 d. So consider the Fourier expansion of ξi(I , J), given
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by

ξi(I , J) �
∑

T⊆([n]
2
)

cT · χT .

From Lemma 11.5.18, we obtain that if |T | > Cτ then cT � 0, for some absolute

constant C. For smaller T we need a bound on the magnitude |cT |. The coefficient

cT is bounded by

|cT | 6
∑

S` ,Sr⊆[n]
|S` |,|Sr |6d

(ω
n

)− |S` |+|Sr |
2

∑
R` ,Rm ,Rr

nonzero in ξi(I , J) as in 11.5.18

χR` ·χRm ·χRr�χT

ci−1(Rm)
(ω

n

) |V(R`)|+|V(Rr)|+|V(Rm)|−
|S` |+|Sr |

2

(11.5.3)

By Lemma 11.5.10, we have ci−1(Rm) 6 nd 6 (ω/n)−2d
. At the same time, there

are at most 2
O(τ2)

nonzero terms in the sum (11.5.3). Thus by Lemma 11.5.18 and

our assumptions on d , τ, and ε, the coefficient cT is at most (ω/n)τ/C−Cd
for some

absolute constant C.

Applying Lemma 11.5.17, we obtain |ξi(I , J)| 6 n−20d
with probability 1 −

O(n−100 log n). Taking a union bound over all n2d 6 n2 log n
entries of ξi , and

over all i 6 2d, we obtain that ‖ξ0 − . . . + ξ2d ‖ 6 ‖ξ0 − . . . + ξ2d ‖F 6 n−16d
with

probability 1 − O(n−96 log n). �

11.6 Omitted Proofs

11.6.1 Concentration for Linear Constraints

In this section we prove Lemma 11.3.3. We will use the following elementary

concentration bound repeatedly. (It is the scalar version of the matrix concentra-
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tion bound Lemma 11.5.8; we state and prove a scalar version here because it is a

good warmup for Lemma 11.5.8.)

Lemma 11.6.1. Let T be a family of subsets of

([n]
2

)
so that for every T, T′ ∈ T there

exists σ : [n] → [n] a permutation of vertices so that σ(T) � T′. Let t be the number of

vertices incident to edges in any T ∈ T . For every s > 0 and every even `,

�
G∼G(n ,1/2)

{�����∑
T∈T

χT(G)
����� 6 s

}
> 1 − nt`/2 · (t`)t`

s`
.

Proof. Let ` ∈ � be a parameter to be chosen later. We will estimate

�G∼G(n ,1/2)[(
∑

T∈T χT)`].

�
G∼G(n ,1/2)


(∑

T∈T
χT

) ` �

∑
T1 ,...,T`∈T

�
G∼G(n ,1/2)

∏
j6`

χT j

� |{(T1, . . . , T`) : �

∏
j6`

χT j � 1}| .

In order to have �
∏

j6` χT j � 1, every edge in the multiset

⋃
j6` T j must appear

at least twice, so every vertex in the multiset

⋃
j6`V(T j) also appears at least

twice. Thus, this multiset contains at most t`/2 distinct vertices. Since each

T j ∈ T , each is uniquely determined by an ordered tuple of t elements of [n].

Thus, there are at most nt`/2 · (t`)t` distinct choices for (T1, . . . , T`), so

�
G∼G(n ,1/2)


(∑

T∈T
χT

) ` 6 nt`/2 · (t`)t` .

For even `, by Markov’s inequality,

�

{�����∑
T∈T

χT

����� > s

}
� �


�����∑
T∈T

χT)
�����` > s`


6

nt`/2 · (t`)t`
s`

. �

349



Lemma (Restatement of Theorem 11.3.3). With high probability,
˜�[1] � 1 ± n−Ω(ε)

and
˜�[∑i∈[n] xi] � ω · (1 ± n−Ω(ε)).

Proof. We will prove the statement regarding
˜�[1]; the bound for

˜�[∑i∈[n] xi] is

almost identical.

Recall the Fourier expansion

˜�[1] − 1 �

∑
T⊆([n]

2
)

26 |V(T)|6τ

(ω
n

) |V(T)|
· χT .

Considering each T ⊆
([n]

2

)
as a graph, we partition {T ⊆

([n]
2

)
: |V(T)| � t}

into pt families {T t
i }

p
i�1

by placing T and T′ in the same family iff there exists a

permutation σ : [n] → [n] of vertices so that σ(T) � T′. Thus,

˜�[1] − 1 �

τ∑
t�2

(ω
n

) t
pt∑

i�1

∑
T∈T t

i

χT 6
τ∑

t�2

(ω
n

) t
pt∑

i�1

������ ∑T∈T t
i

χT

������ .
By Lemma 11.6.1 (taking ` � (log n)2), and since t 6 τ 6 log n, each T t

i satisfies

�


������ ∑T∈T t

i

χT

������ < O(nt/2 · (log n)3t)
 > 1 − (τ · 2t2 · nlog n)−1 .

By a union bound over all pt 6 2
t2

families T t
i , we get that with high probability,

| ˜�[1] − 1| 6 τ ·max

t6τ

(
2

t2 ·
(
ω√
n

) t
)
.

For τ 6 (ε/2) log n and ω � n1/2−ε
, this is at most n−Ω(ε). �

.
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11.6.2 Combinatorial Proofs about Ribbons

In this section we prove Lemma 11.4.3, restated here:

Lemma (Restatement of Theorem 11.4.3). Let R be an (I , J)-ribbon. There is a unique

minimum vertex separator S of R such that S separates I and Q for any vertex separator

Q of R. We call S the leftmost separator in R. We define the rightmost separator

analogously and we denote them by SL(R) and SR(R) respectively.

We start by defining a natural partial order on the set of vertex separators in a

ribbon R.

Definition 11.6.2. We write Q1 6 Q2 for two vertex separators Q1 and Q2 of an

(I , J)-ribbon R if Q1 separates I and Q2.

Next, we check that the definition above indeed is a partial order.

Lemma 11.6.3. For any set of minimum vertex separators Q1,Q2,Q3 an (I , J)-ribbon,

we have:

1. Q1 6 Q1.

2. If Q1 6 Q2 and Q2 6 Q3, then, Q1 6 Q3.

3. If Q1 6 Q2 and Q2 6 Q1, then, Q1 � Q2.

Proof. The first statement is immediate from the definition. For the second,

consider a path P from I to Q3 in R. Since Q2 6 Q3, P passes through a vertex

in Q2. Thus, P contains a subpath that connects I and Q2. But since Q1 6 Q2,

this subpath must pass through Q1. Thus, any such P must pass through Q1 and

thus, Q1 6 Q3.
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Finally, for the third statement, let k � |Q1 | � |Q2 |. Then, using Menger’s

theorem (Fact 11.2.2, there is a set of k vertex disjoint paths P1, P2, . . . , Pk between

I and J. By virtue of Q1,Q2 being minimum vertex separators of R, Q1 and Q2

must intersect each Pi in exactly one vertex. It is then immediate that the only

way Q1 6 Q2 and Q2 6 Q1 if every Pi intersects Q1,Q2 in the same vertex. �

Now we can prove Lemma 11.4.3.

Proof of Lemma 11.4.3. It is enough to show that for any two minimum separators

Q1,Q2 of size k in R, there are separators QL ,QR such that QL 6 Q1 6 QR and

QL 6 Q2 6 QR. We now construct QL and QR as required.

Let U � Q1 ∩ Q2 and V � Q1∆Q2. Let WL ⊆ V be the set of vertices w such

that there is a path from I to w that doesn’t pass through Q1 ∪Q2. Similarly, let

WR ⊆ V be the set of vertices such that there is a path from w to some vertex in J

that doesn’t pass through any vertex in Q1 ∪Q2. Then we first observe:

Claim 11.6.4. WL ∩WR � ∅.

Proof of Claim. Assume otherwise and let w ∈ WL ∩WR. Then there is a path

between I and J that doesn’t go through any vertex in at least one of Q1 or Q2

contradicting that both are in fact vertex separators. �

Next, we have:

Claim 11.6.5. Let QL � U ∪WL and QR � U ∪WR. Then QL ,QR are both vertex

separators in R.

Proof of Claim. We only give the argument for QL, the other case is similar.

Assume there is a path P from I to J that does not pass through QL. P must
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intersect Q1 ∪Q2. Then there is a vertex v ∈ Q1 ∪Q2 such that there is a path I

to v which intersects no other vertices in Q1 ∪Q2. This implies that either v ∈ U

or v ∈ WL. But by our construction of WL this is a contradiction. �

Finally, we note that both QL ,QR must in fact be minimum vertex separators.

Claim 11.6.6. |QL | � |QR | � |Q1 | � |Q2 | � k

Proof of Claim. Let |Q1 | � |Q2 | � k. Then 2k � |Q1 | + |Q2 | � 2|U | + |V | >

2|U | + |WL | + |WR | � |U ∪WL | + |U ∪WR | � |QL | + |QR |. Since QL and QR are

vertex separators, |QL |, |QR | > k. Thus, |QL | � |QR | � k. �

Finally, we have the ordering requirement on QL and QR.

Claim 11.6.7. QL 6 Q1 and Q2 6 QR.

Proof of Claim. Let P be a path from I to Q1, let v be the first vertex on this path

which is in Q1 ∪ Q2. Then, v ∈ U or v ∈ WL. Thus, QL 6 Q1. The other case is

similar. �

This concludes the proof of the lemma. �

11.6.3 Spectral Norms

The results in this section are in essence due to Medarametla and Potechin [127].

For completeness, we state and prove them here in the language and notation of

the current paper, with minor modifications as needed.
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Lemma (Restatement of Theorem 11.5.8). Let U be a graph on t 6 O(log n) vertices,

with two distinguished subsets of vertices A and B, and suppose:

• U admits p vertex-disjoint paths from A \ B to B \ A.

• |A ∩ B | � r.

• Every vertex outside A ∪ B has degree at least 1.

Let M � M(G) be the graphical matrix with shape U. Then, whp, ‖M‖ 6 n
t−p−r

2 ·

2
O(t) · (log n)O(t−r+p)

.

Proof of Lemma 11.5.8. Weproceed by the trace powermethod,with a dependence-

breaking step beforehand.

BreakingDependence Let q1, . . . , qp be vertex-disjoint paths from A\B to B\A

inU. Without loss of generalitywe can take each to intersect A\B and B\A only at

its endpoints. Wewill partition the space of labelings σ intodisjoint setsS1, . . . , Sm .

For each Sk there will be a partition V k
1
,V k

2
of [n] so that σ(⋃ j6p q j) ⊆ V k

1
and

σ(U \ (⋃ j6p q j)) ⊆ V k
2
for every σ ∈ Sk . Let (V1

1
,V1

2
), . . . , (Vm

1
,Vm

2
) be a sequence

of independent uniformly random partitions of [n]. Call a labeling σ good at k

if the preceeding conditions apply to σ for the partition V k
1
,V k

2
and not for any

V k′
1
,V k′

2
for some k′ < k. Let Sk � {σ : σ is good at k}.

Claim 11.6.8. There is m � O(2t · t · log n) so that

⋃m
k�1

Sk contains every labeling

σ : U → G.

Proof. For a fixed σ,

�{σ not good for some k 6 m} 6 (1 − 2
−t)m
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since every vertex u ∈ U is in Vi with probability 1/2. If m > 10t2t
log n, then

by a union bound over all σ : U → G (of which there are at most nt
), we get

�{ all σ good for some k 6 m } > 0. �

Henceforth, let S1, . . . , Sm be the partition guaranteed by the preceeding claim.

For k 6 m, let Mk(I , J) � ∑
σ∈Sk : σ(A)�I ,σ(B)�J val(σ). Then M �

∑m
k�1

Mk .

Moment Calculation Let ` � `(n) be a parameter to be chosen later. By the

triangle inequality, ‖M‖ 6 ∑m
k�1
‖Mk ‖. Fix k. We expand �G Tr(M>k Mk)` as

�Tr(M>k Mk)` � �
∑

σ1 ,...,σ2`∈Sk
σ2i(A)�σ2i−1(A)
σ2i(B)�σ2i+1(B)

2∏̀
j�1

val(σ j) .

(Here arithmetic with indices i is modulo 2`, so for example we take 2i + 1 � 1.)

For any σ,

val(σ) �
∏
(i , j)∈U

Gσ(i),σ( j) .

Notice that for all σ1, . . . , σ2` , the expectation �
∏

2`
j�1

val(σ j) is either 0 or 1. We

will bound the number of σ1, . . . , σ2` for which �
∏

2`
j�1

val(σ j) � 1 by bounding

the number of distinct labels such a family of labelings may assign to vertices in

U.

Fix σ1, . . . , σ2` ∈ Sk . Consider the family q1, . . . , qp of vertex-disjoint paths.

Every edge in every q j receives one pair of labels from each σi . Consider these

labels arranged on 2` adjoined copies of each q j , one for each σ (giving p paths

with 2`
∑

j6p |q j | edges in total, where |q j | is the number of edges in q j). Every

pair of labels {σi(v), σi(w)} appearing on an edge (v , w) in this graph must

also appear on some distinct edge (v′, w′) in order to have �
∏

2`
i�1

val(σi) � 1;

otherwise the disjointness of V k
1
,V k

2
would be violated. Merging edges which
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received the same pair of labels, we arrive at a graph with at most p connected

components and at most `
∑

j6p |q j | edges, and so at most `
∑

j6p |q j | + p vertices.

Thus, the vertices in q1, . . . , qp together receive at most `
∑

j6p |q j | + p distinct

labels among all σ1, . . . , σ2` .

Next we account for labels of v < (⋃ j6p q j ∪ A ∪ B). If �G
∏

2`
i�1

val(σi) � 1

then the 2`-size multiset {σi(v)}i62` of labels for such v contains at most ` distinct

labels, since by assumption v has degree at least 1 in U.

Next we account for labels of vertices in A \ (B∪⋃
j6p q j) and B \ (A∪⋃

j6p q j).

Every such vertex receives a label from every σi , but σ2i and σ2i−1 must agree on

A-labels and σ2i and σ2i+1 must agree on B-labels. So in total there are at most

`(|A| + |B | − 2p − 2r) distinct labels for such vertices.

This means that among the labels σi( j) for all j < A ∩ B, there are at most

`
∑
j6p

|q j | + p︸         ︷︷         ︸
labels from paths

+ `(|A| + |B | − 2p − 2r)︸                     ︷︷                     ︸
additional vertices in A∪B\(A∩B)

+ `(t − (|A| + |B | − r) − (
∑

j

|q j | − p))︸                                         ︷︷                                         ︸
vertices in U\(⋃ j q j∪A∪B)

� `(t − p − r) + p

unique labels.

Finally, consider the labels of the r vertices j1, . . . , jr in A∩B. The first labelling

σ1 assigns these vertices some σ1( j1), . . . , σ1( jr) labels in G. Since σ2 agrees with

σ1 on A-vertices, wemust have σ2( j1) � σ1( j1), . . . , σ1( jr) � σ2( jr). Since σ3 agrees

with σ2 on B-vertices, we must have σ3( j1) � σ2( j1), . . . , σ3( jr) � σ2( jr), and so on.

So there are at most r unique labels for such vertices.
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Now we can assess how many choices there are for σ1, . . . , σ2` ∈ Sk so that

�
∏

i62` val(σi) � 1. To choose such a collection σ1, . . . , σ2` , we proceed in stages.

Stage 1. Choose the labels σi( j1), . . . , σi( jr) of all the vertices in A∩B. Here there

are at most nr
options.

Stage 2. For each pair (i , j), where j < A ∩ B, choose whether σi( j) it will be the

first appearance of the index σi( j) ∈ [n] or if there is some i′ < i and j′

so that σi′( j′) � σi( j). Here there are 2
2`t

options.

Stage 3. Choose the labels σi( j) ∈ [n] for all j < A ∩ B and pairs (i , j) which in

Stage 2 we chose to be the first appearance of a label. If there are x such

vertices, there are at most nx
options.

Stage 4. Choose the labels σi( j) ∈ [n] for all the pairs (i , j), with j < A∩B, which

in Stage 2 we chose not to be the first apperance of a label. Here there

are at most x2`t−2`r−x
options.

All together, there are atmost nr ·22`t ·nx ·x2`(t−r)−x 6 nr ·22`t ·nx ·(2`t)2`(t−r)−x

choices for a given x. Since 4lt � n, summing up over all x 6 `(t − p − r)+ p the

total number of choices is at most 2nr · 22`t · n`(t−p−r)+p · (2`t)`(t−r+p)−p
. Putting it

together,

�Tr(M>k Mk)` 6 2nr · n`(t−p−r)+p · (2`t)`(t−r+p)−p .

Now using Markov’s inequality and standard manipulations, for any s,

�{‖Mk ‖ > s} � �{‖M>k Mk ‖` > s2`}

6
� ‖(M>k Mk)`‖

s2`
by Markov’s

6
�Tr(M>k Mk)`

s2`
since ‖(M>k Mk)`‖ 6 Tr(M>k Mk)`
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6
2nr · 22`t · n`(t−p−r)+p · (2`t)`(t−r+p)−p

s2`

Taking ` � (log n)3 and using p 6 t 6 O(log n), there is s � 2
t ·

n(t−p−r)/2(log n)O(t−r+p)
so that �{‖Mk ‖ > s} 6 n−100 log nm−1

. By a union bound,

�{‖Mk ‖ 6 s for all k} > 1−n−100 log n
, so ‖M‖ 6 sm with probability 1−n−100 log n

.

Since m 6 2
O(t) · log(n)O(1), this completes the proof. �

11.7 Extension to Sparse Principal Component Analysis

Before we overview the proof of Theorem 11.1.3, we offer some further context

for the theorem statement.

Remark 11.7.1 (Relation to the spiked-Wignermodel of sparse principal component

analysis). Theorem 11.1.3 proves an SoS lower bound for a refutation problem.

As usual, the refutation problem is closely related to a hypothesis testing problem

and an estimation problem, both of which come from the following alternative

distribution: the spiked-Wigner model of sparse principal component analysis.

Let W be a symmetric matrix with iid entries fromN(0, 1), and let v be a random

k-sparse unit vector with entries {±1/
√

k , 0}. Let B � W + λvvT
. The hypothesis

testing problem is to distinguish between a single sample from B and a sample

from W .

There are two main algorithms for this problem, both captured by the SoS

hierarchy. The first, applicable when λ �
√

n, is vanilla principal component

analysis: the top eigenvalue of B will be larger than the top eigenvalue of W . The

second, applicable when λ � k, is diagonal thresholding: the diagonal entries

of B which corresponds to nonzero coordinates will be noticeably large [62].

Interpreting Theorem 11.1.3 in the hypothesis testing setting suggests that once λ
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is well outside these parameter regimes, i.e. when λ < n1/2−ε , k1−ε
for arbitrarily

small ε > 0, even degree nΩ(ε), natural SoS programs do not distinguish between

B and W .

Remark 11.7.2 (Interpretation as an integrality gap). A second interpretation of

Theorem 11.1.3, independent of any planted problem, is as a strong integrality

gap for random instances for the problem of maximizing a quadratic form over

k-sparse vectors. Consider the actual maximum of 〈x ,Ax〉 for random ({±1} or

Gaussian) A over k-sparse unit vectors x. There are roughly 2
k log n

points in a

1

2
-net for such vectors, meaning that by standard arguments,

max

‖x‖�1,x is k-sparse
〈x ,Ax〉 6 O(

√
k log n) .

With the parameters of the theorem, this means that the integrality gap of the

degree nΩ(ε) SoS relaxation is at least min(nρ/2−ε , n1/2−ρ/2−ε)when k � nρ.

Remark 11.7.3 (Relation to spiked-Wishart model). Theorem 11.1.3 most closely

concerns the spiked-Wigner model of sparse PCA. (Here “Wigner” refers to

independence of the entries of the matrix A.) Often, sparse PCA is instead

studied in the (perhaps more realistic) spiked-Wishart model, where the input is m

samples x1, . . . , xm from an n-dimensional Gaussian vector N(0, Id + λ · vv>),

where v is a unit-norm k-sparse vector. Here the question is: as a function of

the sparsity k, the ambient dimension n, and the signal strength λ, how many

samples m are needed to recover the vector v? The natural approach to recovering

v in this setting is to solve a convex relaxation of the problem of maximizing he

quadratic form of the empirical covariance M �
∑

i6m xixi
T
over k-sparse unit

vectors (the maximization problem itself is NP-hard even to approximate in the

worst case [48]).

Theoretically, onemay apply pseudocalibration and our proof techniques from
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Theorem 11.1.1 and Theorem 11.1.3 directly to the spiked-Wishart model, but this

carries the expense of substantial technical complication. We may however make

intelligent guesses about the behavior of SoS relaxations for the spiked-Wishart

model on the basis of Theorem 11.1.3 alone. As in the spiked Wigner model,

there are essentially two known algorithms to recover a planted sparse vector v

in the spiked Wishart model: vanilla PCA and diagonal thresholding [62]. We

conjecture that, as in the spiked Wigner model, the SoS hierarchy requires nΩ(1)

degree to improve the number of samples required by these algorithms by any

polynomial factor.

Concretely, considering the case λ � 1 for simplicity, we conjecture that there

are constants c , ε∗ such that for every ε ∈ (0, ε∗) if m 6 min(k2−ε , n1−ε) and

x1, . . . , xm ∼ N(0, Id) are iid, then with high probability for every ρ ∈ (0, 1) if

k � nρ,

SoSd ,k

(∑
i6m

xixi
T

)
> min(n1−εk , k2−ε)

for all d 6 nc·ε
.

This conjecture is supported both by Theorem 11.1.3 and by the lack of

successful nε-simple statistics in the spiked Wishart model.

11.7.1 Proof Overview for Theorem 11.1.3

Our proof of Theorem 11.1.3 is very similar to the analogous proof for planted

clique, Theorem 11.1.1.

We state here just the main PSDness lemma, which describes the pseudocali-

bration construction in the sparse PCA setting.
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Lemma 11.7.4. Let d ∈ � and let Nd �
∑

s6d n(n − 1) · · · (n − (s − 1)) be the number

of 6 d-tuples with unique entries from [n]. Let µ(A) be the density of the following

distribution on n × n matrices A with respect to the uniform distribution on {±1}(n2).

Planted distribution: Let k � k(n) ∈ � and λ � λ(n) ∈ �, and γ > 0, and

assume λ 6 k. Sample a uniformly random k-sparse vector v ∈ �n
with entries ±1, 0.

Form the matrix B � vv>. For each nonzero entry of B independently, replace it with a

uniform draw from {±1} with probability 1 − λ/k (maintaining the symmetry B � B>).

For each zero entry of B, replace it with a uniform draw from {±1} (maintaining the same

symmetry). Finally, choose every i ∈ [n] with probability n−γ independently; for those

indices that were not chosen, replace every entry in the corresponding row and column of

B with random ±1 entries.1 Output the resulting matrix A. (We remark that this matrix

is a Boolean version of the more standard spiked-Wigner model B + λvv> where B has

iid standard normal entries and v is a random k-sparse unit vector with entries from

{±1/
√

k , 0}.)

Let Λ : {±1}(n2) → �Nd×Nd
be the following function

Λ(A) � µ(A) · �
v |A

v⊗62d

where the expectation is with respect to the planted distribution above. For D � D(n) ∈ �,

let Λ6D
be the entrywise projection of Λ into the Boolean functions of degree at most D.

There are constants C, ε∗ > 0 such that for every γ > 0 and ρ ∈ (0, 1) and every

ε ∈ (0, ε∗) (all independent of n), if k � nρ and λ 6 min{nρ−ε , n1/2−ε}, and if

Cd/ε < D < nε/C, then for large enough n

�
A∼{±1}(

n
2
)
{Λ6D(A) � 0} > 1 − o(1) .

1This additional n−γ noising step is a technical convenience which has the effect of somewhat

decreasing the number of nonzero entries of v and decreasing the signal-strength λ.
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At this point it is useful to consider a more familiar planted model, which

the lemma above mimics. Let W be a n × n symmetric matrix with iid entries

from N(0, 1). Let v ∈ �n
be a k-sparse unit vector, with entries in {±1/

√
k , 0}.

Let A � W + λvvT
. Notice that if λ � k, then diagonal thresholding on the

matrix W identifies the nonzero coordinates of v. (This is the analogue of the

covariance-thresholding algorithm in the spiked-Wishart version of sparse PCA.)

On the other hand, if λ �
√

n then (since typically ‖W ‖ ≈
√

n), ordinary PCA

identifies v. The lemma captures computational hardness for the problem of

distinguishing a single sample from A from a sample from the null model W

both diagonal thresholding and ordinary PCA fail.

The differences between the planted distribution in Lemma 11.7.4 and the

spiked Wigner distribution for sparse PCA are mainly technical conveniences

which help in applying the techniques from the proof of Theorem 11.1.1. In

particular we note the trick of rerandomizing each row of the matrix B with

probability n−γ. The result of this trick is that moments �B χα(B) of B (where

α ⊆
(n
2

)
and χα is a Fourier character) decay like n−γ·(# of vertices in α)

.

11.8 Chapter Notes

Theorem 11.1.1 appeared originally in [29], joint workwith Boaz Barak, Jon Kelner,

Pravesh Kothari, Ankur Moitra, and Aaron Potechin. Theorem 11.1.3 appeared

in [88], joint work with Pravesh Kothari, Aaron Potechin, Prasad Raghavendra,

David Steurer, and Tselil Schramm.
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Prior SoS Lower Bounds for Planted Clique Theorem 11.1.1 was preceded by

several less-tight SoS lower bounds for planted clique. Using a dual witness

originally constructed by Feige and Krauthgamer to prove lower bounds against

the weaker Lovasz-Schrĳver hierarchy, Meka, Potechin and Wigderson showed

that degree-d SoS cannot refute the existence of nΩ(1/d)-cliques in G(n , 1/2)

[71, 128]. Deshpande and Montanari improved the analysis of this certificate

for d � 4, showing a lower bound against n1/3
-refutation where Meka, Potechin,

and Wigderson showed a lower bound against only n1/4
-refutation (ignoring

subpolynomial factors) [63].

Hopkins, Kothari, Potechin, Raghavendra, and Schramm then showed the

first tight SoS lower bounds for degree-4 SoS, proving a lower bound against

√
n-

refutation (again ignoring logarithmic factors) [89]. Their lower bound required

a new pseudodistribution construction, which can be viewed in retrospect as

a special case of the pseudocalibration construction where each entry of the

moment matrix is projected to a small number of carefully chosen degree-O(1)

graph functions.

Prior Lower Bounds for Sparse PCA The study of computational lower bounds

for sparse PCA began with work of Berthet and Rigollet showing a reduction

from planted clique to sparse PCA in the regime where the planted spike has

about

√
n nonzero entries [38].

Krauthgamer, Nadler, and Vilenchik showed that degree-2 SoS does not solve

sparse PCA up to the information-theoretic limit [109]. Ma and Wigderson

proved a similarly-strong lower bound against degree-4 SoS [122]. Our lower

bound Theorem 11.1.3 is the first to go beyond quasipolynomial hardness for
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sparse PCA, suggesting that subexponential time may be required to improve by

polynomial factors on guarantees of existing algorithms.

History and Importance of Planted Clique Arising from the 1976 work of

Karp [102], the planted clique problem was formally defined by Jerrum [98] and

Kucera [112]. The strongest guarantees known to be achievable in polynomial

time are originally due to Alon, Krivelevich, and Sudakov, who describe for

every constant ε > 0 a polynomial-time algorithm to find planted cliques of size

ω � ε
√

n [9].

Over the years planted clique and related problems have found applications

to important questions in a variety of areas including community detection [82],

finding signals in molecular biology [148], discovering motifs in biological

networks [130, 97], computing Nash equilibrium [86, 20], property testing [8],

sparse principal component analysis [38], compressed sensing [106], cryptogra-

phy [100, 15] and even mathematical finance [16].

Thus, the questionofwhether the currently knownalgorithms canbe improved

is of great interest. It is unlikely that lower bounds for planted clique can be

derived from conjectured complexity class separations such as P , NP, precisely

because it is an average-case problem [72, 41]. Thus, our best evidence for its

difficulty comes from showing limitations on powerful classes of algorithms. In

particular, sincemany of the algorithmic approaches for this and related problems

involve spectral techniques and convex programs, limitations for these types of

algorithm are of significant interest.

Our interest in showing SoS lower bounds for planted clique stems from its

substantial power in solving similar planted problems (for example, all of the
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algorithms presented in the first part of this thesis). In particular, in some key

instances SoS appears more powerful than weaker convex hierarchies (e.g. the

Lovasz-Schrĳver hierarchy) for which planted clique lower bounds were known

prior to our work. Thus, prior to the proof of Theorem 11.1.1 there appeared to

be a real possibility that SoS could detect slightly sub-polynomial-size planted

cliques in polynomial time, or at least beat brute-force search.
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CHAPTER 12

EQUIVALENCE OF SOS AND SIMPLE MATRIX STATISTICS

In this chapter we state and prove Theorem 12.1.5, the formal version of

Theorem1.1.2, on equivalence of SoShypothesis testing algorithmsandhypothesis

tests based on simple matrix statistics. In the language of Chapter 2, a D-simple

matrix statistic is themaximum eigenvalue of amatrix whose entries are D-simple

statistics. Theorem 12.1.5 can be viewed in (at least) two ways:

Algorithmists’s view: For nice-enoughhypothesis testing problems, if an efficient

SoS-based testing algorithm exists then so does similarly-efficient spectral

one, based on the maximum eigenvalue of a matrix whose entries are

low-degree polynomials of problem instances. We have already seen

examples of this phenomenon: in Chapters 6 and 7 we presented spectral

algorithms based on matrix-valued polynomials designed from SoS proofs.

Theorem 12.1.5 says that this was no accident: similar spectral algorithms

exist for any nice-enough hypothesis testing problem.

Complexity theorist’s view: Conjecture 2.2.4, which says that superlogarithmic

almost-independence fools P, is a statement about all polynomial time algo-

rithms, sowe are unlikely to prove it outright any time soon. Theorem 12.1.5

(or rather its converse, as we state it below) specializes Conjecture 2.2.4,

replacing all polynomial-time hypothesis tests with polynomial-size SoS-

based tests, and replacing D-simple statistics with D-simplematrix statistics

(in the definition of almost-independence), and therefore represents sub-

stantial evidence in favor of Conjecture 2.2.4. (In fact, perhaps the strongest

SoS-based evidence we could hope for would result if Theorem 12.1.5

were strengthened to replace simple matrix statistics with simple statistics
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outright – improving the theorem in this way is a fascinating open problem.)

Our proof technique for Theorem 12.1.5 employs pseudocalibration. In our

pseudocalibration-based arguments in Chapter 11, the main technical difficulty

was in proving that a pseudocalibrated moment matrix is PSD with high proba-

bility. Our proof here avoids this difficulty with a new idea: instead of arguing

directly about the truncated/low-degree moments of a planted distribution, we

find a nearby PSDmatrix-valued function to those moments and argue via convex

duality that it is still suitable to rule out SoS algorithms.

Chapter Overview To state the main result Theorem 12.1.5 formally requires

some definitions, which we tackle in the next section. They formalize (for the

first time, as far as the author is aware) a notion of successful SoS hypothesis test,

and define a set of noise-robust hypothesis testing problem to which the main

theorem applies.

After we prove the main result in Section 12.2 and Section 12.3, we show in

Section 12.4 that the conditions of the main theorem hold for two important

high-dimensional inference problems: planted clique and the spiked tensor

model/tensor principal component analysis. (The conditions of themain theorem

actually hold for a wide range of inference problems, including the k-community

stochastic block model, sparse PCA, random constraint satisfaction, and more.

Verifying this is a series of routine calculations, most of which we omit: they can

be found in [88].)
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12.1 Main Result

Because ourmain result covers many hypothesis testing problems simultaneously,

stating it with the right level of generality requires some care. Before we state

Theorem 12.1.5, we get set up by defining the robust inference problems it applies

to.

Hypothesis Testing Against Product Distributions

We begin by describing a class of hypothesis testing problems. For A a set of

real numbers, we will use I � AN
denote a space of instances indexed by N

variables—for the sake of concreteness, it will be useful to think of I as {0, 1}N ;

for example, we could have N �
(n
2

)
and I as the set of all graphs on n vertices.

However, the results that we will show here continue to hold in other contexts,

where the space of all instances is �N
or [q]N .

We will study binary hypothesis testing with a pair of distributions on

I � AN
: a null distribution ν, which will always be a product distribution, and

an alternative distribution µ. As usual, for us the goal in this setting is to correctly

decide with probability better than 1/2 whether an instance I ∈ I has been

sampled from ν or from µ, when I is chosen with probability 1/2 from µ and

otherwise from ν.

In the hypothesis testing problems we consider, µ is usually a distribution

over instances I with some hidden, or planted structure. So, we often call µ the

planted distribution.
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Polynomial Systems

Ourgoal is to define a broadnotion of successful SoShypothesis testing algorithms.

To that effect, we define next a set of hypothesis testing problems which would

be solvable given an oracle to solve systems of polynomial equations.

Program 12.1.1 (Polynomial System). LetA ,B be sets of real numbers, let n ,N ∈ �,

and let I � AN
be a space of instances and X ⊆ Bn

be a space of solutions. A

polynomial system is a set of polynomial equalities

1 j(x ,I) � 0 ∀ j ∈ [m],

where {1 j}mj�1
are polynomials in the program variables {xi}i∈[n], representing

x ∈ X, and in the instance variables {Ij} j∈[N], representing I ∈ I. We define

deg
prog
(1 j) to be the degree of 1 j in the program variables, and deg

inst
(1 j) to be

the degree of 1 j in the instance variables.

Remark 12.1.2. For the sake of simplicity, the polynomial system 12.1.1 has no

inequalities. Inequalities can be incorporated in to the program by converting

each inequality in to an equality with an additional slack variable. Our main

theorem still holds, but for some minor modifications of the proof, as outlined in

Section 12.3.

Example 12.1.3 (k-clique). Consider a quadratic programwhich checks if a graph

on n vertices contains a clique of size k. We can express this with the polynomial

system over program variables x ∈ �n
and instance variables I ∈ {0, 1}(n2), where

Ii j � 1 iff there is an edge from i to j, as follows:{∑
i∈[n]

xi − k � 0

}
∪ {xi(xi − 1) � 0}i∈[n] ∪ {(1 − Ii j)xi x j � 0}i , j∈([n]

2
).
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Planted Distributions

We will be concerned with planted distributions of a particular form. For us,

a planted distribution is specified by a set X ⊆ Bn
of solutions, where B is a

subset of �, and for each x ∈ X a distribution µx on I � AN
. These specify the

following joint distribution µ on X ×I: first draw x ∼ X uniformly, then draw I

from µx .

We say that a planted distribution µ is ε-satisfying for a polynomial system

{1 j(x ,I)} if with (x ,I) ∼ µ satisfies 1 j(x ,I) � 0 with probability at least 1 − ε.

We have in mind the following kind of SoS-based hypothesis test: given a

polynomial system S, the goal is to test an ε(n , d)-satisfing distribution µ for S

against a product distribution ν. The algorithm is: given an instance I, using

semidefinite programming, check whether there is a degree-d SoS refutation of

the system {1 j(x ,I)}1 j∈S , with respect to the variables x. If there is, output null.

Otherwise, output planted.

Sub-instances

Suppose that I � AN
is a family of instances; then given an instance I ∈ I and a

subset S ⊆ [N], let IS denote the sub-instance consisting of coordinates within S.

Further, for a distributionΘ over subsets of [N], let IS ∼Θ I denote a subinstance

generated by sampling S ∼ Θ. Let I↓ denote the set of all sub-instances of an

instance I, and let I↓ denote the set of all sub-instances of all instances.
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Robust Inference

Our result will pertain to polynomial systems that define planted distributions

which have the property that feasible solutions to sub-instances generalize to

feasible solutions over the entire instance. We call this property “robust inference.”

Definition 12.1.4. LetI � AN
be a family of instances, letΘ be a distribution over

subsets of [N], let S be a polynomial system as in 12.1.1, with deg
prog
S 6 2D,

and let µ be a planted distribution. Then the polynomial system S is said to

satisfy the robust inference property for probability distribution µ onI and subsampling

distribution Θ, if given a subsampling IS of an instance I from µ, one can infer a

setting of the program variables x∗ that remains feasible to S for most settings of

IS.

Formally, µ is ε(n , d) satisfying for S, and there exists a map x : I↓ → �n

such that

�
I∼µ,S∼Θ, ˜I∼ν|IS

[x(IS) is a feasible for S on IS ◦ ˜I] > 1 − ε(n , d)

for some negligible function ε(n , d). To specify the error probability, we will say

that polynomial system is ε(n , d)-robustly inferable.

Statement of Theorem 12.1.5

We are now ready to state our main theorem.

Theorem 12.1.5 (Formal version of Theorem 1.1.2). Suppose that S is a polynomial

system as defined in 12.1.1, of degree at most 2d in the program variables and degree at

most k in the instance variables. Let B > d · k ∈ � such that
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1. The polynomial system S is
1

n8B -robustly inferable with respect to the planted

distribution µ and the sub-sampling distribution Θ.

2. ForI ∼ ν, the polynomial systemS admits a degree-d SoS refutation with numbers

bounded by nB
with probability at least 1 − 1

n8B .

Let D ∈ � be such that for any subset α ⊆ [N] with |α | > D − 2dk,

�
S∼Θ
[α ⊆ S] 6 1

n8B

There exists a degree 2D matrix polynomial Q : I→ �[n]6d×[n]6d
such that,

�I∼µ[λ+
max(Q(I))]

�I∼ν[λ+
max(Q(I))]

> nB/2

Remark 12.1.6. Our argument implies a stronger result that can be stated in terms

of the eigenspaces of the subsampling operator.

Specifically, suppose we define

Sε
def

�

{
α | �

S∼Θ
{α ⊆ S} 6 ε

}
Then, the distinguishing polynomial exhibited by Theorem 12.1.5 satisfies Q ∈

Span{ monomials Iα |α ∈ Sε}. This refinement can yield tighter bounds in cases

where all monomials of a certain degree are not equivalent to each other.

For example, in the Planted Clique problem, each monomial corresponds

to a subset α ⊆
(n
2

)
, and the right measure of the degree of a monomial is the

number of vertices among [n] incident to α, thought of as a graph. This is by

contrast to the usual notion of degree of a monomial, which corresponds just to

|α |.
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Next, in Section 12.2, we describe our main tool to prove Theorem 12.1.5,

which is a novel combination of convex duality and pseudocalibration. Then in

Section 12.3 we prove Theorem 12.1.5.

12.2 Moment-Matching Pseudodistributions

We assume the setup from Section 12.1: we have a family of instances I � AN
, a

polynomial system S � {1 j(x ,I)} j∈[m] with a family of solutions X � Bn
, a null

distribution ν which is a product distribution over I, and a planted distribution

µ over I.

The contrapositive of Theorem 12.1.5 is that if S is robustly inferable with

respect to µ and a distribution over sub-instances Θ, and if there is no spectral

algorithm for distinguishing µ and ν, then with high probability over ν there is

no degree-d SoS refutation for the polynomial system S.

We will prove this converse by using convex duality to show that if no spectral

algorithm exists, there is a witness to this fact, in the form of an approximate,

pseudocalibrated pseudodistribution. That is, the object we obtain will not be a

pseudodistribution, strictly speaking, but it will be close enough to allow us to

prove Theorem 12.1.5. In this section, we carry out this convex duality argument.

Since most I in the support of µ come with x ∈ X such that (x ,I) is feasible

for S (if µ is ε(n , d)-satisfying), we will start our setup by using these feasible

solutions to S. In particular, we use that they are also feasible solutions to the

dual of the SoS SDP which searches for refutations of S.

With this inmind, letΛ : I→ (�[n]6d×[n]6d )+ be any function from the support
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of µ over I to PSD matrices with the following form:

Λ(I) � µ̂(I) ·M(I)

where µ̂ is the relative density of µ with respect to ν, so that µ̂(I) � µ(I)/ν(I),

and M is some matrix valued function such that M(I) � 0 and ‖M(I)‖ 6 nB
for

all I ∈ I. Our goal is to find a PSD matrix-valued function P that matches the

low-degree moments of Λ in the variables I, while being supported over most of

I (rather than just over the support of µ). This insistence on moment matching

is the start of our use of the pseudocalibration idea.

Let the function P : I→ (�[n]6d×[n]6d )+ be given byminimizer of the following

exponentially large convex program over matrix-valued functions,

Program 12.2.1 (Pseudodistribution Program).

min ‖P‖2Fr,ν (12.2.1)

s .t . 〈Q , P〉ν � 〈Q ,Λ′〉ν ∀Q : I→ �[n]6d×[n]6d
, deg

inst
(Q) 6 D (12.2.2)

P � 0

Λ′ � Λ + η · Id, 2
−2

2
n

> η > 0 (12.2.3)

In our typical applications, the matrix-valued function M will have Tr M(I) �

nO(d)
for all I. Since Tr M(I) � 〈Id,M(I)〉, the constraint (12.2.2) fixes �Tr(P),

and so the objective function (12.2.1) can be viewied as minimizing �Tr(P2),

a proxy for the collision probability of the distribution, which is a measure of

entropy.

Eventually, wewill see that any solutionP to Program12.2.1with ‖P‖2Fr,ν � nB

will allow us to rule out the existence of SoS refutations of S for typical I ∼ ν.

Remark 12.2.2. We have perturbed Λ in (12.2.3) so that we can easily show that

strong duality holds in the proof of 12.2.4. For the remainder of the paper we
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ignore this perturbation, as we can accumulate the resulting error terms and set

η to be small enough so that they can be neglected.

The dual of the above program will allow us to relate the existence of an SoS

refutation to the existence of a spectral algorithm.

Program 12.2.3 (Low-Degree Distinguisher).

max 〈Λ,Q〉ν

s .t . Q : I→ �[n]6d×[n]6d
, deg

inst
(Q) 6 D

‖Q+‖2Fr,ν 6 1,

where Q+ is the projection of Q to the PSD cone.

Claim 12.2.4. 12.2.3 is a manipulation of the dual of 12.2.1, so that if 12.2.1 has

optimum c > 1, 12.2.3 has optimum at least Ω(
√

c).

Beforewepresent the proof of the claim,we summarize its central consequence

in the following theorem: if 12.2.1 has a large objective value (and therefore does

not provide a feasible SoS solution), then there is a spectral algorithm.

Theorem 12.2.5. Fix a function M : I → �[n]
6d×[n]6d

+ be such that Id � M � 0.

Let λ+
max
(·) be the function that gives the largest non-negative eigenvalue of a matrix.

Suppose Λ � µ ·M then the optimum of 12.2.1 is equal to opt > 1 only if there exists a

low-degree matrix polynomial Q such that,

�
I∼µ
[λ+

max(Q(I))] > Ω(
√

opt/nd)

while,

�
I∼ν
[λ+

max(Q(I))] 6 1 .
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Proof. By Claim 12.2.4, if the value of 12.2.1 is opt > 1, then there is a polynomial

Q achieves a value of Ω(√opt) for the dual. It follows that

�
I∼µ
[λ+

max(Q(I))] >
1

nd
�
I∼µ
[〈Id,Q+(I))〉] >

1

nd
〈Λ,Q+〉ν � Ω(

√
opt/nd),

where we have used that 0 � M � Id. (Here Q+ denotes the PSD projection of

Q.) On the other hand,

�
I∼ν
[λ+

max(Q(I))] 6
√
�
I∼ν
[λ+

max
(Q(I))2] 6

√
�
I∼ν
‖Q+(I)‖2Fr 6 1.

�

It is interesting to note that the specific structure of the PSD matrix valued

function M plays no role in the above argument—since M serves as a proxy

for monomials in the solution as represented by the program variables x⊗d
, it

follows that the choice of how to represent the planted solution is not critical.

Although seemingly counterintuitive, this is natural because the property of

being distinguishable by low-degree distinguishers or by SoS proofs is a property

of ν and µ.

We wrap up the section by presenting a proof of Claim 12.2.4.

Proof of 12.2.4. We take the Lagrangian dual of 12.2.1. Our dual variables will be

some combination of low-degree matrix polynomials, Q, and a PSD matrix A:

L(P,Q ,A) � ‖P‖2Fr,ν − 〈Q , P −Λ′〉ν − 〈A, P〉ν s .t . A � 0.

It is easy to verify that if P is not PSD, then A can be chosen so that the value of

L is∞. Similarly if there exists a low-degree polynomial upon which P and Λ

differ in expectation, Q can be chosen as a multiple of that polynomial so that the

value of L is∞.
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Now, we argue that Slater’s conditions are met for 12.2.1, as P � Λ′ is strictly

feasible. Thus strong duality holds, and therefore

min

P
max

A�0,Q
L(P,Q ,A) 6 max

A�0,Q
min

P
L(P,Q ,A).

Taking the partial derivative of L(P,Q ,A)with respect to P, we have

∂
∂P
L(P,Q ,A) � 2 · P −Q − A.

where the first derivative is in the space of functions from I→ �[n]6d×[n]6d
. By

the convexity of L as a function of P, it follows that if we set
∂
∂P L � 0, we will

have the minimizer. Substituting, it follows that

min

P
max

A�0,Q
L(P,Q ,A) 6 max

A�0,Q

1

4

‖A + Q‖2Fr,ν −
1

2

〈Q ,A + Q −Λ′〉ν −
1

2

〈A,A + Q〉ν

� max

A�0,Q
〈Q ,Λ′〉ν −

1

4

‖A + Q‖2Fr,ν (12.2.4)

Now it is clear that the maximizing choice of A is to set A � −Q−, the negation of

the negative-semi-definite projection of Q. Thus (12.2.4) simplifies to

min

P
max

A�0,Q
L(P,Q ,A) 6 max

Q
〈Q ,Λ′〉ν −

1

4

‖Q+‖2Fr,ν

6 max

Q
〈Q ,Λ〉ν + η Trν(Q+) −

1

4

‖Q+‖2Fr,ν , (12.2.5)

where we have used the shorthand Trν(Q+)
def

� �I∼ν Tr(Q(I)+). Now suppose

that the low-degree matrix polynomial Q∗ achieves a right-hand-side value of

〈Q∗,Λ〉ν + η · Trν(Q∗+) −
1

4

‖Q∗+‖2Fr,ν > c.

Consider Q′ � Q∗/‖Q∗+‖Fr,ν. Clearly ‖Q′+‖Fr,ν � 1. Now, multiplying the above

inequality through by the scalar 1/‖Q∗+‖Fr,ν, we have that

〈Q′,Λ〉ν >
c

‖Q∗+‖Fr,ν
− η · Trν(Q∗+)

‖Q∗+‖Fr,ν
+

1

4

‖Q∗+‖Fr,ν

>
c

‖Q∗+‖Fr,ν
− η · nd

+
1

4

‖Q∗+‖Fr,ν .
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Therefore 〈Q′,Λ〉ν is at leastΩ(c1/2), as if ‖Q∗+‖Fr,ν >
√

c then the third term gives

the lower bound, and otherwise the first term gives the lower bound.

Thus by substituting Q′, the square root of the maximum of (12.2.5) within an

additive ηnd
lower-bounds the maximum of the program

max 〈Q ,Λ〉ν

s .t . Q : I→ �[n]6d×[n]6d
, deg

inst
(Q) 6 D

‖Q+‖2Fr,ν 6 1.

This concludes the proof. �

12.3 Proof of Theorem 12.1.5

We will prove Theorem 12.1.5 by contradiction. Let us assume that there exists

no degree-2D matrix polynomial that distinguishes ν from µ. First, the lack of

distinguishers implies the following fact about scalar polynomials.

Lemma 12.3.1. Under the assumption that there are no degree-2D distinguishers, for

every degree-D scalar polynomial Q,

‖Q‖2Fr,µ 6 nB‖Q‖2Fr,ν

Proof. Suppose not, then the degree-2D 1 × 1 matrix polynomial Tr(Q(I)2)will

be a distinguisher between µ and ν. �

ConstructingΛ First, wewill use the robust inference property of µ to construct

a pseudo-distribution Λ. Recall again that we have defined µ̂ to be the relative
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density of µwith respect to ν, so that µ̂(I) � µ(I)/ν(I). For each subset S ⊆ [N],

define a PSD matrix-valued function ΛS : I→ (�[n]6d×[n]6d )+ as,

ΛS(I) � �
I′

S

[µ̂(IS ◦ I′S)] · x(IS)6d(x(IS)6d)T

where we useIS to denote the restriction ofI to S ⊂ [N], andIS ◦I′S to denote the

instance given by completing the sub-instance IS with the setting I′
S
. Notice that

ΛS is a function depending only on IS—this fact will be important to us. Define

Λ
def

� �S∼ΘΛS. Observe that Λ is a PSD matrix-valued function that satisfies

〈Λ∅,∅ , 1〉ν � �I∼ν �S∼Θ �I′
S
∼ν
[µ̂(IS ◦ I′S)] � �S �IS

�
IS◦I′S∼ν

[µ̂(IS ◦ I′S)] � 1 (12.3.1)

Since Λ(I) is an average over ΛS(I), each of which is a feasible solution with

high probability, Λ(I) is close to a feasible solution to the SDP relaxation for I.

The following Lemma formalizes this intuition.

Define G def

� Span{χS · G j | j ∈ [m], S ⊆ [N]}, and use ΠG to denote the

orthogonal projection into G.

Lemma 12.3.2. Suppose 12.1.1 satisfies the ε-robust inference property with respect to

planted distribution µ and subsampling distribution Θ and ‖x(IS)6d ‖2
2
6 K for all IS.

Then for every G ∈ G, we have

〈Λ,G〉ν 6
√
ε · K ·

(
�

S∼Θ
�

˜IS∼ν
�
I∼µ
‖G(IS ◦ IS)‖

2

2

) 1

2

Proof. We begin by expanding the left-hand side by substituting the definition of

Λ. We have

〈Λ,G〉ν � �
S∼Θ
�
I∼ν
〈ΛS(IS),G(I)〉

� �
S∼Θ
�
I∼ν
�
I′

S
∼ν
µ̂(IS ◦ I′S) · 〈x(IS)6d(x(IS)6d)T ,G(I)〉
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And because the inner product is zero if x(IS) is a feasible solution,

6 �
S∼Θ
�
I∼ν
�
I′

S
∼ν
µ̂(IS ◦ I′S) · 1[x(IS) is infeasible for S(I)] ·

x(IS)6d
2

2
· ‖G(I)‖Fr

6 �
S∼Θ
�
I∼ν
�
I′

S
∼ν
µ̂(IS ◦ I′S) · 1[x(IS) is infeasible for S(I)] · K · ‖G(I)‖Fr

And now letting
˜IS denote the completion of IS to I, so that IS ◦ ˜IS � I, we note

that the above is like sampling I′
S
, ˜IS independently from ν and then reweighting

by µ̂(IS ◦ I′S), or equivalently taking the expectation over IS ◦ I′S � I′ ∼ µ and

˜IS ∼ ν:

� �
S∼Θ

�
I′∼µ

�
˜IS∼ν
· 1[x(IS) is infeasible for S(IS ◦ ˜IS)] · K · ‖G(IS ◦ ˜IS)‖Fr

and by Cauchy-Schwarz,

6 K ·
(
�

S∼Θ
�
I′∼µ

�
˜IS∼ν
· 1[x(IS) is infeasible for S(IS ◦ ˜IS)]

) 1

2

·
(
�

S∼Θ
�
I′∼µ

�
˜IS∼ν
‖G(IS ◦ ˜IS)‖2Fr

) 1

2

The lemma follows by observing that the first term in the product above is exactly

the non-robustness of inference probability ε. �

Corollary 12.3.3. If G ∈ G is a degree-D polynomial in I, then under the assumption

that there are no degree-2D distinguishers for ν, µ,

〈Λ,G〉ν 6
√
ε · K · nB · ‖G‖Fr,ν

Proof. For each fixing of
˜IS, ‖G(IS ◦ ˜IS)‖2

2
is a degree-2D-scalar polynomial in I.

Therefore by Lemma 12.3.1 we have that,

�
I∼µ
‖G(IS ◦ ˜IS)‖2Fr 6 nB · �

I∼ν
‖G(IS ◦ ˜IS)‖2Fr .

Substituting back in the bound in Lemma 12.3.2 the corollary follows. �
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Now, since there are no degree-D matrix distinguishers Q, for each S in the

support of Θ we can apply reasoning similar to Theorem 12.2.5 to conclude that

there is a high-entropy PSDmatrix-valued function PS that matches the degree-D

moments of ΛS.

Lemma 12.3.4. If there are no degree-D matrix distinguishers Q for µ, ν, then for each

S ∼ Θ, there exists a solution PS to 12.2.1 (with the variable Λ :� ΛS) and

‖PS‖Fr,ν 6 n
(B+d)

4 6 nB/2
(12.3.2)

This does not follow directly from Theorem 12.2.5, because a priori a distin-

guisher for some specific S may only apply to a small fraction of the support

of µ. However, we can show that 12.2.1 has large value for ΛS only if there is a

distinguisher for µ, ν.

Proof. By 12.2.4, it suffices for us to argue that there is no degree-D matrix

polynomial Q which has large inner product with ΛS relative to its Frobenius

norm. So, suppose by way of contradiction that Q is a degree-D matrix that

distinguishes ΛS, so that 〈Q ,ΛS〉ν > nB+d
but ‖Q‖Fr,ν 6 1.

It follows by definition of ΛS that

nB+d 6 〈Q ,ΛS〉ν � �
I∼ν
�
I′

S
∼ν
µ̂(IS ◦ I′S) · 〈Q(I), x(IS)6d(x(IS)6d)>〉

� �
IS◦I′S∼µ

〈
�
IS∼ν

Q(IS ◦ IS), x(IS)6d(x(IS)6d)>
〉

6 �
µ

[
λ+

max

(
�
IS∼ν

Q(IS ◦ IS)
)]
·
x(IS)6d

2

2
.

So, we will show that QS(I) � �I′
S
∼ν Q(IS ◦ I′S) is a degree-D distinguisher for

µ. The degree of QS is at most D, since averaging over settings of the variables

cannot increase the degree. Applying our assumption that ‖x(IS)6d ‖2
2
6 K 6 nd

,
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we already have �µ λ+
max
(QS) > nB

. It remains to show that �ν λ+
max
(QS) is

bounded. For this, we use the following fact about the trace.

Fact 12.3.5 (See e.g. Theorem 2.10 in [47]). For a function f : � → � and a

symmetric matrix A with eigendecomposition

∑
λ · vv>, define f (A) � ∑

f (λ) · vv>.

If f : �→ � is continuous and convex, then the map A → Tr( f (A)) is convex for

symmetric A.

The function f (t) � (max{0, t})2 is continuous and convex over �, so the fact

above implies that the map A→ ‖A+‖2Fr is convex for symmetric A. We can take

QS to be symmetric without loss of generality, as in the argument above we only

consider the inner product of QS with symmetric matrices. Now we have that

‖(QS(I))+‖2Fr �


(
�
I′

S

[
Q(IS ◦ I′S)

] )
+

2

Fr

6 �
I′

S

(Q(IS ◦ I′S)
)
+

2

Fr
,

where the inequality is the definition of convexity. Taking the expectation

over I ∼ ν gives us that ‖(QS)+‖2Fr,ν 6 ‖Q+‖2Fr,ν 6 1, which gives us our

contradiciton. �

Now, analogous to Λ, set P def

� �S∼Θ PS.

Random Restriction We will exploit the crucial property that Λ and P are

averages over functions that depend on subsets of variables. This has the same

effect as a random restriction, in that 〈P, R〉ν essentially depends on the low-degree

part of R. Formally, we will show the following lemma.

Lemma 12.3.6. (Random Restriction) Fix D , ` ∈ �. For matrix-valued functions

R : I→ �`×` and a family of functions {PS : IS → �`×`}S⊆[N], and a distribution Θ
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over subsets of [N],

�
I∼ν
�

S∼Θ
〈PS(IS), R(I)〉 > �

S∼Θ
�
I∼ν
〈PS(IS), R<D

S (IS)〉

− ρ(D ,Θ) 12 ·
(
�

S∼Θ
‖PS‖2Fr,ν

) 1

2

‖R‖Fr,ν

where

ρ(D ,Θ) � max

α,|α |>D
�

S∼Θ
[α ⊆ S].

Proof. We first re-express the left-hand side as

�
I∼ν
�

S∼Θ
〈PS(IS), R(I)〉 � �

S∼Θ
�
I∼ν
〈PS(IS), RS(IS)〉

where RS(IS)
def

� �IS
[R(I)] obtained by averaging out all coordinates outside

S. Splitting the function RS into its low-degree and high-degree parts, RS �

R6D
S + R>D

S , then applying a Cauchy-Schwartz inequality we get

�
S∼Θ
�
I∼ν
〈PS(IS), RS(IS)〉

> �
S∼Θ
�
I∼ν
〈PS(IS), R<D

S (IS)〉 −
(
�

S∼Θ
‖PS‖2Fr,ν

) 1

2

·
(
�

S∼Θ
‖R>D

S ‖
2

Fr,ν

) 1

2

.

Expressing R>D(I) in the Fourier basis, we have that over a random choice of

S ∼ Θ,

�
S∼Θ
‖R>D

S ‖
2

Fr,ν �
∑

α,|α |>D

�
S∼Θ
[α ⊆ S] · R̂2

α 6 ρ(D ,Θ) · ‖R‖2Fr

Substituting into the above inequality, the conclusion follows. �

Equality Constraints Since Λ is close to satisfying all the equality constraints

G of the SDP, the function P approximately satisfies the low-degree part of G.

Specifically, we can prove the following.
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Lemma 12.3.7. Let k > deg
inst
(G j) for all G j ∈ S. With P defined as above and under

the conditions of Theorem 12.1.5 for any function G ∈ G,��〈P,G6D〉ν
�� 6 2

n2B ‖G‖Fr,ν

Proof. Recall that G � Span{χS · G j | j ∈ [m], S ⊆ [N]} and let ΠG be the

orthogonal projection into G. Now, since G ∈ G,

G6D
� (ΠGG)6D

� (ΠGG6D−2k)6D
+ (ΠGG>D−2k)6D . (12.3.3)

Now we make the following claim regarding the effect of projection on to the

ideal G, on the degree of a polynomial.

Claim 12.3.8. For every polynomial Q, deg(ΠGQ) 6 deg(Q) + 2k. Furthermore

for all α, ΠGQ>α
has no monomials of degree 6 α − k

Proof. To establish the first part of the claim it suffices to show that ΠGQ ∈

Span{χS · G j | |S | 6 deg(Q) + k}, since deg(G j) 6 k for all j ∈ [m]. To see this,

observe that ΠGQ ∈ Span{χS · G j | |S | 6 deg(Q) + k} and is orthogonal to every

χS · G j with |S | > deg(Q) + k:

〈ΠGQ , χS · G j〉ν � 〈Q ,ΠGχS · G j〉ν � 〈Q , χS · G j〉ν � 〈QG j , χS〉ν � 0,

where the final equality is because deg(χS) > deg(G j) + deg(Q). On the other

hand, for every subset S with deg(χS) 6 α − k,

〈ΠGQ>α , χS · G j〉 � 〈Q>α ,ΠGχS · G j〉 � 〈Q>α , χS · G j〉 � 0,

since α > deg(G j)+deg(χS) This implies thatΠGQ>α ∈ Span{χS ·G j | |S | > α−k}

which implies that ΠGQ>α
has no monomials of degree 6 α − k. �
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Incorporating the above claim into (12.3.3), we have that

G6D
� ΠGG6D−2k

+ (ΠGG>D−2k)[D−3k ,D],

where the superscript [D − 3k ,D] denotes the degree range. Now,

〈P,G6D〉ν � 〈P,ΠGG6D−2k〉ν + 〈P, (ΠGG>D−2k)[D−3k ,D]〉ν

And since ΠGG6D−2k
is of degree at most D we can replace P by Λ,

� 〈Λ,ΠGG6D−2k〉ν + 〈P, (ΠGG>D−2k)[D−3k ,D]〉ν

Now bounding the first term using 12.3.3 with a nB
bound on K,

6

(
1

n8B

) 1

2

· nB · (nB · ‖ΠGG6D−2k
∅,∅ ‖Fr,ν) + 〈P, (ΠGG>D−2k)[D−3k ,D]〉

And for the latter term we use Lemma 12.3.6,

6
1

n2B ‖ΠGG6D−2k
∅,∅ ‖Fr,ν +

1

n4B

(
�
S
‖PS‖2Fr,ν

) 1

2

‖G‖Fr,ν ,

where we have used the fact that (ΠGG>D−2k)[D−3k ,D]
is high degree. By property

of orthogonal projections, ‖ΠGG>D−2k ‖Fr,ν 6 ‖G>D−2k ‖Fr,ν 6 ‖G‖Fr,ν. Along

with the bound on ‖PS‖Fr,ν from (12.3.2), this implies the claim of the lemma. �

Finally, we have all the ingredients to complete the proof of Theorem 12.1.5.

Proof of Theorem 12.1.5. Suppose we sample an instance I ∼ ν, and suppose by

way of contradiction this implies thatwith high probability the SoS SDP relaxation

is infeasible. In particular, this implies that there is a degree-d sum-of-squares

refutation of the form,

−1 � aI(x) +
∑
j∈[m]

1Ij (x) · q
I
j (x),
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where aI is a sum-of-squares of polynomials of degree at most 2d in x, and

deg(qIj ) + deg(1Ij ) 6 2d. Let AI ∈ �[n]6d×[n]6d
be the matrix of coefficients for

aI(c) on input I, and let GI be defined similarly for

∑
j∈[m] 1 j(x) · q j(x). We can

rewrite the sum-of-squares refutation as a matrix equality,

−1 � 〈X6d ,AI〉 + 〈X6d ,GI〉,

where GI ∈ G, the span of the equality constraints of the SDP.

Define s : I→ {0, 1} as

s(I) def

� 1[∃ a degree-2d sos-refutation for S(I)]

By assumption, �I∼ν[s(I)] � 1− 1

n8B . Define matrix valued functions A,G : I→

�[n]
6d×[n]6d

by setting,

A(I) def

� s(I) · AI

G(I) def

� s(I) · GI

With this notation, we can rewrite the sos-refutation identity as a polynomial

identity in X and I,

−s(I) � 〈X6d ,A(I)〉 + 〈X6d ,G(I)〉 .

Let e∅,∅ denote the [n]6d × [n]6d
matrix with the entry corresponding to (∅, ∅)

equal to 1, while the remaining entries are zero. We can rewrite the above equality

as,

−〈X6d , s(I) · e∅,∅〉 � 〈X6d ,A(I)〉 + 〈X6d ,G(I)〉 .

for all I and formal variables X.

Now, let P � �S∼Θ PS where each PS is obtained by from the 12.2.1 with ΛS.

Substituting X6d
with P(I) and taking an expectation over I,

〈P, s(I) · e∅,∅〉ν � 〈P,A〉ν + 〈P,G〉ν (12.3.4)
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> 〈P,G〉ν (12.3.5)

where the inequality follows because A, P � 0. We will show that the above

equation is a contradiction by proving that LHS is less than −0.9, while the right

hand side is at least −0.5. First, the right hand side of (12.3.4) can be bounded by

Lemma 12.3.7

〈P,G〉ν � �
I∼ν
�

S∼Θ
〈PS(IS),G(I)〉

> �
I∼ν
�

S∼Θ
〈PS(IS),G6D(I)〉 − 1

n4B ·
(
�
S
‖PS‖2Fr,ν

)
1/2
· ‖G‖Fr,ν (Lemma 12.3.6)

> − 2

n2B · ‖G‖Fr,ν −
1

n4B

(
�
S
‖PS‖2Fr,ν

) 1

2

‖G‖Fr,ν (using Lemma 12.3.7)

> −1

2

where the last step used the bounds on ‖PS‖Fr,ν from (12.3.2) and on ‖G‖Fr,ν

from the nB
bound assumed on the SoS proofs in Theorem 12.1.5.

Now the negation of the left hand side of (12.3.4) is

�
I∼ν
〈P(I), s(I) · e∅,∅〉 > �I∼ν[P∅,∅(I) · 1] −�[(s − 1)2]1/2 · ‖P‖Fr,ν

The latter term can be simplified by noticing that the expectation of the square of

a 0,1 indicator is equal to the expectation of the indicator, which is in this case

1

n8B by assumption. Also, since 1 is a constant, P∅,∅ and Λ∅,∅ are equivalent:

� �
I∼ν
[Λ∅,∅(I) · 1] −

1

n4B · ‖P‖Fr,ν

� 1 − 1

n4B · ‖P‖Fr,ν ( using (12.3.1))

� 1 − 1

n3B (using (12.3.2))

We have the desired contradiction in (12.3.4). �
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12.3.1 Handling Inequalities

Suppose the polynomial system 12.1.1 includes inequalities of the form h(I , x) >

0, then a natural approach would be to introduce a slack variable z and set

h(I , x) − z2 � 0. Now, we can view the vector (x , z) consisting of the original

variables along with the slack variables as the hidden planted solution. The proof

of Theorem 12.1.5 can be carried out as described earlier in this section, with

this setup. However, in many cases of interest, the inclusion of slack variables

invalidates the robust inference property. This is because, although a feasible

solution x can be recovered from a subinstance IS, the value of the corresponding

slack variables could potentially depend on IS. For instance, in a randomCSP, the

value of the objective function on the assignment x generated from IS depends

on all the constraints outside of S too.

The proof we described is to be modified as follows.

• As earlier, construct ΛS using only the robust inference property of original

variables x, and the corresponding matrix functions PS.

• Convert each inequality of the form hi(I , x) > 0, in to an equality by setting

hi(I , x) � z2

i .

• Now we define a pseudo-distribution
˜ΛS(IS) over original variables x

and slack variables z as follows. It is convenient to describe the pseudo-

distribution in terms of the corresponding pseudo-expectation operator.

Specifically, if x(IS) is a feasible solution for 12.1.1 then define

˜E[zσxα]
def

�


0 if σi odd for some i∏

i∈σ(hi(I , x(IS)))σi/2 · x(IS)α otherwise
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Intuitively, the pseudo-distribution picks the sign for each zi uniformly

at random, independent of all other variables. Therefore, all moments

involving an odd power of zi are zero. On the other hand, the moments of

even powers of zi are picked so that the equalities hi(I , x) � zi are satisfied.

It is easy to check that
˜Λ is psd matrix valued, satisfies (12.3.1) and all the

equalities.

• While ΛS in the original proof was a function of IS, ˜ΛS is not. However, the

key observation is that,
˜ΛS is degree at most k · d in the variables outside of

S. Each function hi(I , x(IS)) is degree at most k in IS, and the entries of

˜ΛS(IS) are a product of at most d of these polynomials.

• The main ingredient of the proof that is different from the case of equalities

is the random restriction lemma which we outline below. The error

in the random restriction is multiplied by Ddk/2 6 nB/2
; however this

does not substantially change our results, since Theorem 12.1.5 requires

ρ(D ,Θ) < n−8B
, which leaves us enough slack to absorb this factor (and in

every application ρ(D ,Θ) � pO(D)
for some p < 1 sufficiently small that we

meet the requirement that Ddkρ(D − dk ,Θ) is monotone non-increasing in

D).

Lemma 12.3.9 (Random Restriction for Inequalities). Fix D , ` ∈ �. Consider a

matrix-valued function R : I→ �`×` and a family of functions {PS : I→ �`×`}S⊆[N]
such that each PS has degree at most dk in IS. If Θ is a distribution over subsets of [N]

with

ρ(D ,Θ) � max

α,|α |>D
�

S∼Θ
[α ⊆ S],

and the additional requirement that Ddk · ρ(D − dk ,Θ) is monotone non-increasing in
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D, then

�
I∼ν
�

S∼Θ
〈PS(IS), R(I)〉

> �
S∼Θ
�
I∼ν
〈PS(IS), ˜R<D

S (IS)〉 − Ddk/2 · ρ(D − dk ,Θ) 12 ·
(
�

S∼Θ
‖PS‖2

2,ν

) 1

2

‖R‖Fr,ν

Proof.

�
I∼ν
�

S∼Θ
〈PS(IS), R(I)〉 � �

S∼Θ
�
I∼ν
〈PS(IS), ˜RS(I)〉

where
˜RS(I) is now obtained by averaging out the values for all monomials whose

degree in S is > dk. Writing
˜RS � ˜R6D

S + ˜R>D
S and applying a Cauchy-Schwartz

inequality we get,

�
S∼Θ
�
I∼ν
〈PS(IS), ˜RS(I)〉

> �
S∼Θ
�
I∼ν
〈PS(IS), ˜R<D

S (I)〉 −
(
�

S∼Θ
‖PS‖2Fr,ν

) 1

2

·
(
�

S∼Θ
‖ ˜R>D

S ‖Fr,ν

) 1

2

Over a random choice of S,

�
S∼Θ
‖ ˜R>D

S ‖
2

Fr,ν �
∑

α,|α |>D

�
S∼Θ
[|α ∩ S | 6 dk] · R̂2

α 6 Ddk · ρ(D − dk ,Θ) · ‖R‖2Fr ,

where we have used that Ddkρ(D − dk ,Θ) is a monotone non-increasing function

of D. Substituting this in the earlier inequality the Lemma follows. �

12.4 Applications

In this section we provide two example inference problems for which the

conditions of Theorem 12.1.5 hold: planted clique and the spiked tensor model.

We will rely upon the (simple) proofs in Section 12.5, which show that some

well-conditioned-ness facts about SoS proofs. Verifying that the conditions
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hold for other inference problems, like densest-k-subgraph, random constraint

satisfaction, sparse PCA and more, involves similar and routine calculations – we

refer the reader to [88].

Problem 12.4.1 (Planted clique with clique of size nδ). Given a graph G � (V, E)

on n vertices, determine whether it comes from:

• Uniform Distribution: the uniform distribution over graphs on n vertices

(G(n , 1

2
)).

• Planted Distribution: the uniform distribution over n-vertex graphs with

a clique of size at least nδ

The usual polynomial program for planted clique in variables x1, . . . , xn is:

obj 6
∑

i

xi

x2

i � xi ∀i ∈ [n]

xi x j � 0 ∀(i , j) ∈ E

Lemma 12.4.2. Theorem 12.1.5 applies to the above planted clique program, so long as

obj 6 nδ−ε for any ε > c·d
D−6d for a fixed constant c.

Proof. Note that the definition of “degree” is a little subtle for planted clique;; see

Remark 12.1.6 following the statement of Theorem 12.1.5.

In this case, the instance degree of the SoS relaxation is k � 2. We have

from Corollary 12.5.3 that the degree-d SoS refutation is well-conditioned, with

numbers bounded by nc1·d
for some constant c1/2. Define B � c1d > dk.

Our subsampling distribution Θ is the distribution given by including every

vertex with probability ρ, producing an induced subgraph of ≈ ρn vertices. For
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any set of edges α of instance degree at most D − 6d,

�
S∼Θ
[α ⊆ S] 6 ρD−6d ,

since the instance degree corresponds to the number of vertices incident on α.

This subsampling operation satisfies the subsample inference condition for

the clique constraints with probability 1, since a clique in any subgraph of G is

also a clique in G. Also, if there is a clique of size nδ in G, then by a Chernoff

bound

�
S∼Θ
[∃ clique of size > (1 − β)ρnδ ∈ S] > 1 − exp(−

β2ρnδ

2

) .

Choosing β �

√
10B log n
ρnδ , this gives us that Θ gives n−10B

-robust inference for the

planted clique problem, so long as obj 6 ρn/2. Choosing ρ � n−ε for ε so that

ρD−6d 6 n−8B
�⇒ ε >

c2d
D − 6d

,

for some constant c2, all of the conditions required by Theorem 12.1.5 now

hold. �

Problem 12.4.3 (Spiked tensor model/tensor PCA). Given an order-k tensor in

(�n)⊗k
, determine whether it comes from:

• Uniform Distribution: each entry of the tensor sampled independently

fromN(0, 1).

• Planted Distribution: a spiked tensor, T � λ · v⊗k + G where v is sampled

uniformly from {± 1√
n
}n , and where G is a random tensor with each entry

sampled independently fromN(0, 1).

Given the tensorT, the canonical program for the tensor PCAproblem in variables

x1, . . . , xn is:

obj 6 〈x⊗k ,T〉
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‖x‖2
2
� 1

Lemma 12.4.4. For λn−ε � log n, Theorem 12.1.5 applies to the tensor PCA problem

with obj 6 λn−ε for any ε > c·d
D−3d for a fixed constant c.

Proof. The degree of the SoS relaxation in the instance is k � 1. Since the

entries of the noise component of the tensor are standard normal variables, with

exponentially good probability over the input tensor T we will have no entry of

magnitude greater than nd
. This, together with Corollary 12.5.3, gives us that

except with exponentially small probability the SoS proof will have no values

exceeding nc1d
for a fixed constant c1.

Our subsampling operation is to set to zero every entry of T independently

with probability 1 − ρ, obtaining a sub-instance T′ on the nonzero entries. Also,

for any α ∈
( [n]k
D−3d

)
,

�
S∼Θ
[α ∈ S] 6 ρD−3d .

This subsampling operation clearly preserves the planted solution unit sphere

constraint. Additionally, letR be the operator that restricts a tensor to the nonzero

entries. We have that 〈R(λ · v⊗k), v⊗k〉 has expectation λ · ρ, since every entry of

v⊗k
has magnitude n−k/2

. Applying a Chernoff bound, we have that this quantity

will be at least (1− β)λρ with probability at least n−10B
if we choose β �

√
10B log n

λρ .

It remains to address the noise introduced by GT′ and resampling all the

entries outside of the subinstance T′. Each of these entries is a standard normal

entry. The quantity 〈(Id − R)(N), v⊗k〉 is a sum over at most nk
i.i.d. Gaussian

entries each with standard deviation n−k/2
(since that is the magnitude of (v⊗k)α.

The entire quantity is thus a Gaussian random variable with mean 0 and variance

1, and therefore with probability at least n−10B
this quantity will not exceed
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√
10B log n. So long as

√
10B log n � λρ, the signal term will dominate, and the

solution will have value at least λρ/2.

Now, we set ρ � n−ε so that

ρD−3d 6 n−8B
�⇒ ε >

2c1d
D − 3d

,

which concludes the proof (after making appropriate adjustments to the constant

c1). �

Remark 12.4.5. For problems where the null model is Gaussian (such as in

the spiked tensor model), applying Theorem 12.1.5 yields the existence of

distinguishers that are low-degree in a non-standard sense. Specifically, the degree

of a monomial will be the number of distinct variables in it, irrespective of the

powers to which they are raised. To obtain conclusions with respect to the usual

notion of degree, Theorem 12.1.5 can be adapted to allow the Ornstein-Uhlenbeck

noise operator in place of the subsampling distribution Θ.

12.5 Bounding the sum-of-squares proof ideal term

We give conditions under which sum-of-squares proofs are well-conditioned,

using techniques similar to those that appear in [156] for bounding the bit

complexity of SoS proofs. We begin with some definitions.

Definition 12.5.1. Let P be a polynomial optimization problem and let D be

the uniform distribution over the set of feasible solutions S for P. Define the

degree-2d moment matrix ofD to be XD � �s∼D [̂s⊗2d], where ŝ � [1 s]>.

• We say that P is k-complete on up to degree 2d if every zero eigenvector of

XD has a degree-k derivation from the ideal constraints of P.
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Theorem 12.5.2. Let P be a polynomial optimization problem over variables x ∈ �n
of

degree at most 2d, with objective function f (x) and ideal constraints {1 j(x) � 0} j∈[m].

Suppose also that P is 2d-complete up to degree 2d. Let G be the matrix of ideal

constraints in the degree-2d SoS proof for P. Then if

• the SDP optimum value is bounded by nO(d)

• the coefficients of the objective function are bounded by nO(d)
,

• there is a set of feasible solutions S ⊆ �n
with the property that for each α ⊆ [n]d ,

|α | 6 d for which χα is not identically zero over the solution space, there exists

some s ∈ S such that the square monomial χα(s)2 > n−O(d)
,

it follows that the SoS certificate for the problem is well-conditioned, with no value larger

than nO(d)
.

To prove this, we essentially reproduce the proof of the main theorem of [156],

up to the very end of the proof at which point we slightly deviate to draw a

different conclusion.

Proof. Following our previous convention, the degree-2d sum-of-squares proof

for P is of the form

sdpOpt− f (x) � a(x) + 1(x),

where the 1(x) is a polynomial in the span of the ideal constraints, and A is a sum

of squares of polynomials. Alternatively, we have the matrix characterization,

sdpOpt−〈F, x̂⊗2d〉 � 〈A, x̂⊗2d〉 + 〈G, x̂⊗2d〉,

where x̂ � [1 x]>, F,A, and G are matrix polynomials corresponding to f , a, and

1 respectively, and with A � 0.
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Now let s ∈ S be a feasible solution. Then we have that

sdpOpt−〈F, s⊗2d〉 � 〈A, s⊗2d〉 + 〈G, s⊗2d〉 � 〈A, s⊗2d〉,

where the second equality follows because each s ∈ S is feasible. By assumption

the left-hand-side is bounded by nO(d)
.

We will now argue that the diagonal entries of A cannot be too large. Our

first step is to argue that A cannot have nonzero diagonal entries unless there is a

solution element in the solution Let XD � �[x⊗2d] be the 2d-moment matrix of

the uniform distribution of feasible solutions to P. DefineΠ to be the orthogonal

projection into the zero eigenspace of XD . By linearity and orthonormality, we

have that

〈XD ,A〉 �
〈
XD , (Π +Π⊥)A(Π +Π⊥)

〉
�

〈
XD ,Π⊥AΠ⊥

〉
+

〈
XD ,ΠAΠ⊥

〉
+

〈
XD ,Π⊥AΠ

〉
+ 〈XD ,ΠAΠ〉 .

By assumption P is 2d-complete on D up to degree 2d, and therefore Π is

derivable in degree 2d from the ideal constraints {1 j} j∈[m]. Therefore, the latter

three terms may be absorbed into G, or more formally, we can set A′ � Π⊥AΠ⊥,

G′ � G + (Π +Π⊥)A(Π +Π⊥) −Π⊥AΠ⊥, and re-write the original proof

sdpOpt−〈F, x̂⊗2d〉 � 〈A′, x̂⊗2d〉 + 〈G′, x̂⊗2d〉. (12.5.1)

The left-hand-side remains unchanged, so we still have that it is bounded by

nO(d)
for any feasible solution s ∈ S. Furthermore, the nonzero eigenspaces of

XD and A′ are identical, and so A′ cannot be nonzero on any diagonal entry

which is orthogonal to the space of feasible solutions.

Now, we argue that every diagonal entry of A′ is at most nO(d)
. To see this, for

each diagonal term χ2

α, we choose the solution s ∈ S for which χα(s)2 > n−O(d)
.

396



We then have by the PSDness of A′ that

A′α,α · χα(s)2 6 〈s⊗2d ,A′〉 6 nO(d),

which then implies that A′α,α 6 nO(d)
. It follows that Tr(A′) 6 nO(d)

, and again

since A′ is PSD,

‖A′‖F 6
√

Tr(A′) 6 nO(d). (12.5.2)

Putting things together, we have from our original matrix identity (12.5.1) that

‖G′‖F � ‖ sdpOpt−A′ − F‖F

6 ‖ sdpOpt ‖F + ‖A′‖F + ‖F‖F (triangle inequality)

6 ‖ sdpOpt ‖F + nO(d)
+ ‖F‖F (from (12.5.2)).

Therefore by our assumptions that ‖ sdpOpt ‖ , ‖F‖F � nO(d)
, the conclusion

follows. �

We now argue that the conditions of this theorem are met by several general

families of problems. (See [88] for an expanded version of Corollary 12.5.3.)

Corollary 12.5.3. The following problems have degree-2d SoS proofs with all coefficients

bounded by nO(d)
:

1. The unit sphere: Any polynomial optimization problem with the only constraints

being {∑i∈[n] x2

i � 1} and objective value at most nO(d)
over the set of feasible

solutions. (Including tensor PCA).

2. The max clique problem.

We prove this corollary below. For each of the above problems, it is clear that

the objective value is bounded and the objective function has no large coefficients.
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To prove this corollary, we need to verify the completeness of the constraint sets,

and then demonstrate a set of feasible solutions so that each square term receives

non-negligible mass from some solution.

A large family of completeness conditions were already verified by [156] and

others (see the references therein):

Proposition 12.5.4 (Completeness of canonical polynomial optimizationproblems

(from Corollary 3.5 of [156])). The following pairs of polynomial optimization problems

P and distributions over solutionsD are complete:

1. If the feasible set is x ∈ �n
with

∑
i∈[n] x2

i � α, then P is d-complete onD up to

degree d (e.g. if P is the tensor PCA problem).

2. If P is the max clique problem with feasible set x ∈ �n
with {x2

i � xi}i∈[n] ∪

{xix j � 0}(i , j)∈E, then P is d-complete onD up to degree d.

Proof of 12.5.3. We verify the conditions of Theorem 12.5.2 separately for each

case.

1. The unit sphere: the completeness conditions are satisfied by 12.5.4. We

choose the set of feasible solutions to contain a single point, s �
1√
n
· ®1,

for which χ2

α(s) > n−d
as long as |α | 6 d, which meets the conditions of

Theorem 12.5.2.

2. The max clique problem: the completeness conditions are satisfied by 12.5.4.

We choose the solution set S to be the set of 0, 1 indicators for cliques in

the graph. Any α that corresponds to a non-clique in the graph has χα

identically zero in the solution space. Otherwise, χα(s)2 � 1 when s ∈ S is

the indicator vector for the clique on α.
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This concludes the proof. �

12.6 Chapter Notes

The content in this chapter originally appeared in [88], joint work with Pravesh

Kothari, Aaron Potechin, Prasad Raghavendra, Tselil Schramm, and David

Steurer.
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APPENDIX A

OPEN PROBLEMS

Convex Relaxations for the Sparse Stochastic Block Model. Design a natural,

convex-relaxation-based algorithm to correctly label a (1/2 + δ)-fraction of vertices for

some δ > 0 in a graph from the symmetric 2-community block model SBM(d , ε), for

any d > 1/ε2
.

As we saw in Chapter 8, algorithms based on simple statistics – nonback-

tracking walks and more – are able to accurately estimate communities for any

d > 1/ε2
. Ultimately these guarantees are captured by low-degree spectral

methods (the nonbacktracking operator), so they can also be captured by ad-hoc

semidefinite programs. Nonetheless, such SDPs are unusual – they would not,

for example, look at all like the SoS program one would get from the hypothesis

testing/refutation/estimation SoS program constructions in Chapter 3. The best

guarantees achieved by a more natural SDP are due to Montanari and Sen [133],

who study the SDP

max〈X,A〉 such that Xii � 1,X � 0

where A is the adjacency matrix of a graph. They show that this SDP can recover

a (1/2 + δ)-fraction of the vertices when d > 1/ε2 + 1/dΩ(1).

In may be that the additive 1/dΩ(1) is a weakness of the SDP itself – this

SDP, which is a relaxation of the maximum-likelihood estimator, simply may not

obtain the same recovery guarantees as algorithms based on simple statistics.

Indeed, it is possible that the maximum-likelihood estimator does not achieve

such guarantees. In this case, a possible avenue to designing a better convex

relaxation is to relax the variational characterization of the posterior distribution,
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recalling that for a graph G from the block model with hidden communities x,

the conditional distribution on x is given by

{x | G} � arg max

µ∈∆{−1,1}n
C(ε, d) �

x∼µ
〈x ,Gx〉 + H(µ)

where C(ε, d) is a function of the parameters of the block model. Of course, this

problem is already convex, but it is 2
n
-dimensional. By replacing distributions µ

with low degree pseudodistributions one might hope to find a lower-dimensional

versions. This approach seems to require finding a new notion of the entropy of

a pseudodistribution, which would be of interest in its own right.

SoS and colorability of random graphs. Prove an Ω(n)-degree SoS lower bound

for refuting k-colorability of typical G ∼ G(n , d
n ) for constant d and k �

√
d. A

random n-node graph with average degree d (or a random d-regular graph) with

high probability has chromatic number Ω(d/log d) [5]. The strongest known

polynomial-time refutation algorithms are able to certify only that Ω(
√

d) colors

are required, and improving on this

√
d appears computationally intractable.

The simple statistics heuristic suggests that testing whether a graph is sampled

from G(n , d/n) or a random k-color graph model should be computationally

intractable for algorithms with running times at least 2
nΩ(1)

, when k �
√

d. (This

is a special case of the hypothesis testing task in the k-community stochastic block

model.)

However, the best available SoS lower bounds for this problem are stuck at

degree-2 SoS [24]. While the pseudocalibration method should apply to this

problem, it appears to capture many of the features which foil known techniques

for analyzing the pseudocalibration construction – it involves sparse random

matrices, which have more complicated spectra than the dense random matrices
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analyzed in Chapter 11, but it has the non-local flavor of planted clique, so

techniques used previously for CSP lower bounds seem not to apply. It appears

likely that progress on SoS lower bounds for k-coloring would significantly

improve our understanding of pseudocalibration in general.
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