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Number of SOSOFS(n, s) For n a Product of Prime Powers 

Abstract 

By 

Walter T. Federer 
Cornell University 

Formulas for the number ofF-squares with p symbols, q symbols, and r symbols 
are presented, For n = pqr, p < q < r, and p, q, and r, prime numbers, the numbers of the 
various F-squares are determined. It is shown how to generalize the results to powers of 
primes and how to construct sum-of-squares orthogonal arrays from the complete sets of 
F-squares. A complete set of sum-of-squares orthogonal F-squares attains the maximum 
number, the upper bound, that can be constructed. 
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Introduction 

A geometry for all values of n, n a product of prime powers, has been developed 
by Federer (2003b). Related to this is a construction of complete sets ofF-squares. An 
F-square, FS(n, s), is ann x n row-column array of s symbols with the s symbols 
appearing equally frequent in rows and equally frequent in columns. This has been called 
a regular F-square to distinguish it from a semi-F-square which has the s symbols 
occurring equally frequent in rows (columns) but not in columns (rows). Pesotan et al. 
(2003) denote the semi-F-square as a row (column) frequency square, RFS(n, s) (CFS(n, 
s)). These authors investigated the maximum number ofRFS(n, s) (CFS(n, s)) and 
reviewed the history of upper bounds for a set ofFS(n, s). Here we determine the 
number and the upper bound on the number of sum-of-squares orthogonal F-squares with 
s symbols, SOSOFS(n, s). Statistical ideas and concepts are used for this investigation. 

Number of SOSOFS 

Ideas from factorial treatment design and associated degrees of freedom provide 
the basis for determining the number of SOSOFS(n, s) in a complete set of sum-of­
orthogonal F-squares for a particular value of n. Partitioning degrees of freedom and 
sums of squares for the factorial effects into main effects and interactions in an analysis 



of variance results in the well-known orthogonal decomposition of the total sums of 
squares and total degrees of freedom. Federer (2003b) presented a method for 
constructing F-squares from the main effect and interactions sums of squares and degrees 
of freedom. The construction results in regular F-squares and semi-F-squares. When the 
sum of squares for the F -squares constructed from a main effect or an interaction account 
for all of the degrees of freedom and sums of squares of the main effects or interactions, 
the set ofF-squares is said to be sum-of-squares orthogonal, SOSO. The set is said to be 
complete if all degrees of freedom and sums of square s have been accounted for leaving 
nothing left to construct additional F-squares. Thus the upper bound is reached with a 
complete set. 

For p < q < r < ... , p, q, and r, .. prime numbers, and n = paqbrc ... , F-squares with 
p, q, r, .. symbols will result from the construction method given by Federer (2003b). 
The question arises as to the number ofFS(n, p), FS(n, q), FS(n, r), etc. squares in a 
complete set ofSOSOFSs. To determine this, degree of freedom concepts are used. 

First, consider the case where n = pq, p < q, p and q prime numbers. Let factor A 
with p levels and factor B with q levels be associated with rows and let factor C with p 
levels and factor D with q levels be associated with columns. This results in a four factor 
factorial treatment design. The row x column interaction is associated with (n - 1 i = (pq 
- 1 i degrees of freedom and is composed of interactions of the four factors. A 
partitioning of the degrees of freedom in an analysis of variance is: 

Source of Degrees of freedom 
variation Q=2,g=3 Q-3,g=5 Q,g 
Total 36 225 n2 = p2q2 

Mean 1 1 1 
Row 5 14 n-1=pq-1 

A 1 2 p- 1 
B 2 4 q-1 
AxB 2 8 (p- 1)(q- 1) 

Column 5 14 n- 1 = pq- 1 
c 1 2 p- 1 
D 2 4 q- 1 
CxD 2 8 (p- 1)(q- 1) 

Row x column 25 196 (n- 1 f = (pq - 1 )2 

AxC 1 4 (p- 1i 
AxD 2 8 (p- 1)(q- 1) 
AxCxD 2 16 (p- 1i (q- 1) 
BxC 2 8 (q- 1)(p- 1) 
BxD 4 16 (q- 1i 
BxCxD 4 32 (p- 1)(q- 1i 
AxBxC 2 16 (q-1)(p-1i 
AxBxD 4 32 (p- 1)(q- 1i 
AxBxCxD 4 64 (Q- 1i(g- 1)2 

For n = 2(3), there is only one FS(6, 2); it is formed from the A x C interaction. 
There are 12 FS(5, 3)s that are formed from the remaining interactions using the method 



of construction given by Federer (2003b). The two symbols in the FS(6, 2)s have one 
degree of freedom for its sum of squares. Each of the FS( 6, 3)s are associated with two 
degrees of freedom. These 12 F-squares account for all the degrees of freedom and 
likewise the sums of squares as this is a SOSO setofF-squares. The upper bound is 
attained as there are no degrees of freedom left to construct additional F-squares. 

For n = 3(5), there are two FS(15, 3)s. There are 43 FS(l5, 5)s formed from the 
remaining interactions. These 45 F -squares form a complete set of SOSOFSs. In 
general, there are p- 1 FS(n, p)s and p2(q + 1)- 2p FS(n, q)s. The interaction ofthe two 
factors with p levels is associated with (p- 1)2 degrees of freedom. The p- 1 FS(n, p)s 
constructed from this interaction each have p - 1 degrees of freedom. 

lfn = paqb, then the number ofFS(n, p)s is {p3 - 1)2/(p- 1). The number ofFS(n, 
q)s is [(qb- 1)/(q- 1)][p23(qb + 1)- 2p3]. For example, let n = 18 = 2(32). There is one 
FS(l8, 2) and [(32 - 1)/(3- 1)][22(32 + 1)- 2p] = 144 FS(18, 3)s. Federer (2003a) has 
presented a computer program for constructing this set ofF-squares as well as other sets. 
For n = 12 = 22(3), there are nine FS(12, 2)s and 56 FS(12, 3)s. 

Let the row numbers be represented by a three factor factorial of factors A at p 
levels, B at q levels, and C at r levels. Likewise, use the three factors D at p levels, E at q 
levels, and F at r levels, to represent the column numbers. This results in a six factor 
factorial arrangement. Let p < q < r. Using the interactions ofthese factors to construct 
F-squares as described by Federer (2003a, b), there are p- 1 FS(n, p)s, p2(q + 1)- 2p 
FS(n, q)s, and pq[p2(q + 1)- 2p] FS(n, r)s. For n = 30 = 2(3)(5), there is one FS(30, 2), 
12 FS(30, 3)s, and 204 FS(30, 5)s to form a complete set. 

The above leads to the following theorem: 

Theorem:For n = pqr, p < q < r, p, q, and r prime numbers, the construction method of 
Federer (2003b) produces p- 1 F(n, p) squares, p2(q + 1)- 2p F(n, q) squares, and 
pq[p2(q + 1)- 2p] F(n, r) squares to form a complete set of sum-of-squares orthogonal 
F-squares. This set is the maximum number ofF-squares. 

As demonstrated above, this theorem is easily generalized to the case where n = p3qbrc 
and to the extension of more factors. The above set ofF -squares may be used to 
construct a sum-of-squares orthogonal array. Also, F-squares may be formed from the 
rows and column categories. One FS(n, p), p FS(n, q)s, and pq FS(n, r)s may be 
constructed from rows and the same number from columns. Adding these F-squares to 
the set in the theorem, we have p + 1 FS(n, p)s, p2(q + 1) FS(n, q)s, and pq[p2(q + 1) -2p] 
+ 2pq FS(n, r)s. Thus the following corollary: 

Corollory:A sum-of-squares orthogonal array with n2 rums and with p + 1 rows of p 
symbols, p2(q + 1) rows ofq symbols, andpq[p2(q + 1) -2p] + 2pq rows ofr symbols is 
produced from the set ofF -squares in the theorem and the row and column F-squares. 

Comments 

The sum-of-squares orthogonal arrays produced by the methods described herein 
greatly adds to the number of standard orthogonal arrays. The availability of such arrays 



adds to the diversity and flexibility for using arrays as codes. Since complete sets of 
SOSOFSs can be generated using a computer (Federer, 2003a), these arrays are easily 
available to the users of codes. 

Using the method for constructing F-squares given by Federer (2003a, b) for n = 

8 = 2(4) and n = 12 = 2(6) did not result in a complete set ofSOSOFSs. For n = 2(4) = 8, 
seven degrees of freedom remain unaccounted for. This means that additional F-squares 
could be constructed using the method for adding to a given set ofF-squares as described 
by Federer (2003a, b). Thus, this number would exceed the maximum number of 
SOSOFSs but the set would not be SOSO. For n = 12 = 2(6), 40 degrees of freedom 
were unaccounted for by this method. These 40 degrees of freedom would allow for an 
at least an additional eight FS(12, 6)s. Here again the upper bound for SOSOFSs would 
be exceeded but the set would not be a set of SOSOFSs. 
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