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Abstract 

The goal of this article is to review key contributions in the area of statistics as applied to the use of 

molecular marker technology and quantitative genetics in the search for genes affecting quantitative 

traits responsible for specific (human) diseases, and often times economically important agronomic 

traits. Since an exhaustive literature review is not possible, the limited scope of this work is to 

encourage further statistical work in this vast field by first reviewing human and domestic species 

literature, and then concentrating on the statistical developments for experimental breeding popu­

lations. Most traits pertaining to production in domestic species are quantitative, and substantial 

gains, due to the availability of genetic markers, have been made over the years by both plant and 

animal breeders toward a long-term goal of locating genes affecting quantitative traits ( quantita­

tive trait loci, QTL) for the eventual characterization and manipulation of these genes in order to 

develop improved agronomically important crops. Our main concern is that the care and expense 

that is required in generating both genetic marker data and quantitative trait data is accompanied 

by equal care in the statistical analysis of the data, thus continuing the long tradition of statistics 

in quantitative genetics. Through an example using an F2 male genetic map of mouse chromosome 

10, and quantitative trait values measured on weight gain, we implement much of the reviewed 

methodology for the purpose of detecting/locating a QTL having its effect on weight gain. 



1 Introduction 

One of the early benefits of the human genome project has been the establishment of genetic maps 

for human and many domestic species. For example, in crop plants, maps have been established 

for barley (Graner et al. 1991), brassica (Slocum et al. 1990), corn (Coe et al. 1990), soybean 

(Keirn et al. 1990), and tomato (Bernatzky and Tanksley 1986). For animals, maps have been 

developed for the cow (Barendse et al. 1994) and the mouse (Copeland et al. 1993). An account of 

the human map in late 1992 was given by the NIH/CEPH Collaborative Mapping Group (1992). 

A compendium of genetic maps for many species is provided by O'Brien (1993). These maps, 

consisting of identifiable features or markers on the genome at known locations, can be used in the 

search for genes affecting traits of interest. Notable successes have been in human diseases; cystic 

fibrosis (Kerem et al. 1989), Huntington's disease (Huntington's Collaborative Group 1993), and 

familial dysautomia (Blumfield et al. 1993). Although methodologies are still being developed, 

the accomplishments represented by these successes are substantial. They were also the easiest 

in the sense that the traits being studied were discrete. By and large, there was little ambiguity 

over which individuals had the disease. Discrete traits are also being mapped in domestic animals 

(Georges et al. 1993). 

In this discussion, we consider the much more difficult task of searching for genes affecting 

quantitative, or continuous, traits. Many of the issues we cover were treated by Doerge (1993). It 

is often the case that these traits are controlled by more than one gene, as well as by non-genetic 

causes, which further complicates the searches. Most traits pertaining to production in domestic 

species are quantitative, and substantial gains have been made over the years by plant and animal 

breeders. The immediate hope is that the possibility of identifying specific portions of the genome 

will enhance breeding programs. The long-term hope is that finding the location of genes affecting 

quantitative traits (the so-called QTLs, or quantitative trait loci) will lead to characterization and 

possible manipulation of these genes. It will not even be necessary to perform the initial localization 

in the species of concern. The possibility of using genes mapped in animals to aid in the study of 

human disease was illustrated by the location of genes for elevated blood pressure in rats (Hilbert 

et al. 1991, Jacob et al. 1991). Because of a great deal of similarity, or synteny, between the rat 

and human genomes, reflecting evolutionary relatedness, a gene found in rat is likely to be found at 
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the corresponding position in humans. Even though success did not follow in this particular case, 

(Jeunemaitre et al. 1992), the basic strategy is sound. The mapping of genes for fat deposition in 

pigs (Andersson et al. 1994), for example, may have implications for understanding human obesity. 

At this point it is necessary to distinguish between physical and genetic mapping. The set of 

hereditary material transmitted from parent to offspring is known as the genome, and it consists 

of molecules of deoxyribonucleic acid (DNA) arranged in chromosomes. The DNA itself is charac­

terized by its nucleotide sequence~ the sequence of bases A, C, G or T that bind in complementary 

pairs A- C, G- T between the two strands of the DNA helical molecule. DNA sequences therefore 

have lengths measured in base pairs, bp. A physical map is an ordering of features of interest along 

the chromosomes in which the metric is the number of bp between features. This is the level of 

detail needed for molecular studies, and there are several techniques available for physical mapping 

of discrete genetic markers or traits. In the present discussion, however, we are concerned with 

genetic mapping where the metric is itself a variable under genetic control. 

Genetic map distances depend on the level of recombination expected between two points. An 

individual receives one copy of each heritable unit (allele) from each parent, but the combination 

of units (genotype) at different locations that the individual transmits to the next generation need 

not be one of the parental sets. Recombination may have taken place during the process of meiosis 

producing eggs or sperm. That is, through crossing over events, alleles may come from either of the 

two parental chromosomes (diploid) to form the egg or sperm. Recombination between two elements 

on the same chromosome is more likely the further apart the elements are, with a limiting value 

of 50%. Although there is generally a monotonic relation between physical and recombinational 

distances, allowing genes to be ordered on the basis of recombination distances between them, the 

relation is not a simple one. The distance over which one recombinational event is expected to 

occur depends on the region of the genome, as well as on genes at other places in the genome. The 

most striking evidence of variability in the genetic map metric is provided by the human genetic 

maps for males and females being of different lengths. 

Genetic mapping of QTLs rests on the simple idea that genetic markers which tend to be 

transmitted together with specific values of the trait are likely to be close to a gene affecting 

that trait. In other words, an association is sought between marker variants (genotypes) and 
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trait values (phenotypes), with higher levels of association suggesting closer genetic map distance. 

Locating QTLs has a long history, initially with visible markers. Recent progress rests on the 

availability of an almost inexhaustible supply of molecular markers that has overcome "The main 

practical limitation of the technique seems to be the availability of suitable markers" (Thoday 

1961 ). Associations with molecular markers have already been reported for yield, quality traits 

and insect resistance in tomato (Nienhuis et al. 1987, Paterson et al. 1991 ), and for yield, abiotic 

stress and morphological characters in maize (Edwards et al. 1987, Stuber et al. 1987; Abler et 

al. 1991; Reiter et al. 1991). Milk protein genes have been used as markers for dairy cattle traits 

(Bovenhuis and Weller 1994). Work is even proceeding in the search for genes affecting behavioral 

traits in mice (Plomin et al. 1991). Evidently, these searches for associations will be statistical, 

continuing the long tradition of the use of statistics in quantitative genetics. 

2 Notation 

Genetic markers (often referred to as markers) are neutral markers having no affect on an individuals 

phenotype. Through molecular techniques, these markers may be identified and arranged so that 

each chromosome is represented by a linear arrangement of neutral markers. The markers are then 

used as a genetic map of the organism's genome (genetic structure) for the purpose of detecting 

regions of the genome associated with a specific trait of interest. Genetic markers will be represented 

by letters M, N, L, .... Generally markers will be used that have two variants (alleles), denoted 

by subscripts, e.g. MI, Mz. Traditional experimental designs for locating QTLs start with two 

parental lines differing both in trait values and in the marker variants they carry. Quantitative 

trait alleles are denoted by QI and Q2 , with QdQ 2 denoting the unknown quantitative trait 

loci (QTL) genotype. Our goal is to detect the QTL by relying on the association between the 

measured trait values recorded for each individual and the genetic map information. In practice, 

markers are sought that have different alleles in the parents. Without loss of generality, suppose 

two pure-breeding (inbred) lines of parents have marker genotypes MINd MINI and MzNz/ MzN2 

(homozygous). Crossing these lines produces an offspring, or F1, generation that is heterozygous 

at both loci: MINd M 2N 2 , where the slash separates the contributions from the two parents 

(chromosomes). Each FI individual produces four possible gametes, or marker allele combinations, 
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for transmission to the next generation. The proportions of these four gametes can be expressed 

in terms of the recombination fraction TMN between the two markers, and is referred to as the 

genotypic array: 

1- TMN M N TMN M N TMN M N 1- TMN M N 
2 1 1 + -2- 1 2 + -2- 2 1 + 2 2 2 

and this serves to define TMN· Unlinked markers, those on different chromosomes for example, 

recombine freely so that all four gametes will be equally frequent, illustrating that 0 :::; TMN :::; 0.5. 

2.1 Recombination and Map Functions 

For more than two markers, a simplifying assumption is that recombination between any two 

of them is independent of recombination between any other two. With this assumption called 

no interference, and a Poisson-process assumption for the phenomenon of crossing over between 

DNA strands, recombinational fractions rare related to genetic distances x by means of Haldane's 

mapping function (Haldane 1919): 

r = 

Genetic distances are expressed in terms of centiMorgans, eM, with one Morgan being the dis­

tance over which one recombinational event is expected to occur, and are sometimes preferred to 

the recombination probability because eM distances are additive, whereas recombination fractions 

are not. When recombination is not independent, interference is assumed and the Kosambi map 

function (Kosambi 1941) is appropriate. Further details on modeling interference in genetic recom­

bination are discussed in Speed et al. (1992), McPeek and Speed (1995), Zhao et al. (1995a,b ). 

2.2 Variation 

Values for the measurable quantitative trait of interest will be denoted by Y and, for genetically 

homogeneous populations, will be taken to be normally distributed, possibly after transformation. 

Trait values contain genetic and environmental components G and E, with the simplest model 

being 

Y G+E 
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For uncorrelated genetic and environmental effects, the total (phenotypic) variance of the trait can 

be partitioned into genetic and environmental components 

For a trait affected by a single gene Q, individuals with genotype QiQj have genotypic value 

expressed in terms of a mean, additive and dominance effects: 

Multilocus traits may include epistatic interactions between the loci. 

It is often not made explicit that the magnitude of the various genetic components depends on 

the genetic constitution of the population. Suppose a population has genotypic array 

where Pij is the frequency of the QiQj genotype. Fitting the mean, additive and dominance effects 

by least squares, under the constraints 

(2Pn + P12)a1 + (P12 + 2Pzz)az 0 

(2Pn + P12)dn + (P12 + 2Pzz)d12 0 

(2Pn + P12)d12 + (P12 + 2Pzz)d2z 0 

provides 

f-l Pn Gn + P1zG12 + Pz2Gzz 

a1 (Pn + Plz/2)Gn + (Plz/2 + Pzz)Gl2- f-l 

az (Pn + P12/2)G12 + (P12/2 + Pzz)Gzz- f-l 

Although the genotypic values G depend only on the genotype, the additive, dominance and 

epistatic components depend on genotypic frequencies and so are population-dependent. Partition­

ing the genotypic values leads to a partitioning of the genetic variance into additive and dominance 
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components: 

Finally, the ratio of additive genetic variance to total variance is termed the heritability h2 , and 

quantifies the degree to which a trait is resolved genetically. 

3 Numbers of Loci Affecting a Trait 

A preliminary investigation of how many loci affect a quantitative trait may give some indication 

of the chances of success in locating QTL. It will be easier to locate genes ( QTL) when only a few 

affect the trait than when many genes are involved. A simple approach was given by Wright (in 

Castle 1921). If M loci affect a character, then Wright gave 

M = (1) 

where f..Ll, f..L2 are the means of two parental populations and a 2 is the additive genetic variance 

stemming from differences in allele frequencies of the parental populations. Theoretically, the 

estimate of the number of genes is possible if they are of large effect. Equation (1) assumes 

additivity and equality of the effects of theM loci. Cockerham (1986) modified Wright's approach 

to accommodate bias in the estimated values of (J..L1 - J..L2 ) 2 • Zeng et al. (1990) allowed for unequal 

gene effects and for linkage between the loci. Lande (1981) and Comstock and Enfield (1981) have 

also suggested derivations of the number of genes (loci) affecting a trait. 

4 Single-Marker, Single QTL Analyses 

4.1 Comparison of Marker Means 

The use of genetic markers to locate QTL is well established (Sax 1923, Thoday 1961, Elston and 

Stewart 1973, Soller et al. 1976, Edwards et al. 1977, Darvasi and Weller 1992). Investigations by 

Sax (1923) were initiated through the association of seed coat pattern and pigmentation with the 

seed size differences in Phaseolus vulgaris (common name, the bean). This study was one of the 
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initial demonstrations of linkage between major gene differences and determinants of quantitative 

variation. The findings of Sax showed color difference to be characterized by a single gene difference. 

Considerable attention has been paid to the case of associations between a single marker and a 

quantitative trait (Weller 1986, Beckman and Soller 1988, Luo and Kearsey 1989, Luo and Wool­

liams 1993) and we now review the statistical issues. Observations on marker genotype and trait 

value are taken in order to test the hypothesis that the two loci are unlinked, i.e. the recombination 

fraction between them is 0.5. Rejection of this hypothesis has a dual implication. Not only does it 

confirm a genetic basis for the trait, but also it suggests that the trait is affected by a gene close 

to the marker. 

Classical work is conducted within the two experimental designs shown in Figure 1. Two inbred 

lines P1 , P2 are chosen as parents. Often these will have been selected in opposite directions for the 

trait, to ensure that they differ in trait values because they carry different variants, or alleles, at 

the trait locus. Similarly, markers are chosen with different alleles in the two parents. Inbreeding 

of P1, P2 means that these lines are homozygous at trait and marker loci. The F1 generation can 

be either backcrossed to P1 or P2, or mated among itself (selfing or crossing) to produce the second 

filial, or F2, generation. Observations on marker and trait values for the backcross, Bb B2, or F2 

individuals are used in tests of association. For the purpose of notational development, we continue 

the statistical derivation in terms of a backcross model. An F2 experimental design will serve as 

an example of methodology later in the paper. 

Under a completely additive model, the trait mean for the F1 individuals is the average of the 

two parental means. Since all three groups, P1, P2, H, are genetically uniform, they are assigned the 

same trait variance a 2 • Individuals within the backcross and F2 generations, however, have mixtures 

of trait and marker genotypes with the mixing proportions depending on the recombination fraction 

between the two loci. 

For the B1 design (see Appendix 1 for analogous derivation of F2 design), the genotypic array 

is 

with a similar expression for B2 . Only the marker genotype can be directly observed, so the B1 

individuals can be separated into two observable classes: marker types MI/ M1 and MI/ M2 • The 
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expected trait distributions within these two classes are 

(1- TMQ)N(J.lb o 2 ) + TMQN(J.ll2, o 2 ) 

TMQN(J.ll, o 2) + (1- TMQ)N(J.ll2, o 2), 

where N (J.l, o 2 ) denotes a normal distribution with mean J.l and variance o 2 • The means and 

variances of these two mixture distributions are 

(1- TMQ)J.ll + TMQJ.ll2 

TMQJ.ll + (1- TMQ)J.ll2 

o 2 + TMQ(1- TMQ)(J.ll- J.l12) 2 

o 2 + TMQ(1- TMQ)82 

This defines 8 as half the difference between the P1 and F1 means. The expected difference in 

average trait values between the two classes is 

(2) 

Providing lines P1 and F1 have different mean trait values, the hypothesis that trait and marker 

loci are unlinked, TMQ = 0.5, is therefore equivalent to the hypothesis that the two marker classes 

in a backcross generation have equal means. Since the original lines P1 and P2 were chosen because 

they differed for the trait, the condition 8 "=I 0 will be satisfied unless allele Q1 is completely 

dominant to Q2 . The classic test appeals to the robustness of the t-test and uses the test statistic 

t = 
MMl/Ml - MM1/M2 

where tildes denote sample means, the sample sizes of the two marker classes are nM1/M1 , nM1/M2 , 

and the pooled estimate of the variance within the two classes is s2 • 

The issue could be raised as to the validity of either t-tests or analyses of variance since the 

trait distributions within marker classes are mixtures of normals rather than normals themselves. 

In the backcross B1 population, the coefficients of skewness S and kurtosis K in the two marker 

classes are 

2rMQ(l- TMQ)(l- 2TMQ)L\3 

[1 + TMQ(1- TMQ)L\2]3/2 
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TMQ(1- TMQ)(1- 6TMQ + 6rXtQ)Ll4 

(1 + TMQ(1- TMQ)Ll 2 )2 

where Ll = (f.Ll - f.L12)/0' = 8/0' is the standardized difference between the P1 and F1 means. 

The mixtures are therefore symmetric when the trait locus is either completely linked ( TMQ = 
0) or completely unlinked (rMQ = 0.5) to the marker locus. Otherwise there is skewness that 

has maximum numerical value at a point depending on Ll. The mixtures have zero kurtosis for 

TMQ = 0, 0.21 (Doerge 1993). Both skewness and kurtosis, and hence non-normality, increase with 

Ll. From work of Eisenberger (1964), a sufficient condition that the mixtures will be unimodal 

for all values of TMQ is Ll < 1.84, whereas a sufficient condition that there exists an TMQ value 

between zero and one giving bimodality is that Ll > 2. Departures from the nominal distributions 

of the test statistic for the t-test and analysis of variance are therefore anticipated only for parental 

populations with large differences between means, but this is the condition for which it is most 

likely there will be departures from the null hypothesis. The generally satisfactory nature of the 

t-test for detecting linkage between a single QTL and a single marker has been demonstrated by 

simulation (Doerge 1993). 

4.2 Regression 

In work that anticipates later multi-marker approaches, we now consider regressing the trait value 

on marker genotype. For the jth individual in backcross population B1, the model is 

(3) 

where the indicator variable Xj takes the values 1 or 0 according to whether the individual has 

marker genotype Md M1 or M1 / M 2 , and Ej is a random error term (not normally distributed). The 

regression coefficient for Y on X 

is the expected difference between the recurrent parent and the F1 (2). The hypothesis of the 

marker and trait loci being unlinked can be tested by testing for a non-zero slope to the regression 

line of trait value on marker indicator. This approach is valid for all non-trivial partitions of the 
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sample into two marker classes, but it still assumes that the trait values are distributed normally 

within each marker class. Care should be taken in applying the test: if 8 is known to be positive (or 

negative) from observations on the parents, then the alternative to H 0 : f3yx = 0 is H1 : f3yx > 0 

(H1 : {)yx < 0) since there is a biological constraint that (1- 2rMQ) is not negative. 

4.3 Likelihood 

The fact that trait values have mixtures of normal distributions within marker classes can be 

taken into account properly with likelihood analyses. Estimates of the recombination fraction can 

also be derived in the likelihood framework (in the other approaches, moment estimators can be 

constructed for the recombination fraction). If Y1i, Y2i are the trait values for the ith individuals 

in B1 marker classes Md M1, Md M2, then the likelihood L for the parameters J.ll, J.L12 , a 2 , TMQ is 

nMIT1 /M2 
[ TMQ (-(Y2i- J.l1) 2) 1- TMQ (-(Yzi- J.l12)2)] X exp + exp 

i=l v'21ra2 2a2 J2;W2 2a2 

The hypothesis of interest can be tested for with the likelihood ratio statistic 

>. = _ 21n [L([1,1, [112, ;z, ~MQ = 0.5)] 

L([11, f112, a 2 ,i'MQ) 

with carets denoting maximum likelihood estimates. The estimates for J.ll, J.ll2, a 2 will be different in 

the numerator and denominator in this and subsequent likelihood ratios. The ratio is often assumed 

to be distributed as chi-square with one d.f. under the null hypothesis TMQ = 0.5, although there 

is the problem that this hypothesis puts the parameter TMQ at a boundary value (Self and Liang 

1987). 

Even at the simple level of a single marker and single trait locus, the likelihood calculations 

are not trivial. One possibility is to use prior estimates of the trait means and variance, J.ll, J.lz, a2, 

possibly from the parental lines. Care would be needed to check for consistency of non-genetic 

effects for the three generations, P, F1 , B, and a check that the F1 had the postulated distribution 

of trait values should be performed. Use of such prior estimates reduces the likelihood to a function 

of a single parameter, although iterative methods for solution will still be necessary. 
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Another procedure is to evaluate the test statistic over a grid of TMQ values, as is done in 

human pedigree linkage studies (Ott 1991, Morton 1995). Following the convention for those 

analyses, results are expressed in terms of the LOD score: 

LOD = -loglo [L(fli,/l12,d2,~MQ = 0.5)] 
L(jl1, fl12, a 2, TMQ) 

The maximum LOD score indicates the grid value TMQ closest to the maximum likelihood estimate 

TQM· If a smooth curve is fitted to the set of LOD values, an indication of precision is provided 

by the 2-LOD interval which is the range of values between those TMQ's at which the LOD is two 

less than its maximum value. Under the assumption that the likelihood ratio follows a function of 

a chi-square distribution with one d.f. this interval corresponds approximately to a 95% confidence 

interval. Jansen (1992) uses the EM-algorithm (Dempster et al. 1977) to estimate the model 

parameters, the same algorithm may be used for single marker regression situations. 

5 Genetic Map 

There exists an underlying complexity to the search for QTL which begins with the ordering 

of genetic markers into chromosomes, for the eventual representation of the entire genome. As 

mentioned in the introduction, it is generally the case that many markers are available to use in the 

search for loci affecting quantitative traits. Genetic markers may be arranged in linear order across 

chromosomes with the measure of association between them being either recombination or map 

distance (eM). The closer together two markers are, the smaller their distance/recombination will 

be. When recombination between pairs of markers is used to order markers, this is called two-point 

analysis (Ott, 1991; p.54). When all possible recombinant classes are calculated, multipoint analysis 

(Lathrop, 1985) may be used to estimate a more accurate genetic map. The genetic marker ordering 

problem is analogous to the historic traveling salesman problem in which a salesman is asked to 

travel between cities in the shortest possible route. Several useful methods have been described 

for the purpose of estimating genetic maps, including branch and bound methods (Thompson, 

1984), simulated annealing (Corona et al., 1987, Weeks and Lange, 1987; Falk, 1992), and seriation 

(Buetow and Chakravarti, 1987a,b ). The associations among genetic markers may be exploited for 

the purpose of having more information available in the search for QTL. One continuing controversy 
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between statisticians and plant breeders is the issue of sample size versus number of genetic markers. 

A reasonably large number of individuals must be measured and genotyped in order to assess the 

quantitative variation and phenotype-genotype association. However, an acceptable number of 

genetic markers must be used in order to cover the entire genome. Due to the costly laboratory 

techniques, greenhouse space, field plots, marker scoring and data entry, the question of sample 

size versus genome coverage arises. Is it better to grow more individuals and score fewer markers, 

or score more markers on fewer individuals? Clearly, from the parameter estimation standpoint 

large sample size on a uniformly distributed genetic map is sensible. Realistically, since the goal is 

to locate QTL, a dense map (many markers) is preferred over a sparse map (fewer markers) since 

it allows a greater precision of location. 

From this point forward we will assume that a known genetic map has already been estimated. 

Although it is certainly possible to apply single-marker tests for each marker in turn, a more efficient 

procedure is one in which the markers are used all together. This is the rationale behind current 

multiple regression approaches, but we first review the use of pairs of markers. 

6 Interval Mapping 

Any indication that the recombination fraction TMQ is less than the value 0.5 from single-marker 

analyses is confounded by the size of effects of locus Q, since it is actually the product ( 1 - 2r MQ )8 

that is being tested for departures from zero. A marker close to a QTL of small effect will give 

the same signal as a marker some distance from a QTL of large effect. Also, it will not be known 

whether the two loci are in order QM or MQ on a genetic map. If two markers M, N are used, 

however, it should be possible to separate the recombination and size of effect as well as to infer 

the position of Q relative to both. It is also expected that more precision and power will follow 

simply from the use of the extra information from a second marker. 

6.1 Likelihood method 

Two markers Continuing the treatment of the backcross mating scheme, suppose the two 

parental lines have marker genotypes MINI/ M1NI and M2N2/ M2N2. Backcrossing MINI/ M2N2 
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F1 individuals to P1 results in four distinguishable marker classes (Tables 1 and 2), in expected pro­

portions depending on the recombination fraction TMN between the two markers, which contribute 

to the genotypic array: 

1-TMN TMN TMN 1-TMN 
--2-MINI/MINl + -2-MINI/MIN2 + -2-MINI/M2Nl + 2 MINI/M2N2 

The trait distributions within each marker class depend in the first place on whether the trait 

locus is inside or outside the interval MN. For each of the three possible orders of trait and marker 

loci, the frequencies of the eight possible genotypes is shown in Table 1. 

Primary interest is in the order that places the trait locus between the two markers. Under the 

assumption of order being true, calculations are performed by stepping along the marker interval 

and assigning appropriate recombination values TMQ, TNQ· Specifically, the likelihood for Q being 

unlinked to both markers is compared to the likelihoods that it is at specific interior points in the 

interval. An hypothesis testing approach would instead use mutually exhaustive alternatives: 

Ho: TMQ = TNQ = 0.5 QTL unlinked to markers 

H1: min( TMQ, TNQ) < 0.5 QTL linked to markers 

or 

Ho: min(rMQ,TNQ) > TMN QTL exterior to interval 

H1: min(rMQ,TNQ) < TMN QTL interior to interval 

Under the assumption of no interference mentioned earlier, the three recombination fractions 

TMQ, TNQ, TMN are related. When Q is interior to MN, the event of no recombination between 

M, N is equivalent to no recombination in both intervals MQ and QN, or recombination in both 

intervals: 

(1- TMN) 

For the order QMN, the relationship becomes 

(1- 2TNQ) = (1- 2TMQ)(1- 2TMN) 
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It is taken that TMN is known, so that there is only one independent unknown recombination 

fraction. Note that neither TMQ nor TNQ can equal 0.5 when TMN < 0.5. A very useful discussion 

of the hypotheses of relevance was given by Knott and Haley (1992). 

The mixture distributions for the four marker classes can be written as 

M1Nt/M1N1: 

M1Nt/M1N2: 

M1Nt/M2N1: 

M1NI/M2N2: 

cuN(J-li,a2) + (1- cu)N(J-L12,a2) 

c12N(J-l1,a2) + (1- c12)N(J-l12,a2) 

c21N(J-l1, a 2) + (1 - c21)N(J-l12, a 2) 

c22N (J-ll, a 2) + (1 - c22)N (J-li2, a 2) 

For the F2 design, there are nine distinguishable marker classes, each having a mixture of three 

normals for the trait distribution. 

From Table 1, the backcross mixing proportions for the MQN order are 

cu = 1- c22 = 

c21 = 1- c12 = 

(1- TMQ)(1- TNQ) 

(1- TMN) 

The four marker-class trait means cannot be equal. 

For the order QMN, the mixing proportions are 

so that the distributions are the same for the M1NI/M1N1 and M1NI/M1N2 classes and there is 

no need to record the N type. No additional information is provided from outside the working 

interval. Similarly, for order MNQ 

and there is no need to record the M type. Outside the marker interval, calculations reduce to 

those for one marker (the nearest) and are based on only two marker classes. In either of these 

two cases of a QTL outside the marker interval, the two marker class means are equal if and only 

if TMQ = TNQ = 0.5, suggesting that the first of the pairs of hypotheses above be addressed by 

14 



a t-test on marker class observations. Certainly rejection of the hypothesis of equal marker class 

means would imply that Q was linked to either or both of M, N, although it would not necessarily 

place Q between M and N. 

It is straightforward to evaluate the likelihood L from observations on the two or four marker 

classes, although computationally demanding if the parameters J.lt, p,12 , a 2 have to be estimated. 

Matters are simplified by assigning values to TMQ, TNQ· This means specifying a map position 

for the QTL, relative to the marker interval, and invoking a mapping function to provide the two 

recombination fractions. For positions to the left (or right) of the interval MN, the one-marker 

LOD scores can be evaluated using marker M (or N). For positions inside the interval, it is usual 

to use the two-marker LOD score evaluated for the four marker classes 

LOD = -lo [L({l1, fl12, ; 2, T"!Q = TNQ = 0.5)] 
glO L(" " 2 ) fll,fL12,a ,TMQ,TNQ 

even though the denominator is not the unconstrained likelihood over all possible recombination 

values. It is important to recognize that the LOD score does not provide a test for the presence 

of a QTL between the two markers, and so is not leading to a true interval test. Instead the LOD 

compares the likelihood of the QTL being at the position characterized by recombination fractions 

TMQ, TNQ against the likelihood that it is at some position unlinked to the interval. Of course, the 

map position at which the LOD score is greatest is likely to be close to the location of the QTL. 

The LOD scores at the interval boundaries are the same, whether they result from setting 

TMQ = 0 in the analysis using only marker M, or from setting TMQ = 0, TNQ = TMN in the analysis 

using both markers. 

Lander and Botstein One of the most influential papers of the late 1980's pertaining to the 

locating a single QTL can be credited to Lander and Botstein (1989). Working from a known 

genetic map, the Lander-Botstein interval mapping method employs a simple linear regression 

model similar to the one defined in (2). Since the distance between each pair of genetic markers is 

known, the method steps through the interval in specified increments, using a map function, and 

then estimates the model parameters at the analysis point. The likelihood equation is calculated 

under the estimated parameters, and then again under the null hypothesis of f3xy = 0 (no QTL 

present). The ratio of the two likelihood evaluations is calculated in the form of a LOD score for 
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each analysis point in the genome. The maximum LOD score over all analysis points is indication 

of a single QTL if the maximum LOD score is larger than some specified threshold value. We will 

discuss the implications of multiple tests and the distribution of the trait values on the distribution 

of the test statistic in a later section of this paper. The essence of the Lander-Botstein approach 

is that trait loci are postulated to occur at a series of positions within a set of adjacent marker 

intervals, and the trait observed value (the phenotype) is regressed on the number of F1 trait alleles 

(the genotype). The regression approach was expanded upon by Martinez and Curnow (1992), as 

well as many others. 

Many Markers Martinez and Curnow (1992) considered the four marker classes for the case 

of two markers in a backcross. Within each marker class they regressed the trait values on the 

probability that the individual had the F1 trait genotype. As this probability depends on the 

unknown recombination fractions between trait and marker loci, they performed the regressions at 

a series of specified recombination values. They then formed a residual sum of squares of differences 

between trait observations and fitted values, summing over all four marker classes, and took the 

minimum to indicate the best estimate of the position of the trait locus. This approach allows an 

analytical treatment whereas likelihood methods do not. 

The usual procedure for interval mapping is to calculate LOD scores at interior points of a series 

of adjacent marker intervals. For markers L, M, N, for example, there will be two intervals LM 

and MN. The maximum value of the curve fitted to the LOD scores indicates the probable position 

of the QTL, and 2-LOD intervals can be constructed. As in the single-interval case, the LOD scores 

at each marker are the same whether the marker is at the left or the right of an interval. If there is 

a QTL in one interval, adjacent intervals may also show peaks with "significant" likelihood ratios, 

often called ghosting effects (Knapp et al. 1990, Martinez and Curnow 1992, Jansen 1994). 

Ghost Effects Ghosting effects occurs when a QTL is linked to one genetic marker and by the 

definition of genetic mapping, the additional adjacent genetic markers associated through linkage 

may also exhibit significant test statistics. A problem with traditional interval mapping is that it 

does not take account of all markers at once, but uses them only two at a time so that it is difficult 

to discriminate between actual QTL effects and ghost QTL effects that exist simply because of the 
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relative density of the genetic map being used. Martinez and Curnow (1992) illustrate numerically 

that "ghosting" can occur - if there are trait loci Q1, Q2 in non-adjacent intervals M 1, M 2 and 

M3, M4, there will be spurious indications of a trait locus in the intervening interval M2 , M3 . 

Haley and Knott (1992) also drew attention to the biases resulting from linked trait loci. The 

same phenomenon is expected for the traditional LOD-score approach of Lander and Botstein 

(1989). The "ghosting" shown numerically by Martinez and Curnow is a similar phenomenon to 

that anticipated by Paterson et al. (1991): "If a QTL is actually present in one interval, the 

hypothesis of a QTL in an adjacent interval will still fit the data better than the hypothesis of 

[sic] no QTL at all, and the more likely position of a QTL in this adjacent interval will often be 

near the middle of the interval (since this position is furthest from any potentially conflicting data 

at the observed markers.) Accordingly, multiple peaks correctly reflect the shape of the likelihood 

surface but need not indicate multiple QTLs." The authors meant to contrast the cases of linked 

or unlinked QTLs, rather than the presence of absence of QTLs. The fact that P1 , P2 , F1 have 

different trait values means that there are QTLs. The detection of "ghosts" was also a concern 

of McMillan and Robertson (1974) in their important discussion of methods for detecting loci 

affecting quantitative traits in Drosophila. They referred to two errors "(i) The detection of loci 

which do not exist. (ii) The magnification of the estimated effect of those major loci which do 

exist by accumulating to their effect those of undetected loci close to them on the chromosome." 

Zeng (1993, 1994) has demonstrated ghosting effects by showing that interval mapping gives results 

that can be confounded by the presence of additional QTLs outside the interval being considered. 

Zeng's method (which will be discussed later) shows evidence of a QTL in the two intervals Mh 

M3 and M2, M 4 , but would avoid the problem if there were three markers between the QTL. 

6.2 Regression Methods 

There has been a growing realization that the appropriate way to relate quantitative traits to 

information on many markers is by multiple regression (Wright and Mowers 1994, Kearsey and Hyne 

1994, Wu and Li 1994). Moreno-Gonzalez (1992a,b) set up a regression model containing additive, 

dominance and epistasis terms for putative QTLs associated with several marked chromosome 

segments. A more extensive discussion of the theoretical issues for regression on additive and 
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dominance effects was given by Jansen (1992, 1993). Jansen and Starn (1994) have included parental 

and F1 information in their multiple regression analyses of F2 and other crosses. 

Regression on Marker Genotypes For a pair of linked markers, M and N, the trait value 1j 

for individual j can be regressed on indicator variables X;j that take the value 1 if, for the first 

marker, M;, individual j has the P1 genotype and value 0 if it has the F1 genotype. The model is 

where f3yxl.x2 is the coefficient of regression of y on xl conditional on the value of x2. 

The partial regression coefficients for the trait on one marker, holding the other marker constant, 

do depend on the marker ordering. Regressing on the indicator for M, holding constant the other 

indicator variable and invoking the relationships among the recombination values TMN, TMQ, TNQ 

when there is no interference gives: 

order QMN 

0 order MNQ 

If a test of the hypothesis that this coefficient is zero is not rejected, there is support for Q either 

being unlinked toM, or coincident with N, or to the side of N away from M. If the tests for both 

f3yx1 .x2 and f3yx2.x1 indicate non-zero values, then the QTL is placed within the marker interval. 

Testing procedures are given, for example, by Stuart and Ord (1991). A flow chart for interval 

mapping of many QTL is given by Jansen (1993). 

When a series of markers are available there is a straightforward expansion of the previous 

regression equation. In a further extension, Zeng (1993, 1994) explicitly allows for several QTLs 

affecting the trait. If dominance and epistasis are ignored, the genetic model for the trait is 

G = JL+l:)aku+akv) 
k 

for individuals with genotype QkuQkv at the kth QTL Qk, where u and v denote allele number. 

With several QTLs, B1 individuals have a range of trait genotypes with frequencies depending 
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on the recombination between trait loci. If m QTLs are named according to their order, the B1 

genotypic array is 

2m-1 (~Q + ~Q ) rrm (1- TQk-1,QkQ + TQk-l!QkQ ) 
2 11 2 12 2 kl 2 k2 

k=2 

and the genetic variance of this array is 

1 m 1 m 

crb = 4 L 8~ + 4 L (1- 2rQk,Qk,)8k8k' 
k=l k,k'=l;k#k' 

where the recombination fractions between non-adjacent loci follow from the no-interference argu­

ments shown above. The products of effects at different loci affect the variance only for linked loci 

in this additive model. 

If we denote m ordered markers as M1, M2, · · ·, Mi-, Mi, Mi+, · · ·, Mm, the partial regression 

coefficient f3YX;.S; of the trait on the indicator variable for the ith marker Mi, conditional on the 

set Si of all other markers, depends only on those QTLs in the two marker intervals (Mi-, Mi), 

(Mi, Mi+) that have marker M; as a common boundary 

(3 " TM;-Qk(1- TM;-Qk)(1- 2 )8 
YM;.S; L...t (1 ) TQkMi k 

i-<k:Si TM;_M; - TM;_M; 

+ " TQkM;+ (1 - TQkM;+) (1- 2 )8 
L...t ( 1 ) TM;Qk k 

i<k<i+ TM;M;+ - TM;Mi+ 

In other words, the partial regression coefficient of trait value on the indicator variable for marker 

Mi is non-zero only when there are QTLs in either or both of the two marker intervals with Mi as a 

common boundary. The logic of this, as well as the algebraic details, reduce correctly to those given 

above for two markers and one QTL. Partial regression therefore leads to a test for the presence 

of QTLs in the marker interval (Mi-, Mi+) only, regardless of the presence of other QTLs in the 

genome. 

Regression on Trait Genotypes Trait values can also be regressed on the (unknown) trait 

g~notypes. If trait locus Q is inside the marker interval MN, the frequencies of the four marker 

classes among backcross B1 genotypes are given in Table 2. The trait value Y is regressed on the 

indicator variable X* defined as 

X* { 
1, if trait genotype is Q 1 Q 1 

0, if trait genotype is Ql Q2 
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with regression equation for the jth individual: 

y. 
J 

The sample regression coefficient /3* depends on the numbers of individuals in each of the four 

marker classes, and on the recombination values TMN, TMQ, TNQ· The last two of these recom­

bination values depend, in turn, on the assumed location of the QTL. In expectation, however, 

recombination does not affect the regression coefficient. From the entries in Table 2, the expected 

values are 

leading to a regression coefficient of 

E(X*) 

E(Y) 

E(X*Y) 

1 
-
2 

E(X*)2 

f.ll + /-l12 

f.ll 
2 

2 

(3* = (f.ll - /-l12) 

This shows that the regression coefficient has an expected value that does not depend on the 

location of the QTL, and it will be non-zero whenever the P1 and H have different mean trait 

values. Regression on the trait locus, since it does not involve a marker locus, is not attenuated by 

the recombination value between marker and trait loci. 

6.3 Composite Interval Mapping 

Zeng (1993, 1994) set up a model involving regression both on QTL within an interval and on 

marker loci outside that interval. Inference is made by maximum likelihood. This method is 

essentially a combination of interval mapping (Lander and Botstein, 1989) and multiple regression, 

and a similar strategy was adopted by Jansen (1993). We present Zeng's regression equation 

y. 
J f3o + (3* x; + L fJkXkj + fj 

k 
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where X* refers to a QTL in the interval between adjacent markers Mi and Mi+ (recall previous 

notation), and Xkj refers to all markers Mk except these two. If there is no QTL in the interval, 

(3* = 0, since the effects of all other QTLs are removed by the f3k terms. The model is designed to 

detect QTLs only within the interval Mi, Mi+, and a test for the presence of such QTLs is a test 

of the hypothesis H0 : (3* = 0. 

Other QTLs affecting the trait may be scattered throughout the genome. The effects of these 

other QTLs are removed through the regressions on markers outside the interval. The regression 

coefficients f3o, (3*, {f3k} reflect the effects of all the QTLs, and replace the previous f-tl, j.t12 param­

eters. When XJ = 1, the trait is normally distributed with mean (30 + (3* + L:k f3kXkj and variance 

CJ2 and when XJ = 0, the mean is (30 + L:k f3kXkj. For convenience, Xoj is defined as 1 and the 

sum (30 + l:k Xkj/3k written as Xj/3· When a total of m markers are used in the analysis, and two 

markers flank the interval of interest, the quantity f3 is a column vector with m - 1 components 

and Xj a row vector with m - 1 components. We write the density functions of these two normal 

distributions as </>1(Y) and </>o(Y), respectively. 

If the sample sizes in each of four marker classes are written as nz, l = 1, 2, 3, 4, the likelihood 

function for the composite interval model is 

nl n2 

L(f3o,f3*,{f3k},e72) = IJ[¢I(Ylj)] IJ[(1- p)<i>I(Y2j) + P¢o(Y2j)] (5) 
j=l j=l 

n3 n4 

x IJ[p¢I(Y3j) + (1- p)¢o(Y3j)] IJ[¢o(Y4j)] 
j=l j=l 

The quantity p = TMQ/TMN is assumed known. 

It is relatively straightforward to find the maximum likelihood estimates of the various param­

eters (see Appendix 2). 

The ratio of maximum likelihoods, and a test that (3* = 0, requires the parameters to be re­

estimated under this hypothesis. Using a zero subscript for these estimates evaluated under the 

null hypothesis: 

~o (X'X)-1X'Y 

CJ 20 (Y- X~o)'(Y- X~o)/n 

The only potential for false indications of QTLs with the composite interval approach arises if 
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there are QTLs in the intervals immediately adjacent to the interval being studied. 

7 Threshold Values 

Each methodology discussed in this review is based on the assumption of normality either on the 

quantitative trait distribution, or on the error term of the model. Since the actual genotype of the 

QTL is/are unknown, within each known genotypic marker class one must consider each possibility 

for the QTL genotypes, which gives rise to the mixture distributions described previously. It is well 

known that deviations from the normal distribution assumption will greatly affect the distribution 

of the test statistic used (in this case to detect or locate the QTL ), and in fact it is further known 

that mixture distributions fail to follow a function of a standard distribution (Ghosh and Sen 1985, 

Hartigan 1985, Feng 1990). Some researchers (Lander and Botstein 1989, Darvasi et al. 1993, 

Jansen 1994, Reba11994a) have relied on simulations to derive the distribution of the test statistic 

(often a LOD score) for the purpose of gaining a threshold value which represents a desired level of 

significance. Analytical work has also been provided by (Lander and Botstein 1989, 1994, Feingold 

1993, Reba11994b, Dupuis 1994) in order to lend asymptotic support to this issue. Nonparametric 

(permutation) (Fisher 1935, Good 1994) based methods have also been applied to the problem 

of estimating empirical threshold values (Churchill and Doerge 1994), as well as Wilcoxon rank­

sum (Kruglyak and Lander 1995). An alternative is to permute the trait values of the sample 

and then simply compare marker class means (N.L. Kaplan, personal communication). Repeated 

permutations lead to a distribution of the difference of means under the hypothesis of no association 

of trait and marker loci. 

There are many benefits to each of the aboved mentioned approaches, and while no one threshold 

value is the true value, each if used in an informed manner may provide an appropriate threshold 

value against which to compare test statistics for significant QTL location. The simulation based 

threshold values are model dependent, and if the correct model is used, the threshold values will 

be accurate. Unfortunately, simulation based threshold values do little to include the effect of 

missing data patterns and ghost QTL. Analytical threshold values accurately reflect the sample 

size and map density of the experiment, but sometimes the accuracy of these threshold values 

is limited by small sample size and sparse marker maps. Since environmental variation plays a 
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large role in any experimental system, one would expect permutation based methods to provide an 

accurate reflection of sample size, missing data patterns, environment, as well as multiple testing 

issues. The computational intensity of the permutation based methods is a limiting factor in its 

application. For a desired significance level of 5% upwards of 1,000 permutation of the trait data 

must be performed, more if a smaller significance level is desired. 

8 Software 

Using marker loci to locate genes affecting quantitative traits has been a matter under consideration 

for the past 70 years, ever since Sax (1923) associated seed coat characters with seed size in the 

bean Phaseolus vulgaris. Much attention has been paid to statistical issues, but the work with the 

greatest practical impact on the manner in which QTL data is statistically analysed by computer has 

been that of Lander and Botstein (1989). The LOD-score methodology of Lander and Botestein 

has been incorporated into a computer package MAP MAKER (EXP and QTL) and has been 

widely distributed and employed (e.g. Paterson et al. 1988, 1991; Stuber et al. 1992). Wide-scale 

application of a computer package is always accompanied by the possibility that the underlying 

methodology, and especially its assumptions, are not understood by the user. In this case, Luo 

and Kearsey (1992) stated "the approaches and the relevant program have been widely considered 

by plant j animal breeders as being difficult to understand and this has hindered the efficient use of 

the method." These authors elaborated on the discussion given in Lander and Botstein (1989) and 

gave details for the F2 design. 

One of the major issues in the proper location of quantitative trait loci is the availability of 

software to do the analysis. While many of the procedures covered in this review are available from 

standard statistical packages (e.g. SAS, MINITAB, etc.), many ofthe more complicated procedures 

require statistical expertise. Therefore, appropriate software must be developed and distributed so 

that the correct analyses may be performed, and so that a service is provided from the statisticians 

to the mapping community. 

In the following section, we analyze a real data set using publically available computer pack­

ages: MAPMAKER/EXP (Lander and Green 1987, Lincoln et al. 1992a,b), MAPMAKER/QTL 

(Paterson et al. 1988, Lincoln et al. 1992a,b ), and CARTOGRAPHER (Basten et al. 1994. 
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9 Example 

As a working example to this review, we use an F2 mouse data set (Horvat and Medrano 1995) 

containing 190 male individuals, scored at 9 genetic markers (microsatellites) with average density 

3.85 eM. The goal of this published research was to locate the high growth (hg) locus (QTL), 

a region in the mouse genome that increases both weight gain and body size of mature mice. 

Energy metabolism is affected by the hg locus, with no apparent physical malformation to the 

body composition. The long range goal of such work is to rely on the syntenic relationship between 

mouse, humans and domestic species to advance analogous research in human studies, as well as 

economically important livestock traits. As a result of previous work in this area, the search for 

the hg locus (Medrano et al. 1992) is restricted to chromosome 10. Localization of QTL in specific 

regions of a genome is referred to fine scale mapping. The measurable trait of interest in this 

application is weight gain from 14 to 63 days of age. 

We first review the quality of the data set, and then present the known estimated genetic map. 

The analyses are presented in the order that the topics were discussed. Finally, the results of each 

analysis are compared with the published findings. 

Data We summarize the quality of the data by assessing the amount of missing marker and trait 

information. One individual trait measurement is missing, while complete genetic marker data is 

available on each of the nine markers. A histogram of weight gain is shown in Figure 2, with the 

average trait value being 16.2333 (variance 12.0737). There is a slight right hand skew in the trait 

distribution, having a skewness coefficient of 0.5732 and kurtosis of 3.1694. The quality of this data 

is exceptionally high. Traditionally (Lincoln et al. 1992a), data showing this level of skew would be 

transformed to normality. However, since the distribution of the trait values within the genotypic 

marker classes follows a mixture distribution, and the expectation that there is a single QTL, the 

skewing is anticipated. For the purpose of illustration we will work with untransformed data. 

An abbreviated version of the data set is shown in Figure 3. Marker names are listed as rows, 

and each individual's score for that marker is recorded in the appropriate column. An individual in 

this F2 data set may have one of three possible genotypes per marker. An 'A' is homozygous (parent 

1), 'B' is homozygous (parent 2), and 'H' is heterozygous. All marker information is recorded and 
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the measured trait information on each individual follows (Figure 3). It is important to make sure 

that the order of individuals remains the same across marker and trait data. 

Figure 4 displays the genetic map of chromosome 10. Map order and recombination estimates 

(Haldane mapping function) were estimated using MAPMAKER/EXP. 

Single Marker Analysis For each genetic marker in this F2 experimental population there are 

three possible genotypes. Using a single factor analysis of variance (ANOVA) on each marker tests 

the hypothesis of equal trait means in each of the three genotypic classes. Significant results will 

indicate a difference in the trait means, an indication of QTL action. If normality is assumed, a 

5% significance level has a critical value of F2,1s6 ~ 3.00. Since multiple tests (one for each marker) 

will be made, a correction (Lander and Botstein 1989) to the significance level may be appropriate, 

or one can estimate a critical value by permuting the trait data for the purpose of representing 

the data under the null hypothesis. Empirical threshold values (Churchill and Doerge 1994) based 

on 1,000 permutations were estimated for each marker, and for an overall critical value of 5%. 

Table 3 shows the results of a single factor ANOVA, as well as the F test statistic as calculated 

by CARTOGRAPHER. CARTOGRAPHER tests that the marker is unlinked to the QTL through 

a one degree of freedom F-test. Based upon an estimated 5% threshold value of 4.5453 and a 

maximum test statistic of 24.9495, marker D10MIT12 displays the highest test statistic. Since no 

information from the genetic map (i.e. marker order) is used, and recombination and QTL effect 

are confounded in the difference between the genotypic class means, location of the QTL relative to 

D10MIT12 can not be determined. D10MIT12 is simply the one marker that displays the highest 

level of genotype-phenotype association. 

Single Marker Regression We continue with our single factor analysis by using a simple linear 

regression as specified in (2). Since there is a direct relationship between t-test, F -tests and 

regression, it is not surprising that the final results are the same. Within the computer program 

CARTOGRAPHER, the LRmapqtl (Linear Regression) option was employed. For each marker the 

slope of the regression equation was tested for equality to zero under the null hypothesis. Table 3 

gives the results of this analysis. Marker D 1 OMIT 12 displays the highest level of association to a 

QTL. 
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Interval Mapping Using the computer program MAPMAKER/QTL, interval mapping as de­

scribed by Lander and Botstein was employed for locating a single QTL using the known fixed map 

(Figure 4). Figure 5 shows a typical QTL analysis from MAPMAKER/QTL. CARTOGRAPHER 

also has a module capable of reproducing MAPMAKER/QTL's effort. For the sake of illustration 

MAPMAKER/QTL is used for (2 eM increment) interval mapping. The original analysis by Hor­

vat and Medrano (1995) uses incremental values of 0.5 eM. The interval D10MIT41-D10MIT12 

(Figure 5) displays the highest LOD score (10.679) 2 eM to the right of D10MIT41. Note that 

the interval separating these two markers is of length 3.3 eM. Analysis at the marker is equivalent 

to single factor analysis since no additional information is used from the map. The estimated 5% 

empirical threshold value to be used across the entire chromosome is 2.0590. 

Composite Interval Mapping Composite interval mapping (3) was employed by implement­

ing the model 1 (Zeng 1993) option of the Zmapqtl module of the CARTOGRAPHER computer 

program. Model 1 tests the current analysis point (increments of 2 eM) in an interval while condi­

tioning on the remaining markers in the genome in order to control for genetic background (Table 

4). Both additive and dominance effects were tested using a likelihood ratio test statistic. Since 

we are performing multiple tests across the entire chromosome, the 5% empirical threshold value 

(Churchill and Doerge 1994) was estimated (CARTOGRAPHER) based on 1,000 permutations of 

the original data. The most significant region is within the D10MIT41-D10MIT12 interval. This 

result is consistent with previous findings, and is well above the 9.6975 empirical threshold value. 

Results This data set illustrates a major single QTL effect. Each method of analysis confirms 

the published results of Horvat and Medrano (1995), namely that the hg locus is approximately in 

the middle ofthe D10MIT41-D10MIT12. Physical mapping of hg is the next step in the long-term 

goal of cloning hg (i.e. genetically engineering a replicate of the DNA sequence responsible for the 

hg locus). Cloning will allow functional definition of the hg locus, for the purpose of identifying 

similar loci in human and domestic animal species. 

Many experimental situations are not as neat and straightforward as the one used here. Often 

multiple QTL are detected across the entire genome, in which case the analysis becomes more 

complicated since the model must reflect the correct genetic situation. Multiple QTL effects are 
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sometimes independent and their effects may be additive, but often times QTL interact (epistasis), 

and this too must be added to the model. In addition, the sample size is sometimes small, and 

the proportion of missing data is large (genotypic and phenotypic) making the accuracy of the 

parameter estimation questionable. 

10 Discussion 

We have attempted to review a vast amount of literature in a limited space. As a result of this lim­

itation relevant statistical issues have not been discussed fully, yet are worthy offurther discussion. 

The topics not sufficiently covered are, genotype by environment interaction, effects of missing data 

and sample size, nonlinear model methods of QTL analysis, as well as additional means by which 

parameter estimation may be accomplished, and issues of statistical power. 

When experiments to locate QTLs are conducted in different environments, there is no guarantee 

that the same results will be found (Paterson et al. 1991; Stuber et al. 1992). This could be taken 

as evidence for, or even explanation of, genotype by environment interaction, and so is of biological 

interest. Caution is needed, however, to ensure that differences in LOD curves, for example, do not 

simply reflect sampling variation in these curves (Doerge 1993). Genotype by environment (G X 

E) interaction has been studied using ANOVA (Paterson et al. 1988, Guffy et al. 1989, and Zehr 

1990), by recording the number of times a marker-QTL association occurs in varying environments 

(Patterson et al. 1991, Stuber 1992, Bubeck et al. 1993), as well as by indirect selection where 

the phenotypic correlation between multiple environments is exploited to study indirect response 

to selection given no correlation of error effects among environments. G X E interaction as studied 

by repeated association produce varying results which may be an artifact of the traits studied or 

simply because the number of replicates within each environment is too small. There are a number 

of exhaustive reviews that address G X E interaction (Freeman 1973, 1990, Fox and Rosielle 1982, 

Zobel 1990, Bull 1992, Cooper and DeLacy 1994), and even so a large amount of work remains in 

order for complete understanding. Cooper and DeLacy (1994) put forth two important questions. 

"The first is, are the aspects of G x E interaction observed in the multienvironment experiment 

repeatable? The second is what is the nature of the interaction and how relevant is it to the target 

population of environments for which the breeding program is responsible?" 
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Knapp et al. (1990) address issues of multiple QTL (unlinked) using linear models similar to 

those presented in this review, they also consider linked QTL. Using non-linear theory, multiple 

linked QTL models were developed for backcross, F2 and F3 experimental populations. 

Several authors have presented heuristic algorithms for determining estimates of QTL distribu­

tion parameters and recombination fractions between QTL and trait loci. In the case of one QTL 

and one marker, Weller (1986) gave the likelihood function for the F2 design. For specified values of 

TMQ, he used first and second moments of trait values in each of the three marker classes to provide 

moment estimators for the means and variances of the P1 , P 2, F1 trait distributions. Estimates for 

three parameters, the mean and variance of the F1 type and the recombination fraction, were then 

varied over grids in an attempt to maximize the likelihood. Weller (1987) applied this method in a 

study of some traits in tomato, but did not use information on the marker heterozygotes in the F2 

population. In an even further departure from true maximum likelihood methods, Luo and Kearsey 

(1989) used the same six moment equations to assign values to the trait distribution parameters 

as functions of the single unknown TMQ· They substituted these expressions into the likelihood 

function and then chose TMQ to maximize this expression. Luo and Kearsey (1991) applied the 

same strategy to other mating designs, including the backcross. Darvasi and Weller (1992) then 

pointed out that Luo and Kearsey were producing "pseudo" maximum likelihood estimates, and 

showed numerical differences between such values and values found from a grid search of the full 

seven-parameter space. Darvasi and Weller (1992) also claimed that the EM-algorithmic approach 

of Lander and Botstein (1989) did not give true maximum likelihood estimates as it was based on 

likelihoods calculated at a series of specified TMQ values. The debate has not been characterized by 

rigorous statistical theory, and now seems to be moot in light of the current regression approaches. 

Finally, after methods have been established to detect linkage between trait and marker loci, 

it is of interest to determine sample size requirements. One of the early discussions was that of 

Soller et al. (1976). For the backcross design with a single trait locus and a single marker, they 

approximated the t-statistic with a standard normal, and determined the (equal) sample sizes 

needed in each marker class to have 90% power at a 5% significance level. Their treatment of 

the F2 situation was more approximate since they compared only the two homozygous marker 

class means. They suggest that sensitivity of the F2 design will be increased by including the 
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heterozygous markers when d11 > a1 . 

Soller et al. (1979) considered how likely it is to find QTLs linked to arbitrary markers under a 

range of values assigned to marker spacing and genotypic effects at the loci contributing to a trait 

with specified heritability. Another extension from Soller and his colleagues was a treatment of the 

case when the two parental lines are segregating at the marker locus (Beckmann and Soller, 1988) 

rather than being fixed for alternative alleles. Larger sample sizes are needed to attain the same 

power as in the fixed populations case. 

All the work described in this review has been based on crosses of inbred lines. For many species 

this is not practicable but crosses can be made between out bred lines. Haley et al. (1994) use least­

squares methods to regress trait phenotypes onto additive and dominance effects of putative QTLs 

in marker intervals. The work is for the situation of crosses between outbred lines in which the 

trait loci are segregating but in which the markers used are fixed for alternative alleles. 

Although a substantial amount of work has been done somewhat less attention has been paid 

to issues of statistical power. Carbonell et al. (1992) looked at power in analyses involving single 

marker intervals in F2 populations and found higher power for F tests than for LOD-score tests, 

although this came at the expense of higher type I errors. Reba! et al. (1995) compared likelihood 

methods and analysis of variance for interval mapping in a backcross population. They were able to 

provide approximate analytical expressions for both critical values and powers, and demonstrated 

the superiority of likelihood methods. Haley and Knott ( 1992) compare regression and maximum 

likelihood and made the point that regression provides a simple alternative to maximum likelihood 

for single intervals without the computational complexity. 

As technology advances and the collective scientific community is able to generate even more 

molecular based data for the investigation of genetically formed phenomenon, methods of proper 

QTL analysis must be available. The fields of quantitative genetics and statistics have a long 

history of excellence, and in this forum ( QTL mapping) have the potential to continue as "vital to 

the welfare of the nation and world" (Bailar 1995). We close with two dynamic examples of QTL 

research, the first in plant breeding, the second dealing with the synteny between mouse and human. 

Mutschler et al. (1995) present a QTL analysis of the production of acylsugar responsible for pest 

resistance in wild tomato. The aim of this work is to identify regions in the wild type tomato genome 
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associated with acylsugar production as related to pest control, and to incorporate these regions 

into crop species for the purpose of reducing reliance on synthetic pesticides. Horvat and Medrano 

( 1995) demonstrate similar advances in the use of molecular technology and analysis for the location 

of the high growth (hg) locus in mouse (previous example). Molecular characterization of the hg 

locus has potential to direct similar studies in both human and domestic species. The impact of 

mouse work may be seen in future human diabetes, obesity and heart disease studies. Under growing 

concern about health and environmental issues associated with the use of environmental/ chemical 

stimuli, quantitative genetics and "molecular" plant (animal) breeding (Rafalski 1993) coupled with 

proper statistical development has a huge potential for the general improvement of human health 

issues, as well as economically important food sources. 

As a final word, the purpose of this review is to summarize the vast amount of work that has 

been done in statistical development of methodologies which facilitate the exciting advances in 

molecular and quantitative genetics as applied to inheritable functions. It is our hope that this 

review will peak interest in the interdisciplinary field of statistics and genetics by pointing out 

the statistical nuances of the field, review past and current work, as well as encourage further 

involvement from the statistical community. 
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11 Appendix 1: 

We develop the specifics of the F2 generation for single marker analysis considerations. Th F2 gener­

ation is similar to the backcross, except that there are now ten trait-marker genotypes contributing 

to the genotypic array 

(1- TMQ) 2 (1- TMQ) 2 
4 [M1QI/M1Q1 + M2Q2/M2Q2] + 2 M1Ql/M2Q2 

TMQ(1- TMQ) + 2 [M1QI/M1Q2 + M2QI/M2Q2 + M1QI/M2Q1 + M1Q2/M2Q2] 

2 2 
rMQ rMQ + - 4-[M1Q2/M1Q2 + M2QI/M2Q1] + - 2-M2QI/M1Q2 

The mixture distributions for the three distinguishable marker classes are 

with means 

(1- TMQ)2N(f.l1,a2) + 2rMQ(1- TMQ)N(f.l12,a2) + r'it-QN(f.l2,a2) 

TMQ(1- TMQ)N(f./,1, a 2) + [rlt-Q + (1- TMQ )2]N(f.l12, a 2) + TMQ(1- TMQ)N(f.l2, a 2) 

r'it-QN(f.L1, a 2) + 2rMQ(1- TMQ)N(f.l12, a 2) + (1- TMQ) 2 N(f.l2, a 2) 

(1- TMQ)2f.l1 + 2TMQ(1- TMQ)f./,12 + r'it-Qf.l2 

TMQ(1- TMQ)f.l1 + [r'it-Q + (1- TMQ) 2]f.l12 + TMQ(1- TMQ)f.l2 

rlt-Qf.l1 + 2TMQ(1- TMQ)f.ll2 + (1- TMQ) 2f.l2 

and variances 

a 2 + 2rMQ(1- TMQ)[(f.l1- f./,12)- TMQ(J.t1 + J.t2- 2J.t12W 

+ r'it-Q(l- TMQ?(J.t1 + J.t2- 2f./,12)2 

a 2 + TMQ(1- TMQ)[(J.t1- f./,12) 2 + (J.t2- f./,12) 2] 

- rlt-Q(l- TMQ) 2(J.t1 + J.t2- 2f.lt2)2 

a 2 + 2TMQ(1- TMQ)((J.t2- J.t12)- TMQ(J.t1 + J.t2- 2J.t12W 

+ rlt-Q(l- TMQ) 2(f.l1 + J.t2- 2f.lt2)2 

The variances are equal, in general, only for an additive trait and in that case reduce to 
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with 82 = (p1 - p 12)2 = (p2 - p12 ) 2 . Once again, the hypothesis of no linkage between marker and 

trait loci can be tested by comparing the three marker class means, this time by an analysis of vari­

ance. Under this hypothesis, the three marker means and variances will be equal regardless of the 

degree of dominance. Conversely, equality of all three means implies that the hypothesis is true for 

all degrees of dominance, providing only that the two parental lines have unequal means. Edwards 

et al. (1987) pointed out that comparisons of the three marker class means allow statements to be 

made about the relative magnitudes of additive and dominance effects in F2 populations. 

32 



12 Appendix 2: 

We derive the maximum likelihood estimates of the various parameters involved in composite 

interval mapping (Zeng 1993, Jansen 1993). The likelihood equation is defined in (5), {3* is estimated 

in the following manner 

olnL 
of3* 

n1 

= 2.:(Ylj- {3*- Xj/3)/u2 

j=l 

+ f (1- p)¢1(Y2j)(Y2j- /3*- Xj/3)/u 2 

j=1 (1- p)¢I(Y2j) + P¢o(Y2j) 

f= P¢1(Y3j)(Y3j- /3*- Xjj3)ju 2 

+ j=1 P¢1 (Y3j) + ( 1 - P )¢o(Y3j) 

Setting this derivative to zero provides 

where 

4 n1 

L L Ptj(Ylj- j]*- Xj/3) = 0 
1=1 j=1 

P2j = (1- p)¢1(Y2j)/[(1- p)¢1(Y2j) + p¢o(Y2j)] 

P3j = P¢1(Y3j)/[p¢1(Y3j) + (1- p)¢o(Y3j)] 

This leads to the solution given by Zeng (1994) as 

4 n1 4 n1 

{3* = L L Plj(Ylj- Xj/3)/ L L Ptj 
1=1 j=1 1=1 j=1 

Differentiating the log-likelihood with respect to {3: 

8lnL 
of3 

nl 

= LXj(Y1j- {3*- Xj{3)ju 2 

j=1 
n2 

+ L[P2jXj(Y2j- {3*- Xj/3) + (1- P2j)Xj(Y2j- Xjj3)]ju2 

j=1 
n3 

+ L[P3jXj(Y3j- {3*- Xj/3) + (1- P3j)Xj(Y3j- Xj/3)]ju 2 

j=1 
n4 

+ L Xj(Y4j- Xj/3)ju 2 

j=1 
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The equation oln L/8{3 = 0 is most easily expressed in matrix notation as 

X'(Y- X/3) = X'P{3* 

/3 = X'X-1X'(Y- P{3*) 

where Y is the nx 1 vector of all n = n1 +n2 +n3+n4 observations, X is then x(m-1) matrix with 

elements Xkj, Pis then x 1 vector with elements Plj (from Pn to P4n4 ), and {3 is the (m- 1) X 1 

vector with elements {30, {f3k}· The same notation allows the expression 

{3* = (Y - X[3)'P I c 

if c represents the sum of all the elements of vector P. 

Differentiating the log-likelihood with respect to u 2: 

oln L 
[)u2 

Setting this derivative to zero leads to the solution 

So far, these solutions have been derived under the assumption that p was known. If it is regarded 

as being unknown, then the maximum likelihood estimate follows from 

olnL 
{)p 

f: -¢1(Y2j) + ¢o(Y2j) 
i=I (1- p)¢1(Y2j) + P¢>o(Y2j) 

+ E ¢1 (Y3j) - ¢o(Y3j) 
j=l P¢>I(Y3j) + (1- p)¢>o(Y3j) 

f:r- P2j + 1- P2i] + f:rP3j _ 1- P3i] 
j=l 1 - p p j=l p 1 - p 
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so that 

n2 - L,j;l P2j - L,j!1 P3j 

n2 + n3 

with carets on the Plj values indicating that they are evaluated at the estimated regression and 

variance values. An iterative procedure is required: estimates of the regression coefficients and 0'2 

are found for a specified p value and then this value updated by the last equation and the process 

is repeated. 
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Table 1: Genotypic frequencies of trait and two marker loci in backcross population. Mark­

ers are denoted M and N, each with two alleles. The QTL is denoted Q with alleles Q1 

and Q2. Recombination between loci i and j denoted r;j, whether QTL or marker. 

Marker 

Class Genotypea QMN MNQ 

M1Q1N1 
1 M1Q1N1 (1-rMQ)(1-rMN) (1-rMQ)(1-rNQ) (1-rMN)(1-rNQ) 

2 

3 

4 

M1Q1N1 
M2Q2N2 (1- TMQ)(1- TMN) (1- TMQ)(1- TNQ) (1- TMN)(1- TNQ) 

achromosome 1 is the top genotype, chromosome 2 is the bottom genotype 

bTwice the frequency if QTL is in the interval. 
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Table 2: Marker classes and trait probabilities in backcross B1 population (ignoring double 

crossovers between markers) for marker M with alleles M 1 and M 2 , and marker N with 

alleles N1 and N2. The chromosomes are separated by'/', and Tij denotes recombination 

fractions between loci i and j (marker or QTL). 

Marker Class Frequency Pr(Q1Q!) = Pr(X* = 1) C(Y) 

M1Nl/M1N1 ~(1- TMN) 
(1-rMg)(1-rNg) ,...., 1 

(1-rMN) "' J.L1 

M1Nl/M1N2 ~TMN (1-rMg)rNg ~ 1 _ rMQ = 1 _ p 
rMN rMN (1- P)J.L1 + PJ.L12 

M1Nl/M2N1 lrMN 
rMg(1-rNg) ......, rMQ _ 

PJ.L1 + (1 - P)J.L12 2 rMN ""'rMN- p 

M1N1/M2N2 ~(1- TMN) 
rMgrNg ,...., 0 
(1-rMN) "' J.L12 
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Table 3: Single marker analysis of Horvat and Medrano (1995) data set. 190 F2 individuals 

scored for 9 genetic markers on chromosome 10 of the male mouse genome. Regression and 

F* calculations are from CARTOGRAPHER. F 0 and critical values calculated using Fortran 

program (R.W. Doerge). 5% empirical threshold values calculated using 1,000 permutations 

of the original data. The 5% experimental empirical threshold value (for entire chromosome) 

using the F 0 test statistic is 4.522. 

Marker fJo a /31 b LR c F*d Fo e Critical Value f 

D10MIT31 14.820 1.291 12.198 12.466 7.390 3.060 

DlOMIT42 13.855 2.112 31.315 33.685 18.110 3.265 

IGFl 13.827 2.166 32.993 35.651 18.058 3.235 

D10MIT9 13.912 2.120 31.330 33.703 17.153 3.244 

DJOMITJO 13.870 2.169 33.473 36.218 18.683 3.201 

D10MIT41 13.730 2.320 41.259 45.496 24.348 3.242 

DJOMIT12 13.674 2.349 42.207 46.765 24.950 3.077 

D10NDS2 13.935 2.110 32.396 34.950 19.177 3.055 

D10MIT14 14.654 1.422 15.691 16.185 9.563 2.976 

aintercept of simple linear regression 

bslope of simple linear regression 

cLikelihood Ratio -2log(Lo / Ll) 

dp statistic for testing that the marker is unlinked to the QTL 

eF-statistic for testing that there is no difference between the three genotypic class means 

!Empirical threshold values (5%) for F 0 



Table 4: Composite mapping results for Horvat and Medrano (1995) data using CARTOG­

RAPHER. 190 F2 individuals scored for 9 genetic markers on chromosome 10 of the male 

mouse genome. See composite interval section of paper for model specification, all markers 

are used to control for genetic background. Interval mapping is performed in approximate 

increments of 2 eM using a likelihood ratio test statistic and the hypotheses: H0 : a = 0, 

d = 0, H 1 : a# 0, d = 0, H3 : a= 0, d # 0. 5% empirical threshold values calculated using 

1,000 permutations of the original data. The 5% experimental empirical threshold value 

(for entire chromosome) is 9.680 as calculated by CARTOGRAPHER. 

Marker Test Position a Ho: H3 b H1: H3 H2 :H3 

D10MIT31 0.0001 14.431 3.377 10.437 

0.0201 18.984 4.220 14.508 

0.0401 23.443 4.482 18.266 

0.0601 27.612 4.398 21.644 

0.0801 31.514 3.985 24.768 

DJOMIT42 0.0906 33.291 3.368 26.209 

0.1106 33.151 2.788 28.413 

0.1306 33.063 0.682 29.621 

IGFJ 0.1327 33.044 0.467 29.661 

D10MIT9 0.1462 31.634 0.801 28.599 

DJOMITJO 0.1542 34.364 1.645 30.656 

D10MIT41 0.1703 43.767 4.632 38.273 

0.1903 47.568 9.749 42.045 

DJOMIT12 0.2036 44.557 4.459 38.498 

0.2236 35.728 4.338 29.797 

D10NDS2 0.2254 35.202 4.930 28.926 

0.2454 31.449 5.120 25.147 

0.2654 27.534 4.939 21.303 

0.2854 23.506 4.754 17.676 

0.3054 19.175 4.285 13.942 

D10MIT14 

aover total length of chromosome 

blikelihood ratio 



Figure 5: MAPMAKER/QTL interval mapping computer output of Horvat and 
Medrano (1995) data. 190 F2 individuals scored for 9 genetic markers on chromo­
some 10 of the male mouse genome. Haldane map function used to convert from 
recombination fraction to map distance (eM). 

POS a WEIGHT b DOMe %VARd LOG-LIKE e Significance I 

DJOMIT91-D10MIT42 u 9.1 eM h 

0.0 -1.202 -0.743 7.4% 3.140 *********** 
2.0 -1.475 -0.907 11.0% 4.243 *************** 
4.0 -1.683 -0.912 13.4% 5.260 ******************** 
6.0 -1.838 -0.845 15.0% 6.159 *********************** 
8.0 -1.943 -0.769 16.0% 6.940 ************************** 

DJOMIT42-IGF1 4.2 eM 

0.0 -1.977 -0.733 16.3% 7.303 **************************** 
2.0 -2.106 -0.571 17.3% 7.527 ***************************** 
4.0 -2.116 -0.383 16.5% 7.332 **************************** 

IGF1-DJOMIT9 1.3 eM 

0.0 -2.108 -0.358 16.3% 7.282 **************************** 
DJOMIT9-D10MIT10 0.8 eM 

0.0 -2.065 -0.395 15.6% 6.953 ************************** 
D10MIT10-D10MIT41 1.6 eM 

0.0 -2.104 -0.509 16.8% 7.524 ***************************** 
DJOMIT41-DJOMIT12 3.3 eM 

0.0 -2.241 -0.757 20.8% 9.552 ************************************ 
2.0 -2.392 -0.998 24.6% 10.679 ************************************ 

D10MIT12-DJONDS2 2.2 eM 

0.0 -2.257 -0.757 21.2% 9.752 ************************************ 
2.0 -2.063 -0.815 18.0% 7.966 ****************************** 

DJONDS2-DJOMIT14 8.3 eM 

0.0 -2.005 -0.824 17.1% 7.693 ***************************** 
2.0 -1.971 -0.894 17.2% 7.163 *************************** 
4.0 -1.851 -0.943 16.0% 6.364 ************************ 
6.0 -1.649 -0.956 13.6% 5.359 ******************** 
8.0 -1.372 -0.854 10.0% 4.220 *************** 

4 test position 

bestimated additive effect 

cestimated dominance effect 

destimated percent total variance explained by QTL 

eLOD score 

f one star is printed at a LOD score over 2.0, 0.25 increments are denoted with additional stars 

9map interval 

hmap distance between markers which define interval 



Figure 1: Standard backcross and F2 mating designs for marker M with alleles M 1 and M 2 and 

QTL Q with alleles Q1 and Q2 . The chromosomes are separated by '/', and the assumption of 

normality on the traits values, given the known genotype of the QTL, is imposed and denoted by 

I mixture I I mixture I I mixture I 



Figure 2: Histogram of weight gain from 14 to 63 days of age for the F2 mouse data set (Horvat 

and Medrano 1995) containing 190 male individuals, 9 genetic markers with average density 3.85 

eM on chromosome 10 of the male mouse genome. 
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Figure 3: An example of the abbreviated genotypic and phenotypic data from 

Horvat and Medrano (1995). 190 F2 individuals scored for 9 genetic markers on 

chromosome 10 of the male mouse genome. Markers names are in map order at the 

beginning of each row. Genetic markers are scored for each individual (columns). 

Homozygous genotypes of the first parental type are denoted A, homozygous geno­

types of the second type are denoted B, and heterozygotes are H. The measured 

trait data is weight gain from 14 to 63 days of age, and the order of the individuals 

is the same for both genotypic and phenotypic data. 

D10MIT31 H H H H B A H H B H · · · H H H H A H A A B B 

D10MIT42 H B H H B H H H B H · · · H H B H AHA A H B 

IGF1 H B H H B H H H B H · · · H H B B A H A A H B 

D10MIT9 H B H H B H H H B H · · · A H B B AHA A H B 

D10MIT10 H B H H B H H H B H ···A H B B A H A A H B 

D10MIT41 H B H H B H H H B H ···A H B B AHA A H B 

D10MIT12 H B H H B H H H B H ···A H B B AHA A H B 

D10NDS2 H B H H B H H H B H ···A H B B AHA A H B 

D10MIT14 H BAA B H H H B H ···A H B B AHA A H B 

weight 12.1 15.6 14.0 14.6 13.5 13.2 17.3 13.0 16.0 11.6 18.4 

... 17.8 14.6 12.0 10.3 11.2 16.0 19.2 20.8 13.3 11.8 



Figure 4: MAPMAKER/EXP estimated genetic map of Horvat and Medrano 

(1995) data. 190 Fz individuals scored for 9 genetic markers on chromosome 10 

of the male mouse genome. Haldane map function used to convert from recombina­

tion fraction to map distance (eM). 
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