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Neural tube defects (NTDs) are among the most common serious birth 

defects, occurring in 0.5-10 per 1000 live births globally. Clinical studies have 

shown that periconceptional supplementation with folic acid (FA) can reduce 

NTD’s by up to 70%. The mechanism(s) by which FA prevents NTDs is an area 

of active research. 

Lrp6 provides two mice models of NTD that exhibit altered prevalence 

under FA supplementation. Crooked tail mice (Lrp6Cd/+) are rescued by FA 

supplementation, while Lrp6 deficient mice (Lrp6-/-) show increased rates of 

absorption and embryonic lethality under supplementation. We assayed the 

methylomes of heterozygous Cd and KO E9.5 mice. To analyze this data, we 

created the multiDiff package. It implements the novel maximum difference 

estimate for assigning biologically meaningful effects in complex designs. 

multiDiff displays consistently superior performance while varying simulation 

parameters as measured by AUC compared to DSS-general, a competing 

method (p<2.2-16, paired t-test). 
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Integrative analyses found that Rn45s showed FA-associated differential 

expression and differential promoter methylation on the KO background. The 

analysis suggests that FA primarily acts in an independent rather than additive or 

combinatorial manner on methylation and expression. Genes associated with an 

independent mechanism of action were enriched for transcriptional regulation. On 

the Cd background, we noted genes affected by FA that had known links to Lrp6 

biology, with the greatest number being associated with RhoA, suggesting 

involvement in the planar cell polarity Wnt signaling pathway.  

Methylation was also assayed in whole blood from P2 animals. We found 

43 persistently differentially methylated sites associated with the Cd mutation, 

and 25 with the KO mutation. Persistently differentially methylation loci 

associated with FA was identified at 86 sites in the Cd background, and 208 in 

the KO background.  

Before concluding, we discuss preliminary analyses of epigenetic and 

genetic data in human NTD patients, with a focus on ongoing challenges in the 

field. The continuing growth of public datasets, especially in other neurological 

disorders such as autism, combined with advances in sequencing technology, 

and improvements in analytical methods are giving modern NTD researchers the 

tools to overcome these challenges.
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CHAPTER 1 
 

Introduction: 
Neural Tube Defects and Folic Acid 

 
1.1 Background on Neural Tube Defects 
 

Neural tube defects (NTDs) affect an estimated 300,000 infants annually 

worldwide, making them second only to second only to congenital heart 

anomalies in the U.S. (World Health Organization., 2015; World Health 

Organization, 2015). This results in approximately 88,000 deaths, as well as 8.6 

million disability-adjusted life years, every year. A systematic review of 

international NTD occurrence reported national levels ranging from 0.3 -199.4 per 

10,000 live births from 1990-2014 (Zaganjor et al., 2016). Due to the role played 

by nutrition in their etiology (see below), increased rates of famine driven by 

conflict, population growth, and climate change will likely result in increased NTD 

incidence, particularly in low income countries where NTDs may account for 29% 

of neonatal deaths with observable causes (Blencowe et al., 2010). 

NTDs are the result of failures during embryonic development (Detrait et 

al., 2005; Jiang et al., 2011; Wallingford et al., 2013). Under normal conditions, 

the central nervous system starts as a flat sheet of cells, known as the neural 

plate, with paired neural folds develop along the rostrocaudal axis (Figure 1.1) 

During development, these folds roll and fuse to create a hollow tube containing 

the brain and spinal column (by day 28 in humans (O’Rahilly and Müller, 1994), 

E9.5 in mice). When this fusion fails to occur, parts of the CNS can become 
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exposed. The resulting defect can either be open to the environment, or, in rarer 

instances, enclosed by skin. Broad classification is primarily based on position: 

those defects occurring in the cranial region involving absence of the cranial vault 

and severe defects in the cerebral hemispheres are referred to as anencephaly, 

which is invariably fatal. If part of the brain or surrounding tissue is pushed 

through an opening in the skull, the condition is referred to as encephalocele. 

Defects that occur in the caudal portion of the neural tube are referred to as spina 

bifida, or meningomyelocele, and are the most frequently observed category 

(Zaganjor et al., 2016). Finally, defects over the entire body axis are referred to 

as craniorachischisis, and are also fatal. 

 

 

Figure 1.1. Neural Tube Closure. A. Successive images showing the 
progression of neural tube closure in a a stylize vertebrate embryo (rostral=up). 
B. Cross section illustrate closed (red) and open (regions) of the neural tube. C. 
Region-specific NTDs. Reprinted From Wallingford, 2013. 
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It is important to note that each of the above categories groups together a 

large number of specific phenotypic traits, and are not mutually exclusive. This is 

similar to the class of NTDs taken together- the name collects under one heading 

many different conditions. Partially for this reason, the etiology of NTDs is 

complex and multifactorial. Twin studies in mice have shown increased 

concordance in monozygotic twins compared to dizygotic twins (7.7% vs. 4.0%, 

(Deak et al., 2008)), indicating a heritable genetic component. However 

recurrence is only 2-5% in human families with two affected siblings (Sebold et 

al., 2005), demonstrating incomplete penetrance. Numerous studies of the 

genetics of NTDs have been published focusing on mutations in genes 

associated with folic acid metabolism, especially the rate limiting enzyme in the 

methyl cycle, MTHFR (Kirke et al., 2004; van der Put et al., 1995; Wang et al., 

2015). 

To date, no large-scale study whole genome study of NTD has been 

published, however sample collection and sequencing is ongoing among various 

national monitoring centers, such as the California Birth Defects Monitoring 

Program (CBDMP) (Croen et al., 1991). 

 

1.2  NTDs and Folic Acid Supplementation   

Maternal diet has also been shown to have a strong effect on NTD risk, in 

particular consumption of vitamin B9, or folic acid (FA). The Leeds observational 
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studies linked circulating levels of FA and other B vitamins in maternal blood to 

NTD risk, which were followed by successful interventional studies in preventing 

recurrence in mothers of NTD-bearing infants (Smithells, 1984; Smithells et al., 

1976, 1980, 1981). Further clinical studies found that maternal intake of FA 

reduced the incidence of NTDs by between 30-70% (Bower and Stanley, 1989; 

Mills et al., 1989; Mulinare J et al., 1988; Shaw et al., 1995; Werler MM et al., 

1993). In 1996, the US FDA introduced a FA fortifications program for staple 

cereal grains and flour (1996). Incidence of two forms of NTD, spina bifida and 

anencephaly, were reduced by 20% and 34% respectively, with greater declines 

being reported as a result of similar programs in Chile and Canada  (Wats et al. 

2007, Lopez-Camelo et al). Currently 80 countries around the world have 

implemented FA fortification programs, with a notable absence of such programs 

in European countries, excepting the United Kingdom. Governments may prefer 

education and voluntary dietary supplementation, as dietary folate is a naturally 

occurring nutrient found in foods such as leafy green vegetables, legumes, egg 

yolk, liver, and citrus fruit. They may also oppose universal fortification, for fear of 

potential side effects (Mills and Dimopoulos, 2015).  

Evidence for potential negative side affects of FA have come from several 

fronts. Among mice models of NTD, some show shift towards early embryonic 

lethality under FA supplementation (Gray et al., 2010). In vitro experiments have 

found that FA inhibits neurite extension synaptogenesis, and growth cone motility 

in chick embryos (Wiens, 2016). Finally, a Norwegian study of 6837 ischemic 
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heart patients (Ebbing et al., 2009), linked FA supplementation to increased risk 

of cancer (Hazard Ratio 1.21) and all-cause mortality (Hazard Ratio 1.18).  

 

1.3 FA and One-Carbon Metabolism 

The mechanism by which FA prevents NTDs has been an area of active 

and ongoing research (Blencowe et al., 2010; Ernest et al., 2002; Mills et al., 

1989; Molloy et al., 2017; Werler MM et al., 1993). Identifying said mechanism 

would both allay concerns about side effects of supplementation, while also 

potentially allowing for the design of alternative regimens. FA metabolism plays a 

central role in numerous cellular reactions through the one-carbon cycle (Bodnar 

et al., 2010; Greenberg et al., 2011; Suh et al., 2001). After being enzymatically 

reduced to tetrahyrafolate, it can be converted to L-methylfolate. L-methyfolate is 

biologically active, unlike FA or natural dietary folate, and it utilizes the supplied 

methyl (one-carbon) group in the synthesis of purines and pyramidines.  
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Figure 1.2 Folic Acid and One Carbon Metabolism. Reprinted from 
Greenberg et al., 2011 
 
1.4 DNA Methylation 

 DNA methylation describes the addition of methyl groups (CH3) to 

nucleotides within DNA, generally by specialized methyltransferase enzymes, 

such as DNMT1, DNTMT3A and DNMT3B in mammals (Lister and Ecker, 2009; 

Robertson and Wolffe, 2000). Such methylation is most frequently observed in 

cytosine, in particular those adjacent to guanine residues, i.e. CpG dinucleotides. 

Regions of the genome which are enriched for CpG dinucleotides are referred to 

as CpG islands, and are often co-located with promoters (Fatemi et al., 2005). 

Hypermethylation in the promoter region of a gene has been linked to decreased 

expression (Irizarry et al., 2009), through either direct prevention of 

transcriptional factor binding, or through recruitment of histones to create closed 

chromatin states (Hashimshony et al., 2003; Jones et al., 1998) . However more 
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complex relationships between methylation and expression have also been 

observed (Wagner et al., 2014). Methylated cytosines are also at a greater risk 

for mutation, as they can be deaminated into thymidine. It has been 

hypothesized that the silencing of retrotranspons may be a key evolutionary 

reason for the presence of DNA methylation, in accordance with viewing such 

elements as primarily genetic “parasites”, rather than having important 

functional significance (Yoder et al., 1997). 

 DNA methylation plays an important role in many vital biological processes 

such as embryogenesis (Smith et al., 2012), cellular differentiation (Beerman and 

Rossi, 2015), chromatin structure (Hashimshony et al., 2003), and imprinting (Li 

et al., 1993). Aberrant DNA methylation is widespread in cancer (Baylin, 2005) 

and linked to both disease initiation and progression (Portela and Esteller, 2010). 

Thus alterations of DNA methylation provides one pathway by which FA may be 

acting to prevent NTDs.  

The study of base modifications, of which methylated cytosine (5mC) is 

just one instance, has seen rapid advances in recent years. Ten-eleven 

translocation (TET) enzymes (Iyer et al., 2009) can further oxidized 5mc into 5-

hydroxymethycytosine (5hmC), 5-formlcytosine (5fC), and 5-carboxylcytosine 

(5caC), which can be recognized by base-excision repair mechanisms. Methods 

have been developed to detect each of these bases through chemical conversion 

(Booth et al., 2013) or immunological assays (Wheldon et al., 2014). 5hmC has 

been found at high levels in mouse embryonic cells (Szwagierczak et al., 2010), 
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while 5fmC has been found to have a highly tissue specific distributions during 

development, while 5caC may be a marker for active de-methylating processes.  

Another line of research has been into base modifications in RNA, particularly 

incorporation of N6-methyladenosine (m6A) (Fu et al., 2014; Lichinchi et al., 

2016),  which has been linked to numerous cancers. 

Figure 1.3 Dynamic of DNA Methylation Reprogramming in Mouse 
Embryos. a, Dynamics of 5mC and its oxidation products in pre-implantation 
embryos.. b, Illustration of the 5mC and 5hmC dynamics in primordial germ cells 
(PGCs) during their reprogramming.  Reprinted from Kohli and Zhang (2014) 
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During gamatogenesis and embryogenesis, DNA methylation patterns 

are erased and re-established in a process known as reprogramming (Figure 

1.3).  Reprogramming during embryogenesis involves initial demethylation of 

the paternal genome by TET enzymes, resulting in the increase of the 

downstream oxidative products 5hmc, 5faC, and 5caC (Gu et al., 2011b; Inoue 

et al., 2011; Wossidlo et al., 2011). Afterwards, global methylation levels for 

modified cytosines in both maternal and paternal genomes are reduced 

passively via replication (Inoue and Zhang, 2011), until being re-established at 

the blastocyte stage around E6.5 (Borgel et al., 2010; Smith et al., 2012). At 

this point, methylation is laid down throughout the genome, with differential 

patterning amongst cells leading to lineage restriction to certain tissue types (Ji 

et al., 2010; Mohn et al., 2008). In cells that have been selected to become 

primordial germline cells (PGCs), a more complex epigenetic program is 

observed at the epiblast stage, where demethylation occurs via non-oxidative 

processes (evidenced by unchanged levels of 5hmc), and then undergoing a 

second stage of oxidative demethylation. In the case of female embryos, one 

copy of the X chromosomes is randomly selected on a per-cell basis for 

genome-wide methylation resulting in inactivation of its constituent genes 

(Hellman and Chess, 2007; Mohn et al., 2008).  

Although DNA methylation is generally stable, it’s patterning does 

change with age (Ahuja and Issa, 2000), allowing the biological age of cells, 

tissues, and organisms to be inferred, in what has been referred to as the 
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“epigenetic clock.” In humans, a prominent example of such a predictor is 

Horvath’s clock, so named for Steve Horvath’s seminal study of methylation 

array data from 8,000 human samples including 51 tissue and cell types 

(Horvath, 2013). Horvath’s clock utilizes 353 CpG sites, selected via elastic-net 

regression from a pool of over 21,000 sites, and is predictive across tissues, 

irrespective of their specific methylation patterns, with a reported correlation of 

r=0.96, which similar correlations reported on independent datasets (Gibbs, 

2014). However, positive deviances in predicted epigenetic age from actual 

age, referred to epigenetic age acceleration, have been observed associated 

with Alzherimer’s disease (Horvath et al., 2015), Parkinson’s disease (Ritz and 

Horvath, 2015), and age-related macular degeneration (Lu et al., 2016). In 

general, lower levels of methylation are observed as an organism ages 

(Bjornsson et al., 2008). 

 

1.5 Lrp6-Based NTD Models and Wnt Signaling 

There are over 200 mouse models of NTD, however only 23 have been 

tested for their responsiveness to FA, and only 11 have in fact shown a positive 

effect (Harris and Juriloff, 2007, 2010). In particular, the curly tail mouse, the best 

studied model of spina bifida (van Straaten and Copp, 2001), is resistant to FA 

supplementation, though it can be rescued by inositol (Burren et al., 2010). The 

large number of potential candidates to study is indicative of the complexities of 

neurological development, with transcriptional differences being found along the 
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neural column during fusion, indicating specialized processes for each region 

(Colas and Schoenwolf, 2001; Copp and Greene, 2010; Wallingford, 2005; 

Yamaguchi and Miura, 2013).  

Our study focuses on two mutations in the Lrp6 (Low-density lipoprotein-

receptor related protein 6) gene, which provide NTD models with opposite 

responses to maternal FA. 

 

 
 
Figure 1.4 Model of Lrp6 Disregulation within the Cell. Under basal conditions, Lrp6 is 
efficiently trafficked and inserted into the cell membrane facilitated by MESD. The Cd mutation 
prevents Lrp6 interaction with MESD and leads to cleavage and defective processing of Lrp6Cd, 
all of which reduces localization of Lrp6Cd on the surface of the cell. The mutant Lrp6Cd 
accumulates within the cell to alter levels of β-catenin and increase GTP-RhoA levels through 
complexation with DAAM1. In the Lrp6−/− cells, only Lrp5 remains available for signal 
transduction, and it is insufficient to activate either the canonical or non-canonical pathways to the 
level necessary for proper neural tube closure. Reprinted from Gray, et al 2013
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Under basal conditions, Lrp6 is inserted into the cell membrane by MESD 

(Figure 1.4), and is a co-receptor for the Wnt (Wingless/Integrated) signaling 

pathway, which plays a critical role in neural development. Wnts are a family of 

secreted molecules that regulate numerous developmental events through 

several signal transduction pathways. Wnt signaling falls into three known 

pathways: the canonical pathway, the non-canonical planar cell polarity (PCP) 

pathway, and the non-canonical calcium pathway (Amerongen and Nusse, 2009). 

Lrp6 and Lrp5, along with their obligate co-receptor Frizzled (Frz) bind to axin in 

the presence of Wnt. The removal of axin from the cytosol prevents the formation 

of the beta catenin destruction complex, causing beta catenin to accumulate and 

be trafficked into the nucleus where it activates TCF/Lef transcription factors.  

Lrp6Cd  consists of a single point mutation in the extracellular domain of 

the Lrp6 protein (Carter et al., 2005). Heterozygotes display a crooked tail. In 

Lrp6Cd/Cd embryos, co-localization of Lrp6 into the membrane is reduced due to 

complexation with DAAM1, activating GTP-RhoA, while also causing build-up of 

beta-catenin in the cellular membrane, and reduced activation of TCF/Lef. 

Untreated, resulting defects include embryonic lethality, exencephaly  and runted 

pups with severe lumbosacral and tail deformities. However, maternal 

supplementation can enact a true rescue, with normal Mendelian distribution of 

genotypic ratios  (Gray et al., 2013). 
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In Lrp6-/- embryos, there is insufficient signal transduction to activate either 

the canonical or non-canonical wnt pathways for neural tube closure, and the 

embryos are not viable. Defects include body axis truncation, limb defects, eye 

and palate defects and a high incidence of exencephaly and/or spina bifida. 

Maternal supplementation with FA causes a shift towards early embryonic 

lethality and exencephaly, though as a percentage of live births NTD is reduced 

(Gray et al., 2010). Recent genetic studies in humans have linked Lrp6 mutations 

in humans to NTDs (Lei et al., 2015) and tooth angenesis (Ockeloen et al., 2016), 

making these backgrounds ever more attractive models. 

We hypothesized that the effect of FA on DNA methylation could contain 

information as to its phenotypic interactions with the Lrp6 Cd and null mutations. 

The most direct method by which this could be occurring would be epigenetic 

lesions caused by Lrp6 mutation status whose methylation levels were also 

effected by maternal FA, with corresponding changes in expression patterns in 

associated genes. For the null mutants, another possibility would be that 

downstream effects of the removal of Lrp6, in particular the reduction in TCF/Lef 

signaling, allow the addition of FA to disrupt the normal demethylation process 

during early embryogenesis. Such disruption, which would display itself as 

hypermethylation associated with increased maternal FA, could potentially be 

accompanied by increased expression of TET enzymes in order to compensate 

for the additional methyl groups. Such compensation would be expected 

relatively close to implantation to match the timeline set out by Kohli and Zhang. 
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A similar general mechanism could potentially explain the observations in 

the Cd background. This would be the case if the Cd mutation resulted in 

downstream interference with the reestablishment of methylation patterns prior to 

the epiblast developmental stage, with the additional FA compensating for this 

effect. If true, increased expression of DNMTs might be observed in the mutants, 

mirroring the hypothesis above in the nulls. However, the rescue of the crooked 

tail phenotype indicates a potentially much closer link between FA’s effects and 

Lrp6 biology. Increased methylation and decreased expression of one or more of 

the proteins the mutant Lrp6 protein complexes with, such as DAAM1, would be 

of particular interest.  

At the time the data for the samples was being collected, there was no 

published method for analysis of methylation data involving 2x2 or more complex 

designs as was needed for the study. This necessitated the creation of the 

multiDiff package (see below). In the discussion that follows, care must be taken 

to separate two separate uses of the word “interaction”. In a biological context, 

the word interaction generally implies some form of binding, or potentially some 

form of co-location. However, there is a separate mathematical notion of 

“interaction,” which refers to interaction terms in fitting a model. In brief, such 

interaction terms are usually the product of two other explanatory variables (i.e. 

C3=C1 * C2). As they are not a linear combination of other terms they do not 

generally cause any direct issues with model fitting. They correspond to non-

linearity in the data, and are appropriate when the effect of one variable mediates 
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the effect of the other, or when they both mediate each other. Hence the term 

“interaction”. Observation of a non-zero mathematical interaction indicates that 

the variables biologically interact at or upstream of the relevant data. The 

converse is not true- if the two individual biological effects “add together” when 

combined (see discussion of link functions in Chapter 2), then they may not 

require an interaction term. 
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CHAPTER 2 

 

Analyzing Methylation Data with Complex Designs 
 

 

2.1.  Assays for DNA Methylation 

Current studies of DNA methylation rely on two major classes of assays- 

those using microarrays, the most popular being the Illumina Infinium Human 

Methylation 450K BeadCHIP (Morris and Beck, 2015) and those using high-

throughput sequencing. Their strengths and weaknesses parallel the use of 

these platforms for detecting genomic variants. Arrays have the benefit of being 

lower cost, and consistently collecting identical sets of sites across samples. 

Sequencing based methods can be more challenging to analyze, due both to the 

increased amount of data and processing time, as well as the necessity of 

harmonizing sites across samples, while offering the potential to cover a larger 

number of sites. By examining the methylation patterning of specific reads, it 

also becomes possible to look for differences in combinatorial entropy at a given 

loci, an approach which has been used to detect changes in what have been 

referred to as epiallelles in leukemia patients (Li et al., 2014). 

Both the 450K Methylation arrays and NGS methods detect methylated 

cytosines by means of sodium bisulfite conversion. Sodium bisulfite converts 

unmethylated cytosines to uracils (Hayatsu, 2008), which are then treated as 

thymines during subsequent PCR reactions. For NGS data, specialized aligners, 
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such as BISMARK (Krueger and Andrews, 2011), BSMAP (Xi and Li, 2009), or 

RMAPBS (Smith et al., 2009), utilize in-silico bisfulfite treated version of the 

reference genome to align reads. Methylation levels can then be called from the 

resulting bam or sam file by comparing the number of C and T reads at each 

covered loci.  

Due to the time and expense of the conversion process, whole-genome 

bisulfite sequencing (WGBS) was, and remains, impractical for many studies. 

Reduced Representation Bisulfite Sequencing (Gu et al., 2011a; Meissner et al., 

2005) allows for a cost effective approach. By using the Mspl digestion enzyme 

to fragment DNA at C^CGG loci, and performing size selection, it is possible to 

collect data from CpG islands throughout the genome, and thus the promoters of 

most genes. An enhanced version of the protocol, eRRBS (Garrett-Bakelman et 

al., 2015), increases the number of covered loci and allows for coverage of sites 

further out from CpG islands, referred to as CpG shores.  

Methylation can be analyzed using binomial generalized linear modeling 

(see below). A common package for doing this is methylKit (Akalin et al., 2012) 

methylKit also allows use of DSS (Feng et al., 2014), a hierarchical Bayesian 

model using the beta-binomial, as well as the ability to control for covariates in 

the analysis. However, it currently lacks the ability to simultaneously analyze 

and visualize multiple covariates and their interactions. 

 
2.2 Introduction to Generalized Linear Models  
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 Generalized linear models (GLMs) are a class of statistical models used to 

analyze data that share an underlying distribution in a manner that generalizes 

the approach of standard linear regression (Agresti, 2015). In linear regression, 

one can write: 

(1)  Yi = β jXij
j
∑ +εi  

Where Yi is the feature being predicted in sample i, Xij are the j predictors of 

samples i, βj are the weights put on the features, and εi is the error for the ith 

sample. The appropriateness of the model can in part be assessed by how 

closely the errors, ε, actually follow a normal distribution with a single variance, 

σ2 and mean zero. Non-normality of the errors can potentially occur if the 

variance is not constant across the range of linear predictors XijBij, in a condition 

referred to as heteroscedastacity. In such a case, more complex models become 

appropriate. 

 We can reformulate the linear model in the following equivalent manner: 
 

(2)           

Yi ~ N(µi,σ
2 )

µi = β jXij
j
∑

 
  
Here, we are imagining the Yi’s being drawn from normal distributions with the 

same variance, but with means controlled by the remaining features/covariates. 

The equivalence can be seen in the independence of the mean and variance for 

the normal. In addition the range of the linear predictor (now defined as μ) is the 
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same as the range of the mean. In both formulations, we are also restricted to 

having the predictors having a linear effect on the mean. 

The first conceptual step for a GLM is to consider other distributions 

besides the normal from which the independent variable can be drawn. However, 

both of the previously mentioned properties- the mean with domain equal to the 

reals, and independence of the mean and variance, may fail to hold. For 

example, neither is true of the Poisson distribution, one of the most common 

distributions to model count data. It has mean and variance both equal to a single 

parameter, λ, which can be any positive real number. Thus, if we tried to set: 

(3)     

Yi ~ Poisson(λi )

λi = β jXij
j
∑  

 
We could potentially run into both limitations. It is theoretically possible for us to 

have a predicted mean less than zero, outside the allowable range. In addition, it 

would make little sense to try and use the original formulation of the linear model- 

with the error now Poisson distributed. it would be unable to have zero mean and 

non-zero variance in the stochastic part of the model, thus failing to capture the 

notion of error. 

 GLMs solve this problem by introducing what is referred to as a link 

function, generally noted as g. The link function serves the purpose of both 

mapping the domain of the distribution to the reals, and allowing more flexibility in 

related covariates to the mean. Thus we have the standard formulation of a GLM 

as: 
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(4) 

Yi ~ f (µi;σ
2 )

g(µi ) = β jXij
j
∑  

Here, f is a member of the exponential family of distributions, or potentially it’s 

extension, the over-dispersed exponential family (Chang et al., 2001; Gelfand 

and Dalal, 1990). Hypothesis testing is usually done with either a Wald test, 

which applies a chi-square test to each coefficient, or a likelihood ratio test, which 

compares the likelihood of the specified model to a reduced one with one or more 

terms removed. Another alternative is Rao’s score test, based on the score and 

Fisher information of parameter estimate can also be use. All three tests are 

asymptotically equivalent. For computational performance considerations, the 

Wald test was utilized in the analysis presented throughout. 

GLMs and their extensions have been applied to the analysis of many kinds 

of biological data, including microarray data (Smyth, 2004), differential 

expression (Anders and Huber, 2010) and splicing in RNA-seq (Anders et al., 

2012), DNA-methylation, neuronal spike patterns (Gerwinn et al., 2010). In the 

case of methylation data, we can set to f be the binomial distribution, and take 

the coverage as the (known) number of trials. Here, the link function must take 

the real line into the interval [0,1], which is done naturally by a sigmoidal function. 

The logit function, discussed below, is just such a sigmoid, and is the canonical 

link function for logistic regression. Other choices of link function may include the 

probit, log-complementary log (Agresti, 2015), or arcsine, discussed below. 
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2.3  Survey of published methods for base-resolution methylation data 
 

methylKit’s (Akalin et al., 2012) main functionality is built around a 

binomial GLM, a natural fit for binary response data (in this case methylated (C) 

and unmethylated (T) reads).  Other approaches have been implemented in 

various software packages for methylation analysis. In general, tradeoffs must be 

made between model complexity, runtime, ability to handle heteroscedasticity, 

and Type I and Type 2 errors. 

Instead of directly dealing with counts, some packages analyze the 

methylation ratio (methylated reads over coverage). These included Bsmooth 

(Hansen et al., 2012), IMA (Wang et al., 2012), Minfi (Aryee et al., 2014), 

COHCAP (Warden et al., 2013), CpGassoc (Barfield et al., 2012), and metilene 

(Jühling et al., 2016). For count-based methods, which thus retain information 

about coverage variability between samples, methylKit by default uses logistic 

regression, contrasting with RADMeth (Dolzhenko and Smith, 2014), MethylSig 

(Park et al., 2014), MOABS (Sun et al., 2014), DSS  (Feng et al., 2014) and DSS-

general (Park and Wu, 2016), which all use some form of beta-binomial 

regression. The beta distribution has support on the domain [0,1], and the 

variance of the distribution can be used to capture biological variability. A recent 

comparison of different methylation callers (Zhang et al., 2016), found that the 

ratio tests were not sensitive to small changes in methylation level, but that the 

beta-binomial implementations shared similar and superior performance. 
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2.4 Complex Designs and Assignment of Effect Sizes 

Most of the previously mentioned packages are designed to call 

differential methylation between only two group comparisons- only methylKit, 

RADMeth, and DSS-general are able to control for covariates or analyze more 

than one group. Of these, only DSS-general was created to analyze complex or 

general designs. In their initial paper (Park and Wu, 2016), they find what they 

believe to be unacceptable performance for pure logistic regression. However 

they do not directly simulate interaction terms, a key question when one has 

more than one effect of interest. Also they do not take up the problem of 

estimating effect size in logistic or beta-binomial regression. 

As has been increasingly appreciated (Sullivan and Feinn, 2012), 

statistical thresholds by themselves are generally insufficient when examining a 

large number of tests as is common in NGS datasets. A measure of effect size is 

vital to ensuring that to removing hypotheses that explain only miniscule amounts 

of the variation of interest.  

For logistic regression and its relatives, the standard effect size is the log-

odds of the regression coefficient. This corresponds to the fact that the log-odds 

changes by a constant factor when the linear predictor is moved by the 

corresponding amount. However, log-odds adds nothing to biological 

interpretability in the context of methylation data. Figure 2.1 illustrates this 

problem. Empirical estimates of methylation difference can be made in a 

straightforward manner with a single binary covariate, in despite of the fact that 



	
33	

the same coefficient value may have different empirical effects depending on the 

methylation level of the baseline condition. As each site is analyzed separately 

until correction for multiple hypothesis testing, there is no conflict. However, this 

becomes completely ambiguous when dealing with the case of two or more 

covariates being analyzed together at a single site. 

In order to solve this problem, we devised the maximum difference 

estimate. 

 
 
2.5 The Maximum Difference Estimate 
 

Let the input data consist of N CpG sites and D samples, with a design 

matrix X with J features after expanding interaction terms. For CpG site I (I = 

1,2,...N) in sample d (d =1,2…,D), let Yid and mid be the methylated and total read 

counts respectively.  At each site, logistic regression fits the unknown parameters 

βij data to the model: 

(5)     

Yid ~ Binomial(µid,mid )

logit(µid ) = βi0 + β jXij
j≥1
∑  

 

where logit is the function log(p/(1-p)),  βi0 is the baseline methylation at site I, 

and xd and βi are the dth row of the design matrix and ith row of the coefficient 

matrix. 
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From the estimates of the parameters β we define the maximum 

difference estimates for each term in the following manner. Let s be a binary 

vector with J entries, which we call a state vector. A particular s captures the 

patterns of effects operating at a given loci. Let sk be the indexed set of such 

vectors (k=1,2,...,2J). If we arranged the sk’s into a 2^J  by J matrix, they can be 

seen as equivalent to a binary truth table for J variables (Figure 2.1B).  

We define the maximum difference estimate for the jth predictor at site I, 

Mij as 

Mij = sgn(βij )•max1≤k≤2 j logit
−1(βi0 + sk •βi )− logit

−1(βi0 + sk •βi −βij )⎡⎣ ⎤⎦  

Effectively, we consider all possible states the site could be in, and compare the 

methylation levels with and without the factor of interest. We then use the state 

that maximizes the effect of the covariate to assign its effect size. We use the 

maximum due to the saturating nature of the sigmoidal curve, which by its nature 

makes it difficult to estimate multiple effects with small sample sizes as is 

common in bioinformatics studies. We also implement another methodology for 

those who wish to assign more conservative effect sizes, the mean difference 

estimate. Let Ldi  be the linear predictor for sample d at site i. Then we can assign 

the mean difference estimate, Aij, over the observed samples for factor j at site i: 

𝐴!" = 1/𝐷 ∙ 𝑙𝑜𝑔𝑖𝑡 𝐿!" − 𝑙𝑜𝑔𝑖𝑡(𝐿!" − 𝛽!)
!!!,,,!
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Although the mean difference estimate has the benefit of making a clean 

empirical prediction on the data, it is inherently biased if sample sizes among 

cohorts are unequal.  

 Note that although the maximum difference estimate was defined above 

for logistic regression, it can be applied to any underlying model of the sigmoidal 

curve, i.e. any other link function. By it’s design it will tend to be relatively 

aggressive in assigning effect sizes, and will be sensitive to the region in the 

domain of the linear predictor that has the greatest dynamic response, which for 

standard sigmoids will be close to zero in linear space. 

 In the context of methylation analysis, we will refer to the maximum 

difference estimate as the maximum methylation difference (MMD) of an effect at 

a given loci.  

 
 
2.6 Benchmarking of False Positive Rate  

 
 
For our FPR analysis, we used GEO dataset GSE61163, which was utilized in 

Zhang et al (2016) in comparing differential methylation callers in the single 

binary factor context. The samples are from 39 individuals with chronic 

myelomonocytic leukemia (CML), whose tumors were sequenced with the 

eRRBS protocol before treatment. Following Zhang et al, we randomly selected 5 

subjects per cohort. The only alteration in the procedure was random assignment 

to four groups instead of two, imitating a 2x2 factorial design. Then both methods 

were run using the model: 
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Cov1 +Cov2 +IsBoth 

 , where IsBoth corresponded to an interaction term, i.e. IsBoth=Cov1*Cov2 

 This was done for 1000 trials, with a q-value of 0.01 used for all runs. Results 

are shown in Figure 2.1C & D. We observe that the maximum methylation 

difference threshold exhibit the ability to strongly control the FPR of multiDiff, 

dropping to less than one percent at an MMD threshold of 25% or greater. 

Notably, this thresholding had minimal effect on the already very low FPR of 

DSS. While demonstrating the power of controlling for biological variability, it is 

also indicative of the conservative results of utilizing beta-binomial models. 

 

2.7 Benchmarking of Accuracy. 

To benchmark accuracy, we followed a similar simulation procedure to the 

one outlined in the DSS-general paper, with some modifications. First, we added 

an interaction term to the simulation, since it was vital to ensure that our method 

could detect such interactions accurately. We then expanded the sites in the 

simulation by duplicating the baseline condition over eight chromosomes, each of 

which was associated with a single state vector for generating DMRs. This 

eliminated the need to specify the covariance of the effects within a given region, 

instead allowing us to assess the ability of a method to detect each possible 

differential state against the same background. Finally, we set the differential 

effect of the first covariate, where active, to be uniformly hypermethylating, the 

effect of Cov2 to be uniformly hypomethylating, and their interaction to be 
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uniformly hypermethylating. The result of applying this protocol to an artificially 

flat methylation landscape is depicted in Figure 2.2 A, with the percentage of 

differential sites in a region set to 100%. The null region/chromosome (no effects, 

i.e. s=(0,0,0)), is shown in the middle of the landscape. The control cohort has 

methylation identical to this null region across each chromosomes. The treatment 

cohorts have differential signal added as appropriate. 

Results are shown in Figure 2.3 for simulations using a sine link, and 

Figure 2.4 for those using logit link. Standard ROC curves are generated by 

varying p-value or q-value thresholds. Here we instead use varying MMD 

thresholds, after filtering by q-values <0.01, the standard cutoff, to demonstrate 

the value of . Each curve is the average of 20 runs. Simulations in the bottom row 

were down with differential effect sizes set to 10x the original parameters. In all 

combinations of parameters tested, multiDiff had a higher AUC. Taking all runs 

over all parameters, the difference in performance was statistically significant 

(p<2.2e-16, paired t-test). Thus, an effect size threshold can make performance of 

the binomial analysis comparable if not superior to that of beta-binomial 

 
 
2.8 Application of multiDiff to P2 Cd Male Dataset 

 
We applied multiDiff to a novel eRRBS dataset of Crooked tail mice. The 

Crooked tail (Cd) mouse is a model of neural tube defects that displays rescue 

under maternal supplementation of folic acid. Whole blood was collected from 16 

male animals in a 2 x 2 factorial design (Lrp6Cd/+ vs wildtype, 2ppm vs 10ppm FA 
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diet) design. In Table 2.1 we show the result of running the standard methylKit 

analyses to interrogate the effect of diet in each genotype, and then intersecting 

them, compared to running multiDiff on the data, with and without interactions. 

multiDiff without interactions is able to find ~2x more sites at the 25% threshold, 

and ~90x when the interaction term is included. The interaction term is 

associated with 70,924 sites at the 25% threshold, which are not possible to 

recover from the single factor analyses. To attempt to do so, one could take the 

symmetric difference of the sites found in each genotype. However, the 

cardinality of the symmetric difference is bounded above by the size of the union 

of the two sets, achieving that bound only when they are disjoint. in this example 

analysis, we could thus even at the theoretical maximum find only ~50% of 

interacting sites by analyzing each genotype separately. 

In Figure 2.5 we show the comparison of log p-values of the different 

analyses. Although there is an overall positive Pearson correlation between the 

wt and het values (, visually there appears to be a negative relationship. This 

appears due to the relative depletion of sites that are highly significant in both 

cohorts. Mathematically, such distinct effects are provided for by interaction 

terms, in this case the term Genotype:Diet. Biologically, thsThus comparing 

figure 2.6 A and B, we are able to see via inspection that there is enrichment for 

high p-values in the expected regions (up and to the right) when we fit the data 

using model with interactions, compare to without. 
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Figure 2.6 shows the standard visualizations of multiDiff output on the P2 

Cd Male dataset, covering over 1.3 million CpGs, with the MMD threshold set to 

25%, and q-value threshold set to 0.01, the standard settings. All loci that are not 

called as differential under the user’s statistical and effect size thresholds are 

removed by default. The heatmap is designed to be analogous to those for RNA-

seq. Each effect is shown in terms of a binary call matrix annotating the diagram, 

as well as the MMD associated with the effect in the heatmap proper. The violin 

and bar plots show the MMD distribution and number of DMCs at the input 

thresholds. 

 

2.9 Additional Comparison to DSS 
 
 We further investigated performance characteristics by analyzing the Cd 

mouse dataset with DSS, in both it’s single and general modes. The results are 

shown in Table 2.2. In single factor analysis, the DSS results were always a strict 

subset of the multiDiff results, with the number of hits for multiDiff even after 

MMD filtering more than an order of magnitude greater for both Wt and mutant 

animals. The only site that was called in all four analyses, before and after MMD 

thresholding, was in the exonic region of Egln2 (Egl-9 Family Hypoxia Inducible 

Factor 2). Egln2 is responsible for post-transcriptional modification of Hypoxia 

Inducible Factor (HIF), which is involved in oxygen homeostasis (Semenza, 

2001). In contrast, the 624 sites found by intersecting the binomial results, 

although still a fraction of those found when analyzing the full dataset together, 
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contained 32 DMCs in promoters, shown in Table 2.3. However, no significant 

pathway enrichment was detected in these sites, nor overlap with known wnt 

signaling genes. 

No overlap between the methods was observed in the either the simple 

two factor model (Diet+ Genotype), or the model with interactions (Diet + 

Genotype). After controlling for effect size, all of the hits produced by DSS were 

filtered out in the more complex analyses. We believe this to indicate that beta-

binomial regression may be too conservative in such settings with relatively low 

sample sizes. 

 
2.10 Conclusion 
 

multiDiff, implementing the maximum difference estimate, is able to control 

the normally high FDR associated with logistic regression, and displays superior 

AUC performance to an alternate method for analyzing complex methylation 

designs.
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Table 2.1. Comparison of multiDiff output to intersection of standard methylKit analyses. 
Methylation Difference is the empirical difference in the group means for the single factor 
analysis, MMD for Multi-factor. q-value cutoff was 0.01. 
 

Table 2.2. Comparison of multiDiff and DSS output on Cd Male Dataset. Numbers are the 
number of DMCs called associated with diet. Diff. is the empirical difference in the group means 
for the single factor analysis, MMD for Multi-factor. The sole site found in the intersection of the 
Single Factor analyses is in the exonic region of Egln2.  
 
Nfia,Pinlyp,Slc9a9,Klhl38,Hs3st2,Ino80e,Gm13003,Denr,Fap,Col18a1,Pdzd7,Myh14,Ptgds,Fcgb
p,Mydgf,Popdc2,Zrsr1,Alpk3,Nhsl2,Apcdd1,Gnat2,Frk,Psma8,Ltk,Ddx4,Sema3b,Dock2,Ehf,3110
099E03Rik,Gm16287,Frmpd1os,5830416I19Rik 
 
Table 2.3 . List of genes with FA-associated DMCs in promoter regions in Lrp6 Cd and Wt 
Embryos. DMCs were intersected from the single factor methylKit analysis, MMD>25%  
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Figure 2.1 Effects and Effect Sizes in Logistic Regression. A. Similar distributions of data 
can be readily assigned a biologically meaningful effect size in terms of methylation when 
originating from different sites, but do not admit ready interpretation with multiple factors. B 
Binary state vectors capture the combination of effects acting on a given locus. The set of 
state vectors can be arranged to form a truth table over possible effects.

sk	 G	 D	 I	

(1,1,1)	 ↔	 T	 T	 T	

(1,1,0)	 ↔	 T	 T	 F	

(1,0,1)	 ↔	 T	 F	 T	

(1,0,0)	 ↔	 T	 F	 F	

(0,1,1)	 ↔	 F	 T	 T	

(0,1,0)	 ↔	 F	 T	 F	

(0,0,1)	 ↔	 F	 F	 T	

(0,0,0)	 ↔	 F	 F	
	

F	

Sample	ID	 Gender	 Diet	 Interac2on	

Female_Control_1	 0	 0	 0	

Male_Control_1	 1	 0	 0	

Female_Diet_1	 0	 1	 0	

Female_Diet_1	 1	 1	 1	

Design	Matrix,		Xij	

G=Gender	Has	Effect	
D=Diet	Has	Effect	

I=Sex:Diet	InteracFon	Has	Effect	

State	Vectors	

j=3	Features	

8	=2j	
States	

	d	sam
ples	

Single	Factor,	
	Mul1ple	Sites	

Mul1ple	Factors,	
	Single	Site	

A	

B	
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Figure 2.2 FPR Benchmarking Simulations. A. Simplified methylation landscape, with each 
chromosome corresponding to a region where a different set of effects is active. B. Raw 
methylation signal on random subsample of the CML cohort  C. Plot of confidence intervals of 
FPR over 100 trails. D. Inset showing performance when the Maximum Methylation 
Difference (MMD) threshold goes from zero to 25%.

A	 B	

C	 D	
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Figure 2.3. Comparison of multiDiff and DSS, simulating with sine link. Top row is simulated 
using effect size reported in Park and Wu 2016, bottom row has effect sizes increased by 10x. 
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Figure 2.4 Comparison of multiDiff and DSS, simulating with logit link. Top row is 
simulated using effect size reported in Park and Wu, 2016, bottom row has effect sizes 
increased by 10x.
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A.  
	
B.

	
Figure 2.5 Comparison of Single Factor and Pooled P-Values. A. Log p-values for the Wt 
and Cd mutants, colored by the log p-values in the analysis of the pooled data without the 
interaction term Genotype:Diet . B. Log p-values for the Wt and Cd mutants, colored by the 
log p-values in the analysis of the pooled data run with atheinteraction term.
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Figure 2.6 Visualization of multiDiff output for P2 Cd Male Dataset. DMCs called with 
q<0.01, Maximum Methylation Difference > 25
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CHAPTER 3 

 

Analysis of FA Action in Lrp6 NTD Models 
 

 
3.1 Potential Mechanisms of FA Action 

 
We hypothesized that changes in DNA methylation due to FA 

supplementation were key to understanding the effect of FA on Lrp6 Cd and null 

mutants. Three more specific hypotheses are depicted in Figure 3.1, illustrating 

different potential models of FA action, and their associated patterns of 

methylation. Since the same classification scheme can be applied to expression 

data, we consider both within the same framework. 

In the additive model, both the FA and Lrp6 mutation affect the observed 

level of a fixed marker (either percent methylation at a loci or expression of a 

transcript). These effects persist and additively combine when the interventions 

are paired. In the independent model, FA and the mutations operate at distinct 

loci, and their interactions occur downstream of the observed marker. Therefore 

the critical markers underlying FA’s effect are not necessarily associated with a 

genotype-driven change. However, FA’s effect continues to be observed under 

the mutation condition. Finally, in the combinatorial model, both FA and the 

mutation must be present to create a differential effect. This suggests an 

interaction upstream of the marker being observed. The combinatorial model can 
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Figure 3.1. Potential Mechanisms of FA Action. In the Additive model, both FA and 
mutation status affect the given marker, and their effects add together when both are 
present. In the Independent model, FA and the Lrp6 mutation are affecting distinct loci or 
transcripts, and interact downstream when present together. In the Combinatorial model, 
the critical loci are only affected when both FA and the mutation are present
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be described as either a Lrp6-dependent effect of FA, or an FA-dependent effect 

of Lrp6 status, but here they are mathematically equivalent. 

To investigate the evidence for these different models, we performed 

enhanced reduced representation bisulfite sequencing (eRRBS) to profile DNA 

methylation at base-level resolution and RNA-seq, both assays on Embryonic 

day 9.5 (E9.5) Lrp6 knockout (KO) or Lrp6 Cd mouse lines.. We gathered 

heterozygous mutants and wildtype siblings whose dams had been fed either 

control (2ppm) or FA supplemented (10ppm) diets  (Carter et al., 1999; Gray et 

al., 2010). E 9.5 was chosen as this corresponds to the end of neurulation. 

Heterozygous animals were used so that embryos could be appropriately 

developmental-stage matched for somite count and to permit comparison with 

postnatal ages, as Lrp6-/- are non-viable. We additionally performed eRRBS on 

whole blood from P2 mice to look for evidence of sites with persistent changes in 

methylation associated with maternal FA supplementation and mutation status. 

These could prove to be useful biomarkers with applications to NTDs human.  

The design of the full dataset is shown in Table 3.1.  

3.2 Maps of Differential Methylation 

 Figure 3.3 shows the maps of differential methylation in both backgrounds 

without regard to mechanism. We observe that in both backgrounds the largest 

number of loci is affected by maternal FA, followed by mutation-FA interactions, 

and last the mutations themselves. However, in the Cd background, FA’s effect 
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had a strong bias towards increasing methylation throughout the genome, even 

when it wasn’t called as having an effect, with the exception of chrX. On the KO  

background, FA’s distribution of effects were more strongly bimodal, with some 

bias towards hypomethylation.  

	
Table 3.1 Summary of Lrp6 NTD Mice Model Dataset. Counts are those after outlier samples 
were identified and removed during exploratory analysis 
 
3.3.1 Analysis of FA Mechanisms in Cd Background 

Results of genic annotation of differentially methylated cytosines and 

differentially expressed genes (DEGs) assigned  by mechanistic classification are 

seen in Table 3.3. We refer to the annotated genes from the methylation analysis 

as differentially methylated genes (DMGs) No overlap was found between the 

DEGs (q<0.05, |LFC|>0.5), and DMGs in the Cd background for any of the 

mechanisms. 
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Associated with the independent mechanism was enrichment (using 

STRING DB (Szklarczyk et al., 2017))  amongst the DEGs for housekeeping 

pathways in the nucleus such as regulation of nucleobase-containing compound 

metabolic process (fdr=4.28e-5) and gene expression (fdr=6.05e-5) (Table 3.2). 

There was no observed enriched pathway in the DMGs.  

Since FA rescues Cd mice, we looked for connection between Lrp6 and 

the lists of DEGs and DMGs by submitting them to StringDB along with the 

following list of Lrp6-associated genes:  Ctb1, Daam1, Lrp6, Lrp5, Dvl1, Rhoa, 

Arhgef19, Mesdc2, Frzb, Axi, and observed which if any genes were found to 

have connections to this input set. Among the DMGs, only S1pr4, which is 

involved in cell migration shared a link to Lrp6 via RhoA. Similarly, the DEGs 

Crtc1, Dot1l, Dvl3, Dyrk1b.,	Gli2,	Mll2, Myh11,and Hipk2 are connected to wnt 

signaling and Lrp6 as can be seen in Figure 3.3. Dvl3 shares strong similarity to 

Dvl1, which is normally recruited by Lrp6 to the plasma membrane. Hipk2 is part 

of a digenic NTD model of exencephaly with Hipk1 (Isono et al., 2006). 

3.3.2 Analysis of Combinatorial Mechanisms in Cd Background 

More DEGs were found associated with the combinatorial mechanism (91)  

than the independent mechanism (46). Once, again, known NTD gene Hipk2 and 

Dvl were found to be differentially expressed associated with the combinatorial 

mechanism. Zic3 is also known to be an NTD gene (Carrel et al. (2000); Klootwijk 

et al. (2000); Purandare et al. (2002); Lickert et al. (2005)) however it’s location on 

chrX meant that it’s signal was highly confounded with sex differences.
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Figure 3.2 Differential Methylation in Lrp6 Cd KO Background. Top Row: MMD 
Heatmap of effects with differential calls of loci indicated at top of figure. Middle Row: Violin plots 
showing MMD distribution for each effect. Bottom Row: Number of DMCs associated with each 
effect
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Cd	Background	

Table 3.2 Genes Associated with Mechanisms of FA Action in Cd Background!
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3.3.3 Discussion of Mechanisms in Cd Background 

 The data does not support the additive mechanism at all in the Cd strain, 

but there does not seem to be evidence that both the independent and 

combinatorial mechanisms are active. Most interestingly, even when it doesn’t 

pass the threshold to be significant, the interaction between the diet and mutation 

is ever present, slightly repressing expression. The simplest interpretation for the 

main effect of the diet is the additional carbon is being used to counteract the 

known and observed hyperactivity associated with the Cd mutation through 

silencing. However, this does not explain the mechanisms driving the interaction 

effects. 

 There are only 5 genes up-regulated by the FA:Cd Interaction. The second 

ranked is Folh (Folate Hydrolase, LFC=0.665). Folh1 acts as a glutamate 

carboxypeptidase on folate, and is known to be expressed in the central and 

peripheral nervous system. It appears to be a good candidate for follow up study. 

If it is playing a role in FA rescue, then the initial hypothesis would that it is 

playing a role in trafficking beta catenin into the nuclease, directly by some form 

of recruitment, or indirectly, by activation of the actin destruction complex. Also of 

interest is Hesx1 (LFC=0.5342759),  a homeobox gene which is a transcriptional 

repressor in the developing forebrain (Dattani et al., 1998). The other up-

regulated interaction genes are: Fam167a (LFC=0.676), Pla2g7, (LFC=0.117), 

and Lrrn4 (LFC=.403). 
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Figure 3.4 Differential Methylation in Lrp6 KO Background. Top Row: Heatmaps of Max. 
Meth Difference Estimates, with differential calls of loci in black on top. Middle Row: Violin plots 
showing distribution of Max. Meth Difference Estimates for each effect. Bottom Row: Number of 
DMCs associated with each effect
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3.4 Analysis of FA Mechanisms in Lrp6 KO 
 

Results of genic annotation of sites assigned by potential mechanism are 

seen in Table 3.3. Rn45s, a pre-ribosomal protein was found to both be 

differentially methylated and expressed under the independent mechanism, and 

has been reported to be differentially methylated in the brains of mice perinatally 

exposed to lead. (Sánchez-Martín et al., 2015). Ubql2 has been found to be 

associated with amyotrophic lateral sclerosis and dementia (Deng et al., 2011). 

By far the largest number of genes (703), were associated with differential 

expression under the independent mechanism. These are shown in Table 3.4. 

Enriched KEGG Pathways were Systemic lupus erythematosus 

(FDR=0.0009160), Metabolic pathways (FDR=0.0106), and Alcoholism 

(FDR=0.0106). The set was also enriched for histone domains H2A/H2B/H3/H4 

(FDR=1.87e13) 

Mechanism Additive Independent Combinatorial 
Differentially 
Methylated 
Genes 
(DMC in First 
Exon or >3 in 
Promoter, 
multiDiff: 
q<0.01, Max. 
Meth Diff>25) 

Ubqln2 
Rn45s 

1700018B24Rik,AA
414768,B630019K0
6Rik,Chst7,Gm877
3,Gsc,Ppp1r3fos,R
n45s,Rnf113a1,So
wahd,Spin4,Ubl4a,

Ubqln2*,Zfa-
ps,Zic3,	

 

1110012L19Rik,1700018B24Rik,AA414768,B63
0019K06Rik,Chst7,Crk,Cx3cl1,Gm16617,Gpr50,
Mirlet7c2,Mospd4,Ndufb11,Ppp1r3fos,Ptchd1,R
ai2,Rbm3os,Rn45s,Rnf113a1,Slitrk4,Sowahd,Sp

in4,Ubqln2,Zic3, 
 

Differentially 
Expressed 
Genes 
(Deseq2: 
abs(lfc)>0.5, 
qvalue<0.05) 

- 703 genes - 

Intersection - Rn45s - 

 
Table 3.3 Genes Associated with Mechanisms of FA Action in KO Background.
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Differentially Expressed Genes Assoc. With Independent Mechanism of FA 

Action in Lrp6 KO Mice 
0610010K14Rik,1110001J03Rik,1110007C09Rik,1110008J03Rik,1110065P20Rik,1700037C18Rik,1810019J16Rik,2010
001M06Rik,2010320M18Rik,2310003H01Rik,2310011J03Rik,2310045N01Rik,2310067B10Rik,2610305D13Rik,2810428I
15Rik,4930432K21Rik,5730408K05Rik,8430429K09Rik,9130017N09Rik,9430076G02Rik,A230056P14Rik,A430005L14R
ik,A530016L24Rik,AI413582,Aacs,Aamp,Aatk,Abcc10,Abhd16a,Abhd17a,Abhd8,Abtb1,Acaa1a,Acads,Acsf3,Acta1,Actn3
,Actr5,Acy1,Adam23,Adc,Adck5,Adprhl2,Adssl1,Aes,Agap2,Ahdc1,Akr1e1,Akr7a5,Aldh16a1,Alkbh2,Anapc13,Ankrd23,An
ks6,Ano8,Ap5z1,Apba2,Apba3,Apbb1,Apc2,Aprt,Arhgef10l,Arl10,Armc6,Arrdc1,Arvcf,Asb2,Asb6,Asic4,Atg2a,Atg4d,Atoh
8,Atp13a2,Atp5g1,Atpbd4,Atxn7l2,Azi1,B3gat3,B930041F14Rik,BC005764,Bai2,Baiap2,Bcam,Bcat2,Bckdha,Bcl7c,Beta-
s,Bola2,Brat1,Btbd2,Cacnb3,Cactin,Capn10,Car11,Car2,Card10,Caskin2,Casr,Cc2d1a,Ccdc106,Ccdc124,Ccdc22,Ccdc6
4b,Ccdc8,Ccdc85c,Ccdc88c,Ccnb1ip1,Ccrl1,Cd14,Cd4,Cdc42ep1,Cdk2ap2,Cdk5rap3,Cep170b,Chkb,Chpf,Chrd,Chtf18,
Cited2,Ckb,Cldn4,Clec2l,Clgn,Clpp,Cntrob,Col18a1,Col2a1,Cope,Coro7,Cox6b2,Crip1,Crip2,Crocc,Csf2ra,Csnk1g2,Csrn
p1,Ctu2,Cuedc2,Cul7,Cul9,Cx3cl1,Cyb561,Cyp26c1,D2Wsu81e,D330041H03Rik,Dak,Dalrd3,Dapk3,Dbp,Dcaf15,Dctn1,D
cxr,Dda1,Ddah2,Ddn,Des,Dhx34,Dhx38,Dnalc4,Doc2g,Dohh,Dos,Dpm3,Dpysl4,Drap1,Dtx2,Dus3l,Dvl2,E030030I06Rik,E
130309D14Rik,E4f1,Ecsit,Edf1,Eef2,Efs,Egln2,Ell2,Emilin1,Eml2,Emp3,Engase,Enho,Eno1,Eno3,Ephb3,Ephb6,Ercc1,Erf
,Esrra,Etfb,Evpl,Exoc3l4,Exosc5,Eya2,Fam129c,Fam131a,Fam173a,Fam181a,Fam195a,Fam195b,Fam69b,Fam83h,Fan
ce,Fasn,Fastk,Fau,Fbf1,Fbxl18,Fbxl6,Fbxo31,Fbxw9,Fcho1,Fdxr,Fes,Fgd2,Fitm1,Fkbp8,Flot1,Flywch2,Foxi2,Frzb,Fsd1,F
tl1,Fzr1,Galk1,Gamt,Gatsl3,Gck,Gcn1l1,Ggt7,Gins2,Gipc1,Gjb3,Gli1,Gm13154,Gm13212,Gm16119,Gm1943,Gm4349,G
mppa,Gnaz,Gnb2,Gnl1,Gpaa1,Gpr137,Gpr162,Gpr179,Gpt,Grcc10,Grrp1,Gstp1,Gstt2,Gtpbp6,Gtse1,Gypa,H60b,Haghl,H
ap1,Hapln3,Hbb-
bh1,Hdac5,Hdgfrp2,Hecw2,Hes5,Hhipl1,Hip1r,Hist1h1c,Hist1h1d,Hist1h2ak,Hist1h2bc,Hist1h2be,Hist1h2bf,Hist1h2bg,Hi
st1h2bh,Hist1h2bj,Hist1h2bk,Hist1h2bl,Hist1h2bm,Hist1h2bn,Hist1h2bp,Hist1h3a,Hist1h3b,Hist1h3c,Hist1h3d,Hist1h3e,H
ist1h3f,Hist1h3g,Hist1h3h,Hist1h3i,Hist1h4a,Hist1h4b,Hist1h4c,Hist1h4d,Hist1h4f,Hist1h4h,Hist1h4i,Hist1h4j,Hist1h4k,His
t1h4n,Hist2h2ac,Hist3h2a,Hist3h2ba,Hist4h4,Hmg20b,Hmgn5,Hmha1,Hook2,Hps1,Hps4,Hspb7,Hspbp1,Hyal2,Hyal3,Ier2
,Igsf9,Igsf9b,Ikzf1,Ints1,Irs2,Irx1,Isg15,Isoc2a,Isyna1,Itga3,Jag2,Josd2,Jph2,Jrk,Kank3,Kazald1,Kcnj14,Kdm4b,Kel,Kif2a,
Kifc5b,Klhl17,Klhl36,Klk8,Krt19,Lamb2,Lars2,Lemd2,Leprel2,Lipe,Llgl1,Llgl2,Lmna,Lmnb2,Lmtk3,Lpcat2,Lrfn4,Lrp6,Lrrc1
6b,Lrrc29,Lrrc45,Lrrc4b,Lrrc56,Lzts2,Man2c1,Map1lc3a,Map2k2,Map3k10,Map3k11,Map3k14,Map4k2,Mapk13,Mapk8ip1
,March9,Mbd3,Mblac1,Mcf2l,Mcrs1,Mdfi,Mdk,Med16,Meis3,Metrn,Mettl21d,Mettl22,Mfap2,Mgmt,Mib2,Mier2,Miip,Mipol1,
Mir5109,Mlycd,Mocs1,Mpnd,Mpv17l2,Mroh1,Mrpl12,Msto1,Mus81,Mvd,Mvk,Mybpc3,Myh14,Myh7,Myh7b,Myl1,Myl3,Myl4
,Myl6,Myl7,Myo18b,Myo7a,N4bp3,Naa10,Nacad,Nacc2,Naglu,Nat6,Nat8l,Nat9,Ncdn,Ncln,Ndufa11,Ndufb7,Ndufs7,Ndufs
8,Neurl2,Nfatc4,Nkiras2,Nkx6-
2,Nle1,Nol12,Nosip,Nphp4,Nppa,Nppb,Nr1h2,Nrip3,Nt5c,Nthl1,Nudc,Nudt14,Nudt22,Nudt8,Nxpe2,Nxph3,Ogdhl,Oxsm,P4
htm,Pacsin3,Pafah1b3,Palm,Pcbp4,Pcif1,Pdgfa,Pex14,Pex16,Pex6,Pfkl,Pgls,Phb,Phf15,Phldb1,Pick1,Pih1d1,Pik3cd,Pkd
cc,Pkhd1l1,Pkmyt1,Pkn1,Pkn3,Pla2g6,Plcd1,Pld3,Plec,Plekhm2,Plekho1,Pmm1,Pnkp,Pofut2,Pold2,Poll,Polr2e,Polr2f,Pol
r2i,Pop7,Ppan,Ppdpf,Ppp1r14b,Ppp1r16a,Ppp1r37,Prdx5,Prelp,Prex1,Prrg2,Prrx2,Psmb10,Psmd3,Psmg3,Ptov1,Ptprs,Pu
s1,Qtrt1,Rabac1,Rabep2,Rac3,Rai1,Ralgds,Rapgef3,Rara,Rarres1,Rcn3,Rcor2,Rexo1,Rfx1,Rhag,Rhbdd3,Rhbdf1,Rhpn1
,Rims3,Ring1,Rmrp,Rn45s,Rnaseh2c,Rnf126,Rnf220,Rnf31,Rnu12,Rpl11,Rpl27,Rpl28,Rpl34,Rpl35,Rpl36,Rpl38,Rpl8,Rp
ph1,Rprl3,Rps15,Rps15a-ps4,Rps15a-
ps6,Rps16,Rps19,Rps26,Rps3a1,Rps7,Rps9,Rpusd1,Rrp9,Rtbdn,Rtkn,Ruvbl2,Rxrb,Saa1,Sars2,Sbf1,Sbno2,Scarf1,Scarf
2,Scoc,Scrib,Scrn2,Sema5b,Setd4,Sgsm2,Sh3gl1,Sh3glb2,Shank1,Shd,Sirt6,Sirt7,Skiv2l,Slc12a9,Slc25a10,Slc25a22,Slc
25a38,Slc25a42,Slc26a10,Slc2a8,Slc30a10,Slc35c2,Slc35e4,Slc39a3,Slc39a8,Slc4a3,Slc9a3r2,Snora17,Snora78,Sox3,S
phk2,Spint2,Sppl2b,Spry1,Spsb2,Spta1,Src,Srf,Ssbp4,Ssh3,Sssca1,Stk19,Stoml1,Sugp1,Svopl,Syne4,Sypl,Syt3,Tab1,Ta
da3,Taf1c,Taldo1,Tarbp2,Tbc1d10a,Tbx1,Tcf3,Telo2,Tesc,Tesk1,Tff3,Tfip11,Thap7,Thop1,Timm13,Tjp3,Tk1,Tmem121,T
mem132a,Tmem134,Tmem143,Tmem160,Tmem205,Tmem219,Tmem56,Tmtc3,Tnks1bp1,Tnni1,Tnni3,Tomm40,Tor2a,T
pgs1,Tppp3,Tpt1,Trabd,Traf4,Trappc9,Trim46,Triobp,Trmt61a,Trp53i11,Trp53i13,Trpv2,Tsen34,Tsen54,Tssc4,Tssk6,Twf
2,Txnip,U2af1l4,Ubb,Ubtd1,Ulk4,Unc45a,Unk,Upk3bl,Uqcr10,Uqcr11,Usp19,Vill,Vps18,Wbp1,Wdr18,Wdr24,Wdr25,Wdr3
4,Wdr6,Wdr65,Wdr86,Wdr90,Wdtc1,Wnt4,Wtip,Xab2,Xk,Ydjc,Zbtb12,Zbtb17,Zbtb48,Zdhhc1,Zfand2b,Zfp13,Zfp219,Zfp41
4,Zfp459,Zfp523,Zfp574,Zfp651,Zfp653,Zfp668,Zfp688,Zfp707,Zfp710,Zfp97,Zfpl1,Zfyve28,Znhit2,Zscan10,Zscan25,Zswi
m4, 
Table 3.4 Differentially Expressed Genes Associated with Independent Mechanism of FA 
Action in Lrp6 KO Background.  Independent genes were defined as those with q<0.05, 
abs(LFC)>0.5 under the 10ppm/2ppm contrast.
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3.5. Persistent Biomarkers of FA and Lrp6 Mutation Status 
 
 As previously discussed, “neural tube defects” is an umbrella term that 

groups many distinct syndromes under a single heading, ranging from inevitably 

lethal conditions such as exencephaly, to others that may have no noticeable 

impact on health and can easily go undiagnosed, such as in spina bifida 

occuluta, which as the name implies is often hidden. Nevertheless, if biomarkers 

can be found that correlate with NTD status, both parents and caregivers can be 

better prepared for the full range of outcomes, and be given the opportunity to 

intervene at an earlier stage. Proteomic analysis has been able to identify ADP-

ribosylation factor 1, a protein similar to cold agglutinin FS-1 antibody light-chain, 

vitamin K3 protein  and another unknown protein as biomarkers of NTD status in 

expecting mothers, with a 90 

 Ongoing advances in biotechnology are making it possible to extract and 

sequence fetal genetic material from circulating blood (Kitzman et al., 2012). 

Utilization of handheld DNA sequencers, such as the MinION from Oxford 

Nanopore (Jain et al., 2016), which are already capable of detecting base 

modifications, may soon allow for the assaying of fetal methylation levels on an 

ongoing basis. The combination of biomarkers with such a monitoring system 

could be a powerful tool, and the ability for such assessments to be done non-

invasively could lower costs and improve quality of care. 
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3.6. P2 eRRBS Dataset 
 
 As shown in Table 3.1, whole blood from P2 mice on both mutant 

backgrounds was collected, with mothers fed control (2ppm) or elevated (10ppm) 

amounts of FA. Extraction and data analysis was performed as previously 

described. Samples were collected and sequenced in three groups. Lack of batch 

of effects was confirmed using visual inspection of clustering and PCA analysis.  

 
3.7 Filtering of CpG’s Associated with Tissue/Developmental Differences 
 
 It is well known that DNA methylation has tissue–specific patterning (Chen 

et al., 2016; Lehmann-Werman et al., 2016; Lokk et al., 2014). In addition, it has 

been shown that methylation data can be used to accurately estimate the age of 

a sample- though it can also be used to estimate a separate quantity, “epigenetic 

age” that may match or diverge from chronological age. Such differences 

complicate direct comparison between the methylation data in the embryonic and 

P2 samples. 

To control for these differences, cross-timepoint cohorts were constructed 

for each background, with all Lrp6 mutants removed. These control cohorts used 

only wildtype mice on the control diet, while controlling for gender and gender-

specific tissue differences by running multiDiff with the following model: 

Tissue (P2/E9.5) + Gender (Male/Female) + Tissue:Gender 
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 After filtering both sites associated with primary and gender specific tissue 

differences, 87% (546,389 sites) of embryonic sites were retained on the Cd 

background, while 90% (559,937) of sites were retained on the KO background 

 

3.8 Analysis of Persistent Methylation Across Time Points 

 After following the filtering procedure previously described, the remaining 

differential sites at each timepoint were intersected. The results can be seen in 

Table 3.4. Larger numbers of sites were found to be associated with persistent 

effects of FA diet than either mutation. After annotation to the nearest gene, no 

genes with more than a single persistent DMC were found in the Cd background 

for either effect. In the KO background, Rn45s and Fktn were persistently 

associated with  FA. The Fktn gene encodes a type II transmembrane protein 

that is targeted to the Golgi apparatus through an N-terminal signal 

anchor(Esapa et al., 2002), and has been linked to lissencephaly( Deak et al., 

2008; Puckett et al., 2009), a condition where parts of the brain appear smooth. 

 Rn45s was previously discussed as the sole gene showing differential 

expression and differential promoter methylation associated with the independent 

mechanism of FA action. Neither Fktn nor Rn45s show significant changes in 

expression related to diet  (q-values:0.78, 0.40, LFC: 0.208254, -0.0987), or diet-

genotype interactions at E9.5.  

 

3.9  Pathway Analysis of Persistently Methylated Genes 



	
63	

 In the Cd background, persistent methylation associated with dietary FA 

was significantly enriched for reproductively and sex associated developmental 

pathways (Figure 3.5). We speculate this may be a partial artifact of the gender 

imbalances in the cohort, or potentially be linked to the known elevation of NTDs 

in female mice. On the other hand, the genes associated with the Cd mutation 

are only enriched for dendritic function.  (fdr=0.03), This is quite intriguing, and 

may provide  basis for hope of a novel biomarker if it can be found to match 

human data. The associated genes with dendritic function are Max, Espn, Ephb1, 

Anxa3, Cabp1, Kif21a. 
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Figure 3.5 Pathway Analysis of Genes with Persistent DMCs Assoc. with FA. On Cd 
Background.  Persistent genes were defined by annotating the intersection of differential sites 
associated with FA at E9.5 and P2. Visualization and enrichment analysis performed using 
STRING. 
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Figure 3.6 Pathway Analysis of Genes with Persistent DMCs Assoc. with Cd Mutation 
On Cd Background.  Persistent genes were defined by annotating the intersection of differential 
sites associated with Cd mutation at E9.5 and P2. Visualization and enrichment analysis 
performed using STRING. 
 
 

 

 

 

Figure 3.7 Pathway Analysis of Genes with Persistent DMCs Assoc. with Lrp6 KO. 
Persistent genes were defined by annotating the intersection of differential sites associated with 
Lrp6 KO mutation  (+/-) at E9.5 and P2. Visualization and enrichment analysis performed using 
STRING.



	
66	

 

Figure 3.8 Pathway Analysis of Genes with Persistent DMCs Assoc. with FA. On KO 
Background Persistent genes were defined by annotating the intersection of differential sites 
associated with FA mutation at E9.5 and P2. Visualization and enrichment analysis performed 
using STRING.
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3.10 Discussion 
 
 Most exciting was the identification of Folh1 as upregulated by a 

combinatorial mechanism, along with the associations with nervous system 

development and dendrite development noted with FA on the KO background 

and the Cd mutation on the crooked tail background. Intriguingly, they’re both 

found interventions on two different backgrounds that cause negative 

consequences. This may indicate that by causing excess demethylation in 

neuronal development genes, normal function can best not be distrupted. Further 

oxidatizes states of methylation, in particular 5faC, can be used to check active 

demethylation. 

The integrative analysis of methylation and expression provides little 

evidence for the additive model of FA action in embryonic mice, in which either 

the Crooked tail or null mutation generated epigenetic lesions that are then acted 

upon by FA. Rather, FA most probably acts in either an independent or 

combinatorial manner, with more differentially expressed genes supporting the 

independent model in the KO background, and the combinatorial model in the Cd 

background. The lack of additive genes is driven not only by the low numbers of 

sites found linked to the mutation, but also the genes associated with either 

mutation. 

Of the observed genes linked to Wnt signaling, more were observed to be 

associated with RhoA compared to beta-catenin, pointing towards a greater role 

for the non-canonical Wnt PCP pathway. 
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Rn45s warrants further study in the null background, as it was the only 

gene that showed differential methylation and expression correlated with FA on 

the null background, with the differential methylation showing persistence over 

developmental time.  
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Cd Background	 10ppm/2ppm Lrp6Cd/+/Wt 

# Persistent DMCs 86 43 

Genes with DMCs 

Rara,Adra2a,Sdk1,Sgsh,Dcaf15,Tspan9,Gnb4,
Cacna1e,Hmgcr,Zfp324,Bahcc1,Ggn,Ccne1,Tu
nar,Got1,Nmnat2,Hint2,Wnt2b,Sgms1,Nav1,Klf
6,Smarcal1,Itpr3,Nova1,Rora,Sycn,Scn5a,Moc
s1,Tspan11,Kcnmb2,Pole2,Olfr348,Dbh,Hmga
2,Adm,Fgf7,Irx1,B3glct,Dnase1,Ccdc136,Arhge
f28,Gm765,Erf,Fendrr,Hnf1b,Gabbr2,Gm11468
,Isx,Hivep3,Ctdspl,Gm14207,Tox2,Npy,Arid5a,
Cnnm2,Celsr1,Gm38426,Fgf8,Chrna9,Slc25a1,
Irx4,Tmem41b,Ctsb,Kifc3,Mir701,Gjb3,Rhov,N
qo2,Gnas,Fhit,Crip2,Ndufb9,Nhlrc1,Tbc1d20,La
mp2,Fosb,Idh2,Scaf1,Tgif2,Dpcd,Fbxl20,49334

11E08Rik,Ank1, 

Pigm,P2ry6,Lnpk1,Fry,Zfp804a,Pn
oc,1700095B10Rik,1700052K11Ri
k,Cbfa2t3,Spry1,Espn,Card10,Noc
3l,Kank1,Anxa3,Gm436,Zfp777,An
p32a,1700013G24Rik,Cabp1,Rpl3

4-
ps1,Ctdspl,Dut,Wscd2,Max,Acaa1
a,Kif21a,Usp46,2900026A02Rik,Ct
nnbl1,Fam64a,Igsf11,Ephb1,Agxt,
2610028E06Rik,Tmem104,Evc2,4
930465M20Rik,Rasl10a,Gm14204,
3200001D21Rik,1700092K14Rik,1

700123O21Rik, 
Genes with 

>2 DMCs - - 

 
 

KO Background	 10ppm/2ppm Lrp6+/-/Wt 

# Persistent DMCs 208 25 

Genes with 
Persistent DMCs 

Smad6,Casz1,Slc6a1,Mir290a,Tnfrsf11a,Foxn3
,Gm5069,Lnpk1,Atg5,Phldb1,Clcn2,Fry,Gpbp1,
Gm53,Hint2,Zswim7,Fasn,Sgms1,Nav1,Nkx6-
3,Gapdh,Slc22a19,Fanci,Oxsm,Hdc,Nova1,Mir
499,Uck2,Ggnbp1,S1pr4,Gm436,Mpnd,Zap70,
Ucp1,Lta4h,Txndc9,Rbks,Ago2,Bhmt2,Adrm1,
Dnase1,Nudt6,Msl3,Zfp444,Gm6602,Fendrr,Rp

l34-
ps1,Kbtbd11,Hnf1b,Pdcd4,Gm11468,Ctdspl,Np
as3,Vps53,Dut,Wscd2,Trex2,Acaa1a,Selk,Fam
69b,Nckap5,Fgf8,Alad,Anln,Tyk2,Ulk4,Stk25,S
ec63,Igsf11,Phb,Rtkn,Hapln1,Ephb1,Ndufb9,N
hlrc1,Noct,Dgkh,Idh2,Bdnf,4930465M20Rik,Fb
xl20,Six3os1,Tor2a,1700092K14Rik,Ank1,Ifnlr1

, 

Tmem209,Hspg2,Col16a1,Rn45s,
Top2b,Sall1,Nme6,4930415O20Ri
k,Irx5,Fktn,Emp1,Mkl2,Adam30,Tcf
7l1,Adgrg1,Slc15a1,Slc39a11,Uqc

c2,Col24a1,Kif26a,Rnf181, 

Genes with 
>2 DMCs 

Rn45s,Fktn 

Ddost,Hspg2,Tpi1,Cox7c,Rn45s,P
hf8,Ubl4a,Suv39h1,Pole2,Sbk1,Ar
hgef28,Fktn,Rps6ka3,Lmtk3,Gnl3l,
Nucb2,Rai2,1700030C10Rik,Bex6 

 
 
Table 3.4 Persistent Differential Methylation Associated with Lrp6 Mutations and FA. 
Persistent DMCs were defined by he intersection of differential sites associated with either FA 
diet or Lrp6 mutation status at E9.5 and P2. Genes were defined by annotation  of persistent 
DMC to the closest gene. 
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3.11 Materials and Methods 
 

Animals 

All procedures involving animals were carried out in accordance with the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals 

and were approved by the Institutional Animal Care and Use Committee at Weill 

Cornell Medicine. Mice were housed in climate-controlled Thoren units with a 12 

h light–dark cycle. 

Two strains of mice were used: 

Lrp6 K/O: 

Gene-trap mice in which the Lrp6 locus was inactivated have been 

backcrossed more than 12 generations to the C3H/HeJ background. 

Lrp6Cd:  

Crooked tail (Cd) mice bear a gain-of-function naturally occurring mutation 

in Lrp6, a co-receptor for canonical WNT signaling. 

 

Colony maintenance, embryo harvest and whole blood collection: 

Mating pairs of Lrp6+/−  and  Lrp6Cd+/−  mice were maintained on a defined 

diet containing  2ppm or 10ppm FA (Research Diets Inc., New Brunswick, NJ, 

USA) for two generations prior to tissue or embryo collection. Embryos from 

timed pregnant females were harvested at E9.5 and scored based on the somites 

count. For Lrp6+/- 18-21 somites and for Lrp6Cd/+ 18-20 somites, gDNA and RNA 

was extracted from E9.5 whole embryos simultaneously, (AllPrep DNA/RNA 
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Micro Kit Cat.No 80284 Qiagen). Whole blood from P2 pups was collected by 

cardiac puncture. gDNA from whole blood was extracted , (QIAamp DNA Blood 

Mini Kit Cat. No.  51104 Qiagen) 

 

Genotyping and sexing 

Genotyping was done by PCR. Sex-determination of the animals was 

done by PCR using specific primers for Y chromosome. RNA-seq was used to 

confirm presence of mutation in Cd embryos. 

  

Modeling Interactions  

The following models were applied to both the ERRBS and RNA data, to 

calculate differential methylation and differential expression respectively: 

Diet (10ppm/2ppm)  + Genotype (Het/Wt)+ Sex (M/F)  

+ Diet:Sex  + Genotype:Sex + Diet:Sex 

The first three terms capture primary effects (with the relevant contrast noted in 

parenthesis), while the second three capture potential interactions between them. 

Next the analyses were performed with gender non-corrected, using the following 

model: 

Diet (10ppm/2ppm)  + Genotype (Het/Wt) 

+ Diet:Genotype  (Het:10ppm) 

In the final analysis sites and genes associated with sex, sex-diet, or sex-

genotype were removed. 

  

RNA-seq 
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Samples were aligned and count matrices generated using the Mason lab’s in 

house processing pipeline, r-make. Outlier samples were detected and removed 

in exploratory analysis using PCA and correlation analysis. Differential 

expression analysis was done using DESeq2, with each background being 

analyzed separately.   

 

Gender Control 

 An effort was made to harvest both male and female samples. This served 

two purposes. First, by examining the output of Male/Female contrasts, we were 

able to validate multiDiff ability to detect expected effects. Second, it allowed us 

to check for interactions of mutation status and maternal diet with gender. For 

final maps of differential methylation, we removed sites that were affected by sex, 

sex-genotype, or sex-diet interactions. 
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CHAPTER 4 

 
Challenges in Genetic and Epigenetic Analyses Related to Human NTDs 

 
 

4.1 Introduction 

 The study of model systems functions first as an area of gaining basic 

biological understanding, and ultimately of providing actionable information for 

human decisions-making, in a medical, research, economic, or ecological 

context. In our examination of the biology of folic acid (FA) in Lrp6 mouse 

mutants, our goal is ultimately to gain such insight into the nature of FA and NTD 

biology in humans. Ongoing national efforts to register NTD affected families and 

recruit them for study has resulted in an expanding pool of genetic and epigenetic 

data for researchers to analyze.  

As discussed above, the study of NTD-FA interactions within a single 

gene, within two of the over 400 mouse models (Harris and Juriloff, 2007, 2010), 

must control for factors such as sex, genetic background, and interactions. The 

complex nature of human NTDs makes it all the more vital that care is taken to 

assess and control for confounders when performing study design, analysis, and 

interpretation.. Below we represent examples that illustrate these challenges with 

respect to sex, population ancestry, and genome interpretation. 

 

4.2 Sex Differences in NTD Incidence and DNA Methylation  
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Human and mouse females are known to be at higher risk for NTDs, 

though it is speculated that it may reflect ‘epigenetic drag’ from the X 

chromosome in which the recruitment of methyl groups for the maintenance of 

imprinting results in hypomethylation in other areas of the genome (Juriloff and 

Harris, 2012). In mice, the female-to-male ratio amongst exencephalic mice 

models where known is approximately 2:1, including in the Cd strain.  

Although we currently we do not have sufficient data to confidently call 

sites associated with gender differences, we did use the result of such calls to 

filter our analysis. As can be seen in the figure below, both mutations show the 

highest number of sites being affected by Gender:Genotype interactions., with 

the largest number of sites being observed with CdHet:Male. Removing the sex 

associated sites from the analyses presented in the previous chapter, although 

necessary, may have removed some of the most dynamic sites.  When unsure 

whether biological sex is a relevant factor in an ongoing study, one approach is to 

investigate what occurs when sex and it’s interactions are included as covariates. 
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Figure 4.1 DMCs Called for Use in Sex Filtering. In order to remove sites 
associated with gender, DMCs were called on both Lrp6 mutant backgrounds, 
including sex (Male/Female), and sex-diet (Male:10ppm) and sex-mutation 
(LHet:Male, CdHet:Male) interactions (q-value<0.01, MMD>25). In both 
backgrounds, these terms were associated with amongst the highest numbers of 
DMCs.
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4.3 Importance of Genetic Ancestry in Methylation and Whole Genome 

Study of Human Data 

Although the primary topic here has been on methylation, the study of 

whole genomes sequence (WGS) data in NTDs is starting to bear preliminary 

results (Lei et al., 2015). A difficult problem (discussed below) has been the 

importance of controlling for ancestry, as variants may display different 

frequencies within different subpopulations, altering the results of analyses 

(Polimanti et al., 2015). Similarly, human methylation data has been discovered 

to mirror ancestry information (Rahmani et al., 2017; Sánchez-Martín et al., 

2015). This has the potential to complicate the data collection and interpretation 

of methylation studies in human NTDs, which are starting to be released (Price et 

al., 2016; Rochtus et al., 2015; Stolk et al., 2013) . Below is a section of currently 

unpublished work, reporting a portion of the results of a WGS analyses in Spina 

Bifida patients, that illustrates the challenges of ancestry within that context.. 

The sample cohort encompassed 283 human subjects including 125 NTD 

cases and 158 healthy unrelated controls, derived from Caucasian, US, and 

Middle Eastern backgrounds. Additional control genomes derive from publically 

available datasets from the 1000 Genomes Project (containing genomes from 

over 2,500 individual ), the NHBLI Exome Project (containing over 6,500 exomes) 

and the Exome Aggregation Consortium (ExAC) (Karczewski et al., 2017), 

(containing over 60,500 exomes). Stringent criteria were used to find 

polymorphisms that are likely to alter gene function or regulation, looking for SB 
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case-enrichment of these changes in coding regions and intergenic regions that 

are associated with enhancers and gene regulatory sites. We identified novel 

genes and gene families that are likely to contribute toward NTD risk.  

GPR161 encodes a ciliary G-protein coupled receptor recently shown to 

be a key regulator of sonic hedgehog signaling, and specifically promotes the 

processing of the GLI3 ligand to Gli3 repressor (Gli3R) (Mukhopadhyay et al., 

2013). Mouse embryos that are homozygous knockouts of Gpr161 die in mid 

gestation and display extensive NTDs. We found an insertion in GPR161 that 

caused a frame shift in the transcript (Q-value = 4 x 10–4 using a permutation 

test, and 3 x 10–3 using SKAT). Confirmed using Sanger sequencing, this 

mutation was identified in seven SB patients from the US sample collection, all of 

which were heterozygous for the detected insertion. 

The discovery of the same mutation in seven cases, and its absence in 

the controls, was highly unusual and prompted us to examine whether these 

individuals might be related despite having been randomly collected.  o 

determine if there was any direct or cryptic relatedness among these individuals 

and the other members of the patient cohort, we used several tools including 

BEAGLE (IBD) coupled with PRIMUS (relatedness).  BEAGLE (Browning and 

Browning, 2011) identifies regions of the region that are identical by descent 

between pairs on individuals using a HMM based-method, while PRIMUS 

(Staples et al., 2014)identifies individuals who are up to third-degree relatives by 

evaluating possible pedigrees. 
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We checked the imputed haplotypes in the GPR161 locus using GATK to 

re-call the genomes both locally around GPR161, and globally at sites in the 

1000 genomes project. The local variants were converted using PLINK (version 

1.90b3w) to PLINK format, and Haploviewer (version 4.1) was used to calculate 

and visualize haplotype blocks.   

Analysis of all SNPs across the genome using PLINK confirmed that these 

seven individuals were not first order relatives, since they all showed p_HAT 

identity by state (IBS) scores in the expected range for random individuals44, 

different haplotypes, and were estimated to not be close relatives. Similarly, the 

local analysis using PLINK identified 314 SNPs in a 60KB window around 

GPR161 in the seven cases, and they all showed distinct haplotypes for each 

individual. We next examined the distribution of IBD lengths in the region 

surrounding GPR161, comparing the mean values for the cases with those of the 

single Puerto Rican (PUR) trio available in the 1K data set, two quartets from 

NTD-affected families with NTD, and PUR plus three additional populations from 

the 1K database (Figure 4.2.1.). Although cryptic relatedness cannot be 

completely ruled out, they are no closer than fourth degree relatives (based on 

BEAGLE plus PRIMUS results). Thus, in the aggregate, a founder effect is 

suggested for this population subset. 

GPR161 intolerance of variants in healthy individuals supports its 

pathogenicity in NTD. Our genomic data are the strongest clinical genetic 

connection yet between NTD and this G-protein coupled receptor, whose 
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localization to the primary cilium is regulated by TULP3-ITF-A, where it functions 

in a positive feedback network to activate the SHH pathway in a cAMP-

dependent manner (Hwang and Mukhopadhyay, 2015). Recently, retinoic acid 

signaling and the canonical Wnt pathways were identified as additional 

downstream targets of GPR161, through transcription factor Cdx1, in the genesis 

of NTDs in the mouse (Li et al., 2015).  

Figure 4.2. Inferences of ancestry and familial relatedness from genomic data.. Distribution 
of the length of IBD regions compared between the 7 cases with GPR161 mutation and 1000 
Genomes populations (1KG). IBD was estimated using BEAGLE. Error bars indicate SE of the 

●

●

●

●

●

●

●

●

PUR_Trio

6C_Family

2C_Family

GPR161_Inds

CEU

CHB

YRI

PUR

PUR Trio

NTD Family

GPR161

1KG

0 500,000 1,000,000 1,500,000 2,000,000 2,500,000
Length_IBD

Po
p



	
80	

mean (not shown for PUR Trio as the number is small). The mean length of IBD of the 7 
cases was well outside of the range of first degree relatives (PUR Trio and NTD Families) and 
was comparable to the means of the 1KG. Population Abbreviations: PUR-Puerto Ricans 
from Puerto Rico, YRI-Yoruba in Ibadan, Nigeria, CHB-Han Chinese in Beijing, China, CEU-
Utah Residents (CEPH) with Northern and Western Ancestry. 2C and 6C are quartets of families 
with NTD, used to compare relatedness here, but were not included in the cohort of 125 cases or 
158 controls. 
 
4.4.4. From Validating Variants to Annotations 

The preceding analysis illustrates in the necessity of thinking about 

ancestry and population stratification from the beginning of performing large 

scale WGS studies. To validate the finding, ancestry, relatedness and inferred 

location had to be computed, sometimes with multiple tools and compared. Part 

of the difficulty was not having direct access to all the patients to attempt to 

verify. However, self report of ancestry may not be reliable, especially in areas 

with highly admixed populations (Burnett et al., 2006; Lins et al., 2011), such as 

in the U.S. or Brazil. Another difficulty, common in bioinformatics, is that the 

relevant software and statistical tools may be novel, and thus the output difficult 

to interpret or subtle analytical mistakes easily made. Expert consultation can 

make a significant difference in ensuring accuracy. 

The final section of this chapter shows the result of comparing different 

variant annotation services. This is an area that has seen continual growth and 

innovation, however there is still a great deal unknown about the genome. 

Following the discussion of ancestry, interpreting a variant cannot be done 

without knowing what population it’s being studied in, hence if a service has 

difficulty assigning the input ancestry, potential skepticism in their remaining 

results may be warranted. 



	
81	

4.5 Comparison of Genomic Annotation Services 

 The age of next-generation sequencing has brought with large amounts of 

ever-cheaper data, whose rate of growth continues to accelerate, even as the 

cost of generating it continues to fall. Although the  $1000 genome has been 

announced, the process of annotating and analyzing a genome to find clinically 

relevant variants presents a much more difficult task, and often dominates the 

cost of clinical genomics (Mardis, 2010). This demand for genomic annotation 

has lead to the creation of several commercial services for this purpose. We 

compared the output of three such services: Ingenuity’s Variant Analysis Service, 

GenomeQuest’s GQ-IP, and Omica’s Opal. All three offer the ability to annotate 

and filter variants in order to detect ones that may be deleterious. Using 

comparable filtering processes (see Table 5.1), we generated lists of genes with 

potentially deleterious variants from all three services for twelve (12) sample 

genomes collected from several ongoing studies in our lab. Omicia also offered 

the ability to perform a Variant Annotation, Analysis and Search Tool (VAAST)  

(Yandell et al., 2011) Solo analysis.  The VAAST analyses were used as a 

separate set for comparison. We then submitted these genes to the National 

Institute of Allergy and Infectious Diseases’s  (NIAID’s) Database for Annotation, 

Visualization, and Integrated, Discovery  (DAVID)  (Dennis et al., 2003) functional 

annotation clustering tool, using its default setting (see Methods), and compared 

the resulting lists of annotations.  
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4.5.1 Results 

 The results of comparing the genes identified from each service are shown 

in Table 4.3. The most immediate striking feature is the lack of genes with 

consensus between all three services, even in the less stringent case where the 

Omicia VAAST analysis was not used. Also note the large among of variance in 

the number of genes returned between each service, with GenomeQuest 

consistently returning over approximately 200 variants, compared to ~20 for 

GenomeQuest. Using the additional VAAST analysis offered by Omicia, only two 

individuals (out of 12, 16.6%) had overlap between all three filtered lists, 

consisting of a single gene in both cases. 

The initial comparison of the DAVID annotations, shown in Table 5.4, were 

more promising, with 58% (7/12) of the samples having some consensus 

annotations between all three services in the VAAST comparison, 92% (11/12) in 

the non-VAAST comparison. However, inspection immediately showed that this 

approach has limited clinical utility, due to the lack of specificity of many of these 

consensus annotations, such as the gene ontology (GO) terms “olfaction” and 

“membrane”.  

We chose to further analyze the similarity of the functional annotation 

clusters output by DAVID, which included enrichment scores for each individual 

annotation. We represented the data as a network, using the annotation clusters 

as nodes, and creating edges consisting of annotation terms shared between 

clusters, with edge weights determined by the cumulative enrichment of all such 
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common terms. We describe this as a network-based comparison of functional 

annotation clusters (NET-COFAC). To assess the robustness of the networks, we 

successively removed edges with higher and higher weights, and measured the 

number of subgraphs generated at each step, and then performed a two-

parameter exponential fit (Figure 4.4). This allowed us to visually assess the 

degree of similarity in the annotation clusters across samples both through the 

underlying curves and by examining the parameter values.  We generated three 

benchmarks sets- a negative control with random lists, a positive control with 

identical lists, and another negative control in which intra-individual gene lists 

were compared by permuting them between samples. Plotting these the NET-

COFAC output parameters for these benchmark, we were able to visually identify 

regions in the parameter space, which corresponded to each individual control 

group. Plotting the actual data for the VAAST and non-VAAST comparisons 

(Figure 4.5), we visually found that their NET-COFAC parameters were fairly 

similar to the intra-sample control, and thus while generally distinguishable from 

comparing random lists, ultimately did not carry much signal. 

As a positive control, we added ten (10) lines to the NA12878 vcf, 

introducing homozygous mutations known to cause common conditions, and 

submitted the file to both the Omicia and Ingenuity services. The list of genes and 

the RefSeq IDs of the introduced variants are given in Table 5(a). The result of 

running this file through the analysis pipeline used for the other files is shown in 

Table 5.5(b). For each service 30% (3/10) of the introduced variants survived the 
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filtering process, with a single gene (HEXA) overlapping. The remaining five 

variants were verified to be in the uploaded data, but not in the final filtered 

variant list. 

 

4.5.2 Genome Annotation Discussion 

 Fundamental questions about current approaches to genomics, both with 

respect to the reference genome (Rosenfeld et al., 2012) and to our ability to 

accurately call variants using a single chemical or software pipeline have already 

been raised .(O’Rawe et al., 2013) Our results indicate that similar uncertainty 

exists when doing downstream analysis and variant annotation.  Just as O’Rawe 

et al indicated the need to use multiple approaches to achieve a greater accuracy 

in calling variants, based on our results, we recommend caution when using any 

genome annotation service on a single individual to identify deleterious variants. 

If one has access to multiple services, then their output should certainly be 

compared, and potentially aggregated in order to attempt to generate higher 

confidence in diagnosing a variant or pathway as a potential target. Of the 

services studied, Omicia’s Opal was the least costly, offering free variant 

annotation, and $100 per sample for further analysis, and thus offers a cost-

effective way to generate a comparison for another pipeline or service.  

 The source of the variation in the identified genes is unknown. As the 

filtering processes were not completely uniform, the slight differences may have 

been the cause of the divergence. Another possibility is that different services 
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used different quality filters when importing the data, thus creating a non-uniform 

pool of initial variants. An additional possibility would be differences in algorithmic 

implementation, or even perhaps an erroneous implementation in one or more of 

the services. Finally, it is possible that the variance would be reduced in duo or 

trios studies, which all three services also offer. 

NET-COFAC was designed as a way to quantify similarity in functional 

annotation clusters. We note that for an actual case, one could for example, use 

the aggregate enrichment scores of all consensus annotations to provide a 

ranking of terms, thus helping to locate terms or pathways that are potentially 

actionable. The variance in the NET-COFAC fit parameters may indicate that 

some genomes are fundamentally more complex than others – “complexity” 

referring here to our ability to identify the functions that are being affected by 

genetic variants. It is not immediately apparent whether such complexity is 

fundamental in nature, or dependent on the reference genome being utilized. 

Further study is needed to probe this question, as well as to how great the 

variance in genome complexity might be within and across populations.  

 

4.5.3 Methods 

 

4.5.3.1 Samples 

Twelve (12) whole genome VCF files were used from ongoing projects 

within the Mason lab. Seven (7) of the genomes were of individuals with medical 
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condition, and five (5) were controls. Their descriptions were: four (4) affected 

children from a neural tube-defect study from two separate families (2C1, 2C2, 

6C1, 6C2), four (4) control genomes of members of the Mason lab (LPA2, LPB2, 

LPC2, LPF1), three (3) subject from the NIH Office of Rare Disease Research’s 

Undiagnosed Diseases Project (UDP)  (UDP441, UDP3427, UDP4823), and the 

1000 Genomes Hi-Seq Whole Genome file for NA12878. The list of sample 

identifiers and their sex and group are given in Table 4.1.  

 

4.5.3.2 Variant Annotation 

The VCF files were submitted to Ingenuity’s Variant Analysis, Omicia’s 

Opal, and GenomeQuest via their online interfaces. The full list of filters for each 

service is described below, and shown in Table 2. The filtering processes where 

kept as similar as possible, and used criteria for filtering suitable for analyzing an 

individual with no prior information about their condition. Liberal thresholds for 

each parameter were generally used. In this way short lists of potentially 

deleterious variants were generated for each service. These lists were compared 

against each other to find consensus genes.  

A summary of the settings used to filter the VCF files and their associated 

genetic variants follows: Variants with a frequency in the population of more than 

10% were filtered out. Their SIFT (Ng and Henikoff, 2003) score, a method based 

on sorting intolerant from tolerant amino acids to predict damaging substitutions 

based on conservation, was required to be less than 0.1. Note that this is higher 
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than the standard threshold of 0.05 for predicting a damaging mutation, in 

keeping with the liberal approach to the filtering described above. The similar 

PolyPhen [6] score also predicts damaging substitutions, this time based on 

physical considerations. Each service had a filter that screened for protein 

impact, which we applied, again using liberal parameters when possible. At this 

point, we let the procedure diverge to use features unique to each service. For 

Omicia, we required that the variant’s Omicia Score, which is a meta-classifier 

combining SIFT, PolyPhen , MutationTester [8], and phyloP values [9], be above 

75. Omicia, also offered a VAAST (Variant Annotation, Analysis, and Search 

Tool) analysis, which probabilistically identifies damaging genes. Genes that 

were included in the VAAST solo report were used to conduct an additional 

comparison with the other services. For GenomeQuest, we required that the 

variant’s Clinical Significance was not benign, and did not involve drug-response. 

Finally for Ingenuity, we used one of the pre-built filters, which required that the 

observed variant be observed to be or possibly be pathogenic.  

 

4.5.3.3  DAVID Functional Annotation 

The resulting gene lists were submitted to the DAVID  annotation tool for 

functional annotation and clustering, using the default setting. The resulting 

annotation terms were then extracted and compared. The DAVID default settings 

consist of the following annotations:  

Disease: OMIM_DISEASE 
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Functional Categories: COG_ONTOLOGY, SP_OIR_KEYWORDS, 

UP_SEQ_FEATURE 

Gene Ontology: GOTERM_BP_FAT, GOTERM_CC_FAT, 

GOTERM_MF_FAT 

Pathways: BIOCARTA, KEGG_PATHWAY 

Protein Domain: INTERPRO, PIR_SUPERFAMILY, SMART. 

 

4.5.3.4 Network-based Comparison of Functional Annotation Clustering 

(NET-COFAC) 

The DAVID output was used generate the networks for NET-COFAC. 

Analysis was done in Python using the iPython interface and utilizing the 

NetworkX package to programmatically create the graphs and visualize the data. 

 

4.5.3.5 Ethics Approval 

Subject participation was obtained through IRB approved protocols 

reviewed by the state of California and Stanford University, the University of 

Texas at Austin, Weill Cornell Medical College (NY and Qatar) and Hamad 

Medical Corporation. Consent was obtained from members of the Mason lab for 

participation in the study. Research was carried out in compliance with the 

Helsinki Declaration. 
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Sample ID Group 
NA12878 Standard Control 
LP_A2 Mason Lab Member 
LP_B2 Mason Lab Member 
LP_C2 Mason Lab Member 
LP_F1 Mason Lab Member 
2C1 Neural Tube Defect, affected 

child, Family 1 
2C2 Neural Tube Defect, affected 

child, Family 1 
6C1 Neural Tube Defect, affected 

child, Family 2 
6C2 Neural Tube Defect, affected 

child, Family 2 
UDP_441 Undiagnosed Diseases Program 
UDP_3427 Undiagnosed Diseases Program 
UDP_4823 Undiagnosed Diseases Program 

Table 4.1 Sample ID and Information. Whole genome files were used from two different 
ongoing studies: one involving neural tube defects in children, the others from the Office of Rare 
Diseases Research’s Undiagnosed Diseases Program. Five (5) controls were also used: the 
standard control sample, NA12878, and four genomes from members of the Mason lab.   
 

Table 4.2. Filters Used with Genome Analysis Services. Filters were selected to be as similar 
as possible. Analysis was done both with the above settings, and excluding the results of the 
Omicia VAAST Solo report. An explanation of the various acronyms and terms follows: SIFT 
(Sorting Intolerant From Tolerant) scores variants based on their effect on conserved amino acid 
substitutions. PolyPhen (Polymorphism Phenotyping) scores variants based on their effect on 
structure and function of proteins. phyloP (Phylogentic P values) assigns a p-value based on 
base-pair resolution conservation and selection-detection.  The Omicia Score is a meta-classifier 
combining SIFT, PolyPhen, MutationTester, and phyloP values. VAAST (Variant Analysis, 

Omicia Filters GenomeQuest Filters Ingenuity Filters 

Frequency: ≤0.1 Minor Allele Frequency: ≤0.10 

Common Variants: 
≤0.10 in 1000 Genomes, 
Complete Genomics,  
OR ESP genomes 

SIFT score : ≤0.1 SIFT Score: ≤0.1 Not tolerated by SIFT 
Polyphen Prediction:  
Probably damaging 

Polyphen: 
Damaging, Probably Damaging Not tolerated by PolyPhen-2 

Protein Impact: All Predicted Impact: is not SILENT 

Genetic Analysis: 
Inferred gain –or loss-of-
function variants (default 
settings) 

Omicia Score: ≥0.75 
Clinical Significance: 
is not benign, drug-response 

Predicted Deleterious: 
Experimentally observed 
Pathogenic 
OR Possibly Pathogenic 

Present in VAAST Solo 
Report   
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Annotation, and Search Tool) probabilistically predicts damaging genes based on prioritizing 
predicted amino substitutions.  

 
A. 

 

Sample ID GenomeQuest Omicia Ingenuity 
GenomeQuest 

& Ingenuity 
GenomeQuest 

& Omicia 

Ingenuity 
& 

Omicia 

GenomeQuest, 
Ingenuity, 
& Omicia 

2C1 266 10 29 2 3 3 0 
2C2 260 14 35 1 3 4 0 
6C1 323 99 45 3 46 8 1 
6C2 295 108 37 2 47 8 0 

LPA2 262 7 35 1 1 3 0 
LPB2 243 11 30 0 2 3 0 
LPC2 266 12 35 2 5 4 0 
LPF1 295 11 30 1 5 2 0 

NA12878 11 4 7 0 0 0 0 
UDP3427 256 6 23 2 2 1 0 
UDP441 247 22 60 4 6 9 0 

UDP4823 193 11 35 1 1 4 1 
 

B. 
  

Sample 
ID GenomeQuest Omicia Ingenuity 

GenomeQuest 
& Ingenuity 

GenomeQuest 
& Omicia 

Ingenuity 
& Omicia 

GenomeQuest, 
Ingenuity, & 

Omicia 
2C1 266 92 29 2 53 6 1 
2C2 260 117 35 1 49 8 0 
6C1 323 99 45 3 46 8 1 
6C2 295 108 37 2 47 8 0 

LPA2 262 97 35 1 12 2 0 
LPB2 243 97 30 0 51 6 0 
LPC2 266 94 35 2 49 9 1 
LPF1 295 95 30 1 52 6 1 

NA12878 11 101 7 0 0 1 0 
UDP3427 256 94 23 2 56 5 1 
UDP441 247 94 60 4 51 9 0 

UDP4823 193 87 35 1 37 9 1 
 
Table 4.3 Consensus of  Gene Lists from Omicia, GenomeQuest and Ingenuity Genome 
Analysis Services. (A) Comparison including Omicia VAAST Solo Report. (B) Comparison 
excluding Omicia VAAST solo report (grey columns are redundant).  Each column gives the 
number of genes in each group, which are not disjoint; the first three columns contain the total 
number of genes returned from each service after filtering. Note the low and often non-existent 
pair wise overlap, and the negligible census amongst all three lists. It is also of note that the non-
VAAST Omicia and GQ lists share significant overlap, indicating the VAAST analysis is an 
important source of divergence. The two genes that were found with triple consensus were 
HYDIN and CDK3, for samples 2C1 and UDP4823 respectively. 
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A. 

 
 

Sample 
ID GenomeQuest Omicia Ingenuity 

GenomeQuest 
& Ingenuity 

GenomeQuest 
& Omicia 

Ingenuity 
& 

Omicia 

GenomeQuest, 
Ingenuity, & 

Omicia 
2C1 626 0 120 76 0 0 0 
2C2 573 17 79 47 17 17 17 
6C1 678 280 188 133 208 87 83 
6C2 586 313 137 99 223 93 80 

LPA2 818 0 104 67 0 0 0 
LPB2 696 0 59 38 0 0 0 
LPC2 608 11 141 99 9 9 9 
LPF1 714 24 89 66 22 22 22 

NA12878 12 9 0 0 5 0 0 
UDP3427 734 4 60 34 0 0 0 
UDP441 537 51 153 98 41 32 30 

UDP4823 487 12 162 105 11 10 10 
 

 
B. 
  

Sample 
ID GenomeQuest Omicia Ingenuity 

GenomeQuest 
& Ingenuity 

GenomeQuest 
& Omicia 

Ingenuity 
& Omicia 

GenomeQuest, 
Ingenuity, & 

Omicia 
2C1 626 205 120 76 175 56 56 
2C2 573 364 79 47 247 43 42 
6C1 678 280 188 133 208 87 83 
6C2 586 313 137 99 223 93 80 

LPA2 818 257 104 67 216 49 45 
LPB2 696 257 59 38 223 40 38 
LPC2 608 309 141 99 263 100 93 
LPF1 714 252 89 66 208 67 65 

NA12878 12 234 0 0 12 0 0 
UDP3427 734 354 60 34 274 34 33 
UDP441 537 202 153 98 174 62 62 

UDP4823 487 286 162 105 211 82 78 
 
 
Table 4.4. Consensus of DAVID Functional Annotation Clustering Terms. (A) Comparison 
including Omicia VAAST Solo Report. (B) Comparison excluding Omicia VAAST solo report (grey 
columns are redundant). The gene lists generated from the filtering process were passed through 
the DAVID functional annotation clustering tool, and the resulting annotations extracted into a 
single list for each service. Each column gives the number of annotations found in each category. 
Note the high degree of variation in consensus. 
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Table 4.5. Consensus DAVID Annotations for Sample LPC2. LPC2 had by far the most 
agreement in its annotations from each service, even though they did not agree in their filtered 
gene lists. Nonetheless, the resulting consensus list does little do point to a clear clinical focus, 
due to the generality of the terms involved, although this could also be attributed to the sample 
being from a healthy control subject. Annotations were done with the DAVID default setting, which 

GO:0000166~nucleotide binding GO:0043169~cation binding 
GO:0000278~mitotic cell cycle GO:0043228~non-membrane-bounded organelle 
GO:0000279~M phase GO:0043232~intracellular non-membrane-bounded organelle 
GO:0001882~nucleoside binding GO:0043233~organelle lumen 
GO:0001883~purine nucleoside binding GO:0043549~regulation of kinase activity 
GO:0003677~DNA binding GO:0044430~cytoskeletal part 
GO:0004672~protein kinase activity GO:0045449~regulation of transcription 
GO:0005524~ATP binding GO:0046872~metal ion binding 
GO:0005654~nucleoplasm GO:0046914~transition metal ion binding 
GO:0005856~cytoskeleton GO:0051174~regulation of phosphorus metabolic process 
GO:0005886~plasma membrane GO:0051252~regulation of RNA metabolic process 
GO:0006350~transcription GO:0051338~regulation of transferase activity 
GO:0006355~regulation of transcription, DNA-
dependent GO:0070013~intracellular organelle lumen 
GO:0006468~protein amino acid phosphorylation IPR000719:Protein kinase, core 
GO:0006793~phosphorus metabolic process IPR007110:Immunoglobulin-like 
GO:0006796~phosphate metabolic process IPR013783:Immunoglobulin-like fold 
GO:0007049~cell cycle IPR017441:Protein kinase, ATP binding site 
GO:0008270~zinc ion binding Immunoglobulin domain 
GO:0009890~negative regulation of biosynthetic process Transcription 
GO:0009991~response to extracellular stimulus active site:Proton acceptor 
GO:0010033~response to organic substance atp-binding 
GO:0010558~negative regulation of macromolecule 
biosynthetic process binding site:ATP 
GO:0010604~positive regulation of macromolecule 
metabolic process disulfide bond 
GO:0010605~negative regulation of macromolecule 
metabolic process dna-binding 
GO:0016021~integral to membrane glycoprotein 
GO:0016310~phosphorylation glycosylation site:N-linked (GlcNAc...) 
GO:0017076~purine nucleotide binding kinase 
GO:0019220~regulation of phosphate metabolic process membrane 
GO:0022402~cell cycle process metal-binding 
GO:0022403~cell cycle phase nucleotide phosphate-binding region:ATP 
GO:0030554~adenyl nucleotide binding nucleotide-binding 
GO:0031224~intrinsic to membrane nucleus 
GO:0031327~negative regulation of cellular biosynthetic 
process signal 
GO:0031667~response to nutrient levels signal peptide 
GO:0031974~membrane-enclosed lumen topological domain:Cytoplasmic 
GO:0031981~nuclear lumen topological domain:Extracellular 
GO:0032553~ribonucleotide binding transcription regulation 
GO:0032555~purine ribonucleotide binding transferase 
GO:0032559~adenyl ribonucleotide binding transmembrane 
GO:0042127~regulation of cell proliferation transmembrane region 
GO:0042325~regulation of phosphorylation Zinc 
GO:0042995~cell projection zinc-finger 
GO:0043167~ion binding 
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includes GO cellular component, biological process, and molecular function annotations, as well 
as KEGG pathways. 
 
 
 (A) 

Condition Gene Chr 
Position 
(hg19) RefSeq ID Ref Alt 

Cystic Fibrosis CFTR 7 117199646 rs113993960 CTT - 
Hemophilia F8 X 154132090 rs4898352 A T 
Sickle Cell HBB 11 5248232 rs334 T A 
Tay Sachs HEXA 15 72637869 rs121907952 C T 
Lactose Intolerance LCT 2 136564701 rs121908936 A T 
Familial Medit. Fever MEFV 16 3293310 rs28940579 A G 
Color Blindness OPN1MW X 153461425 rs104894916 G A 
α1-antitrypsin deficiency SERPINA1 14 94847262 rs17580 T A 
Spinal Muscular 
Dsytrophy SMN1 5 70241990 rs76871093 C T 
Cancer (p53) TP53 17 7578406 rs28934578 C T 

 
(B) 
Ingenuity Omicia Consensus Missed 
HEXA SERPINA1 HEXA CFTR 
LCT HEXA  F8 
SMN1 TP53  HEXA 
   LCT 
   MEFV 

 
Table 4.6. NA12878 Positive Control. The NA12878 vcf file was used to generate a positive 
control file by adding homozygous variants associated with well-studied genetic diseases and 
conditions. (A). Information on the ten (10) introduced variants, including condition, position, and 
associated gene and RefSeq ID. (B) Genes recovered post-filtering from Ingenuity and Omicia 
variant analysis services. In each, 30% (3/10) of the introduced variants survived the filtering 
process, with one gene (HEXA) overlapping. The other five variants were verified to be present in 
the uploaded files, but not in the filtered variant lists. 
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A)  

B)  
Figure 4.3 Network Analysis of Functional Annotation Clustering (NET-COFAC) (A). 
Schematic diagram of a NET-COFAC analysis. Nodes represent functional annotation clusters 
generated by DAVID, edges represent annotation terms they share, edge weights are given by 
the sum of the enrichment of those terms. In NET-COFAC, edges are removed from the network 
at higher and higher thresholds, and the number of resulting subgraphs is counted, until all nodes 
are isolated. Nodes are colored based on the service they belong to;. (B) Network robustness as 
measured using NET-COFAC. The y-axis shows a normalized metric for the degree the network 
has been separated. The x-axis is the edge weight threshold, edges below that threshold have 
been removed. Plots were fitted to a logistic curve.  
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Figure 4.4. Testing NET-COFAC Validity. The parameters generated for the logistic fit from 
NET-COFAC are plotted above for the actual data, and several generated control sets. Identical 
lists form a manner of ‘positive control’ setting an upper bound on how robust the network could 
be. Random lists serve as a negative control. A final intermediate control was generated by 
permuting the gene lists among the samples, for example, comparng the Omicia list from 
UDP441, the GenomeQuest list from NA12878, and the Ingenuity list from LP_C2. 
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CHAPTER 5 

 

Conclusion 
 
5.1 Overview  
 
 The work done for this thesis had the primary goal of gaining 

understanding of FA’s opposing mechanism of action in Lrp6 Cd and KO 

mutants. The multiDiff package was created to help answer this question, and 

displays superior performance compared to the competing DSS-general method. 

We were able to use it to initially identify thousands of loci associated with the 

Lrp6Cd/+, FA supplementation, and Lrp6Cd/+-FA interactions in P2 Male mice on  

the Cd background. 

We then performed an Integrative analysis of methylation and expression, 

which showed that there was little evidence for an additive model of FA action, in 

which epigenetic lesions generated as a result of Lrp6 dysregulation are acted 

upon. Rather, FA appears to act in either an independent or combinatorial 

manner, with more differentially expressed genes supporting the independent 

model in the Lrp6 KO background, and the combinatorial model in the Cd 

background. We identified Rn45s as a gene of interest in the KO background, 

and Folh1 as a gene of interest in Cd and also noted various differentially 

expressed and methylated genes with known associations with partners of Lrp6  

in  the Cd background, while emphasizing those with known connections to 

mouse NTDs in the KO background.. 
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Ongoing challenges related to WGS and methylation studies in human 

NTDs, were discussed, especially the difficulties of handling sex differences. , 

genetic ancestry, and genomic annotation  

 

5.2 Future Work in Mouse 

 Due to the constraints of the current Lrp6 dataset we are unable to 

robustly estimate and report gender specific effects, though current evidence 

suggests that the number of sites affected by sex and interactions is relatively 

large, and is not confined to chrX. Future data collection may allow us probe this 

question. 

A deeper structural challenge with the current dataset is that the two Lrp6 

mutations are raised on different genetic backgrounds. When analyzed together, 

far more DMCs are detected as being associated with background differences 

than any other effect of interest, which is consonant with the observed variability 

of the effect of mutation according to mouse background (Doetschman, 2009; 

Yoshiki and Moriwaki, 2006). In addition, each additional primary effect adds 

several associated interactions terms. Thus theoretically we would need at 

minimum model with 8 terms if we confined ourselves to binary interactions, to do 

a cross-background analysis together- four primary effects including background, 

and 4 interactions, with therefore 256 possible states. An additional complication 

is that the model would have to be nested, due to the fact that each mutation only 

appears on a single background. It seems possible that that the relatively 



	
99	

aggressive calling of the MMD estimate would be highly oversensitive in such a 

use case. 

 A cleaner approach would be to use a CRISPR-Cas9  (Cong et al., 2013; 

Sander and Joung, 2014)  system to edit the Lrp6 locus, so both mutations could 

be studied in the same background. CRISPR-Cas9 is an extremely powerful 

gene editing tool, which has been used to both knock in and knockout genes in 

mice. If the FA-responsiveness of Cd is in fact background dependent, the 

current dataset would have be able to provide even more value, as it would allow 

us to look for signals associated with background-mutation interactions. In 

general CRISPR has the ability to eventually consolidate the field of NTD mouse 

models into a greatly reduced number of background. The precisely manner in 

which such consolidation is unclear, but ideally of course the more human 

physiology a model animal captures the more useful it becomes.  

To shed more light on FA-Lrp6 interactions, the performance of CRISP or 

knock down experiments on the genes of interest fruitful line of pursuit in the 

Crooked tail background, as there are far fewer targets to consider. Doing such 

experiments will help clarify whether the methylation hypothesis of FA action is 

correct.  

 

5.3 Future Work in Human 

 The fundamental complexities of NTD biology, in particular the large 

known environmental effects, continue to make WGS studies difficult until cohorts 
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are assembled of large enough size for robust and replicable identification of 

candidate genes. However, in tension with this is the relatively low prevalence of 

NTD compared to other major neurological disorders , and the efficacy of folic 

acid as a preventative measure. In addition, on many occasions sequencing data 

is anonymized before being given to an analyst. Although this process may not 

be perfect, it still removes more detailed information about the nature of the 

defect. This hinders more focused analyses that might fruitfully be pursued to 

identify genes associated with specific subclasses of NTDs 

However, cheaper and more mobile sequencing technology may 

eventually help overcome some of these difficulties by being able to consistently 

track intra-individual changes in circulating methylation and metabolites. The 

deployment of scale of such omics technologies may prove to be a revolution. 

Just as Facebook has changed attitudes toward privacy, companies such a 23 

and Me may help make it possible for researchers to access more details 

phenotypic inclination and make such analyses possible.  

 

5.4 Closing Thoughts 

 In the age of so-called “Big Data,” biology is simultaneously on the 

frontline and the back foot, as biological NGS data can be accumulated so 

quickly that it overruns both infrastructure and analysts. The data is often big “in 

the wrong direction,” meaning that the number of variables that can be observed 

within a given sample, ranging from expression (~105), methylation (~107), and  
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SNPs (~107), to name the first on an ever growing list, vastly outnumber the 

samples that can be collected, especially when the features vary temporally. Due 

to the complexities of biological systems, it is impossible to “let the data speak for 

itself”. Thus, even in the age of deep learning there will still be considerable need 

to exercise biological insight in the selection of assays, construction of datasets 

and the creation and fine-tuning of analysis. With the combination of strong 

collaborations throughout the field to increase cohorts to robust levels and 

achieve and maintain best analytic practices, the field of NTD research has the 

ability to make great progress in the 21st century. 
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