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SUMMARY 

Two stagewise classification algorithms are given, one with Type I 

error control and one without. They use a test of additional classifi-

cation accuracy at each stage to decide which groups of variables to add or 

drop, if any. The standardized differenee in estimated Bayes risk between 

two subsets of groups of allocation variables is the test statistic used. 

For a multinormal example, the algorithms are compared by the estimated 

Bayes risks of their ultimately selected subsets. Stepwise and simul-

taneous stepdown classifications do not perform as well as minimal-best-

subset classification. To improve the optimality of a subset seleeted by a 

stagewise classification, it is necessary to append an extra test of 

aecuraey of the seleeted subset versus the full set of groups. 
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1. Introduction 

Evans and Schwager ( 198 9) de scribed two all-possible-subsets 

approaches for selecting subsets of groups of allocation variables. One 

approach used a discrimination criterion, Wilks's lambda, and the other 

used a classification accuracy criterion, the standardized estimate of 

Bayes risk. For each type, two algorithms were given. The first was the 

simultaneous procedure advocated by McKay and Campbell (1982a,b), which 

leads to "adequate" subsets. The second leads to a "minimal-best" subset. 

In the case of discrimination, Rao's test of additional discrimination 

( 197 3, p. 556) is used to compare subsets. Adequate subsets are those that 

give essentially the same discrimination as by all groups. The minimal­

best subset is the smallest of the best (=minimal lambda) subsets of each 

size that retains most of the discrimination from all groups. For classifi­

cation, a test of additional allocation accuracy is used. Adequate subsets 

are those that give essentially the same accuracy as the overall best 

(=minimal standardized estimate of Bayes risk) subset rather than by all 

groups because the latter is not necessarily the best. The minimal-best­

subset classification seeks to select the smallest of the best subsets of 

each size that retains most of the allocation accuracy. 

Grouping of variables was used both to exploit the natural grouping 

that often occurs and to reduce computational burden through having to 

consider only combinations of groups instead of individual variables. 

Nevertheless, grouping includes the special case of one variable per group. 

Natural grouping occurs in remote sensing studies, such as the detailed 

example given in Section 5, where reflectance variables for several 

wavelengths are recorded simultaneously at each date. Once a subset of 

dates has been selected to give a sufficiently accurate and early classifi-
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cation, the selection of a subset of wavelengths could be considered for 

those dates. 

However, even with grouping, all-possible-subsets approaches may still 

become computationally prohibitive. Roughly speaking, the commonly 

accepted limit of about 20 variables in all-possible-subsets discrimi­

nation suggests an upper limit of 20 groups of variables for all-possible-

subsets-of-groups discrimination. But this depends on the number of 

c-lasses and observations as well as the type of computer and whether or not 

it is dedicated. When computing does become prohibitive, stagewise 

selection of groups should be considered, along with the inherently greater 

risk that the chosen subset will be suboptimal. Stagewise discrimination 

methods include the simultaneous stepdown algorithm of Mudholkar and 

Subbaiah (1980) and the extension of the stepwise algorithm of Jennrich 

(1977) to groups. These algorithms use Rao's test at each step to decide 

which group, if any, to add or drop. But the selected subset cannot be 

guaranteed to be the best subset of its size for discrimination, let alone 

for classification. Instead, classification analogues to stagewise 

discrimination methods should be used to ensure that the selected subset of 

groups is as near as possible to optimal for allocation. Such stagewise 

classification algorithms are simply constructed by replacing Rao's test by 

a test of additional allocation accuracy. The simultaneous stepdown 

classification method is equivalent to a backward stepwise classification, 

but with both a prespecified order of testing groups (by increasing 

importance or discriminatory ability) and overall probability of a Type I 

error. It requires a lower individual significance level at each step and 

so should select fewer redundant groups, but the chosen subset depends on 

the testing order. As illustrated later, the stepwise and stepdown 
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classifications give, respectively, about 50% and 80% reductions in CPU 

time compared with all-possible-subsets classification. 

Again, as developed for all-possible-subsets Bayes classification by 

Evans and Schwager (Joe. e~~.), the most appropriate test statistic for 

stagewise classification is the standardized difference in estimated Bayes 

risks between two subsets of groups. They estimated the required Bayes 

risks and their (co)variances from test data in preference to other methods 

for the sake of theoretical and computational simplicity due to the 

independence of test and reference samples. Previous authors had only used 

the unstandardized difference in estimated Bayes risks, thus ignoring their 

(co)variances. Even then, only the forward stepwise algorithm of Habbema 

and Hermans (1977) was generally applicable to two or more multivariate 

normal or non-normal populations with equal or unequal misclassification 

costs and prior probabilities. Their stopping rule eompared the decrease 

in estimated Bayes risk, due to adding a variable, with a subjective 

threshold value. Instead, a statistical test is needed to assess objec-

tively the significance of a decrease. 

Section 2 summarizes the test of additional reduction in estimated 

Bayes risk proposed by Evans and Schwager (Joe. e~~.). Sections 3 and 4 

give the stepwise and simultaneous stepdown classification algorithms that 

use this test statistic both as a selection criterion and in a stopping 

rule. These approaches satisfy the major requirement of McKay and Campbell 

(1982b) that "Stopping rules based on probabilistic arguments would be 

particularly valuable; it is surely desirable to be able to claim that one 

subset provides an allocation error rate that is significantly lower than 

that provided by another," but not their other need that there be a "check 

on the performance of a subset against the performance of the full set of 
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variables." An extra test of additional accuracy could be appended to the 

stagewise algorithms to compare the selected subset with the full set of 

groups. Of course, the full set of groups may not be the subset that gives 

the greatest accuracy, but the latter is unknown throughout the stagewise 

process and thus cannot be used. If the selected subset did give a 

significantly lower accuracy than the full set, then the next larger subset 

would be selected and the check repeated, and so on. When there are 

insufficient reference sampling units to develop a classification rule 

based on all groups of variables, the stagewise selected subset could be 

checked against the best subset of the same (or a given) size. Section 5 

presents a remote sensing example in which the stagewise methods of 

Sections 3 and 4 are implemented and compared by the standardized estimated 

Bayes risk of their terminal subsets. 

2. A Test of Additional Classification Accuracy 

To construct a Bayes classification rule, parameters are estimated 

from rk reference sampling units of each class ke{l,···,K}, with all 

K 
N = 1k=l rk sampling units being sampled independently. Such a rule could 

be based on all G available groups of variables in!~ (!~····,!~)tor on a 

subset !(_v) of v ~ G groups, where Y( ) is the concatenation of Y , · · ·, Y . 
- v -gl -gv 

In the simplest case of multivariate repeated measurements, to be con-

sidered here, each group corresponds to one date or tim~ and is taken to be 

of size D, although all methods given here are directly applicable to the 

general case. To assess a Bayes rule based on an arbitrary subset of 

groups, the estimation and standardization of Bayes risk are based on the 

classification of M = I~=lmk independent test (or holdout) sampling 

units. The test of additional reduction in Bayes risk due to adding a 

second subset of u groups to a first subset of v groups is now given. 
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First, using the first subset of v groups, perform a Bayes classifies-

tion of the M test sampling units. That is, following the simplest and 

most usual rule (e.g., Mardia, Kent, and Bibby 1979, p.308), classify each 

observation Y(v) 
K 

as coming from the class kE:{l,···,K} that minimizes 

E w.Ck.f(y( )/j), 
. 1 J J v J= 

where~. is the prior probability that the observation 
J 

came from class j, Ckj is the cost of misclassification of a sampling unit 

from class j into class k, Ckk = 0 for every k, and f(y(v)/j) is the 

estimated probability density function (p.d.f.) for l(v) from class j. 

Obtain the estimate of Bayes risk, R 
v 

gl, · · ·, gv€{1, · · · G} identify the v groups involved, using 

it 
v 

K K 
2 w. 2 ck.p (klj) , 

j=1 J k=l J v 

where 

(1) 

where p (klj) is the proportion of the m. class j test observations 
v J 

misclassified into class k f. j. Using the K independent test samples, from 

which corresponding estimated misclassification probabilities necessarily 

have zero covariance, the variance of R is 
v 

V(R ) 
v 

K K 

2 TI~{ L Ckj'crkj'(v)/mJ. + 2 2 Ck,C 0.crk'( ) O'( )/m.} 
j=1 J k=1 1Sk<,tSK J ~J J v .~J v J 

( 2) 

where crkj(v)/mj is the variance of pv(klj) s qkj(v)' the average for class j 

test observations of values of a variable qk(v) that takes either the value 

l if an observation is classified into class k or the value 0 otherwise; 

similarly, crk ( ) 0 '( )/m. is the covariance of p (klj) and p (,tlj). To 
.j v .~J v J v v 

~ ~ ) (~ 2 
obtain an estimate V(Rv of V R), replace O'kj(v) and O'kj(v) ,,tj(v), respec-

tively, by skj(v) and skj(v),,tj(v)' the usual unbiased sample variance of 

qk(v) and sample covariance of qk(v) with q,t(v) taken over class j sampling 

units. [For all-possible-subsets classification, z 
v 

A ...._ ..... 1 = R /[V(R )] 2 was used 
v v 

as an accuracy criterion for empirically comparing a subset of v groups with 

other subsets: the smaller the z , the higher the accuracy.] 
v 
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Second, using the second subset of u groups together with the first v 

groups, reclassify the test data and obtain R + and V(R ). u v u+v 

Third, calculate the decrease in estimated Bayes risk 

i = i u•v v 
i u+v 

(3) 

attributable to adding the u groups. i is expected to be positive 
u•v 

under the alternative hypothesis H1 :Rv > R but zero (or negative) under 
u+v 

the null hypothesis H0 :R = R + . As R is a simple difference between v u v u·v 

two asymptotically normal quantities (as mk ~ oo, k=l,···,K), it is itself 

distributed asymptotically normally with mean E(i ) = R -R = R 
u·v v u+v u·v 

and variance 

V(R ) 
u~v 

V(R ) + V(R ) - 2 Cov(R ,i ) . 
v u+v v u+v 

(4) 

To obtain an estimate V(R ) of V(R ), we first need to define 
tt-v u·v 

Cov(R ,R ) and. estimate it. Then, if it is assumed for small mk 
v u+v 

(k=l,···,K) that i is approximately normal, the distribution of i 
u•v u•v 

is fully specified by E(R ) and V(R ), thus facilitating the 
u·v u·v 

definition of an appropriate statistic for testing the additional accuracy 

due to the u groups, 

z 
u·v 

( 5) 

Evans and Schwager (loc.ci!.) gave an example, based on 100 bootstrap 

samples, that supported this assumption of normality for the case of small 

mk (2 ~ mk S 19). 

The covariance of Rv and Ru+v is 

K K K 

Cov(R ,R + ) = L ~~ L L ck.c, .uk'( ) • '( )/m. 
v u v j=l Jk=l J,=l J pJ J v ,~J u+v J 

( 6) 

where ak ( ) 0 '( )/m is the covariance between pv(kiJ) and pu+v(,tjj). j v ,~J u+v j 
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~ 

An unbiased estimator, Cov(R ,R ) , 
v u+v 

is given by replacing each 

akj(v),,.,j(u+v) by the usual unbiased sample covariance, skj(v),,.,j(u+v)' of 

qk( ) and q 0 ( ) over them. test observations in class j. 
v ~ u+v J 

Under the null hypothesis H0 : Ru+v = R , the standardized difference 
v 

between R and R , namely z , has an asymptotically N(O,l) distri-
v u+v u·v 

but ion. Invoking the assumption for small mk of approximate normality of 

R , and thus an assumption that z is distributed approximately as 
u·v u·v 

N(O,l) under H0 , a one-sided test of H0 : Ru+v = R versus the alternative 
v 

H1 : Ru+v < Rv can be performed by comparing zu·v with the upper 100(1-m)% 

point Z of the N(0,1) distribution. 
a If zu·v > Za then reject H0 at 

significance level m and state that the u groups have increased accuracy; 

otherwise accept H0 . If all mk and thus M = ~=l~ are very small, it 

may be preferable to compare z with the upper 100(1-a)% point of the 
u·v 

t-distribution based on M-K or M-1 d.f. 

When it is necessary to identify the groups involved, z can be 
u·v 

replaced by 

z 
u·v 

3. Stepwise Classification 

z ( gv+ 1 ' · · · ' gv+u I g 1 ' · · • ' gv) • 

Step 0. Calculate R(g 1 ) for each group g 1=1,···,G. 

with minimum R(g 1 ) and calculate 

(7) 

Find the group g1 

( 8) 

where zero denotes random allocation due to the null group g0 (see 

Appendix). Enter group gl if z(g1 IO) > Za; otherwise stop. 

Step 1. After selecting v groups (1 ~ v ~ G-1), calculate for each of the 

remaining u = G-v groups gk' kt{v+l,···,G}, 
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("9) 

Find the group gk with maximum z(gkJg1 ,···,gv) and enter it as the (v+1)st 

group if its z(gkJg1 ,···,gv) > Z«; otherwise stop. 

Step 2. Before considering the addition of a (v+2)nd group (3 ~ v+2 ~G), 

calculate for each of the currently entered v+1 groups gk, ke:{l, · · · ,v+1}, 

the quantity z(gkJg 1 ,···,gv) using Equation (9), where g 1 ,···,gv identify 

the other v of the v+1 currently entered groups. Find the group gk with 

minimum z(gkJg 1 ,· · •,gv) and remove it if its z(gkJg1 ,···,gv) < za. Now 

return to Step 1. 

This procedure consists of alternations of the forward Step 1 and 

backward Step 2, and terminates when no further group can be entered or 

deleted, or possibly earlier if certain conditions are not met. For 

example, in the case of multivariate normality, the Bayes classification 

rule based on v groups requires that Dv ~ minimum (rj-1) to ensure non-
je:{1, · · · ,K} 

singularity of each reference mean squares and products matrix S,(·) 
-J v 

(or Dv ~ N-K for a pooled ~(v)) and thus the existence of its inverse. 

This rule assigns a sampling unit to the class ke{ 1, · · · ,K} that minimizes 

K 
~ -t { 1 L ~.ck.JS,( )I exp -z<Yc ) 

j=1 J J -J v - v 
- )ts-1 < _- )} 
~j·(v) -j(v) ~(v) ~j·(v) (10) 

where~. and Ck. are, respectively, the prior probabilities and misclassi-
J -J 

fication costs defined in 

referenc.e-sample mean vector. 

Section 2 and is the class j 

Thus, in eases when DG > min.(r.-1) [or DG > 
J J 

N-K], the stepwise algorithm is made to terminate at the completion of the 

last step in which the inverse of s.( ) (or s( )) still exists, or when 
-J v - v 

no further group can be added or dropped, whichever occurs first. 
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4. Simultaneous Stepdown Classification 

Consider the expansion of 

(11) 

where g 0 denotes random allocation with no groups (see Appendix), as a sum 

of G components: 

R(g1,···,gGfgo) = [R(go)- R(gl)J + [R(gl)- R(gl,g2)J 

+ ..• + (R(g1,···,gG-1)- R(gl,···,gG)] 

= R(g1lgo) + R(g2lg1) + ··· + R(gGig1,···,gG-1). (lZ) 

Now, instead of using R(g 1 ,··· ,gGlg0 ) to test the null hypothesis H0 of no 

reduction in Bayes risk due to groups gl, · · · ,gG, its components can be 

tested separately in a stepdown approach to identify which groups, if any, 

lead to a rejection of H0 . That is, the expansion of R(g1 ,···,gGjg0 ) 

corresponds to a decomposition of H0 into G component hypotheses, H0 = 

nGkJ=l H0 , where H0 is the null hypothesis of no reduction in Bayes 
- gk gk 

risk due to group gk. Under H0 , as R(gklg0 ,g1 ,·· ·,gk-l) for k=1,···,G are 

distributed independently and approximately normally for small 

m. (j=1,···,K), the corresponding 
J 

are approxima te1y independent. In the stepdown approach, the component 

hypotheses are tested in the order H0 ,···,H0 corresponding to the order 
gG g1 

of increasing importance from to For each k=G, · · ·, 1, 

z(gk!g0 ,g1 ,···,gk_1 ) is compared to Zak' where ak- P[z(gkfg0 ,g1 ,···,gk_1 ) 

> Z IH J is a prespecified Type I error probability and Z is the upper 
ak Ogk ak 
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100(1-~k)% point of the N(O,l) distribution. Following Calinski and 

Kaczmarek (1977), an overall Type I error probability of approximately~ = 
1 - II~= 1 (1-~k) is achieved by setting 

( k~ ·-1 
- 1 - (1 - ~ j- for k=1,···,G (14) 

They prefer these a 1 >···>aG to constant ak because they give higher overall 

power. 

The details of stepdown classification are now given. 

Step 1. If z ( gG I g 1 ' ... 'gG-1) > z then reject Ho at level IY,r, and Ho at 
aG _gG _, 

level a and stop procedure by selecting all groups. Otherwise drop group 

gG and go to Step 2. 

Step 2. 

and HO at level a and stop procedure by selecting groups gG_ 1 ,···,g1 • 

Otherwise drop group gG-l and go to Step 3. 

And so on. 

Step G. If z(g 1 lg0 ) > z then 
a1 

and stop procedure by selecting 

stop. 

reject H 
Ogl 

group g1. 

at level al and Ho at level a 

Otherwise select no groups and 

This algorithm at most requires only the calculation of G test 

and their estimated (co)variances. 
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If DG > min.(r.-1) [or DG > N-K] in the ease of multivariate normality, 
J J 

then this stepdown algorithm can only be partially implemented. This could 

be done by forcing the non-selection of the groups gG,gG_ 1 , · · · for which 

DG, D(G-1),··· > min.(r.-1) and testing onwards from the step kat which Dk 
J J 

~ min.(r.-1) is first satisfied. 
J J 

5. A Reaot:e Sensing Example 

Stepwise and simultaneous stepdown classifications were applied to 

Landsat data from an agricultural survey in the Hillston area of New South 

Wales, Australia, in the wheat growing season of 1983 (Dawbin and Evans 

1988). Strictly forward and strictly backward selections of dates were 

used to exemplify the range of possible stepwise classifications. For the 

simultaneous stepdown selection of dates, two different orders of testing 

were tried: chronological (1,···,G) and reverse chronological (G,···,1), 

corresponding to, respectively, a possibly increasing classification 

accuracy through a cropping season and an increasing earliness of 

classification. 

Fields of fallow and woodlands and uncommon crop classes have been 

exeluded from this study but additional fields of the eommon crop classes 

have been included. The K=1 3 common crop classes consist of 11 combina-

tions of density and sowing date for cereal crops (3 oats, 2 barley, 6 

wheat) and two pasture types (native and improved). At G=5 dates (April 

14, May 16, August 4, September 21 and October 7), mean observations of D=4 

reflectance variables were made on each of the 6, 18, 20, 26, 4, 6, 36, 18, 

8, 36, 12, 12, and 38 fields, respeetively, that were randomly sampled from 

the six wheat classes, two barley classes, three oats classes and two 



-13-

pasture classes. Half of the fields were randomly chosen for reference and 

the other half used for testing within each class j=l,···,l3 (giving 

N=M=120). For each class, reference field means were averaged to obtain 

the class mean vee tor 

covariance matrix S .. 
-J 

~j. and then used to obtain the among-fields 

The S. differed significantly (using the 
-J 

generalized likelihood ratio test in Morrison 1978) among wheat, barley, 

oats, and pasture crop types (a=.01) but were similar within each. 

Acc.ordingly, a pooled covariance matrix was obtained for each crop type and 

used in place of the individual matrices. 

Although the original Landsat data can take only nonnegative integer 

values from 0 to 255 and therefore cannot be stric.tly multivariate normal 

in distribution, Landgrebe (1980) has demonstrated that they are approxi-

mately so. Accordingly, multivariate normality will be assumed here. 

Unequal prior probabilities and unequal misclassification costs were used 

in each application of a sample Bayes rule and in the estimation of Bayes 

risks and their (co)variances. Anticipated relative proportions of classes 

in the study district were used as the prior probabilities ~k' k=l,···,13, 

and were (as percentages) 2, 8, 13, 24, 2, 2, 4, 2, 2, 6, 2, 9, and 24. 

Relative misc.lassification costs were obtained from the district's 

agronomist and were: Ckj=1 for k=l,···,6 and j=7,···,11; 1 for k=7,8 and 

j=l,···,6,9,10,11; 1 for k=9,10,11 and j=1,···,8; 2 for k=l2,13 and 

j=l, .. ·,ll; 2 for k=l, .. ·,ll and j=l2,13; and 0 otherwise. 

To enable an assessment of the optimality of subsets of dates selected 

by stepwise and simultaneous stepdGwn classifications, the standardized 

estimate of Bayes risk was found for every subset. The best (=minimal z ) 
v 

subset of dates of size 1 was August (z 1=5.1); of size 2 was May and 
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October (z 2=3.0); of size 3 was May, August and September (z 3=2.9); and of 

size 4 was April, May, August and September (z 4=2.8). For all groups and 

no groups, respectively, Comparison of these 

z 0 ,z 1 , · · · ,z 5 values suggests that the "optimal" subset, i.e., the smallest 

subset that retains most of the classification accuracy, is May plus 

October. Both the backward and forward stepwise classifications (with 

«=0.05 at each step) chose the subset of May plus August (z=3.3) which is 

near to optimal. 

Simultaneous stepdown classification (with an overall 0!=0.05; 

a 5=.0045, a 4=.0056, « 3=.0075, a 2=.0112, a 1=.0222) selected only October 

(z=6.0) under chronological ordering and only April (z=5.4) under reverse 

chronological ordering; each of these dates is suboptimal and neither is 

the best single date. Dawbin and Evans (1988) used a different testing 

order based both on agronomic grounds and on earliness and likely accuracy 

of classification: October, August, April, September, May. They retained 

all but October 7, thus selecting the subset with the overall smallest 

z-value and enabling an earlier classification on September 21. In 

contrast, the stepwise selected subset of May 16 plus August 4 gave an even 

earlier classification at the expense of a slight decrease in accuracy. As 

the agronomist (Dawbin) was mainly concerned with choosing dates to give an 

early and accurate classification, the subsequent selection of a subset of 

reflectance variables has not been considered. 

A fuller study of the performance of the stepwise and simultaneous 

stepdown classifications was conducted by applying them to 100 separate 

bootstrap samples of the test fields, i.e., m. fields randomly sampled with 
J 

replacement from them. test fields in class j, for all j=1,···,13. Table 
J 

l gives for each method the percentages of the 100 selected subsets having 
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one to five groups; results for the minimal-best-subset method of Evans and 

Schwager (1989) are also given. The majority of subsets selected by all 

methods had three groups. Stepdown classification for reverse chrono-

logical order selected all five groups in almost one-third of cases but no 

subsets of four groups, whereas minimal-best-subset classification did not 

choose all five in any case. The stepdown method for chronological order 

chose no less than three groups. Table 2 gives for each method the 

percentage of selected subsets of each size that were not z-best and their 

corresponding average increase in z-value; results from the all-possible­

subsets discrimination of Evans and Schwager are also given, i.e., the 

percentage of lambda-best subsets that were not z-best and their average 

inflation of z. None of these methods gives satisfactory results, with the 

discrimination method and backward stepwise classification giving the worst 

inflation in z-values for subsets of 3 and 4 groups. 

However, whether or not a selected subset is the best of its size, it 

is more pertinently assessed by its degree of optimality, i.e., by the 

closeness of its z-value to that of the optimal subset, relative to the 

differences among z0 ,z1 ,···,z 5 from which the optimal subset is determined. 

Minimal best classification gave 91% (near-) optimal and 9% suboptimal 

subsets, with the near- and suboptimal subsets tending to include too few 

dates. The suboptimal subsets consisted of all single dates and 18% of 

pairs of dates; in each case, an extra test of the final subset versus the 

optimal subset would have shown the need to add more dates. Table 3 gives 

suboptimality results for each stepwise and stepdown classification method. 

Overall, only the chronological stepdown method gave results comparable to 

the minimal-best classification, but unlike the other methods, a majority 

of suboptimal subsets consisted of all dates. As the optimal subset is 
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unknown in practice when using the stagewise methods, the full set of dates 

is the only logical subset against which to check the selected subset. 

Thus, when all dates are selected, as in some of the stepdown classifi­

cations, no check of optimality is possible. Apart from subsets containing 

all dates, other suboptimal subsets tended to include too few groups; 

however, for each method and in most cases, an extra test of accuracy 

versus the full set of dates would have suggested the need for more dates 

and led to the selection of a subset nearer to optimal. Without the extra 

test, the forward and backward stepwise algorithms and the reverse 

chronological stepdown method are not acceptable. However, with the 

appended test, these methods are comparable to the chronological stepdown 

c.lassification. Therefore, in practice, if resources are unavailable for 

doing all-possible-subsets classification and instead a stagewise 

classification is done, then an extra test must be appended to check the 

adequacy of the selected subset. Even when resources are available and a 

minimal-best classification is done, an extra test must be done versus the 

overall-best subset to ensure that enough groups have been retained. 

The Interactive Matrix Language (IML) procedure of the SAS package 

(SAS Institute Inc.. 1985) was used for all aspects of this example, 

including estimation, bootstrapping and implementation of the classifica-

tion methods. Three different computers were used during the development 

and running of these programs: an IBM 3081 mainframe (OS VS2/MVS), a Prime 

6350 minicomputer (PRIMOS), and a NEC Powermate 2 microcomputer (MSDOS). 

CPU and IO times were recorded for two sizes of data sets. For 50-100 

observations over only 5 classes, for the same groups of variables, on the 

IBM it took less than 2 mins CPU and 3 sees IO to do all of the minimal-

best and other stagewise classifications. For the full data set here, 
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involving 240 observations over 13 classes, the all-possible-subsets and 

minimal-best classifications using equal (unequal) covariance matrices took 

1. 75 (3.75) hours CPU and 0.5 (1.5) mins IO on the Prime. In contrast, 

stepwise classification took one (two) hours CPU and 0.3 (0.8) mins IO, and 

stepdown classification used 20 (45) mins CPU and 0.1 (0.3) mins IO. Times 

on the NEC were about three times those on the Prime. 

6. Conclusions 

The standardized difference in estimated Bayes risk has been proposed 

for testing additional classification accuracy due to an added subset of 

allocation variables. Some stagewise algorithms that use this test at each 

stage have been given here. Based on the example of Section 5, the 

stepwise and simultaneous stepdown classifications do not perform as well 

as the minimal-best-subset classification of Evans and Schwager (1989). 

This was expected because, first, the minimal-best algorithm guarantees 

that the selected subset will be the best of its size and, second, the 

algorithm was designed to seek objectively the optimal subset, i.e., the 

smallest subset that retains most of the accuracy. Still, the minimal-best 

subset was not always optimal and an extra test versus the overall-best 

subset was needed to ensure near-optimality. Similarly, to improve the 

optimality of subsets selected by stepwise and stepdown methods, an extra 

test is needed to compare the chosen subset with the full set of groups. 

Nevertheless, these methods should only be used when computational cost 

saving is crucial, as the selected subset is less likely to be optimal than 

the minimal-best subset. 
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As the stepdown classification can lead to different subsets for 

different test orders, it should be used only when a single order 

(chronological, reverse, or other) is relevant to the study at hand. 

However, even when there is a single prespecified order of testing, this 

simultaneous method may not be applicable. For example, it may be required 

to perform successive tests of additional classification accuracy as the 

data for each date become available; then the nonsimultaneous stepwise 

algorithm, with only one candidate group for entry at each forward step, 

would instead be appropriate. In those cases where no single order is 

dictated, a stepwise classification should be used in preference to 

simultaneous stepdown classification. 
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Appendix: Random Allocation 

In the stagewise algorithms of Sections 3 and 4, it is necessary at 

either the first or last stage to decide whether to enter or retain any 

groups at all by a comparison of the classification accuracy obtained with 

that from a purely random allocation of test observations, i.e., based on 

no groups. Let g0 denote a null group consisting of no groups. One way to 

do a random allocation is as follows. Partition the interval (0,1) into K 

subintervals k=l,···,K of lengths equal to the prior probabilities ~k of a 

sampling unit arising from classes k=l,···,K. Randomly generate an 

observation from the uniform(0,1) distribution. If the observation falls 

in subinterval k then classify the sampling unit as being from class k. In 

this way, allocate m. 
J 

test observations corresponding to each class 

j=1, · • · ,K and calculate the proportions p0 (kfj), analogous to the earlier 

p (k I j), of these observations misclassified into class k=l, · · • ,K. Then 
v 

these proportions can be substituted into Equation (1) to obtain ft0 ; the 

estimated variance' v<fio)' of ft0 can be obtained in the same way as v<i~- > v 

via Equation (2). For comparability with subsets of v groups, the accuracy 

Zv' nam~_-ly zo -- RAO/(VA(RAO)]t. due to zero groups is found similarly to ~ 

Decrease in estimated Bayes risk due to u groups over no groups is given by 

Ru·O = R0 - Ru' an analogue of Ru·v = Rv - Ru+v but with Ru+O = Ru. When it 

is necessary to identify the groups involved, R can be replaced by 
u·v 

R( g • • • g > - R( g • • • g > 1' ' v 1' ' v+u 
(Al) 

where g 1 , · • · ,g t::{l, • · · ,G}. Similarly when the null group is involved, u+v 

To find zu·O' all of the 

necessary calculations are the same as for z in Equation (5). 
u·v 
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Table 1. Percentages of selected subsets with different numbers 

of groups, for each classification method. 

Reverse 
Number of Forward Chronological Chronological Backward Minimal 

Groups Stepwise Stepdown Stepdown Stepwise Best 

1 4 6 0 0 5 

2 13 20 0 15 22 

3 58 43 64 50 61 

4 16 0 19 24 12 

5 9 31 17 11 0 
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Table 2. Percentage of selected subsets of a given size that were not 

z-best of that size (and their average percentage increase in z-value), 

for each classification method and for minimal-lambda discrimination. 

Reverse 
Number of Forward Chronological Chronologic.al Baekward Lambda 

GrouEs SteEwise SteEdown SteEdown SteEwise Best 

1 0(--) 67(22) --(--) --(--) 64(20) 

2 62( 21) 95( 21) --(--) 73(24) 64(23) 

3 79(24) 28(17) 87(22) 72(30) 80(37) 

4 56(25) --(--) 21(17) 71(38) 87(41) 
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Table 3. Percentage of selected subsets of a given size 

that were suboptimal (and their average percentage increase 

in z-value over that for the best subset of the same size), 

for each classification method. 

Reverse 
Number of Forward Chronological Chronological Baekward 

GrouES SteEwise Ste:Edown Ste:Edown Ste:Ewise 

1 100( 0) 100(15) --(--) --(--) 

2 54(22) 90(22) --(--) 67(22) 

3 19(36) 5(32) 8(56) 20( 53) 

4 12( 59) --(--) 0(--) 42 (51) 

5 0(--) 6( 0) 41( 0) 0(--) 

Overall 24{28) 28(21) 12(24) 30( 43) 


