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Diffusivities, viscosities, and conductivities of
solvent-free ionically grafted nanoparticles

Bingbing Hong and Athanassios Z. Panagiotopoulos*

A new class of conductive composite materials, solvent-free ionically grafted nanoparticles, were modeled

by coarse-grained molecular dynamics methods. The grafted oligomeric counterions were observed to

migrate between different cores, contributing to the unique properties of the materials. We

investigated the dynamics by analyzing the dependence on temperature and structural parameters of

the transport properties (self-diffusion coefficients, viscosities and conductivities) and counterion

migration kinetics. Temperature dependence of all properties follows the Arrhenius equation, but chain

length and grafting density have distinct effects on different properties. In particular, structural effects

on the diffusion coefficients are described by the Rouse model and the theory of nanoparticles diffusing

in polymer solutions, viscosities are strongly influenced by clustering of cores, and conductivities are

dominated by the motions of oligomeric counterions. We analyzed the migration kinetics of oligomeric

counterions in a manner analogous to unimer exchange between micellar aggregates. The counterion

migrations follow the “double-core” mechanism and are kinetically controlled by neighboring-core

collisions.
1 Introduction

Solvent-free liquids consisting of nanoparticles functionalized
with oligomeric chains have attracted signicant interest
during the past decade.1–4 Experiments and modeling suggest
that their self-suspending, solvent-free character is a key
determining factor for the structure and dynamics of these
systems.3,5–9 While progress has been made in theoretical
understanding of the simpler versions of these systems, in
which chains are covalently graed on the particles giving rise
to “Nanoscale Organic Hybrid Materials,” there have been
relatively few modeling attempts of their ionically graed
counterparts – oen referred to as “Nanoparticle Ionic Mate-
rials” (NIMs). There are extensive experimental studies of NIMs
with diverse core and counterion compositions.10,11 The
complex character of these materials results from their break-
able ionic bonds, which render NIMs intermediate between
covalently graed and ungraed polymer nanocomposite
systems. Due to the strong electrostatic forces, ionically graed
nanoparticles are also expected to behave differently from
neutral systems of graed nanoparticles in free chains.7,12,13

NIMs share features with charged colloids,14 and have been
characterized as ionic liquids with large, nanoscale ions,15,16 or
as nanoparticles covalently tethered to ionic liquids.11,17–19

These analogies provide linkages of NIMs to more familiar
systems, but each only captures one aspect of their character:
ineering, Princeton University, Princeton,

Chemistry 2013
either breakable graing or charges. A simulation study is
therefore necessary to clarify whether the actual behavior of
ionically graed nanoparticles is the result of a simple combi-
nation of these two factors, or determined by varying contri-
butions of the underlying structural features, depending on the
properties of interest.

Almost all experimental studies of ionically graed nano-
particles have focused on rheological properties,2,19–23 conduc-
tivities,11,24 or a combination of the two.1,17,18,25,26 Among these
prior studies, ref. 10 and 27 are the most comprehensive,
covering local to global dynamics of NIMs through analyses of
dielectric spectroscopy, shear moduli, and viscosities. Diffu-
sivities of NIMs have only been investigated in ref. 28. The
effects of temperature on the dynamics have been thoroughly
examined,1,10,11,17–19,21–23,27 but only few experimental studies
prepared a series of samples with modied oligomer lengths25

or graing densities.2,27 The lack of systematic variation of
parameters obscures underlying structure–property relations,
while the absence of detailed data on all transport properties for
a given system potentially masks their interdependence. In this
simulation work, we attempt to address these two issues by (a)
calculating all transport properties and analyzing counterion
migration kinetics, which cover dynamics at different scales, in
the same system, and (b) systematically altering temperature,
chain lengths and graing densities of NIMs and observing the
effects on the dynamics.

There have been few computational or theoretical studies of
ionically graed nanoparticles to date. The most studied
structures that exhibit similar core–shell ionic encapsulation
Soft Matter, 2013, 9, 6091–6102 | 6091
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Fig. 1 Schematic of the systems of interest. The simulations are conducted in
three-dimensional space, but a two-dimensional schematic is shown for clarity.
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are polyoxometalate anions coupled with small29,30 or dendri-
meric31 cations in solution. Prior work has paid close attention
to morphologies, ion distributions, and water-mediated inter-
actions between polyoxometalate anions, but not to the
dynamics. Initial simulations of solvent-free NIMs have
observed themigration of oligomeric counterions from one core
to another32 and have conrmed directly the conclusions from
the experiments of Jespersen et al. on NIMs diffusion.28 The
measured diffusivity of polymeric counterions is larger by
almost one order of magnitude than the estimation under the
assumption that the core and its surrounding chain counter-
ions move together as a hard sphere, so chains readily detach
from nanoparticles.28 However, the detachment and migration
mechanism of the counterions are not clear. Visualization of
simulation results in ref. 32 showed counterions moving freely
between the surface charge sites on the same core, but
detaching from the core only when a nearby core came close by.
Of course, visualization only provides anecdotal evidence, and
the possibility that some counterions leave the old core and
enter the polymer matrix without the help from the approach-
ing neighbors cannot be excluded. This provides a motivation
for the present study to perform a quantitative analysis of chain
migration kinetics, by analogy to exchanges of unimers between
micellar aggregates. Micellar aggregates exhibit multiple
mechanisms, including micelle collision and single-chain
migration, each of which has a fully developed kinetic
theory.33–35

In this work, we investigate diffusivities, viscosities,
conductivities, and chain migration kinetics of solvent-free
NIMs, as well as their relationships to temperature and struc-
tural parameters, in the hope to answer the issues raised in the
previous paragraphs. We use the coarse-grained model from
ref. 32, except that the size of nanoparticle cores is reduced to
allow the systems to reach diffusive (long-time) behavior. This
makes systematic studies of slow global relaxation related to
viscosity and conductivity feasible. Details of the model and
simulation approach are given in Section 2. Section 3 presents
the results and highlights connections and contrasts between
different dynamical property changes and migration mecha-
nisms. We draw conclusions and outline possible future work
in Section 4.
2 Model and simulation details

Fig. 1 shows the topology of the systems of interest, represent-
ing ionically graed nanoparticles. In this model, there are
solid nanoparticle spherical cores of diameter D and chains of
m beads of diameter s. Each nanoparticle core has g negatively
charged surface sites located (D + s)/2 away from the core
center. A core and its surface charge sites are treated as a
rigid body.

Beads (or monomers) of the g counterion chains are con-
nected by harmonic bonds, Ub(r) ¼ 10003(r � s)2/s2, with one
end bead carrying a unit of positive charge. Pairwise interac-
tions between different types of particles (core–core, core–bead,
and bead–bead) are described by a generalized Lennard-Jones
potential:
6092 | Soft Matter, 2013, 9, 6091–6102
UabðrÞ ¼ 43

"�
s

r� Dab

�12

�
�

s

r� Dab

�6

þ Aab

#
ðr# rabÞ (1)

For core–core and core–bead interactions, the potential is
truncated at the minimum, rab ¼ 21/6s + Dab and is purely
repulsive, with constant Aab ¼ 1/4. The shi distances (Dab) are
D and D/2, respectively, for the core–core and core–bead inter-
actions. No shi is used for the bead–bead interactions,
Dbb ¼ 0; using Abb ¼ (rbb/s)

�6 � (rbb/s)
�12, rbb ¼ 2.5s, eqn (1)

corresponds to a truncated and shied Lennard-Jones poten-
tial. The same bead–bead potential also acts between charged
surface and chain counterion sites. Note that we dene core size
in a different way from ref. 32. In ref. 32 nanoparticle diameter,
d, equaled the distance at which core–core interaction disap-
pears and consequently the distance between core and surface
charges were 21/6s larger; here we adopt instead d¼Dwhere the
core–core potential goes to innity, in order to match the
location of the st peaks in the core–core and core–bead radial
distribution functions with the results obtained from atomistic
simulations.36

To link the coarse-grainedmodel to NIMs experiments where
poly(oxyethylene) constitutes the majority of the organic phase,
we mapped the critical parameters obtained in a Lennard-Jones
uid with interactions cut and shied at 2.5s (ref. 37) to the
values for a virtual uid of ethoxy units (CH2OCH2) estimated
through the group contribution method of Constantinou and
Gani.38 This procedure gave s ¼ 0.40 nm, 3/kB ¼ 377 K, and the
molar mass of beads was set to 44 g mol�1. All data are con-
verted to real units in the rest of the paper using these param-
eter values, to facilitate comparisons with experiments.

Surface and counterion beads have �e and +e charges,
respectively, set by the fact that counterions commonly used in
real NIMs systems are monovalent. In addition to the Lennard-
Jones interaction described previously, charged beads also
interact through Coulomb's law, Ue(r) ¼ qiqj/4p30kr, where q
denotes the charge, 30 is the dielectric permittivity of vacuum
(1/4p30 ¼ 8.988 � 109 N m2 C�2) and k, the relative permittivity,
is given the value of 4, appropriate for bulk silica.39 Using a
This journal is ª The Royal Society of Chemistry 2013
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Table 1 Parameters and equilibrium volumetric properties for the systems
studied

T (K) m g f (%) r*m

343 14 8 3.70 0.768
373 14 8 3.62 0.751
388 14 8 3.59 0.744
403 14 8 3.55 0.736
428 14 8 3.48 0.722
453 14 8 3.42 0.708
373 4 8 8.42 0.613
373 5 8 7.43 0.642
373 7 8 6.02 0.682
373 9 8 5.06 0.709
373 11 8 4.37 0.730
373 19 8 2.83 0.776
373 29 8 1.96 0.800
373 14 4 5.95 0.636
373 14 6 4.54 0.713
373 14 10 3.02 0.778
373 14 13 2.41 0.801
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relative permittivity corrects for the lack of polarizability of the
nanoparticles and chains. Long-range electrostatic forces were
calculated using the particle–particle–particle–mesh Ewald
method with each charge extending 5 grid spacing and energy
convergence tolerance of less than 10�4.

The Large-scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS) package 40 was used to run simulations in cubic
boxes with timestepDt¼ 6 fs. Energy conservation within 0.05%
was reported for model NIMs in NVE runs with Dt ¼ 12 fs in ref.
32. We reduced the time step by half here to guarantee
conservation over ms time scales. The core diameter was set to
D ¼ 0.902 nm, similar to the size of polyoxometalate anions,26

polyhedral oligomeric sisesquoxane (POSS) cage41 and fuller-
enes,23 which have been used in experiments as NIMs cores. The
molar mass of the core particles was 505 g mol�1, set in
proportion to their volume ratio with respect to the chain beads.
There were g ¼ 4, 6, 8, 10, and 13 surface sites, and thus
counterion chains, per core particle, corresponding to graing
densities from 1.6 to 5.1 nm�2, within the range of graing
densities of the experimental systems. The “standard” system
size investigated contained NC ¼ 80 core particles. Size effects
were examined through simulations of systems of twice as many
cores (NC ¼ 160) having the same core volume fractions. The
larger systems have pressures, chain migration kinetics and
conductivities identical within simulation uncertainties to
those of the “standard” systems, but deviations of about 20% in
the MSDs of the cores were observed.

To nd a density (volume) corresponding to near-zero-pres-
sure (|P| < 45 bar at ms scale), we equilibrated systems at
constant-volume conditions in different trial volumes for 12 ns,
and measured the resulting pressure. It would have been
simpler to perform constant-pressure simulations, but the
version of LAMMPS we are using cannot handle rigid bodies
when using barostats. Aer determining the system volume
corresponding to zero pressure by interpolation of the initial
runs, equilibration at that volume was performed for 30–60 ns,
followed by a production period which lasted from 0.4 to 2.4 ms.

Table 1 lists the temperature T, chain length m, and number
of surface beads per core, g, for each system simulated, as well
as the resulting core volume fractions, f¼ NCVC/V, and reduced
densities of polymer matrices, rm ¼ s3(Nb + Ns)/(V� NCVC), aer
equilibration. Here, Nb, Ns, and NC denote the total number of
chain beads, surface charge beads and cores, respectively. V is
the total volume of simulation box and VC the volume of indi-
vidual cores (¼ 4pD3/24, where D ¼ 0.902 nm). The conversion
factor from r* to real units is r ¼ 1.14 � r* [g cm�3]; we provide
r* rather than r in this table to indicate the degree of packing of
chain beads in the space between core particles in familiar
Lennard-Jones units.

Mean square displacements (MSDs) of the cores and chains
were monitored, and diffusivities were calculated as the slope of
the MSDs in diffusive regimes,

D ¼ 1

6
lim
t/N

d

dt

D
½riðtþ t0Þ � riðt0Þ�2

E
i;t0

(2)

here ri(t) represents the position of center of a core particle, or
center-of-mass of chain, i at time t. Both viscosities and
This journal is ª The Royal Society of Chemistry 2013
conductivities reect the relaxation of the entire melt. We
applied the Green–Kubo relation for viscosity calculation (eqn
(3)) in a volume V at temperature, T.

h ¼ V

kBT

ðN
0

�
Pabðtþ t0ÞPabðt0Þ

�
t0
dt (3)

Pab is the off-diagonal element of the pressure tensor.
Similar to the diffusivity, the conductivity was obtained as the
derivative of the MSD of the collective translational dipole
moment,42,43 M(t).

l ¼ 1

6VkBT
lim
t/N

d

dt

D
½Mðtþ t0Þ �Mðt0Þ�2

E
t0

(4)

where MðtÞ ¼ PNion
i¼1 qiriðtÞ. Eqn (4) indicates either increasing

the charges or enhancing the mobility of ions leads to a raised
conductivity of the materials of interest.

The reasons we used the Einstein–Helfand formalism for
diffusivity and conductivity, but the Green–Kubo formalism for
the viscosity, are the large storage space requirements for the
latter, and the fact that integrationover recordedvelocities forDor
l for the Green–Kubo relation is less accurate than directly using
particle positions. For h, however, it is unclear how to remove the
discontinuity in the Helfand moment caused by the electrostatic
interaction changes when a particle jumps across the periodic
boundaries;44 the Green–Kubo method is boundary-condition-
free and only requires inexpensive storage of pressure tensors.45

To quantify the counterion migration of NIMs, we rst
labelled half of the cores (denoted by Cm) in the melt and the
chains that were originally attached to the marked cores. The
number distribution of cores with nl labeled chains, Q(nl, t), and
the average number of labeled chains remaining on onemarked
core, hn(t)i, were then recorded along the time. We compared
the normalized decay of labeled chains per core,

x ¼
hnðtþ t0ÞiiCm ;t0

� hnðNÞiiCm ;t0

hnðt0ÞiiCm ;t0
� hnðNÞiiCm ;t0

(5)
Soft Matter, 2013, 9, 6091–6102 | 6093
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among different conditions. In Section 3 it is shown that few
free (detached) counterions are observed in the melt, so
hnðt0ÞiiCm ;t0zg, hnðNÞiiCm ;t0zg=2 and eqn (5) can be approxi-
mated by,

xz
2

g
hnðtþ t0ÞiiCm ;t0

� 1 (6)

This virtual time-dependent process bears great similarity
with many experiments35,46 and theories33,34 of unimer
exchanges between micelles, which mix equal volumes of
micelles formed by regular and probe molecules, respectively.
3 Results and discussion
3.1 Diffusivities

Even though the Coulombic potential between a charged
surface site and a counterion bead at contact is up to 31kBT in
the temperature range of interest, the ionic bonds are break-
able. Counterions and their attached chains can leave the cores
with which they are initially associated, as seen previously.32

The presence of electrostatic interactions slows down the
diffusion of counterion beads – while in polymer melts the end
monomers diffuse faster than the centers-of-mass of the chains
at short times,47 the opposite is the case for the MSDs of the
charged end beads (dashed lines) relative to the chains (thin
solid lines) in Fig. 2. In the diffusive regimes of the MSD curves
in Fig. 2, the difference between the average displacements of
chains and cores is >3 nm, larger than the core size, indicating
the oligomeric counterions do not only move between anions on
the same core, but jump to other cores, making the NIMs melts
conductive.

Fig. 2 also shows that the effect of chain length on the short-
and long-time diffusion behavior is somewhat counterintuitive.
One generally expects that longer chains diffuse slower than
short ones at both short and long times. Instead, it was
observed that elongating NIMs oligomers from m ¼ 4 to m ¼ 14
reduces the core volume fractions from 8.4 to 3.6% and
increases the density of oligomer matrix from 0.70 to 0.86 g
Fig. 2 MSDs of the cores (thick solid lines), centers-of-mass of chains (thin solid
lines) and counterion beads (dashed lines) at T ¼ 373 K. Blue: m ¼ 14, g ¼ 8;
green: m ¼ 4, g ¼ 8; orange: m ¼ 14, g ¼ 13. The short black line of unit slope is
shown for reference.

6094 | Soft Matter, 2013, 9, 6091–6102
cm�3. Our previous simulations comparing the motions of
covalently and ionically graed nanoparticles at the same
temperature and core volume fraction32 also showed that the
presence of charges signicantly slows down the core motions.
Thus, longer chains screen the strong core–core and core–
counterion electrostatic interactions more effectively, making
initial motions of cores and counterions faster. The long-time
diffusion behavior is determined by relaxation of the polymer
matrix, so that NIMs graed with longer chains eventually
become slower than those with short chains. Higher graing
densities result in slower long-time chain diffusion, due to the
increased density of the chain matrix with rm reaching 0.91 g
cm�2 for g ¼ 13, the highest graing density studied.

The effects of temperature and structural parameters on the
long-time (diffusive) behavior are quantied in Fig. 3. The top
panel shows a linear dependence of the logarithm of the self-
diffusion coefficients of the cores and chains on 1/T, which can
be described by the empirical Arrhenius equation,
D ¼ D0exp(Ed/kBT). The good linearity observed suggests the
simulated NIMs are far away from their glass transition
temperature, Tg. Experimentally, pure poly(ethylene oxide) has a
Tg z �67 �C.49 NIMs systems have measured Tg's for SiO2 cores
with tertiary amines of �66 �C27 and for ZrO2 cores with linear
–(CH2)n– (ionic liquid) of �50 �C.18 Exponential dependences of
diffusivities for both anions and cations on 1/T were also
obtained in previous MD simulations of ionic liquids in the
range T ¼ 300–400 K.50,51 Ref. 50 estimated the activation
energies for both ions of their ionic liquids and obtained
Ed ¼ 40–50 kJ mol�1, on the same order of magnitude as the
tted activation energies of NIMs simulated in this paper, Ed ¼
53 kJ mol�1 for the cores and 37 kJ mol�1 for the chains. Jes-
persen et al.28 measured the diffusivity of Jeffamine M-2070
ionically graed to 18 nm nanoparticles through NMR relaxa-
tion. The measured value at 50 �C, (1.2–1.3) � 10�9 cm2 s�1, is
of the same order of magnitude as the extrapolated Dm from
simulations, 0.9 � 10�9 cm2 s�1. Jeffamine M-2070 is much
longer than the simulated oligomers, thus expected to diffuse
more slowly; but it has a lower charge density due to large core
and chain sizes which works in the opposite direction.

In Fig. 3(b) the effects of chain length on the self-diffusion
coefficients of the cores, DC, and chains, Dm, are presented. The
scaling factor of Dm with respect to m of around �1 suggests
Rouse-like behavior52 of the chains despite the conned
geometry. We attribute this to the coarse-grained nature of
NIMs model. Similar results have been observed in previous
coarse-grained models of oligomer melts – soer potentials and
longer bonds reduce the chain stiffness and shorten or even
eliminate the “oligomeric” section before the Rouse regime.9

The scaling theories for the unentangled polyelectrolytes in
semidilute solutions predict the dynamics also follow the Rouse
behaviors,53 suggesting the presence of charges does not affect
the chain dynamics under the simulated conditions. For the
diffusion of cores, a nanoparticle smaller than the correlation
length of the solvent, x, experiences the local “segmental
viscosity”, hs, and diffuses independently of the chain length of
the solvent.54 For larger nanoparticles (D > x) as in the simula-
tions, the cores experience friction proportional to the number
This journal is ª The Royal Society of Chemistry 2013
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Fig. 3 Self-diffusion coefficients of the cores (solid circles), and chains (open
squares) as functions of (a) inverse temperature for m ¼ 14, g ¼ 8, and (b) chain
length m at T ¼ 373 K, g ¼ 8, and (c) number of surface charge sites g converted
to matrix density rm for T ¼ 373 K, m ¼ 14. Solid and dashed lines in (a) are
Arrhenius expressions fitted to the cores and the chains, respectively. The dashed
line in (b) is fitted to the Rouse model and the solid line to eqn (7) and the theory
of ref. 48. In (c), the solid and dashed lines are based on the scaling theories of ref.
48 and the Rouse model, respectively; dash-dotted lines are fitted to D ¼
D0exp(�arm).
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of segments m/Nx, where Nx is the degree of polymerization
corresponding to the correlation length.48,54 So we have,

DCx
kBT

hsDðm=NxÞ � m�1 (7)
This journal is ª The Royal Society of Chemistry 2013
until the chain size becomes comparable to the size of nano-
particles at the degree of polymerization Nc. Further elongating
the chains no longer changes the viscosity that the cores can
“feel.” Thus, the diffusivity of the cores remains almost constant
when m > Nc.48 In the simulation, DC decreases as m increases
and the dependence becomes weak above m ¼ 11. The transi-
tion chain length is Nc ¼ 11 and the transition size Rc of chains
is then the hydrodynamic radius of the chain with m ¼ 11. We
estimate Rc through the polymer radius of gyration, Rg ¼ 0.536
� 0.003 nm, and the empirical relation for linear exible poly-
mers,55 Rhz 0.75Rg. The calculated transition size, 2Rc ¼ 2Rhz
0.80 nm, is very close to the core size. The same estimation for
the chains with m ¼ 4 leads to 2Rh ¼ 0.44 nm, roughly equal to
the bead size s. So the oligomers in the coarse-grained NIMs
should have x < s, or rather one bead is long enough to be an
independent segment. This does not contradict the discussion
above that the m dependence of chain diffusions follows the
Rouse model. The fact that D–m relations in Fig. 3(b) can be well
described with theories of polymer melts and nanoparticles in
polymers conrms the conclusion drawn from the analysis of
MSDs that ionic interactions only affect the short-time diffusion
of cores and chains; at long times where the diffusion coeffi-
cients are calculated, motions are dominated by polymer
relaxations.

By modifying the graing density or the number of surface
charges, g, we change the density in the oligomer matrix of
NIMs, rm. The dependence of the diffusion coefficients on rm

is given in Fig. 3(c). The matrix phase with varied density can
be interpreted by analogy to polymer solutions, since rm is
proportional to the polymer concentration c. Scaling theories
for polymer solutions give Dm � r(y�2)/(3y�1)

m � r�3
m ,52 and for

nanoparticles in polymer solutions, DC � (1/D3)r�2y/(3y�1)
m �

r�2
m .48 Both relations underestimate the observed depen-

dences of diffusivities on the matrix density. We expect that
the high concentration of the polymer matrix contributes to
the steep D–rm dependences, because in diffusion
experiments of polystyrene solutions, slopes larger than
(2 � y)/(3y � 1) were observed if the concentration was further
raised56 aer the semi-dilute regime. Exponential models
have been tested to be a good describer of the D–rm relation
for chains57 and nanoparticles48,58 in solutions over wider
concentration range. Adopting the expression DxD0exp
[�ary/(3y�1)

m ] � exp(�arm) proposed in ref. 48, we generate
good ts to both core and chain diffusions, obtaining
DC ¼ 0.23 � 10�5(cm2 s�1)exp(�7.75rm) and Dm ¼ 3.39 �
10�5(cm2 s�1)exp(�7.58rm).
3.2 Viscosities

Temperature effects on the viscosity of the model systems
studied are plotted in Fig. 4(a). Arrhenius-type tting,
h ¼ h0exp(�Eh/kBT), yields Eh ¼ 35 kJ mol�1, of the same order
of magnitude as the calculated value (49–52 kJ mol�1) for the
ionic liquid 1-ethyl-3-methylimidazolium chloride in the
temperature range 320–380 K in ref. 50. Experimental data for
NIMs22 composed of 5 nm TiO2 nanoparticles and graed by
C9H19–C6H4–(OCH2CH2)20O(CH2)3SO3

� are also plotted in
Soft Matter, 2013, 9, 6091–6102 | 6095
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Fig. 4 (a) Temperature dependence of viscosities of simulated NIMs with
m ¼ 14, g ¼ 8 (circles) and measured data for 5 nm TiO2 grafted by C9H19–

C6H4–(OCH2CH2)20O(CH2)3SO3
� from ref. 22 (crosses). (b) Viscosities as a func-

tion of chain length for systems with g ¼ 8 at T ¼ 373 K. (c) Viscosity depen-
dence on the matrix density (resulting from changes in g) for systems with
m ¼ 14 and T ¼ 373 K.
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Fig. 4(a) for comparison. Having larger core size and rigid
benzene ring structures in the chains, this system has higher
viscosities. The activation energy for the experimental systems
is 37 kJ mol�1, almost the same as the simulated NIMs.
Comparing the model NIMs with their covalently graed
counterparts, POSS–CH2CH2(OCH2CH2)mOCH3,8,41 the h–T
activation energies for the latter with 10–30 w% cores are 30–
6096 | Soft Matter, 2013, 9, 6091–6102
40 kJ mol�1, very near Eh of the model NIMs studied here.
Thus, graing with breakable ionic bonds or permanent,
covalent ones, does not change the rate of viscosity rise with
increasing temperature. Sticky Rouse models have been
proposed, in which the zero-shear-rate viscosity is determined
by the static modulus divided by the breakdown rate of link-
ages between sticky points.59 The modulus is proportional to
kBT and the rate is k0 exp(�W/kBT), from which the viscosity is
obtained to be essentially an exponential function of temper-
ature. Because the experimental NIMs and the permanent
graed counterparts have similar activation energies, we
conclude that stickiness in our model is related to penetration
of chain coronas from neighboring cores, rather than the ionic
bonds.

The effect of chain length on the viscosity of model NIMs is
nonmonotonic as shown in Fig. 4(b). Two factors – core
volume fraction and chain motions – compete in their effects
on the system viscosity. For systems with shorter chains, there
is a higher volume fraction of cores, as seen in Table 1, which
in turn results in higher viscosity. Elongating the chains
initially reduces the viscosity because it dilutes the cores. Over
the range m ¼ 4 to m ¼ 14 viscosity changes by about one
order of magnitude. Neither the conventional models for
nanouids in the form of h/h0 ¼ 1 + 2.5f + f (f2) + g(f3) (h0 is
the base viscosity for the solvent),60,61 nor the Krieger–Dough-
erty relation for charged colloids, h/h0 ¼ (1 � f/fm)

�[h]fm,62

capture the large viscosity change seen in the simulations. The
models generate only factors of 1.05–1.25 change in the f

range of interest (3–9%). As will be discussed in Section 3.4,
many counterions are shared by neighbor cores, resulting in
extended clusters. The highly viscous character of short-chain
model NIMs likely results from the existence of the core
clusters. If the chain becomes longer, core association is
weakened, resulting in large viscosity reductions. The viscosity
eventually increases again, due to the decreasing mobility of
longer chains. Interestingly, the minimum in viscosity occurs
at roughly the same chain length as the minimum in core
diffusivity seen in Fig. 3(b). The same explanations can be
applied for the drastic rise, by more than one order of
magnitude, of viscosity when the number of graed chains per
core is increased, causing f to vary from 2 to 6%, as displayed
in Fig. 4(c). Increasing the number of surface charges
enhances clustering of cores, resulting in larger viscosity rise
than the models aforementioned predict. Although the
coronas (or the matrix) is 26% denser, which is supposed to
encapsulate cores from their neighbors better, the separation
tend can not counterbalance the even stronger clustering
effects.
3.3 Conductivities

We calculated the conductivities as the slope of the MSDs of
collective translational dipole moments for all ions,M(t), in the
diffusive regime (eqn (4)). Although related to the relaxation of
the entire system, hDM2(t)i become diffusive (of unit slope)
much earlier than the MSDs of individual cores. This can be
easily explained if we expand eqn (4) into,
This journal is ª The Royal Society of Chemistry 2013
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Fig. 5 (a) Temperature dependence of conductivity of simulated model NIMs
with m ¼ 14, g ¼ 8 (circles) and polyoxometalates grafted by tertiary ammonium
chains26 (crosses); the dashed line is fitting to Arrhenius equation of the model
NIMs data. (b) Walden plot of molar conductivity versus inverse viscosity for the
simulated NIMs; the symbols are the same as in (a); the black line corresponds to
dilute aqueous KCl solutions.
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l ¼ 1

6VkBT

d

dt
lim
t/N

XNion

i;j

qiqj
�
Dri$Drj

�

� 1

V

�
Ncatqþ

2Dcat þNCq�
2DC

�
þ d

6Vdt
lim
t/N

X
isj

qiqj
�
Dri$Drj

�
(8)

where q+ and q� denote the charges carried by each cation and
anion, respectively. At long enough times, Dri for different ions
decorrelate, leading to hDri$Drji ¼ 0. The diffusivity data in
Fig. 3 show that counterions reach the diffusive regime within
10 ns for all systems studied, and that the diffusion coefficients
for counterions, Dcat, are much larger than those of cores, DC.
Therefore, the conductivities or hDM2 (t)i's are dominated by the
diffusion term of cations,

l � Ncatqþ2

V
Dcat (9)

which reaches the diffusive regime around the same time as
hDM2 (t)i does. Eqn (9) will be further conrmed in subsequent
discussion of l.

As seen earlier for the self-diffusion coefficients and viscos-
ities, the conductivities decrease exponentially as a function of
1/T over the temperature range simulated (Fig. 5(a)). Also
included in Fig. 5(a) are experimentally measured conductivity
data for polyoxometalates ionically graed by tertially ammo-
nium.26 Having very close core size to the simulated nano-
particles (�1 nm), polyoxometalate-ammonium NIMs were
measured to undergo a second-order transition around �35 �C.
So the conductivities of the polyoxometalate liquid salts depend
on temperature in the same Arrhenius manner as the simulated
NIMs until the temperature drops down to out of the interested
T range in simulations. The activation energies, Es, of the pol-
yoxometalate salts and the simulated NIMs are both about 42–
43 kJ mol�1, almost the same as Es ¼ 42–44 kJ mol�1 of the
simulated and experimental ionic liquid, 1-ethyl-3-methyl-
imidazolium chloride, in the range 325–489 K.50,63 The
comparison suggests that the slope of the log(conductivity)
versus inverse temperature curves do not depend strongly on ion
sizes. The absolute values of conductivities, however, are
determined by the sizes of charge carriers, with ionic liquids of
small ions being a thousand times more conductive than the
simulated NIMs and polyoxometalate-ammonium salts.

To further analyze the ionic character of the simulated NIMs,
we plot the molar conductivity (L) vs. the inverse viscosity,
where L ¼ l/c+ and c+ is the mole concentration of positive
charges, in comparison with the Walden's rule, Lh ¼ constant,
for strong electrolytes.25,26,50,64 The Walden's rule can be
obtained from the Einstein–Stokes equation, Di ¼ kBT/(6phRh,i),
and eqn (8) with no cross terms. The combination yields
Lh ¼ P​ Ci=Rh;i (Ci's are constants), free from temperature
inuences. The ideal Walden line is represented by dilute KCl
aqueous solution (solid line in Fig. 5(b)) in which ions are fully
dissociated and have equal mobilities.64 Therefore logL–logh�1

has a slope �1. Like other small salt solutions and ionic
liquids,50,64 the slope for the experimental polyoxometalate
This journal is ª The Royal Society of Chemistry 2013
liquid salts is between 0 and 1.26 In contrast, we observe >1
slopes in the model NIMs except for the point at the lowest
temperature (or highest viscosity) which may be resulted from
slow dynamics and poor statistics. Nugent et al.25 reported
similar >1 slopes for small electrolytes in covalently graed
nanoparticles, too. This trend is expected to rise from clustering
between nanoparticles discussed in Section 3.2, which is also
observed in covalently graed nanoparticles.5,8 As temperature
drops, Lh is no longer constant due to the increasing hydro-
dynamic radius, Rh,i. Fig. 5(b) also illustrates the simulated
NIMs are less ionic conductive than anticipated from their
viscosities, compared with the superionic conductiveness (data
points above the KCl line) of polyoxometalate salts and elec-
trolytes/graed nanoparticle mixtures in experiments. Better
ionic conductance can be achieved by careful adjustment of the
force elds for the NIMs model.

Fig. 6(a) illustrates that a power law is obeyed by conductivity
as a function of chain length. The relation can be derived from
eqn (9), which reects the determining role of the chain
motions with respect to the conductivities. Since each chain of
length m carries a single charge, the charge density is propor-
tional tom�1 at constant volume fraction of segments. However,
Soft Matter, 2013, 9, 6091–6102 | 6097
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Fig. 6 Conductivities as a function of (a) chain length for g ¼ 8 and T ¼ 373 K
and (b) number of grafting chains per core expressed through matrix density for
m ¼ 14 and T ¼ 373 K. The dashed line in (a) has a slope of �1.7.
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in our systems (simulated at constant pressure), the volume
fraction of the matrix is not constant. Instead, data in Table 1
suggest an m�0.7 dependence. The diffusion coefficients of
cation end beads, equal to that of the chains, has been shown to
be f m�1 in Fig. 3(b). Substituting both into eqn (9), we derive
the power for the conductivity dependence on chain length, lf
m�1.7, seen in Fig. 6(a). Smaller changes in conductivity are
brought by the modied graing density in the simulated
range, shown in Fig. 6(b). Despite large error bars, we can still
observe the declining trend of conductivity with increasing
number density of charge carriers in the system. As expressed in
eqn (9), the conductivity is determined by two competing factors
– charge mobilities and densities. Increasing charge density or
proportionately rm by 1.3 in the simulated range of g, the drop
in diffusivity of chain ions (seen in Fig. 3(c)) is of a larger factor
about 3. The combined effect is a decrease of conductivity by a
factor 2.3, which is very close to the conductivity reduction in
Fig. 6(b).
3.4 Counterion migration

There are two possible mechanisms for counterion migration,
as discussed in the Introduction. The “single-core mechanism”

assumes that counterion chains leave a core by internal inter-
actions, e.g. steric repulsions or electrostatic interactions with
6098 | Soft Matter, 2013, 9, 6091–6102
its neighboring chains. The entry or exit rate of this mechanism
is related to the concentrations of labeled chains attached to the
old core and in the matrix. The “double-core mechanism”

proposes that oligomeric counterions are transferred to neigh-
boring cores only aer two cores collide. The rate of migration
to either of the two cores should incorporate the counterion
concentrations on both cores.

We consider a counterion as being “bound” to a core particle
when the distance between the counterion and any surface ion
on the core is less than 0.65 nm. This is the distance corre-
sponding to the rst minimum in the radial distribution func-
tion for the ion pairs. Using this denition, we calculated the
fractions of free chain cations and those shared by one or
multiple nanoparticles. While the cations belonging to one and
two cores vary between 40 and 60%, and cations shared by three
cores take up about 10%, free chains are hardly found in the
simulated systems. The absence of free chains strongly suggests
that ionically graed oligomers cannot leave one nanoparticle
and enter the matrix on their own.

To obtain precise kinetic information, we conducted a virtual
experiment by mixing equal numbers of “unlabeled” and
“labeled” core particles, akin to experiments on micelle
exchange experiments using time-dependent uorescence35 or
SANS.46 In the simulations, we know precisely the microscopic
distribution of labeled molecules at any given time. We studied
the time-dependent distribution of cores attached to nl coun-
terions, Q(nl, t). A shared counterion is judged to be attached to
the core, any surface charge of which is closest to the coun-
terion. Theoretically,33,34 Q(nl, t) should approach the Poisson
distribution (eqn (10)) as t / N, irrespective of the initial
distribution of labeled chains:

Qðnl;NÞ ¼ 1

nl!
anl expð�aÞ (10)

The maximum of the distribution occurs at nl ¼ a. If the
chains migrate between cores through diffusion in the matrix,
a ¼ k+[chain]/k�, where k+ and k� are the entry and exit rate
constants for single chains and a is a function of temperatures
and structural parameters. Consequently, we should observe
changed locations and shapes of the equilibrium distributions
of Q(nl, t) under different conditions. But Fig. 7 shows the
calculated Q(nl, N) curves only depend on the graing densi-
ties, which is in fact the characteristics of the “double-core”
mechanism. The parameter a in eqn (10) is derived to be the
average number of labeled chains each core has, or more exactly
a ¼ g/2 for the NIMs simulated, if the inter-core migrations of
counterions only occur at the time when the cores contact each
other. The separated peaks for NIMs having different g's in
Fig. 7 are at the position predicted by the second mechanism.
Moreover, the good overlap between Q(nl, N)'s at different
temperatures and chain lengths exclude the possibility that the
“single core” mechanism contributes to the kinetics.

The evolution of Q(nl, t) are given in Fig. 8 together with the
numerically integrated Q from Tachiya's two-core theory34

starting from the simulated initial distributions. Due to the
high percentage of chain ions shared by multiple cores, many
cores are not in contact with the same number of counterions as
This journal is ª The Royal Society of Chemistry 2013
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Fig. 8 Simulated (solid lines) and theoretical (dashed lines) evolution of the
fractions of cores that have 8 labeled chains attached at 373 K (right curves) and
453 K (left curves). The theoretical curves are the numerical integrations of eqn
(28) in ref. 34 with k set to be 2 � 10�4 at 373 K and 2 � 10�3 at 453 K.

Fig. 9 Decay of the normalized number of labeled chains on each originally
marked core. (a) Red: m ¼ 14, g ¼ 8, T ¼ 453 K; black: fitting to 1st-order kinetics
(eqn (11)–(13)) using hln ki ¼ �2.2 and m ¼ 1.4; green: fitting to 2nd-order
kinetics (x(t)¼ 1/(kt + 1) and a spectrum of k expressed by eqn (13)) using hln ki ¼
�1.7 and m ¼ 0.8; black and green lines almost overlap on the red line. (b) Blue
solid:m¼ 14, g¼ 8, T¼ 373 K; red solid:m¼ 14, g¼ 8, T ¼ 453 K; green solid:m
¼ 7, g ¼ 8, T ¼ 373 K; orange solid: m ¼ 14, g ¼ 13, T ¼ 373 K; dashed lines:
shifted curves from those of the same color through dividing the time by a;
dashed lines almost overlap the red solid line.

Fig. 7 Equilibrium distribution of cores having nl labeled chains. Circles:m ¼ 14,
g ¼ 8, T ¼ 373 K; squares: m ¼ 14, g ¼ 8, T ¼ 453 K; downward triangles: m ¼
11, g ¼ 8, T ¼ 373 K; diamonds:m ¼ 14, g ¼ 4, T ¼ 373 K; upward triangles: m ¼
14, g ¼ 13, T ¼ 373 K. Lines are from eqn (10) with a ¼ 2, 4, 6.5 from left to right.
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the number of charge sites they carry. Thus, the initial fraction
of cores attached by exactly g labeled chains is much less than
50%. For the theoretical curves, all the effects of temperature
and other structural parameters are incorporated into the rate
constant of hopping, k, for each chain. Modications of k do not
alter the shapes but shi the curves le- or right-wards. So the
theory cannot capture complicated factors – for example, some
chains take some time tomove over the core surface to get to the
contact point, fromwhich they hop to the neighboring core. The
time lags before hopping results in a distribution of the actual
rate constant, which can bring changes to the slopes and
improve the predictive ability of the theory, as discussed later in
this section.

Instead of the whole spectrum of Q(nl, t), the normalized
average number of labeled chains remaining on the marked
cores, x(t), dened by eqn (5), is used in the following discus-
sion. The x(t) relationship can be interpreted as a diffusive ow
from high-concentration to low-concentration regions, which
usually obeys rst-order kinetics:
This journal is ª The Royal Society of Chemistry 2013
x(t) ¼ exp(�kt) (11)

Since many factors contribute to the rate constant k, e.g.,
chain relaxations at different length and time scales, core
collisions, surface diffusion and waiting time before chain
hopping, it is necessary to introduce a spectrum of relaxations
into k that follows the Gaussian distribution, as done previously
to describe polymer motions:46,65

xðtÞ ¼
ðN

�N

pðln kÞexpð�ktÞd ln k (12)

pðln kÞ ¼ 1ffiffiffiffiffiffi
2p

p
m
exp

	
� ðln k � hln kiÞ

2m2



(13)

Eqn (11)–(13) are suitable for tting a wide range of decay
curves, with the mean (hln ki) controlling for location and the
variance (mlnk) the slopes (see Fig. 9(a)). Their exibility,
however, may conceal the true kinetics, as the quality of tting
can be equally good in the assumption of second-order ow
Soft Matter, 2013, 9, 6091–6102 | 6099
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Fig. 10 The shift factors of the x(t) decay curves as functions of temperature (a),
and chain length (b), and matrix density modified through grafting density (c). (a)
aT is the shift factor form ¼ 14, g ¼ 8 and varied T to the master curve T ¼ 453 K;
dashed curve is Arrhenius fitting. (b) am is the shift factor for g ¼ 8, T ¼ 373 K
and varied m to the master curve m ¼ 4. (c) ag is the shift factor for m ¼ 14, T ¼
373 K and varied g to the master curve g ¼ 4; dashed curve is fitted to ag ¼
a0[dg(rm)]

1/2exp(7.75rm).
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problem, x(t) ¼ 1/(kt + 1), combined with the Gaussian distri-
bution of rate constant (eqn (13)). Fig. 9(b) displays an efficient
way, which disregards the controversial kinetics involved, to
obtain the relative relaxation times for migrations at all simu-
lated conditions. Dividing the time in x(t) by a factor a, we shi
the decay curves lewards by ln a to superpose a master curve.
The factor a is proportional to the relaxation time or 1/k.

The temperature-dependent shi factor aT is presented in
Fig. 10(a). Fitting Arrhenius equation to ln aT and 1/T generates
the activation energy Ea ¼ 34 kJ mol�1. The good linearity of the
ln aT–1/T relation is consistent with the temperature depen-
dence of the transport properties given in previous sections, but
disagrees with the Rouse relaxation time � m2/(kBT) adopted in
Choi et al.'s experiments of micelle exchange.46 Previous theo-
retical66 and experimental works65 that focused on the “single-
core” mechanism of micelle systems have proposed and
conrmed that the expulsion rate constant of polymers depends
on the temperature in an Arrhenius manner. But for “double-
core” mechanism, no previous efforts have been made to relate
the rate constant to the temperature.

Fig. 10(b) displays the shi factor as a function of chain
length together with the predictions from scaling theories. If a
chain is expelled from a corona, leaving a core particle and
entering the matrix by itself, the migration time should be
proportional to the time it takes to diffuse through the corona, s
� L3f�1/2(6phs)/(kBT).65,66 Here L is the thickness of the corona,
and approximated by the height of a spherical brush, L �
d(1�y)/2
g my,67 where dg is the graing density. The viscosity of

solvents hs can be independent on the chain length in the
assumption that the cations just “feel” the friction of mono-
mers, or hs � m if we continue to assume the Rouse dynamics
for pure simulated chains. With y set to 1/2, we obtain am �m3/2

or am � m1/2 for the two types of viscosities, respectively. Yet
neither of the two scaling factors approximate the changing
power of am–m well. In the “double-core” mechanism, the
deterministic step for chain migration is that two neighbor
cores diffuse through their corona layers until at least two
charge sites from each core almost contact each other. Thus,

am � s � L2/DC (14)

where we assume the distance between two neighbor cores is
proportional to the height of spherical polymer brush. The
diffusivities of cores follow DC �m�1 ifm < 11, and is a constant
for m > 11, as discussed in Section 3.1. Plugging DC and L into
eqn (14), we obtain,

am �
�
m2 ðsmall mÞ
m ðlarge mÞ (15)

Fig. 10(b) indicates eqn (15) gives a good prediction of the
am–m scaling relation at the two extremes of short and long
chains. As for the effect of graing density shown in Fig. 10(c),
we substitute the expression of spherical polymer brush and the
exponential model for DC from Section 3.1 into eqn (14),
yielding ag ¼ a0[dg(rm)]

1/2exp(7.75rm). The good ts of this one-
parameter expression and eqn (15) to the simulation data show
in addition to the equilibrium distribution of labeled chains,
6100 | Soft Matter, 2013, 9, 6091–6102
the migration kinetics also follow the “double-core”
mechanism.

A remaining question is whether the “double-core” mecha-
nism is still applicable if the strengths of electrostatic forces are
varied. We have performed a calculation with permittivity k ¼ 2
and observed a slowdown of X(t) by a factor of 4–5. This is
expected, given that the breakdown of ionic bonds becomes
slower and chain detachments occur less frequently. At the
This journal is ª The Royal Society of Chemistry 2013
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other extreme, an increase in permittivity k, or an increase of the
effective size of the counterions, weaken electrostatic forces and
may increase the possibility of “single-core”mechanism. This is
an interesting topic for both experiments and simulations to
explore whether the “single-core” mechanism can be observed
in NIMs with weak electrostatic forces, e.g. conjugated oligo-
meric counterions which have large k or dendritic-structured
counterions that surround charges with thick layers of
branched arms.
4 Conclusions

A coarse-grained molecular dynamics model for solvent-free
ionically graed nanoparticles has been developed. Detailed
analyses of the dynamics of cores and chain ions, transport
properties, and the migration kinetics of chains have been
performed. Three key questions were addressed. The rst one is
whether melts of NIMs follow concepts valid for non-graed
particles in polymer melts (nanocomposites), covalently graed
nanoparticles, or ionic liquids. The diffusion data, especially
the diffusivities of cores, display great similarity between the
ionically graed nanoparticles and polymer nanocomposites.
Theories based on disconnections between cores and oligomers
without taking the graed structures or charges into account
are sufficient to capture the diffusion dependence on chain
length and temperature. With respect to viscosity, graed
structures and the presence of surface charges both exert effects
through clustering effects. Conductivities of NIMs are domi-
nated by oligomer diffusion, determined by the charges and the
breakable ionic bonds. In the analysis of the migrations of
chain counterions, we turn to the theories of micelles and
polymer brushes, for which graing and detachable structures
become important. The second question relates to the
connections between diffusivity, viscosity and conductivities in
NIMs systems. A consistent dependence of the three transport
properties, as well as the relaxation time of counterion migra-
tions, is observed with respect to temperature. All properties
follow Arrhenius-type relationships and show no indications of
a glass transition. Changes in corona chain length and graing
density affect conductivities and migration relaxations in a
manner that depends on the self-diffusion of either chains or
cores. However, the dependences of viscosities on the structural
parameters are unexpectedly strong. The last question is by
what mechanism the oligomeric counterions migrate from one
core to another. Data for the distributions of free ions and
labeled chains, and the structural dependence of the relaxation
times, all support the “double-core” mechanism. Counterions
hop to neighbor cores through the contact point between the
two cores and it is the time of diffusion of cores through the
coronas that dominates the migration process.

The results of the present study were obtained under the
assumption that the length scale of beads is that of ethoxy
chemical units. With coarser mapping of model beads to longer
segments, the simulated systems can also approximate NIMs
comprised of larger nanoparticles and longer polymers. In an
ongoing investigation, we are also studying model systems with
larger core-to-bead diameter ratios. Because of slow dynamics,
This journal is ª The Royal Society of Chemistry 2013
these systems require even more computational resources than
the – already substantial – ones required for this work. Thus, the
effect of core-to-bead size ratio will be investigated in a future
publication. Besides the inter-core migration of chains dis-
cussed in this paper, the on-surface diffusion of counterions
between the charge sites on the same core is also an interesting
topic for future research. Suitable metrics need to be con-
structed to characterize the relative motions of ions and cores.
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J. Chem. Phys., 2007, 126, 084511.
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