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Abstract:  We use DEA (Data Envelopment Analysis) techniques to determine if 
measured inefficiencies are caused by a missing management input. We replace the 
quantity of operators’ labor with estimates of the value of labor and management, and 
then with net farm income from the previous year, to determine if those replacements 
for operator labor changes calculated efficiencies. We calculate not only technical 
efficiencies, but also cost and revenue efficiencies and decompose them into allocative 
efficiencies. The empirical results are disappointing, in that our management inputs 
make little impact on measured inefficiencies. Very few articles have measured 
technical, cost, and revenue efficiency in the same study, and then not with a 10 year 
panel data set. Many may be interested in the estimates of DEA efficiencies on these 
dairy farms over the 10 years using the various specifications. 
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Introduction 

The notion of efficiency has been an active area of economic research for more 

than fifty years. Broadly defined, inefficiency is any deviation from a frontier, whether 

production, cost, revenue, or profit.  In his groundbreaking work, Farrell (1957) 

proposed numerical measures of efficiency for individual firms. From Farrell’s work, 

in combination with the enumeration of Shephard’s (1970) distance function, came the 
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development of empirical tools to measure the efficiency of firms, including 

mathematical programming techniques (Charnes, Cooper and Rhodes 1978; Färe, 

Grosskopf, and Lovell 1985).   

Yet, the measurement of inefficiency does not explain why it exists. Some 

explanations of inefficiency predate its measurement, and are based on more general 

criticisms of neoclassical production theory.  Knight (1921) argued that it is not 

possible for firms to calculate optimal decision rules, and that production functions are 

mere theoretical ideals.  A similar explanation of the inability for individuals to 

process the vast amounts of information necessary to behave optimally is presented in 

Hayek (1945).  The “bounded rationality” theory of Simon (1959) and the 

evolutionary theory of Nelson and Winters (1982) can similarly be invoked to 

question the existence of known frontiers and, by extension, the meaning of efficiency. 

 Other explanations for observed inefficiencies are consistent with neoclassical 

production theory. Tauer (2001) shows that inappropriately aggregating inputs results 

in the measurement of technical inefficiency.  A formal proof of the bias in efficiency 

measurement for the case of the use of a linear aggregator in mathematical 

programming techniques is found in Thomas and Tauer (1994).  

 Another explanation of computed inefficiencies is the failure to include all 

relevant inputs in the estimation of the efficient frontier.  This is the basis for 

Leibenstein’s (1966) theory of “X-efficiency.”  According to Leibenstein, differences 

in output across firms using the same input sets are due to differences in incentives for 

workers and managers to perform optimally, or simply differences in inherent 

capabilities.  This view was criticized by Stigler (1976), who argued any variation in 

output can be attributed to specific inputs, namely management ability. The manager 

(or entrepreneur) must decide prior to any allocative decisions, the production 

technology to use and how much knowledge to invest.  Once that decision is made, 

according to Stigler, each firm is operating on the efficient frontier, although not 

necessarily the same frontier as other firms.  
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Measuring and defining management ability is a problem that has long 

perplexed economists. At an abstract level, management can be considered a fourth 

factor of production, apart from the conventional land, labor, and capital.  Rougoor, 

Trip, Huirne, and Renkema (1998) argue that management ability consists of both 

personal aspects of the farmer and the decision-making process. The personal aspects 

of the farmer such as motivations, abilities, and experience directly affect the decision-

making process, which encompasses planning, implementation, and control.  Together 

these determine technology choice (the production function), which affects farm 

results in terms of efficiency and profitability.   

Nuthall (2001) employs psychological concepts to define managerial ability. 

Among these are the desire or ability to be fully rational, and the use of memory, and 

learning. Indeed, as discussed above, rationality is necessary for efficiency to have any 

meaning. Memory and learning are interrelated in that memory involves the 

observation and storage of knowledge and learning. According to Anderson (1983), 

interpreting and compiling that knowledge to improve existing production structures 

entails management.  Thus, management ability can change over time, for better or for 

worse, depending on a farmer’s ability to remember and learn from past successes and 

mistakes.  

Castle, Becker, and Nelson (1987) define farm management as “decisions 

affecting the profitability of the farm business.” Citing Robbins (1928), Stigler (1976) 

argues that just as different productivities of inputs are reflected in factor prices, 

different managerial abilities should also be reflected in differences in profits.  In an 

investigation of the effects of management ability on scale economies for dairy farms 

in England and Wales, Dawson and Hubbard (1987) define the management ability as 

returns over feed costs, a method also used in a similar study of scale economies in the 

South African dairy sector by Beyers (2001).  

The early efficiency studies attempt to explain differences in computed 

efficiencies by performing a regression or other statistical exercise of efficiency on a 

set of explanatory variables, some of which may proxy for management ability.  For 
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example, Tauer (1993) regress short-run and long-run technical and allocative 

efficiencies for a sample of New York dairy farms on a set of variables including 

operator age and education.  In an efficiency study of Mid-Atlantic sea scallop vessels, 

Kirkley, Squires, and Strand (1998) regress computed technical efficiencies on vessel 

captain age and experience, finding a significant positive effect of each on efficiency.  

In a non-frontier efficiency study of Pennsylvania dairy farms, Stefanou and Saxena 

(1988) find higher levels of education and experience have positive effects on 

allocative efficiency.  

 The purpose of this paper is to test whether computed inefficiency is due to the 

failure to include a measure of the management input.  We compute technical, cost, 

and revenue efficiency for a sample of New York dairy farms using farm-level data.  

We test our hypotheses using nonparametric data envelopment analysis (DEA) with 

two outputs (milk and other receipts) and six inputs by defining two input sets, one 

including operator labor, hired labor, purchased feed, livestock, capital, and crop 

inputs, and a second which replaces the operator labor input with a proxy for the 

management input.  The resulting technical efficiency estimates for each farm 

computed from each input set are then compared.  We use two separate proxies for the 

management input - operators’ own estimates of the value of their management and 

labor, and net farm income from the previous year. The previous year’s net farm 

income is used to avoid any simultaneity bias that may arise from using concurrent 

farm performance measures. 

Operators’ own valuation of their labor and management is a subjective 

measure.  The previous year’s net farm income is a results oriented measure consistent 

with the definition of management ability given in Castle et al. (1987), as well as 

Stigler’s (1976) observation that differences in managerial ability should be captured 

by differences in profits.  

Because the management input serves two functions: technology choice, and 

choice of input and output combinations to achieve desired production and returns, we 

expect increases in both computed technical and allocative efficiency from its 
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inclusion in our analysis, but there is no theoretical basis to justify a larger impact of 

one measure over the other.   

For a dairy farm, technology choice involves choices of livestock housing 

structures, milking systems, feeding systems, and machinery.  Once these decisions 

are made, they are not likely to be revised very often inasmuch as each decision 

involves a fair amount of fixed capital. Allocative decisions on a dairy farm include 

allotting quantities of labor, purchased feed, livestock, other capital, and crop 

production as well as the determination of milk production relative to other possible 

outputs like livestock and crop sales.  The most obvious input tradeoffs involve 

possible substitution between purchased feed and farm-grown crop production as well 

as between operator (farm manager) labor and hired labor. Both of these examples fit 

nicely into the standard make or buy allocative decisions common in the management 

literature, which entails the minimization of production, management, and transactions 

costs (Demsetz 1991).  

Ideal measures of the management input or farmer management ability would 

quantify all of the above decisions. Farmers’ subjective valuations of their own values 

of labor and management, we argue, may approximate this true unknown measure 

because it is a general measure of managerial skill or ability. It is, in a sense, what 

farmers’ would be willing to pay themselves, and thus may reflect mostly the results 

of allocative decisions if in fact farmers take their technology choices as fixed. Using 

past farm profitability as the management measure also provides a general overview of 

how well the farmer has made all of his or her managerial decisions, but cannot 

distinguish between the technology choice and allocative decisions.  

Management ability may also change over time as farmers gain more 

experience (learning by doing), interact with other farmers, or educate themselves 

through taking advantage of extension services or communications with vendors. In 

this case, we would expect to see some increase in efficiency over time if indeed we 

are measuring the management input or farmer managerial ability in a satisfactory 
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way. In fact, our results do show a tendency for farm efficiency to increase over the 

sample period 

 

Technical Efficiency with DEA 

 Data envelopment analysis computes technical efficiency as a weighted 

average of outputs over inputs. The weights applied to the inputs and outputs are 

selected by solving the well-known “ratio problem” of Charnes, Cooper, and Rhodes 

(1978): 
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Where yi is a (k x1) vector of outputs, and xi is a (j x 1) vector of inputs for the ith 

firms.  Y is a (k x n) matrix containing the output vectors of the n firms.  X is a (j x n) 

matrix of input vectors for the n firms.  The dimensions of pi and wi are (k x1) and (j x 

1), respectively and 0 is an (n x 1) null vector.  The problem is to choose p and w that 

 maximizes the average product of aggregate output to aggregate input of the ith
 firm  

subject to the constraint that no other firm has an average product greater than unity.  

 If the condition wi
Txi = 1 is imposed and the first constraint is rearranged, the 

problem can be solved by linear programming methods.  The problem then becomes: 
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The implication of adding this normalization constraint is that the objective function 

has a maximum at unity. The dual of the problem is the envelopment model for 

technical efficiency:  
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In this problem λ is an (n x 1) intensity vector, and the scalar, θ, is the measure of 

technical efficiency. The intensity vector, λ, forms a “new” firm by taking a linear 

combination of input and output sets of other observed firms, which are called peers of 

the firm being analyzed.  This measure of technical efficiency can be interpreted as the 

maximum radial reduction in inputs possible for the ith firm to produce at the boundary 

of the efficient production set.  Problem [3] is an input oriented measure of technical 

efficiency in that it seeks the largest possible radial reduction in inputs possible given 

an output vector y.  As such, it is a nonparametric estimate of the inverse of 

Shephard’s input distance function. 

If we substitute θφ 1= , and λμ θ
1= , we arrive at an output oriented measure of 

technical efficiency.  
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necessary for the ith  firm to be producing at the boundary of the efficiency production 

set given its input vector, and is the nonparametric estimate of the inverse of 
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denominator subject to the relevant constraints that no firm can have efficiency greater 

than unity. Both problems [3] and [4] assume constant returns to scale (CRS) 

technology, and under this assumption the optimal solution to [3] is equal to the 

inverse of the optimal solution to [4] for each firms; .   1** )( −= ii φθ

 The CRS assumption can be relaxed to allow variable returns to scale (VRS) 

technology by imposing the added restriction that the components of the intensity 

vector sum to unity, which implies that the envelopment process generates a “new” 

firm that is a convex combination of its peer firms.  Problem [3] becomes: 
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It should be noted, however, that once we allow variable returns to scale, the optimal 

solutions to each problem are not necessarily inverses of each other for each firm. 

 Variable returns can also be imposed through the primal with the following 

modifications: 

 

                                   [7] 

;1

;01
.

  

0

0

=

≤−−

−i

xw

XwYp
s.t

ypMax

i
T

TT
i

T
i

u

u

 

.0  , ≥iwpT
i

 8 
 



This is equivalent to imposing an extra input (or some unknown fixed input) that has a 

level of unity for each firm in the analysis.  

Cost Efficiency with DEA 

 For DEA cost efficiency, given a set of input prices, the problem is to calculate 

the input vector that minimizes total cost subject to the constraints that the optimal 

input vector is feasible, and that it will produce at least as much output as the observed 

output of the firm under consideration. Cost efficiency is then the ratio of observed 

total cost, C of the firm, to optimal total cost, C*.  The DEA cost minimization 

problem, assuming that all firms face identical price vectors is: 
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Allowing variable returns to scale, the problem becomes: 
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The dimensions of x, yi, λ, X, and Y are the same as in problems [1] – [4], and cx is a 

(jx1) vector of known input prices. The computed cost efficiency of the ith
 firm is 

Ci
*/Ci, where Ci is the observed cost of firm i. 

 Farrell’s decomposition of cost efficiency into its allocative and technical 

components is: 
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Revenue Efficiency with DEA 

 Given a known set of output prices, revenue efficiency can be calculated by 

selecting the output vector that maximizes revenue, subject to the constraint that the 

output vector is feasible and the input vector is not greater than a linear combination of  

observed input vectors.  Revenue efficiency is then the ratio of actual revenue, R, to 

optimal revenue, R*.  The DEA problem for revenue maximization is: 
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Allowing variable returns to scale, the problem becomes: 
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The dimensions of xi, y, μ, X, and Y are the same as in problems [1] – [4], and 

cy is a (kx1) vector of known output prices. The computed revenue efficiency of the ith
 

firm is Ri/Ri
*, where Ri is the observed revenue for firm i. 

 Derivation of output oriented allocative efficiency is the ratio of revenue 

efficiency to output oriented technical efficiency: 
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Data Sources 

 Data for the analysis were taken from the annual New York State Dairy Farm 

Business Summary (DFBS), which collects data from New York dairy farmers on a 

voluntary basis.  The number of farms participating varies each year and ranged from 

a high of 354 farms in 1993 to a low of 199 farms in 2004.  

Inputs and outputs were taken from the DFBS for each year from 1993 to 

2004. Six inputs and two outputs are defined for the analysis by aggregating collected 

inputs and outputs. Table 1 shows the DFBS items aggregated to form the inputs and 

outputs and the price indexes used for aggregation. The aggregate inputs are operator 

labor input, hired labor input, purchased feed input, livestock input, capital input, and 

crop inputs.  The two outputs are milk and other output. These are all accrual 

measures. Summary statistics for the aggregated inputs and outputs are found in Table 

2.  Price indexes taken from Agricultural Prices used to deflate the accrual and 

inventory accounts to 1990 -1992 U.S. dollars and are reported in Table 3. 

 For the dairy farms in this sample, milk production is by far the most 

important of the two outputs we have defined, accounting for 88 percent of the total 

output at the mean of our sample. The outputs aggregated to form “other output” 

consist largely of what may be considered by-products of milk production, such as 

livestock sales (cull cows and calves), government payments, and herd appreciation. 

On average, the capital and purchased feed inputs are the largest in the input set, 

followed by livestock, hired labor, and crop, inputs.    

Revenue and cost efficiency DEA problems require knowledge of output and 

input prices.  Prices indexes were calculated for the aggregate inputs by means of a 

weighted average of the price indexes used for the individual DFBS items used in the 

aggregation process.  The weights assigned are the average over all farms in each year 

of the proportion of the total input accounted for by each DFBS item.  This ensures 

that although the quantities of the DFBS items may be different for each farm, all 

 11 
 



farms face the identical prices for the aggregate input or output. The aggregate input 

price indexes are displayed in Table 3.   

Incorporating Management Inputs 

 We define two separate management inputs.  The first is the operators’ own 

estimate of the values of their management and labor, which they provide as part of 

the DFBS survey. For farms with more than one operator, we simply sum up the 

values for each operator.  This is a subjective estimate in that it is each farm operator’s 

best guess at his or her own value in the production process. As such, it could suffer 

from systematic bias if farmers consistently underestimate or overestimate the value of 

their own labor and management. The second is net farm income, with appreciation, as 

calculated by the DFBS. To avoid any contemporaneous bias in efficiency 

measurement that may result from using concurrent net farm income as the 

management input, the panel nature of our data set allows us to use net farm income 

from the previous year.  However, not all farms participated in the survey each year, 

so some observations are lost in the process.     

 To test the hypothesis that computed inefficiencies are the result of failing to 

include a management input, we first compute technical efficiencies (both output and 

input oriented), allowing variable returns to scale using the two outputs and six inputs 

described above.  Next, we compute the technical efficiencies, replacing the operator 

labor input with operators’ own values of labor and management. The resulting two 

sets of computed efficiencies are then compared using a paired two-sample t-test.  We 

test the null hypothesis: mean(TE1
val – TE1

lab) = 0, where TE1
val is technical efficiency 

computed using operators’ value of labor and management and TE1
lab is technical 

efficiency computed using operator labor.   The superscripts refer to the sample 

number, where 1 signifies that the efficiencies were computed using the full sample of 

observations. The above steps and tests are repeated for both cost and revenue 

efficiency (and their allocative components).   
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 This method keeps the same number of inputs and outputs, as well as farm 

observations for each computation of technical, cost, and revenue efficiencies, thus 

avoiding dimensionality bias that affects computed efficiencies calculated by DEA 

when the number of inputs and outputs or observations increases (see Tauer and 

Hanchar 1995). 

 We also test for differences in computed efficiencies when the operator labor 

input is replaced by net farm income from the previous year.  We test the hypothesis, 

mean (TE2
nfi –  TE2

lab) = 0, where TE2
nfi is technical efficiency computed using net 

farm income from the previous year, and superscript 2 refers to the smaller sample 

resulting from using the lagged values of net farm income, because not all farms 

participated in the survey every year.  Again, this sequence is repeated for both cost 

and revenue efficiency and their imputed allocative components. 

 If computed technical inefficiency is the result of not including a management 

input, then we expect that all the above hypotheses would be rejected in favor of a 

positive average change in computed efficiencies.  

 

Technical Efficiency Results 

The average computed technical efficiency scores for each year and input set, as well 

as orientation are presented in Table 4. For sample one, average input oriented 

computed technical efficiency using operator labor is 0.9355, with the lowest annual 

average computed technical efficiency of 0.9203 in 1999, and the highest annual 

average of 0.9492 occurring in 2004.  Output oriented computed technical efficiency 

using operator labor averages 0.9129.  The lowest annual average 0.8925 occurs in 

1998 while the highest annual average 0.9354 occurs in 2004. 

 When operators’ values of labor and management are used in place of operator 

labor, computed input oriented technical efficiency averages 0.9228.  The lowest, 

annual average of 0.9077 occurs in 1998 and the highest annual average, 0.9475 

occurs in 2004. Output oriented computed technical efficiency averages 0.9168, with 
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the lowest annual average, 0.9019 occurring in 1998 and the highest annual average, 

0.9416 in 2004.     

 Sample two, which contains only those farms that participated in the survey for 

at least two consecutive years, the computed technical efficiency averages 0.9395 

using an input orientation and operator labor in the input set. The lowest average 

computed technical efficiency is 0.9203 and occurs in 1999. The highest average 

computed technical efficiency is 0.9492 in 2004.  Using an output orientation, the 

computed technical efficiency using operator labor averages 0.9259.  The lowest is 

0.9097 in 1995 and the highest is 0.9406 in 2004 

When net farm income from the previous year is used in place of operator 

labor, computed input oriented technical efficiency averages 0.9457 over the 11 years 

in the small sample. The smallest average computed technical efficiency of 0.9285 

occurs in 1995, while the largest is 0.9606 and occurs in 2004.  Output oriented 

technical efficiency using net farm income from the previous year averages 0.9442, 

with the smallest average computed technical efficiency of 0.9251 in 1995 and the 

largest of 0.9586 in 2004.  

The paired-sample t-test results are presented in Tables 7 and 8. The average 

change in technical efficiency depends on whether an input or output orientation is 

used.  Using an input orientation, the average change in computed technical efficiency 

is negative in eight of twelve years, statistically significant less than zero in three, and 

statistically significant greater than zero in two. The absolute magnitudes of these 

changes are quite small.  The smallest is -0.006 and the largest is 0.006.  Using an 

output orientation, the average change in computed technical efficiency is positive in 

ten of twelve years, and statistically significant in six.  The smallest change is -0.0036 

in 2001.  The largest is 0.0114 in 1999. 

A similar dependency on orientation is also evident in the average changes in 

technical efficiency from including net farm income from the previous year in place of 

operator labor, although not as pronounced.  The average change in technical 
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efficiency from including net farm income from the previous year is positive in all 

eleven years and statistically significant in eight years using an input oriented 

measure. They range from 0.0018 to 0.0230.  Using an output oriented measure, the 

average change in computed technical efficiency is also positive in all eleven years.  

They are statistically significant in ten years, ranging from 0.0056 to 0.0317.  

Cost Efficiency Results 

 Computed average cost efficiencies and imputed allocative efficiencies are 

presented in Table 5. Using operator labor in the input set, average cost efficiency 

over the twelve years in the sample is 0.7922, ranging from 0.7572 in 1999 to 0.8377 

in 2004. When operators’ values of labor and management are included in the input set 

in place of operator labor, average cost efficiency is 0.7968, ranging from 0.7582 in 

2001 to 0.8326 in 2004.  The imputed average allocative efficiency using operator 

labor is 0.8583, ranging from 0.8266 in 1999 to 0.8905 in 2004.  Using operators’ 

values of labor and management, the average imputed allocative efficiency is 0.8643, 

ranging from 0.8337 in 2001 to 0.8833 in 1997.   

 For sample two, average computed cost efficiency allowing variable returns to 

scale, is 0.8088 over the 11 years of the sample, ranging from 0.7684 in 1999 to 

0.8438 in 2001.  Using net farm income from the previous year, average computed 

cost efficiency is 0.8226, ranging from 0.7963 in 2001 to 0.8375 in 1994.  The average 

imputed allocative efficiency is 0.8583, ranging from 0.8266 in 1999 to 0.8905 in 

2004. 

 Results from the t-tests are presented in Tables 7 and 8. There is considerable 

variability across years as to the effects of including both management input variables. 

The average change in computed cost efficiency from the inclusion of operators’ 

values of labor and management is 0.0045.  The average changes are negative in six 

years and positive in six years, and statistically significant in eleven years, ranging 

from -0.0092 in 1994 to 0.0275 in 1999.  The average change in imputed allocative 

efficiency is 0.0060, ranging from -0.0111 in 2004 to 0.0254 in 1999. 
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 Using net farm income from the previous year in place of operator labor, the 

average change in computed cost efficiency is 0.0118. Under this formulation, the 

average changes in computed cost efficiencies are positive for the first seven years in 

the sample and negative for the last four, and statistically significant in ten of the 

eleven years. Changes range from -0.0447 in 2002, to 0.0584 in 1999.  The average 

change in imputed allocative efficiencies is 0.0033. 

Revenue Efficiency Results 

 Computed average revenue efficiencies and allocative efficiencies are 

presented in Table 6.  Average revenue efficiency over the twelve years in the sample 

using operator labor in the input set was 0.8862, ranging from 0.8659 in 1998 to 

0.9145 in 2004.  When operators’ values labor and management are used in place of 

operator labor, computed revenue efficiency averages 0.8910, ranging from 0.8751 in 

2001 to 0.9228 in 2004.  Average imputed allocative efficiency averages 0.9696 using 

operator labor in the input set, ranging from 0.9600 in 2000 to 0.9782 in 2003.  

Replacing operator labor with operators’ values of labor and management, average 

imputed allocative efficiency is 0.9709, ranging from 0.9594 in 2000 to 0.9796 in 

2003.   

 Computed average revenue efficiency using operator labor for sample two is 

0.9005, ranging from 0.8810 in 1995 to 0.9201 in 2004.  Average imputed allocative 

efficiency using sample two with operator labor in the input set is 0.9715, ranging 

from 0.9647 in 2000 to 0.9781 in 2003.  When net farm income from the previous year 

is used in place of operator labor in the input set, average computed revenue efficiency 

is 0.9202, ranging from 0.8984 in 1995 to 0.9440 in 2004.  Average imputed allocative 

efficiency is 0.9736, ranging from 0.9601 in 1997 to 0.9840 in 2004.   

 The results from the t-tests for revenue efficiency are again shown in Tables 7 

and 8.  The average change in computed revenue efficiency from using operators’ 

values of labor and management in place of operator labor alone is 0.0052, ranging 

from -0.0065 to 0.0133.  The results are statistically significant different from zero in 
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eight of twelve years.  The average change in allocative (revenue) efficiency is 0.0014, 

ranging from -0.0033 to 0.0047.  The changes in allocative efficiency are statistically 

significant in six of the twelve years.   

 The average change in computed revenue efficiency from using net farm 

income from the previous year in place of operator labor alone is 0.0197, ranging from 

0.0031 to 0.0374.  These results are statistically significant in ten of eleven years.  The 

corresponding average change in imputed allocative efficiency is 0.0021, ranging from    

-0.0080 to 0.0070.  These results are statistically significant in eight of eleven years.   

Conclusions 

  The change in economic efficiency (cost efficiency and revenue efficiency) 

from the inclusion of net farm income from the previous year in place of operator 

labor is, on average, due mostly to changes in computed technical efficiency.  This 

implies that when the previous year’s net farm income is used as a measure of the 

management input, it reflects farmers’ abilities in technology choice more than it does 

the allocative process.  

The effects of using operators’ values of labor and management are less clear. 

While its inclusion implies that the change in revenue efficiency is mostly due to 

changes in average computed technical efficiency, the relationship does not hold when 

the orientation is changed.  The average change in imputed allocative efficiency from 

the inclusion of operator labor and management in the input set is larger than the 

average change in cost efficiency, because the average change in technical efficiency, 

using an input orientation, is negative.  Nevertheless, the absolute magnitudes of the 

changes in average computed efficiencies using operators’ values of labor and 

management are quite small, indicating that little is gained by measuring the 

management input this way. 

 The inclusion of operators’ values of labor and management do not provide 

conclusive evidence for our hypothesis that computed technical inefficiency is due to 

the exclusion of a management input.  At best, these individual estimates of the 
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management input serve as a limited proxy for the true value of management, little or 

no better than using operator labor alone.   It is possible that farmers underestimate or 

overestimate their own management value. If these errors in estimation are severe, 

then the computed technical efficiencies may suffer from measurement error bias. 

Thus, given the limitations of a deterministic analysis such as this one, a more exact 

measure of the management input may be necessary.  

  The results from using net farm income from the previous year are stronger. 

This measure of the management input is more objective, in that it only assumes that 

better managers are more profitable than are lower quality managers and does not rely 

on individual estimates of management value. 
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Table 1.  DFBS Items Aggregated to form Inputs and Outputs 

Input Price Index DFBS Items Aggregated 
Operator labor 
and 
Management  CPI Operator Value of Labor and Management 

Operator Labor  Wages 
Operator Months X DFBS Imputed Monthly Wage 
Rate 

Hired Labor 
  

Wages 
 

Hired Labor Months X DFBS Imputed Monthly 
Wage Rate 

    
Family paid labor X DFBS Imputed Monthly Wage 
Rate 

    
Family unpaid labor X DFBS Imputed Monthly Wage 
Rate 

Purchased Feed  
 

Complete 
Feeds Grain 

    Nondairy Feed 
  All Hay Purchased Roughage 

Livestock  
Replacement 
Cows Cattle Lease 

    Replacement Cattle 
    Expansion Cattle 
    Other Livestock 

    
Interest on Cattle Inventory (5% of the Average 
Value) 

  Supplies Bedding 
    Milking Supplies 
    Miscellaneous Expenses 
    BST Expenses 

  
Other 
Services Breeding Services 

    Veterinarian Services 
    Milk Marketing Expenses 
    Custom Boarding Expenses 
  Fuel Utilities Expenses 

Capital  
Farm 
Machinery Machinery Rental 

    Machinery Repair 
    Machinery Depreciation 

    
Interest on Machinery Inventory (5 % of the average 
value) 

  
Building 
Materials Building Expenses 
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Table 1.  DFBS Items Aggregated to form Inputs and Outputs (cont.) 

Input Price Index DFBS Items Aggregated 
   
  Rent Rent 
    Real Estate Depreciation 
    Interest on Real Estate (5 % of the average value) 
  Taxes Tax Expenses 
  CPI Insurance 
  Interest Interest 
Crop  Fertilizer Fertilizer Expenses 
  Seeds Seed Expenses 
  Chemicals Spray Expenses 
  Fuel Fuel Expenses 
      

Output Price Index DFBS Items Aggregated 
Milk  Milk Milk Receipts 
Other Output Livestock Cattle  Accrual Receipts 
    Calf Accrual Receipts 
    Other Livestock Accrual Receipts 
  All Hay Crop Accrual Receipts 

  
Custom 
Rates Custom Machine Accrual Receipts 

  CPI Government Receipts 
    Other Receipts 
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    Table 2.  Summary Statistics for Aggregate Inputs and Outputs 

Variable Mean Std. Dev. Min Max 

Milk Output 6538 8830 375 83724

Other Output 931 1277 -326 10180

Operator Labor Input 274 136 34 857

Hired Labor Input 631 850 0 8324

Purchased Feed Input 1800 2463 60 22460

Livestock Input 1538 2176 94 21539

Capital Input 1849 2161 174 17785

Crop Input 415 490 5 3919
Operator Value of 
Labor and 
Management 347 244 45 2080

Net Farm Income 928 1448 -1536 12227

     Number of observations = 3375 
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    Table 3.  Aggregate Input and Output Price Indexes 

Year 
Milk 

Output 
Other 

Output 

Operator Value of 
Labor and 

Management / NFI 
Operator 

Labor Input 
Hired Labor 

Input 
1993 96 102 107 108 108 
1994 98 101 109 111 111 
1995 96 99 112 114 114 
1996 110 106 115 117 117 
1997 99 107 118 123 123 
1998 114 107 120 129 129 
1999 108 107 122 135 135 
2000 97 112 126 140 140 
2001 116 114 130 146 146 
2002 94 114 133 153 153 
2003 97 119 136 157 157 
2004 124 127 141 161 161 

      
           

 
Year 

Purchased 
Feed Input 

Livestock 
Input Capital Input Crop Input  

1993 102 104 102 98  
1994 105 105 108 102  
1995 101 107 115 108  
1996 127 107 121 114  
1997 125 109 125 116  
1998 112 107 122 108  
1999 104 113 123 108  
2000 104 120 125 124  
2001 111 124 129 123  
2002 114 125 131 118  
2003 113 124 133 136  
2004 122 133 140 150  
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Table 4. DEA Results; Average Technical Efficiency 
 -------- Input Oriented -------- 

Sample 1 Sample 2 
 Operator 

Labor in the 
Input Set 

Operator Value of 
Labor and 

Management in 
the Input Set 

Operator 
Labor in the 

Input Set 

Operator Value of 
Labor and 

Management in 
the Input Set 

Year     
1993 0.9374 0.9326 NA NA 
1994 0.9316 0.9276 0.9420 0.9467 
1995 0.9181 0.9150 0.9243 0.9285 
1996 0.9161 0.9144 0.9329 0.9485 
1997 0.9157 0.9195 0.9236 0.9385 
1998 0.9060 0.9077 0.9242 0.9344 
1999 0.9172 0.9224 0.9203 0.9433 
2000 0.9308 0.9272 0.9379 0.9495 
2001 0.9172 0.9105 0.9459 0.9478 
2002 0.9202 0.9178 0.9450 0.9479 
2003 0.9323 0.9315 0.9448 0.9574 
2004 0.9412 0.9475 0.9492 0.9606 

     
-------- Output Oriented -------- 

 Sample 1 Sample 2 
 Operator 

Labor in the 
Input Set 

Operator Value of 
Labor and 

Management in 
the Input Set 

Operator 
Labor in the 

Input Set 

Operator Value of 
Labor and 

Management in 
the Input Set 

Year     
1993 0.9249 0.9260 NA NA 
1994 0.9198 0.9223 0.9311 0.9462 
1995 0.9031 0.9081 0.9097 0.9250 
1996 0.9056 0.9076 0.9205 0.9473 
1997 0.9042 0.9125 0.9116 0.9356 
1998 0.8925 0.9019 0.9121 0.9331 
1999 0.9069 0.9183 0.9108 0.9424 
2000 0.9226 0.9227 0.9319 0.9494 
2001 0.9064 0.9028 0.9397 0.9452 
2002 0.9120 0.9120 0.9391 0.9465 
2003 0.9213 0.9257 0.9376 0.9567 
2004 0.9354 0.9416 0.9406 0.9585 
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Table 5. DEA Results; Average Cost and Allocative Efficiency 
 -------- Cost -------- 

Sample 1 Sample 2 
 Operator 

Labor in the 
Input Set 

Operator Value of 
Labor and 

Management in 
the Input Set 

Operator 
Labor in the 

Input Set 

Operator Value of 
Labor and 

Management in 
the Input Set 

Year     
1993 0.8039 0.8122 NA NA 
1994 0.8163 0.8071 0.8248 0.8375 
1995 0.7856 0.8057 0.7948 0.8264 
1996 0.7912 0.8064 0.8071 0.8302 
1997 0.7956 0.8024 0.8012 0.8168 
1998 0.7761 0.7908 0.7858 0.8338 
1999 0.7572 0.7847 0.7684 0.8267 
2000 0.7741 0.7737 0.7835 0.8302 
2001 0.7664 0.7582 0.8438 0.8294 
2002 0.7896 0.7825 0.8410 0.7963 
2003 0.8132 0.8050 0.8378 0.7984 
2004 0.8377 0.8326 0.8429 0.8353 

     
-------- Allocative (Cost) -------- 

 Sample 1 Sample 2 
 Operator 

Labor in the 
Input Set 

Operator Value of 
Labor and 
Management in 
the Input Set 

Operator 
Labor in the 
Input Set 

Operator Value of 
Labor and 
Management in 
the Input Set 

Year     
1993 0.8580 0.8718 NA NA 
1994 0.8771 0.8712 0.8761 0.8375 
1995 0.8567 0.8819 0.8607 0.8264 
1996 0.8647 0.8833 0.8653 0.8302 
1997 0.8697 0.8712 0.8679 0.8168 
1998 0.8577 0.8729 0.8513 0.8338 
1999 0.8266 0.8520 0.8360 0.8267 
2000 0.8325 0.8359 0.8363 0.8302 
2001 0.8354 0.8337 0.8917 0.8294 
2002 0.8586 0.8530 0.8897 0.7963 
2003 0.8727 0.8652 0.8869 0.7984 
2004 0.8905 0.8793 0.8881 0.8353 
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Table 6.  DEA Results; Average Revenue and Allocative Efficiency 
 -------- Revenue -------- 

Sample 1 Sample 2 
 Operator 

Labor in the 
Input Set 

Operator Value of 
Labor and 

Management in 
the Input Set 

Operator 
Labor in the 

Input Set 

Operator Value of 
Labor and 

Management in 
the Input Set 

Year     
1993 0.8981 0.8988 NA NA 
1994 0.8929 0.8998 0.9035 0.9227 
1995 0.8709 0.8786 0.8810 0.8984 
1996 0.8769 0.8808 0.8948 0.9219 
1997 0.8753 0.8843 0.8837 0.8994 
1998 0.8659 0.8774 0.8848 0.9060 
1999 0.8809 0.8943 0.8875 0.9250 
2000 0.8874 0.8868 0.9004 0.9213 
2001 0.8817 0.8751 0.9185 0.9262 
2002 0.8871 0.8860 0.9130 0.9160 
2003 0.9027 0.9077 0.9182 0.9411 
2004 0.9145 0.9228 0.9201 0.9440 

     
-------- Allocative (Revenue) -------- 

 Sample 1 Sample 2 
 Operator 

Labor in the 
Input Set 

Operator Value of 
Labor and 
Management in 
the Input Set 

Operator 
Labor in the 
Input Set 

Operator Value of 
Labor and 
Management in 
the Input Set 

Year     
1993 0.9701 0.9696 NA NA 
1994 0.9701 0.9749 0.9696 0.9741 
1995 0.9634 0.9666 0.9671 0.9702 
1996 0.9673 0.9696 0.9706 0.9723 
1997 0.9668 0.9679 0.9680 0.9601 
1998 0.9690 0.9720 0.9690 0.9701 
1999 0.9709 0.9734 0.9741 0.9812 
2000 0.9600 0.9594 0.9647 0.9692 
2001 0.9709 0.9676 0.9769 0.9792 
2002 0.9717 0.9708 0.9716 0.9667 
2003 0.9782 0.9796 0.9781 0.9829 
2004 0.9769 0.9794 0.9773 0.9840 
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Table 7. Results from Sample 1  
Average Change in Efficiency from the Inclusion of Operator Value of Labor and Management     

       
       

Year 

Output 
Oriented 
Technical 
Efficiency   

Input Oriented 
Technical 
Efficiency   Cost Efficiency   

Allocative 
(Cost) 

Efficiency   
Revenue 

Efficiency   

Allocative 
(Revenue) 
Efficiency  

1993 0.0011   -0.0048 ** 0.0083 ** 0.0138 ** 0.0007   -0.0005   
 (0.5506)  -(2.7677)  (5.0051)  (7.1259)  (0.3049)  -(0.4068)  
1994 0.0025  -0.0040  -0.0092 ** -0.0058 ** 0.0068 ** 0.0048 ** 

 (0.9219)  -(1.7376) * -(5.6206)  -(2.8016)  (2.3512)  (3.9333)  
1995 0.0050  -0.0031  0.0201 ** 0.0251 ** 0.0077 ** 0.0033 ** 

 (1.8111) * -(1.1972)  (10.6969)  (9.7235)  (2.3454)  (2.3699)  
1996 0.0020  -0.0017  0.0152 ** 0.0186 ** 0.0039  0.0023 * 

 (0.8782)  -(0.7887)  (9.2191)  (9.0549)  (1.5544)  (1.93)  
1997 0.0083 ** 0.0037  0.0068 ** 0.0015  0.0090 ** 0.0012  

 (3.7094)  (1.6919) * (3.6852)  (0.4348)  (3.4794)  (0.6785)  
1998 0.0094 ** 0.0017  0.0147 ** 0.0152 ** 0.0115 ** 0.0030 ** 

 (4.2582)  (0.7746)  (7.9529)  (6.2042)  (4.4822)  (3.1106)  
1999 0.0114 ** 0.0052 ** 0.0275 ** 0.0254 ** 0.0133 ** 0.0025 ** 

 (5.5203)  (2.278)  (12.2995)  (9.2996)  (6.2768)  (2.2582)  
2000 0.0001  -0.0036  -0.0004  0.0034  -0.0006  -0.0006  

 (0.0472)  -(1.5949)  -(0.2117)  (1.5705)  -(0.1999)  -(0.4148)  
2001 -0.0036  -0.0068 ** -0.0082 ** -0.0016  -0.0065 ** -0.0033 ** 

 -(1.1697)  -(2.3205)  -(4.3354)  -(0.6176)  -(1.9724)  -(2.4861)  
2002 -0.0001  -0.0023  -0.0071 ** -0.0056 ** -0.0011  -0.0010  

 -(0.0352)  -(0.951)  -(3.6409)  -(2.2167)  -(0.4519)  -(0.836)  
2003 0.0044 * -0.0008  -0.0082 ** -0.0074 ** 0.0050 * 0.0013  

 (1.7323)  -(0.3031)  -(3.6345)  -(2.3806)  (1.7911)  (0.9678)  
2004 0.0062 ** 0.0062 ** -0.0051 ** -0.0111 ** 0.0084 ** 0.0024 ** 

  (3.0322)   (2.8501)   -(3.1538)   -(5.0063)   (3.3366)   (2.0293)   
(t-statistics in parentheses); *, ** signify 90 and 95 percent significance.                             
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 Table 8.  Results from Sample 2                             
Average Change in Efficiency from the Inclusion of Net Farm Income from the Previous Year       

       
       

Year 

Output 
Oriented 
Technical 
Efficiency   

Input 
Oriented 
Technical 
Efficiency   Cost Efficiency   

Allocative 
(Cost) 

Efficiency   
Revenue 

Efficiency   

Allocative 
(Revenue) 
Efficiency   

1994 0.0152 ** 0.0047  0.0127 ** 0.0090 ** 0.0192 ** 0.0045 ** 
 (3.8003)  (1.3089)  (3.0065)  (2.4005)  (4.2198)  (2.7775)  
1995 0.0154 ** 0.0042  0.0316 ** 0.0305 ** 0.0174 ** 0.0031 * 
 (3.4562)  (1.0139)  (7.5832)  (7.2293)  (3.6917)  (1.7647)  
1996 0.0268 ** 0.0156 ** 0.0231 ** 0.0101 ** 0.0271 ** 0.0017  
 (6.4361)  (4.0155)  (5.4493)  (2.5480)  (5.7729)  (0.9295)  
1997 0.0240 ** 0.0149 ** 0.0156 ** 0.0021  0.0157 ** -0.0080 ** 
 (5.7686)  (3.9005)  (3.3710)  (0.5096)  (3.5146)  -(3.3908)  
1998 0.0211 ** 0.0102 ** 0.0481 ** 0.0416 ** 0.0212 ** 0.0011  
 (5.4848)  (2.7786)  (12.4609)  (10.5849)  (5.1956)  (0.5237)  
1999 0.0317 ** 0.0230 ** 0.0584 ** 0.0417 ** 0.0374 ** 0.0070 ** 
 (7.8727)  (5.6371)  (12.1122)  (9.0369)  (9.0337)  (3.9087)  
2000 0.0176 ** 0.0116 ** 0.0468 ** 0.0391 ** 0.0209 ** 0.0045 ** 
 (5.0423)  (3.1647)  (10.4285)  (9.8745)  (4.8463)  (2.3963)  
2001 0.0056  0.0018  -0.0144 ** -0.0162 ** 0.0077 * 0.0022  
 (1.5087)  (0.5356)  -(2.8248)  -(3.3820)  (1.8896)  (1.2644)  
2002 0.0075  0.0028  -0.0447 ** -0.0500 ** 0.0031  -0.0049 ** 
 (1.8847)  (0.7409)  -(7.3964)  -(8.7750)  (0.6923)  -(2.3253)  
2003 0.0191 ** 0.0126 ** -0.0394 ** -0.0523 ** 0.0229 ** 0.0048  
 (3.8659)  (2.7288)  -(7.0889)  -(9.6291)  (3.6019)  (1.7261)  
2004 0.0179 ** 0.0114 ** -0.0076  -0.0191 ** 0.0239 ** 0.0066 ** 
  (4.0859)   (2.7101)   -(1.4432)   -(4.1633)   (4.8550)   (3.1576)   

(t-statistics in parentheses); *, ** signify 90 and 95 percent significance.
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