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This thesis considers the question of how to most effectively conduct experi-
ments in Partially Observed Markov Decision Processes so as to provide data
that is most informative about a parameter of interest. Methods from Markov
decision processes, especially dynamic programming, are introduced and then
used in algorithms to maximize a relevant Fisher Information. These algorithms
are then applied to two POMDP examples. The methods developed can also
be applied to stochastic dynamical systems, by suitable discretization, and we
consequently show what control policies look like in the Morris-Lecar Neuron
model and the Rosenzweig MacArthur Model, and simulation results are pre-
sented. We discuss how parameter dependence within these methods can be
dealt with by the use of priors, and develop tools to update control policies on-
line. This is demonstrated in another stochastic dynamical system describing

growth dynamics of DNA template in a PCR model.
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CHAPTER 1
INTRODUCTION

Hidden Markov Models have proven their usefulness across a wide variety
of applications. In many of these applications, the user or the experimenter will
have some way of influencing the transitions of the underlying Markov Chain,
as in Markov Decision Processes, and such a process is called a Partially Ob-
served Markov Decision Process (POMDP), see Monahan [6]. If we assume that
the transition probability matrix is governed by some unknown parameters, an
important problem is to understand how the process can be influenced to get
data that is most informative about the parameters. We can think of this as

experimental design for Partially Observed Markov Decision Processes.

.....

Markov Chain, where the transition probabilities depend in a parametric way
on what control u, is chosen at time 7 and an unknown parameter 6. The process

y: is observed and depends on which state x; is in.

Our goal is to find ways to use the controls i, to improve parameter estimates
of 6. Since the maximum likelihood estimates for § will be asymptotically effi-
cient, our general strategy will be to use the controls to try to minimize the sam-
ple variance of the maximum likelihood estimates of 6. This will be achieved
by maximizing a Fisher Information for 6. The controls are calculated using dy-
namic programming, a popular maximization algorithm from Markov Decision
Processes which outputs an adaptive control policy, i.e. the control chosen at

time ¢ is based on observations up to time .

In Chapter 2 we review the relevant theory from Hidden Markov Models



and modify it to allow for controls. We discuss forgetting properties of the fil-
ter and score function, which will be needed to prove convergence results in
Chapter 3. Then we review relevant theory from Markov Decision Processes,

especially dynamic programming and the Value Iteration Algorithm.

The first attempt at using dynamic controls to maximize a Fisher Informa-
tion was by Hooker et al. [5] who proposed maximizing the Fisher Information
that corresponds to direct observations of the underlying process x;, labeled the
Full Information Fisher Information (FOFI), and using a filter to compute x; if
it is not observed directly. We extend their work by making use of the POMDP
structure and we propose maximizing a Fisher Information that is based on the
observations y,, labeled the Partial Observation Fisher Information (POFI). We
show that maximizing POFI directly using dynamic programming is compu-
tationally unfeasible, and in Chapter 3 we give two approximations to POFI,
the truncated Partial Observation Fisher Information, and the Weighted Obser-
vation Fisher Information (WOFI) and bound the difference between them and

POFIL.

In Chapter 4 we discuss how these Fisher Information criteria are maxi-
mized using dynamic programming and discuss the computational complexity
of running such algorithms. Then we describe parameter estimation techniques
within POMDP’s, review the asymptotic properties of the MLE and bound the
difference between the asymptotic Fisher Information of our estimate and the

theoretically best possible Fisher Information.

The methods developed have application value beyond Partially Observed

Markov Decision Processes. In Chapter 6 we consider stochastic systems of the



form

dx = £(x, 0, u(t))dt + '*dW

where 6 is the parameter of interest, to be estimated, u(z) is a control that can
be chosen by the user, x is the vector of state variables, f is a vector valued
function, W a Wiener process, and additionally x(¢) is only observed partially
or noisily. By discretizing time, state and observation spaces the process can
be approximated by a POMDP, allowing us to use the methods developed to

devise a control policy that maximizes information about the parameter 6.

In order to illustrate our methods we present five examples, with the first
two being POMDP’s and the latter three continuous stochastic systems. We use
the unknown 6 to calculate controls in all but the last example to highlight the
differences between the different maximizing criteria, but in the last example we
examine means to deal with the dependence of the Fisher Information criteria

on the parameter of interest.

In Chapter 5 we consider 2 POMDP examples. First we hypothesize about
the kind of systems in which policies based on POFI will lead to large improve-
ment in parameter estimation over the FOFI policy. Following a discussion we
construct a mock Partially Observed Markov Decision Process, in which this
improvement is shown using a simulation study. To illustrate the real-world ap-
plicability of design in discrete POMDP’s we consider a realistic POMDP from
experimental economics. The model will consist of a simple adversarial game
similar to the “rock - paper - scissor" game where one player tries to play in such

a way that maximizes information about the other players’ strategy.

In Chapter 7 we consider two diffusion processes. First a stochastic version

of the Morris-Lecar Neuron model, a dynamical system which models voltage



in a single neural cell. This model is two dimensional, but only one dimension is
observed. The model has multiple parameters and we investigate how the trun-
cated POFI, WOFI and FOFI control policies perform in estimating them. Then
we consider the Rosenzweig MacArthur Model, which describes a two species
ecology, with a predator species consuming a prey species in a controlled envi-
ronment, and we look into control policies towards estimating the rate of which

prey is consumed.

The methods we use to calculate controls for maximizing Fisher Informa-
tion will depend on the unknown parameter 6. In Chapter 8 we illustrate how
this problem can partially be overcome by assuming a prior for 6 to calculate
a control policy before running the experiment. Additionally we describe how,
using data acquired as the experiment progresses, a posterior for 6 can be used
to calculate a more precise control policy. That is, parameter information from
observations acquired at a time ¢ can be used to improve the policy used in
what is left of the experiment. These methods will be based on the Value Itera-
tion Algorithm (VIA), which is closely related to dynamic programming. This
is illustrated in a fifth example, now from biology, a Polymerase chain reaction
(PCR) experiment where DNA template is grown in liquid substrate. The popu-
lation dynamics are modeled in a dynamical system with stochastic errors, and
the aim is to estimate the half-saturation constant, a parameter which controls
the saturation of the template. Here we compare using a prior for 6 and using

VIA to calculate a control policy.



CHAPTER 2
FRAMEWORK, LITERATURE REVIEW AND THEORY

2.1 Framework

,,,,,

chain, but the transition probabilities at time  depend on a control u, chosen at
that time. We assume a finite state space X for the state process X, and that the
controls available belong to some finite set U/. We let K denote the size of X and
[ the size of U. The transition probabilities are assumed to be parametric and
we frequently write p(x.1]x,, u;, 6) short for p(x.. = X|x, = x/,u, = u’,6) where

X, x’eXand u" € U.

In addition to this we assume that the process X; is latent and we only ob-
serve the related observations Y; € M/ whose relation to the X; can also depend on
6. We write p(y,|x;, 6) short for p(y, = y'|x, = x/,0), where x/ € X and y/ € Y, and let
L denote the size of Y. This makes the system a Partially Observed Markov De-
cision Process (POMDP). It has a finite horizon 7 in which we observe yj ... yr.
We will use the short hand notation y,,; to denote y,,, ..., y;, i.e. the observations

between time m and ¢, and analogous notation for u, and x;,.

2.2 Hidden Markov Model theory, adjusted for controls

This section is devoted to expanding Hidden Markov Model Theory to Par-
tially Observed Markov Decision Processes. We base it completely on Cappe

et al. [1] and use their notation, only changing what is necessary. Reviewing



forward and backwards variables, see 2.2.2, will be useful to describe the EM
algorithm in 4.4.1, but the main objective here is to prove Theorem 1 in Sec-
tion 2.2.5 about the forgetting properties of the filter p(x;[yo., uo.-1,6) and Theo-
rem 3 in Section 2.2.7 about the forgetting properties of the corresponding score
function. The latter is then used to prove Theorem 5 in Section 3.6 and Theo-
rem 7 in Section 3.9. In most cases the changes will amount to adding controls
and seeing that the theory follows through, although the proof of Theorem 3

has more substantial changes.

The forgetting properties of the filter p(x;|yo.., uo.-1,6) will describe the in-
tuitive statement that the filter depends less on older observations than new,

although showing this is somewhat subtle.

2.2.1 Framework

Cappe et al [1] allow for continuous state spaces, and thus use integrals instead
of sums, etc. Since in this part we are only modifying their theory to allow for

controls, we adopt their notation for all of Section 2.2.

Let (X, X) and (Y, Y) be the state space and the observations space respec-
tively. Let
0"(x,A) = fq”(x, xXNdx', Ae X,uel
A

be a transition kernel for our state space, where u is a control, and U is finite.

Also let
G(x,A) = fg(x, yvdy, AelY
A

be the transition kernel for moving from the state space to the observation space.



We generally assume that the Markov Chain is initialized with distribution

v, and then runs for n steps x¢., = xo, ..., x, and that n — 1 decisions are made on
what controls u to use. This results in n observations yy., = yg,...,y, and n — 1
control ug.,,_1 = ug, ..., U,_1.

2.2.2 Forwards and Backwards variables

Definition 1 (Definition 3.1.6 in [1]). Conditional on yo, and ugx—, we define the

forward variable

k
@y j Yok, Uok-1, f) = f o ff(xk)V(dxo)g(xo,yo) n Q" (xp—1, dx1)g(x1, y1)
i=1

and conditional on yy,1., and u.,—, we define the backward variable

BinVics1:n5 Ukin—1, X) = f"'fQuk(X, Axs1)8(Xk+1, Yir1) 1—[ Q"' (x1-1, dx1)g(x1, 1)

I=k+2

As in the classical case these satisfy recursion formulas

@y j (Yo:ks Uok—15 ) = ff(xk) fav,k—l(}’o:k—l, Uo:k—2, AXp—1) 0" (Xk—1, dX1) 8 (X, Vi)

with initial condition

a,o(f) = f S (x0)g(x0, yo)v(dxo)

and similarly

ﬁkln(}’kn:n, Uen-1,X) = f Q" (x, dxy11)8(Xps1, }’k+1),3k+1|n()’k+2:n, Uk 1:n—1> Xiee 1)

2.2.3 Forwards and Backwards Kernels

A standard result in HMM theory is that conditional on the observations y.,

the Process {X;}i> still is a Markov Chain, although non-homogeneous, with a



transition kernel called the Forward Smoothing Kernel. We state the transition

kernel here for our case, also conditional on the controls.

Definition 2 (Definition 3.3.1 in [1]). Forward Smoothing Kernels. Given n > 0

define for indices k € {0, ..., n — 1} the transition kernels

fA Q" (X, dxp1)8( X 1> Yir 1)Br 110Xk 1)
ﬁkln(x)

Fkln(xa A»yk+l:n’ uk:n—l) =

Note that the Forward Smoothing Kernels are defined in terms of the back-

ward variables.

We are generally interested in calculating smoothers and filters for our POMDP.

Definition 3 (Definition 3.1.3 in [1]). We let ¢, ., denote the conditional distribution

of X given Y., and ug.,—;.

The Forward Smoothing Kernel allows us a convenient way of calculating
the smoothing distributions. We first compute all the backward variables Sy,

using the backward recursion given. We then note that ¢, can be calculated as

[, v(dx0)g(x0, y0)Boi(%0)
[ v(dx0)g(x0, y0)Bon(Xo)

and then we have the following recursion

¢v,0|n (A) =

Gy ir1n(X) = f Gy in(dX) Fign (X, X) = @y pinFign

where Fy, are the forward kernels, and the last equation is a short hand way of

writing the integral.

Using this recursion repeatedly allows to express the smoother in the follow-
ing way

k
Oy iin[ Y0y Uon-11 = Dy o n Fiotplyions Wici:n-11
i=1



2.2.4 Total Variation and Dobrushin Coefficient

To continue towards forgetting properties we introduce Total variation (see Def-
inition 4.3.1 in [1]). Let £ be a signed measure, which can be negative, and let

& =&, — & where &,, & are (positive) measures. So if X is the state space then

1€llrv = £4(X) + £-(X)

Next, we let K be a transition Kernel from X to Y. The Dobrushin Coefficient

(see Definition 4.3.7 in [1]) is defined as

o(K) =5 sup |IK(x,-) = K(X',)llry

1
2 (x,x")eXxX
The Dobrushin coefficient is sub-multiplicative (see Prop. 4.3.10 in [1]). If K :

X - Y,R: Y — Z are 2 transition kernels we have

0(KR) = 6(f K(-, dx)R(x, -)) < 0(K)O(R)

It can be shown that 0 < 6(K) < 1, however to establish forgetting properties

we often need 6(K) < 1 — &, where ¢ > 0.

The latter inequality holds if we assume the Doeblin Condition is satisfied:

Assumption 1 (Assumption 4.3.12 in [1]). There exist an integer m > 1,& € (0, 1),

and a probability measure v on (X, X) such that for any x € X and A € X,

0"(x,A) > ev(A)

Under these assumptions Lemma 4.3.13 in [1] gives 6(Q™) < 1 —¢.

We say that a filter ¢, 4, has forgetting properties if it depends less and less
on the initial distribution of X, ~ v, as k increases. Specifically when comparing

initial distributions v and v’ we have



¢v,k|n(y0:m Up:n-1, xk) - ¢v’,k|n(y0:n’ Up.n-1, xk)

k
= f o f(¢v,0|n(y0:n’ Uin—1> X)) — ¢v',0|n(y0:n’ Uo:n—1, Xk)) ]—[ Fi—1|n(xk—1, Xk)

i=1

Now using Corollary 4.3.9 in [1] we have

1K = &' Kllrv < 6(KIIE = &'llrv

where &, ¢’ are probability measures, K a transition kernel.

Using this on our representation of the filters gives

k
By iin — v inllry < 5(1_[ Fi 1n(Yiins ')) ¢y 01 — Sy ol
i=1

Now since the Dobrushin coefficient is sub-multiplicative

k
< 1_[ 0 (Fi—lln(yi:m )) ||¢v,0|n - ¢v’,0|n”TV
i=1

and since the Dobrushin coefficient § satisfies 0 < § < 1 we at least have that the

difference between the 2 filters is non-expanding.

Establishing forgetting properties thus amounts to showing §(F;_1j,(yi.)) <
1 — & for the forward smoothing kernels F;,. Note that so far no assumptions
have been made on how quickly the Hidden Markov Model mixes. Those as-

sumptions are made to get 6(Fy,) < 1 —&.

2.2.5 Mixing Conditions and forgetting properties

Cappe et al. [1] establish contracting bounds on the Dobrushin coefficient by
imposing Strong Mixing conditions on the transition probabilities of the Hidden

Markov Model.

10



Assumption 2 (Assumption 4.3.21 in [1]). Strong Mixing Conditions in Hidden
Markov Models. There exist a transition kernel K : Y — X and measurable functions

¢~ and ¢* from Y to (0, co) such that forany A e Xandy €Y,

s K>, A) < fA O(x,dx')g(x',y) < s*(MK(y, A)

In our case we have different transition kernels for each control. The weakest
assumptions we can get away with is, if each transition kernel Q" has a corre-
sponding transition kernel K" and measurable functions ¢”(y, u) and ¢*(y, u) sat-
isfying the strong mixing condition. By letting ¢7(y) = min, ¢™(y,u) and ¢*(y) =
max, ¢*(y, u) we see that we can consider the same ¢ functions for each transition

kernel Q". We restate the Strong mixing conditions for POMDP’s:

Assumption 3. Modified Strong Mixing Conditions. For each control u there exist a
transition kernel K" : Y — X and measurable functions ¢~ and ¢* from Y to (0, o) such

that forany Ae XandyeY,

¢ (K" (v, A) < fA 0"(x, dx)g(X',y) < " (K™ (y, A)

Lemma 4.3.22 in Cappe et al. [1] uses the mixing conditions stated above
to establish contracting bounds on the Dobrushin coefficient. We restate the
lemma for the POMDP case, where we also condition on the controls, and use

the modified mixing conditions.

Theorem 1 (Lemma 4.3.22 in [1]). Under the strong mixing conditions the following
holds

(1) For any non-negative integers k and n such that k < nand x € X,

1_[ S V) < Bunlyks1:n ticn—11(x) < n sT())

=kt 1 j=k+1

11



(ii) For any non-negative integers k and n such that k < n and any probability mea-

sures vand v on (X, X),

SO _ [ Adx)Bugn s 0 ticn-11(2) SOk
StOk+1) fv(dx)ﬁk|n[yk+1,,,uk,, i (x) S~ ks1)

(iii) For any non-negative integers k and n such that k < n, there exists a transition
kernel Ay, from (Y"*, Y0 to (X,X) such that for any x € X, A € X, and

-k
Yi+1:n ey s

S )
+(yk“ An Ok toms Uonots A) < Fign[Vis 1ms tien 10X, A)
S (Vks1)
ST ks1)
< _())kH Aen Vs 1:n> Upen—1, A)
S~ (Vk+1)

(iv) For any non-negative integers k and n, the Dobrushin coefficient of the forward

smoothing kernel F,[Yi+1:n» Ur:n—1] satisfies

S(Fun[Yis 1oms thinr]) < Poyesr) i= 1 — %
ifk <n,and
S(F in ks 1:ms Uin—1]) < 1 —fg‘(y)dy
ifk > n.

Proof. The proof is the same as for the corresponding lemma in Cappe et al. [1],

but with slight modifications to allow for conditioning on controls.

(i) Letting A = X in the strong mixing conditions we find that for all u

s (< f Q"(x,dx")g(x',y) < ¢ (y)

12



We also have

ﬁkln(x):f f O™ (x, dXi1)8(Xks15 Yir1) l_[ Q" (x1-1, dx)g(x1, y1)

I=k+2

= Q" (x, dxys1 )8 (Xks1s Yir1)

Xk+1

Xf f Q" (Xks1, AXki2) 8 (Xks2, Yics2) 1_[ Q"' (x1-1, dx))g(x1, 1)
Xke+2 Xn

I=k+3

< ¢ (Yks1) SUP f f Q"N (Xper1> AXk12)8 (X425 Yies2)
Xk+2 X

Xk+1 n
n

X 1_[ Q"' (x1-1, dx))g(x1, 1)
I=k+3

= 6" Vis1) SUP Bra1n(X) < n s ()

Jj=k+1

The other inequality is similar.

(ii) Using the recursion for the backward variables we find

f V(dX)Bign Ve 1:n5 Uin—1)
= f v(dx) Q" (x, Xk1)8(Xkr 15 Yiew )Pk 110 Va2:ms Ukr 1:n—15 AXpes1)
X S Xg+1

:f [fv(dx)Quk(X, Xk+1)g(xk+1,yk+1)],3k+1|n()’k+2;n,Mk+1;n—1,dxk+1)
Xie+1 X

X

< f [fv(dx)§+@k+1)Kuk(Yk+1, Xk+1)] Brs1inVk+2:n> Uicr 1:n-1> AXk41)
Xie+1

= ¢ (Vir1) K™ (Vs 15 X+ 1)Brr 110 Vkr2:ns Uk 1:—15> AXper 1)

Xk+1

We get a similar inequality for ¢~. Also note that the last integral doesn’t
depend on v, so it cancels when we take the ratio. The result follows.
(iii) We have that

fA Q" (2, dxies 1) (X 15 Vw1 B 11 (X 1)
f Q" (x, dxi1)8(Xie 15 Yir1)Brer 1jn (X 1)

Fkln[yk+l:n» uk:n—l](x, A) =

- S (Vis1) fAK”"()’k+1,dxk+1)ﬁk+1|n(xk+1)
T Ok [ K%ty X )Brestin (K1)

13



and we can set

fA K" (Yiev 1> X 1)Br 11 (X4 1)
fK”k(YkH, A X 1)Brs 1 (Xes1)

Akn Vs 1200 Ukein—1,A) =

(iv) Using (iii) we find that

™ k1)
Stk+1)

FrnlYis1:n Uen-11(x, A) > Akn Vit 1205 Uicn—1, A)

and thus Assumption 4.3.12 holds and Lemma 4.3.13 gives

S Ow+t)

O(Fin) < poyerr) = 1
Kl PoVi+1 )

O

Theorem 2 (Proposition 4.3.23 in [1]). Under the strong mixing conditions the fol-

lowing holds

(i) We let v and v’ be two different initial distributions for X,. Now for k < n

1By, k1 [Y0:0> U0:n-11 = Dy kn Y05 U0n—11ll7v

k
Hpo(yj)

j=1

k
)
j=1

(ii) For any non-negative integers j, k,n such that j <k <n

< ||¢V,O|n[y0:na uO:n—l] - ¢v’,0|n [yO:n’ uO:n—l]HTV

<2

”Pv(Xk € - |y0:na uO:n—l) - Pv(Xk €- |Yj:na uj:n—l)”TV

k
<2 HPO(yi)
i=]

where v is the initial distribution of X,.
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Proof. (i) Earlier we had

k
”(pv,kln - ¢v',k|n”TV < n 0 (Fi—lln@i:m )) ||¢v,0|n - ¢v’,0|n”TV
i=1

and the first inequality now follows from the Lemma 4.3.22 part (iv). The
factor "2" follows from using the triangle inequality on the difference of

two probability measures.
(ii) This isjust like part (i) except we consider different initial distributions for

Xi.

J

2.2.6 Fisher’s identity

Fisher’s identity (see Proposition 10.1.6 in [1]) gives an alternative way to cal-
culate the score function a%1(9). This is based on theory associated with the EM

algorithm.

In general one can set f(x;60) = f(x,y;6), the joint pdf of x,y. The likelihood

for Yis L(8) = [ f(x;6)dx and I(6) = log L(6) the loglikelihood. Set p(x; ) = L=

L) ’

the conditional of X given Y.
Now set
00,0) = flog f(x;0)p(x;0)dx = E[log f(x;0)|Y]

and

H(,0) = - f log p(x; O)p(x; 0')dx

15



We find that
00.0) = f log f(x; 6)p(x; & )dx = f log(p(x; OLO)p(x; O )dx

= 1) + f log p(x; O)p(x; &)dx = 1(0) — H(6, )

It is easily seen that H(6,8") is minimized as a function of 6 at #” and thus

0 0 0 0
_ / - / . _ / L, = _l . ., /
601(9 ) BHQ(Q’ )lo=o + 69H(9’ )lo=0 f %0 og f(x;0)lp=¢ p(x, 0 )dx

assuming we can exchange derivatives with integration. The last equation is

called Fisher’s identity.

In the POMDP case this translates to

F 005 Yorns Uon-1,0) = v(X0)8(X0, Yo; 0)q" (X0, x150)8(x1,y1; )

o @ (X1 X 0)8 Xy Y 0)

and then
n—1
log f = log v(xo; €) + log(xo, yo; 0) + Z log(q"™ (xk, Xk+15 0)8 (X1, Yi+13 6))
k=0
and

Q(Q’ 9,) =F [log f|YO:n, uO:n—l]

= Ey [log v(x0; O Yo, Uon-1] + Eg [log g(x0, Y05 )| Y0n» thoin-1]
n—1

+ D By [102(q" (ks X1 0)8 (ke Yoot ) Yo, 1]
k=0

We set ¢(x, x",u,y) = 0% log(q“(x, x';0)g(x’,y’; 0)) and get

0 0 0
8—91(9) =Ey [% log v(xo; Y00, Uo:n—1 | + Eg %0 log g(x0,¥0; Yo, Uo:n-1
n—1
+ Z Eg [d( Xy X1, s Vier 13 DN Youns Uoin—1]
=0
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This is a different expression of the score function from the usually consid-

ered

n—1

0
%1(9) % log p(Yi+11y0:k5 Uo:k-1,0)

2.2.7 Bounds on score function, with adjustments

Set h(0) = log [fg(xk, YOP(X; € dxi|Yor—1, to-k-1, Xo = x)]. Then our usual log-
likelihood is 1, ,,(6) = X;_q h..(6)

We now wish to use the expression for %1(6) derived in the last section. We

have that £1,,,(0) = 3i_, /u..(6) but also

8
2glin®) = xo<e> * Z{ag () = 2ol 1<9>}

This gives an alternative expression of /i ,. We get f.(6) = £ log g(xo, Y) and
fork>1

6 6
hk x(e) xk(g) xk 1(9)

=F Z (X1, X, Y))
i=1
k=1
E Z d(Xi—1, Xi, Y1)

i=1

Yk, -1, Xo = X}

Yik—1,Uo:k-2, Xo = X]

This expression can be generalized to starting the process at other values than

Z€ero,
hk,m,x(g) = log [fg(xka Yk)P(Xk € dxklym:k—la Um:k-15 Xm = X)]

k
> oK, X VY,

m+1:ks Um:k—15 Xm =X

i=m+1
k-1

—E| > ¢(Xe1, X V)Y,

k=1 Umek—2, Xom = X]

i=m+1

17



This is done in Cappe et al. [1] to extend the process to minus infinity (m — —oo).
We don’t extend the process to infinity, but rather think of m as indicating lack

of information, that is assuming that the process starts at X;,.

We now prove a modified Lemma 12.5.3 where we use the expression devel-

oped above.

Theorem 3 (Lemma 12.5.3 in [1] modified). Assuming strong mixing conditions.

Then for k > 1 Cappe et al. [1] prove the following inquality in the HMM case:
])1/2 plkem)/2-1

. . 2 1/2 , )
(Elrt-ma(0) = oo (@F) ™ < 12| E | sup I(x, ', Y1) =

x,x'eX
We don’t extend the process to —co, but rather starting at X, and we prove the following

inequality, also for k > 1

(k—m)/2—-1
. . N\ 172 , Jo,
(Elko.o(0) = humO)F) <8 sup ligy(x, ', I~

x,x’eX,ucl,yeY

where p = max,ey po(y) (See Theorem 1).

Proof. From the representation derived above for 1 we have

k
Mo (0) = E Z d(Xi1, Xi, Yi, uin )| Y1k, -1, Xo = Xo] (1)
i=1
k-1
-E Z O(Xi1, Xi, Yi, uin )| Y-t Uok—2, Xo = Xo] (2)
i=1
and
k
hk,m,x(e) =F Z ¢(Xi—1,Xi, Yi, uii )Y i1 i1, Xon = x] (3)
i=m+1
k-1
-E Z A(Xiz1, Xi, Yis i) | Yin1:k-1 Umek—25 X = x] (4)
i=m+1

Just like in the proof of Lemma 12.5.3 in [1] we match together different pairs

of terms within the sums, depending on their index i. More specifically for i = k

18



we match together the terms where i = kin (1) and (3). For ’% < i< kwe match
the terms in (1) with (3) and the terms in (2) with those in (4). For m+1 < i < &2
we match terms in (1) with terms in (2) and terms in (3) with those in (4). That

leavesi€ 1,...,min fy,, where we match (1) and (2).
If we look at the case where (1) is matched with (3) we have

IE[o(Xiz1, Xi, Yi him )| Y o125 Uneie—1, Xon = X] — E[@o(Xiz1, Xiy Yis t4im1)Y 1245 to:—1 ]

= ’f f f¢€(xi—1’xi, Yi,u))Fioi(xio1, dx)Po(Xi1 € dxi-1|Yps1: Umi—15 X = X)
X Jxim) Jxg

X [0x(dxy,) — Po(X,, € dXp|Y 1k, Uok-1)]

<2 sup |lgg(x, X', Y;, w)jp D

x,x’ eX,ucU

where Fi_y = Fi_y14[yix, ui-14] is the Forward Smoothing Kernel, and the inequal-
ity stems from Proposition 4.3.23 (i) where the second line can be thought of as

two different initial distributions for X,,, and the kernel F is bounded by 1.

Matching (2) with (4) is similar. For matching (1) with (2) and (3) with (4) we

need a "Backwards bound";
||P9(Xl € - |Ym+1:k, um:k—l’Xm = )C) - PQ(XL' S |Ym+1:k—l’ Um:k-25 Xm = X)HTV < 2,Dk_1_i
that is established below, see Theorem 4. For matching (3) with (4) we get

IEgldo(Xiz1, Xis Yiy him DY 1> U1, X = X]

- EO ¢0(XL 1> Xis Yn Ui l)lYm+lk 1> Umk— 27Xm - X]”

- |f f¢6(-xz 1> Xis Yz’ Ui I)B (xl’dxl 1)

X [Po(Xi € dxilY i1 Unmik—1> Xin = X) — Po(X; € dxilYpi1:-15 k2, Xon = X)]|

<2 sup |lpe(x, X', Vi, u)l[p*

x,x’eX,uelU
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where B, is the Backwards Smoothing Kernel described below. Matching (1)

with (2) is a special case of the above.

Going back to our original objective, we have

(E9||hk,m,x(9) = hk,O,xo(9)||2)1/2 — (E HZ aiHZ)l/Z

where 3}’ g; is a sum over the pairs we considered above. Now by Minkowski’s

inequality we have

< > (Ellal?)"”

Now we have that [la]| < 2sup, ,cy,.cp lIgo(x, X', Yi, w)llp” where b; is the power of
p associated with a;.
1/2
<), 2(E _sup_ [lgu(. . Y u)||2) o

At this point Cappe et al. [1] argue that since in their case the process was started
at infinity and the process is homogeneous the expected value over Y; is always
the same by stationarity, and Y; can be exchanged by Y,. Since arguing for sta-
tionarity is more of stretch for us, we also take the supremum over Y an is also
finite.

1/2
SZ( sup ||¢e(x,x’,y,u)ll2) Zpb"

x,x’eXucelUyeY

=2 sup ||¢e(x,x’,y,u)||Zpb"

x,x’eXuelUyeY

We now deal with the sum of p to different powers.

From i = k we have p*~!~" where we matched (1) with (3). For "*T’" <i<kwe
have 2p""!"" where we matched (1) with (3) and (2) with (4). Form +1 <i < "*Tm

we have 2o~ from matching (1) with (2) and (3) with (4). Finally for 1 <i<m
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we have p*!~" from matching (1) with (2). This gives

(k+m)/2-1 m
Zpb,- klm+Zszlm+ZZpkltZ——z
i=(k+m)/2 i=m+1 i=1
00 (k+m)/2-1
<9 Z pi—l—m ) Z pk—l—i
i=(k-+m)/2 i=—oco
(k=m)/2-1 (k-m)/2 (k=m)/2—1
1-p 1-p 1-p
Thus, finally we have
(k-m)/2-1

. . 172 , Jo,
(Eollitnc(®) = hos@IF) <8 sup ot 'y a0l ———=

x,x'eX,uelyeY

Theorem 4 (Proposition 12.5.4 modified).

||P9(Xl € |Ym+1:k’ um:k—l’Xm = )C) - PO(XL' € |Ym+1:k—l’ Um:k-25 Xm = x)”TV < 2,Dk_1_i

Proof. The idea behind this proof is to replicate all the results derived so far
for the Backward Smoothing Kernel. That is, conditional on Y., -1 and
Xn = X, the time-reversed process X is a non-homogeneous Markov Chain,
where the conditional probability of moving from X;,, to X; given all the obser-
vations Y,.14-1, controls u,,—, and initial condition ends up only depending on
Yyui1:j, Un:j and the initial condition, and is governed by the Backwards Smooth-
ing Kernel given by
By, ilumsr:js m: j1(x, f)
T 0 (s dx)g e, y) () QY () )
S T @ (e, dx)g (e, 3 QY (), X)

Just as we did in Lemma 4.3.22 we can show

s (y) sT(yj)

—g""(y]) Vx,,,,j[ym+1, l/lm:j] < me,j[ym+1;j, um:j](-xj, ) < Ty}.)vxm’j[ym+1’ um}]
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where

[ [TIL,. 0" (ot dx,)g(xn y) (X))
f' o fo:mH Qurfl(xr—l,dxr)g(xr»yr)

Vx,,,,j[ym+l, um:j](f) =

As we showed there this gives

s
st(yy)

We now get that the 2 smoothers we are interested in can be thought of as

0(By,.j) < 1

smoothers of the reversed Markov Chain from k — 1 to m with 2 different ini-

tial distributions for X;_;, the starting position. We get

I1Po(Xi € “|Yis1:> Unmik—1, X = X) — Po(Xi € “|Yips1:k=1> Uk, X = Xll7v

S Po(Xi=1 € - 1Yoms1:ks Umik—1> Xom = %) — Po(Xi—1 € | Ymsr:k=15 Umk—2, Xiow = X7y

k=1 k=1
x| [ 6B <2 | poop <20

Jj=i+l Jj=i+l

(where p = maxyey po(y)) .

2.3 Markov Decision Processes theory

In this section we review relevant MDP theory, noting that methods like dy-
namic programming and the Value Iteration Algorithm will be useful in our

pursuit to maximize various forms of Fisher Information.

.....

.....

lem we assume a reward function C,(X;, 4;) and the objective is to maximize the

total expected reward W,

W]ZE

i Ci(X,, ut):|
=0
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by use of the controls. The essence of dynamic programming is that by starting
at time 7 — 1 and working backwards, we can compute an optimal policy that
maps a state x, to a control u, that accounts for the choices of u, that we will make

in the future.

In a generic dynamic program we set V; = 0 and and then going backwards

fromt=T-1,...,0solve
Vi(x;) = nluaX{Ex,H [Ci(xp, ) + Vi (X)), 1]}
where V, is called the value function, and we get the associated control

uj(xt) = argmaX{Ex,+1 [Ci(xp ur) + Vi ()%, ue]}

for every state x;. This will give us a policy of what control to use at a certain
state x, at a certain time 7. The use of these controls will maximize the expected
total reward E[}, C/(X;, u,)]. We refer to Puterman [8] for a detailed description

of dynamic programming.

It will be useful to consider other criteria then the expected total reward W;.

Assuming an infinite time horizon we consider the expected average reward W,

i C(x;, ”t)]
=0

(note that this limit doesn’t always exist) and the expected total discounted re-

1
W, = lim -F

n—oo 1

ward W;

W3:E

i /lt_lc(xt’ uz)]

=0
that has a discounting factor 4 where 0 < 1 < 1, and exists if the reward C is

bounded. In both W, and W3 we assume that the reward function C is stationary

(time independent).
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Maximizing the expected total discounted reward Wj if frequently done via
the Value Iteration Algorithm (VIA), another popular MDP algorithm, again

see [8]. In VIA we calculate
Vn+l(~xta 9) = max {EX,+1 [C(xta U, 9) + /1 : Vn(xt+l’ 6)|xta Uy, 9]}
with the associated control

un+1(~xta 9) = argmax {Ele [C(xt’ Uy, 9) + /l : Vn(-xt+l’ 0)|xt9 Uy, 0]}

u

in a while-loop until v* converges to some fixed point, within some tolerance.
Convergence is guaranteed since each iteration of V" is a contraction mapping.
We note that the output of VIA will be a stationary policy, i.e. a policy that only

depends on the state x, and not the time .

To analyze the expected average reward W, we need some additional as-

sumptions on our MDP.

Definition 4. We say that a MDP is unichain if for every deterministic stationary pol-
icy the transition probability matrix consists of a single recurrent class plus a possibly

empty set of transient states.

In section 8.4.2 in Puterman [8] it is shown that if a MDP is unichain, the
reward C is bounded and stationary (time independent) and the state space
X and the action space U are finite then there exists a stationary policy that
maximizes W,. In section 8.5.1 they show that under these same assumptions,
running VIA with 4 = 1 converges in W,(«") (The expected average reward,
if only using control «") to its maximum, even though the value function v"
generally diverges. Also note that the operation of dynamic programming is

analogous to the operation of VIA with 1 = 1.
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One of the reason we bring this up is that when we analyze a control policy
only look at the policy u; when ¢ = 1, and label it the long-term policy. By the
above, we can argue that this is informative because it corresponds to a policy
that is close maximizing the expected average reward, and we can expect the
policy to converge in some sense as t — 0 if T is large enough (meaning that
there generally will not be much difference between the policy at say time ¢ = 1

and 1 = 2).

The last thing we mention from MDP theory is Blackwell optimality. It guar-
antees that a stationary policy that maximizes the expected total discounted re-
ward W; also maximizes the expected average reward W, (or its limsup if the
limit doesn’t exist), given that A is chosen close enough to one. This will be im-
portant when we consider algorithms based on VIA in Chapter 8. A Blackwell
optimal control policy exists under the same assumptions as listed above. How
small 1 — 12 needs to be is generally hard to determine, and choosing A too high
will cause VIA to converge slowly. See Puterman [8] chapter 10 for more on

Blackwell optimality.
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CHAPTER 3
FISHER INFORMATION

3.1 Objectives

Consider again our framework stated in Section 2.1. Our goal is to use the con-
trols uy.r to get an estimate of the parameter 6 that is as accurate as possible. We
will estimate # by maximizing the likelihood, see section 4.4. MLE’s are, un-
der suitable regularity conditions, unbiased and asymptotically efficient, with

asymptotic variance equal to the inverse Fisher Information

Vi@ - 6) 3 N, (FI©0)™)

Thus our strategy will be to maximize a Fisher Information FI(6, uy.r) by
using the controls u, adaptively, that is at time ¢ the u, chosen can, and gener-
ally should, depend on the observations yi,...,y,. We will now discuss various

forms of Fisher Information and their properties.

3.2 FOFI

The first attempt at maximizing Fisher Information using controls was by Hooker
et al. [5]. They considered constructing an optimal control policy for the Fisher

Information that would apply if (X;) were observed directly;

-1 4 2

FI=F ((9_ log p(x/41|x;, uy, 0)
t=0 g

We label this the Full Observation Fisher Information (FOFI). When consider-

ing continuous time stochastic systems, the state space is continuous, but we
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use this Fisher Information as an approximation to the continuous state Fisher
Information. An advantage of using FOFI is that when running the dynamic
program the Markov property of the Markov Decision Process (X, u,) allows us
to only consider a maximization over the state space x; € X but not past values

Xo:—1. The dynamic program for FOFI is given in Section 4.1.1.

However, maximizing FOFI can lead to suboptimal controls since it is not
the correct Fisher Information for the data. Additionally, when the actual ex-
periment is run we do not observe X;. Instead we have to use the observed
values to calculate a filter for the state x;, p(x;|yo., to.—1, X0, 8), and use the control

associated with the state that has the highest probability.

3.3 POFI

Since the objective is to use the controls to maximize the information about the
parameter 6 through the observed process yy, it seems natural to maximize the
Fisher Information associated with the observed process, in some sense the cor-

rect Fisher Information for the data,

FIO) =E

T-1 P 2
Z (6_ log P(Yt+1 |y0:t’ Up:ts X0, 9)) ]
= \90

which we label as the Partial Observation Fisher Information (POFI), see Sec-
tion 3.4 for details on its construction. When we consider continuous time dy-
namical systems the observation spaces will be continuous, but we will use this

discretized Fisher Information as an approximation to the actual Fisher Infor-

mation of the observations.

27



Maximizing POFI using dynamic programming or a similar algorithm is
generally not feasible, due to the curse of dimensionality, see section 4.2. We
thus try to approximate POFI, with Fisher Information like criteria that are eas-
ier to maximize, see Truncated POFI in section 3.5 and Weighted Observation
Fisher Information in section 3.7. Also see Sections 4.2 and 4.3 for a description

of the dynamic program for the respective criteria.

3.4 Expressing POFI

In this section we find useful expressions for POFI, the Fisher Information of a
POMDP where we observe y,.7 and use controls u.r_;, that are needed to derive
convergence arguments and set up dynamical programs. We use the short hand
notation

hi(0) = log p(yelYouk-1, Uok-1, Xo = X)

where the dependence on X, = x is frequently suppressed.

For data Yj,..., Y7 the Fisher Information for # can be expressed in one or

two derivatives

and we define the Fisher Information to Go at time & to be

—he1 Yoo Uok—1 | = E

Y0:k> U0:k—1
t=k

where the equality is justified by both quantities being the Fisher Information

for the same observations. We see that FI, = FI.

The Fisher Information to Go can be calculated recursively (in both one or

two derivatives):
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Lemma 1.

. N
FI, =E [_hk+1 + Flis1|[Yoiks Mo:k—l] =E [(h/m) + Fliy1

Proof. In the case of using two derivatives this follows from iterated expectation.

In one derivative we have

[/ T-1 2
FI, = E (Z hz+1) Y0:k> U0:k-1
t=k

[ T-1 2

t=k+1

The cross term is

. T-1
E|2 (h/m) [ Z hz+1) Yo:ks uO:k—ll

t=k+1

=FE|E

t=k+1

=E 2(hk+1)E

t=k+1

=E [2 (hk+1) : 0‘)’0:10 Mo:k—l] =0

Thus

-1 2

FI,=E (hk+1)2 + [Z ht+l) V0:k> U0:k—1

t=k+1

=F (hk+1)2 + FE

t=k+1

= E| () + Fli

Y0:k» uO:k—l]

29

T-1 1
2 (hk+1) [ Z hz+1] Y0:k+15 U0:k

T-1 |
( Z hz+1] Y0:k+15 U0k

T-1

- E »(hm)z n [Z hm) ¥ 2(hk+1)(z -

t=k+1

|

] Y0:k» uO:k—l]

Y0:k> U0:k—1

Y0:k> U0:k—1

T-1 2
(Z ht+1) Y0:k+1> U0:k |[YO:k» U0:k—1

Y0:k» uO:k—l]



Corollary 1.

—

i

FI=E

1=

and similarly

—_

FI,=E| Y (i)
k

Y0:k» uO:k—l]

t=

Proof. This follows from using induction and lemma 1. |

3.4.1 One or two derivates?

We note that we can both try to maximize the FI expressed in one or in two
derivates. We only used the former since it was slightly easier to calculate. There

was no noticeable difference between the two in practice.

3.5 Truncated POFI

Running an exact dynamic program to maximize POFI is not feasible due to the

curse of dimensionality, requiring us to do certain approximations. We set

10g p(yklym:k—l s Umik—15 vm) if m >0
hk,m,vm(e) = .
log p(ylyo:k-1, o1, Vo) itm<0

where v,, is the assumed distribution of x,, and we will consider it to be fixed

and known. Allowing m to be negative will ease notation when t — m < 0. We
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set
T-1

Flye = E ) (hisracmonn ©)

k=0
and label it as the truncated Partially Observed Fisher Information, also see Sec-

tion 4.2.

Similarly the truncated Fisher Information to go is

rT—1
Flk,m =E (l:lt+1,t—m,v,7m)2

~

Vi—m:k» uk—m:k—l]

r
~
=~

~

=F _ht+1,t—m,vt,m
L 1=,

Yi—m:k> Wk—m:k—1 ]

=~

That the formulation in one derivative is equal to the one in two derivatives
follows from the individual parts of each sum having a Fisher Information in-

terpretation. In our notation we also have Fl,, = FI,..

3.5.1 Mixing conditions

Cappe et al. [1] establish forgetting properties of the filter by assuming mixing
conditions for Hidden Markov Models. We use the same conditions, slightly
modified to allow for controls, see Assumption 3, here restated for a discrete

state space X.

Assumption 4. Modified Strong Mixing Conditions. For each control u there exist a
transition kernel K" : Y — X and measurable functions ¢~ and ¢* from Y to (0, o) such

that foranyAe X,y e Yand x € X,

s MKy, A) < Z POt =YXt = X)p(xer = X' = x,u = u) < 7 (MK (y, A)

x'eA
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Cappe et al.’s [1] discussion on what models satisfy these conditions ap-
plies analogously to POMDP’s. Given these conditions we prove the following

bound in Theorem 3, which is a modification of Lemma 12.5.3 in [1];

. . (k—m)/2—-1
(Elo(0) = i, O 2 <8 sup  [lgo(x. ., u)uplfp

x,x’eX,uclU,yeY
where ¢(x, X', u,y) = Zlog(p(xis1 = X|x, = X,u; = u, O)p(ye1 = ¥|x1 = x',60)) and

s
st

p = maxXyey 1 —

3.6 Truncated POFI convergence theorem

In this section we show that the truncated Fisher Information approaches the
true Fisher Information exponentially as one conditions on more and more ob-

servations, while using the same controls.

By Corollary 1 the true Fisher Information (POFI) is
-1

FIO,upr-1) = E Z (hk+1,0,v0(9))2

k=0
but since that is hard to optimize we consider
T-1

Flyne = FIO,m(e’ uO:Tfl) =F hk+1,k7m,vk,,,, (9) ’
k=0

see definitions for /i above. Here we use Fisher Information in one derivative,
but as noted above it is equivalent to using the formulation in two derivatives.
Also note that where k — m < 0 we just set it to 0 and use the initial distribution

of X0-

Lemma 2. Assume the mixing conditions in Assumption 4 hold. Then

. . N 172
(E(hk+1,0,v0 + N1 k=movi,,) )
172

) . 12
<16 sup  gg(x, ¥y, 1) — + 2 sup (E(hl,O,Vo)z)

XX eX.ucl,yeY 1-p o
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Proof. Set

A(m') = sup (E(f'lm/,o,m)z)l/2

UL yeuny Uy

which sets an upper bound on the length of h,,. Note that A(m’) also bounds

(E(hicst j-m,))'* since vi_, = vo. Now

) . 2\!/2
(E(hk+],()’1/0 + hk+1,k—m,vk—r71) )
. ; 2\!/2 j ' 2
< (E(hk+1,0,vo = Iyt et ) ) + (E Pt kmovic = P ke ) )
' 12
2
+2 (E (Mt = ) )

(1+min(m,m’))/2

<16 sup |¢9|p? + 2A(m' +1)

1/2

using Theorem 3. Setting m’ = 0 gives the result, although that might not be the

best bound. O

Lemma 3. Assume the conditions in Assumption 4 hold. Then, for any control policy
and any k such that k — m > 0, we have

pmh/2-1
<8M(6) sup lpo(x, X', y, u)| ———

x,xeX,ucl,yeY 1-p

2 2
|E(hk+l,0,v0 - hk+l,k—m,vk_,,,)

where M(6) = 16 sup |¢9|?IT/; +2sup,, (E(hl,o,vo)2)l/2 is the bound from lemma 2.

Proof.
. . . . . .
|EG 1000 = Mt omoe | < [EGuato0 = B ticmmn) * (Bicoy + Megmn )|

and by Cauchy Schwarz

. ; 2\1/2 ) . 2\1/2
< (E |hk+1,0,v0 - hk+l,k—m,vk_m| ) . (E |hk,0,vo + hk,k—m»"k—ml )
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For the first parenthesis we use Theorem 3 to get
(m+1)/2-1

) ) N\ 1/2 0
E |hk+1,0,V0 - hk+1,k—m,vk,m| S 8 Sup |¢9(-x9 xa ya u)l—
x,xeX,ueU,yeY 1- P

and the second one is bounded by the Lemma 2. o

Theorem 5. Assume the conditions in Assumption 4 hold. Then, for m < T and any

control policy, we have
|FI - FIy,| < e(T -1 —myp"?

where ¢, = 8M(6) supxx sexuctyey [Po(X, X', Y, W|=z— and M(6) the bound from lemma 2;

)”2(1 —p)

M(6) = 16 5up|¢gl?= + 2 sup,, (E(i Vo)z)

Proof.
T-1 5 T-1 2
|FI - F10m| = |E (hk+1,0,v0(9)) -E (th’k_m’Vk_m(G))
g k=0
T-1
= Z E (h%-l-l,o,\/() h%—i—l k—m, Vi, m)
k=m+1
T-1
< Z ‘E (hi+l,0,v0 hi+l Sk—m, v m)
k=m+1
pmD/2-1
<(T-1-m8M(®) sup |pg(x, x,y, u)| ———
x,xeX,uelU,yeY -
by Lemma 3. "

Exactly the same arguments can be used to show that the truncated Fisher
Information to Go FI,, approaches the true Fisher Information to Go as m in-

creases.
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3.7 WOFI

We now consider a different way to approximate the Partial Observation Fisher

Information. POFI is expressed as

-1/ g 2
Z (8_9 log p(y:+11y0:1» to:s» Xo, 9)) ]
=0

and examining the score function gives

POFI =FE

0
(9_9 log p(ye+11yo:» Uo:t» X0, 0)

2o (2 PO 10 e, 0)p(lyosss o1, 0) + POt X th, 0) 2 pCxi Iy g1, 6)
- Zx, PYest|Xe, ur, O) p(Xilyo.e Uo:1-1, 0)

where p(y1|x, u, 6) = 3| POre1lXie1, Op(Xis1|xi, us, 0). If we now assume that the
filter p(x[yo, uo.-1, 6) is fairly accurate at determining x, and that it is not very

dependent on 6 (% p(x:|yvo.s, ugs-1,0)  0) we can motivate the reward function

2
%p(ym |, Uz 9))

0 2
=|— lO ( |.x , Uz, 0))
p(yt+1|xz, Uy, 9) ( g PWr+11Xs, Uy

Ci(xp, s, Y1, 0) = [ o0

as an approximation to the POFI reward function. See Section 3.8 for details.

The corresponding “Fisher Information" for the whole system is now given as

= 2
Z (0_9 log p(yrs1lxs, us, 9)) ]
t=0

and we label it as the Weighted Observation Fisher Information (WOFI). Run-

FI=F

ning a dynamic program with WOFI, see section 4.3, has the same computa-
tional cost as FOFI, that is O(T K?), but as with FOFI the state X, needs to be

estimated at runtime with cost O(K?) at each time point z.
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3.8 WOFI approximates POFI theorem

In this section we show how the WOFI criteria approximates the POFI criteria

given that the following assumption holds forallt =1,...,T.

Assumption 5. For any history of observations and controls (yo, uo,—1) at time t and
a & > 0 there exists a state x* € X such that 1 — p(x*[yo., uo.4-1,6) < &. Additionally we

assume that for some M > 0

0 .
6—9P(xi|)’0:t, Uor-1, 0)| < Mp(xilyor, uo-1, 6) for all i # =

Assumption 5 states that the filter p(x|yo.., uo., 6) at time ¢ is close to having
a point mass at some state x*. Note that since 3} (;—99 p(x:|yo.s, uo-1,0) = 0 we also

have |Z p(x*|yo, o1, )] < M(1 = p(x*|o» to-1, 6)) in Assumption 5.
We label the t'th element of WOFI as

6 2
W, =E l(a_e log p(yss1lx:, s, 9)) l

and the #'th element of POFI is

a 2
P,=E [(% log p(yi+1yo:s, Uo:s, 9)) l

where we drop the dependence on x, in notation.
Let W = {(y41, x,) € (¥, X) such that p(y,,|x;) > 0} and let

Vinin = MIN{P(Vr1|%1); Vre1, X;) € W)

0
6—9p(y;+1|xz) s Vie1, X1) € (W}

Umax = max{
We now get
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Theorem 6. Assuming that Assumption 5 holds for the filter p(x|yo., to:-1,0) at time

t, we have

2
max 4LM 2 2
W, - P < 12L{~ - £ 4
Vimin 1 - & Vimin 1 &

2L + DMu,,,
( )Mu +M2)8

Vimin

where L is the dimension of Y and M and & are from Assumption 5.

Proof. Set
P 2
Wicona = E [(% log p(yss1lx:, us, 9)) Y0:t5 uO:t—l}
and
s 2
Picona = E l(a—g log p(y+11y0:15 Uo:t5 9)) Y0:15 uO:t—ll
We have that

|Wt - Ptl = |E [Wl,cond - Pt,cond]

< E |Wt,cond - Pt,cond

We now show that the bound holds for |Wt,mnd — Py cond

irrespective of the history
Yo, Uo—1, Which suffices to prove this Theorem. We suppress the control «, and
the parameter 6 in notation to save space. Let x* be as defined in Assumption 5

and set p* = p(x;, = x*|yo,;) and and p; = p(x; = xi|yo..), where x; # x".

We set u = u(y1) = %P()’H”xt =x"), v = V(1) = pOlx = X7), uo = uo(yre1) =
Ex, | % pOwlx)|yo:] and vo = voGi1) = Ex, [pGialx)lyos]- Also let H(x) = {y € ¥ :

P(Yrs1 = ylx, = x) > O}
This allows us to write

Wt,cond =FE

2
%p(}’tﬂlxt’ uy, 0)
Yo | =

DY |xe, 1y, 0)
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and

r 2
p _E EX,[%}’()’HI lx)[yo::] + Zx, p()’t+1|xt)a%p(xt|y0:t)
ond =2\ Ex [pQiei1x)ly0q] Yo
_ 2
7 2 Zx, p(yz+1lxr)§gp(xz|)’o:z)
=E||l— Yo:r| t+ E Yo:1
|\ Vo EX, [POe1lx)yo:]
[ Jul
Uo X, X)Z p(xilyo.
Y 0 2x, POl 350( te’o ) Vo
(EX, [PGretlx)]yo:e])
A bit of algebra gives

(;) :(u§+(u2—u(2)));(l+ g )

0
2 2 _ 2 20,2 _ 12 2 N2 2
U u —uy  ug(vog—v?) (W —ug)(vy —v°)
=\ T2 22 2
Vo Vg VgV vev?

and we get
u\2 u\2 . 2
Wi cona = E[(_) YOt] = E[(_) Xr=Xx|p + ZE[(_) Xt = xilp'
d v i#%
2 2_ 2 202 _ .2 2 N2 a2
w —u:  uz(vi—v u —ui)(ve —v
:E[(u—) x=x"|p"+E 20+ 0((; ) ! 02)(0 )xt:x*]p*
Vo vy vgv? vpv?
u\2
+;E|:(;) x,:xi]pi
2_ 2 202 _ .2 2 N2 a2
u —u:  u(vi—v (u™ = u)(vy —v°)
=Pieona + E > 0420 02 > ) 02)(20 X, = x*] D'
vy vgVv VgV
+YE (”)2 SE|2 2
X = Xi| Pi — — | [Xt = Xi| Pi
i#% v t P i#% Vo t P

U 2, PO+ |xt)5%p(xt|y0:t)
(Ex,[pQee1lx)lyo:])?

2, POVt |xt)3%p(xt|)’0:t) ’
Ex,[p(yrs11x0)lyo.]

yO:t]

The superfluous expectations are bounded in Lemmas 5, 6, 7, 8, 9, 10 and 11

yO:t] -2E

below. O

Corollary 2. Assuming that Assumption 5 holds for the filter p(x;|yo.., to.-1, 6) at times
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t=1,...,T we have

T-1

Z (_ log p(yes1lx:, us, 9))

t= t=0

2
max ALM?* & 2L + DMu,,,
<1|120(4 £ 5 8+( )Mu + M?*|e
1-¢ Voin 1 — €

T-1

2
(_ log p(yi+11yo:» Uo:s> Xo, 9)) ]

Vimin Vimin

Lemma 4. Under Assumption 5

V(@1 X) = Vo)l < 1 = p°

|M(Yz+1, X*) - uO(yHl)l < 2umax(1 - P*)

Proof.
Vs 1) = Vo0l = (POl )1 = p) = D pOralx)pi
i#%
< max [P()’t+1|X*)(1 - P, Z P()’z+1|xi)Pi]
i#*
< max[(l —p*),Zpi] =1-p
i#*
The u case;
1) = 1000001 < |22 p 0] 1 = 1)+ 3|2 pab 1 < 21 = )

i+

Lemma 5. Under Assumption 5

uz—ué
E 2

Vo

Sk
x,:x]

o< 4u,2mx(1 -pY) Z 1
B p* L pOrerlx”)
yi+1€Y

|u — uo
X = x| < 2UparE 5
Vo

|ue + uollu — uol

2
Yo

%
x,:x]
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Now only summing over y;,; € H(x)

w-ul| ] o |&POmb)A = p) = Si ZpGialx)pil ,
E S | =X = Z ) P(Ves1lx”)
Yo — (POw1IX)P* + Xz POrs11x) i)
2umax(1 B P*) *
< Z —————= pilX")
sy (POelx)p)
_ 2Upar(1 _P*) Z 1
(p*)? L Pt [X7)
Vis1€Y
o
Lemma 6. Under Assumption 5
5] 2t o) 5
V(z)v2 ' B p* Pilx*)?

yir1€Y

Proof.

p [u%(vo + V)|vg — V|

l/l2 V2—V2

Sk
X=X ]
2.2
VgV
1 1
2 *
< _+ — - =
<u,.E [(Vovz + o [vo — v||x, = x
0

2
2ur [|v0 -

~(p)? V3

since Vo(yi+1) = pOutlx)p* + Dise POmlx)pi = pOis1lx)p* = v(yirr, X)p*. Only

*
xt:x:|

summing over y,.| € Y (x") we get

[vo — vl |Ex,[Prs1lx)] = p(yis1|x)] 1-p*
E X =x"|= . [x*) < _
l v? t Z~ p()’z+1|X*)3 PO Z~ p(yt+1|X*)2
Vis1€Y Vi+1€Y
O
Lemma 7. Under Assumption 5
‘E [(Lﬂ - u(z))(v(z) —1?) o= x*] < 4uz (1 - p*)? Z 1

t — = — — 5
vgv? p* PYrs11x7)?

Y+l ey
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2 N2 2
u —u)vi—v 1 1
E( 0% )x,: <E(u+u0)—+—|u—u0||v—v0|
V2 viv o v
2Upax | lu = uollv — vyl P
= (p*)z NE r—
k)2
< 2umax Z 2umax(1 P2)
(P>~ p(yalx)
Yir1€Y
_ 4ur2nax(1 —p*)2 Z 1
(r*)? L p(Vee|X7)?
Vi+1 Y
Lemma 8. Under Assumption 5
2 u?
ZE[(E) X =x|pi < —=2(1-p")
v min

i#*

where L is the dimension of Y.

Proof. Only summing over y;,; € Y(x,) for each i, we get

ZE[(E) X —x,] pi=y Z ("’;}(’y(yll‘lx ) PP,

i#* t;&*
Z Z agp(yHllxz )
= — .~ P
#* ley P(}’t+1|x1
Lurznax *
< =251 - p)
Lemma 9. Under Assumption 5
2 2 #
u 1-
i#% Vo vmin
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Proof. We assume that if p(y..|x;) = 0 then 0% PY1lx) = 0 as well. This gives us

that ,
%p()’t+l|x*)p* + Zj;t* %P(yzﬂlxj)pj < (l/t,mm)2
PO1xX)P* + X i PO11X)P; Vinin
This gives us that
D E [(uo)z } 22 GPOIP + s Gk p; | Grerl)
— X, =X | pi = p 11Xi)Di
— vo [ POl + X POt [X)D; "
! ! Yyer1€Y
2
umax
< (Vmin ) Z Z~ POrs1lx)pi
1% Yer1€Y
L2
(=

Lemma 10. Under Assumption 5

4LM?*(1 - p*)?

Vminp>k

+ M*(1 - p*)

2
( o PO Ixz)a%p(xtlyo;t)]
Yo:1 <

Ex, [PYre11x)y0:]

Proof.

d 2 . . 2
Zx, P(yt+1|xt)a_9p(xt|y0:t) < (p(ymlx )M(1 - p*) + Zi;&* p(Yt+1|xi)Mpi) < M>
Ey, [Pre11x)]yo:e] PO|X)p* + Yz POre1lx)pi h

If p(y;+11x*) > 0 we also have

(p()’z+1|x*)M(1 =P+ Diss p()’t+1|xi)Mpi)2 < M2 ((1 =P+ iz pi)2
PYs1|x*)p* + Zi;&* POeilx)pi - PYe1lx*)p*
(1-p9 )2

_ (—
Pes1|x*) p*
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We now have

2
yO:t]

2
Z 4M? (p(y 1|)]:))p ) PP’ +Z Z sz(y[+1|xi)pl.

yis1€Y #5 y, ey
< 4LM2(1 — p*)2

vminp*

2o, POrrlx) %p(xtb’O:t)
Ex [pie1lx)lyo]

+ M*(1 - p")

Lemma 11. Under Assumption 5

U Zx, P(YVrr1lxe) (%P(xt [Yo:1)
(Ex,[pOrs11x)1y0:])?

Umax *
yO:t] < L+ DM - p7)

min

2| < fre from Lemma 9 we get

Umax
yO:t] < E

Vimin

2, POir1 |xz)5%p(xt|)’0:t)
Ex,[p(yes1lx)lyo:]

U 2, PO+ |xz)5%p(xt|)’0:t)
(Ex,[pQeelx)lyo:])?

yO:t]

and like in Lemma 10 we get

S, PO11x) & p(xilyo:)
EX, [p(YtH |xt)|YO'z]

< > oM p(y, M ——— PO lX)P + Y D MpGialp

)H—le«y i#x )t+l€y

Yo:1

<2LM(1 - p*) + M(1 — p*) = QL+ DM(1 - p*)
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3.9 Best POFI convergence theorem

Remembering that POFI is the true Fisher Information of our data, which we
can influence by the choice of our control policy, we are interested in how well
controls that arise from an approximated POFI criteria maximize the original
POFI criteria, compared with a theoretical best policy. This is also discussed in

Section 4.4.

We assume that the Fisher Information to Go for POFI;

(hm,o,m)z}

T-1
FI,=E

t=k

is approximated by

~

T-1

P 2
Z (% log p(yis1lx;, s, 9)) ]

t=k

orﬁk:E

ﬁk = E (hz+l,t—m,vk_m)2

1l
>~

t

that is either the truncated POFI or WOFI.

Given that our controls are obtained by dynamic programming, we have that

the optimal control at time 7 is dependent on the optimal control obtained at time

t+1. Letuj,...,u;_, denote the set of optimal controls obtained in this manner,

1 * * 1 1 * * 3

ie. uj,...,u;_, maximize FI; and let UG s =+ s UT_ |y denote the approximated
. * * . . . . . 7

control policy where u; .. ..,u;_, , maximize the approximated criteria F/;.

The following theorem quantifies the loss in Fisher Information from using

approximate controls instead of exact ones, in an experiment of length 7'.

Theorem 7. Given that the mixing conditions in Assumption 4 hold and we calculate

a control policy uy ., ..., uy_, ,, using the truncated POFI, we have

0 < FI(uy, ... up_) — FIW,, ... uy_y,,) < T(T + Dp™?
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where c; = 8M(6) sup |pg(x, X', y, u)| m, and M(6) is the bound from lemma 2.

Alternatively, given that the filter assumptions in Assumption 5 hold for every t =

1,...,T, and we calculate a control policy UG s+ s U using WOFI we have

0< Fl(ug,...,up_) = FI(uy,,, ... ur_; )

2
ALM? & [QL+ )Mty
ST(T+1)(12L(M ) 4 18 +(( + DMu +M2)8)
E

Vimin I-¢ Vmin Vimin

where the constants are given in Section 3.8

Proof. We analyze the difference by bounding errors in each step of the dynamic
program inductively, starting at time t = T — 1 and going backwards. If we use

truncated POFI to calculate a control policy, we set

p(m+l)/27l
¥ = 8M(6) sup |pg(x, X', y, M)|?

, see Lemma 3, while if we use WOFI then we set

[(u)2 s 4LM? & QL + 1)Mu,,, 2) )
y = + + + M |e

Vimin l-¢ Vmin I-¢ Vimin

and refer to Theorem 6.
We find that

0< FIT_](M;_I) - FIT—I(M;—I,m)

< Flroy(uy_y) = Flroy(y_y ) + (FIry () = FIro(u5)))
so far only using that u}_, maximizes Flr_; and u}_, , maximizes Flr_,.

< |Flr_i(uy_y) = Flro )| + |Flroi iy, ) = Flry (g )|

<2y
by either lemma 3 or Theorem 6.
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We now inductively assume
|FIT—S(u;—s:T—1) - FIT—S(M;—‘Y:T—I,m)| < S(S + 1)7
* % *
where uy._ . = U U and then get

|FIT—S(M;‘—s:T—l) - FIT—S(M;—S:T—l,m)|
< |FIT—S(M*T—S:T—1) — FIT—S(M*T—S:T—LW!)| + |FIT—S(MX7<"—‘V:T—1,m) - FIT—S(M;"—s:T—l,m)|

<s(s+ Dy+sy=s(s+2)y (1)
Now moving from s to s + 1 we have
Flr— ey Ur_(goryr—1m) Z FIr—oenyUr_(gerys Wr_r—1 m)

since U (g 1)T—1m ATE the controls that maximize I?jT,(m). By adding and sub-

tracting the same quantity we get the following equivalent inequality
(FIT—(S‘*'I)(u;:—(s+l):T—l,m) - FIT—(S'*'l)(u;("—(s+l):T—l,m)) (2)
- (FIT_(SH)(M’}_(HI), M;—S:T—l,m) - FIT—(s+1)(U*T—(s+1):T—1)) ©)

> FIT—(s+1)(u;‘—(s+1):T—l) - FIT—(S+1)(”;’—(s+l):T—l,m) >0

Line (2) is bounded by (s + 1)y by lemma 3/Theorem 6 and line (3) by y +

s(s +2)y using (1) and lemma 3/Theorem 6. Therefore

IFIT—(SH)(M;—(HU:T—I) - FIT—(S"'1)(u*T—(s+1):T—l,m)|

SG+Dy+y+s(s+2)yy=(+1D(s+2)y
and for the whole experiment we find

|\FIGugp_,) = FIGugp_y )| < T(T + 1)y
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CHAPTER 4
CONTROL THEORETIC ALGORITHMS APPLIED TO FISHER
INFORMATION PROBLEMS

In this chapter we show how the various forms of Fisher Information consid-
ered, FOFI, truncated POFI and WOFI, can be maximized using dynamic pro-
gramming. We provide pseudocodes and analyze their computational complex-
ities. The computations required can be split into computations done prior to
the experiment and computations that are required while running the exper-
iment. A direct comparison is not completely feasible since FOFI and WOFI
require computations at runtime while truncated POFI does not as discussed

below.

4.1 FOFI Dynamic Program

Hooker et al. [5] considered constructing an optimal control policy for the Fisher
Information that would apply if (X;) were observed directly, that is the Full Ob-

servation Fisher Information (FOFI)

T-1 P 2
FI=F ; (% log p(x/41|x;, Uy, 0)
When considering continuous time stochastic systems, the state space is contin-
uous, but we use this Fisher Information as an approximation to the continuous
state Fisher Information. An advantage of using FOFI is that when running the
dynamic program the Markov property of the Markov Decision Process (X;, u,)
allows us to only consider a maximization over the state space x, € X but not

past values xo._;.
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However, maximizing FOFI can lead to suboptimal controls since it is not
the correct Fisher Information for the data. Additionally, when the actual exper-
iment is run we do not observe X,. Instead we have to use the observed values
to get a probability distribution (a filter) on the state x;, p(x[yo., to:-1, X0, 8) and

use the control associated with the state that has the highest probability.

4.1.1 Pseudocode for FOFI and computational complexity

2
We set the reward function as C(x,, u,,0) = (%log P(X1lxs, u,,@)) . The pseu-

docode for this dynamic program is:

FIT = 0
fort=(T-1) > 0do
Y x, and calculate and store

FI,(x;,6) = max,, {E [C(xs, us, 0) + FlLi i (X415 0)|x1, 9]}

Xr+1

u; (x;,0) = argmax,, {E [C(xs, u,0) + Fli i (X415 0)|x1, 4y, 9]}

Xr+1

end for

We assume that the transition probability matrix p(x,.|x;, u;, 0) is given. Cal-
culating (% log p(xp41lx;, uy, 9))2 is negligible compared to the calculations required
for the dynamic program; If we set

5 2
(e, X1, Uy, 0) = (6_9 log p(xs1lx, ur, 9))

then for a given time ¢ in the dynamic program we need to maximize

E [gt(xta Xeats U, 0) + Vi1 (X415 0)|xl]
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over u, € U for each x, € X, where V,,, is the value function from the previous
step ¢ + 1. This calculation requires adding g, and V,,; which are two K*? x [ ten-
sors with cost K*I. Next we need a dot product between g, + V,,; and p(x,411x;, u;)
over the x;,; dimension which has cost O(K?)). Finally maximizing over u, for
each x; has cost O(K1). Thus each step  has cost O(K?/) and the dynamic program

in total has cost O(T K?I)

In runtime a filter is required to estimate the state x,. The filter for time ¢ + 1
can be calculated via the following recursive formula
P(Xes1|Yors15 Uos) o€ Z POt lXes ) P X0, ) (Xl Your, Uo:r-1)
and then normalizing. This requires 2K dot products of vectors of length K,
with cost O(K?) and the normalization has cost O(K). Thus we have O(K?) com-

putations at each time step ¢ during runtime.

4.2 Truncated POFI dynamic program

The most natural Fisher Information to maximize is the Fisher Information of
our observed process, the Partial Observation Fisher Information (POFI) which

Wwe can express as

-1
FI) =E

5 2
(8_9 log p(y:+11y0:1» to:s» Xo, 9)) ]

t=0

also see Sections 3.3, 3.4 and 3.5.

To maximize POFI with a dynamic program we set

5 2
Ci(yo:1» Uo.1, 0) = (0—9 log p(ys+11y0:» Uo:t5 Xo, 9))
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and we try to maximize the total reward FI(6) = E[}.; C,(Yo., U0, 6)]. Note that in
this instance the reward function depends on the entire history of observations

and controls up to time ¢.

The Value function in the corresponding dynamic program is

F1 (o, tos-1,0) = max {Ey, ., [V, o, 6) + FLiwt Qe o O)lyous o 0]

and we denote it the Fisher Information to Go .

A problem here is that just in the first step of the dynamic program (¢ =

T —1) we would have to calculate the Fisher Information to Go for L7~'/"~2

many
combinations of yq., and u.,_;. This is formidable for even modest dimensions.
We therefore approximate the process by conditioning only on the last m + 1

observations in the Fisher Information;

T-1 a 2
FIterc =E (6_9 log p(yt+1 |yt—m:t’ Us—m:ts Vi—m> 6))

t=0

where v,_,, is some prior that we assume for x,_,, although we generally sup-
press it in notation since we assume it is fixed. As before, if 1 —m < 0 we set

t—m:ttomean O : 1 to ease notation.

4.2.1 Pseudocode for POFI

2
The reward becomes C(y_:, tr—m, 0) = (0% log pyes1Yi-m:ts Ueem:ts 9)) and
FL o Yeemets Wemmi—1,0) = muax {Ey;+1 [C+ F1t+1,m|yt—m:n Ut—m:ts 0)]}

the Fisher Information To Go. The pseudocode for the corresponding dynamic

program is:
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Flrpm=0

fort=(T-1) > 0do
Y Vi Ui—m—1 and calculate and store
FILy s thms1 0) = max,, {Ey,, [C + Fliy lYimes s 01)
1 et g1 0) = argmax,, {Ey,, [C + Fluylyimes thmr 01

end for

For this approximate dynamic program to be sensible we want the truncated
Fisher Information to approach the true Fisher Information as m increases. In
Theorem 5 we show that |FI — Fl,,,,c| < ci(T — 1 — m)p™? where the constants ¢,
and p do not depend on m or T, assuming certain technical mixing conditions

which we have stated in detail in Assumption 4.

Theorem 5 states that F1,,,,. approaches the true Fisher Information expo-
nentially as m increases, and is thus a viable approximation for the Fisher Infor-

mation in the dynamic program.

The runtime of the dynamic program however also grows exponentially in
m and we found that while setting m = 0, i.e. conditioning on one observation,
gave poor results in some of our simulations, conditioning on two observations,
i.e. m = 1, generally gave good results when compared to other control policies.
Setting m = 2 increased runtime greatly and was in some applications infeasible
without making more approximations to how the dynamic program is run. The

exact effect of increasing m is quite problem specific.
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4.2.2 Truncated POFI, computational complexity

Here the dynamic program maximizes the truncated Partial observation Fisher

Information,

0

T-1 2
Fltmnc =E (8_ log p(yt+l |yt—m:t’ Ut—m:ts Vi—m>» 9))
t=0 o

We note that p(y,,1|Vi—m:s Ur—m:, 0) is @ L™+ x *"*! tensor, and it can be calculated
using Bayes rule at the cost O(K2L™*?"*"). Calculating £ 108 p(yr1[Vr—m:ts Us-m» 0)
can also be done at the cost O(K>L™*?"*!), but can also be effectively approxi-

mated using the finite difference approximation to the derivative.

The cost analysis of the truncated POFI dynamic program is just like the
analysis of FOFL At a given time r adding g, and V,,; has cost O(L™**["*"), the
dot product between g, + Vi; and p(yi1[Ys—ms Us—m:) has cost O(L™*2["*!) and the

maximization has cost O(L"*!' /1),

The dynamic program thus has cost O(T L™**["*!), which in some cases could

be constrained by choosing L lower than K, and m = 1.

4.3 WOFI dynamic program

The Weighted Observation Fisher Information

= 2
Z(a_e 10gp(yt+l|-xt’ uhg)) ]
t=0

is motivated as an approximation to POFI, while preserving the Markov prop-

FI=E

erty of FOFI, also see Sections 3.7 and 3.8. In Theorem 6 we show how WOFI
approximates POFI, given that the filter p(x;|yo.., uo.-1, 6) is precise, see Assump-

tion b.
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We set the reward function to C,(x;, uy, y,11,6) = (a% log p(yer1lx:, s, 9))2 in order
to run a dynamic program with WOFI which will be similar to the FOFI dy-
namic program. It has the same computation cost as the one for FOF], that is
O(TK?1), and also needs a filter to estimate the state x, at time ¢, at the same cost

O(K?).

4.4 Parameter estimation

After running an experiment, using one of the control policies, the parameter
is estimated either via an EM algorithm or by directly maximizing the loglikeli-
hood, see Sections 4.4.1 and 4.4.2. For the asymptotic properties of the MLE we
refer to Cappe et al. [1] as well, where conditions for consistency and asymp-
totic normality in Hidden Markov Models are given. The central elements of
their proof are the stationarity of the process (X, ¥;) along with forgetting prop-
erties of the filter (see Theorem 2 in Section 2.2.5). We note that if we employ
a time-independent control policy (as we do in in Chapter 8), we obtain to a
Hidden Markov Model and can rely on [1] if we assume stationarity. That the
forgetting properties of Hidden Markov Models can be extended to POMDP’s
points to a more general asymptotic theory for the MLE in POMDP’s, but this is

not pursued further.

Theorem 5 shows that using the truncated POFI is a good approximation
to the Partial Observation Fisher Information for running a dynamic program
and Theorem 6 shows the same for WOFI, under respective assumptions. This
provides a control policy that is an approximation to the optimal control policy.

Now consider using this approximate policy to run an experiment and then
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estimating 6 by evaluating the MLE. The asymptotic variance of this MLE will be
the inverse of the Partial Observation Fisher Information, with controls from the
approximate policy. It is therefore of interest to compare POFI, evaluated with
an optimal policy, and POFI, evaluated with one of the approximate policies. In

Section 3.9, Theorem 7 we show that, conditional on the mixing conditions in

Assumption 4, that
0 < FI(up, ... up_) — FIW - . . 7y ,,) < T(T + Dp™?
where ug,...,u;_| are the optimal controls, UG s =+ s UT_ | the truncated POFI

optimal controls and FI is the Partial Observation Fisher Information. The con-
stants ¢, and p do not depend on m or T. Alternatively, conditional on the filter

assumptions in Assumption 5, we have that

0<Fl(ugy,...,up_) = FI(uy,,, ... ur_;,,)

2

max ALM? & 2L + 1H)Mu,,,,

<7+ 11202 £ . c +( )Mu + M| e
Vimin l-¢ Vimin l-¢

Vimin
where UG s s Uy, ATE the WOFI optimal controls and FI is the Partial Obser-

vation Fisher Information. The constants are given in section 3.8.

That the asymptotic variance of the MLE converges to the lowest possible

variance, as either m — oo or ¢ — 0, further supports our approximations.

4.4.1 EM algorithm

Given the data yy,...,yr one can estimate the parameter § with the EM algo-
rithm. This is well documented in the Hidden Markov Models literature, see [1]

for example, so we will only describe it briefly.
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The forward variable is defined as a;(x) = P(x; = x, yo.;, uo—110), and the back-
ward variable as Sy (x) = P17, Urr-11X% = x,6). See section 2.2.2 for details on

how they are calculated. We set

@ (X)Byr(x)
2xex @ (X)Byr(x)

Yar(x) = P(x; = x[yo.r, uo.7-1,6) =

and

&(x1, x2) = P(x; = x1, X1 = X2|Yo:7, Uo:7-1,0)
_a(x)p(xr = XX = X1, Uy, OpVistl X = X2)Brrir(x2)

2ixeX Olz(x)ﬁnT(x)

The complete data log-likelihood is

T-1 T
Lomp(6) = D 10g ptis 1%, 14, 6) + ) log p(ylx, )
=0 =0

With y,r and &, for a fixed 6* we can now define the function Q(6|6*), which

performs the EM expectation step

Q") = E [Leomp(O)|yor, tor-1, 6|

Maximizing the function Q over 6 gives an update to 6*. Alternating between ex-
pectation and maximization is the EM algorithm, and 6* converges to the MLE,
see [1] again. Convergence of the EM algorithm is discussed in Cappe et al. [1]
tor Hidden Markov Models and extends naturally to POMDP’s.

4.4.2 Direct Maximum Likelihood

In some cases it is possible to directly maximize the log-likelihood

T-1

10) = > 10g p(yeai[Yous thos-1, 6)
t=0

55



In practice we implemented this by calculating /(6) on a grid of values {6, ..., 6,,}.
If the maximizing value over this grid was at the endpoints, then the estimate
was set to be that endpoint, otherwise a quadratic polynomial was fit to the
maximizing value along with its two adjacent grid values. The value maximiz-

ing that polynomial was then taken to be the estimate.
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CHAPTER 5
DISCRETE EXAMPLES

5.1 6 state example

While the FOFI strategy has been shown to be effective in Hooker et al. [5] it is
possible to define systems in which the strategy is not optimal and may in fact
be worse than just using fixed or random controls. Usually certain parts of state
space will give more information about a parameter than others, given that the
state space is perfectly observed. In these cases optimal controls would try to
move the process to these states. However, if the state space is only partially
observed, most information might be obtained in different parts of state space
and the FOFI controls become suboptimal. In cases like this the truncated POFI
and WOFI often do better than FOFI, since they take advantage of the obser-
vation process. In this example, we demonstrate a system where using FOFI,
WOFI and truncated POFI leads to different control policies, and using a sim-
ulation study, we show that using a truncated POFI or WOFI policy produces

less variable parameter estimates than then using a FOFI policy.

Consider a discrete time Markov chain x, with state space S, = {1,2,3}and a

transition probability matrix

1_pu 1 _u
> 4tT1 3 4 4

P= 4 1
x Los
1_p_u 1 u
2 4 4 3 ‘45+4

where the parameter of interest is p € [0,.5] and the control is u € {-1,1}. For

x; = 1 or x;, = 3, choosing the control u = 1 will increase the probability of the
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Markov chain staying in its current state while choosing u = —1 will increase the

probability of it leaving its state.

Now assume this process isn’t observed directly but through a related pro-
cess y, with state space S, = {1,2} whose transition probabilities depend on

which state x; is in. We denote the transition probability matrices with (Py); 5 =

PYes1 = Jlye = i, x; = k) given by

If x, were observed we would get information about the parameter p when x;
leaves state 1 and from y, when x; = 3. The idea here is that since the FOFI
controls assume the whole state space is observed they might encourage x; to
be in state 1, while the truncated POFI controls and the WOFI controls take into
account what is actually observed and might choose the controls more intelli-
gently. Indeed when calculating the controls according to FOFI the long run
control is to “leave one’s state" if x, = 3 and “stay in one’s state" if x, = 1. The
WOFI policy takes observations into account and does the reverse as FOFL. It is
harder to predict and interpret the controls that result from using the truncated
POF], but the control policy is given in Table 5.1. We set the truncation factor to

m = 1, that is the policy at time ¢ depends on (y, y,—1, u;—1).

To illustrate this difference, a simulation study was carried out to test what
method performed best: The process x, was run for 1000 steps with p = .37,
using controls chosen by truncated POFI, WOFI and FOFI. Additionally we ran
a simulation of the same length, but where the control was chosen randomly,

with u = -1 and u = 1 having equal probability. Then the parameter p was
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(w, [T 1 1 1 1 1 1 1]
v 1 2 1T 2 1 2 1 2
a1l 1 2 2 1 1 2 2
w11 1 1 -1 -1 1 -

Table 5.1: Long run control policy that results from using a truncated POFI in
the 6 state example. The first column describes which control to use for a given
history (y;, y.-1, u,-1) of observations and control.

bias st. dev. MSE
FOFI .0009 .0823 .0068
WOFI | .0009 .0506 .0026
tr. POFI | .0040 .0526 .0028
Random | .0017 .0702 .0049

Table 5.2: Simulation results for the 6 state example. We see that the controls
chosen by truncated POFI or WOFI make for more accurate estimates of p. The
FOFI policy does worse than a random policy.

estimated using an EM algorithm. This was done 500 times to get an empirical
distribution for the estimates of p. The results are given in Table 5.2. Estimates of
p using the truncated POFI or WOFI policy had the lowest MSE and variability.

Estimates using a FOFI policy were comparatively worse than using a random

policy.

5.2 Gamble Safe example

The following example describes an application of the above methods in the
context of experimental economics. The problem is derived from Sachat et.
al. [9], in which we wish to model how humans change their game-playing

strategies over time.

We set up a game with two players: a Row player and a Column player.
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Left | Right
Left | 20 | 01
Right | 1,2 | 1,1

Table 5.3: Rewards in the Gamble Safe game. The first number is the reward
for the Row player and the second number the reward for the Column player,
given a certain outcome.

They repeatedly play a game where both simultaneously choose either left or
right, and they get rewards depending on the outcome according to Table 5.3;
the Row player would for example get 2 and the Column player 0 if both chose
left. We follow [9] and assume that at any given play the Column player fol-
lows one of two strategies: the Nash-equilibrium strategy of choosing either
left or right with 50% probability or the Gamble-safe strategy, where they only
choose right. The player will pick either strategy based on a multinomial lo-
gistic model, where the probabilities depend on the last two plays of the Row
player, and the last strategy chosen by the Column player. This results in a Par-
tially Observed Markov Decision Process with the strategy employed being a

hidden state giving rise to observed plays.

Let S, denote the strategy chosen by the Column player at time ¢, U; denote
the action played by the Row player at time 7. Let S, = —1 if the Nash-equlibrium
is chosen, S, = 1 if the Gamble-safe strategy is chosen. Also let U, = 1 if the Row
player plays right, U, = —1 if he plays left. Similarly Y, will denote the plays of
the Column player. The strategy S, chosen at time ¢ + 1 will then be chosen
according to

e 1

dPSi=1)=
1+exan S =1 I +e"

P(S=-1)=

where we let

X = 1'2’Ul + U[_] + GS[
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The experiment is set up with two natural strategies for the Column player
and we can think of 6 as the persistence of strategies. The purpose of this exper-
iment is to elicit information about how humans persist in strategy choice, and
we therefore investigate how the plays of the Row player can be used to obtain

an estimate of 6 that is as precise as possible.

To cast this into our usual setting we think of S, being the unobserved un-
derlying Markov Chain, U, as the control and Y, as the observed process. Since
the transition probabilities from S, depend on U,_; (a part of the history at time
t — 1) we augment the state space to include U,_;, i.e. R, = (S, U,-,) will be our
underlying Markov Chain. At this point we could run the dynamic programs
tor both FOFI, truncated POFI and WOF]I, but controls calculated that way will
depend deterministically on the plays of the Column player. Seeing that realis-
tically deterministic plays can often easily be countered in adversarial games, it
is better to follow a strategy that includes some randomness in the plays. So we

let W, € {—1, 1} be the strategy of the Row player in such a way that

U=1 wp..8 U=1 wp.2
t PP litw, =1, ana P Uipw, = -1
U=-1 wp..2 U=-1 wp..8
These kind of changes are easily incorporated in the dynamic program for both
FOHF], truncated POFI and FOFI, by adding an expectation over W, at every step

1.

We set § = .7 and calculated the FOFI, truncated POFI and WOFI policies. We
also consider a random policy, where the probability of choosing either control

was set to 1/2.
To compare the two policies we ran a simulation study with 7" = 500, and
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Adversarial Game

bias st. dev. MSE
FOFI 0.00 0.33 0.11
WOFI | 0.02 0.27 0.07

tr. POFI | 0.02  0.30 0.09

Random | 0.01 0.33 0.11

Table 5.4: Simulation results for Adversarial Game. The FOFI policy is similar
to the random policy. Truncated POFI does slightly better that FOFI and WOFI
does slightly better than truncated POFL

1000 simulations for every control policy. The parameter 6 was estimated using
an EM algorithm. The results of this estimation under each policy are given in
Table 5.4 where the WOFI controls produce least variance and the most accurate

estimates.
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CHAPTER 6
DIFFUSION PROCESSES

In order to apply the methods described above to dynamical systems, we need
to approximate them by a suitable Partially Observed Markov Decision Process.
We achieve this by discretizing time, state and observation spaces. Here we

consider continuous stochastic dynamical systems of the form
dx = f(x, 6, u()dt + X}*dW

where 6 is the parameter of interest, to be estimated, u(f) is a control that can be
chosen by user, x is the vector of state variables, f is a vector valued function

and W a Wiener process. The dynamical system is approximated on a fine grid

Xp+1 = X, + 0f(x,, 60, u,) + \/ge],

where €, ~ N(0,Z;) are independent normal random variables. We assume the

underlying state variables x; are only observed partially or noisily.

y, = g(X,) + €

where €, ~ N(0,2).

6.1 Discretizing a Diffusion Process

In order to approximate this as a Markov Chain, the state space is discretized
in each dimension and the model is then thought of as moving between the

different boxes. The probability of moving from box to box is approximated
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using the normal p.d.f. at the midpoints of the boxes. In the examples covered
in Chapter 7, only equidistant discretization is considered, but this restriction
can be readily removed. If we label the two midpoints as i; and i, and the area
of the second box as A, this probability is given as p(x..; = i2|x, = i1, u;, 6)

exp (=3 iz — (i1 + 6£(ir, 0, u))Z7" (2 — (iy + O£ (i, 6,1,)))) - Ay
- (27)412 det(Z )2

where k is the dimension of x. The probabilities are then normalized to make
sure they sum to 1. If the controls u, can be chosen on a continuous scale then
this scale has to be discretized as well. (x;, u,) is then a Markov Decision Process,

and one can run the FOFI dynamic program.

For the truncated POFI and the WOFI dynamic program the observation
space needs to be discretized as well. The probability of what observation box
is observed depends on in which box the underlying Markov Chain is in. If
we label the midpoint of the underlying Markov chain midpoint as i and the
midpoint of the observed process box midpoint as j, and the area of the latter
box as A, this probability is given as

1
¥ 2f det(z,y) 2 P

1
pO: = jlx, = 1) (_E(j — g% (- g(i))) Ay

These probabilities are also normalized to sum to 1. The process (x;, y;, 4;) is now

a Partially Observed Markov Decision Process and one can run an appropriate

POMDP dynamic program.

6.2 FOFI and WOFI in Diffusion Processes

Hooker et al. [5] came up with experimental design for Diffusion Processes;

dxe = £(xq, 0, u)dt + X(x,)"2dW,
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that is similarly based on using dynamic programming to maximize the FOFI
likelihood. However since their treatment is within the framework of diffusion
processes, the reward functions are given in terms of f and X instead of tran-
sition probabilities of the approximating POMDP. We review their calculations
for the FOFI criteria and show how they can be extended for the WOFI crite-
ria. The truncated POFI criteria doesn’t simplify the way the WOFI and FOFI

criteria do.

The diffusion process likelihood for 6 is

1 T T
o) = 5 f £(xe, 60, )" - =7 (%) - (%4, 6, u)dlt - f £(xe, 6, 11) - =7 (%) - dxq
0 0

with the associated Fisher Information is

) 2
_f(Xta 8’ ul)

T
10.u)=E
) fo 00

dt

Z(X¢)

where ||z|ly = z'>7'z.
Hooker et al. [5] approximate this Fisher information by discretizing time.
For a diffusion process discretized at time ; = iAt,i = 1,..., T we get
Xiv = X; + £(x;, 0, u) At + VAIZ(x))' %6

where g are independent vectors of independent standard normal random vari-
ables. We can now discretize the continuous Fisher Information above, or derive
it from the discretized diffusion process, either way we get the Full Observation

Fisher Information (FOFI) as

FI(®) = “' A X6, u)

] (Ar)®

A(X))

and this is in correspondence with what you would get in the POMDP frame-

work, i.e.

0
E|(—logp<xt+1|xt,9 u») ] H]—f(xt,e )

2
4 ] (A?)

ArZ(X¢)
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Commonly the state space is observed noisily, or not completely, where the
amount of noise could depend on location in state space. We assume for now
that

y(t) = Ax(t) + b + )¢

and note that this encompasses common situations such as not observing a state
altogether, observing the sum of multiple states, but doesn’t allow the observa-

tional variance to depend on the state x(t).

The WOFI criteria within POMDP’s is

8 2
E [(% log p(Y:11X, 6, ut)) l

and within the discretized diffusion process
Yi+1 = A (Xi + f(Xi, 0, I/t,‘)AI) +b+ \/EAZ(Xi)l/ZGLi + E;/ZGZJ

where € ;, 6,; are independent standard normal vectors. We see how, with WOF],

the Fisher Information criteria changes naturally to

2

9 2 0
E {(— log p(YelXe, 6. u») ] _E [HA%ﬂXt, 0, 1)

2
= ] (A?)

2 (X¢)

where X*(x¢) = AtTAZ(x¢)A” + ;. Note that by adjusting Ar we can adjust process

variance relative to observation variance.

More generally we would be interested in y(t) = g(x(t)) + Z;/ 2 where g is not
necessarily a linear mapping, or allowing the observational error to depend on

x(t), that is y(t) = x(t) + Z}*(x)&. The WOFI criteria

5 2
E {(% log p(Y:11X, 6, Mt)) l
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is harder to write out directly in this case, since Y¢,; conditional on X is not

necessarily normal anymore.

We don’t pursue these issues in detail but note that the first case could be
approximated with a linear mapping g(Xt.1) = g(x,) + Jo(x,)(x.+1 —x,), which above

would amount to setting b = g(x,) and A = J,(x,)
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CHAPTER 7
CONTINUOUS EXAMPLES

7.1 Morris Lecar model

The Morris Lecar Model [11] describes oscillatory electric behavior in a single
neural cell, as regulated by flow of Potassium and Calcium ions across the cell
membrane. These models are defined in terms of state variables v, and n, repre-

senting the voltage across the membrane and the flux of the Potassium channel

respectively.
CoVvi=1—8-(v,—E)—gk-n -, —Ex) = 8ca Mow(Vy) - (v = Ecy) (7.1)
iy =—¢ - (1, — ne(v))/T,(vy) (7.2)

where m.(v) = %(1 + tanh((v — v1)/v2)), 7,(v) = sech((v — v3)/(2v4)) and n.(v) =
%(1 +tanh((v—v3)/vs)). We will write C,,v, = F(v;, n;) and 1, = F»(v,, n,) as shortcuts
equations (7.1) and (7.2). The voltage between cells depends on Potassium and
Calcium concentrations, and on the amount of leakage. The further these fac-
tors are away from their equilibriums E;, Ex, E¢, the greater the rate of change in
voltage. The multiplicative value n, changes the conductance of the potassium
channel and is modeled through the second differential equation in which n,
is driven towards a voltage-dependent equilibrium level defined by n.(v,) but
converges to this at a much slower rate then the dynamics of v,. The neuron is
stimulated by an external applied current, I, (our control), and v; is measured.
Our goal is to maximize information about the parameters C,, gc, and ¢, con-

sidered separately.
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We consider a stochastic version of this neural firing model, derived from
[10], by adding cdW, and 6dW, to equations (7.1) and (7.2) respectively, where
W, and W, are independent Wiener processes. Stochastic models are important
in this context in order to accommodate observable variation in the inter-spike
interval where a deterministic model will require a fixed period; see [3], for

example.

The first step is to discretize these equations with respect to time. We get
that v,(t + df) = v(t) + dt - Fi((t),n(t))/C,y + o Vdt - &) and n(t + dt) = n(t) + dt -
Fy(v(t), n(1)) + & Vdt - £, where g1, ~ N(0, 1).

We discretized v, onto the range [-75,45] and n, onto [0, 1], after running a
few trial versions of the model. Both ranges where discretized into 25 intervals.

Only v, is measured and it is measured noisily,
=wvté&

where g, ~ N(0, 1). The observation space was discretized to the same range as
v, but into 20 intervals. These approximations give rise to a Partially Observed
Markov Decision Process to which our methods can be applied. The values for
the parameters were set to be C,, = 20, gc, = 4.4, g1 = 2.0, E; = —-84.0, E; = —60,
Ec, = 1200, ¢ = 04, vi = =12, v, = 180, v3 = 20, v4 = 300, 0 = 6 =1
and dt = 1. The controls range was set to be [-1.5,6.0] and discretized to the
set I, € {-1.5,0.0,1.5,3.0,4.5,6.0}. We considered experimental design for the
parameters C,, gc, and ¢, considered separately. FOFI, WOFI and truncated
POFI controls were calculated using dynamic programming, where the trunca-

tion factor m = 1 was chosen.

When calculating a Fisher Information reward to use in a dynamic program,

we generally use the estimated transition probabilities of the POMDP, for exam-
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Figure 7.1: Long term controls of FOFI and truncated POFI for the parameter
gca- The FOFI plot gives the control to use, given a certain position in state
space. The truncated POFI control will depend on the last two observations and
the last control, but fixing the last control as, for example, /,_; = 6 one can plot
which control to use given combinations of the last two observations.

ple the WOFI reward is (% PVes1lxs, tyy 9))2. As discussed in Section 6.2 we can
frequently calculate the FOFI and the WOFI reward using the function f and the
covariance matrix X. If we look at § = g¢, for example, we see that it only ap-
pears in the v dimension, C,,v, = I,—g;-(v,(—E;) =gk 1, (Vi— Ex)—8caMoo(V) (vi—Ec¢,)

and we get that

8 2
(%P(xﬁﬂxt, Uz, 9)) & (moo(Vt) (v — ECa))2

Since the observations process assumes that we only observe the v(f) dimension
with some normal noise we have that A = (1, 0) in Section 6.2. This shows that
the WOFI reward (% POVt lxe, 9))2 is proportionally the same as the FOFI re-
ward, and we shouldn’t expect any difference between the corresponding poli-
cies. The FOFI and truncated POFI long term policies for g¢, are given in Fig-

ure 7.1. The WOFI policy is not shown since it coincides with the FOFI policy.
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next control control next control control next control control

6.0 6.0
45 4.5
3.0 3.0
1.5 15
0.0 0.0
1.5 15
60 20 20
voltage v voltage v y_t
(a) FOFI control (b) WOFI control (c) truncated POFI control

Figure 7.2: Long term policy of FOFI, WOFI and truncated POFI for the param-
eter ¢. The FOFI policy is clear cut while the WOFI policy is only picking up
on numerical noise. In the truncated POFI policy we fix I,_; = 6 to get a plot of
which control to use given combinations of the last two observations.
Experimental design for ¢ is trickier since it only appears in the second di-
mension 7, = =@ - (n; — e (v,))/T,(v;). Since the WOFI reward re-weights the FOFI

reward depending on how the states are observed, we get that the WOFI reward

breaks down in this case;

8 2
(%p(yt+llxta Uy, 6)) =0

See figure 7.2 for long term policies for ¢. We see that the truncated POFI policy

seems rather unclear, while the WOFI policy just picks up on numerical noise.

The parameter C,, only appears in the v dimension, and the WOFI and FOFI
policies coincide again, see figure 7.3 for FOFI and truncated POFI long term
policies. The longterm FOFI policy seems to almost only choose the highest

possible control, while the truncated POFI policy varies more.

A simulation study was run for each of the three parameters gc,, ¢, C,, us-
ing FOFI and truncated POFI policies (skipping WOFI since it was either the
same as FOFI or non sensible). The system was simulated within the discretized
Markov Chain framework with 100 time steps and all schemes had 100 simu-

lations. The parameter in question was estimated for each simulation using an
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next control control next control control

1.0 6.0
208 - 45
g 3.0
E 0.6 :
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T — -1.5
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voltage v yit
(a) FOFI control (b) truncated POFI control

Figure 7.3: Long term policy of FOFI and truncated POFI for the parameter C,,.
In the truncated POFI policy we fix /,_; = 6 to get a plot of which control to use
given combinations of the last two observations.

parameter bias st. dev. MSE
FOFI 4234 24722 6.2913
Chn tr. POFI 4129 2.4068 5.9632
Fixed 9098 3.4240 12.551
FOFI  .0613 .3671  .1385
8ca tr. POFI .0158  .3706  .1376
Fixed .0249 .6193 3841
FOFI ~ .00485 .01085 .00014
] tr. POFI .00257 .01037 .00011
Fixed .01357 .02643 .00088

Table 7.1: Simulation results for the Morris-Lecar model, consider the param-
eters C,, gcq, ¢ separately. We see that the truncated POFI and FOFI policies
outperform the fixed policy I, = 1.5 in all cases, and the truncated POFI policy
seems to perform slightly better than the FOFI policy for the three parameters
considered.

EM algorithm. As a baseline comparison we also ran a simulation study using a
tixed control (I, = 1.5). The results are given in Table 7.1. The difference between
the truncated POFI and FOFI turns out to be not very dramatic, likely due to the
observations providing a great deal of information about the underlying state

variables, which is when FOFI performs well.
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7.2 Rosenzweig MacArthur model

The Rosenzweig MacArthur model describes the population dynamics of a two
species ecology, a prey species C (generally a type of algae in chemostat exper-
iments) and a predator species B (rotifers in chemostat, a microscopic animal).
The chemostat experiment consist of a tank filled with a nutrient rich medium
which the prey species consumes, and the predator consumes the prey. See

Hooker [4] for details.

The model can be expressed in various approximately equivalent ways, but

we focus on the diffusion model formation of the model, dx = f(x)dt + Z(x)!/?dW

with
BCB
X = C f: pC(KC_C)_ZB+C
BCB
B KBT —mB

and dW = (dW,,dW,), a two dimensional independent Wiener process with

2
y“BBC __¥BBC
E(X) _ pC(KC - C) + kp+C kp+C
YBBC BBC
- kp+C kp+C + mB

The algae grows logistically according to pC(kc — C) where k¢ is an upper
bound on the population, and p controls the growth speed. Rotifers reproduce
proportionally to the number of algae according to SBC/ (ks + C), and y controls
how many algae are needed to create one new rotifer. The rotifers die propor-

tionally to their population according to —mB.

We assume a controllable dilution rate ¢, which affects both the algae popu-

lation limit k- and the rotifer death rate m in the following way; «¢c = «*/(k™ + 6)
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and m = my + 6. We assume the following parameter values; p = 4.17 * 1077,

B =75,y =30,k = 180000, k- = .4 and m, = .04.

Discretizing the state space is challenging in this form since the algae C can
become very large. Instead we take logarithms; x; = log(C) and x, = log(B), and

consider the derived diffusion model dx = f(exp(X))dr + E(exp(X))"/2dW

We get

fx) | plke =)= L%

X BC_
kg+C

f(x) =

and

2(x) = diag(1/x)Z(x)diag(1/x)

pke=C) | _¥*BB __

_ c Clks+C) xp+C
_ B BC m
kp+C B(kp+C) B

After considering various sample paths of the system, we discretize the x,
dimension onto the range [2.3,11.3], and the x, dimension to the range [.7, 8].
Both ranges were discretized evenly into 40 intervals. To add stability diagonal
noise was added to £, which was proportional to the squared bin size in the dis-

cretization of (x;, x,). Three possible control values were provided; ¢ € {0, .2,.5}.

We assumed that the observations were binomial samples of the algae, y, =
Bin(C,, p) = Bin(exp(x,), p) where the sampling coefficient was set at p = .1. This

was approximated by a normal distribution N (C p,Cp(1 — p)).

We considered the problem of estimating the parameter § with maximal pre-
cision and to do that we ran a dynamic program with 7 = 300 steps for the
WOFI and FOFI criteria and an example of the controls can be seen in figure 7.4.

As in the Morris Lecar model, we should expect the WOFI and FOFI controls to
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(a) FOFI control (b) WOFI control

Figure 7.4: Long term controls in the Rosenzweig MacArthur model, FOFI left,
WOFI right.

Rosenzweig MacArthur Model
bias st.dev. MSE
FOFI | .0016 .0341  .0012
WOFI | .0075 .0270  .0008

Table 7.2: Simulation results for the Rosenzweig MacArthur Model.

be similar, due to the parameter 8 having the same form in both dimensions of
the system, although some variation might be due to X also contribution param-
eter information. The truncated POFI turned out to be computationally harder

to handle in this example, and was thus not considered.

We ran a simulation study of 200 simulations for both FOFI and WOFI, and
estimated the parameter 8 by maximizing the relevant likelihood. The results

are given in Table 7.2. The performance between WOFI and FOFI seems similar.
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CHAPTER 8
PARAMETER DEPENDENCE OF DYNAMIC PROGRAM

In the examples above we calculated the dynamic program assuming knowl-
edge of the parameter 6, the very thing we wish to estimate with maximal pre-
cision. Since the dynamic programs we have considered are run before the ex-
periment is started we generally won't have data to estimate 6. Additionally, for
the FOFI simulations we have used 6 directly to estimate x, within the filter to
get the appropriate control, but this will not be possible in practice. There are a

few ways of dealing with this.

Assuming some prior information one can use a prior for 6 to run the dy-
namic program. To do this, we add one more expectation for 6 at every time
step ¢, and then maximize the expected Fisher Information to get the best con-

trol. In the FOFI case this means maximizing

n g 2
E Z (% log p(xs1lxy, uy, 9)) }

t=0

Ey

This strategy was employed in Hooker et al. [5].

The rather obvious deficiency here, for all our Fisher Information criteria, is
that as the experiment runs, we get observations that can be used to improve
our prior for 6, and could be used to get better controls, if we could brake the

experiment and rerun the dynamic program.

8.1 Online updating

In some systems the time spent in each state is very short, too short to per-

form many calculations, making it valuable to have a “look-up table" of con-
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trols. Here the truncated POFI controls have an advantage over the FOFI and
WOFI controls, in the sense that they are of the “look-up" kind, as FOFI and
WOFI require estimation of the underlying x, process, before the control can be

looked up.

In other systems, there is time to do some calculations between transitions.
Note, for example, that at time 7 we have observed yy, ...,y and this will allow
us to calculate a posterior distribution 7(6|yo., uo.—1) for our parameter of inter-
est. This posterior could then be used to run the dynamic program again, as
described above, from time 7 — 1 to time ¢. This can be quite time consuming
if done at each time step ¢, so we propose a method that relies on the Value

Iteration Algorithm (VIA), see Section 2.3 for a description of VIA.

8.1.1 Value Iteration Algorithm

As discussed in Section 2.3, in VIA we calculate
V7 (x, 0) = max {E,, [C(x, 1y, 0) + A V' (X1, 0)| X, 11, 0]}

where 0 < 1 < 1, and this maximizes the expected total discounted reward W; =
E [Zfio A 1C(x,, ut)]. Also covered in Section 2.3 is that if 1 is close enough to one,
Blackwell optimality guarantees that controls that maximize W5 also maximize
the expected average reward W, = lim,_,« %E [>io C(x;,uy)], or its lim sup if the

limit doesn’t exist.

We can therefore say that our aim with VIA is to maximize what we in the

truncated POFI case label, the average truncated Partial Observation Fisher In-
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formation

1 S (0 ’
lim =EyEyq Z (% log p(yee1lYi-mt> Ur-m:1> Xo,6)
e =0

or in the FOFI case, the average Full Observation Fisher Information and sim-
ilar for WOFI. This is a reasonable quantity to maximize in order to obtain a
time-invariant policy, see Section 2.3 for conditions on the existence of a aver-

age criteria.

We propose running VIA at every time step ¢, but to use the posterior for
0, n(0]yo., uo—1), which is conditioned on all the data observed so far, instead
of using the prior for 6. This will give a control that maximizes the average
Fisher Information, using all the parameter information that is available at time
t. Instead of starting VIA at each time ¢ with vl = 0, considerable time can be
saved by using the last value vector " from the previous run of VIA at time
t — 1. This is because the posterior for 6 often doesn’t change much between
time steps, and the last v' from time 7 — 1 thus being relatively close to the fixed

point at time ¢.

Let v denote the value vector at time ¢ at the n’th iteration of the #'th VIA
and let (6lyo., uo—1) denote the posterior for 6 given observations up till time ¢.
Also, to ease notation, let z; = y,_.1, #—my—1. The pseudocode for this modified

VIA using the truncated POFI is:

Setv?=0andn:O
forr=0—-Tdo
while |V —v*!|| > e do

Y z; and calculate and store
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P 2
max ) > [(8—9 log p(yis 112 1, 9)) + V! (21 PGra |22s s TN, 1)
"

n=n+1

end while

n

Set V! =

t+1

Now let

u,(z¢) =

P, 2
argmax ; > [(6—6 10g p(yiailzes 4, 0)) + V] @e1)) PGt 20, O (ONVoss, 1)

Yi+1

Use control u,, and observe y,,; and then update the posterior for 6,

P11y, Uoz, O (O]yo.s, to:r—1)
220 POrs110:15 o0, O (Oy0:1, Uo:s—1)

7(01yo:s+1, Uo) =

end for

Updating FOFI and WOFI policies online using VIA can be done in a sim-
ilar way. In the next example we compare fixed policies with policies that are

updated in run-time.

8.1.2 PCR model

Polymerase chain reaction is a well established method to copy and multiply
DNA. We are interested in modeling the growth dynamics of DNA template

(x,), for a fixed amount of substrate. The model we use is

a(l —u)x
Xee1 = (1 —u)x +dt(b +((1 — ;)z);z)z + ‘/CE'S]
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where g, ~ N(O, oﬁ). Here x, is the amount of DNA template, a and b the pa-
rameters of the model and u, the control, the percentage of template removed
at each time point. We are interested in estimating the parameter b, labeled the

half-saturation constant. A good reference for PCR models is [2].

We measure the amount of DNA template at each time point, but with an

error. Our observations are

V; = Xx; + & Where &, ~ N(0, 0'3)

and thus we have a dynamical system which when discretized becomes a

Partially Observed Markov Decision Process.

The range for x, was set to be [0, 15] and then discretized into 200 intervals,
and y, was discretized to the same range, but only into 50 intervals. The param-
eter values were set tobe a = 2.0, b = 4.2, 0y = 0, = 1, dt = 1 and the possible

values of the control «, € {0, .2, 4, .6, .8, 1}.

Still with the objective of maximizing Fisher Information, we more realisti-
cally assume priors for the parameters of the system, as discussed above. We
conducted a simulation study using controls based on these priors for the trun-
cated POFI and FOFI, and then compared their performance to controls that are
updated online using VIA, also both for truncated POFI and FOFI. WOFI was
left out in this example, as the focus was more on the effect of updating the pa-
rameter priors. As a baseline comparison we also ran simulations using fixed
controls and simulations where the true parameter is used (unrealistically) to
calculate the control policy via dynamic programming as in the previous exam-
ples. For fixed controls we report the simulation with the lowest MSE, which

was when u, = .2.
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uniform prior, with VIA
uniform prior, without VIA bias st.dev. MSE
bias st. dev. MSE FOFI | 0.0388 0.6180 0.3834
FOFI | 0.1059 0.6598 0.4465 tr. POFI | 0.0766 0.5999 0.3658
tr. POFI | 0.0053 0.6189 0.3831 inaccurate prior, with VIA
inaccurate prior, without VIA bias st. dev. MSE
bias  st. dev. MSE FOFI | 0.0713 0.6787 0.4657
FOFI | 0.0755 0.6374 0.4120 tr. POFI | 0.0954 0.6750 0.4648
tr. POFI | 0.0516 0.7051 0.4998 True parameterl without VIA
fixed control (u, = .2 for all 7) bias st. dev. MSE
fixed \ 1264 7466  0.5734 FOFI | 0.0659 0.6235 0.3932
tr. POFI | 0.0323 0.6249 0.3916

Table 8.1: Simulation results for the PCR Model using two kinds of priors, trun-
cated POFI and FOFI, with and without VIA.

The range for b was set to be b € [1.7, 8.0] and then we discretized that inter-
val into 10 points {1.7,2.4,3.1,3.8,4.5,5.2,5.9,6.6,7.3, 8.0}. We then considered a
uniform prior on these points and a prior that is somewhat inaccurate, and puts
the weight .9 on the point 7.3 and gives the others equal weight. The discount-

ing factor for VIA was set to be 1 = .9.

Our simulation study had the time length 7 = 200 and there were 600 sim-
ulations for each case. The parameter b was estimated using an EM algorithm.

The simulation results are given in Table 8.1.

We note that when we calculate the controls prior to the experiment (No
online updating), both the truncated POFI and FOFI controls are significantly
better than using a fixed control, and truncated POFI seems to do better than
FOFI when we use an uniform prior. Interestingly in the FOFI case, calculating
the controls using the inaccurate prior does better then using the uniform prior,

likely due to a reduction in prior variance, in spite of additional bias.
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Figure 8.1: Running time of VIA at each time step ¢, for POFI using a uniform
prior for the PCR model.

Accuracy increases in most cases when we allow for online updating using
the VIA algorithm. Starting the VIA with an uniform prior does better than
starting with the inaccurate one, which is probably due to the VIA having to
spend more time “repairing" the prior. Also, we note that VIA controls with
uniform prior have a similar performance to a control policy using the true (un-

known) parameter.

Additionally, in Figure 8.1, we see that using the previous final value vec-
tor as the starting value vector of VIA when going from time point ¢ to # + 1,
does save considerable time, and more so as ¢ grows and the posterior for the

parameter starts to change less.
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CHAPTER 9
CONCLUSION

We have compared three ways to conduct experimental design in paramet-
ric POMDP’s, based on using dynamic programming to maximize the truncated
Partial Observation Fisher Information, the Weighted Observation Fisher Infor-
mation and the Full Observation Fisher Information. We have proven how the
prior two criteria approximate POFI, the true Fisher Information of the data,

under suitable assumptions.

Settings can arise where controls chosen by FOFI are not optimal, due to
focusing on the underlying process rather than the observed process, and in
these cases controls chosen with a POFI approximating criteria often perform
better, as in the six state example and the adversarial game. In some of the

examples analyzed they performed similarly.

In recent years, there has been growing interest in statistical procedures
within dynamical systems, such as parameter estimation and hypothesis test-
ing, and many of these procedures could be performed more efficiently given
good experimental design. In the examples covered we fully discretized the
state and observational spaces to transform dynamical systems with stochastic
errors into partially observed Markov decision processes, allowing us to use the

methods developed for POMDP’s to our advantage.

We also noted how the problem of parameter dependence can be overcome
by averaging over a prior. Additionally given that there is enough time between
consecutive time steps, we showed how the controls can be efficiently updated

online using observations gathered so far, by using a variant of the Value Itera-
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tion Algorithm. This was demonstrated in the PCR example.

Finding controls that maximize information about parameters is a compu-
tationally challenging task. We have successfully demonstrated techniques for
up to two dimensional systems, for a one dimensional parameter. Adding di-
mensions in state, parameter or observation space quickly make the methods
considered computationally intractable. Considering a longer lag of past ob-
servations for the truncated POFI might also increase accuracy, but again at the
cost of computation time. The biggest challenge of these methods that remains

is to extend them to higher dimensional systems.
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