
EXPERIMENTAL DESIGN FOR PARTIALLY
OBSERVED MARKOV DECISION PROCESSES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Leifur Thorbergsson

August 2014

c© 2014 Leifur Thorbergsson

ALL RIGHTS RESERVED

EXPERIMENTAL DESIGN FOR PARTIALLY OBSERVED MARKOV

DECISION PROCESSES

Leifur Thorbergsson, Ph.D.

Cornell University 2014

This thesis considers the question of how to most effectively conduct experi-

ments in Partially Observed Markov Decision Processes so as to provide data

that is most informative about a parameter of interest. Methods from Markov

decision processes, especially dynamic programming, are introduced and then

used in algorithms to maximize a relevant Fisher Information. These algorithms

are then applied to two POMDP examples. The methods developed can also

be applied to stochastic dynamical systems, by suitable discretization, and we

consequently show what control policies look like in the Morris-Lecar Neuron

model and the Rosenzweig MacArthur Model, and simulation results are pre-

sented. We discuss how parameter dependence within these methods can be

dealt with by the use of priors, and develop tools to update control policies on-

line. This is demonstrated in another stochastic dynamical system describing

growth dynamics of DNA template in a PCR model.

BIOGRAPHICAL SKETCH

Leifur grew up in Ísafjörður, Iceland. He is the son of Þorbergur Kjartansson

and Frauke Eckhoff, and he has two sisters, Elisabeth Þorbergsdóttir and Oddný

Þorbergsdóttir. He attended Menntaskólinn a Ísafirði high school, before major-

ing in Math at the University of Iceland in Reykjavík and graduating in 2008.

He attended Cornell from 2008 till 2014, graduating with a Ph.D. in Statistics.

iii

This thesis is dedicated to my parents, Frauke Eckhoff, and Thorbergur

Kjartansson.

iv

ACKNOWLEDGEMENTS

I would like to especially thank my advisor, Professor Giles Hooker for his in-

valuable guidance, and my committee, Professors James Booth and Bruce Turn-

bull for their helpful advice. Additionally I would like to thank Diana Drake

and Beatrix Johnson, my teachers and fellow students in Statistics and ORIE,

my housemates at Gamma Alpha, and my friends in Ithaca.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vi
List of Tables . viii
List of Figures . ix

1 Introduction 1

2 Framework, Literature review and Theory 5
2.1 Framework . 5
2.2 Hidden Markov Model theory, adjusted for controls 5

2.2.1 Framework . 6
2.2.2 Forwards and Backwards variables 7
2.2.3 Forwards and Backwards Kernels 7
2.2.4 Total Variation and Dobrushin Coefficient 9
2.2.5 Mixing Conditions and forgetting properties 10
2.2.6 Fisher’s identity . 15
2.2.7 Bounds on score function, with adjustments 17

2.3 Markov Decision Processes theory 22

3 Fisher Information 26
3.1 Objectives . 26
3.2 FOFI . 26
3.3 POFI . 27
3.4 Expressing POFI . 28

3.4.1 One or two derivates? . 30
3.5 Truncated POFI . 30

3.5.1 Mixing conditions . 31
3.6 Truncated POFI convergence theorem 32
3.7 WOFI . 35
3.8 WOFI approximates POFI theorem 36
3.9 Best POFI convergence theorem . 44

4 Control theoretic algorithms applied to Fisher Information problems 47
4.1 FOFI Dynamic Program . 47

4.1.1 Pseudocode for FOFI and computational complexity . . . 48
4.2 Truncated POFI dynamic program 49

4.2.1 Pseudocode for POFI . 50
4.2.2 Truncated POFI, computational complexity 52

4.3 WOFI dynamic program . 52
4.4 Parameter estimation . 53

vi

4.4.1 EM algorithm . 54
4.4.2 Direct Maximum Likelihood 55

5 Discrete Examples 57
5.1 6 state example . 57
5.2 Gamble Safe example . 59

6 Diffusion processes 63
6.1 Discretizing a Diffusion Process . 63
6.2 FOFI and WOFI in Diffusion Processes 64

7 Continuous Examples 68
7.1 Morris Lecar model . 68
7.2 Rosenzweig MacArthur model . 73

8 Parameter dependence of dynamic program 76
8.1 Online updating . 76

8.1.1 Value Iteration Algorithm 77
8.1.2 PCR model . 79

9 Conclusion 83

Bibliography 85

vii

LIST OF TABLES

5.1 Long run control policy that results from using a truncated POFI
in the 6 state example. The first column describes which control
to use for a given history (yt, yt−1, ut−1) of observations and control. 59

5.2 Simulation results for the 6 state example. We see that the con-
trols chosen by truncated POFI or WOFI make for more accurate
estimates of p. The FOFI policy does worse than a random policy. 59

5.3 Rewards in the Gamble Safe game. The first number is the re-
ward for the Row player and the second number the reward for
the Column player, given a certain outcome. 60

5.4 Simulation results for Adversarial Game. The FOFI policy is sim-
ilar to the random policy. Truncated POFI does slightly better
that FOFI and WOFI does slightly better than truncated POFI. . 62

7.1 Simulation results for the Morris-Lecar model, consider the pa-
rameters Cm, gCa, φ separately. We see that the truncated POFI
and FOFI policies outperform the fixed policy It = 1.5 in all cases,
and the truncated POFI policy seems to perform slightly better
than the FOFI policy for the three parameters considered. 72

7.2 Simulation results for the Rosenzweig MacArthur Model. 75

8.1 Simulation results for the PCR Model using two kinds of priors,
truncated POFI and FOFI, with and without VIA. 81

viii

LIST OF FIGURES

7.1 Long term controls of FOFI and truncated POFI for the param-
eter gCa. The FOFI plot gives the control to use, given a certain
position in state space. The truncated POFI control will depend
on the last two observations and the last control, but fixing the
last control as, for example, It−1 = 6 one can plot which control to
use given combinations of the last two observations. 70

7.2 Long term policy of FOFI, WOFI and truncated POFI for the pa-
rameter φ. The FOFI policy is clear cut while the WOFI policy
is only picking up on numerical noise. In the truncated POFI
policy we fix It−1 = 6 to get a plot of which control to use given
combinations of the last two observations. 71

7.3 Long term policy of FOFI and truncated POFI for the parameter
Cm. In the truncated POFI policy we fix It−1 = 6 to get a plot of
which control to use given combinations of the last two observa-
tions. 72

7.4 Long term controls in the Rosenzweig MacArthur model, FOFI
left, WOFI right. 75

8.1 Running time of VIA at each time step t, for POFI using a uni-
form prior for the PCR model. 82

ix

CHAPTER 1

INTRODUCTION

Hidden Markov Models have proven their usefulness across a wide variety

of applications. In many of these applications, the user or the experimenter will

have some way of influencing the transitions of the underlying Markov Chain,

as in Markov Decision Processes, and such a process is called a Partially Ob-

served Markov Decision Process (POMDP), see Monahan [6]. If we assume that

the transition probability matrix is governed by some unknown parameters, an

important problem is to understand how the process can be influenced to get

data that is most informative about the parameters. We can think of this as

experimental design for Partially Observed Markov Decision Processes.

We consider a POMDP (xt, yt, ut)t=0,...,T . In this setting xt is an unobserved

Markov Chain, where the transition probabilities depend in a parametric way

on what control ut is chosen at time t and an unknown parameter θ. The process

yt is observed and depends on which state xt is in.

Our goal is to find ways to use the controls ut to improve parameter estimates

of θ. Since the maximum likelihood estimates for θ will be asymptotically effi-

cient, our general strategy will be to use the controls to try to minimize the sam-

ple variance of the maximum likelihood estimates of θ. This will be achieved

by maximizing a Fisher Information for θ. The controls are calculated using dy-

namic programming, a popular maximization algorithm from Markov Decision

Processes which outputs an adaptive control policy, i.e. the control chosen at

time t is based on observations up to time t.

In Chapter 2 we review the relevant theory from Hidden Markov Models

1

and modify it to allow for controls. We discuss forgetting properties of the fil-

ter and score function, which will be needed to prove convergence results in

Chapter 3. Then we review relevant theory from Markov Decision Processes,

especially dynamic programming and the Value Iteration Algorithm.

The first attempt at using dynamic controls to maximize a Fisher Informa-

tion was by Hooker et al. [5] who proposed maximizing the Fisher Information

that corresponds to direct observations of the underlying process xt, labeled the

Full Information Fisher Information (FOFI), and using a filter to compute xt if

it is not observed directly. We extend their work by making use of the POMDP

structure and we propose maximizing a Fisher Information that is based on the

observations yt, labeled the Partial Observation Fisher Information (POFI). We

show that maximizing POFI directly using dynamic programming is compu-

tationally unfeasible, and in Chapter 3 we give two approximations to POFI,

the truncated Partial Observation Fisher Information, and the Weighted Obser-

vation Fisher Information (WOFI) and bound the difference between them and

POFI.

In Chapter 4 we discuss how these Fisher Information criteria are maxi-

mized using dynamic programming and discuss the computational complexity

of running such algorithms. Then we describe parameter estimation techniques

within POMDP’s, review the asymptotic properties of the MLE and bound the

difference between the asymptotic Fisher Information of our estimate and the

theoretically best possible Fisher Information.

The methods developed have application value beyond Partially Observed

Markov Decision Processes. In Chapter 6 we consider stochastic systems of the

2

form

dx = f(x, θ, u(t))dt + Σ1/2dW

where θ is the parameter of interest, to be estimated, u(t) is a control that can

be chosen by the user, x is the vector of state variables, f is a vector valued

function, W a Wiener process, and additionally x(t) is only observed partially

or noisily. By discretizing time, state and observation spaces the process can

be approximated by a POMDP, allowing us to use the methods developed to

devise a control policy that maximizes information about the parameter θ.

In order to illustrate our methods we present five examples, with the first

two being POMDP’s and the latter three continuous stochastic systems. We use

the unknown θ to calculate controls in all but the last example to highlight the

differences between the different maximizing criteria, but in the last example we

examine means to deal with the dependence of the Fisher Information criteria

on the parameter of interest.

In Chapter 5 we consider 2 POMDP examples. First we hypothesize about

the kind of systems in which policies based on POFI will lead to large improve-

ment in parameter estimation over the FOFI policy. Following a discussion we

construct a mock Partially Observed Markov Decision Process, in which this

improvement is shown using a simulation study. To illustrate the real-world ap-

plicability of design in discrete POMDP’s we consider a realistic POMDP from

experimental economics. The model will consist of a simple adversarial game

similar to the “rock - paper - scissor" game where one player tries to play in such

a way that maximizes information about the other players’ strategy.

In Chapter 7 we consider two diffusion processes. First a stochastic version

of the Morris-Lecar Neuron model, a dynamical system which models voltage

3

in a single neural cell. This model is two dimensional, but only one dimension is

observed. The model has multiple parameters and we investigate how the trun-

cated POFI, WOFI and FOFI control policies perform in estimating them. Then

we consider the Rosenzweig MacArthur Model, which describes a two species

ecology, with a predator species consuming a prey species in a controlled envi-

ronment, and we look into control policies towards estimating the rate of which

prey is consumed.

The methods we use to calculate controls for maximizing Fisher Informa-

tion will depend on the unknown parameter θ. In Chapter 8 we illustrate how

this problem can partially be overcome by assuming a prior for θ to calculate

a control policy before running the experiment. Additionally we describe how,

using data acquired as the experiment progresses, a posterior for θ can be used

to calculate a more precise control policy. That is, parameter information from

observations acquired at a time t can be used to improve the policy used in

what is left of the experiment. These methods will be based on the Value Itera-

tion Algorithm (VIA), which is closely related to dynamic programming. This

is illustrated in a fifth example, now from biology, a Polymerase chain reaction

(PCR) experiment where DNA template is grown in liquid substrate. The popu-

lation dynamics are modeled in a dynamical system with stochastic errors, and

the aim is to estimate the half-saturation constant, a parameter which controls

the saturation of the template. Here we compare using a prior for θ and using

VIA to calculate a control policy.

4

CHAPTER 2

FRAMEWORK, LITERATURE REVIEW AND THEORY

2.1 Framework

We consider a Markov decision process (Xt, ut)t=0,...,T . In this setting Xt is a Markov

chain, but the transition probabilities at time t depend on a control ut chosen at

that time. We assume a finite state space X for the state process Xt and that the

controls available belong to some finite setU. We let K denote the size of X and

l the size of U. The transition probabilities are assumed to be parametric and

we frequently write p(xt+1|xt, ut, θ) short for p(xt+1 = xi|xt = x j, ut = ur, θ) where

xi, x j ∈ X and ur ∈ U.

In addition to this we assume that the process Xt is latent and we only ob-

serve the related observations Yt ∈ Ywhose relation to the Xt can also depend on

θ. We write p(yt|xt, θ) short for p(yt = yi|xt = x j, θ), where x j ∈ X and y j ∈ Y, and let

L denote the size of Y. This makes the system a Partially Observed Markov De-

cision Process (POMDP). It has a finite horizon T in which we observe y0 . . . yT .

We will use the short hand notation ym:t to denote ym, . . . , yt, i.e. the observations

between time m and t, and analogous notation for ut and xt.

2.2 Hidden Markov Model theory, adjusted for controls

This section is devoted to expanding Hidden Markov Model Theory to Par-

tially Observed Markov Decision Processes. We base it completely on Cappe

et al. [1] and use their notation, only changing what is necessary. Reviewing

5

forward and backwards variables, see 2.2.2, will be useful to describe the EM

algorithm in 4.4.1, but the main objective here is to prove Theorem 1 in Sec-

tion 2.2.5 about the forgetting properties of the filter p(xt|y0:t, u0:t−1, θ) and Theo-

rem 3 in Section 2.2.7 about the forgetting properties of the corresponding score

function. The latter is then used to prove Theorem 5 in Section 3.6 and Theo-

rem 7 in Section 3.9. In most cases the changes will amount to adding controls

and seeing that the theory follows through, although the proof of Theorem 3

has more substantial changes.

The forgetting properties of the filter p(xt|y0:t, u0:t−1, θ) will describe the in-

tuitive statement that the filter depends less on older observations than new,

although showing this is somewhat subtle.

2.2.1 Framework

Cappe et al [1] allow for continuous state spaces, and thus use integrals instead

of sums, etc. Since in this part we are only modifying their theory to allow for

controls, we adopt their notation for all of Section 2.2.

Let (X,X) and (Y,Y) be the state space and the observations space respec-

tively. Let

Qu(x, A) =

∫
A

qu(x, x′)dx′, A ∈ X, u ∈ U

be a transition kernel for our state space, where u is a control, and U is finite.

Also let

G(x, A) =

∫
A

g(x, y)dy, A ∈ Y

be the transition kernel for moving from the state space to the observation space.

6

We generally assume that the Markov Chain is initialized with distribution

ν, and then runs for n steps x0:n = x0, . . . , xn and that n − 1 decisions are made on

what controls u to use. This results in n observations y0:n = y0, . . . , yn and n − 1

control u0:n−1 = u0, . . . , un−1.

2.2.2 Forwards and Backwards variables

Definition 1 (Definition 3.1.6 in [1]). Conditional on y0:k and u0:k−1 we define the

forward variable

αν,k(y0:k, u0:k−1, f) =

∫
· · ·

∫
f (xk)ν(dx0)g(x0, y0)

k∏
l=1

Qul−1(xl−1, dxl)g(xl, yl)

and conditional on yk+1:n and uk:n−1 we define the backward variable

βk|n(yk+1:n, uk:n−1, x) =

∫
· · ·

∫
Quk(x, dxk+1)g(xk+1, yk+1)

n∏
l=k+2

Qul−1(xl−1, dxl)g(xl, yl)

As in the classical case these satisfy recursion formulas

αν,k(y0:k, u0:k−1, f) =

∫
f (xk)

∫
αν,k−1(y0:k−1, u0:k−2, dxk−1)Quk−1(xk−1, dxk)g(xk, yk)

with initial condition

αν,0(f) =

∫
f (x0)g(x0, y0)ν(dx0)

and similarly

βk|n(yk+1:n, uk:n−1, x) =

∫
Quk(x, dxk+1)g(xk+1, yk+1)βk+1|n(yk+2:n, uk+1:n−1, xk+1)

2.2.3 Forwards and Backwards Kernels

A standard result in HMM theory is that conditional on the observations y0:n

the Process {Xk}k≥0 still is a Markov Chain, although non-homogeneous, with a

7

transition kernel called the Forward Smoothing Kernel. We state the transition

kernel here for our case, also conditional on the controls.

Definition 2 (Definition 3.3.1 in [1]). Forward Smoothing Kernels. Given n ≥ 0

define for indices k ∈ {0, . . . , n − 1} the transition kernels

Fk|n(x, A, yk+1:n, uk:n−1) =

∫
A

Quk(x, dxk+1)g(xk+1, yk+1)βk+1|n(xk+1)

βk|n(x)

Note that the Forward Smoothing Kernels are defined in terms of the back-

ward variables.

We are generally interested in calculating smoothers and filters for our POMDP.

Definition 3 (Definition 3.1.3 in [1]). We let φν,k:l|n denote the conditional distribution

of Xk:l given Y0:n and u0:n−1.

The Forward Smoothing Kernel allows us a convenient way of calculating

the smoothing distributions. We first compute all the backward variables βk|n

using the backward recursion given. We then note that φν,0|n can be calculated as

φν,0|n(A) =

∫
A
ν(dx0)g(x0, y0)β0|n(x0)∫
ν(dx0)g(x0, y0)β0|n(x0)

and then we have the following recursion

φν,k+1|n(x) =

∫
φν,k|n(dxk)Fk|n(xk, x) = φν,k|nFk|n

where Fk|n are the forward kernels, and the last equation is a short hand way of

writing the integral.

Using this recursion repeatedly allows to express the smoother in the follow-

ing way

φν,k|n[y0:n, u0:n−1] = φν,0|n

k∏
i=1

Fi−1|n[yi:n, ui−1:n−1]

8

2.2.4 Total Variation and Dobrushin Coefficient

To continue towards forgetting properties we introduce Total variation (see Def-

inition 4.3.1 in [1]). Let ξ be a signed measure, which can be negative, and let

ξ = ξ+ − ξ− where ξ+, ξ− are (positive) measures. So if X is the state space then

‖ξ‖TV = ξ+(X) + ξ−(X)

Next, we let K be a transition Kernel from X to Y . The Dobrushin Coefficient

(see Definition 4.3.7 in [1]) is defined as

δ(K) =
1
2

sup
(x,x′)∈X×X

‖K(x, ·) − K(x′, ·)‖TV

The Dobrushin coefficient is sub-multiplicative (see Prop. 4.3.10 in [1]). If K :

X → Y,R : Y → Z are 2 transition kernels we have

δ(KR) = δ

(∫
K(·, dx)R(x, ·)

)
≤ δ(K)δ(R)

It can be shown that 0 ≤ δ(K) ≤ 1, however to establish forgetting properties

we often need δ(K) ≤ 1 − ε, where ε > 0.

The latter inequality holds if we assume the Doeblin Condition is satisfied:

Assumption 1 (Assumption 4.3.12 in [1]). There exist an integer m ≥ 1, ε ∈ (0, 1),

and a probability measure ν on (X,X) such that for any x ∈ X and A ∈ X,

Qm(x, A) ≥ εν(A)

Under these assumptions Lemma 4.3.13 in [1] gives δ(Qm) ≤ 1 − ε.

We say that a filter φν,k|n has forgetting properties if it depends less and less

on the initial distribution of X0 ∼ ν, as k increases. Specifically when comparing

initial distributions ν and ν′ we have

9

φν,k|n(y0:n, u0:n−1, xk) − φν′,k|n(y0:n, u0:n−1, xk)

=

∫
· · ·

∫ (
φν,0|n(y0:n, u0:n−1, xk) − φν′,0|n(y0:n, u0:n−1, xk)

) k∏
i=1

Fi−1|n(xk−1, xk)

Now using Corollary 4.3.9 in [1] we have

‖ξK − ξ′K‖TV ≤ δ(K)‖ξ − ξ′‖TV

where ξ, ξ′ are probability measures, K a transition kernel.

Using this on our representation of the filters gives

‖φν,k|n − φν′,k|n‖TV ≤ δ

 k∏
i=1

Fi−1|n(yi:n, ·)

 ‖φν,0|n − φν′,0|n‖TV

Now since the Dobrushin coefficient is sub-multiplicative

≤

k∏
i=1

δ
(
Fi−1|n(yi:n, ·)

)
‖φν,0|n − φν′,0|n‖TV

and since the Dobrushin coefficient δ satisfies 0 ≤ δ ≤ 1 we at least have that the

difference between the 2 filters is non-expanding.

Establishing forgetting properties thus amounts to showing δ(Fi−1|n(yi:n)) ≤

1 − ε for the forward smoothing kernels Fi|n. Note that so far no assumptions

have been made on how quickly the Hidden Markov Model mixes. Those as-

sumptions are made to get δ(Fi|n) ≤ 1 − ε.

2.2.5 Mixing Conditions and forgetting properties

Cappe et al. [1] establish contracting bounds on the Dobrushin coefficient by

imposing Strong Mixing conditions on the transition probabilities of the Hidden

Markov Model.

10

Assumption 2 (Assumption 4.3.21 in [1]). Strong Mixing Conditions in Hidden

Markov Models. There exist a transition kernel K : Y → X and measurable functions

ς− and ς+ from Y to (0,∞) such that for any A ∈ X and y ∈ Y ,

ς−(y)K(y, A) ≤
∫

A
Q(x, dx′)g(x′, y) ≤ ς+(y)K(y, A)

In our case we have different transition kernels for each control. The weakest

assumptions we can get away with is, if each transition kernel Qu has a corre-

sponding transition kernel Ku and measurable functions ς−(y, u) and ς+(y, u) sat-

isfying the strong mixing condition. By letting ς−(y) = minu ς
−(y, u) and ς+(y) =

maxu ς
+(y, u) we see that we can consider the same ς functions for each transition

kernel Qu. We restate the Strong mixing conditions for POMDP’s:

Assumption 3. Modified Strong Mixing Conditions. For each control u there exist a

transition kernel Ku : Y → X and measurable functions ς− and ς+ from Y to (0,∞) such

that for any A ∈ X and y ∈ Y ,

ς−(y)Ku(y, A) ≤
∫

A
Qu(x, dx′)g(x′, y) ≤ ς+(y)Ku(y, A)

Lemma 4.3.22 in Cappe et al. [1] uses the mixing conditions stated above

to establish contracting bounds on the Dobrushin coefficient. We restate the

lemma for the POMDP case, where we also condition on the controls, and use

the modified mixing conditions.

Theorem 1 (Lemma 4.3.22 in [1]). Under the strong mixing conditions the following

holds

(i) For any non-negative integers k and n such that k < n and x ∈ X,
n∏

j=k+1

ς−(y j) ≤ βk|n[yk+1:n, uk:n−1](x) ≤
n∏

j=k+1

ς+(y j)

11

(ii) For any non-negative integers k and n such that k < n and any probability mea-

sures ν and ν′ on (X,X),

ς−(yk+1)
ς+(yk+1)

≤

∫
ν(dx)βk|n[yk+1:n, uk:n−1](x)∫
ν′(dx)βk|n[yk+1:n, uk:n−1](x)

≤
ς+(yk+1)
ς−(yk+1)

(iii) For any non-negative integers k and n such that k < n, there exists a transition

kernel λk|n from (Yn−k,Y(n−k)) to (X,X) such that for any x ∈ X, A ∈ X, and

yk+1:n ∈ Yn−k,

ς−(yk+1)
ς+(yk+1)

λk,n(yk+1:n, uk:n−1, A) ≤ Fk|n[yk+1:n, uk:n−1](x, A)

≤
ς+(yk+1)
ς−(yk+1)

λk,n(yk+1:n, uk:n−1, A)

(iv) For any non-negative integers k and n, the Dobrushin coefficient of the forward

smoothing kernel Fk|n[yk+1:n, uk:n−1] satisfies

δ(Fk|n[yk+1:n, uk:n−1]) ≤ ρ0(yk+1) := 1 −
ς−(yk+1)
ς+(yk+1)

if k < n, and

δ(Fk|n[yk+1:n, uk:n−1]) ≤ 1 −
∫

ς−(y)dy

if k ≥ n.

Proof. The proof is the same as for the corresponding lemma in Cappe et al. [1],

but with slight modifications to allow for conditioning on controls.

(i) Letting A = X in the strong mixing conditions we find that for all u

ς−(y) ≤
∫

Qu(x, dx′)g(x′, y) ≤ ς+(y)

12

We also have

βk|n(x) =

∫
xk+1

· · ·

∫
xn

Quk(x, dxk+1)g(xk+1, yk+1)
n∏

l=k+2

Qul−1(xl−1, dxl)g(xl, yl)

=

∫
xk+1

Quk(x, dxk+1)g(xk+1, yk+1)

×

∫
xk+2

· · ·

∫
xn

Quk+1(xk+1, dxk+2)g(xk+2, yk+2)
n∏

l=k+3

Qul−1(xl−1, dxl)g(xl, yl)

≤ ς+(yk+1) sup
xk+1

∫
xk+2

· · ·

∫
xn

Quk+1(xk+1, dxk+2)g(xk+2, yk+2)

×

n∏
l=k+3

Qul−1(xl−1, dxl)g(xl, yl)

= ς+(yk+1) sup
x
βk+1|n(x) ≤

n∏
j=k+1

ς+(y j)

The other inequality is similar.

(ii) Using the recursion for the backward variables we find∫
x
ν(dx)βk|n(yk+1:n, uk:n−1)

=

∫
x

∫
xk+1

ν(dx)Quk(x, xk+1)g(xk+1, yk+1)βk+1|n(yk+2:n, uk+1:n−1, dxk+1)

=

∫
xk+1

[∫
x
ν(dx)Quk(x, xk+1)g(xk+1, yk+1)

]
βk+1|n(yk+2:n, uk+1:n−1, dxk+1)

≤

∫
xk+1

[∫
x
ν(dx)ς+(yk+1)Kuk(yk+1, xk+1)

]
βk+1|n(yk+2:n, uk+1:n−1, dxk+1)

= ς+(yk+1)
∫

xk+1

Kuk(yk+1, xk+1)βk+1|n(yk+2:n, uk+1:n−1, dxk+1)

We get a similar inequality for ς−. Also note that the last integral doesn’t

depend on ν, so it cancels when we take the ratio. The result follows.

(iii) We have that

Fk|n[yk+1:n, uk:n−1](x, A) =

∫
A

Quk(x, dxk+1)g(xk+1, yk+1)βk+1|n(xk+1)∫
Quk(x, dxk+1)g(xk+1, yk+1)βk+1|n(xk+1)

≤
ς+(yk+1)
ς−(yk+1)

·

∫
A

Kuk(yk+1, dxk+1)βk+1|n(xk+1)∫
Kuk(yk+1, dxk+1)βk+1|n(xk+1)

13

and we can set

λk|n(yk+1:n, uk:n−1, A) =

∫
A

Kuk(yk+1, dxk+1)βk+1|n(xk+1)∫
Kuk(yk+1, dxk+1)βk+1|n(xk+1)

(iv) Using (iii) we find that

Fk|n[yk+1:n, uk:n−1](x, A) ≥
ς−(yk+1)
ς+(yk+1)

λk|n(yk+1:n, uk:n−1, A)

and thus Assumption 4.3.12 holds and Lemma 4.3.13 gives

δ(Fk|n) ≤ ρ0(yk+1) = 1 −
ς−(yk+1)
ς+(yk+1)

�

Theorem 2 (Proposition 4.3.23 in [1]). Under the strong mixing conditions the fol-

lowing holds

(i) We let ν and ν′ be two different initial distributions for X0. Now for k ≤ n

‖φν,k|n[y0:n, u0:n−1] − φν′,k|n[y0:n, u0:n−1]‖TV

≤

 k∏
j=1

ρ0(y j)

 ‖φν,0|n[y0:n, u0:n−1] − φν′,0|n[y0:n, u0:n−1]‖TV

≤ 2

 k∏
j=1

ρ0(y j)


(ii) For any non-negative integers j, k, n such that j ≤ k ≤ n

‖Pν(Xk ∈ · |y0:n, u0:n−1) − Pν(Xk ∈ · |Y j:n, u j:n−1)‖TV

≤ 2
k∏

i= j

ρ0(yi)

where ν is the initial distribution of X0.

14

Proof. (i) Earlier we had

‖φν,k|n − φν′,k|n‖TV ≤

k∏
i=1

δ
(
Fi−1|n(yi:n, ·)

)
‖φν,0|n − φν′,0|n‖TV

and the first inequality now follows from the Lemma 4.3.22 part (iv). The

factor "2" follows from using the triangle inequality on the difference of

two probability measures.

(ii) This is just like part (i) except we consider different initial distributions for

X j.

�

2.2.6 Fisher’s identity

Fisher’s identity (see Proposition 10.1.6 in [1]) gives an alternative way to cal-

culate the score function ∂
∂θ

l(θ). This is based on theory associated with the EM

algorithm.

In general one can set f (x; θ) ≡ f (x, y; θ), the joint pdf of x, y. The likelihood

for Y is L(θ) =
∫

f (x; θ)dx and l(θ) = log L(θ) the loglikelihood. Set p(x; θ) =
f (x;θ)
L(θ) ,

the conditional of X given Y .

Now set

Q(θ, θ′) =

∫
log f (x; θ)p(x; θ′)dx = E[log f (x; θ)|Y]

and

H(θ, θ′) = −

∫
log p(x; θ)p(x; θ′)dx

15

We find that

Q(θ, θ′) =

∫
log f (x; θ)p(x; θ′)dx =

∫
log(p(x; θ)L(θ))p(x; θ′)dx

= l(θ) +

∫
log p(x; θ)p(x; θ′)dx = l(θ) − H(θ, θ′)

It is easily seen that H(θ, θ′) is minimized as a function of θ at θ′ and thus

∂

∂θ
l(θ′) =

∂

∂θ
Q(θ, θ′)|θ=θ′ +

∂

∂θ
H(θ, θ′)|θ=θ′ =

∫
∂

∂θ
log f (x; θ)|θ=θ′ p(x, θ′)dx

assuming we can exchange derivatives with integration. The last equation is

called Fisher’s identity.

In the POMDP case this translates to

f (x0:n, y0:n, u0:n−1, θ) = ν(xo)g(x0, y0; θ)qu0(x0, x1; θ)g(x1, y1; θ)

· · · qun−1(xn−1, xn; θ)g(xn, yn; θ)

and then

log f = log ν(x0; θ) + log(x0, y0; θ) +

n−1∑
k=0

log(quk(xk, xk+1; θ)g(xk+1, yk+1; θ))

and

Q(θ, θ′) = E
[
log f |Y0:n, u0:n−1

]
= Eθ′

[
log ν(x0; θ)|Y0:n, u0:n−1

]
+ Eθ′

[
log g(x0, y0; θ)|Y0:n, u0:n−1

]
+

n−1∑
k=0

Eθ′
[
log(quk(xk, xk+1; θ)g(xk+1, yk+1; θ))|Y0:n, u0:n−1

]
We set φ(x, x′, u, y) = ∂

∂θ
log(qu(x, x′; θ)g(x′, y′; θ)) and get

∂

∂θ
l(θ) = Eθ

[
∂

∂θ
log ν(x0; θ)|Y0:n, u0:n−1

]
+ Eθ

[
∂

∂θ
log g(x0, y0; θ)|Y0:n, u0:n−1

]
+

n−1∑
k=0

Eθ

[
φ(xk, xk+1, uk, yk+1; θ)|Y0:n, u0:n−1

]

16

This is a different expression of the score function from the usually consid-

ered
∂

∂θ
l(θ) =

n−1∑
k=0

∂

∂θ
log p(yk+1|y0:k, u0:k−1, θ)

2.2.7 Bounds on score function, with adjustments

Set hk,x(θ) = log
[∫

g(xk,Yk)P(Xk ∈ dxk|Y0:k−1, u0:k−1, X0 = x)
]
. Then our usual log-

likelihood is lx,n(θ) =
∑n

k=0 hk,x(θ)

We now wish to use the expression for ∂
∂θ

l(θ) derived in the last section. We

have that ∂
∂θ

lx,n(θ) =
∑n

k=0 ḣk,x(θ) but also

∂

∂θ
lx,n(θ) =

∂

∂θ
lx,0(θ) +

n∑
k=1

{
∂

∂θ
lx,k(θ) −

∂

∂θ
lx,k−1(θ)

}
This gives an alternative expression of ḣk,x. We get ḣ0,x(θ) = ∂

∂θ
log g(x0,Y0) and

for k ≥ 1

ḣk,x(θ) =
∂

∂θ
lx,k(θ) −

∂

∂θ
lx,k−1(θ)

= E

 k∑
i=1

φ(Xi−1, Xi,Yi)

∣∣∣∣∣∣∣Y1:k, u0:k−1, X0 = x


− E

 k−1∑
i=1

φ(Xi−1, Xi,Yi)

∣∣∣∣∣∣∣Y1:k−1, u0:k−2, X0 = x


This expression can be generalized to starting the process at other values than

zero;

ḣk,m,x(θ) = log
[∫

g(xk,Yk)P(Xk ∈ dxk|Ym:k−1, um:k−1, Xm = x)
]

= E

 k∑
i=m+1

φ(Xi−1, Xi,Yi)

∣∣∣∣∣∣∣Ym+1:k, um:k−1, Xm = x


− E

 k−1∑
i=m+1

φ(Xi−1, Xi,Yi)

∣∣∣∣∣∣∣Ym+1:k−1, um:k−2, Xm = x


17

This is done in Cappe et al. [1] to extend the process to minus infinity (m→ −∞).

We don’t extend the process to infinity, but rather think of m as indicating lack

of information, that is assuming that the process starts at Xm.

We now prove a modified Lemma 12.5.3 where we use the expression devel-

oped above.

Theorem 3 (Lemma 12.5.3 in [1] modified). Assuming strong mixing conditions.

Then for k ≥ 1 Cappe et al. [1] prove the following inquality in the HMM case:

(
E|ḣk,−m,x(θ) − ḣk,∞(θ)|2

)1/2
≤ 12

(
E

[
sup

x,x′∈X
|φθ(x, x′,Y1)|2

])1/2
ρ(k+m)/2−1

1 − ρ

We don’t extend the process to −∞, but rather starting at X0 and we prove the following

inequality, also for k ≥ 1

(
E|ḣk,0,x0(θ) − ḣk,m,x(θ)|2

)1/2
≤ 8 sup

x,x′∈X,u∈U,y∈Y
‖φθ(x, x′, y, u)‖

ρ(k−m)/2−1

1 − ρ

where ρ = maxy∈Y ρ0(y) (See Theorem 1).

Proof. From the representation derived above for ḣ we have

ḣk,0,x0(θ) = E

 k∑
i=1

φ(Xi−1, Xi,Yi, ui−1)

∣∣∣∣∣∣∣Y1:k, u0:k−1, X0 = x0

 (1)

− E

 k−1∑
i=1

φ(Xi−1, Xi,Yi, ui−1)

∣∣∣∣∣∣∣Y1:k−1, u0:k−2, X0 = x0

 (2)

and

ḣk,m,x(θ) = E

 k∑
i=m+1

φ(Xi−1, Xi,Yi, ui−1)

∣∣∣∣∣∣∣Ym+1:k, um:k−1, Xm = x

 (3)

− E

 k−1∑
i=m+1

φ(Xi−1, Xi,Yi, ui−1)

∣∣∣∣∣∣∣Ym+1:k−1, um:k−2, Xm = x

 (4)

Just like in the proof of Lemma 12.5.3 in [1] we match together different pairs

of terms within the sums, depending on their index i. More specifically for i = k

18

we match together the terms where i = k in (1) and (3). For k+m
2 ≤ i < k we match

the terms in (1) with (3) and the terms in (2) with those in (4). For m + 1 ≤ i < k+m
2

we match terms in (1) with terms in (2) and terms in (3) with those in (4). That

leaves i ∈ 1, . . . ,m in ḣk,0,x0 where we match (1) and (2).

If we look at the case where (1) is matched with (3) we have

‖E[φθ(Xi−1, Xi,Yi, ui−1)|Ym+1:k, um:k−1, Xm = x] − E[φθ(Xi−1, Xi,Yi, ui−1)|Y1:k, u0:k−1]‖

=
∣∣∣∣ ∫

xm

∫
xi−1

∫
xi

φθ(xi−1, xi,Yi, ui)Fi−1(xi−1, dxi)Pθ(Xi−1 ∈ dxi−1|Ym+1:k, um:k−1, Xm = x)

× [δx(dxm) − Pθ(Xm ∈ dxm|Y1:k, u0:k−1)]
∣∣∣∣

≤ 2 sup
x,x′∈X,u∈U

‖φθ(x, x′,Yi, u)‖ρ(i−1)−m

where Fi−1 = Fi−1;θ[yi:k, ui−1:k] is the Forward Smoothing Kernel, and the inequal-

ity stems from Proposition 4.3.23 (i) where the second line can be thought of as

two different initial distributions for Xm, and the kernel F is bounded by 1.

Matching (2) with (4) is similar. For matching (1) with (2) and (3) with (4) we

need a "Backwards bound";

‖Pθ(Xi ∈ · |Ym+1:k, um:k−1, Xm = x) − Pθ(Xi ∈ · |Ym+1:k−1, um:k−2, Xm = x)‖TV ≤ 2ρk−1−i

that is established below, see Theorem 4. For matching (3) with (4) we get

‖Eθ[φθ(Xi−1, xi,Yi, ui−1)|Ym+1:k, um:k−1, Xm = x]

− Eθ[φθ(Xi−1, xi,Yi, ui−1)|Ym+1:k−1, um:k−2, Xm = x]‖

= |

∫
xi−1

∫
xi

φθ(xi−1, xi,Yi, ui−1)Bi(xi, dxi−1)

× [Pθ(Xi ∈ dxi|Ym+1:k, um:k−1, Xm = x) − Pθ(Xi ∈ dxi|Ym+1:k−1, um:k−2, Xm = x)]|

≤ 2 sup
x,x′∈X,u∈U

‖φθ(x, x′,Yi, u)‖ρ(k−1)−i

19

where Bi is the Backwards Smoothing Kernel described below. Matching (1)

with (2) is a special case of the above.

Going back to our original objective, we have

(
Eθ‖ḣk,m,x(θ) − ḣk,0,x0(θ)‖

2
)1/2

=

(
E

∥∥∥∥∑ ai

∥∥∥∥2)1/2

where
∑

ai is a sum over the pairs we considered above. Now by Minkowski’s

inequality we have

≤
∑(

E ‖ai‖
2
)1/2

Now we have that ‖ai‖ ≤ 2 supx,x′∈X,u∈U ‖φθ(x, x′,Yi, u)‖ρbi where bi is the power of

ρ associated with ai.

≤
∑

2
(
E sup

x,x′∈X,u∈U
‖φθ(x, x′,Yi, u)‖2

)1/2

ρbi

At this point Cappe et al. [1] argue that since in their case the process was started

at infinity and the process is homogeneous the expected value over Yi is always

the same by stationarity, and Yi can be exchanged by Y1. Since arguing for sta-

tionarity is more of stretch for us, we also take the supremum over Y an is also

finite.

≤ 2
(

sup
x,x′∈X,u∈U,y∈Y

‖φθ(x, x′, y, u)‖2
)1/2 ∑

ρbi

= 2 sup
x,x′∈X,u∈U,y∈Y

‖φθ(x, x′, y, u)‖
∑

ρbi

We now deal with the sum of ρ to different powers.

From i = k we have ρk−1−m where we matched (1) with (3). For k+m
2 ≤ i < k we

have 2ρi−1−m where we matched (1) with (3) and (2) with (4). For m + 1 ≤ i < k+m
2

we have 2ρk−1−i from matching (1) with (2) and (3) with (4). Finally for 1 ≤ i ≤ m

20

we have ρk−1−i from matching (1) with (2). This gives

∑
ρbi = ρk−1−m +

k−1∑
i=(k+m)/2

2ρi−1−m +

(k+m)/2−1∑
i=m+1

2ρk−1−i +

m∑
i=1

ρk−1−i

≤ 2
∞∑

i=(k+m)/2

ρi−1−m + 2
(k+m)/2−1∑

i=−∞

ρk−1−i

= 2
ρ(k−m)/2−1

1 − ρ
+ 2

ρ(k−m)/2

1 − ρ
≤ 4

ρ(k−m)/2−1

1 − ρ

Thus, finally we have

(
Eθ‖ḣk,m,x(θ) − ḣk,0,x0(θ)‖

2
)1/2
≤ 8 sup

x,x′∈X,u∈U,y∈Y
‖φθ(x, x′, y, u)‖

ρ(k−m)/2−1

1 − ρ

�

Theorem 4 (Proposition 12.5.4 modified).

‖Pθ(Xi ∈ · |Ym+1:k, um:k−1, Xm = x) − Pθ(Xi ∈ · |Ym+1:k−1, um:k−2, Xm = x)‖TV ≤ 2ρk−1−i

Proof. The idea behind this proof is to replicate all the results derived so far

for the Backward Smoothing Kernel. That is, conditional on Ym+1:k, um:k−1 and

Xm = xm the time-reversed process X is a non-homogeneous Markov Chain,

where the conditional probability of moving from X j+1 to X j given all the obser-

vations Ym+1:k−1, controls um:k−2 and initial condition ends up only depending on

Ym+1: j, um: j and the initial condition, and is governed by the Backwards Smooth-

ing Kernel given by

Bxm, j[um+1: j, um: j](x, f)

=

∫
· · ·

∫ ∏ j
r=m+1 Qur−1(xr−1, dxr)g(xr, yr) f (x j)Qu j(x j, x)∫

· · ·
∫ ∏ j

r=m+1 Qur−1(xr−1, dxr)g(xr, yr)Qu j(x j, x)

Just as we did in Lemma 4.3.22 we can show

ς−(y j)
ς+(y j)

νxm, j[ym+1, um: j] ≤ Bxm, j[ym+1: j, um: j](x j, ·) ≤
ς+(y j)
ς−(y j)

νxm, j[ym+1, um: j]

21

where

νxm, j[ym+1, um: j](f) =

∫
· · ·

∫ ∏ j
r=m+1 Qur−1(xr−1, dxr)g(xr, yr) f (x j)∫

· · ·
∫ ∏ j

r=m+1 Qur−1(xr−1, dxr)g(xr, yr)

As we showed there this gives

δ(Bxm, j) ≤ 1 −
ς−(y j)
ς+(y j)

We now get that the 2 smoothers we are interested in can be thought of as

smoothers of the reversed Markov Chain from k − 1 to m with 2 different ini-

tial distributions for Xk−1, the starting position. We get

‖Pθ(Xi ∈ · |Ym+1:k, um:k−1, Xm = x) − Pθ(Xi ∈ · |Ym+1:k−1, um:k−2, Xm = x)‖TV

≤ ‖Pθ(Xk−1 ∈ · |Ym+1:k, um:k−1, Xm = x) − Pθ(Xk−1 ∈ · |Ym+1:k−1, um:k−2, Xm = x)‖TV

×

k−1∏
j=i+1

δ(Bxm, j) ≤ 2
k−1∏

j=i+1

ρ0(y j) ≤ 2ρk−1−i

(where ρ = maxy∈Y ρ0(y)) �

2.3 Markov Decision Processes theory

In this section we review relevant MDP theory, noting that methods like dy-

namic programming and the Value Iteration Algorithm will be useful in our

pursuit to maximize various forms of Fisher Information.

We assume a Markov Decision Process (Xt, ut)t=0,...,T like we do in Section 2.1,

but now without the observation process (Yt)t=0,...,T . In the standard MDP prob-

lem we assume a reward function Ct(Xt, ut) and the objective is to maximize the

total expected reward W1

W1 = E

 T∑
t=0

Ct(Xt, ut)


22

by use of the controls. The essence of dynamic programming is that by starting

at time T − 1 and working backwards, we can compute an optimal policy that

maps a state xt to a control ut that accounts for the choices of ut that we will make

in the future.

In a generic dynamic program we set VT = 0 and and then going backwards

from t = T − 1, . . . , 0 solve

Vt(xt) = max
ut
{Ext+1[Ct(xt, ut) + Vt+1(xt+1)|xt, ut]}

where Vt is called the value function, and we get the associated control

u∗t (xt) = argmax
ut

{Ext+1[Ct(xt, ut) + Vt+1(xt+1)|xt, ut]}

for every state xt. This will give us a policy of what control to use at a certain

state xt at a certain time t. The use of these controls will maximize the expected

total reward E[
∑

t Ct(Xt, ut)]. We refer to Puterman [8] for a detailed description

of dynamic programming.

It will be useful to consider other criteria then the expected total reward W1.

Assuming an infinite time horizon we consider the expected average reward W2

W2 = lim
n→∞

1
n

E

 n∑
t=0

C(xt, ut)


(note that this limit doesn’t always exist) and the expected total discounted re-

ward W3

W3 = E

 ∞∑
t=0

λt−1C(xt, ut)


that has a discounting factor λ where 0 ≤ λ < 1, and exists if the reward C is

bounded. In both W2 and W3 we assume that the reward function C is stationary

(time independent).

23

Maximizing the expected total discounted reward W3 if frequently done via

the Value Iteration Algorithm (VIA), another popular MDP algorithm, again

see [8]. In VIA we calculate

vn+1(xt, θ) = max
u

{
Ext+1[C(xt, ut, θ) + λ · vn(xt+1, θ)|xt, ut, θ]

}
with the associated control

un+1(xt, θ) = argmax
u

{
Ext+1[C(xt, ut, θ) + λ · vn(xt+1, θ)|xt, ut, θ]

}
in a while-loop until vn converges to some fixed point, within some tolerance.

Convergence is guaranteed since each iteration of vn is a contraction mapping.

We note that the output of VIA will be a stationary policy, i.e. a policy that only

depends on the state xt and not the time t.

To analyze the expected average reward W2 we need some additional as-

sumptions on our MDP.

Definition 4. We say that a MDP is unichain if for every deterministic stationary pol-

icy the transition probability matrix consists of a single recurrent class plus a possibly

empty set of transient states.

In section 8.4.2 in Puterman [8] it is shown that if a MDP is unichain, the

reward C is bounded and stationary (time independent) and the state space

X and the action space U are finite then there exists a stationary policy that

maximizes W2. In section 8.5.1 they show that under these same assumptions,

running VIA with λ = 1 converges in W2(un) (The expected average reward,

if only using control un) to its maximum, even though the value function vn

generally diverges. Also note that the operation of dynamic programming is

analogous to the operation of VIA with λ = 1.

24

One of the reason we bring this up is that when we analyze a control policy

for a MDP (xt, ut)t=0,...,T that is the output of a dynamic program, we will often

only look at the policy u∗t when t = 1, and label it the long-term policy. By the

above, we can argue that this is informative because it corresponds to a policy

that is close maximizing the expected average reward, and we can expect the

policy to converge in some sense as t → 0 if T is large enough (meaning that

there generally will not be much difference between the policy at say time t = 1

and t = 2).

The last thing we mention from MDP theory is Blackwell optimality. It guar-

antees that a stationary policy that maximizes the expected total discounted re-

ward W3 also maximizes the expected average reward W2 (or its lim sup if the

limit doesn’t exist), given that λ is chosen close enough to one. This will be im-

portant when we consider algorithms based on VIA in Chapter 8. A Blackwell

optimal control policy exists under the same assumptions as listed above. How

small 1 − λ needs to be is generally hard to determine, and choosing λ too high

will cause VIA to converge slowly. See Puterman [8] chapter 10 for more on

Blackwell optimality.

25

CHAPTER 3

FISHER INFORMATION

3.1 Objectives

Consider again our framework stated in Section 2.1. Our goal is to use the con-

trols u0:T to get an estimate of the parameter θ that is as accurate as possible. We

will estimate θ by maximizing the likelihood, see section 4.4. MLE’s are, un-

der suitable regularity conditions, unbiased and asymptotically efficient, with

asymptotic variance equal to the inverse Fisher Information

√
n(θ̂ − θ)

D
−→ N(0, (FI(θ))−1)

Thus our strategy will be to maximize a Fisher Information FI(θ, u0:T) by

using the controls ut adaptively, that is at time t the ut chosen can, and gener-

ally should, depend on the observations y1, . . . , yt. We will now discuss various

forms of Fisher Information and their properties.

3.2 FOFI

The first attempt at maximizing Fisher Information using controls was by Hooker

et al. [5]. They considered constructing an optimal control policy for the Fisher

Information that would apply if (Xt) were observed directly;

FI = E
T−1∑
t=0

(
∂

∂θ
log p(xt+1|xt, ut, θ)

)2

We label this the Full Observation Fisher Information (FOFI). When consider-

ing continuous time stochastic systems, the state space is continuous, but we

26

use this Fisher Information as an approximation to the continuous state Fisher

Information. An advantage of using FOFI is that when running the dynamic

program the Markov property of the Markov Decision Process (Xt, ut) allows us

to only consider a maximization over the state space xt ∈ X but not past values

x0:t−1. The dynamic program for FOFI is given in Section 4.1.1.

However, maximizing FOFI can lead to suboptimal controls since it is not

the correct Fisher Information for the data. Additionally, when the actual ex-

periment is run we do not observe Xt. Instead we have to use the observed

values to calculate a filter for the state xt, p(xt|y0:t, u0:t−1, x0, θ), and use the control

associated with the state that has the highest probability.

3.3 POFI

Since the objective is to use the controls to maximize the information about the

parameter θ through the observed process y0:t it seems natural to maximize the

Fisher Information associated with the observed process, in some sense the cor-

rect Fisher Information for the data,

FI(θ) = E

T−1∑
t=0

(
∂

∂θ
log p(yt+1|y0:t, u0:t, x0, θ)

)2
which we label as the Partial Observation Fisher Information (POFI), see Sec-

tion 3.4 for details on its construction. When we consider continuous time dy-

namical systems the observation spaces will be continuous, but we will use this

discretized Fisher Information as an approximation to the actual Fisher Infor-

mation of the observations.

27

Maximizing POFI using dynamic programming or a similar algorithm is

generally not feasible, due to the curse of dimensionality, see section 4.2. We

thus try to approximate POFI, with Fisher Information like criteria that are eas-

ier to maximize, see Truncated POFI in section 3.5 and Weighted Observation

Fisher Information in section 3.7. Also see Sections 4.2 and 4.3 for a description

of the dynamic program for the respective criteria.

3.4 Expressing POFI

In this section we find useful expressions for POFI, the Fisher Information of a

POMDP where we observe y0:T and use controls u0:T−1, that are needed to derive

convergence arguments and set up dynamical programs. We use the short hand

notation

hk(θ) = log p(yk|y0:k−1, u0:k−1, x0 = x)

where the dependence on X0 = x is frequently suppressed.

For data Y0, . . . ,YT the Fisher Information for θ can be expressed in one or

two derivatives

FI = E

T−1∑
t=0

−ḧt+1

 = E


T−1∑

t=0

ḣt+1

2
and we define the Fisher Information to Go at time k to be

FIk = E

T−1∑
t=k

−ḧt+1

∣∣∣∣∣∣∣y0:k, u0:k−1

 = E


T−1∑

t=k

ḣt+1

2
∣∣∣∣∣∣∣∣y0:k, u0:k−1


where the equality is justified by both quantities being the Fisher Information

for the same observations. We see that FI0 = FI.

The Fisher Information to Go can be calculated recursively (in both one or

two derivatives):

28

Lemma 1.

FIk = E
[
−ḧk+1 + FIk+1

∣∣∣y0:k, u0:k−1

]
= E

[(
ḣk+1

)2
+ FIk+1

∣∣∣∣y0:k, u0:k−1

]

Proof. In the case of using two derivatives this follows from iterated expectation.

In one derivative we have

FIk = E


T−1∑

t=k

ḣt+1

2
∣∣∣∣∣∣∣∣y0:k, u0:k−1


= E

(ḣk+1

)2
+

 T−1∑
t=k+1

ḣt+1

2

+ 2
(
ḣk+1

)  T−1∑
t=k+1

ḣt+1


∣∣∣∣∣∣∣∣y0:k, u0:k−1


The cross term is

E

2 (
ḣk+1

)  T−1∑
t=k+1

ḣt+1


∣∣∣∣∣∣∣y0:k, u0:k−1


= E

E 2 (
ḣk+1

)  T−1∑
t=k+1

ḣt+1


∣∣∣∣∣∣∣y0:k+1, u0:k


∣∣∣∣∣∣∣y0:k, u0:k−1


= E

2 (
ḣk+1

)
E

 T−1∑
t=k+1

ḣt+1


∣∣∣∣∣∣∣y0:k+1, u0:k


∣∣∣∣∣∣∣y0:k, u0:k−1


= E

[
2
(
ḣk+1

)
· 0

∣∣∣∣y0:k, u0:k−1

]
= 0

Thus

FIk = E

(ḣk+1

)2
+

 T−1∑
t=k+1

ḣt+1

2
∣∣∣∣∣∣∣∣y0:k, u0:k−1


= E

(ḣk+1

)2
+ E


 T−1∑

t=k+1

ḣt+1

2
∣∣∣∣∣∣∣∣y0:k+1, u0:k


∣∣∣∣∣∣∣∣y0:k, u0:k−1


= E

[(
ḣk+1

)2
+ FIk+1

∣∣∣∣y0:k, u0:k−1

]
�

29

Corollary 1.

FI = E

T−1∑
t=0

(
ḣt+1

)2


and similarly

FIk = E

T−1∑
t=k

(
ḣt+1

)2

∣∣∣∣∣∣∣y0:k, u0:k−1



Proof. This follows from using induction and lemma 1. �

3.4.1 One or two derivates?

We note that we can both try to maximize the FI expressed in one or in two

derivates. We only used the former since it was slightly easier to calculate. There

was no noticeable difference between the two in practice.

3.5 Truncated POFI

Running an exact dynamic program to maximize POFI is not feasible due to the

curse of dimensionality, requiring us to do certain approximations. We set

hk,m,νm(θ) =


log p(yk|ym:k−1, um:k−1, νm) if m ≥ 0

log p(yk|y0:k−1, u0:k−1, ν0) if m < 0

where νm is the assumed distribution of xm and we will consider it to be fixed

and known. Allowing m to be negative will ease notation when t − m < 0. We

30

set

FItrunc = E
T−1∑
k=0

(
ḣk+1,k−m,νk−m(θ)

)2

and label it as the truncated Partially Observed Fisher Information, also see Sec-

tion 4.2.

Similarly the truncated Fisher Information to go is

FIk,m = E

T−1∑
t=k

(
ḣt+1,t−m,νt−m

)2

∣∣∣∣∣∣∣yk−m:k, uk−m:k−1


= E

T−1∑
t=k

−ḧt+1,t−m,νt−m

∣∣∣∣∣∣∣yk−m:k, uk−m:k−1


That the formulation in one derivative is equal to the one in two derivatives

follows from the individual parts of each sum having a Fisher Information in-

terpretation. In our notation we also have FI0,m = FItrunc.

3.5.1 Mixing conditions

Cappe et al. [1] establish forgetting properties of the filter by assuming mixing

conditions for Hidden Markov Models. We use the same conditions, slightly

modified to allow for controls, see Assumption 3, here restated for a discrete

state space X.

Assumption 4. Modified Strong Mixing Conditions. For each control u there exist a

transition kernel Ku : Y → X and measurable functions ς− and ς+ from Y to (0,∞) such

that for any A ∈ X, y ∈ Y and x ∈ X,

ς−(y)Ku(y, A) ≤
∑
x′∈A

p(yt+1 = y|xt+1 = x′)p(xt+1 = x′|xt = x, ut = u) ≤ ς+(y)Ku(y, A)

31

Cappe et al.’s [1] discussion on what models satisfy these conditions ap-

plies analogously to POMDP’s. Given these conditions we prove the following

bound in Theorem 3, which is a modification of Lemma 12.5.3 in [1];

(E|ḣk,0,ν0(θ) − ḣk,m,νm(θ)|2)1/2 ≤ 8 sup
x,x′∈X,u∈U,y∈Y

‖φθ(x, x′, y, u)‖
ρ(k−m)/2−1

1 − ρ

where φ(x, x′, u, y) = ∂
∂θ

log(p(xt+1 = x′|xt = x, ut = u, θ)p(yt+1 = y′|xt+1 = x′, θ)) and

ρ = maxy∈Y 1 − ς−(y)
ς+(y)

3.6 Truncated POFI convergence theorem

In this section we show that the truncated Fisher Information approaches the

true Fisher Information exponentially as one conditions on more and more ob-

servations, while using the same controls.

By Corollary 1 the true Fisher Information (POFI) is

FI(θ, u0:T−1) = E
T−1∑
k=0

(
ḣk+1,0,ν0(θ)

)2

but since that is hard to optimize we consider

FItrunc = FI0,m(θ, u0:T−1) = E
T−1∑
k=0

(
ḣk+1,k−m,νk−m(θ)

)2

see definitions for ḣ above. Here we use Fisher Information in one derivative,

but as noted above it is equivalent to using the formulation in two derivatives.

Also note that where k − m < 0 we just set it to 0 and use the initial distribution

of x0.

Lemma 2. Assume the mixing conditions in Assumption 4 hold. Then(
E(ḣk+1,0,ν0 + ḣk+1,k−m,νk−m)2

)1/2

≤ 16 sup
x,x′∈X,u∈U,y∈Y

|φθ(x, x′, y, u)|
ρ1/2

1 − ρ
+ 2 sup

u0

(
E(ḣ1,0,ν0)

2
)1/2

32

Proof. Set

A(m′) = sup
u1,...,um′−1

(
E(ḣm′,0,ν0)

2
)1/2

which sets an upper bound on the length of ḣm. Note that A(m′) also bounds

(E(ḣk+1,k−m,νk−m)2)1/2 since νk−m = ν0. Now

(
E(ḣk+1,0,ν0 + ḣk+1,k−m,νk−m)2

)1/2

≤
(
E(ḣk+1,0,ν0 − ḣk+1,k−m′,νk−m′)

2
)1/2

+
(
E(ḣk+1,k−m,νk−m − ḣk+1,k−m′,νk−m′)

2
)1/2

+ 2
(
E(ḣk+1,k−m′,νk−m′)

2
)1/2

≤ 16 sup |φθ|
ρ(1+min(m,m′))/2

1 − ρ
+ 2A(m′ + 1)

using Theorem 3. Setting m′ = 0 gives the result, although that might not be the

best bound. �

Lemma 3. Assume the conditions in Assumption 4 hold. Then, for any control policy

and any k such that k − m ≥ 0, we have

∣∣∣E(ḣ2
k+1,0,ν0

− ḣ2
k+1,k−m,νk−m

)
∣∣∣ ≤ 8M(θ) sup

x,x∈X,u∈U,y∈Y
|φθ(x, x′, y, u)|

ρ(m+1)/2−1

1 − ρ

where M(θ) = 16 sup |φθ|
ρ1/2

1−ρ + 2 supu0

(
E(ḣ1,0,ν0)

2
)1/2

is the bound from lemma 2.

Proof.

∣∣∣E(ḣ2
k+1,0,ν0

− ḣ2
k+1,k−m,νk−m

)
∣∣∣ ≤ ∣∣∣E(ḣk+1,0,ν0 − ḣk+1,k−m,νk−m) · (ḣk,0,ν0 + ḣk,k−m,νk−m)

∣∣∣
and by Cauchy Schwarz

≤

(
E

∣∣∣ḣk+1,0,ν0 − ḣk+1,k−m,νk−m

∣∣∣2)1/2
·

(
E

∣∣∣ḣk,0,ν0 + ḣk,k−m,νk−m

∣∣∣2)1/2

33

For the first parenthesis we use Theorem 3 to get(
E

∣∣∣ḣk+1,0,ν0 − ḣk+1,k−m,νk−m

∣∣∣2)1/2
≤ 8 sup

x,x∈X,u∈U,y∈Y
|φθ(x, x, y, u)|

ρ(m+1)/2−1

1 − ρ

and the second one is bounded by the Lemma 2. �

Theorem 5. Assume the conditions in Assumption 4 hold. Then, for m < T and any

control policy, we have

∣∣∣FI − FI0,m

∣∣∣ ≤ c1(T − 1 − m)ρm/2

where c1 = 8M(θ) supx,x′∈X,u∈U,y∈Y |φθ(x, x′, y, u)| 1
ρ1/2(1−ρ) and M(θ) the bound from lemma 2;

M(θ) = 16 sup |φθ|
ρ1/2

1−ρ + 2 supu0

(
E(ḣ1,0,ν0)

2
)1/2

.

Proof.

∣∣∣FI − FI0,m

∣∣∣ =

∣∣∣∣∣∣∣E
T−1∑
k=0

(
ḣk+1,0,ν0(θ)

)2
− E

T−1∑
k=0

(
ḣk+1,k−m,νk−m(θ)

)2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
T−1∑

k=m+1

E
(
ḣ2

k+1,0,ν0
− ḣ2

k+1,k−m,νk−m

)∣∣∣∣∣∣∣
≤

T−1∑
k=m+1

∣∣∣∣E (
ḣ2

k+1,0,ν0
− ḣ2

k+1,k−m,νk−m

)∣∣∣∣
≤ (T − 1 − m)8M(θ) sup

x,x∈X,u∈U,y∈Y
|φθ(x, x, y, u)|

ρ(m+1)/2−1

1 − ρ

by Lemma 3. �

Exactly the same arguments can be used to show that the truncated Fisher

Information to Go FIk,m approaches the true Fisher Information to Go as m in-

creases.

34

3.7 WOFI

We now consider a different way to approximate the Partial Observation Fisher

Information. POFI is expressed as

POFI = E

T−1∑
t=0

(
∂

∂θ
log p(yt+1|y0:t, u0:t, x0, θ)

)2
and examining the score function gives

∂

∂θ
log p(yt+1|y0:t, u0:t, x0, θ)

=

∑
xt

(
∂
∂θ

p(yt+1|xt, ut, θ)p(xt|y0:t, u0:t−1, θ) + p(yt+1|xt, ut, θ) ∂
∂θ

p(xt|y0:t, u0:t−1, θ)
)∑

xt
p(yt+1|xt, ut, θ)p(xt|y0:t, u0:t−1, θ)

where p(yt+1|xt, ut, θ) =
∑

xt+1
p(yt+1|xt+1, θ)p(xt+1|xt, ut, θ). If we now assume that the

filter p(xt|y0:t, u0:t−1, θ) is fairly accurate at determining xt and that it is not very

dependent on θ (∂
∂θ

p(xt|y0:t, u0:t−1, θ) ≈ 0) we can motivate the reward function

Ct(xt, ut, yt+1, θ) =

 ∂
∂θ

p(yt+1|xt, ut, θ)
p(yt+1|xt, ut, θ)

2

=

(
∂

∂θ
log p(yt+1|xt, ut, θ)

)2

as an approximation to the POFI reward function. See Section 3.8 for details.

The corresponding “Fisher Information" for the whole system is now given as

FI = E

T−1∑
t=0

(
∂

∂θ
log p(yt+1|xt, ut, θ)

)2
and we label it as the Weighted Observation Fisher Information (WOFI). Run-

ning a dynamic program with WOFI, see section 4.3, has the same computa-

tional cost as FOFI, that is O(T K2l), but as with FOFI the state Xt needs to be

estimated at runtime with cost O(K2) at each time point t.

35

3.8 WOFI approximates POFI theorem

In this section we show how the WOFI criteria approximates the POFI criteria

given that the following assumption holds for all t = 1, . . . ,T .

Assumption 5. For any history of observations and controls (y0:t, u0:t−1) at time t and

a ε > 0 there exists a state x∗ ∈ X such that 1 − p(x∗|y0:t, u0:t−1, θ) < ε. Additionally we

assume that for some M > 0∣∣∣∣∣ ∂∂θ p(xi|y0:t, u0:t−1, θ)
∣∣∣∣∣ ≤ Mp(xi|y0:t, u0:t−1, θ) for all i , ∗

Assumption 5 states that the filter p(xt|y0:t, u0:t, θ) at time t is close to having

a point mass at some state x∗. Note that since
∑

xt
∂
∂θ

p(xt|y0:t, u0:t−1, θ) = 0 we also

have | ∂
∂θ

p(x∗|y0:t, u0:t−1, θ)| ≤ M(1 − p(x∗|y0:t, u0:t−1, θ)) in Assumption 5.

We label the t’th element of WOFI as

Wt = E
(∂
∂θ

log p(yt+1|xt, ut, θ)
)2

and the t’th element of POFI is

Pt = E
(∂
∂θ

log p(yt+1|y0:t, u0:t, θ)
)2

where we drop the dependence on x0 in notation.

LetW = {(yt+1, xt) ∈ (Y,X) such that p(yt+1|xt) > 0} and let

vmin = min{p(yt+1|xt); (yt+1, xt) ∈ W}

umax = max
{∣∣∣∣∣ ∂∂θ p(yt+1|xt)

∣∣∣∣∣ ; (yt+1, xt) ∈ W
}

We now get

36

Theorem 6. Assuming that Assumption 5 holds for the filter p(xt|y0:t, u0:t−1, θ) at time

t, we have

|Wt − Pt| ≤ 12L
(
umax

vmin

)2
ε

1 − ε
+

4LM2

vmin

ε2

1 − ε
+

(
(2L + 1)Mumax

vmin
+ M2

)
ε

where L is the dimension of Y and M and ε are from Assumption 5.

Proof. Set

Wt,cond = E
(∂
∂θ

log p(yt+1|xt, ut, θ)
)2
∣∣∣∣∣∣∣y0:t, u0:t−1


and

Pt,cond = E
(∂
∂θ

log p(yt+1|y0:t, u0:t, θ)
)2
∣∣∣∣∣∣∣y0:t, u0:t−1


We have that

|Wt − Pt| =
∣∣∣E [

Wt,cond − Pt,cond
]∣∣∣ ≤ E

∣∣∣Wt,cond − Pt,cond

∣∣∣
We now show that the bound holds for

∣∣∣Wt,cond − Pt,cond

∣∣∣ irrespective of the history

y0:t, u0:t−1, which suffices to prove this Theorem. We suppress the control ut and

the parameter θ in notation to save space. Let x∗ be as defined in Assumption 5

and set p∗ = p(xt = x∗|y0:t) and and pi = p(xt = xi|y0:t), where xi , x∗.

We set u = u(yt+1) = ∂
∂θ

p(yt+1|xt = x∗), v = v(yt+1) = p(yt+1|xt = x∗), u0 = u0(yt+1) =

EXt

[
∂
∂θ

p(yt+1|xt)
∣∣∣y0:t

]
and v0 = v0(yt+1) = EXt

[
p(yt+1|xt)|y0:t

]
. Also let Ỹ(x) = {y ∈ Y :

p(yt+1 = y|xt = x) > 0}.

This allows us to write

Wt,cond = E


 ∂
∂θ

p(yt+1|xt, ut, θ)
p(yt+1|xt, ut, θ)

2∣∣∣∣∣∣∣y0:t

 = E
[(u

v

)2∣∣∣∣∣y0:t

]

37

and

Pt,cond = E


EXt[

∂
∂θ

p(yt+1|xt)|y0:t] +
∑

xt
p(yt+1|xt) ∂

∂θ
p(xt|y0:t)

EXt[p(yt+1|xt)|y0:t]

2∣∣∣∣∣∣∣y0:t


= E

(u0

v0

)2
∣∣∣∣∣∣∣y0:t

 + E


∑xt

p(yt+1|xt) ∂
∂θ

p(xt|y0:t)
EXt[p(yt+1|xt)|y0:t]

2∣∣∣∣∣∣∣y0:t


+ 2E

u0
∑

xt
p(yt+1|xt) ∂

∂θ
p(xt|y0:t)

(EXt[p(yt+1|xt)|y0:t])2

∣∣∣∣∣∣∣y0:t


A bit of algebra gives(u

v

)2
= (u2

0 + (u2 − u2
0))

1
v2

0

(
1 +

v2
0 − v2

v2

)
=

(
u0

v0

)2

+
u2 − u2

0

v2
0

+
u2

0(v2
0 − v2)

v2
0v2

+
(u2 − u2

0)(v2
0 − v2)

v2
0v2

and we get

Wt,cond = E
[(u

v

)2∣∣∣∣∣y0:t

]
= E

[(u
v

)2∣∣∣∣∣xt = x∗
]

p∗ +
∑
i,∗

E
[(u

v

)2∣∣∣∣∣xt = xi

]
pi

= E
(u0

v0

)2
∣∣∣∣∣∣∣xt = x∗

 p∗ + E
[
u2 − u2

0

v2
0

+
u2

0(v2
0 − v2)

v2
0v2

+
(u2 − u2

0)(v2
0 − v2)

v2
0v2

∣∣∣∣∣∣xt = x∗
]

p∗

+
∑
i,∗

E
[(u

v

)2∣∣∣∣∣xt = xi

]
pi

= Pt,cond + E
[
u2 − u2

0

v2
0

+
u2

0(v2
0 − v2)

v2
0v2

+
(u2 − u2

0)(v2
0 − v2)

v2
0v2

∣∣∣∣∣∣xt = x∗
]

p∗

+
∑
i,∗

E
[(u

v

)2∣∣∣∣∣xt = xi

]
pi −

∑
i,∗

E
(u0

v0

)2
∣∣∣∣∣∣∣xt = xi

 pi

− E


∑xt

p(yt+1|xt) ∂
∂θ

p(xt|y0:t)
EXt[p(yt+1|xt)|y0:t]

2∣∣∣∣∣∣∣y0:t

 − 2E

u0
∑

xt
p(yt+1|xt) ∂

∂θ
p(xt|y0:t)

(EXt[p(yt+1|xt)|y0:t])2

∣∣∣∣∣∣∣y0:t


The superfluous expectations are bounded in Lemmas 5, 6, 7, 8, 9, 10 and 11

below. �

Corollary 2. Assuming that Assumption 5 holds for the filter p(xt|y0:t, u0:t−1, θ) at times

38

t = 1, . . . ,T we have∣∣∣∣∣∣∣E
T−1∑

t=0

(
∂

∂θ
log p(yt+1|xt, ut, θ)

)2 − E

T−1∑
t=0

(
∂

∂θ
log p(yt+1|y0:t, u0:t, x0, θ)

)2
∣∣∣∣∣∣∣

≤ T
12L

(
umax

vmin

)2
ε

1 − ε
+

4LM2

vmin

ε2

1 − ε
+

(
(2L + 1)Mumax

vmin
+ M2

)
ε


Lemma 4. Under Assumption 5

|v(yt+1, x∗) − v0(yt+1)| ≤ 1 − p∗

|u(yt+1, x∗) − u0(yt+1)| ≤ 2umax(1 − p∗)

Proof.

|v(yt+1, x∗) − v0(yt+1)| =

∣∣∣∣∣∣∣p(yt+1|x∗)(1 − p∗) −
∑
i,∗

p(yt+1|xi)pi

∣∣∣∣∣∣∣
≤ max

p(yt+1|x∗)(1 − p∗),
∑
i,∗

p(yt+1|xi)pi


≤ max

(1 − p∗),
∑
i,∗

pi

 = 1 − p∗

The u case;

|u(yt+1, x∗) − u0(yt+1)| ≤
∣∣∣∣∣ ∂∂θ p(yt+1|x∗)

∣∣∣∣∣ (1 − p∗) +
∑
i,∗

∣∣∣∣∣ ∂∂θ p(yt+1|xi)
∣∣∣∣∣ pi ≤ 2umax(1 − p∗)

�

Lemma 5. Under Assumption 5∣∣∣∣∣∣E
[
u2 − u2

0

v2
0

∣∣∣∣∣∣xt = x∗
]∣∣∣∣∣∣ p∗ ≤

4u2
max(1 − p∗)

p∗
∑

yt+1∈Ỹ

1
p(yt+1|x∗)

Proof.∣∣∣∣∣∣E
[
u2 − u2

0

v2
0

∣∣∣∣∣∣xt = x∗
]∣∣∣∣∣∣ ≤ E

[
|u + u0||u − u0|

v2
0

∣∣∣∣∣∣xt = x∗
]
≤ 2umaxE

[
|u − u0|

v2
0

∣∣∣∣∣∣xt = x∗
]

39

Now only summing over yt+1 ∈ Ỹ(x∗)

E
[
|u − u0|

v2
0

∣∣∣∣∣∣xt = x∗
]

=
∑

yt+1∈Ỹ

∣∣∣ ∂
∂θ

p(yt+1|x∗)(1 − p∗) −
∑

i,∗
∂
∂θ

p(yt+1|xi)pi

∣∣∣(
p(yt+1|x∗)p∗ +

∑
i,∗ p(yt+1|xi)pi

)2 p(yt+1|x∗)

≤
∑

yt+1∈Ỹ

2umax(1 − p∗)
(p(yt+1|x∗)p∗)2 p(yt+1|x∗)

=
2umax(1 − p∗)

(p∗)2

∑
yt+1∈Ỹ

1
p(yt+1|x∗)

�

Lemma 6. Under Assumption 5∣∣∣∣∣∣E
[
u2

0(v2
0 − v2)

v2
0v2

∣∣∣∣∣∣xt = x∗
]∣∣∣∣∣∣ p∗ ≤

2u2
max(1 − p∗)

p∗
∑

yt+1∈Ỹ

1
p(yt+1|x∗)2

Proof. ∣∣∣∣∣∣E
[
u2

0(v2
0 − v2)

v2
0v2

∣∣∣∣∣∣xt = x∗
]∣∣∣∣∣∣ ≤ E

[
u2

0(v0 + v)|v0 − v|

v2
0v2

∣∣∣∣∣∣xt = x∗
]

≤ u2
maxE

[(
1

v0v2 +
1

v2
0v

)
|v0 − v|

∣∣∣∣∣∣xt = x∗
]

≤
2u2

max

(p∗)2 E
[
|v0 − v|

v3

∣∣∣∣∣xt = x∗
]

since v0(yt+1) = p(yt+1|x∗)p∗ +
∑

i,∗ p(yt+1|xi)pi ≥ p(yt+1|x∗)p∗ = v(yt+1, x∗)p∗. Only

summing over yt+1 ∈ Ỹ(x∗) we get

E
[
|v0 − v|

v3

∣∣∣∣∣xt = x∗
]

=
∑

yt+1∈Ỹ

|EXt[p(yt+1|xt)] − p(yt+1|x∗)|
p(yt+1|x∗)3 p(yt+1|x∗) ≤

∑
yt+1∈Ỹ

1 − p∗

p(yt+1|x∗)2

�

Lemma 7. Under Assumption 5∣∣∣∣∣∣E
[
(u2 − u2

0)(v2
0 − v2)

v2
0v2

∣∣∣∣∣∣xt = x∗
]∣∣∣∣∣∣ p∗ ≤

4u2
max(1 − p∗)2

p∗
∑

yt+1∈Ỹ

1
p(yt+1|x∗)2

40

Proof.∣∣∣∣∣∣E
[
(u2 − u2

0)(v2
0 − v2)

v2
0v2

∣∣∣∣∣∣xt = x∗
]∣∣∣∣∣∣ ≤ E

[
(u + u0)

(
1

v2
0v

+
1

v2v0

)
|u − u0||v − v0|

∣∣∣∣∣∣xt = x∗
]

≤
2umax

(p∗)2 E
[
|u − u0||v − v0|

v3

∣∣∣∣∣xt = x∗
]

≤
2umax

(p∗)2

∑
yt+1∈Ỹ

2umax(1 − p∗)2

p(yt+1|x∗)2

=
4u2

max(1 − p∗)2

(p∗)2

∑
yt+1∈Ỹ

1
p(yt+1|x∗)2

�

Lemma 8. Under Assumption 5

∑
i,∗

E
[(u

v

)2∣∣∣∣∣xt = xi

]
pi ≤

Lu2
max

vmin
(1 − p∗)

where L is the dimension of Y.

Proof. Only summing over yt+1 ∈ Ỹ(xi) for each i, we get

∑
i,∗

E
[(u

v

)2∣∣∣∣∣xt = xi

]
pi =

∑
i,∗

∑
yt+1∈Ỹ

 ∂
∂θ

p(yt+1|xi)
p(yt+1|xi)

2

p(yt+1|xi)pi

=
∑
i,∗

∑
yt+1∈Ỹ

(
∂
∂θ

p(yt+1|xi)
)2

p(yt+1|xi)
pi

≤
Lu2

max

vmin
(1 − p∗)

�

Lemma 9. Under Assumption 5

∑
i,∗

E
(u0

v0

)2
∣∣∣∣∣∣∣xt = xi

 pi ≤
u2

max(1 − p∗)
v2

min

41

Proof. We assume that if p(yt+1|xt) = 0 then ∂
∂θ

p(yt+1|xt) = 0 as well. This gives us

that  ∂
∂θ

p(yt+1|x∗)p∗ +
∑

j,∗
∂
∂θ

p(yt+1|x j)p j

p(yt+1|x∗)p∗ +
∑

j,∗ p(yt+1|x j)p j

2

≤

(
umax

vmin

)2

This gives us that

∑
i,∗

E
(u0

v0

)2
∣∣∣∣∣∣∣xt = xi

 pi =
∑
i,∗

∑
yt+1∈Ỹ

 ∂
∂θ

p(yt+1|x∗)p∗ +
∑

j,∗
∂
∂θ

p(yt+1|x j)p j

p(yt+1|x∗)p∗ +
∑

j,∗ p(yt+1|x j)p j

2

p(yt+1|xi)pi

≤

(
umax

vmin

)2 ∑
i,∗

∑
yt+1∈Ỹ

p(yt+1|xi)pi

=

(
umax

vmin

)2

(1 − p∗)

�

Lemma 10. Under Assumption 5

E


∑xt

p(yt+1|xt) ∂
∂θ

p(xt|y0:t)
EXt[p(yt+1|xt)|y0:t]

2∣∣∣∣∣∣∣y0:t

 ≤ 4LM2(1 − p∗)2

vmin p∗
+ M2(1 − p∗)

.

Proof.∑xt
p(yt+1|xt) ∂

∂θ
p(xt|y0:t)

EXt[p(yt+1|xt)|y0:t]

2

≤

(
p(yt+1|x∗)M(1 − p∗) +

∑
i,∗ p(yt+1|xi)Mpi

p(yt+1|x∗)p∗ +
∑

i,∗ p(yt+1|xi)pi

)2

≤ M2

If p(yt+1|x∗) > 0 we also have(
p(yt+1|x∗)M(1 − p∗) +

∑
i,∗ p(yt+1|xi)Mpi

p(yt+1|x∗)p∗ +
∑

i,∗ p(yt+1|xi)pi

)2

≤ M2
(
(1 − p∗) +

∑
i,∗ pi

p(yt+1|x∗)p∗

)2

= 4M2
(

(1 − p∗)
p(yt+1|x∗)p∗

)2

42

We now have

E


∑xt

p(yt+1|xt) ∂
∂θ

p(xt|y0:t)
EXt[p(yt+1|xt)|y0:t]

2∣∣∣∣∣∣∣y0:t


≤

∑
yt+1∈Ỹ

4M2
(

(1 − p∗)
p(yt+1|x∗)p∗

)2

p(yt+1|x∗)p∗ +
∑
i,∗

∑
yt+1∈Ỹ

M2 p(yt+1|xi)pi

≤
4LM2(1 − p∗)2

vmin p∗
+ M2(1 − p∗)

�

Lemma 11. Under Assumption 5

E

u0
∑

xt
p(yt+1|xt) ∂

∂θ
p(xt|y0:t)

(EXt[p(yt+1|xt)|y0:t])2

∣∣∣∣∣∣∣y0:t

 ≤ umax

vmin
(2L + 1)M(1 − p∗)

.

Proof. Using
∣∣∣∣u0

v0

∣∣∣∣ ≤ umax
vmin

from Lemma 9 we get

E

u0
∑

xt
p(yt+1|xt) ∂

∂θ
p(xt|y0:t)

(EXt[p(yt+1|xt)|y0:t])2

∣∣∣∣∣∣∣y0:t

 ≤ umax

vmin
E

∑xt
p(yt+1|xt) ∂

∂θ
p(xt|y0:t)

EXt[p(yt+1|xt)|y0:t]

∣∣∣∣∣∣∣y0:t


and like in Lemma 10 we get

E

∑xt
p(yt+1|xt) ∂

∂θ
p(xt|y0:t)

EXt[p(yt+1|xt)|y0:t]

∣∣∣∣∣∣∣y0:t


≤

∑
yt+1∈Ỹ

2M
(1 − p∗)

p(yt+1|x∗)p∗
p(yt+1|x∗)p∗ +

∑
i,∗

∑
yt+1∈Ỹ

Mp(yt+1|xi)pi

≤ 2LM(1 − p∗) + M(1 − p∗) = (2L + 1)M(1 − p∗)

�

43

3.9 Best POFI convergence theorem

Remembering that POFI is the true Fisher Information of our data, which we

can influence by the choice of our control policy, we are interested in how well

controls that arise from an approximated POFI criteria maximize the original

POFI criteria, compared with a theoretical best policy. This is also discussed in

Section 4.4.

We assume that the Fisher Information to Go for POFI;

FIk = E

T−1∑
t=k

(
ḣt+1,0,ν0

)2


is approximated by

F̃Ik = E

T−1∑
t=k

(
ḣt+1,t−m,νk−m

)2
 or F̃Ik = E

T−1∑
t=k

(
∂

∂θ
log p(yt+1|xt, ut, θ)

)2
that is either the truncated POFI or WOFI.

Given that our controls are obtained by dynamic programming, we have that

the optimal control at time t is dependent on the optimal control obtained at time

t + 1. Let u∗1, . . . , u
∗
T−1 denote the set of optimal controls obtained in this manner,

i.e. u∗k, . . . , u
∗
T−1 maximize FIk and let u∗0,m, . . . , u

∗
T−1,m denote the approximated

control policy where u∗k,m, . . . , u
∗
T−1,m maximize the approximated criteria F̃Ik.

The following theorem quantifies the loss in Fisher Information from using

approximate controls instead of exact ones, in an experiment of length T .

Theorem 7. Given that the mixing conditions in Assumption 4 hold and we calculate

a control policy u∗0,m, . . . , u
∗
T−1,m using the truncated POFI, we have

0 ≤ FI(u∗0, . . . , u
∗
T−1) − FI(u∗0,m, . . . , u

∗
T−1,m) ≤ c2T (T + 1)ρm/2

44

where c2 = 8M(θ) sup |φθ(x, x′, y, u)| 1
ρ1/2(1−ρ) , and M(θ) is the bound from lemma 2.

Alternatively, given that the filter assumptions in Assumption 5 hold for every t =

1, . . . ,T , and we calculate a control policy u∗0,m, . . . , u
∗
T−1,m using WOFI we have

0 ≤ FI(u∗0, . . . , u
∗
T−1) − FI(u∗0,m, . . . , u

∗
T−1,m)

≤ T (T + 1)
12L

(
umax

vmin

)2
ε

1 − ε
+

4LM2

vmin

ε2

1 − ε
+

(
(2L + 1)Mumax

vmin
+ M2

)
ε


where the constants are given in Section 3.8

Proof. We analyze the difference by bounding errors in each step of the dynamic

program inductively, starting at time t = T − 1 and going backwards. If we use

truncated POFI to calculate a control policy, we set

γ = 8M(θ) sup |φθ(x, x′, y, u)|
ρ(m+1)/2−1

1 − ρ

, see Lemma 3, while if we use WOFI then we set

γ =

(umax

vmin

)2
ε

1 − ε
+

4LM2

vmin

ε2

1 − ε
+

(
(2L + 1)Mumax

vmin
+ M2

)
ε


and refer to Theorem 6.

We find that

0 ≤ FIT−1(u∗T−1) − FIT−1(u∗T−1,m)

≤ FIT−1(u∗T−1) − FIT−1(u∗T−1,m) + (F̃IT−1(u∗T−1,m) − F̃IT−1(u∗T−1))

so far only using that u∗T−1 maximizes FIT−1 and u∗T−1,m maximizes F̃IT−1.

≤
∣∣∣FIT−1(u∗T−1) − F̃IT−1(u∗T−1)

∣∣∣ +
∣∣∣FIT−1(u∗T−1,m) − F̃IT−1(u∗T−1,m)

∣∣∣
≤ 2γ

by either lemma 3 or Theorem 6.

45

We now inductively assume

∣∣∣FIT−s(u∗T−s:T−1) − FIT−s(u∗T−s:T−1,m)
∣∣∣ ≤ s(s + 1)γ

where u∗T−s:T−1,m = u∗T−s,m, . . . , u
∗
T−1,m and then get

∣∣∣FIT−s(u∗T−s:T−1) − F̃IT−s(u∗T−s:T−1,m)
∣∣∣

≤
∣∣∣FIT−s(u∗T−s:T−1) − FIT−s(u∗T−s:T−1,m)

∣∣∣ +
∣∣∣FIT−s(u∗T−s:T−1,m) − F̃IT−s(u∗T−s:T−1,m)

∣∣∣
≤ s(s + 1)γ + sγ = s(s + 2)γ (1)

Now moving from s to s + 1 we have

F̃IT−(s+1)(u∗T−(s+1):T−1,m) ≥ F̃IT−(s+1)(u∗T−(s+1), u
∗
T−s:T−1,m)

since u∗T−(s+1):T−1,m are the controls that maximize F̃IT−(s+1). By adding and sub-

tracting the same quantity we get the following equivalent inequality

(
F̃IT−(s+1)(u∗T−(s+1):T−1,m) − FIT−(s+1)(u∗T−(s+1):T−1,m)

)
(2)

−
(
F̃IT−(s+1)(u∗T−(s+1), u

∗
T−s:T−1,m) − FIT−(s+1)(u∗T−(s+1):T−1)

)
(3)

≥ FIT−(s+1)(u∗T−(s+1):T−1) − FIT−(s+1)(u∗T−(s+1):T−1,m) ≥ 0

Line (2) is bounded by (s + 1)γ by lemma 3/Theorem 6 and line (3) by γ +

s(s + 2)γ using (1) and lemma 3/Theorem 6. Therefore

∣∣∣FIT−(s+1)(u∗T−(s+1):T−1) − FIT−(s+1)(u∗T−(s+1):T−1,m)
∣∣∣

≤ (s + 1)γ + γ + s(s + 2)γ = (s + 1)(s + 2)γ

and for the whole experiment we find

∣∣∣FI(u∗0:T−1) − FI(u∗0:T−1,m)
∣∣∣ ≤ T (T + 1)γ

�

46

CHAPTER 4

CONTROL THEORETIC ALGORITHMS APPLIED TO FISHER

INFORMATION PROBLEMS

In this chapter we show how the various forms of Fisher Information consid-

ered, FOFI, truncated POFI and WOFI, can be maximized using dynamic pro-

gramming. We provide pseudocodes and analyze their computational complex-

ities. The computations required can be split into computations done prior to

the experiment and computations that are required while running the exper-

iment. A direct comparison is not completely feasible since FOFI and WOFI

require computations at runtime while truncated POFI does not as discussed

below.

4.1 FOFI Dynamic Program

Hooker et al. [5] considered constructing an optimal control policy for the Fisher

Information that would apply if (Xt) were observed directly, that is the Full Ob-

servation Fisher Information (FOFI)

FI = E
T−1∑
t=0

(
∂

∂θ
log p(xt+1|xt, ut, θ)

)2

When considering continuous time stochastic systems, the state space is contin-

uous, but we use this Fisher Information as an approximation to the continuous

state Fisher Information. An advantage of using FOFI is that when running the

dynamic program the Markov property of the Markov Decision Process (Xt, ut)

allows us to only consider a maximization over the state space xt ∈ X but not

past values x0:t−1.

47

However, maximizing FOFI can lead to suboptimal controls since it is not

the correct Fisher Information for the data. Additionally, when the actual exper-

iment is run we do not observe Xt. Instead we have to use the observed values

to get a probability distribution (a filter) on the state xt, p(xt|y0:t, u0:t−1, x0, θ) and

use the control associated with the state that has the highest probability.

4.1.1 Pseudocode for FOFI and computational complexity

We set the reward function as C(xt, ut, θ) =
(
∂
∂θ

log p(xt+1|xt, ut, θ)
)2

. The pseu-

docode for this dynamic program is:

FIT = 0

for t = (T − 1)→ 0 do

∀ xt and calculate and store

FIt(xt, θ) = maxut

{
Ext+1[C(xt, ut, θ) + FIt+1(xt+1, θ)|xt, ut, θ]

}
u∗t (xt, θ) = argmaxut

{
Ext+1[C(xt, ut, θ) + FIt+1(xt+1, θ)|xt, ut, θ]

}
end for

We assume that the transition probability matrix p(xt+1|xt, ut, θ) is given. Cal-

culating
(
∂
∂θ

log p(xt+1|xt, ut, θ)
)2

is negligible compared to the calculations required

for the dynamic program; If we set

gt(xt, xt+1, ut, θ) =

(
∂

∂θ
log p(xt+1|xt, ut, θ)

)2

then for a given time t in the dynamic program we need to maximize

E
[
gt(xt, xt+1, ut, θ) + Vt+1(xt+1, θ)|xt

]

48

over ut ∈ U for each xt ∈ X, where Vt+1 is the value function from the previous

step t + 1. This calculation requires adding gt and Vt+1 which are two K×2 × l ten-

sors with cost K2l. Next we need a dot product between gt + Vt+1 and p(xt+1|xt, ut)

over the xt+1 dimension which has cost O(K2l). Finally maximizing over ut for

each xt has cost O(Kl). Thus each step t has cost O(K2l) and the dynamic program

in total has cost O(T K2l)

In runtime a filter is required to estimate the state xt. The filter for time t + 1

can be calculated via the following recursive formula

p(xt+1|y0:t+1, u0:t) ∝
∑

xt

p(yt+1|xt+1)p(xt+1|xt, ut)p(xt|y0:t, u0:t−1)

and then normalizing. This requires 2K dot products of vectors of length K,

with cost O(K2) and the normalization has cost O(K). Thus we have O(K2) com-

putations at each time step t during runtime.

4.2 Truncated POFI dynamic program

The most natural Fisher Information to maximize is the Fisher Information of

our observed process, the Partial Observation Fisher Information (POFI) which

we can express as

FI(θ) = E

T−1∑
t=0

(
∂

∂θ
log p(yt+1|y0:t, u0:t, x0, θ)

)2
also see Sections 3.3, 3.4 and 3.5.

To maximize POFI with a dynamic program we set

Ct(y0:t, u0:t, θ) =

(
∂

∂θ
log p(yt+1|y0:t, u0:t, x0, θ)

)2

49

and we try to maximize the total reward FI(θ) = E[
∑

t Ct(y0:t, u0:t, θ)]. Note that in

this instance the reward function depends on the entire history of observations

and controls up to time t.

The Value function in the corresponding dynamic program is

FIt(y0:t, u0:t−1, θ) = max
ut

{
Eyt+1[Ct(y0:t, u0:t, θ) + FIt+1(y0:t+1, u0:t, θ)|y0:t, u0:t, θ]

}
and we denote it the Fisher Information to Go .

A problem here is that just in the first step of the dynamic program (t =

T −1) we would have to calculate the Fisher Information to Go for LT−1lT−2 many

combinations of y0:t and u0:t−1. This is formidable for even modest dimensions.

We therefore approximate the process by conditioning only on the last m + 1

observations in the Fisher Information;

FItrunc = E
T−1∑
t=0

(
∂

∂θ
log p(yt+1|yt−m:t, ut−m:t, νt−m, θ)

)2

where νt−m is some prior that we assume for xt−m, although we generally sup-

press it in notation since we assume it is fixed. As before, if t − m < 0 we set

t − m : t to mean 0 : t to ease notation.

4.2.1 Pseudocode for POFI

The reward becomes C(yt−m:t, ut−m:t, θ) =
(
∂
∂θ

log p(yt+1|yt−m:t, ut−m:t, θ)
)2

and

FIt,m(yt−m:t, ut−m:t−1, θ) = max
ut

{
Eyt+1[C + FIt+1,m|yt−m:t, ut−m:t, θ)]

}
the Fisher Information To Go. The pseudocode for the corresponding dynamic

program is:

50

FIT,m = 0

for t = (T − 1)→ 0 do

∀ yt−m:t, ut−m:t−1 and calculate and store

FIt,m(yt−m:t, ut−m:t−1, θ) = maxut

{
Eyt+1[C + FIt+1,m|yt−m:t, ut−m:t, θ]

}
u∗t (yt−m:t, ut−m:t−1, θ) = argmaxut

{
Eyt+1[C + FIt+1,m|yt−m:t, ut−m:t, θ]

}
end for

For this approximate dynamic program to be sensible we want the truncated

Fisher Information to approach the true Fisher Information as m increases. In

Theorem 5 we show that |FI − FItrunc| ≤ c1(T − 1 − m)ρm/2 where the constants c1

and ρ do not depend on m or T , assuming certain technical mixing conditions

which we have stated in detail in Assumption 4.

Theorem 5 states that FItrunc approaches the true Fisher Information expo-

nentially as m increases, and is thus a viable approximation for the Fisher Infor-

mation in the dynamic program.

The runtime of the dynamic program however also grows exponentially in

m and we found that while setting m = 0, i.e. conditioning on one observation,

gave poor results in some of our simulations, conditioning on two observations,

i.e. m = 1, generally gave good results when compared to other control policies.

Setting m = 2 increased runtime greatly and was in some applications infeasible

without making more approximations to how the dynamic program is run. The

exact effect of increasing m is quite problem specific.

51

4.2.2 Truncated POFI, computational complexity

Here the dynamic program maximizes the truncated Partial observation Fisher

Information,

FItrunc = E
T−1∑
t=0

(
∂

∂θ
log p(yt+1|yt−m:t, ut−m:t, νt−m, θ)

)2

We note that p(yt+1|yt−m:t, ut−m:t, θ) is a L×m+2 × l×m+1 tensor, and it can be calculated

using Bayes rule at the cost O(K2Lm+2lm+1). Calculating ∂
∂θ

log p(yt+1|yt−m:t, ut−m:t, θ)

can also be done at the cost O(K2Lm+2lm+1), but can also be effectively approxi-

mated using the finite difference approximation to the derivative.

The cost analysis of the truncated POFI dynamic program is just like the

analysis of FOFI. At a given time t adding gt and Vt+1 has cost O(Lm+2lm+1), the

dot product between gt + Vt+1 and p(yt+1|yt−m:t, ut−m:t) has cost O(Lm+2lm+1) and the

maximization has cost O(Lm+1lm+1).

The dynamic program thus has cost O(T Lm+2lm+1), which in some cases could

be constrained by choosing L lower than K, and m = 1.

4.3 WOFI dynamic program

The Weighted Observation Fisher Information

FI = E

T−1∑
t=0

(
∂

∂θ
log p(yt+1|xt, ut, θ)

)2
is motivated as an approximation to POFI, while preserving the Markov prop-

erty of FOFI, also see Sections 3.7 and 3.8. In Theorem 6 we show how WOFI

approximates POFI, given that the filter p(xt|y0:t, u0:t−1, θ) is precise, see Assump-

tion 5.

52

We set the reward function to Ct(xt, ut, yt+1, θ) =
(
∂
∂θ

log p(yt+1|xt, ut, θ)
)2

in order

to run a dynamic program with WOFI which will be similar to the FOFI dy-

namic program. It has the same computation cost as the one for FOFI, that is

O(T K2l), and also needs a filter to estimate the state xt at time t, at the same cost

O(K2).

4.4 Parameter estimation

After running an experiment, using one of the control policies, the parameter θ

is estimated either via an EM algorithm or by directly maximizing the loglikeli-

hood, see Sections 4.4.1 and 4.4.2. For the asymptotic properties of the MLE we

refer to Cappe et al. [1] as well, where conditions for consistency and asymp-

totic normality in Hidden Markov Models are given. The central elements of

their proof are the stationarity of the process (Xt,Yt) along with forgetting prop-

erties of the filter (see Theorem 2 in Section 2.2.5). We note that if we employ

a time-independent control policy (as we do in in Chapter 8), we obtain to a

Hidden Markov Model and can rely on [1] if we assume stationarity. That the

forgetting properties of Hidden Markov Models can be extended to POMDP’s

points to a more general asymptotic theory for the MLE in POMDP’s, but this is

not pursued further.

Theorem 5 shows that using the truncated POFI is a good approximation

to the Partial Observation Fisher Information for running a dynamic program

and Theorem 6 shows the same for WOFI, under respective assumptions. This

provides a control policy that is an approximation to the optimal control policy.

Now consider using this approximate policy to run an experiment and then

53

estimating θ by evaluating the MLE. The asymptotic variance of this MLE will be

the inverse of the Partial Observation Fisher Information, with controls from the

approximate policy. It is therefore of interest to compare POFI, evaluated with

an optimal policy, and POFI, evaluated with one of the approximate policies. In

Section 3.9, Theorem 7 we show that, conditional on the mixing conditions in

Assumption 4, that

0 ≤ FI(u∗0, . . . , u
∗
T−1) − FI(u∗0,m, . . . , u

∗
T−1,m) ≤ c2T (T + 1)ρm/2

where u∗0, . . . , u
∗
T−1 are the optimal controls, u∗0,m, . . . , u

∗
T−1,m the truncated POFI

optimal controls and FI is the Partial Observation Fisher Information. The con-

stants c2 and ρ do not depend on m or T . Alternatively, conditional on the filter

assumptions in Assumption 5, we have that

0 ≤ FI(u∗0, . . . , u
∗
T−1) − FI(u∗0,m, . . . , u

∗
T−1,m)

≤ T (T + 1)
12L

(
umax

vmin

)2
ε

1 − ε
+

4LM2

vmin

ε2

1 − ε
+

(
(2L + 1)Mumax

vmin
+ M2

)
ε


where u∗0,m, . . . , u

∗
T−1,m are the WOFI optimal controls and FI is the Partial Obser-

vation Fisher Information. The constants are given in section 3.8.

That the asymptotic variance of the MLE converges to the lowest possible

variance, as either m→ ∞ or ε→ 0, further supports our approximations.

4.4.1 EM algorithm

Given the data y0, . . . , yT one can estimate the parameter θ with the EM algo-

rithm. This is well documented in the Hidden Markov Models literature, see [1]

for example, so we will only describe it briefly.

54

The forward variable is defined as αt(x) = P(xt = x, y0:t, u0:t−1|θ), and the back-

ward variable as βt|T (x) = P(yt+1:T , ut:T−1|xt = x, θ). See section 2.2.2 for details on

how they are calculated. We set

γt|T (x) = P(xt = x|y0:T , u0:T−1, θ) =
αt(x)βt|T (x)∑

x∈X αt(x)βt|T (x)

and

ξt(x1, x2) = P(xt = x1, xt+1 = x2|y0:T , u0:T−1, θ)

=
αt(x1)p(xt+1 = x2|xt = x1, ut, θ)p(yt+1|xt+1 = x2)βt+1|T (x2)∑

x∈X αt(x)βt|T (x)

The complete data log-likelihood is

lcomp(θ) =

T−1∑
t=0

log p(xt+1|xt, ut, θ) +

T∑
t=0

log p(yt|xt, θ)

With γt|T and ξt for a fixed θ∗ we can now define the function Q(θ|θ∗), which

performs the EM expectation step

Q(θ|θ∗) = E
[
lcomp(θ)

∣∣∣y0:T , u0:T−1, θ
∗
]

Maximizing the function Q over θ gives an update to θ∗. Alternating between ex-

pectation and maximization is the EM algorithm, and θ∗ converges to the MLE,

see [1] again. Convergence of the EM algorithm is discussed in Cappe et al. [1]

for Hidden Markov Models and extends naturally to POMDP’s.

4.4.2 Direct Maximum Likelihood

In some cases it is possible to directly maximize the log-likelihood

l(θ) =

T−1∑
t=0

log p(yt+1|y0:t, u0:t−1, θ)

55

In practice we implemented this by calculating l(θ) on a grid of values {θ1, . . . , θm}.

If the maximizing value over this grid was at the endpoints, then the estimate

was set to be that endpoint, otherwise a quadratic polynomial was fit to the

maximizing value along with its two adjacent grid values. The value maximiz-

ing that polynomial was then taken to be the estimate.

56

CHAPTER 5

DISCRETE EXAMPLES

5.1 6 state example

While the FOFI strategy has been shown to be effective in Hooker et al. [5] it is

possible to define systems in which the strategy is not optimal and may in fact

be worse than just using fixed or random controls. Usually certain parts of state

space will give more information about a parameter than others, given that the

state space is perfectly observed. In these cases optimal controls would try to

move the process to these states. However, if the state space is only partially

observed, most information might be obtained in different parts of state space

and the FOFI controls become suboptimal. In cases like this the truncated POFI

and WOFI often do better than FOFI, since they take advantage of the obser-

vation process. In this example, we demonstrate a system where using FOFI,

WOFI and truncated POFI leads to different control policies, and using a sim-

ulation study, we show that using a truncated POFI or WOFI policy produces

less variable parameter estimates than then using a FOFI policy.

Consider a discrete time Markov chain xt with state space S x = {1, 2, 3} and a

transition probability matrix

P =


1
2 −

p
4 + u

4
1
3 .4 − u

4

p
2

1
3 .15

1
2 −

p
4 −

u
4

1
3 .45 + u

4


where the parameter of interest is p ∈ [0, .5] and the control is u ∈ {−1, 1}. For

xt = 1 or xt = 3, choosing the control u = 1 will increase the probability of the

57

Markov chain staying in its current state while choosing u = −1 will increase the

probability of it leaving its state.

Now assume this process isn’t observed directly but through a related pro-

cess yt with state space S y = {1, 2} whose transition probabilities depend on

which state xt is in. We denote the transition probability matrices with (Pk){i, j} =

p(yt+1 = j|yt = i, xt = k) given by

P1 =

 .5 .5

.5 .5

 , P2 =

 .5 .5

.5 .5

 , P3 =

 1 − p
2

p
2

p
2 1 − p

2


If xt were observed we would get information about the parameter p when xt

leaves state 1 and from yt when xt = 3. The idea here is that since the FOFI

controls assume the whole state space is observed they might encourage xt to

be in state 1, while the truncated POFI controls and the WOFI controls take into

account what is actually observed and might choose the controls more intelli-

gently. Indeed when calculating the controls according to FOFI the long run

control is to “leave one’s state" if xt = 3 and “stay in one’s state" if xt = 1. The

WOFI policy takes observations into account and does the reverse as FOFI. It is

harder to predict and interpret the controls that result from using the truncated

POFI, but the control policy is given in Table 5.1. We set the truncation factor to

m = 1, that is the policy at time t depends on (yt, yt−1, ut−1).

To illustrate this difference, a simulation study was carried out to test what

method performed best: The process xt was run for 1000 steps with p = .37,

using controls chosen by truncated POFI, WOFI and FOFI. Additionally we ran

a simulation of the same length, but where the control was chosen randomly,

with u = −1 and u = 1 having equal probability. Then the parameter p was

58

ut 1 -1 -1 1 -1 1 1 -1
yt 1 2 1 2 1 2 1 2

yt−1 1 1 2 2 1 1 2 2
ut−1 1 1 1 1 -1 -1 -1 -1

Table 5.1: Long run control policy that results from using a truncated POFI in
the 6 state example. The first column describes which control to use for a given
history (yt, yt−1, ut−1) of observations and control.

bias st. dev. MSE
FOFI .0009 .0823 .0068
WOFI .0009 .0506 .0026

tr. POFI .0040 .0526 .0028
Random .0017 .0702 .0049

Table 5.2: Simulation results for the 6 state example. We see that the controls
chosen by truncated POFI or WOFI make for more accurate estimates of p. The
FOFI policy does worse than a random policy.

estimated using an EM algorithm. This was done 500 times to get an empirical

distribution for the estimates of p. The results are given in Table 5.2. Estimates of

p using the truncated POFI or WOFI policy had the lowest MSE and variability.

Estimates using a FOFI policy were comparatively worse than using a random

policy.

5.2 Gamble Safe example

The following example describes an application of the above methods in the

context of experimental economics. The problem is derived from Sachat et.

al. [9], in which we wish to model how humans change their game-playing

strategies over time.

We set up a game with two players: a Row player and a Column player.

59

Left Right
Left 2,0 0,1

Right 1,2 1,1

Table 5.3: Rewards in the Gamble Safe game. The first number is the reward
for the Row player and the second number the reward for the Column player,
given a certain outcome.

They repeatedly play a game where both simultaneously choose either left or

right, and they get rewards depending on the outcome according to Table 5.3;

the Row player would for example get 2 and the Column player 0 if both chose

left. We follow [9] and assume that at any given play the Column player fol-

lows one of two strategies: the Nash-equilibrium strategy of choosing either

left or right with 50% probability or the Gamble-safe strategy, where they only

choose right. The player will pick either strategy based on a multinomial lo-

gistic model, where the probabilities depend on the last two plays of the Row

player, and the last strategy chosen by the Column player. This results in a Par-

tially Observed Markov Decision Process with the strategy employed being a

hidden state giving rise to observed plays.

Let S t denote the strategy chosen by the Column player at time t, Ut denote

the action played by the Row player at time t. Let S t = −1 if the Nash-equlibrium

is chosen, S t = 1 if the Gamble-safe strategy is chosen. Also let Ut = 1 if the Row

player plays right, Ut = −1 if he plays left. Similarly Yt will denote the plays of

the Column player. The strategy S t+1 chosen at time t + 1 will then be chosen

according to

P(S t+1 = −1) =
ex

1 + ex and P(S t+1 = 1) =
1

1 + ex

where we let

x = 1.2Ut + Ut−1 + θS t

60

The experiment is set up with two natural strategies for the Column player

and we can think of θ as the persistence of strategies. The purpose of this exper-

iment is to elicit information about how humans persist in strategy choice, and

we therefore investigate how the plays of the Row player can be used to obtain

an estimate of θ that is as precise as possible.

To cast this into our usual setting we think of S t being the unobserved un-

derlying Markov Chain, Ut as the control and Yt as the observed process. Since

the transition probabilities from S t depend on Ut−1 (a part of the history at time

t − 1) we augment the state space to include Ut−1, i.e. Rt = (S t,Ut−1) will be our

underlying Markov Chain. At this point we could run the dynamic programs

for both FOFI, truncated POFI and WOFI, but controls calculated that way will

depend deterministically on the plays of the Column player. Seeing that realis-

tically deterministic plays can often easily be countered in adversarial games, it

is better to follow a strategy that includes some randomness in the plays. So we

let Wt ∈ {−1, 1} be the strategy of the Row player in such a way that

Ut = 1 w.p. .8

Ut = −1 w.p. .2

 if Wt = 1, and
Ut = 1 w.p. .2

Ut = −1 w.p. .8

 if Wt = −1

These kind of changes are easily incorporated in the dynamic program for both

FOFI, truncated POFI and FOFI, by adding an expectation over Wt at every step

t.

We set θ = .7 and calculated the FOFI, truncated POFI and WOFI policies. We

also consider a random policy, where the probability of choosing either control

was set to 1/2.

To compare the two policies we ran a simulation study with T = 500, and

61

Adversarial Game
bias st. dev. MSE

FOFI 0.00 0.33 0.11
WOFI 0.02 0.27 0.07

tr. POFI 0.02 0.30 0.09
Random 0.01 0.33 0.11

Table 5.4: Simulation results for Adversarial Game. The FOFI policy is similar
to the random policy. Truncated POFI does slightly better that FOFI and WOFI
does slightly better than truncated POFI.

1000 simulations for every control policy. The parameter θ was estimated using

an EM algorithm. The results of this estimation under each policy are given in

Table 5.4 where the WOFI controls produce least variance and the most accurate

estimates.

62

CHAPTER 6

DIFFUSION PROCESSES

In order to apply the methods described above to dynamical systems, we need

to approximate them by a suitable Partially Observed Markov Decision Process.

We achieve this by discretizing time, state and observation spaces. Here we

consider continuous stochastic dynamical systems of the form

dx = f(x, θ, u(t))dt + Σ
1/2
1 dW

where θ is the parameter of interest, to be estimated, u(t) is a control that can be

chosen by user, x is the vector of state variables, f is a vector valued function

and W a Wiener process. The dynamical system is approximated on a fine grid

of times (tδ)t=0,...,T and we obtain a discrete-time model

xt+1 = xt + δf(xt, θ, ut) +
√
δε1t

where ε1t ∼ N(0,Σ1) are independent normal random variables. We assume the

underlying state variables xt are only observed partially or noisily.

yt = g(xt) + ε2t

where ε2t ∼ N(0,Σ2
2).

6.1 Discretizing a Diffusion Process

In order to approximate this as a Markov Chain, the state space is discretized

in each dimension and the model is then thought of as moving between the

different boxes. The probability of moving from box to box is approximated

63

using the normal p.d.f. at the midpoints of the boxes. In the examples covered

in Chapter 7, only equidistant discretization is considered, but this restriction

can be readily removed. If we label the two midpoints as i1 and i2 and the area

of the second box as Ax this probability is given as p(xt+1 = i2|xt = i1, ut, θ)

≈
exp

(
−1

2 (i2 − (i1 + δf(i1, θ, ut)))T Σ−1
1 (i2 − (i1 + δf(i1, θ, ut)))

)
· Ax

(2π)k/2 det(Σ1)1/2

where k is the dimension of x. The probabilities are then normalized to make

sure they sum to 1. If the controls ut can be chosen on a continuous scale then

this scale has to be discretized as well. (xt, ut) is then a Markov Decision Process,

and one can run the FOFI dynamic program.

For the truncated POFI and the WOFI dynamic program the observation

space needs to be discretized as well. The probability of what observation box

is observed depends on in which box the underlying Markov Chain is in. If

we label the midpoint of the underlying Markov chain midpoint as i and the

midpoint of the observed process box midpoint as j, and the area of the latter

box as Ay this probability is given as

p(yt = j|xt = i) ≈
1

(2π)k/2 det(Σ2)1/2 exp
(
−

1
2

(j − g(i))T Σ−1
2 (j − g(i))

)
· Ay

These probabilities are also normalized to sum to 1. The process (xt, yt, ut) is now

a Partially Observed Markov Decision Process and one can run an appropriate

POMDP dynamic program.

6.2 FOFI and WOFI in Diffusion Processes

Hooker et al. [5] came up with experimental design for Diffusion Processes;

dxt = f(xt, θ, ut)dt + Σ(xt)1/2dWt

64

that is similarly based on using dynamic programming to maximize the FOFI

likelihood. However since their treatment is within the framework of diffusion

processes, the reward functions are given in terms of f and Σ instead of tran-

sition probabilities of the approximating POMDP. We review their calculations

for the FOFI criteria and show how they can be extended for the WOFI crite-

ria. The truncated POFI criteria doesn’t simplify the way the WOFI and FOFI

criteria do.

The diffusion process likelihood for θ is

l(θ|x) =
1
2

∫ T

0
f(xt, θ, ut)T · Σ−1(xt) · f(xt, θ, ut)dt −

∫ T

0
f(xt, θ, ut) · Σ−1(xt) · dxt

with the associated Fisher Information is

I(θ, u) = E
∫ T

0

∥∥∥∥∥ ∂∂θ f(xt, θ, ut)
∥∥∥∥∥2

Σ(Xt)
dt

where ‖z‖Σ = zT Σ−1z.

Hooker et al. [5] approximate this Fisher information by discretizing time.

For a diffusion process discretized at time ti = i∆t, i = 1, . . . ,T we get

xi+1 = xi + f(xi, θ, ui)∆t +
√

∆tΣ(xi)1/2εi

where εi are independent vectors of independent standard normal random vari-

ables. We can now discretize the continuous Fisher Information above, or derive

it from the discretized diffusion process, either way we get the Full Observation

Fisher Information (FOFI) as

F̂I(θ) =

T∑
t=1

E
[∥∥∥∥∥ ∂∂θ f(Xi, θ, ui)

∥∥∥∥∥2

∆tΣ(Xi)

]
(∆t)2

and this is in correspondence with what you would get in the POMDP frame-

work, i.e.

E
(∂
∂θ

log p(Xt+1|Xt, θ, ut)
)2 = E

[∥∥∥∥∥ ∂∂θ f(Xt, θ, ut)
∥∥∥∥∥2

∆tΣ(Xt)

]
(∆t)2

65

Commonly the state space is observed noisily, or not completely, where the

amount of noise could depend on location in state space. We assume for now

that

y(t) = Ax(t) + b + Σ
1/2
2 εt

and note that this encompasses common situations such as not observing a state

altogether, observing the sum of multiple states, but doesn’t allow the observa-

tional variance to depend on the state x(t).

The WOFI criteria within POMDP’s is

E
(∂
∂θ

log p(Yt+1|Xt, θ, ut)
)2

and within the discretized diffusion process

yi+1 = A (xi + f(xi, θ, ui)∆t) + b +
√

∆tAΣ(xi)1/2ε1,i + Σ
1/2
2 ε2,i

where ε1,i, ε2,i are independent standard normal vectors. We see how, with WOFI,

the Fisher Information criteria changes naturally to

E
(∂
∂θ

log p(Yt+1|Xt, θ, ut)
)2 = E

[∥∥∥∥∥A
∂

∂θ
f(Xt, θ, ut)

∥∥∥∥∥2

Σ∗(Xt)

]
(∆t)2

where Σ∗(xt) = ∆tAΣ(xt)AT + Σ2. Note that by adjusting ∆t we can adjust process

variance relative to observation variance.

More generally we would be interested in y(t) = g(x(t)) + Σ
1/2
2 εt where g is not

necessarily a linear mapping, or allowing the observational error to depend on

x(t), that is y(t) = x(t) + Σ
1/2
2 (xt)εt. The WOFI criteria

E
(∂
∂θ

log p(Yt+1|Xt, θ, ut)
)2

66

is harder to write out directly in this case, since Yt+1 conditional on Xt is not

necessarily normal anymore.

We don’t pursue these issues in detail but note that the first case could be

approximated with a linear mapping g(xt+1) ≈ g(xt)+Jg(xt)(xt+1−xt), which above

would amount to setting b = g(xt) and A = Jg(xt)

67

CHAPTER 7

CONTINUOUS EXAMPLES

7.1 Morris Lecar model

The Morris Lecar Model [11] describes oscillatory electric behavior in a single

neural cell, as regulated by flow of Potassium and Calcium ions across the cell

membrane. These models are defined in terms of state variables vt and nt repre-

senting the voltage across the membrane and the flux of the Potassium channel

respectively.

Cmv̇t = It − gl · (vt − El) − gK · nt · (vt − EK) − gCa · m∞(vt) · (vt − ECa) (7.1)

ṅt = −φ · (nt − n∞(vt))/τn(vt) (7.2)

where m∞(v) = 1
2 (1 + tanh((v − v1)/v2)), τn(v) = sech((v − v3)/(2v4)) and n∞(v) =

1
2 (1+tanh((v−v3)/v4)). We will write Cmv̇t = F1(vt, nt) and ṅt = F2(vt, nt) as shortcuts

equations (7.1) and (7.2). The voltage between cells depends on Potassium and

Calcium concentrations, and on the amount of leakage. The further these fac-

tors are away from their equilibriums El, EK , ECa the greater the rate of change in

voltage. The multiplicative value nt changes the conductance of the potassium

channel and is modeled through the second differential equation in which nt

is driven towards a voltage-dependent equilibrium level defined by n∞(vt) but

converges to this at a much slower rate then the dynamics of vt. The neuron is

stimulated by an external applied current, It (our control), and vt is measured.

Our goal is to maximize information about the parameters Cm, gCa and φ, con-

sidered separately.

68

We consider a stochastic version of this neural firing model, derived from

[10], by adding σdW1 and σ̃dW2 to equations (7.1) and (7.2) respectively, where

W1 and W2 are independent Wiener processes. Stochastic models are important

in this context in order to accommodate observable variation in the inter-spike

interval where a deterministic model will require a fixed period; see [3], for

example.

The first step is to discretize these equations with respect to time. We get

that vt(t + dt) = v(t) + dt · F1(v(t), n(t))/Cm + σ
√

dt · ε1 and nt(t + dt) = n(t) + dt ·

F2(v(t), n(t)) + σ̃
√

dt · ε2 where ε1, ε2 ∼ N(0, 1).

We discretized vt onto the range [−75, 45] and nt onto [0, 1], after running a

few trial versions of the model. Both ranges where discretized into 25 intervals.

Only vt is measured and it is measured noisily,

yt = vt + εt

where εt ∼ N(0, 1). The observation space was discretized to the same range as

vt but into 20 intervals. These approximations give rise to a Partially Observed

Markov Decision Process to which our methods can be applied. The values for

the parameters were set to be Cm = 20, gCa = 4.4, gl = 2.0, Ek = −84.0, El = −60,

ECa = 120.0, φ = .04, v1 = −1.2, v2 = 18.0, v3 = 2.0, v4 = 30.0, σ = σ̃ = 1

and dt = 1. The controls range was set to be [−1.5, 6.0] and discretized to the

set It ∈ {−1.5, 0.0, 1.5, 3.0, 4.5, 6.0}. We considered experimental design for the

parameters Cm, gCa and φ, considered separately. FOFI, WOFI and truncated

POFI controls were calculated using dynamic programming, where the trunca-

tion factor m = 1 was chosen.

When calculating a Fisher Information reward to use in a dynamic program,

we generally use the estimated transition probabilities of the POMDP, for exam-

69

(a) FOFI control (b) truncated POFI control

Figure 7.1: Long term controls of FOFI and truncated POFI for the parameter
gCa. The FOFI plot gives the control to use, given a certain position in state
space. The truncated POFI control will depend on the last two observations and
the last control, but fixing the last control as, for example, It−1 = 6 one can plot
which control to use given combinations of the last two observations.

ple the WOFI reward is
(
∂
∂θ

p(yt+1|xt, ut, θ)
)2

. As discussed in Section 6.2 we can

frequently calculate the FOFI and the WOFI reward using the function f and the

covariance matrix Σ. If we look at θ = gCa for example, we see that it only ap-

pears in the v dimension, Cmv̇t = It−gl ·(vt−El)−gK ·nt ·(vt−EK)−gCa ·m∞(vt)·(vt−ECa)

and we get that (
∂

∂θ
p(xt+1|xt, ut, θ)

)2

∝
(
m∞(vt) · (vt − ECa)

)2

Since the observations process assumes that we only observe the v(t) dimension

with some normal noise we have that A = (1, 0) in Section 6.2. This shows that

the WOFI reward
(
∂
∂θ

p(yt+1|xt, ut, θ)
)2

is proportionally the same as the FOFI re-

ward, and we shouldn’t expect any difference between the corresponding poli-

cies. The FOFI and truncated POFI long term policies for gCa are given in Fig-

ure 7.1. The WOFI policy is not shown since it coincides with the FOFI policy.

70

(a) FOFI control (b) WOFI control (c) truncated POFI control

Figure 7.2: Long term policy of FOFI, WOFI and truncated POFI for the param-
eter φ. The FOFI policy is clear cut while the WOFI policy is only picking up
on numerical noise. In the truncated POFI policy we fix It−1 = 6 to get a plot of
which control to use given combinations of the last two observations.

Experimental design for φ is trickier since it only appears in the second di-

mension ṅt = −φ · (nt − n∞(vt))/τn(vt). Since the WOFI reward re-weights the FOFI

reward depending on how the states are observed, we get that the WOFI reward

breaks down in this case; (
∂

∂θ
p(yt+1|xt, ut, θ)

)2

= 0

See figure 7.2 for long term policies for φ. We see that the truncated POFI policy

seems rather unclear, while the WOFI policy just picks up on numerical noise.

The parameter Cm only appears in the v dimension, and the WOFI and FOFI

policies coincide again, see figure 7.3 for FOFI and truncated POFI long term

policies. The longterm FOFI policy seems to almost only choose the highest

possible control, while the truncated POFI policy varies more.

A simulation study was run for each of the three parameters gCa, φ,Cm us-

ing FOFI and truncated POFI policies (skipping WOFI since it was either the

same as FOFI or non sensible). The system was simulated within the discretized

Markov Chain framework with 100 time steps and all schemes had 100 simu-

lations. The parameter in question was estimated for each simulation using an

71

(a) FOFI control (b) truncated POFI control

Figure 7.3: Long term policy of FOFI and truncated POFI for the parameter Cm.
In the truncated POFI policy we fix It−1 = 6 to get a plot of which control to use
given combinations of the last two observations.

parameter bias st. dev. MSE

Cm

FOFI .4234 2.4722 6.2913
tr. POFI .4129 2.4068 5.9632

Fixed .9098 3.4240 12.551

gCa

FOFI .0613 .3671 .1385
tr. POFI .0158 .3706 .1376

Fixed .0249 .6193 .3841

φ
FOFI .00485 .01085 .00014

tr. POFI .00257 .01037 .00011
Fixed .01357 .02643 .00088

Table 7.1: Simulation results for the Morris-Lecar model, consider the param-
eters Cm, gCa, φ separately. We see that the truncated POFI and FOFI policies
outperform the fixed policy It = 1.5 in all cases, and the truncated POFI policy
seems to perform slightly better than the FOFI policy for the three parameters
considered.

EM algorithm. As a baseline comparison we also ran a simulation study using a

fixed control (It = 1.5). The results are given in Table 7.1. The difference between

the truncated POFI and FOFI turns out to be not very dramatic, likely due to the

observations providing a great deal of information about the underlying state

variables, which is when FOFI performs well.

72

7.2 Rosenzweig MacArthur model

The Rosenzweig MacArthur model describes the population dynamics of a two

species ecology, a prey species C (generally a type of algae in chemostat exper-

iments) and a predator species B (rotifers in chemostat, a microscopic animal).

The chemostat experiment consist of a tank filled with a nutrient rich medium

which the prey species consumes, and the predator consumes the prey. See

Hooker [4] for details.

The model can be expressed in various approximately equivalent ways, but

we focus on the diffusion model formation of the model, dx = f(x)dt + Σ(x)1/2dW

with

x =

 C

B

 , f =

 ρC(κC −C) − γβCB
κB+C

βCB
κB+C − mB


and dW = (dW1, dW2), a two dimensional independent Wiener process with

Σ(x) =

 ρC(κC −C) +
γ2βBC
κB+C −

γβBC
κB+C

−
γβBC
κB+C

βBC
κB+C + mB


The algae grows logistically according to ρC(κC − C) where κC is an upper

bound on the population, and ρ controls the growth speed. Rotifers reproduce

proportionally to the number of algae according to βBC/(κB + C), and γ controls

how many algae are needed to create one new rotifer. The rotifers die propor-

tionally to their population according to −mB.

We assume a controllable dilution rate δ, which affects both the algae popu-

lation limit κC and the rotifer death rate m in the following way; κC = κ+/(κ− + δ)

73

and m = m0 + δ. We assume the following parameter values; ρ = 4.17 ∗ 10−7,

β = .75, γ = 30, κ+ = 180000, κ− = .4 and m0 = .04.

Discretizing the state space is challenging in this form since the algae C can

become very large. Instead we take logarithms; x1 = log(C) and x2 = log(B), and

consider the derived diffusion model dx̃ = f̃(exp(x̃))dt + Σ̃(exp(x̃))1/2dW

We get

f̃(x) =
f(x)

x
=

 ρ(κC −C) − γβB
κB+C

βC
κB+C − m


and

Σ̃(x) = diag(1/x)Σ(x)diag(1/x)

=


ρ(κC−C)

C +
γ2βB

C(κB+C) −
γβ

κB+C

−
γβ

κB+C
βC

B(κB+C) + m
B


After considering various sample paths of the system, we discretize the x1

dimension onto the range [2.3, 11.3], and the x2 dimension to the range [.7, 8].

Both ranges were discretized evenly into 40 intervals. To add stability diagonal

noise was added to Σ̃, which was proportional to the squared bin size in the dis-

cretization of (x1, x2). Three possible control values were provided; δ ∈ {0, .2, .5}.

We assumed that the observations were binomial samples of the algae, yt =

Bin(Ct, p) = Bin(exp(x1,t), p) where the sampling coefficient was set at p = .1. This

was approximated by a normal distribution N
(
Ct p,Ct p(1 − p)

)
.

We considered the problem of estimating the parameter β with maximal pre-

cision and to do that we ran a dynamic program with T = 300 steps for the

WOFI and FOFI criteria and an example of the controls can be seen in figure 7.4.

As in the Morris Lecar model, we should expect the WOFI and FOFI controls to

74

(a) FOFI control (b) WOFI control

Figure 7.4: Long term controls in the Rosenzweig MacArthur model, FOFI left,
WOFI right.

Rosenzweig MacArthur Model
bias st. dev. MSE

FOFI .0016 .0341 .0012
WOFI .0075 .0270 .0008

Table 7.2: Simulation results for the Rosenzweig MacArthur Model.

be similar, due to the parameter β having the same form in both dimensions of

the system, although some variation might be due to Σ also contribution param-

eter information. The truncated POFI turned out to be computationally harder

to handle in this example, and was thus not considered.

We ran a simulation study of 200 simulations for both FOFI and WOFI, and

estimated the parameter β by maximizing the relevant likelihood. The results

are given in Table 7.2. The performance between WOFI and FOFI seems similar.

75

CHAPTER 8

PARAMETER DEPENDENCE OF DYNAMIC PROGRAM

In the examples above we calculated the dynamic program assuming knowl-

edge of the parameter θ, the very thing we wish to estimate with maximal pre-

cision. Since the dynamic programs we have considered are run before the ex-

periment is started we generally won’t have data to estimate θ. Additionally, for

the FOFI simulations we have used θ directly to estimate xt within the filter to

get the appropriate control, but this will not be possible in practice. There are a

few ways of dealing with this.

Assuming some prior information one can use a prior for θ to run the dy-

namic program. To do this, we add one more expectation for θ at every time

step t, and then maximize the expected Fisher Information to get the best con-

trol. In the FOFI case this means maximizing

Eθ

E n∑
t=0

(
∂

∂θ
log p(xt+1|xt, ut, θ)

)2
This strategy was employed in Hooker et al. [5].

The rather obvious deficiency here, for all our Fisher Information criteria, is

that as the experiment runs, we get observations that can be used to improve

our prior for θ, and could be used to get better controls, if we could brake the

experiment and rerun the dynamic program.

8.1 Online updating

In some systems the time spent in each state is very short, too short to per-

form many calculations, making it valuable to have a “look-up table" of con-

76

trols. Here the truncated POFI controls have an advantage over the FOFI and

WOFI controls, in the sense that they are of the “look-up" kind, as FOFI and

WOFI require estimation of the underlying xt process, before the control can be

looked up.

In other systems, there is time to do some calculations between transitions.

Note, for example, that at time t we have observed y0, . . . , yt and this will allow

us to calculate a posterior distribution π(θ|y0:t, u0:t−1) for our parameter of inter-

est. This posterior could then be used to run the dynamic program again, as

described above, from time T − 1 to time t. This can be quite time consuming

if done at each time step t, so we propose a method that relies on the Value

Iteration Algorithm (VIA), see Section 2.3 for a description of VIA.

8.1.1 Value Iteration Algorithm

As discussed in Section 2.3, in VIA we calculate

vn+1(xt, θ) = max
u

{
Ext+1[C(xt, ut, θ) + λ · vn(xt+1, θ)|xt, ut, θ]

}
where 0 ≤ λ < 1, and this maximizes the expected total discounted reward W3 =

E
[∑∞

t=0 λ
t−1C(xt, ut)

]
. Also covered in Section 2.3 is that if λ is close enough to one,

Blackwell optimality guarantees that controls that maximize W3 also maximize

the expected average reward W2 = limn→∞
1
n E

[∑n
t=0 C(xt, ut)

]
, or its lim sup if the

limit doesn’t exist.

We can therefore say that our aim with VIA is to maximize what we in the

truncated POFI case label, the average truncated Partial Observation Fisher In-

77

formation

lim
n→∞

1
n

EθEy|θ

n∑
t=0

(
∂

∂θ
log p(yt+1|yt−m:t, ut−m:t, x0, θ)

)2

or in the FOFI case, the average Full Observation Fisher Information and sim-

ilar for WOFI. This is a reasonable quantity to maximize in order to obtain a

time-invariant policy, see Section 2.3 for conditions on the existence of a aver-

age criteria.

We propose running VIA at every time step t, but to use the posterior for

θ, π(θ|y0:t, u0:t−1), which is conditioned on all the data observed so far, instead

of using the prior for θ. This will give a control that maximizes the average

Fisher Information, using all the parameter information that is available at time

t. Instead of starting VIA at each time t with v1 = 0, considerable time can be

saved by using the last value vector vn from the previous run of VIA at time

t − 1. This is because the posterior for θ often doesn’t change much between

time steps, and the last vn from time t − 1 thus being relatively close to the fixed

point at time t.

Let vn
t denote the value vector at time t at the n’th iteration of the t’th VIA

and let π(θ|y0:t, u0:t−1) denote the posterior for θ given observations up till time t.

Also, to ease notation, let zt = yt−m:t, ut−m:t−1. The pseudocode for this modified

VIA using the truncated POFI is:

Set v0
1 = 0 and n = 0

for t = 0→ T do

while ‖vn − vn−1‖ > ε do

∀ zt and calculate and store

78

vn+1
t (zt) =

max
ut

∑
θ

∑
yt+1

(∂
∂θ

log p(yt+1|zt, ut, θ)
)2

+ λvn
t (zt+1))p(yt+1|zt, ut, θ)π(θ|y0:t, u0:t−1)


n=n+1

end while

Set v0
t+1 = vn

t

Now let

ut(zt) =

argmax
ut

∑
θ

∑
yt+1

(∂
∂θ

log p(yt+1|zt, ut, θ)
)2

+ λvn
t (zt+1))p(yt+1|zt, ut, θ)π(θ|y0:t, u0:t−1)


Use control ut, and observe yt+1 and then update the posterior for θ,

π(θ|y0:t+1, u0:t) =
p(yt+1|y0:t, u0:t, θ)π(θ|y0:t, u0:t−1)∑
θ p(yt+1|y0:t, u0:t, θ)π(θ|y0:t, u0:t−1)

end for

Updating FOFI and WOFI policies online using VIA can be done in a sim-

ilar way. In the next example we compare fixed policies with policies that are

updated in run-time.

8.1.2 PCR model

Polymerase chain reaction is a well established method to copy and multiply

DNA. We are interested in modeling the growth dynamics of DNA template

(xt), for a fixed amount of substrate. The model we use is

xt+1 = (1 − ut)xt + dt
a(1 − ut)xt

(b + (1 − ut)xt)2 +
√

dt · ε1

79

where ε1 ∼ N(0, σ2
1). Here xt is the amount of DNA template, a and b the pa-

rameters of the model and ut the control, the percentage of template removed

at each time point. We are interested in estimating the parameter b, labeled the

half-saturation constant. A good reference for PCR models is [2].

We measure the amount of DNA template at each time point, but with an

error. Our observations are

yt = xt + ε2 where ε2 ∼ N(0, σ2
2)

and thus we have a dynamical system which when discretized becomes a

Partially Observed Markov Decision Process.

The range for xt was set to be [0, 15] and then discretized into 200 intervals,

and yt was discretized to the same range, but only into 50 intervals. The param-

eter values were set to be a = 2.0, b = 4.2, σ1 = σ2 = 1, dt = 1 and the possible

values of the control ut ∈ {0, .2, .4, .6, .8, 1}.

Still with the objective of maximizing Fisher Information, we more realisti-

cally assume priors for the parameters of the system, as discussed above. We

conducted a simulation study using controls based on these priors for the trun-

cated POFI and FOFI, and then compared their performance to controls that are

updated online using VIA, also both for truncated POFI and FOFI. WOFI was

left out in this example, as the focus was more on the effect of updating the pa-

rameter priors. As a baseline comparison we also ran simulations using fixed

controls and simulations where the true parameter is used (unrealistically) to

calculate the control policy via dynamic programming as in the previous exam-

ples. For fixed controls we report the simulation with the lowest MSE, which

was when ut = .2.

80

uniform prior, without VIA
bias st. dev. MSE

FOFI 0.1059 0.6598 0.4465
tr. POFI 0.0053 0.6189 0.3831

inaccurate prior, without VIA
bias st. dev. MSE

FOFI 0.0755 0.6374 0.4120
tr. POFI 0.0516 0.7051 0.4998

fixed control (ut = .2 for all t)
fixed .1264 .7466 0.5734

uniform prior, with VIA
bias st. dev. MSE

FOFI 0.0388 0.6180 0.3834
tr. POFI 0.0766 0.5999 0.3658

inaccurate prior, with VIA
bias st. dev. MSE

FOFI 0.0713 0.6787 0.4657
tr. POFI 0.0954 0.6750 0.4648

True parameter, without VIA
bias st. dev. MSE

FOFI 0.0659 0.6235 0.3932
tr. POFI 0.0323 0.6249 0.3916

Table 8.1: Simulation results for the PCR Model using two kinds of priors, trun-
cated POFI and FOFI, with and without VIA.

The range for b was set to be b ∈ [1.7, 8.0] and then we discretized that inter-

val into 10 points {1.7, 2.4, 3.1, 3.8, 4.5, 5.2, 5.9, 6.6, 7.3, 8.0}. We then considered a

uniform prior on these points and a prior that is somewhat inaccurate, and puts

the weight .9 on the point 7.3 and gives the others equal weight. The discount-

ing factor for VIA was set to be λ = .9.

Our simulation study had the time length T = 200 and there were 600 sim-

ulations for each case. The parameter b was estimated using an EM algorithm.

The simulation results are given in Table 8.1.

We note that when we calculate the controls prior to the experiment (No

online updating), both the truncated POFI and FOFI controls are significantly

better than using a fixed control, and truncated POFI seems to do better than

FOFI when we use an uniform prior. Interestingly in the FOFI case, calculating

the controls using the inaccurate prior does better then using the uniform prior,

likely due to a reduction in prior variance, in spite of additional bias.

81

Figure 8.1: Running time of VIA at each time step t, for POFI using a uniform
prior for the PCR model.

Accuracy increases in most cases when we allow for online updating using

the VIA algorithm. Starting the VIA with an uniform prior does better than

starting with the inaccurate one, which is probably due to the VIA having to

spend more time “repairing" the prior. Also, we note that VIA controls with

uniform prior have a similar performance to a control policy using the true (un-

known) parameter.

Additionally, in Figure 8.1, we see that using the previous final value vec-

tor as the starting value vector of VIA when going from time point t to t + 1,

does save considerable time, and more so as t grows and the posterior for the

parameter starts to change less.

82

CHAPTER 9

CONCLUSION

We have compared three ways to conduct experimental design in paramet-

ric POMDP’s, based on using dynamic programming to maximize the truncated

Partial Observation Fisher Information, the Weighted Observation Fisher Infor-

mation and the Full Observation Fisher Information. We have proven how the

prior two criteria approximate POFI, the true Fisher Information of the data,

under suitable assumptions.

Settings can arise where controls chosen by FOFI are not optimal, due to

focusing on the underlying process rather than the observed process, and in

these cases controls chosen with a POFI approximating criteria often perform

better, as in the six state example and the adversarial game. In some of the

examples analyzed they performed similarly.

In recent years, there has been growing interest in statistical procedures

within dynamical systems, such as parameter estimation and hypothesis test-

ing, and many of these procedures could be performed more efficiently given

good experimental design. In the examples covered we fully discretized the

state and observational spaces to transform dynamical systems with stochastic

errors into partially observed Markov decision processes, allowing us to use the

methods developed for POMDP’s to our advantage.

We also noted how the problem of parameter dependence can be overcome

by averaging over a prior. Additionally given that there is enough time between

consecutive time steps, we showed how the controls can be efficiently updated

online using observations gathered so far, by using a variant of the Value Itera-

83

tion Algorithm. This was demonstrated in the PCR example.

Finding controls that maximize information about parameters is a compu-

tationally challenging task. We have successfully demonstrated techniques for

up to two dimensional systems, for a one dimensional parameter. Adding di-

mensions in state, parameter or observation space quickly make the methods

considered computationally intractable. Considering a longer lag of past ob-

servations for the truncated POFI might also increase accuracy, but again at the

cost of computation time. The biggest challenge of these methods that remains

is to extend them to higher dimensional systems.

84

BIBLIOGRAPHY

[1] O. Cappe, Moulines E., and Ryden T. Inference in Hidden Markov Models.
Springer, 2005.

[2] P. Haccou, P. Jagers, and V.A. Vatutin. Branching processes: Variation, growth,
and extinction of populations, volume 5. Cambridge Univ Pr, 2005.

[3] G. Hooker. Forcing function diagnostics for nonlinear dynamics. Biomet-
rics, 65:613–620, 2009.

[4] G. Hooker. Incarnations of the rosensweig macarthur model. 2014.

[5] G. Hooker, K. K. Lin, and B. Rogers. Control theory and experimental de-
sign in diffusion processes. Unpublished, Department of Biological Statis-
tics and Computational Biology, Cornell University. 2012.

[6] G.E. Monahan. A survey of partially observable markov decision pro-
cesses: Theory, models, and algorithms. Management Science, 28(1):1–16,
1982.

[7] W. Powell. Approximate Dynamic Programming: solving the curses of dimen-
sionality. Wiley, 2007.

[8] M.L. Puterman. Markov Decision Processes - Discrete Stochastic Dynamic Pro-
gramming. Wiley, Hoboken, NJ, 2005.

[9] J. Shachat, J. T. Swarthouty, and L. Wei. Man versus nash: An experiment
on the self-enforcing nature of mixed strategy equilibrium. Unpublished,
Wang Yanan Institute for Studies in Economics, Xiamen University. 2011.

[10] Gregory Smith. Modeling the stochastic gating of ion channels. In Compu-
tational Cell Biology, volume 20 (II) of Interdisciplinary Applied Mathematics.
2002.

[11] D. Terman and B. Ermentrout. Mathematical Foundations of Neuroscience.
Springer, 2010.

85

