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In many "laYs the karyotype of a species is remarkably constant. The 

number of chromosomes carried by each individual member is, with few excep.­

tions, the same as that of all others; even thG shape of individual chromo­

somes as determined by the position of the centromere is usually invariable. 

The arrangement of gene loci within a chromosome on the other hand, often 

varies considerably from individual to individual. In Dipterous flies, vrhose 

giant chromosomes offer an excellent opportunity for study, species after species 

has been found to possess a "realth of contrasting gene arrangements within the 

same chromosome. The origin of this variation lies almost exclusively in the 

inversion of chromosomal segments -- a phenomenon vrhich requires that a chromo­

some be broken in two places, that the segment bet.,reen the breaks reverse its 

position within the chromosome, and that the broken ends heal with the segmenc 

in its new position~ 

Unless the \vealth of inversions in a species is overwhelmingly large, a 

phylogeny of gene arrangements can be constructed such that each gene arrangemer.t 

differs frcm another by a single two-break inversion. The logic unc1erlying such 

phylogenies is supported by the frequent discovery of gene arrangements vrhich 

';rere previously postulated as hypothetical ones. \1e must re-emphasize that 

phylogenies of this sort can be constructed only in the case of certain Dipteran 

species, It is a well known fact, nevertheless, that inversions are found in a 

great many plant and animal species; their origin in these species is undoubtedly 

comparable to that in Diptera. 

Hhy do wild populations of so many species retain a variety of chromosomal 

rearrangements? Again a definitive ans1ver is available only in the case of some 

Drosophila species. Dobzhansky and his students have shown repeatedly that 

individuals carrying two different gene arrangements are superior to inQividuals 

homozygous for one or the other of the various inversions in many, if not all, 

components of fitness. Although eYperimental evidence is lacking for other 

1 Eiometrics Unit, Plant Breeding Department, C01·nell University 
2Now at North Carolina State, Raleigh, North Carolina 

3Plant Breeding Department, Cornell University 



-2-

organisms, the simplest explanation for the existence of any polymorphic systelli 

is that based on the selective superiority of heterozygous individuals. 

It is highly unlikely that the retention of an inversion in any popula-

tion depends upon the inversion itself; that is, upon the chromosornal breaks, 

upon the new arrangement, or upon position effects. Indeed, Paget has shown 

that radiation-induced inversions have an average deleterious effect on fitness. 

The advantage of inversion heterozygotes which underlies the retention of two or 

more inversions in a population appear to result frou1 the interaction of blocks 

of genes; blocks which are held intact by the suppression of normal gene recombi­

nation. 

rre propose to undertake an analysis of the genetj_c basis of heterosis by 

utilizing the above facts. Indeed, Sprague and Chao, independently, have used 

tvTo inversions in analyzing heterosis in corn. We feel, however, that even 

greater opportunities for analysis are present in Drosophila. The radiation 

genetics of Drosophila is a well-developed field. These flies breed rapidly; 

their giant chromosomes can be analyzed with an accuracy ur1surpassed in any 

other group. There already exists an enormous literature (recently revievted by 

daCunba) on the inversions which are to be found in a large number of speciesc 

Finally, racial and strain hybrids are kno-vm to e~chibit heterosis. 

In brief, our procedure calls for an analysis of the distribution of sizes 

and position of newly induced inversions retained in populations of hybrid origin 

but which are, with the exception of the induced inversions, structurally homo­

zygous. This will tell us the location of genes which confer heterosis in these 

populations as well as the size of the gene blocks needed to confer heterosis. 

Hybrid populations started by crossing strains from a number of localities can 

be compared. Material accumulated during these studies can be utilized in at­

tacking many additional problems. 

The remainder of this report consists of a mathematical moctel, in which 

chromosomes are treated as homogeneous strings subject to breakage at any point, 

,.,hich predicts the theoretical distribution of lengths of inverted cru:omosomal 

segments as well as their positions. The distributions of natm·ally occurring 

inversions can be compared '"i th those predictecl by this model; this comparison 

will entail library research only. The distribution of newly induced inver­

sions must also be compared with theoretical expectations. This comparison is 

an essential test of the validity of the present model; it is important that the 

distribution of newly induced inversions be known so that distortions resulting 
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from selection within populations can be recognized. Although some information 

is available in the literature for this study, it is quite possible that the 

available data will have to be augmented by a new cytological study. 

For the purpose of making the theory simple, first assur.1e that there is 

one and only one inversion per chromosome. That is, only the chromosomes with 

one inversion vrill be considered, Secondly, assume that a brealt is equally 

likely along any part of the chromosome and that the position of the first 

break is independent of the position of the second break on the chromosome. 

This means that the first break (x) and the second break (y) each follow the 

uniform distribution and that the joint distribution of the two brea.lts is the 

product of t"t-TO uniform distributions. 

In mathematical terms, for a chromosome of length c, 

f (;t) l 
O<X<C =-c 

= 0 otherwise 

f(y) 1 O<y<c =-c 

= 0 othenrise 

(The probability that x (or y) falls in any given interval is 1 times the length c 
of the given interval.) 

The joint density function of :: and y is : 

l < < f(x,y) = f(x)f(y) = -2 , 0 _ x,y - c c 
= o, otherwise 

and the joint probability function is 

P { o < x <x0 , 0< y < y 0 f 
Yo }:o 

= ) ) f (::~,y )dxdy = ~2 
0 0 

The region over which the joint density function is defined may be repre­

sented ~·aphically as Figure 1. 
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( 0 1 c) 1---------,(c, c) 

----~------------~~------------ X (o,o) (c,o) 

Figure 1. Region for which f(x,y) ~ 0 • 

The problems are to find the distributions of (1) the lengths of the inverted 

part of the chromosome, (2) the mid-points of the inversions regardless of length, 

and (3) the mid-points of inversions of fixed length. That is, it is desired to 

obtain the distributions of lx-yj, of X~Y. for all lengths and of (x+y )/2 for any 

fh:ed value of lx-y I• 
First, set z=x-y and w=(x+y)/2. Then the region of definition of the 

function g{w,z) is given in Figure 2. 

z I 
(c/2,c) 

(c,O) 

(c/2, -c) 

Figuxe 2. Region for which g(•r,z) ~ 0 • 



To find. the . 

-1 
J = + -

Now 
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joint distribution of w and. z, vre first find 

§:! ~ 
a.~ ox 

&1 oz -'&y By 

= g(vr,z), 

= 0 

1/2 11 

= = 1 

1/2 -1 

r -2w < z< 2w < c 

( -2c+2w< z <2c-2w, c/2.<v< c 

otherwise 

Let v=!zi=!x-yj. Then because of the symmetry and uniformity of g(w,z), 

we have 

h(w,v) 2 
= 'C2 ' 

r 0 <v <2w< c 

( O<v< 2c-2w, c/2 <w< c 
= 0 otherwise 

This is the joint distribution of the two variables of interest and is defined 

over the region shown in Figure 3. 

v (c/2,c) 

(c, 0) 

Figure ). Region for which h(w,v) ~ 0 

}"'rom the distribution of h(w,v),1·re now find the three distributions of inter­

est, together with the means, variances and other moments of the variables. 



First, we find the distribution of lengths of inversions~·name~y,·h1 {v). 

5 b(vr,v)dvr 

2 c/2 
-2 ) dW 1 0<V<C 
c v'/2 ·· 

= 
2 c-v/2 
C'2 f. dvT , 

c72 
O<v<c 

This function is shown graphically in.Figure 4. 

(0,2/c) 

(c,O) 

Figure 4. Distribution of v=!zl=lx-yl =length of break. 

The mean of v is given by 

2 c 
~ = E(v) = -2 f (c-v}v dv 

c 0 

= c/3 

The moments about the raean may be obtained from the following moment 

generating function. 
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m(t) = E(et(v-c/3)) 

= g2 5 (c-v)et(v-c/))dv 
c 0 

2 2 ce t(v-c/3) lc e t(v-c/3) = -2[- - ..;....,.. __ _ 
c 3 t 0 t2 

~t ct _ .£1 
2 e3 2e- 3 2e 3 

= 
ct 

+ ••• 

+ • 0 0 

The coefficient of t 2 /21 is the variance, 

(t f v-c/3} -1) lc J 
0 

.Secondly, vle required the distributions of midpoints of inversions, This 

is simply h2 ( w) • 

= 

= 

( 2 2w 
-2 ~ dv , 
c . 6 

2 2c-2w 
-2 S dv , 
c 0 

( 4w 

c/2<•r<c 

c/2<w<c 

= o, otherwise 
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This function is shown in Figure 5. 

(c/2,2/c) 

___Jo~::__-----'·-· -----,---:.c~, o--) -- w 

Figure 5. Distribution of w=(;:+y)/2 =.midpoint. 

Clearly this is a symmetric function with mean, 

1-1 = c/2 

Moments about the mean may be obtained from the following moment generating 

function. 

m(t) = E(e t("r-c/2)) 

c/52 t(w-c/2) 4w d Sc t(w-c/2) 4(c-w) d = e - "'+ e - w 
0 c2 c/2 c2 

4 [ t(t-r-c/2) t(w-c/2)} lcf2 
= - 2 [ e [t(w-c/2)-l] + ce 2t 

c t2 0 

+ ~t - e [ t(w-c/2)-l] J t t(w-c/2) t(vr-c/2) j", 
1
. c 

t 2 .c/2 



~9-

+ ••• 

4c2n t2n 
+ -+ 
. 22n+l(2n+2)(2n+l) (2n)! 

~ .. 

This clearly shows that all odd moments about the mean are zero, as they 

must be for a symmetric distributiono The variance is the coefficient of t 2 /2l • 

Finally, for the distribution of the midpoints of inversions of fixed 

length, we require the conditional distribution of w given v. This is denoted 

by h(w!v). 

1 
= c:v ' 

v v 
- <w<c--2 2 

= 0, otherwise 

This distribution is shown graphically in FiGUre 6. 

h(wlv) 

(v/2,0) (c-Y/2,0) 

Figure 6. Distribution of w=(x+y)/2 for fixed v=jx-yi • 
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The mean of the variable in this conditional distribution is 

E(wjv) = )h(w\v)dw 

c-v/2 1 
= )/ · C:V dvr 

v 2 

= c/2 

For moments about the mean, we compute the appropriate moment Generating 

function. This is 

E(et(vr-c/2)jv) = fet(w-c/2)h(wlv) dw 

1 c-v/2 t(w-c/2) 
= C::V )/ e dw 

v, 2 

1 . S~D 2 1-2 . h _t(c-v) J 
= c:vL t 

1 + (c-v~2(t22 
4 4 

= + (c-v} (t ~ 
24 (5)(4!) 22(3)(21) 

{c-v}2n t2n 
+ + ··~ 

22n(2n+l) (2n) 1 

+ ••o 

Again, all odd moments about the mean are zero as they should be for a 

symmetric, in this case the uniform, distribution. It is also clear that 

2 (c-v) 2 
a = 12 • 

This shows that the variance is zero for v=c and increases as the length of the 

fi~~ed interval decreases. 
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The distribution of points of proximal and distal breaks is also of import­

ance. These may be found by transforming the variables .in h(w,v). He have 

2 I O<v< 2w< c 
h(w,v) = C'2 ' c/2<.w<c O< v<2c-2w, 

= 0 
' 

otherwise 

The proximal point and, at the same time, the distance to the proximal point is 

given by 

s = w .. v/2 

Also, the distal point and, at the same time, the distance to the distal point is 

given by 

r = w + v/2 

For this transformation 

5s 
5w 

J = 
5s 
5v 

1 
= 

-1/2 

and 

k(s ,r) 2 = C'2 

= 0 

In turn, 

2 
k1 (s) = C'2 

or 
ow 

or 
5v 

1 
= 1 

1/2 

' O<s, r< c 

' 
otherwise 

c 
s dr 
s 

2 = -2(c-s) , O<s< c c 

= 0 ' 
otherwise 

This distribution is the same as that for lengths, vizm h1 (v). 



-12-

.. Again, 

2 r 
k2 (r) = 'C2 s ds 

0 

2r O<r<c =-
' c2 

= 0 ' 
otherwise 

This distribution is essentially the same as k1 (r). It differs only in being a 

reflection. Its graph is given in Figure 7. 

(2/c,o) 

/i 
--~~------~~------------------------- r (c,O) 

Figure 7. Distribution of r ~distal point of an inversion 

For k1 (s), the mean is c/; and moments about the mean are given by the 

generating function obtained for h1 (v}. . 
For k2(r), the mean is 2c/3 and moments about the mean may be found from·· 

the generating function obtained for h1 (v) by multiplication by (-l)n where the 

n-th moment is desired. Thus, the even moments remain the same while the odd 

moments change sign. The unexpanded form of the generating function may be 

written as 
ct ct 

m(t) ~ 
2e3 2e3 +-----
ct c2 t 2 
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An e~:ample 

Bauer~~~* obtained 49 inversions on chromosomes~ The chromosome -vras 

divided into 20 equal units and the lengths of the inversions wel~e J.~ecorded in 

terms of these units. These workers obtained the frequency of inversions less 

than one unit, those bet-vreen one and two units in length, etc. The results 

obtained are given below in the first t-vro lines : 

.:.ength of I inversions . 
(in units) __L_ 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-3 6-9 9-10 

·-·~··------ . 
}i':ce quency of 

inversions 3 5 6 6 4 7 4 1 4 4 
:C:;:pected 

freg_1...1.ency 4 .. 3 4.5 4.3 4.0 3 .. 8 3.6 3.3 3.1 2.8 2.6 
Expected 

percent 9.75 9.25 8~75 8.25 7-75 7.25 6.75 6.25 5-75 ).25 
·---- ····-·-:.:.::::.:~::.:::===-... ~ ·- -·-... --. ·-·~ 

inversions I 
(in units) I 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 13-19 19-20 

-- ----------1--------·----- ·-----·----··----------····---···--··--
Fl·equency of I 

inversions I 0 0 1 0 2 0 1 0 1 0 

~-~.:·:1)e c ted 
frequency 2.3 2.1 1.8 1.6 1.3 1.1 o.8 o.6 o.4 o.1 

}i;:q)ec ted 
percent 

_.::.-:.:::==--=--=-===::::!:--============== 
.75 

The third line above is obtained as N=49 times the proportion e~~pected (the 

fourth line) in each unit. For the first unit, the expected proportion is 

2 c/20 39 
C'2 S (c-v )dv = 4oo = .0975 

0 

>:;.nd the expected number is .0975(49)=4.8. The expected proportion of inversions 

.J.:::mger than one unit or shorter than two units is 

2c/20 

J (c-v)dv - ~0975 = .19 - .0975 = 

·•~Bauer, H., Demerec, N. and Kaufman, B. P. ''X-ray induced chromosomal alterations 
i:::-~ Drosophila p1elano~~-" Genetics 23:610-630, 1938. 
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and the expected number is .0925(49)=4.5, etc. This is obviously a poor fit 

for these data. Consequently, an alternative model will be presented. Before 

proceeding, however, the follmving table has been prepared for situations for 

which data do fit this model. In order to divide the area for h1 (v) into 

equal parts con&ider the following: 

2 X 
-2 S (c-v )dv=a 
c 0 

Upon integrating we obtain 

The two roots of x are 

The only root usable here is x=c(l-(l-a)1/ 2 ) since 0~ x ~c. Setting a=.l0,.2o, 

"30, etc, vre obtain: 

_a(% ~~-l_o_. __ 2o ___ 3_o ___ 4o ___ s_o ___ 6o ____ 7_o __ 8o __ 9_0 -~~9~----
x/c I 0.051 0.106 Ool63 0.225 Oo293 0.368 0.452 Oa553 Oo684 1.000 

~ alternative model 

Two possible reasons for an overabundance of shorter inversions relative to 

longer inversions are: 

i) The non-heterochromatic material· shrinks under fixation more rapidly 

than does heterochromatic material. 

ii) Following two breaks, the ends of the broken chromosome heal with the 

remaining parts of the chromosome. Because of the radius of turning 

it is possible that for longer distances between breaks, the ends tend 

to heal more frequently with the part from which they \-Tere broken than 

do segments with a shorter distance between breaks. 

Therefore, some modification for h1 (v) in figure 4 is required which will take 

account of either or both of the above situations. (It should be noted here that 

the deficiency of very small inversions (less than one unit in length) may be 

due to the inability of the experimenter to observe all such inversionsQ) 
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Consider the following alternative to h1 (v) in figure 4: 
2 

hf.{v) = * + 13(v- ~) + y(v2 - }> , O<v<c 

= zero otherwise 

2 when 13=- c2 and Y=O, hf.(v) becomes h1 (v)o This model may be extended as follows: 

and 

l c c2 3 c3 k ck 
hl(v) = c +j3(v- 2)+Y(v2 - ·~)+o{v- ~)+•••+p(v- k+l), 

= zero, 

The mean and variance for bf.(v) are: 

c 
E(v)= S vhf. {v}dv= T2 [6+~c2+yc3] • 

0 

• 

O<v<c 

otherwise 

It is interesting to note that the mean equals c/3 and the variance equals c2 /l8 

for Y= zero and ~=-2/c2 ; this is the me.an and variance for h1 (v). The function 

hi(v} is shown graphically in figure 7. 

(o,1 - ~ - Yc2) 
c 2 3 

Figure 7. Distribution for length of 
break. 

(c,o} 

c 
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Dividing the length c into 20 equal units the area under the curve for 

the ith unit (i=l,2,•••,20) is computed as: 
ic 

.2f hi(v)dv = 32~00 { 2398+6i-6i2+~c2 (-441+83i-3i2 ) / 
(~-l)c .; 

20 
for · 

which;results from the fact that 

.. 

Hben j3 is known the proportion of the area between two points for the curve in 

figure 7, hi(v), may be computed directly. For 13=-2/c2 , and therefore Y=O, the 

various expected frequencies on page 13 may be computed directly. For example, 

let i=2 and 13=-2/c2 , then 

1 s } 2960 32000 1 2398+12-24-2(-441+166-12) = 32000 = .0925 0 

To obtain the a percent point we note that 

X 2 l [~ +13(v- ~)+Y(v2- ~ ) J dv = a 

Solving, the following equation is obtained: 

• 

He note that j3 must be negative and Y must be positive and that 

• 

Therefore, the above equation becomes 



c. 
••.:,!-

A+B A-B 1- A+B A-B ,-· 
roots for x=y-p/3 are -p/3+A+B, - 2 + 2 y -3 -I/3, and - 2 - 21/-3 -p/3. 

'l'he usable root is the one between zero and c. 

Estimators for f3 andY from h:[(v) 

It should be noted that h:[ (v) in figure 7 goes through the coordinates 

(c,C) for v=c. Therefore, the equation~+~ + 2y~2 ::: 0 must be satisfied, and 

·;=- 37.((3c2 +2). Hence, we may write h1r(v) in terms of c and ;3: 
l~c:J 

ic ic 

20 20 1 3 2 1 [ . . S hl_(v)dx=. (c +f3(v- ~)- 3(13c2+2)(v~- ~ ))dv= 32000 2398 
c~-l)c (l.-1).£ 4c 

20 20 

+6i-6i 2 +~c2 ( -44l+83i-312 )} 

3lnc,~ Y/N= proportion of inversions falling in i th interval, minimization of 

the following sums of squares, 

12 
J ' 

re5ults in the following: 

"' (It should be noted that t3 can be obtained if, for example, no observations are 

posnibl~ (or are unreliable) in the first (or other) interval. In this case, 

1=2,3,••• 1 20 and N=46.) 
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,., 
,., ,., 3 3~ 

The variances and covariance for t3 ar.d Y = - -23 - 4c are~ 
c 

20 
V(g) = 320002 a2 /N2 c4 ~(-441+83i-3i2 )2 

i=l 

" 9 ,., 
.V(y) = lbc2 V(t3) 

'· ,., 3 ( ,1\ cov(f3, Y) = - 4c V ~) 

An ~stimator for cr2 is: 

There is a loss of only one degree of freedom since only·t3 is estimated~ The 

restriction on 13 and Y is provided by the requirement that the distribution goes 
, · . . l r:.c 2Yc 2 · 

through the coordJ.nates (c,o), J.oeq c + 1:2 + T- = 0 = h{(c) • 

Since the Y. are correlated and h~ve unequal variances, least squares estima­J. 
tors for 13 and Y are probably inefficient, Therefore} the maximum likelihood 

estimators ~..re presented belo:t-r. They are somewhat more difficult computationally. 

where 

Now, the Yi have a mllitinomial distribution as follows: 

. 20 y. 
L=Nt 7r p. J. /Y. t 

. 1 J. J. 
l.= ' 

The log L is equal to 

20 20 
log Nl - Z log Y.t + E Y. log pi 

i=l J. i=l .:1:-.. . 

dlog L 20 Y. 2 
'A = Z ..2:.(32~QQ)( .. 441+83i-3i2 ) 

Ol-' i=l pi 
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,. 

Therefore, the maximum likelihood estimate of ~ is obtained from the eqJation: 

The V(p*) is obtained as 

For the above e:-.ample we compute (see Table 1 for c=l): 

,.. ,.. 
~ = -3.73 Y = lo29 

V(~) = 2.2584 
,.. 

V(Y) = lo2704 

From Table 2 and the above formulae we compute (for c=l): 

f3*= -4.17 

V(~*)= 2.1159 V( y*)= 1.1902 

,.. 
Although the difference between ~ and ~* is sizeable, there is little dif-

ference betwee~ the variances for the two. estimates. Also, the variances are 

quite large; _this is due, in part, to the:~l.qw ... frequencies of inversions ·observed 

in the first class. As stated previously,. the,'·axperimenter may not detect very 

small inversions and this would account for the small number cbserved. Because ,.. 
of this, ~ and ~*probably should have beem computed from the observations on 

the remaining 19 classes. 



. -20-

Table 1. "" ""2 Computations for t3 and a • 
•·· 

i i.2 yi I N 
Yi- 32000(!) II Y1- 32~00 fr-3.7258(rr)} 

1 1 3 2398 -0.6719 -361 -2.73 
2 4 5 2386 1.3464 -287 -0.29 
3 9 6 2362 2.3832 -219 1.13 
4 16 6 2326 2.4383 -157 1.54 
5 25 4 2278 Oe5118 -101 -o.o6 
6 36 7 2218 3.6037 - 51 3.31 
7 49 4 2146 0.7139 - 7 o.67 
8 64 1 2062 -2.1574 31 -1.98 
9 81 4 1966 0.9896 63 1.35 

10 100 4 1858 1.1549 89 1.66 
11 121 0 1738 -2c60l3 109 -2.04 
12 144 0 1606 ,..,2 .. 4592 123 ~1.76 

13 169 1 1462 ... 1.2387 131 -0.49 
14 196 0 1306 -1.9998 133 -1.24 
15 225 2 1138 · o~2574 129 0.99 
16 256 0 958 -1.4669 119 -0.79 
17_. 289 1 766 -0.1729 103 o.41 
18 324 0 562 -o.86o6 81 -o.4o 
19 361 1 346 0.4702 53 Oo77 
20 4oo 0 118 -0.1807- 19 -0.07 

N=49 ""2 -~2.6596- 2 2452 
~ - . 19 - • 

I = 2398 + 6i - 6i2 . II =-441 + 831 - 3i2 

' 
~ 2 - 32000 ( 2419.0140) - 3 725824 
. c - 49 - 424oo4 - - ~ 

Yc3 = 1.294368 



" 
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Table 2. Computations for f3*and V(j3 >!-) ft 

i yi 
I~I= III'= III 11= III 111= 

I+~c2II Y1II/III I=l3'c2 II Y.II/II!' I+l3"c2 II Y.II/III 11 I+l3"'c2 II y. II/III t II II2 /III'" 
~ ~ ~ 

·----·--~----··- -----··-·-·--- -·-----·-

1 3 3743.0 -0.2893 3842 -0~2819 3914.2 -0,.2767 3903 .. 4 -0.2775 33.39 
2 5 3455-3 -0.4153 3534 -0 .. 4061 3591.4 -0.3956 3582 .. 8 -0.4005 22.99 
3 6 3178.0 -0.4135 3238 -0.4058 3281.8 -o.4oo4 3275.2 -0.4012 14.64 
4 6 2911o0 -0.3236 2954 -Oa3189 2985.4 -Oo3155 2980Q7 -0 .. 3160 8.27 
5 4 2654o3 -0.1522 2682 -0.,1506 2702.3 -0 .. 1495 2699-2 -0 .. 1497 3 .. 78 
6 7 2408.0 -0.1483 2422 -0 .. 1474 2432.2 -0,.1468 2430.7 -0 .. 1469 1.07 
7 4 2172.1 -0.0129 2174 ·-0.0129 2175.4 -0.0129 2175 .. 2 -0.0129 0.02 
8 1 1946.5 0.0159 1938 0.0160 1931.8 0.0160 1932.7 0.0160 0.50 
9 4 1731.3 0~1456 1714 0.1470 1701~4 0.1481 1703o3 0 .. 1479 2 .. 33 

10 4 1526.4 0.2332 1502 0.2370 1484.2 0.2399 1486o9 0.2394 5-33 
11 0 1331.9 0 - 0 - 0 1283.5 0 9.26 
12 0 1147.7 0 - 0 - 0 1093.1 0 13.84 
13 1 973.g2 0.1345 938 0.1397 911.8 0.1437 915-7 0.1431 18.74 
14 0 810.47 0 - 0 - 0 751.4 0 23.54 
15 2 657-37 0.3925 622 0.4148 596.2 0~4327 600a1 0 .. 4299 27 .. 73 
16 0 514.63 0 - 0 - 0 461.8 0 30.66 
17 1 382.24 0.2695 354 0.2910 333.4 0.3089 336.5 0.3061 31.53 
18 0 260.21 0 - 0 - 0 224.2 0 29c.26 
19 1 148.53 0.3568 134 0 .. 3955 123.4 0.4295 125.0 o.424o 22.47 
20 0 47 .. 210 0 - 0 - 0 38 .. 8 0 9 .. 30 
Sum 49 - -0.2071 - - .. 0826 - + .0174 - + .0017 308o65 

-· ,.. 
I, II and l3c2 = -3 .. 72582 from table 1o 

13 1c2 = -4.0 ~ = B1 'ic2 = -4 .. 17 ( * 2) 32000 v 13 c = 49(308.65) = 2~1159 

l3"c2 = -4 .. 2 


