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In many ways the karyotype of a species is remarkably constant. The

rumber of chromosomes carried by each individual member is, with few excep~
'tions, the same as that of all others; even the shape of individual chromo-
somes as determined by the position of the centromere is usually invariable.

The arrangement of gene loci within a chromosome on the other hand, often
varies considerably from individual to individual, In Dipterous flies, whose
giant chromoscmes offer an excellent opportunity for study, species after syecies
has been found to possess a wealth of contrasting gene arrangements within the
same chromosome, The origin of this variation lies almost exclusively in the
inversion of chromosomal seguents == a phenomenon which requires that a chromo-
some be broken in two places, that the segment between the breaks reverse its
poéition within the chromoscme, and that the broken ends heal with the seguent
in its new position.

Unless the wealth of inversions in a species is overwhelmingly large, a
phylogeny of gene arrangements can be constructed such that each gene arrangemert
aiffers frcm another by a single two=break inversion, The logic underlying such
vhylogenies is supported by the frequent discovery of gene arrangements which
were previously postulated as hypothetical ones. Ve must re-emphasize that
phylogenies of this sort can be constructed only in the case of certain Dipteran
species, It is a well known fact, nevertheless, that inversions are found in a
gféat many plant and animal species; their origin in these species is undoubtedly
comparable to that in Diptera.

Why do wild populations of so many species retain a variety of chromosomal
rearrangements? Again a definitive answer is available only in the case of some
Drogsophila species, Dobzhansky and his students have shown repeatedly that
individuals carrying two different gene arrangements are superior to individuals
homozygcus for one or the other of the various inversions in many, if not all,

components of fitness. Although exrperimental evidence is lacking for other
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organisms, the simplest explanation for the existence of any polymorphic systenm
is that based on the selective superiority of heterozygous individuals.

It is highly unlikely that the retention of an inversion in any populé-
tion depends upon the inversion itself; that is, upon the chromosomal breaks,
upon the new arrangement, or upon position effects. Indeed, Paget has shown
that radiation-induced inversions have an average deleterious effect on fitness.
The advantage of inversion heterozygotes which underlies the retention of two or
more inversions in a population appear to result from the interaction of blocks
of genes; blocks which are held intact by the suppression of normal gene recombi-
nation. |

Te propose to undertake an analysis of the genetic basis of heterosis by
utilizing the above facts., Indeed, Sprague and Chao, independently, have used
two inversions in analyzing heterosis in corn., We feel, however, that even
greater opportunities for analysis are present in Drosophilas The radiation
genetics of Drosophila is a well-developed field. These flies breed rapidly;
their giant chromosomes can be analyzed with an accuracy unsurpassed in any
other group. There already exists an enormous literature (recently reviewed by
daCunha) on the inversions which are to be found in a large number of species.
Finally, racial and strain hybrids are known to e:xhibit heterosis.

In brief, our procedure calls for an analysis of the distribution of sizes
and position of newly induced inversions retained in populations of hybrid origin
but which are, with the exception of the induced inversions, structurally homo-
zygous, This will tell us the location of genes which confer heterosis in these
populations as well as the size of the gene blocks needed to confer heterosis.
Hybrid populations started by crossing strains from a number of localities can
be compared. Material accumulated during these studies can be utilized in at-
tacking many additional problems.

The remainder of this report consists of a mathematical model, in which
chromosomes are treated as homogeneous strings subject to breskage at any point,
which predicts the theoretical distribution of lengths of inverted chromoscmal
segments as well as their positions. The distributions of naturally occurring
inversions can be compared with those predicted by this model; this comparison
will entail library research only. The distribution of newly induced inver-
sions must also be compared with theoretical expectations. This. comparison is
an essential test of the validity of the present model; it is important that the

distribution of newly induced inversions be known so that distortions resulting
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from selection within populations can be recognized. Although some information
is available in the literature for this study, it is quite possible that the
available data will have to be augmented by a new cytological study.

For the purpose of making the theory simple, first assume that there is
one and only one inversion per chromosome. That is, only the chromosomes with
one inversion will be considered. Secondly, assume that a break is equally
likely along any part of the chromosome and that the position of the first
break is independent of the position of the seéond break on the chromosome.
This means that the first break (x) and the second break (y) each follow the
uniform distribution and that the joint distribution of the two breaks is the
product of two uniform distributions.

In mathematical terms, for a chromosome of length c,

L l
f(x) =% O<x<e
=0 otherwise
£(y) =El' o< y<e
=0 otherwise

(The probability that x (or y) falls in any given interval is %— times the length
of the given interval.,)
The joint density function of x and y is:

1 <
£(x,y) = £()E(y) =2, 0T xyTe
= 0, otherwise

and the joint probability function is

P{O<x<a), O<y<yo}

Yo 3(‘0 1 Yo *o
= S ) f(x,y)dxdy = Y- S 2 dxdy
0 0 1

The region over which the joint density function is defined may be repre-

sented graphically as Figure 1.
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(0,c) (c,2)

(0,0) (c,0)

Figure 1. Region for which £(x,y) # 0 .

The problems are to find the distributions of (1) the lengths of the inverted
part of the chromosome, (2) the mid-points of the inversions regardless of length,
and (3) the mid-points of inversions of fixed length. That is, it is desired to
obtain the distributions of Ix-yl, of ng.for all lengths and of (x+y)/2 for any
fixed value of lx-y].

First, set z=x-y and W=(x+y)/2, Then the region of definition of the
function g(w,z) is given in Figure 2.

(c/2,c)

(CJO)

(0/2:“c)

Figure 2. Region for which g(w,z) £ 0 .
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» To find the joint distribution of w and z, we first find

Lo 8z | /2 1
J“l = t = - =1
B oz /2 -1
By oy
Now
1 1
£(x,y) = 2d=2
2wz 2w e
= 8(W:Z):
-2c+2w< 2 < 2c=2w, c/?_g;K c
=0 otherwise
Let v=§zi=!x-yl. Then because of the symmetry and uniformity of g(w,z),
we have

oo

O<v<2u<e
h(W:V) = =2 ,

0<v< 2c~2w, q@<w<c
=0 otherwise .
This is the joint distribution of the two variables of interest and is defined

over the region shown in Figure 3.

M (C/E:C)

w
(C:O)

Figure 3. Region for which h(w,v) # 0

From the distribution of h(w,v),we now £ind the three distributions of inter-

est, together with the means, variances and other moments of the variables.
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First, we find the distribution of lengths of inversions,'namely,'hl(v).

hl(v) ‘fh(w,v)dw
c/2

=2 § aw, O<v<e
¢ v/2 -

> c-v/2
<2 ( aw , O<v<e
c/2

- 2§c~v!

c2

9 oKv<e

This function is shown graphically in Figure k4.

h, (v)

(0,2/c)

(C:O)

Figure 4, Distribution of v=|z|=|x~yl = length of break.

The mean of v is given by

w o= E(v)

]

Qo

c
> j (c=v)v av
o

c/3

The moments about the mean may be obtained from the following moment
generating function.



n(t) E(et(v"c/f') )

> CS (c-v)et(v-c/E)dv
0]

Qo

t(v-c/3) e _tlv-c/3) c
) %2[% ce lo e — (tiv-c/}} -l)lol

t
Zet . &t st
-2 e’ _2e 3 _ 2e 5
c® 2 ct 02 2
3 k 2
=1 + 2¢ .(23_-:_3_(—5—&.];2. . ..§‘.: + 202(2 +3(“’2"l) . g_{
37(3)(2) 37 (4)(3)
ooy oon R (e2)e (1) D
392 (142) (n+1) ne
+ e0o

The coefficient of t3/2} is the variance,

o2 = ecé(el’+3(u)-1)
=L
37(4)(3)

c2/18

Secondly, we required the distributions of midpoints of inversicns.

is simply hy (w) .

hy (W)= fhw,v)av

;

; otherwise

ol\gl\)

2w
_ %dv s o<w<e/2

2c=2w
2 § av , c/2<w<e
0

jro

c
E“I ) O<"]<C/2
o]

L

2
(c=v) , c/e<w<e
o2

i

This



This function is shown in Figwe 5.

h,, (w)

(c/2;2/c)

(C:O)

Figure 5, Distribution of w=(x+y)/2 = midpoint.

Clearly this is a symmetric function with nean,

u=c/2

Moments about the mean may be obtained from the following moment generating
function, N

m(t) = E(et(w"c/g))

] céa et(W-C/e) &ﬁ'dw N g et(w-c/Q) b (c-w aw
0 c2 0/2 c®
St (w=c/2) /2

[t(w=c/2)=1] + Q——§%-- }

" et(w-c/Q)
c® : { £2

0

N
i C

{ cet (w=c/2) et(w-c/E) ]

5T - . [t (w~c/2)-11] f

t le/2

8

c3t2

[~1 + cosh %;]
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€ [-1+(2- 12262 ittt 50.640

' - voo)]
c2t2 22(21) 2L(hz) 26(6!) ' )

i}

he2 2 hch tn

=14 2+ (=) + ree
2wy (3) 2 2D(6)(s)

hc2n t2n

+ ry + Q06
2% (2n42) (2041) (2n)!

This clearly shows that all odd mcments about the mean are zero, as they

must be for a symmetric distribution. The variance is the coefficient of t2/21 .

2 LI-CZ
22 (1) (3)

02

=2k
Finally, for the distribution of the midpoints of inversions of fixed
length, we require the conditional distribution of w given v. This is denoted
by h(w|v). -

h(w,v
h(vw|v) .
1
2 c? .
= (-0-2)(2(C"‘V))
1 v v
oW 0 zW<e-3

=0, otherwise

This distribution is shown graphically in Figure 6.

h(wlv)

L)

(0,5

+
4
1
Ll
*
!

(v/é,o) (c=v/2,0) !

Figure 6. Distribution of w=(x+y)/2 for fixed v={x-yi .
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The mean of the variable in this conditional distribution is

E(w|v) (hw|v)aw

c-v/2
= § E%';dvr
v/2

= ¢/2

For moments gbout the mean, we compute the appropriate moment generating

function. This is
E(et(w—c/e)lv) = fet(w-c/z)h(wlv) aw

e‘c(w--c/a) au

1
o)
1
5]
<
(V)

—2 sinh MJ

Ly om0, o'
22(3)(21) 2 (5)(41)

(c-v)2n t2n
2D (on41) (2n)1

+ 4+ se>

Again, all odd mcments about the mean are zero as they should be for a

syumetric, in this case the uniform, distribution. It is also clear that

o2 = le=v)

12 [ 2

This shows that the variance is zero for v=c and increases as the length of the
fixed interval decreases.
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The distribution of points of proximal and distal breaks is also of import-

ance. These may be found by transforming the variables in h(w,v). We have

> O<v< 2w<ec
h(w,v) = %2 )
o< v<2e-2w, c/2<w<c
=0 P otherwise

The proximal point and, at the same time, the distance to the proximal point is
given by

s =w - v/2

Also, the distal point and, at the same time, the distance to the distal point is
given by

r=w+v/2

For this transformetion

8 &
ow dw
J =
8t
ov v I
1 1
= =1
-1/2 1/2
and
2 >
k(s,r) ==» , 0<s, r<c
=0 , othervise
In turn,
o ©
kl(s) ==z g ar
2
=—c-2(c-s) 3 0<s<ec

it
o

»  otherwise

This distribution is the same as that for lengths, viz, hl(v).
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‘ r

{ ds
o)

[t}

e i
N

ks (r)

i}

i

;, O<r<e

=0 , otherwise

This distribution is essentially the same as kl(r). Tt differs only in being a
reflection, Its graph is given in Figure 7.

(2/e,0)

[
'
1
i
!

(C,O)

Figure T, Distribution of r = distal point of an inversion

For kl(s), the mean is c/3 and moments about the mean are given by the
generating function obtained for hl(v).

For ke(r), the mean is 2c/3 and moments about the mean may be found from B
the generating function obtained for hl(v) by multiplication by (--l)n where the
n-th moment is desired, Thus, the even moments remain the same while the odd
mements change sign. The unexpanded form of the generating function may be
written as

2 ct ct

—ct -3- ——

n(t) = 2e + 2e - 2e
c3t2 ct  c3t2




An example
Baer EE.E&’* obtained 49 inversions on chromosomes. The chromosome was

divided into 20 equal units and the lengths of the inversions were recorded in

terms of tThese units. These workers obtained the frequency of inversions less

than one unit, those between one and two units in length, etec. The results

obtained are given below in the first two lines:

iength of

inversions
(in units) 0-1 1-2 2-3 3=k ko 5.6 67 7T=3 6-9 9-10

¥requency of
inversions 3 5 6 6 4 7 L 1 L L
Bupected
frequency L2 k.5 4,3 L0 3.8 3.6 3,3 3.1 2,8 2.6

Bupected }
percent I 975 9,25 8.75 8.25 T.75 7,25 6.75 6.25 5.75 4.25

Leh‘gth of ]
inversions f
(in units) 10-11 11-12 12-1% 13-14 14-15 15-16 16-17 17-18 13-19 19-20

4§£g§uency of

inversions 0 0 1 0 2 0 1 0 1 0
Trpected
requency 2.3 2.1 1.8 1.6 1.3 1,1 0.8 0.6 0.+ 0.1
ixpected

percent - L,75 4,25 3,75 3,25 2.75 2,25 1.75 1.25 .75 25

e
Q

)

The third line above is obtained as N=49 times the proportion expected (the

fourth line) in each unit. For the first unit, the expected proportion is

e/20
= § (emvav = 522 = 0975

and the expected number is .0975(49)=4.8. The expected proportion of inversions
longer than one unit or shorter than two units is
5 2¢/20
=2
2 o (e=v)av - ,0975 = .19 - .0975 = ,0%5

*Bauer, H., Demerec, M. and Kaufmen, B. P. "X-ray induced chromosomal alterations
ir: Drosophila melanogaster." Genetics 23:610-630, 1938,
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and the expected number is .0925(49)=k.5, etc. This is obviously a poor fit
for .these data. Consequently, an alternative model will be presented. Before
proceeding, however, the following table has been prepared for situations for
which data do fit this model., In order to divide the area for hl(v) into

equal parts consider the following:

5 X
=5 § (c=v)dv=x
c
0
Uponn integrating we obtain
x2-2cx+cZQ=0 .
The two roots of x are

x=c(1 % (1_a)l/2) o

The only root usable here is x=c(l—(1-a)l/2) since 0< x < e. Setting a=.10,.20,

»30, etc. we obtain:

a(®) 10 20 30 Lo 50 60 70 80 90 100

%/c 0,051 0.106 0,163 0.225 0,293 0,368 0.452 0,553 0,68% 1.000

An alternative mcdel

Two possible reasons for an overabundance of shorter inversions relative to

longer inversions are:
i) The non-heterochromatic material shrinks under fixation more rapidly
than does heterochromatic material. o
ii) Following two breaks, the ends of the broken chromosome heal with the
remaining parts of the chromosome. Because of the radius of turning
it is possible that for longer distances between breaks, the ends tend
to heal more frequently with the part from which they were broken than
do segments with a shorter distance between breaks.
Therefore, some modification for hl(v) in figure 4 is required which will take
account of either or both of the above situations. (It should be noted here that
the deficiency of very small inversions (less than one unit in length) may be

due to the insbility of the experimenter to observe all such inversions.)
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Consider the following alternative to hl(v) in figure 4:

2

1 o] - .
1 = e - - U e o
hl(v) =<+ B(v 2) + ¥y (v 5 ) o< v< e
= zero otherwise

vhen B=~ %2 and Y=0, hi(v) beccmes hl(v)c This model may be extended as follows:

3
1 .-..]:. .,..C.:. 2...-95 3-0 sec k_s_._,
hl(v) =3 +B(v 2)+Y(v 3 )5 (v E—)+ +p(v k+l)’ o<v<e
= Zero, otherwise

The mean and variance for hi(v) are:

[¢]
E(v)= gvhi(v)dv= %2— [6+ac2+Yc5] .
and

E(v®)-[E(v)]3= % vghi(v)dv-[E(v)]g
0

2L,y (Beare®)? }
=115 * 185 gy y

It is interesting to note that the mean equals c/3 and the variance equals c2/18
for Y= zero and B=-2/c®; this is the mean and variance for hy(v). The function
hi(v) is shown graphically in figure T.

1 Bc Y2
T (O’C - 2 - 3 )
?
bi(v) :
Figure 7. Distribution for length of
break.,
(C:O)
\I v
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Dividing the length ¢ into 20 equal units the area under the curve for
the ith unit (i=1,2,¢°*,20) is computed as:

ic
20 1
p; = § h'(v)dv = 35650 { 2398+61-612+pcZ(=441+83i-31° )?
et /
20
for -
.2 2B
Y = 203 e
whichiresults from the fact that
1 Be ., 2Ye?
4 S — Con— I
hl(v_c) =stSB T3 0 .

When P is known the proportion of the area between two points for the curve in
figure 7, hi(v), may be computed directly. For B=-2/02, and therefore Y=0, the
various expected frequencies on page 15 may be computed directly. For example,
let i=2 and B=-2/c®, then

—3-5(-1)-0-0- {2398+12-2u~2(-hu1+166-12)} = 379)—8% = ,0925 .

To obtain the @ percent point we note that

1L 4p(v- 272 $) T av = @

(@SN

Solving, the following equation is obtained:

Therefore, the above equation becomes

XB 2x cBB - Be2-6 . thG
Be2+2 Bc2+2  Bc+2

=0
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Letting y + ~2¢ B _ . ye obtain yj y; (Bc‘:;) 2 3 \ apc‘(ﬁ‘oi
3(BcZ+2) 27 (BcB+2)
N 5 z - ‘,‘5',‘,
-366c2-100) + mea(sc%ra)"} =0, For p=- 2c’B , q= = (Be2-6) g T= i*—-f-,
Bcz+2 Be242 o242
2 2
+ . o b
a=qep2/ 3== —‘;-— (—5—"——-§)2, b= 27(rap ~Opq+2Tr )= (S )? zApcg(Bac ~36BcZ~108)
Bc2+2 B(Bc +2) )
p 3 2 p)
e fanPan 2 b A D] b2 a’ 3 /v R &l
+100c(Pe=+2) /{, A= \/ 2 +. / + =5 57 2 and B= V'- , it 57 the three
roots for x=y-p/3 are -p/5+A+B, - é%ﬁ + Agﬁ J:g "k/3) and - A%E - é:E‘/_B —p/3.

The usabl: root is the one between zero and c.

Fstimators for B and Y from h'(v)

Tt should be noted that h'(v) in flgule T goes through the coordinates
6c 2\0
2 YT

V= - 7(ﬁc +2). Hence, we may write hi(v) in terms of ¢ and B:

(c,2) for v=c, Therefore, the equatlon L, Be = 0 must be satisfied, and

ic ic

2’\’0 h‘ (V)d_x- 20 (..]:. +B(V.. 9_).. "é"(ﬁC2+2)(V2- ))dV { 2%98
(i21)e* (i-1)c © 27 )2 i - 32000

20 20

+61=6124802 (~bU1+831-312) %

Since Yi/N= proportion of inversions falling in ith interval, minimization of
the following sums of squares,

c _ e
5 ;y,--B-é-lgbﬁi2598+61-6iz+¢3c2(-hu1+85i-312)} 12,

. i
i=1

results in the following:

20 _ |
£3Y,~ (2398+61-61%) } {-h1+1+831-3i22
2 _ 32000 i=1§ i 52000 ;
o Ne2 20
L (-4h1+4831-312)2
i=1

(It should be noted that § can be obtained if, for example, nc observations are
tossible (or are unreliable) in the first (or other) interval. In this case,
i=2,3,000,20 and N=46,)
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The variances and covariance for 6 ard Y’— - _2_ - %é are:
2u
~ L 20
V(B) = 320002 ¢3/N3%c  xn(-4414831-31%)2
Lo i=l
. ~ 9 ~
v(y) = T%a2 v(B)
e A _ 3 N
cov(B,Y) = - §5 V(B)
An estimator for o is:
N2 20 N 2. 82 2y (2
o2 = iﬁi{Yi 35005 (2398+61=61 +Bc (~4414+831-31 )}./(20-1)

There is a loss of only one degree of freedom since only f is estimated. The
restriction on B and Y is provided by the requirement that the distribution gees
FC gléi =0 = h!

5 = 0= hl(c) .

Since the Yi are correlated and hgve unequal variances,; least squares estima-

through the coordinates (c,0), ies, 2 i,

tors for B and Y are probably inefficient. Therefore, the maximum likelihood
estimatpré are presented below. They are somewhat more difficult computationally.

Now, the Yi have a multinomial distribution as follows:

. 20 vy,
NS T p /Y8,
i=1
where
ic
50 3
b, = 5 B = 5 | § 2398+61-6124802 (4h14831-312) )ﬂ
(i-1)c
50

The log L is equal to

20 20
log N§ - Z log Y !+ X Y log 1
=1 i=1 =
. 20 Y
slog L 5

AT R 32000
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Therefore, the maximum likelihood estimate of B is obtained from the edﬁation:

20 Yi(-uu1+85i-312)

R = s s s Bl

The V(B*) is obtained as

), 20
V(B*¥) = 32000/Ne’ =
i=1

(=44148%1-312)3
2398+61-6i%+Bc= (=441 +831-3i<)

For the above example we compute (see Table 1 for c=1):

A

B = =3.73 % - 1.29

N

V(E) = 2.2584 V(¥) = 1.2704

From Table 2 and the above formulae we compute (for c=1):
FF= =k 17 Y¥= 1,63

V(p*)= 2.1159 V(y¥= 1.1902

Although the difference between 6 and p* is sizeable, there is little dif-
ference between the variances for the two. estimates. Also, the variances are
quite large; this is due, in part, to the’low.frequencies of inversions observed
in the first class. As stated previously,. the'experimenter may not detect very
small inversions and this would account for the small number cbserved, Because
of this, 6 and B* probably should have beem computed from the observations on
the remaining 19 classes.
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Table 1. Computations for fg and 32.

i 2y, 1 Y- 5005(0) 11 Yy~ 5500 {I—B.?ESB(II)}
1 1 3 2398 -0.6719 -361 -2.73
2 L 5 2386 1.3464 -287 -0.29
3 9 6 2362 2.3832 -219 1.13
4 16 6 2306 2.4383 ~157 1,54
5 25 L 2278 0,5118 =101 -0.06
6 36 7 2213 3.6037 - 51 3.31
7 hg 4 2146 0.7139 - T 0,67
8 6l 1 2062 -2,15T4 31 -1.98
9 81 b 1966 0.9896 63 1.35
10 100 i 1858 1.1549 89 1.66
11 121 o} 1738 ~-2.6613 109 -2,0k
12 14k 0 1606 «2.4592 123 =1.76
13 169 1 1k62 «1.2387 131 ~0.49
1k 196 0 1306 -1.9998 133 ~1.2k4
15 225 2 1138 T 0,257k 129 0.99
16 256 0 958 -1.4669 119 ~0.T9
17 .. 289 1 766 -0,1729 103 0.k
18 32k 0 562 -0.8606 81 -0.140
19 361 1 346 0.4702 53 0.77
20 koo 0 118 -0.1807 19 -0,07
N=ko o2 =‘£g;gggé = 2.2452
I =2398 + 61 - 6i% ; IT =-bl1 + 831 - 3i2

A

Ye

3

32000 (- 2419,0140
Lo Lokook
1.294368

) = - 3,725824



sk /\>Tf
for g and V(B 7).

R

e
(M

t

-11-92

Table 2. Computations

. v I11= IIIt= II1"= IIIt"=

. i IT#Be®II Y IT/IIT  I=p'c®II YiII/III' 1+8"c211 YiII/III" I+p"re®II Y, IT/ITI'"  IT®/II1*"

1 3 3743.0 -0.2893 3842 -0.,2819 3014 ,2 ~0.2757 3903.4 ~0.2775 33,30

2 5 3455.% -0.4153 3534 ~0.4061 35914 ~0,3956 3582.8 -0.4005 22.99

3 6 3178.0 ~0.4135 3238 -0.4058 3281.8 -0.400k 3275.2 -0.k012 1k .64

I 6 2911.0 -0.3236 2954 -0.3189 2985.4 -0,3155 2980,7 ~0.3160 8.27

5 4 26543 -0,1522 2682 -0,1506 2702.3 ~0.1495 2699.2 -0.1497 3.78

6 T 2408.0 ~0.1483 2h22 0,147k 2hzp,.2 -0.1468 2430.7 ~0.1469 1.07

7 4 2172.1 -0.0129 217h ~0.0129 2175.4 -0.0129 2175.2 -0.0129 0.02

8 1 1946.5 0.0159 1938 0.0160 1931.8 0.0160 1932.7 0.0160 0.50

9 4 1731.3 0.1k456 171k 0.1470 1701.4 0.1481 1703.3 0.1479 2.33
10 ) 15264 0.23%2 1502 0.2370 1484.2 0.2399 1486.9 02394 5.33
11 0 1331.9 0 - 0 - 0 1283.5 0 9.26
12 0 11477 0 - 0 - 0 1093,.1 0 13.84
13 1 973.92 0.1345 938 0.1397 911.8 0.1437 915.7 00,1431 18.7h
1k o} 810.47 0 - 0 - 0 751.4 0 23,54
15 2 657 .37 0.3925 622 0. 4148 596.2 0.43%27 600.1 0.4299 27.73
16 0 514.63 o] - 0 - 0 461.8 0 30.66
17 1 382.24 0.2695 354 0.2910 333,54 0.3089 336.5 0.3061 31.53
18 0 260.21 0 - 0 - o) 2ok ,2 0 29.26
19 1 148.53 0.3568 134 0.3955 123,.L 0.4295 125.0 0.4240 2247
20 0 47,210 0 - 0 - 0 38,8 o] 9.30
Sum 49 - -0.2071 - - ,0826 - + JOLTh - + .0017 308,65

I, IT and Bc® = -3,72582 from table 1.
102 = o K _ R1ia2 . X2y _ ____3_@999____ =
B1c® = -k,0 B = Br11c® = -h,17 V(B™e®) = 55(308.65) 2,1159



