SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING

CORNELL UNIVERSITY
ITHACA, NEW YORK 14853

TECHNICAL REPORT NO. 881

December 1989

STRUCTURED VISIBILITY PROFILES
WITH APPLICATIONS TO PROBLEMS
IN SIMPLE POLYGONS
By

Paul J. Heffernan
Joseph S. B. Mitchell







Structured Visibility Profiles with Applications
to Problems in Simple Polygons

Paul J. Heffernan*and Joseph S. B. Mitchell!

Cornell University
Ithaca, NY 14853

January 10, 1990

Abstract

A number of problems in computational geometry involving simple polygons can be solved in
linear time once the polygon has been triangulated. Since the worst-case time bound for triangulating
a general simple polygon is currently O(t(n)) = O(nloglog n), these algorithms are not linear time in
the worst case. In this paper we define the structured visibility profile of a polygonal path and show
how to compute it in linear time. We apply our result to solve many problems in linear (optimal)
time that previously required triangulation. Our list of problems includes: translation separability
of two simple polygons, computing the weak visibility region for a segment within a simple polygon,
finding shortest monotone paths in a simple polygon, ray shooting from an edge, and the convex
rope problem.

Our strategy is the same for each problem: we replace the polygon in question with a subpolygon
such that the subpolygon can be triangulated in linear time, and the subpolygon contains all the
information needed to answer the question for the larger polygon.

1 Introduction

There have been many algorithms in computational geometry that address various problems involving
visibility questions within a simple polygon P. The problem of computing the visible portion of a polygon
from a given point s within P can be solved in time O(n), where n is the number of vertices defining
P (see [Le], [EA], [JS]). The related problem of computing the portion of P that is illuminated by a
line segment e within P has been solved in linear time if a triangulation is given for P. It is one of the
deepest open questions in computational geometry to determine if triangulation of a simple polygon can
be accomplished in linear time. The current best bound is given in the work of [TV].

In this paper, we introduce a new methodology of processing a simple polygon that facilitates answer-
ing many questions involving visibility, shortest paths, and separability in linear time, without resorting
to triangulation. We apply our technique to answer a large catalogue of problems in linear time, improv-
ing previous time bounds that relied on triangulation. In particular, we improve the time bounds on
four of the problems considered by Guibas, Hershberger, Leven, Sharir, and Tarjan [GHLST]:
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o (Weak edge visibility) Given an edge e within P, compute the subpolygon of P that is weakly
visible from e. [GHLST] and [Tol] give bounds of O(t(n) + n) for this problem. We obtain an
optimal bound of ©(n).

e Given an edge e, preprocess P so that the following query can be answered in O(logn) time: for a
query point ¢, determine the portion of e that ¢ can see. [GHLST] give a bound of O(t(n) + n) on
the preprocessing, which we improve to ©(n).

e (Ray shooting from an edge) Given an edge e, preprocess P so that the following query can be
answered in O(logn) time: for a query point ¢ € € and a direction d, determine the point on the
boundary of P where a bullet would exit if fired from ¢ in direction d. [GHLST] give a bound of
O(t(n) + n) on the preprocessing, which we improve to o(n).

e (Convex rope problem) Given a point s on the convex hull of P, determine those points on the

boundary of P that admit “convex ropes” from s around the outside of P.
In addition to the above results, we solve the following problems in linear time:

e (Monotone paths in a simple polygon) Given two points s and ¢t within P, determine if there exists
a monotone path from s to ¢t within P, and, if so, produce one and give the set of all directions d for
which there exists a d-monotone path from s to ¢. In fact, if there exists a monotone path from s
to t, we can produce both the (unique, “taut-string”) shortest path from s to ¢ and a (non-unique)

minimum-link path from s to ¢. Previous results for this problem required a triangulation of P
([ACM], [GHLST])).

e (Translation separability) Given two disjoint simple polygons P and @, determine if there exists
a direction d such that polygon P can be translated in direction d an arbitrary distance without
colliding with Q. Previous results for this problem required a triangulation of the region “between”
P and Q in order to compute the relative convex hull ([BT], [To2]).

e (Illumination by a convex body) Given a convex k-gon Q within simple polygon P, determine the
subpolygon of P that is weakly illuminated by a light source occupied by Q. Previous results
required triangulation before obtaining a bound of O(n+ k) [Gh]. We obtain an optimal algorithm
that runs in time O(n + k).

e (Link reachability) Given a simple polygon P and a point s within P, determine that portion of P
that is at link distance < L from s and triangulate it. We solve this problem in time O(Ln), which
for fixed L is optimal. (For arbitrary L one would use the algorithm of [Su] to compute the link
distance shortest path map in time O(t(n)).) In fact, we can produce a triangulation of the set of

points of P that are at link distance at most L from a convex k-gon in time O(Ln + k).

The key idea behind our improvements is the notion of a structured visibility profile (with respect to
a fixed direction d) of a simple polygonal path = from s to %. Basically, the structured visibility profile
gives a description of the (polygonal) subset of the plane consisting of all points u such that any path
from s to ¢ avoiding 7 that passes through u must, at some point, be directed in the fixed direction d.

We show how the structured visibility profile can be computed in linear time, and how it naturally

leads to a linear-time algorithm for detecting the existence of monotone paths between s and t. We



then apply our methodology to the catalogue of problems given above, in each case showing how the
structured visibility profile provides us with enough information about P to avoid having to triangulate
the entire polygon P.

We should emphasize that our linear-time algorithms are relatively simple and do not require complex
data structures. They should be easy to implement, and the constants in the “Big-Oh” notation are small.

The structured visibility profile permits limited ezploration of P and a partial triangulation that is
rich enough to answer a variety of fundamental questions. We hope too that it sheds some light on the
inherent complexity of problems defined in a simple polygon.

This paper is organized as follows. Section 2 defines and describes the structured visibility profile.
Section 3 gives the details of our O(n) algorithm for constructing the structured visibility profile. Sec-
tion 4 applies the structured visibility profile to the problem of computing monotone paths within simple
polygons and proves various important properties. Section 5 gives the details of the method of parti-
tioning the interesting portion of the simple polygon, so that a triangulation can be obtained in linear
time of this portion. Section 6 describes the application of these results to the translation separability
problem, Section 7 describes the application to various weak visibility problems, and Section 8 describes
the application to the link distance problem. Finally, Section 9 gives a brief conclusion.

2 The Structured Visibility Profile

In this section we introduce the structured visibility profile, the main technique of this paper. We begin
with some basic notation.

For a point p in the plane, we let z, and y, denote the z-coordinate and y-coordinate, respectively,
of p. We say that a triple of points (p,q,r) makes a left turn if pg x ¢ > 0. (We similarly can define
a right turn.) A chain ¢ = (p1,...,px) is a polygonal path joining (in order) the wvertices p; with line
segments (called edges). A polygonal chain ¢ whose first and last vertices are s = p; and t = p; is
an (s,t)-chain. We will denote the subchain of ¢ between two of its points p and ¢ by ¢(p,q). (Thus,
¢ = ¢(p1,pr) = ¢(s,t) for an (s,t)-chain ¢.) A chain whose first and last vertices are the same point is a
polygon; if the chain does not cross itself, then the polygon is simple. If p is a vertex of a chain, p.prev
and p.nezt denote the vertices of the chain preceeding and succeeding p. When we speak of a polygon
P, we will not distinguish between the boundary of P (the chain that defines it) and the interior of P
(which is well-defined for simple polygons); the meaning should be clear from the context. Finally, we
denote the convex hull of polygon P by CH(P).

Let ¢; be a simple (s,t)-chain. Throughout, we will assume without loss of generality that y, < y;. If
c2 is another simple (s, t)-chain that intersects c; only at s and ¢, then ¢; and ¢; form a bounded simple
polygon P. As we traverse c¢; from s to ¢, the interior of P lies either to the left or right of ¢;. If the
interior lies to the right as we traverse ¢; from s to t, then we say that ¢; is a left path of P, or more
precisely ¢; is an (s, t)-left-path-subchain of P. This implies that ¢y is a right path of P, since the interior
lies to the left of each directed edge of co. We will discuss left paths, and note that analogous definitions
and theorems can be stated for right paths. Our figures will show the interior side of a chain shaded
gray, or will indicate the orientation (from s to t) of the chain with an arrow drawn on the interior side
of the chain.

Let ¢y be a left path from s to t. (By this we mean that ¢; is an (s,t)-left-path-subchain of some



polygon P whose (s, t)-right-path-subchain c; is not specified.) Thus, the “interior side” of a directed
edge of ¢; lies to the right of the edge. We define a lid of ¢y as follows:

Definition 1 A lid of a left path ¢c1 from s to t is a horizontal segment pq that satisfies the following

conditions:

1. p and q lie on path ¢1;

2. the segment B together with c1(p,q) define a bounded simple polygonal region P', with c1(p, q) being
the (p, q)-left-path-subchain of P’ and pq being the right path, and where P’ lies below Pg;

3. the relative interior of pg and the interior of P’ do not intersect c;.

The polygon P’ defined by lid 7g (together with ci(p,¢)) is called an up-pocket of c1. (The term
“yp-pocket” is to suggest that the opening of the “pocket” is directed “up”.) A mazimal up-pocket is an
up-pocket that is not a proper subset of any other up-pocket. We will be concerned only with maximal
up-pockets, and for simplicity will refer to them simply as up-pockets.

We call a vertex p # s,t of ¢1 a left-peakif yp > Yp.prevs Yp > Yp.nests and (p.prev, p, p.nezt) is a left
turn. We call a vertex p of ¢; a left-valley if yp < Up.prevs Yp < Up.nexts and (p.prev, p, p.next) is a left
turn. (We define right-peak and right-valley similarly.) Note that the lid of a maximal up-pocket will
always have s, t, or a left-peak as one of its endpoints. Therefore we concern ourselves only with lids for
which at least one endpoint is either s, ¢, or a left-peak. Examples of lids, up-pockets, and left-peaks are
shown in Figure 1, where we have shaded gray the “interior” side of ¢;.

Assume that every left-peak of c; is an endpoint of a lid. In this case, we define the horizontal paring
of ¢1, l{c1), to be the polygonal chain formed by letting each maximal lid replace the subchain of ¢,
between its endpoints. The chain I(c;) is well-defined by the definition of lids and the fact that we use
only lids of maximal up-pockets.

Note that I(c;) contains right-peaks and left-valleys, but no left-peaks or right-valleys. In this sense,
we say that I(c;) “progresses right”. More formally, if we write the chain ¢ as a union of y-monotone
subchains, ¢ = ay,az,-..,a, then we say that ¢ progresses right if the following holds: any horizontal
line that intersects ¢ must do so in such a way that if p € a; and ¢ € a; are two points of intersection
with p left of ¢, then 7 < j.

Let S be the ray with root s in direction § = = (due left), and T be the ray with root t in direction
6 = 0 (due right). The rays S and T do not intersect I(c1) (because of the “progresses right” property),
so the infinite polygonal chain formed by S, (c1), and T partitions the plane into two regions. Let L(cy)
be the region below this infinite chain (see Figure 2).

Associated with the region L(c;) is a binary tree, T(cy), called the tree of down-pockets, in which
each node of the tree is associated with a subregion of L(c;) and a subchain of S Ul(e1)UT. The root
node is associated with the entire region L(c;) and the entire chain SU!(c1) UT. The tree is recursively
defined as follows. Consider a node v of the tree. If the associated subchain, ¢(v), has no left-valleys,
then v is a leaf. Otherwise, the node v has children, and we let w represent the left-valley of ¢(v) with
least y-coordinate. Imagine “firing bullets” horizontally left and right from w, allowing each bullet to
go until it hits I(c1) (or allowing it to go until infinity, if necessary). If the left bullet stops at v;, then
the left child of the node is associated with the subchain of I(¢;) from v to w, and with the subregion
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defined by its subchain plus 77w (if v; is at infinity, the subchain includes S). Similarly, the right child is
associated with the subchain from w to vy, the point where the bullet fired right from w hits l(¢y). This
procedure partitions all of L(cy) into horizontal slabs.

The regions associated with the nodes of the tree are called down-pockets, and the horizontal segment
of the bullet path that forms the lower border of a down-pocket is called its bottom. A down-pocket
minus its children, i.e. a horizontal slab, is called a strict down-pocket. Each node in the tree stores its
bottom, and pointers to its parent, children, and sibling.

In Figure 3, L(c1) is shown with the tree of down-pockets represented as a directed, acyclic graph.
There exists a path from point a to point b monotone with respect to the vertical up direction (8 = 7/2)
if and only if there is a path in the directed graph from the strict down-pocket containing a to the strict
down-pocket containing b.

We can now state the main definition of this section.

Definition 2 Let ¢; be a polygonal path from s tot, and assume, without loss of generality, that ys < y:.
We consider ¢y to be an (s,t)-lefi-path-subchain (for some polygon). Assume that every left-peak of ¢y is
an endpoint of a lid (so that the chain l(c1) is defined for c1). Then we define the structured visibility
profile of ¢; as a left path (denoted by svpr(c1)) to be the ordered pair (I(c1), T(€1)) of the chain l(c1)
together with the associated tree of down-pockets. If not every left-peak of c1 is an endpoint of a lid, then
svpr(c1) is undefined.

The structured visibility profile of a chain as a right path (svpr) is defined in a similar manner, for
an (s,t)-chain with y, < y; that is a right path, i.e. has “interior” to the left of each directed edge.

Structured visibility profiles derive their name from “visibility profiles”. The visibility profile from
direction 6 of a polygonal chain ¢ consists of all points of ¢ visible from infinity in direction 8. Clearly
the svpr, allows us to construct the visibility profile of I(c1) in the horizontal directions, § = 7 and 6 = 0.
The word “structured” refers to the additional information contained in svpr (¢1); namely, we can use
T (cy) to define a partitioning of L(c;) such that, given any query point p in L(c1), we can find the point
of I(¢1) visible from p to the right and to the left. Of course, in converting ¢; to I(c1), we lose visibility
information about the subchains of ¢; that are deleted in making I(c1); however, we will see that this
information is not necessary in our applications. (It is this loss of information that prevents svpr(c1)
from producing a full trapezoidization, which would imply a full triangulation in linear time.) Given
svpr(c1), we will be able to triangulate a down-pocket of L(cy) in linear time, since the set of all bottoms
partitions the pocket into polygons each of which is monotone in the vertical direction.

3 Constructing the Structured Visibility Profile

We outline in this section a procedure (SVPp,(c)) to compute the svpy of a simple (s,t)-chain ¢ in
linear time. (Discussion of the procedure SVPp is omitted because it is symmetric to SVPy,.) The
algorithm works in two “phases”: Phasel makes a first pass through the chain, removing maximal up-
pockets by drawing the appropriate chords (“blue” and “red”) from left-peaks. Phasel either returns
the answer MustFaceLeft (which implies that any right path from s to ¢ that does not cross the chain ¢
must face left), or it returns a nonsimple new chain, i(c), without up-pockets or left-peaks. If Phasel
returns MustFaceLeft, then we stop; otherwise, Phasell takes the nonsimple chain I(c) and either con-
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cludes MustFaceLeft or produces the simple chain I(c) by detecting self intersections and throwing away
appropriate subchains of ¢. Phasell also sets up the pointers that constitute the tree of down-pockets.
The global structure of SVPy,(c) is shown below.

Procedure SVPp (c);
Given a polygonal chain ¢ from s to t with y, < y:.
Input ¢ to Phasel:
Phasel either outputs chain I(c) or answers MustFaceLeft.
If Phasel outputs I(c), then input /(c) to Phasell:
Phasell eithers outputs chain {(c) or answers MustFaceLeft.
end SVPy.

3.1 Procedure Phasel

Phasel makes a single pass through chain ¢, calling one of two subprocedures (Blue or Red), depending

on the local nature of the current point p of c:

Procedure PhaseI(c);
Scan ¢ from s to t. p will denote the current vertex of c.
Initialize p «— s.
Repeat

p < p.next;
if p is a left-peak,
then call Blue(p);
if p is a right valley,
then call Red(p);
Until (p = t.prev);
end Phasel.

3.1.1 Procedure Blue(p)

Procedure Blue(p) detects lids of up-pockets whose right endpoint is a left-peak of ¢;. We draw a “blue”
ray, b, from p in direction 8 = 7 (due left). We draw a “green” ray, g, from p in direction § = 0 (due
right). Denote the subchain of ¢ starting at p by ¢(p). We maintain a “winding counter”, w, which we
initially set to 0.

Every time c(p) intersects g from below, we decrement the winding counter, and every time c(p)
intersects g from above, we increment the winding counter. We traverse c(p), keeping track of the
rightmost intersection point of ¢(p) and b (the one closest to p).

If ¢(p) intersects b from below while the winding counter is 0, and this intersection point is closer to p
than all previous intersections, then we do the following. Call the intersection point a, and let (g.prev, q)
be the edge of ¢(p) on which it lies. Insert a into the chain ¢ between q.prev and g, and delete all vertices

of ¢ between p and a, exclusive. Return to the main scan of Phasel, with p — ¢. See Figure 4.



Figure 4. Procedure Blue.

Figure 5. Procedure Red: insert a'.



If we traverse until ¢ without finding a point a as described, then STOP the procedure and exit out
of procedure SVPy with the answer MustFaceLeft.

3.1.2 Procedure Red(p)

The procedure Red(p) detects lids of a second type of up-pocket: those whose left endpoint is a left-
peak. It also detects the two special cases of lids: those with right endpoint s or with left endpoint .
We describe the procedure as follows.

e Traverse forward from p, keeping a winding counter, originally set to 0. Decrement the counter at
each point of horizontal tangency that is a left turn (counterclockwise), and increment the counter

at each point of horizontal tangency that is a right turn (clockwise).

e While traversing forward, keep a pointer on the current point, g. Also, traverse backwards from
p, keeping a pointer on the point, a, where a has the same (approximate) y-coordinate as q.
Occasionally we may start moving down in an attempt to update a; this is all right—just continue

traversing and we will eventually reach the y-coordinate of the current ¢ (or reach s).

e If, while not in a spiral (spirals are discussed below), the winding counter takes the value —1 at
point ¢, or g reaches t, then find the point a’ near a such that yo = y4. Insert a’ into the chain ¢,
and delete all vertices between a’ and g, exclusive. Set p «— ¢. Exit procedure Red. See Figure 5.

o If y, < y,, and if ever y, > y, and the edge (g.prev, q) lies to the left of s, then find ¢’ near ¢ such
that y, = y,. Insert ¢’ into the chain between g.prev and g, and delete all vertices between s and
q'. Set p «— q'. Exit procedure Red. See Figure 6.

e When the winding counter takes the value +1 at a point ¢, we enter a spiral. Freeze the point a,
and store the value y,. Do not update a until the forward traversal point moves above y,. When
this happens, the winding counter is 0 and we have exited the spiral. Update ¢ accordingly and
continue the double traversal with ¢ and a.

e If we reach ¢ while in a spiral, re-set a to p, and repeat the backwards traversal until we reach
a point a with the same y-coordinate as t. Traverse c¢ from p to 1, checking whether any edge
intersects (t,a). If YES, STOP: procedure SVPy answers MustFaceLeft. If NO, then insert a
in ¢, and delete all vertices between a and t, exclusive; exit procedure Red (and Phasel). See
Figure 7.

3.2 Procedure PhaseII(i(c))

We are given i(c), a polygonal chain from s to ¢ with no “illegal” turns, i.e. all peaks are right-peaks
and all valleys are left-valleys. The chain [(c) is not necessarily simple, and we will transform it into the
simple chain I(c). We will also build the tree of down-pockets for I{c).

We will call the right-peaks top-points, and the left-valleys bottom-points. Points s and t are considered
to be bottom-points.

We will traverse [(c) twice. The first traversal is from ¢ to s, and it fixes all crossings involving

red segments, i.e. horizontal segments drawn by procedure Red (except those with endpoint s). The
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second traversal is from s to ¢; it fixes all crossings involving blue segments (those with endpoint s or
drawn by procedure Blue) and constructs the tree of down-pockets. The traversals are performed by
the procedures FixRed and FixBlue.

3.2.1 Procedure FixRed(i(c))

We traverse [(c) from t to s. We call a horizontal segment with left endpoint q a red segment if ¢ =1t or
if: (1) g.prev is the right endpoint, and (2) Yg.nest < Yg < Y(g.prev).prev- We keep a stack of red segments,
initially empty, where e;,, denotes the top element. For each segment e on the stack, we store /f(e) and
rt(e), its left and right endpoints; ., the y-coordinate of I f(e) and rt(e); and cand(e), the candidate
point of e, initially rt(e).

The traversal is always in one of three modes: empty, if the stack is empty, and either above or below
if the stack is not empty, depending on whether the current traversal point is above or below e¢gp.

If the stack is empty, traverse until we find a red segment e, put e on the stack, and set cand(e) «— rt(e);
we are above the top segment.

If we are in the above mode, traverse until we encounter either a red segment or a point with y-
coordinate of ye,,,. If we encounter a red segment e, we put it on the stack, and set cand(e) « rt(e); we
are in the above mode.

If we encounter a point p with y-coordinate ye,,,, let u = If(etop) and consider two cases:

(zp < z4) Pop the stack and make cand(ezop) the new right endpoint of the top segment, thereby deleting
the subchain in between cand(esop) and rt(erop); We are in either the above or empty mode.

(z, > z,) We are below the top segment; traverse until we reach a point p with y, = .,,,, and set
p j4 top

cand(etop) — p; we are in the above mode.

Figure 8 illustrates the behavior of FixRed.

3.2.2 Procedure FixBlue

The input is the output of FixRed: a chain with no left-peaks or right-valleys, and with no crossings
involving red segments. We will traverse the chain from s to ¢, keeping a pointer on the current point, p,
and one on the current down-pocket, C DP. There are two starting cases. After the appropriate starting
case calls procedure Down, FixBlue remains in Down until termination.

The starting cases are:

Ys < Ys.neset We initialize a down-pocket and make it CDP. Make s its left endpoint. Create a left
sibling of the CDP, and make s both the left and right endpoints (this pocket is empty). Create
a parent pocket for CDP and its sibling. Let p be the first top point in I(c). Call Down(p).

Ys > Us.mect: We traverse to the first bottom point, and call it g. Create a parent down-pocket with 2
children. The left child has lid ((—00,y,),¢), and the right child has left endpoint g. The right
child is CDP. Let p be the first top point after g. Call Down(p).
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Figure 8. Behavior of FixRed.



3.2.3 Procedure Down(p,CDP)

The point p is the top point of what appears, locally at least, to be a down-pocket (whether or not it is a
down-pocket will not be known until the end of Phasell). Traversing the chain backwards from p, keeping
a pointer on the current point /, gives the left side of this “down-pocket”. Similarly, traversing forwards
from p, keeping a pointer on the current point r, gives the right side. Perform a double-traversal down
the two sides in leapfrog fashion to keep the two traversal points at the same approximate y-coordinate.

Three cases can occur.

Case (1) The left side hits a bottom point, /. Refer to Figure 9.

Denote by r’ the point near r on the right side such that y» = ui. Make ' the right endpoint of
CDP.

CDP is a right sibling. If | # s and the left sibling of CDP has a left endpoint, ', not at infinity
(Figure 9(a)), then set { «— I, set CDP to the parent, and continue the double traversal.

If I = s (Figure 9(b)), or if | # s (Figure 9(c)) and the left sibling has a left endpoint at infinity, then
let ' be the point on the right side near r such that y = y/, and let 7’ be the right endpoint of CDP.
Move CDP to the parent, move r to the next bottom point, and let C.DP have lid ((—o0, yr), 7). Now
create a parent and right sibling for CDP, and make r the left endpoint of the right sibling. Make the
right sibling the new CDP. Let p be the first top point after r. Call Down(p, CDP).

Case (2) The right side hits a bottom point, 7. Refer to Figure 10.

Create left and right children for C DP. If CDP already has children, then they become the children
of the newly-created left child.

Make r the right endpoint of the left child and the left endpoint of the right child. Let I’ be the point
on the left side near I such that yy = y,. Make I the left endpoint of the left child.

If r # t (Figure 10a)), then let CDP be the right child, let p be the first top point after r, and call
Down(p,CDP).

If r = t (Figure 10(b)), then r = ¢ is the right endpoint of the right child (i.e. the right child is
empty). Exit Down and Phasell.

Case (3) The left side cuts horizontally right and intersects the right side. Refer to Figure 11.

Say it cuts to the right at point g; then g.prev is the right endpoint of this horizontal segment.
Continue to traverse forwards from r until we reach a point w (as in Figure 11(a)) such that yu, > yg,
and (w.prev, w) lies to the right of the edge containing r that intersects (g,g.prev). Denote by a the
point on (w.prev, w) that intersects (g, g.prev). Insert a into the chain between w.prev and w, and delete
all vertices between g.prev and a, exclusive. Delete any children of CDP. Let p be the first top point
after a, and call Down(p, CDP).

If we reach t before finding a point w as described (Figure 11(b)), STOP: procedure SVPy, answers
MustFaceLeft.

4 Searching for Monotone Shortest Paths

In this section the correctness and running time of procedure SVP{, are established, and we use struc-

tured visibility profiles to solve the following problem in linear time:
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I new CDP

(a) (b)

Figure 10. Procedure Down: Case (2).

(a) (b)

Figure 11. Procedure Down: Case (3).



(P1) Given two points s and ¢ on or inside a polygon P, determine if there is a monotone (s, t)-path in
P and, if so, produce one. Also produce the set of all directions for which there exists a monotone
(s,t)-path. (This set is guaranteed to be a convex cone [ACM].)

Since there exists a monotone path between s and ¢ if and only if the shortest path between s and ¢
is monotone (see [ACM]), we will consider instead the following stronger problem:

(P2) Given two points s and ¢ on or inside a polygon P, determine if the (unique) shortest path from
s tot in P is monotone and, if so, produce it.

The set of all directions for which there exists a monotone (s,t)-path is known to be precisely the
convex cone of directions for which the unique shortest path from s to t is monotone [ACM]. Since the
set of directions for which a path is monotone can be found in linear time ([PrS}]), solving problem (P2)
in linear time implies a solution to (P1) in linear time. We can assume without loss of generality that s
and ¢ are vertices of P. If s is not a vertex but is on the boundary of P, simply insert it into the list of
vertices. If s is in the interior of P, then shoot two rays from s in opposite directions, such that the rays
are perpendicular to (s,t). For each ray, draw a segment from s to first point on the boundary of P hit
by the ray. Together these two segments partition P into two subpolygons, one of which contains . We
can discard the subpolygon which does not contain ¢, since the shortest (s,¢)-path will not enter it.

A polygonal path is monotone in direction 8 if every line in direction 8 + 7 /2 intersects the path in a
connected set (i.e., either in a point or a line segment). (If the intersection is always a single point, then
we say that the path is strictly monotone in direction #.) We refer the reader to [PrS] and [ACM]. Note
that if the path is not simple, then it cannot be monotone in any direction; therefore we will limit our
attention to simple (s, ¢)-paths.

We say that a path faces left if the headlamps of an automobile that “drives” along the path point
due left at some point. (We imagine “driving” an automobile along the path, turning at vertices in such
a way as to turn by less than 7.) More formally, we say that a path faces left if either (1). it has an
edge g oriented in direction 8 = 7 (due left), and it turns left (or right) at both p and ¢ (as in Figures
12(a),(b)); or (2). it has a vertex p such that one of the following holds:

(p.prev, p) is oriented in direction 8 < w, (p, p.next) is oriented in direction § > =, and (p.prev, p, p.next)
is a left turn (Figure 12(c)); or,

(p.prev, p) is oriented in direction 6 > , (p, p.next) is oriented in direction § < w, and (p.prev, p, p.next)
is a right turn (Figure 12(d)).

We define faces right in a similar manner. Clearly a path that both faces left and faces right cannot
be monotone. This suggests that one approach to finding a monotone (s, t)-path would be to determine
if there is an (s,t)-path in P that never faces left, or never faces right. Through the use of svp’s, we can
determine this and more; namely, we can determine whether there exists an (s,t)-path that never faces
left, and if there does we can triangulate in linear time a subpolygon of P that contains the shortest
(s,t)-path in P.

We are given P with vertices s and . Assume that P is oriented so that y, < y:. Let ¢; be the subchain
obtained by traversing the boundary of P clockwise from s to t, and let ¢c; be the counterclockwise (s, t)-
subchain. Then ¢ is a left path and ¢, is a right path. Define ¢t (cf) to be the chain obtained by
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Figure 12. Definition of a path facing left.

Figure 13. Paths ¢ and cf.



rotating ¢; (cz) 180 degrees, and reversing the orientation of ¢; (cz). Thus, ¢ff (cF) is a right path (left
path) from ¢ to s, where y; < y, (see Figure 13). We can, therefore, take the svpg of cf, denoted r(cF),
and the svpy, of c&, denoted I(cft). We will see how the two left-path-svp’s of P, I(c1) and I(cf), can be
combined to determine whether the shortest path faces left, and similarly how the right-path-svp’s can
determine whether it faces right.

The procedures SVPy, and SVPR construct the supy, and svpr, respectively, of a polygonal chain.
The input to SVPy, is ¢, a simple (s,t)-chain where y, < y; and ¢; is considered to be a left-path-
subchain of some polygon P. The output is I(c1) if I(cy) is defined for ¢1, or MustFaceLeft if I(c1) is not
defined. The following lemma establishes an important property of left-peaks.

Lemma 1 If ¢y has a left-peak that is not an endpoint of a lid, then every simple (s,t)-path in P faces
left somewhere.

Proof.  Consider a left-peak, p, of c;. Let b be the ray with root p in direction 8 = 7, and let g be the
ray with root p in direction # = 0. Note that if a simple path crosses g and later crosses b, the path must
face left somewhere. This is true by a form of the Mean Value Theorem for subgradients on continuous
curves.

Assume p is not an endpoint of a lid. Then either

1. ¢y does not intersect g; or,

2. the intersection of ¢; and g that lies closest to p is a point ¢ on ¢;(s, p); in this case, s lies in the
polygon defined by segment (p, q) and the subchain between ¢ and p; or,

3. the intersection of ¢; and g that lies closest to p is a point g on ¢1(p,t); in this case, s lies in the
polygon defined by segment (p, ¢) and the subchain between p and q.

The above property, combined with a similar property for b, shows that in every case a simple (s,t)-path

in P must face left. Some of these cases are illustrated in Figure 14. W
Lemma 2 Given input ¢;, SVPy, returns MustFaceLeft only if every simple (s,t)-path in P faces left.
Proof. Suppose SVP7 (c1) returns MustFaceLeft. It can generate this answer in one of three ways:

1. In procedure Blue(p), SVPy (c1) will return MustFaceLeft if the ray b is not intersected from
below while the winding counter is 0 at a point that is closer to p than the previous intersection
points. The point p cannot be the left endpoint of a lid, else Blue(p) would not have been called.

Consider whether p is the right endpoint of a lid. Let g be the intersection point of b and c; closest
to p. Suppose q lies on c;(p,t). If the winding counter at ¢ is nonnegative, Blue(p) will draw
a segment, either to g or a point to the right of ¢ occuring earlier in ¢;(p,t), contradicting that
Blue(p) returns MustFaceLeft. If the winding counter at g is negative, the region defined by (g, p)
and the subchain between p and g and lying below (g, p) is unbounded, implying that p is not the
the right endpoint of a lid (see Figure 15).

Suppose ¢ lies on ¢1(s, p). The region defined by (g, p) and the subchain between ¢ and p either is
unbounded or contains ¢, implying that p is not a right lid endpoint. Therefore Blue(p) returns
MustFaceLeft only if p is not a lid endpoint, which by the previous lemma implies that every
(s,t)-path in P faces left.

11
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Figure 14. Proof of Lemma 1.
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Figure 15. Proof of Lemma 2: Case (1).

Figure 16. Proof of Lemma 2: Case (2).



2. In procedure Red, SVPp, returns MustFaceLeft if we are in a spiral, reach ¢, draw the segment
(t,a), and find a point, say r, on the subchain from p to ¢ that lies between t and a (see Figure 16).
An (s,t)-path must cross (r,a) from above, since otherwise s is in the polygon formed by (r,a)
and the subchain between r and a, which would imply that the red segment would have been
drawn earlier when the condition (y, > ys, edge (g.prev, q) lies left of s) was first met. We have
that a simple (s,t)-path must cross a horizontal segment that lies to the right of ¢ with the same

y-coordinate as t—this implies the path faces left.

3. Procedure SVPy (c1) also returns MustFaceLeftin Case (3) of Phasell if we reach ¢ before crossing
a horizontal segment whose right endpoint is ¢.prev. Since the horizontal segment was drawn by
procedure Blue (unless g.prev = s, in which event Case (3) cannot return MustFaceLeft), q.prev
cannot be the left endpoint of a lid. If the intersection point of the horizontal segment and ¢;
closest to g.prev lies on ci(g.prev, t), then g.prev is not a right endpoint since the polygon formed
by c1(g.prev,a) and (g.prev,a) contains ¢ in its interior. If the closest intersection point lies on
c1(s, q.prev), then g.prev is not a right lid endpoint by arguments similar to those for procedure
Blue. Since g.prev is a left-peak, every simple (s,t)-path must face left.

It is not difficult to see by a case-analysis that if ¢; has a left-peak that is not a lid endpoint,
SVPy (c;) will detect it by returning MustFaceLeft. The remaining theorems of this section assume that
all left-peaks of ¢; and c& are lid endpoints, implying that I(c1) and I(cf) are defined.

Lemma 3 If ¢; is an (s,t)-left-path-subchain of a polygon P, procedure SVP], correctly oulputs l(c1)

and its tree of down-pockets in O(n) time, where ¢y has n vertices.

Proof. 1t suffices to show that for each p and ¢ such that 77 is a maximal lid, SVP7, replaces ci(p; q)
with pg.

Suppose q is a left-peak, and Phasel does not draw a red or blue segment with endpoint ¢. This
occurs because Phasel reaches g either in a call to Blue or a call to Red. If ¢ is reached in a call
to Blue(p), as in Figure 17(a), then any lid with ¢ as an endpoint corresponds to a subchain that
is eliminated when we exit Blue(p). A similar statement holds if ¢ is reached in a call to Red (see
Figure 17(b)). This implies that ¢ is not an endpoint of a maximal lid.

The points s and ¢ can be endpoints of maximal lids, and if they are, procedure Red draws the
appropriate lid. Therefore, if any of s, ¢, or a left-peak ¢ is an endpoint of a maximal lid, Phasel will
draw a segment with this point as an endpoint.

It is possible for Phasel to draw a segment for a left-peak where the segment does not contain a
maximal lid. This occurs when Red or Blue draws a segment (er or ep), and later that segment is
eliminated in Phasel because it is backtracked by Red (Figure 18(a)), or is eliminated in Phasell by
FixRed (Figure 18(b)), or is eliminated in Phasell by FixBlue, Case (3) of Down (Figure 18(c)).
Since this segment is eventually eliminated, it does not matter that it was drawn in the first place.

We need to show that if any of s, t, or a left-peak ¢ is an endpoint of a maximal lid, the segment
produced by SVPy, is the maximal lid. If the relative interior of the segment drawn by Phasel does not
intersect ¢y, then there will be no problems. Either the segment is a maximal lid, or it will be eliminated
in one of the three cases discussed above (Figure 18).
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Figure 17. Left-peak ¢ does not generate a call to Red or Blue.
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Figure 18. ep, er lie on the chain eliminated in (a). Red, Phasel; (b).
FixRed, Phasell; (c). case (3) of Down, Fixblue, Phasell.



For purposes of this proof, we define the terms red segment, blue segment, pre-chain, and post-chain.
A red segment is defined to be a horizontal segment with left endpoint ¢ and right endpoint g.prev,
where (i). ¥, < Y(g.prev).prevs and (ii). either y; > Ygness or ¢ = 1. Note that the set of red segments in
[(c1) is all (horizontal) segments of {(c1) drawn by procedure Red with the exception of a segment with
s as an endpoint. A blue segment is defined to be any horizontal segment drawn in Phasel that is not a
red segment. (These include segments drawn by Blue and the horizontal segment drawn by Red with
s as an endpoint, if it exists.) An edge or vertex of a chain divides the chain into two subchains, which
we call the pre-chain and post-chain.

If the segment drawn by Phasel is intersected by cy, then Phasell will shorten the segment until
it becomes the correct maximal lid. PhaseIl begins with procedure FixRed, a backwards traversal of
I(c1) that considers all red segments. If a red segment e is intersected by its post-chain (as in Figure 19),
the intersection will occur in a call to Red(p), and e will be eliminated by this call. Thus, no red segment
of i(c1) is intersected by its post-chain.

If a red segment e is intersected by its pre-chain, the intersection is detected in FixRed. Several

important observations should be made about FixRed:

(1) a red segment e will be placed on the stack before FixRed encounters an edge that intersects e;
(2) FixRed will not encounter an edge intersecting e after e is popped from the stack;
(3) e is popped with its correct right endpoint; and

(4) at any time, the top element of the stack must be popped before an intersecting edge of any other
element is detected.

Observation (1) holds because e is intersected only by its pre-chain. A counterexample to Observa-
tion (2) would imply the existence of a left-peak u in I(¢1), as in Figure 20, contradicting a property
of i(c1). Observation (3) follows from (2) and the fact that the left-most intersection of e and I(c1) is
returned as the right endpoint. Finally, since the elements of the stack are ordered from top to bottom
by decreasing y-coordinate, (4) follows from the simplicity of ¢i: a back traversal of ¢; must cross the
gray line shown in Figure 21 before it can cross elements (e; or ez) below the top element of the stack
(e3), since there can be no left peaks in I(c1). These observations guarantee the correctness of FixRed.
They also establish its linear run-time, since each red segment is put on and popped from the stack
exactly once, and the number of red segments is bounded by the number of vertices of I(c1)-

FixRed outputs a chain in which the only crossings involve blue segments. FixBlue takes this chain
as input and outputs the final chain I(c;), and its correctness follows from arguments similar to those
for FixRed. While we do not explicitly maintain a stack, the double traversals of procedure Down
essentially perform the task of detecting intersections until a blue segment is “popped”, i.e. until it is
backtracked by Down without being intersected by the right side of the down-pocket. We are able to
maintain left visibility in the double traversals because no red segments are involved in intersections
(note that this was not true in FixRed: since blue segments could have been involved in intersections,
we would not have been able to maintain right visibility, and therefore were required to use a stack).
Maintaining left visibility also allows the construction of the tree of down-pockets. FixBlue runs in time

linear in the size of the input chain, since only a blue segment can be backtracked more than once-all
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Figure 19. If e is intersected by its post-chain, e is eliminated in Red(p).

must cross gray ¢ AR
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ftc)
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Figure 21. Observation (4).



but one of these events corresponds to detection of an intersection, so the work can be charged to an
eliminated vertex.

The entire procedure SVPy, is O(n) for ¢; with n vertices. Phasel is clearly O(n), and it returns
chain {(c;) of size O(n). We have seen that both FixRed and FixBlue run in time proportional to the
size of the input chain and output chains of size proportional to the input. Therefore SVPy, correctly
outputs {(¢;) in O(n) time. W

Lemma 4 If ¢; is an (s,t)-left-path-subchain of a polygon P, wherey, < yt, then any simple (s,t)-path

in P that enters the interior of an up-pocket of ¢1 faces left somewhere.

Proof. Since s and t do not lie in up-pockets of ¢, if 7 is a simple (s,t)-path in P that enters an
up-pocket of ¢1, then = must first enter the pocket at some point, p, and last exit the pocket at some
point, g. The first-entry point cannot be ¢, since this would imply that = is not simple.

Denote the right endpoint of the up-pocket lid by . Form a subpolygon @ of P consisting of 74,
c1(s, u), and 7(s,p) (see Figure 22). We must have that ¢ # u, since ¢ cannot be a right endpoint of a
lid, and ¢ # p, as mentioned above. By simplicity, ¢t ¢ (s, p), and clearly t & c1(s, u). Also, t ¢ pu and ¢
is not in the interior of Q. Since t is not on or in @, and = is simple, 7 must last exit the up-pocket at
some point q to the left of p in order to reach t. Therefore, 7 faces left somewhere between p and g. | |

Suppose we take cf, by rotating c; 180 degrees and reversing its orientation. Then cft can be input
to SVPp, to obtain l(cf). Now rotate I(cF) 180 degrees and reverse its orientation, so that we once
again have an (s, t)-chain with y, < y;. Rotating 180 degrees and reversing the orientation each result
in switching the words “left” and “right” in the above lemma. Therefore, for I(c®) in this new form, the
above lemma says that entering an up-pocket of I(cf) implies an (s,t)-path in P faces left. From now
on we refer to this new form of I(cf), so that I(c;) and I(c}) are (s,t)-chains, with s and ¢ the same for

both chains. We will define P, as the polygon formed by concatenating I(c,) and I(c§') (see Figure 23).
Lemma 5 Given polygon P with (s,t)-subchains ¢i and cz, ys < yi. The following are equivalent:

(a) Every simple (s,t)-path in P faces left.

(b) Il(c1) and I(c}) intersect at some point other than s and 1.

(¢) An up-pocket of ¢y is intersected by cz, or vice versa.

Proof.

(a) = (b) Define P as the polygon formed by concatenating I(c1) and I(cft). By the definition of
lids, each change between ¢; and {(c;), or between ck and I(cF), is of the following type: a region which
we call an up-pocket is moved from the right side of the path to the left side, i.e. from possibly being
in the interior of P to definitely being in the exterior. Therefore P; is a subpolygon of P. If l(¢1) and
I(cB) do not cross, then P is a simple polygon, and I(c;) is an (s,¢)-path that does not face left (see
Figure 24).

(b) = (c) Suppose that {(c;) and I(cE) intersect. Since the original chains ¢; and c; do not inter-
sect, the svpy’s can only cross when an added horizontal segment is involved. Suppose without loss of
generality that the horizontal segment is from I(c1). The segment it crosses cannot be horizontal and
therefore must be an edge of c,. Since the horizontal segment is the lid of an up-pocket, ¢y intersects an
up-pocket of ¢;.
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Figure 22. Proof of Lemma 4.

Figure 23. Definition of pclvzon P

Figure 24. Proof of Lemma 5.



(¢) = (a) Suppose we have a simple (s,t)-path, ¢, that never faces left. The path partitions P into
two subpolygons, one containing ¢; and one containing cy. If c2, say, is intersected by a left-path-up-
pocket of ¢y, ¢ also intersects the up-pocket, and by Lemma 4 faces left, a contradiction. Therefore no
up-pockets are intersected. |

Corollary 6 Ifl(c;) and I(c}) intersect, then the shortest (s,t)-path faces left.

Theorem 7 If I(c;) and I(c}) do not intersect, then the shortest (s,t)-path does not intersect any up-
pockets. In other words, the shortest (s,t)-path in P lies in P.

Proof. Because s and t are not in up-pockets, any (s,t)-path c that intersects an up-pocket must first
enter the pocket at some point f and last exit the pocket at some point {. By replacing the portion of ¢
between f and [ with the segment (f,[), the path becomes shorter. Since I(c1) and [ (c&) do not intersect,
the up-pocket is not intersected, so the path remains in P. Therefore the shortest (s,t)-path does not
enter any up-pockets. M

By the above fact, if in linear time we determine that /(c;) and I(c!) do not intersect and compute
a triangulation of P;, then we can find the shortest (s,t)-path in P in linear time (e.g., by [GHLST] or
[LP]).

Since we have already seen that procedure SVPy, computes I(c1) and I(cE) in linear time, we need
a linear time procedure, called Partition, which determines whether {(c1) and I(cE) intersect, and
triangulates P; if they do not. Since all the results proved above for left paths have analogous results for
right paths, we would like Partition to determine if r(cf) and r(c;) intersect, and triangulate P, if they

do not. Assuming that we have such a procedure, we can describe the entire shortest path algorithm:

Call SVPy (c1) and SVP(c).
If either procedure aborts, then return MustFaceLeft
Else Call Partition(i(c1), [(c}))
If Partition(l(c), [(c&)) aborts (i.e. finds an intersection), then return MustFaceLeft
Else Partition(i(c1),!(c})) returns a triangulation of P '
Since P; contains the shortest (s,t)-path in P,
we apply the method of [LP] to the triangulated polygon P
to find the shortest (s, t)-path in P.
If MustFaceLeft is returned, then call SVP R (cf) and SVPR(cz); as above, we either find a
triangulation of P. where P, contains the shortest (s,t)-path in P, or MustF aceRight is returned.
If both MustFaceLeft and MustFaceRight are returned, then the shortest path is not monotone.
(end algorithm)

We now give a brief discussion of how Partition works. Details are given in the next section. Suppose
we have I(c;) and I(c}); we wish to determine whether they intersect, and triangulate P; if they do not.
Let S be the ray with root s in direction § = 7 (due left), and T be the ray with root ¢ in direction
9 = 0 (due right). The rays S and T do not intersect {(c1) and I(cff) except at s and ¢, because [ (¢1) and
I(c®) “progress right” as we traverse them from s to t. The region L(cy) is the area below the infinite
chain formed by S, l(c;), and T, and L(c2) is the region above the chain of S, I(cF), and T. We have
Py = L(ey) N L(cB).
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Procedure Partition traverses {(c;) and I(cf) simultaneously from s to ¢, maintaining visibility
between the current points of the scans. Because the procedure keeps the current points at the same
approximate y-coordinate, it knows when a current point enters or leaves a strict down-pocket of the
other chain. Because horizontal visibility is maintained and I/(c1) and I(cf) have the “progresses right”
property, an intersection of {(c;) and I(c§) will be detected during the simultaneous scan.

If I(c1) and I(c£) do not intersect, Partition returns a partitioning of P;, where each polygon of the

partitioning is near-monotone:

Definition 3 Given a polygon A, and two vertices a and b. The points a and b partition A into two
(a,b)-paths, | and r. Let I* be the visibility profile of | from the right, and r* the visibility profile of r
from the left. If I* and r* do not intersect except at a and b, then A is near-monotone for vertices a and

b. We call the polygon, A*, formed by I* and r* the monotone core of A.

The monotone core of a near-monotone polygon is a monotone polygon with respect to the vertical
direction, but a near-monotone polygon is not necessarily monotone (see Figure 25). Partition produces
only near-monotone polygons. We show this for a polygon generated by the Moving-Up subprocedure
(see Figure 25). In Moving-Up, the point ¢ is the current point of the traversal of I(cf), and p is the
current point for I(c1). As we update p and g, we are traversing the left and right paths of A, the
monotone core of the polygon being produced by this call to Moving-Up. Since we keep p to the left
of q, A* is simple; thus A is near-monotone. Similarly, Moving-Down produces only near-monotone
polygons.

The maximal connected regions of A \ A* are down-pockets of either I(c1) or I(cF), since they are
separated from A* by their bottoms. Furthermore, a down-pocket can be triangulated in time linear
in the number of vertices. This is true because each strict down-pocket is a polygon monotone in the
vertical direction. A partition into strict down-pockets can be performed in time proportional to the size
of the tree, by a single traversal of the tree, and clearly a tree cannot have more nodes than the root
down-pocket has vertices in its chain. Therefore, since visibility profiles can be computed in linear time
([EA],[Le],[JS]), each polygon A produced by Partition can be partitioned into monotone polygons in
linear time; this implies that A can be triangulated in linear time ([GJPT]).

Since the simultaneous scans are linear in the number of vertices of I(c;) and l(cf}), Partition in
linear time detects an intersection of I(c1) and I(c§) if one exists, and triangulates P; otherwise. Both the
simultaneous scans and the triangulation of the monotone polygons can be performed without complex
data structures, and with small constants in the “Big-Oh” notation.

5 Details of Partition

The procedure Partition takes as input the structured visibility profiles of ¢; and ¢z as either left paths
or right paths. We will describe the procedure for left paths; the case for right paths is similar.

The input is svpL (1) = (I(c1), T (c1)) and svpr (c}) = (I(cF), T(c2)), the left-path structured visibility
profiles of ¢; and cg, respectively. The paths I(c1) and I(c}) are (s,t)-paths, and ys < y;. The procedure
traverses {(c;) and I(cf) from s to ¢ using pointers p and g, respectively. The pointer C'Pl points to
the node of the strict down-pocket of I(c;) that contains p. Similarly, CPr is the strict down-pocket

containing ¢.

16



The algorithm will find in order the points of horizontal tangency on the shortest (s,t)-path: z1,..., Zm-1-
This gives a list s = 20, 21y.+ ., Zm-1,2m = ¢. For each z;, i = 1,...,m — 1, a horizontal segment in P
is drawn from z; to a point on the other path, and z; is always the left endpoint of the segment. This
partitions P; into polygons P1,..., P™. The procedure answers MustFaceLeft if it finds an intersection
of I(c1) and I(c}) other than at s or ¢.

Since I(c;) and I(c}) have down-pockets but no up-pockets, we will simply refer to “pockets” in the
algorithm. When we say “left endpoint” (“right endpoint”) of a pocket, we mean the endpoint of the lid
with lesser (greater) z-coordinate when the path is in its normal orientation, i.e. with y, < y;.

Let v; and vy point to the successors of s in chains I/(c1) and I(cE), respectively. There are three

initial cases:

1. Yu, Y, > Ys- Then s is the left endpoint of a pocket of l(c1). Set p « s,q « s, and initialize C P!
and CPr accordingly. Call procedure Moving-Up, where a is initialized to be the right endpoint
of CPL

2. Yu,, Y, < Ys- Then s is the left endpoint of a pocket of I(cf). Set p — s, — s, and initialize
CPl and CPr accordingly. Call procedure Moving-Down, where b is initialized to be the right
endpoint of CPr.

3. Yo, > Us,Yu, < Ys- Then s is the left endpoint of non-empty pockets of I(c1) and I(cf). If the
pocket of I(c®) has a shorter lid than the pocket of {(c1), then call Moving-Up, as in (1) above.
Otherwise call Moving-Down, as in (2) above.

Note that y,, < ¥s,¥s, = ¥s cannot occur.

5.1 Procedure Moving-Up

We start with z;_;. We will find z;, and draw a segment through z; to form Pt
We have p lying to the left of g, where p is the left endpoint of CPl. We will use another pointer, a,
which is initialized to the right endpoint of C' Pl.

The general step of Moving-Up is to consider g.next:

Case (1) Yq.next > Yq-

We update p and a. Traverse forward from p up the left side of C Pl until reaching a point p’ above
g.nezxt. Similarly, traverse backwards from a, up the right side of C Pl, until reaching a point a’ above q.
If during the traversal up the left side, p hits the left endpoint of the left child of CPI (equivalently, if
during the traversal up the right side, a hits the right endpoint of the right endpoint of the right child),
then determine whether (g, g.next) intersects the bottom of the left or of the right child and update C Pl
and p or a accordingly. Once we reach points p’ and a', we update p — p’ and a@ «—a’.

When the traversals end, we have new points p and a, such that Ygnest < YprYa- Set ¢ — q.next,
and return to the general step of Moving-Up.

Case (2) Yg.next = Yq- .

This means that I(c!) jumps left, i.e. Zsnezt < Tq- Check whether (g, g.next) intersects (p, p.prev).
If YES, STOP: procedure Partition answers MustFaceLeft, since I(c1) and I(cf) intersect. If NO,
q — g.next; return to the general step of Moving-Up.
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Figure 25. Definition of monotone core.



Case (3) Ygnert < Yq-

Then q is a right-peak. The point g is the right endpoint of CPr, and the left endpoint of the sibling
of CPr. Let b be the right endpoint of the sibling (if b is at infinity, then replace segment (q,b) below
with ray (g, b)).

Determine whether (g, b) intersects (a, a.next). If NO, then ¢ — b; update CPr to be the parent,
and return to the general step of Moving-Up.

Tf YES, then call the intersection point d. Set z; — g, and add the segment (g, d) to the partition of P
to form P?. Switch CPr to the sibling. Call procedure Moving-Down, initializing p — d, ¢ — q,b6 — b.

5.2 Procedure Moving-Down

We have ¢ lying to the left of p, where ¢ is the left endpoint of CPr. We will use another pointer, b,
initialized to be the right endpoint of CPr.

The general step of Moving-Down is to consider p.nezt:

Case (1) Yp.nezt < Yp-
Then scan to update ¢ and b, updating C Pr if necessary, in a manner similar to Case (1) of Moving-

Up. Set p — p.nezt, and return to the general step of Moving-Down.

Case (2) Yp.next = Yp-

Then I(cy) jumps left, i.e. Zp.nest < Zp. Check whether (p, p.next) intersects (g, g.prev). If YES,
STOP: procedure Partition answers MustFaceLeft, since I(c1) and I(c®) intersect. If NO, then set
p — p.nezt, and return to the general step of Moving-Down.

Case (3) Yp.next > Yp-

Then p is the right endpoint of CPl, and also the left endpoint of the sibling of CPI. Let a be the
right endpoint of the sibling of CPI (if a is at infinity, then replace segment (p, a) below with ray (p, a))-
Determine whether (p,a) intersects (b, b.nezt). If NO, then update C'Pl to the parent, set p « a, and
return to the general step of Moving-Down.

If YES, then call the intersection point d. Switch C Pl to the sibling, and call procedure Moving-Up,
initializing ¢ « d,p — p,a «— a.

6 Translation Separability

We say that two polygons P and Q are movably separable if one of them can be moved arbitrarily far
from the other without colliding with the other one. The translation separability problem asks for a

direction (or the set of directions) for which Q can be translated away from P without collision:

(P3) Given two disjoint simple polygons P and @, determine the cone of all directions in which @ can
be translated arbitrarily far without colliding with P.

[BT] and [To2] give O(¢(n) + n) time algorithms for solving (P3). We obtain a ©(n) time algorithm
for (P3), by reducing it to problem (P2), which was solved in the previous section.

We define a separator of Q and P as an infinite, directed polygonal chain such that Q lies in the
region to the right of the chain and P lies in the region to the left. We will use the following lemmas:
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Lemma 8 Polygon Q can be moved arbitrarily far in direction 0 without colliding with P iff there exists

a separator of @ and P monotone in direction 0 + = /2.
Proof. This lemma follows from Theorem 7 of [To4]. B

Lemma 9 If a path from s to t inside polygon Z is monotone in direction 0, then the shortest path from

s tot in Z is monotone in direction 0.

Take CH(PUQ), the convex hull of PUQ. This can be done in O(n) time ([AT],[GY],[Me]). Define
a bridge to be an edge of CH(PUQ) with one endpoint a vertex of P and the other a vertex of Q. Define
Z to be the unique connected component of CH(PUQ)\ (PUQ) that borders both P and @ (and hence
will border any bridges). C H(PUQ) has either 0 or 2 bridges (see [BT]), giving us two cases to consider.

6.1 CH(PUQ) has 2 bridges

If there are two bridges, then label the endpoints of the bridges pr, ¢r, pp, and ¢p, as pictured in
Figure 26. The two bridges, the subchain of P obtained by traversing from pr to pp clockwise, and the
subchain of Q obtained by traversing from gp to gr clockwise, form a polygon which we call P. There
are four ways to pair an endpoint of the top bridge, 7, with an endpoint of the bottom bridge, B. In
the next lemma we consider shortest paths in P for these pairs.

Lemma 10 There ezists a separator of Q and P monotone in direction 8 iff the shortest path in Z from

some endpoint of B to some endpoint of T is monotone in direction 8.

Proof. Clearly a shortest path in P between points on different bridges can be extended to a separator
of @ and P such that the separator is monotone in all directions for which the shortest path is monotone.

Conversely, suppose we have a separator of Q and P that is monotone in direction 6. The separator
intersects T at some point, v. Replace the remainder of the separator with either the segment (v, pr) or
(v, qr), so that the new chain is still monotone with respect to 8. Perform a similar operation at B, to
obtain a path from an endpoint of B to an endpoint of T that is monotone in direction . By Lemma 9,
the shortest path between these points is also monotone in 8. W

6.2 CH(PUQ) has zero bridges

If there are no bridges, then one polygon is completely contained in a pocket of concavity of the other,
so we will assume without loss of generality that Q@ C CH(P). Denote the endpoints of the pocket
containing @ by a and b. Find a point ¢ on @ and a point p on (a,b) such that ¢ and p are visible or
determine that no such point exists. (This can be done in linear time as follows: take ¢’ € Q, determine
the cone of directions in which ¢’ can see infinitely far, and find ¢ € Q in that cone that is closest to
the lid.) By inserting the edge (g,p) twice, we obtain the weakly-simple polygon Z formed as follows:
traverse the pocket of P from b to a, add (a,p) and (p, q), traverse Q counterclockwise starting from g,
add (g, p) and (p, b). (see Figure 27).

Lemma 11 There erists a separator of Q and P monotone in direction 6 iff the shortest path from b to

a in Z is monotone in direction 0.
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Proof. If the shortest path from b to a in Z is monotone in direction 8, it can be extended to a separator
of Q and P monotone in 8 by simply extending the first and last edges.

Conversely, suppose we have a separator of @ and P monotone in 0. It must intersect (b, p) at some
point, which we will call ¥, and must intersect (p,a) at some point, a'. Replace the beginning of the
separator until a’ with the directed segment (a,a’), and replace everything after b’ with (¥, b). This gives
us an (b,a)-path in Z. The only turns in this path not found in the separator are the ones at b’ and d',
but in order to travel from b to @’ in Z a path must sweep through these ranges of angles. Therefore
the (b, a)-path we have constructed is monotone in every direction that the separator is monotone. By
Lemma 9, this implies that the shortest (b, a)-path is monotone ing.

From these lemmas we see how to answer the separation problem in linear time. We construct
CH(P U Q), and determine whether it has two bridges or zero bridges. If it has zero bridges, we
construct Z as described and find the shortest (b, a)-path in Z. The set of directions in which the path
is monotone gives (by adding 7/2) the set of directions in which @ can be translated arbitrarily far. If
CH(P U Q) has two bridges, we construct Z and find 4 shortest paths. The union of the directions in
which these paths are monotone gives us the set of directions for translating Q.

7 Weak Visibility Problems

Our method can be applied to yield linear-time algorithms for a variety of weak visibility problems. We
begin by solving the following problem:

(P4) Given a simple polygon P and a line segment e within P, find the subset of P that is illuminated
if every point of e is a light source that casts light in every direction and the boundary of P is
opaque.

We call the subset of P illuminated by e the weak edge visible region of P with respect to e, and we
denote it by WV (P,e). More precisely, WV (P,e) is (the closure of) the set of all points w in P such
that there exists an z in the interior of e such that (z,w) C P.

Weak visibility from a line segment has been the subject of several papers. [El], [LL}, and [CG] found
algorithms to compute WV (P, e) in time O(nlogn). More recently, [GHLST] and [Tol] have obtained
a bound of O(t(n) + n) based on triangulating P. Also, [AT] show that in linear time one can check if
all of P is illuminated by e (i.e., if P = WV(P,e)). Until now, it has been open to find a linear-time
algorithm for computing WV (P, e).

Note that, without loss of generality, we can assume that e is an edge on the boundary of P (otherwise,
in linear time we can extend e until it hits the boundary of P and cut open P along this chord). Orient
P so that e is horizontal, and the interior of P lies above e. Denote by s the left endpoint of e, and t the
right endpoint of e. Let ¢y be the subchain of P from s to t obtained by traversing clockwise; therefore,
it is an (s, t)-left-path-subchain of P and contains every edge of P except e.

Our algorithm begins by calling procedure SVPy,(c1) to obtain i(c1). We claim that SVPy, cannot
return MustFaceLeft on input c;.

Lemma 12 Assume that e = st is a horizontal edge on the boundary of P. Procedure SVP{, cannot
return MustFaceLeft on ¢y, the (s,t)-left-path-subchain of a polygon P.
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Figure 26. CH(P U @) has 2 bridges.

Figure 27. CH(P U @) has 0 bridges.



Proof. By Lemma 4, if SVPy,(c1) returns MustFaceLeft, where c¢; is an (s, 1)-left-path-subchain of a
polygon P, then every (s,t)-path in P must face left. But in our case we have an obvious path from s to
t that does not face left: just go from s to ¢ along e. Therefore SVPy, cannot return MustFaceLeft. 1

Denote by P, the polygon formed by i(c1) and (s,t). (Note that, if we let c; be the edge (s,¢), then
I(cR®) = (s,1), so P corresponds to our earlier notion of concatenating the svpr, ’s.)

Lemma 13 WV (P,e) C P.

Proof. No point with y-coordinate less than y, can be in the weak edge visible region, by the manner
in which the weak edge visible region is defined.

Suppose w € WV (P, e) is a point in P with yu > y,, and w lies in an up-pocket of ¢; (see Figure 28).
All up-pockets of ¢; are subpolygons of P (since I(c1) and ¢z = (s,t) do not intersect), separated from
the rest of P by a horizontal lid (a subsegment of a segment drawn during procedure Blue or Red),
and lying below the segment. Therefore, any path from a point of P outside the up-pocket to a point
w inside the up-pocket must cross a horizontal segment from above. Since y, < yw for any point u on
e, the directed segment from z to w is in some direction in the range [0, x]. But we just saw that any
(u, w)-path in P must somewhere face in a direction in the range (, 27), so (w,u) is not contained in
P, a contradiction. W

Having found P in linear time, we now note that we can triangulate P; in linear time in the fashion
discussed in procedure Partition. Since P; is guaranteed to contain WV (P,e), WV (P, e) = WV(P,e),
so we can now appeal to the existing methods of [Tol] or [GHLST] to find WV (P, ¢€) in linear time.
Note that we also have shown that polygons that are weakly visible from an edge can be triangulated in
linear time.

We now describe linear-time solutions to three related problems that were solved by [GHLST] in
linear time within a triangulated polygon.

(P5) Given an edge €, preprocess P so that the following query can be answered in O(logn) time: for

a query point g, determine the portion of e that ¢ can see.

We solve (P5) by constructing P, in linear time and then noting that if ¢ lies in P\ P, it sees no
portion of e. Thus, given g, first determine whether q lies in P\ P; or F. (This can be done in O(logn)
time since we can triangulate P; in linear time, and we can also triangulate the ezterior of P; in linear
time.) If ¢ lies in P \ Py, it sees none of e, and if it lies in P;, we appeal to [GHLST].

(P6) (Ray shooting from an edge) Given an edge e, preprocess P so that the following query can be
answered in O(logn) time: for a query point ¢ € e and a direction d, determine the point on the

boundary of P where a bullet would exit if fired from ¢ in direction d.

We solve (P6) by noting that the answer to the query must be a point on the boundary of P (as
defined above). (In fact, the answer must be a point on the boundary of WV (P, e).) Triangulation of Py
in linear time implies the overall linear time bound.

(P7) (Convex rope problem) Given a point s on the convex hull of P, determine those points on the
boundary of P that admit “convex ropes” from s around the outside of P.

21



Figure 28. Proof of Lemma 13.



The convez rope problem was introduced in [PeS]. We make the problem definition more precise. For
P a simple polygon, s a vertex of P lying on its convex hull, and v another vertex of P, the clockwise
convez rope from s to v is the shortest simple polygonal path from s to v that does not enter the interior
of P and is clockwise convex, i.e. has only “right turns”. The counterclockwise convex rope is defined
in a similar manner. The convex rope problem is to calculate the convex ropes for each vertex v that
admits both clockwise and counterclockwise ropes from every vertex s on the convex hull.

We solve (P7) as follows. First we find the convex hull of P in linear time ([GY], [Me], [MA]), and
take the collection of all “pockets of concavity”. As described in [GHLST], only vertices in the pockets
of concavity need to be considered. Each pocket, Q, together with its corresponding edge on the convex
hull, e, forms a polygon. Any vertex v of Q not in the weak edge visible region of @ for e cannot admit
convex ropes for all s, because the shortest paths from the endpoints of e to v must meet somewhere
before v and turn in the same direction. Thus, we replace each pocket of concavity with its weak edge
visible region from the pocket lid, and triangulate the weak edge visible regions. We then appeal to
[GHLST], who complete the problem by finding shortest paths from a fixed source to all vertices in a
triangulated polygon in linear time.

Another weak visibility problem asks us to find the subset of P that is illuminated by a convex subset
Q of P.

(P8) (Illumination by a convex body) Given a convex k-gon Q within simple polygon P, determine the

subpolygon of P that is weakly illuminated by a light source occupied by Q.

The subset of P illuminated by Q is called the weak visible region of P with respect to @, and is
denoted WV (P, Q). More precisely, WV (P, Q) is the set of all points w in P such that there exists an
z in Q such that WZ does not intersect the exterior of P. Ghosh [Gh] computes the weak visible region
WV(P,Q) in O(n + k) time given a triangulation of P, where n and k are the number of vertices of P
and Q, respectively. We give an optimal ©(n + k) algorithm for computing WV(P,Q).

Since Q is convex and inside P, the segment between any two points of Q lies in P. In other words,

for any two points z,y € Q, ld(z,y) = 1, where ld(,-) denotes link-distance in P. Let z € Q@ be an
arbitrary point in Q. If w € P is in WV(P,Q), then ld(x,w) < 2. This is true since w € WV(P,Q)
implies Ty C P for some y € Q, and z,y € Q implies JZ C P, giving us a (w, z)-path of link-distance 2.
Therefore, WV (P, Q) lies in the subset of P within link-distance 2 of any fixed point z of Q.
" We can obtain and triangulate this subset in O(n) time. First take V P(P,z), the visibility polygon
of P from z. This can be done in linear time by a number of methods ([EA], [LL], [JS]), and VP(P,z)
can be triangulated in linear time because it is star-shaped. Each edge e of V P(P,z) that is not an
edge of P partitions the interior of P into two regions, where VP(P,z) lies in one of the regions. Let
P, be the region not containing VP(P,z). A point w in P, has ld(w,z) = 2 if and only if w sees edge
e, i.e. w € WV(P,,e). We can compute and triangulate WV (P, e) in linear time for each edge e of
VP(P, z) not an edge of P, and since the polygons P, are disjoint this takes O(n) time for all such edges
e. We have now triangulated a region that contains WV (P, @), so by appealing to [Gh] we can compute
WV(P,Q) in O(n + k) time.

As for weak edge visible regions, our method can be used to triangulate WV (P,Q) in linear time.
Also, WV(P,Q)\ Q can be triangulated in linear time, since VP(P,z)\Q can be cut to form a weakly-
simple polygon that is radially monotone about z (see [To3]).
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We can, in fact, obtain and triangulate the region within link-distance L of Q in O(Ln + k) time, by
illuminating @ and then, in L — 1 stages, illuminating each of the “window edges” on the boundary of
the region illuminated so far, using the weak edge visibility algorithm. This solves the following problem
in time O(Ln + k) and space O(n + k):

(P9) (Link reachability) Given a simple polygon P with n vertices and a convex k-gon @ within P,

determine that portion of P that is at link distance < L from @ and triangulate it.

8 Minimum Link Monotone Paths

In this section we solve the following in linear time:

(P10) (Monotone Min-Link Path) Given points s and ¢ in a simple polygon P, determine if there is a

monotone (s,t)-path in P, and if so produce a minimum link-distance (s, t)-path in P.

In Sectiou 4 we described an algorithm for finding the shortest path between two points s and ¢ in a
polygon P, if the shortest path is monotone. The algorithm was shown to be correct by Corollary 6 and
Theorem 7, which stated that if I(c;) and I(c¥) intersect then the (Euclidean) shortest path faces left,
and if I(c1) and {(c) do not intersect then the (Euclidean) shortest path lies in P;. Clearly a version of

Corollary 6 for minimum link-distance paths hold by Lemma 5:
Lemma 14 If l(c1) and I(cE) intersect, then every minimum link-distance path faces left.

The following modification of Theorem 7 can be established using the fact that I(c;) and I(cf) have
no left-peaks or right-valleys:

Theorem 15 If l(c1) and I(c}) do not intersect, then there ezists a minimum link-distance (s,t)-path

that does not intersect any up-pockets, i.e. it lies in P;.

Proof. It suffices to show the following: given an (s,t)-path in P, it can be transformed into an
(s,t)-path in P; without increasing the link-distance.

Suppose ¢ is an (s,t)-path in P, and ¢ enters an up-pocket of c¢%, with a blue lid. That is to say,
the lid is a subsegment of a segment drawn by procedure Blue. Thus, when we look at P in its normal
orientation, the up-pocket lies above the lid, and the left endpoint of the lid (call it a) is a right-valley
(see Figure 29).

Assume a # t. Let g be the ray with root a in direction § = 7. The chain I(cf') has been constructed
in such a manner that every peak is a right-peak, which implies that ¢ must intersect g for the first time
from below (at point r, say) after last leaving the up-pocket (recall that ¢ cannot lie in the up-pocket).
If ¢ first enters the up-pocket at point p and last leaves at ¢, then c visits p, ¢, and r in that order (r = ¢
iff » = ¢ = a). Furthermore, the edges of ¢ containing p and r face somewhere in the range (0, 7), while g
lies on an edge facing somewhere in the range (, 27). Therefore, there is at least one complete edge of ¢
between p and r, so by replacing the subchain of ¢ between p and r by the segment 57, we do not increase
the link-distance of the path. Also, this new path is in P, because the up-pocket is not intersected by
I(c1), 7a is not intersected by I(c1), and g is not intersected by I(c¥).

If @ =: ¢, then replace the subchain of ¢ from the point of first entry, p, with the pf. Since p cannot

be on the last edge of ¢, the new path has link-distance no greater than the original.
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The other cases to consider are up-pockets of I(c}) with red lids, and up-pockets of l(cy) with either
red or blue lids. However, the proofs are similar to the one above. |

With these two results, we can find minimum link-distance paths for s and ¢ on the boundary of P
whenever there exists a monotone path, using the same algorithm as in the Euclidean case. We can
handle the case of s and/or t in the interior of P by shooting opposite rays as before, and proving in a
fashion similar to the above proof that minimum link-distance paths need not enter the discarded region.
Since the minimum link-distance path in a triangulated polygon can be found in linear time ([Su], [Gh]),
our algorithm is linear time.

We have described how to find a minimum link-distance path from s to ¢t whenever there exists a
monotone (s,t)-path. In fact, the existence of a monotone (s,t)-path implies that there is a monotone
minimum link-distance (s, ¢)-path. This is a consequence of the algorithm of Ghosh {Gh], which constructs
a minimum link-distance path from the Euclidean shortest path, in such a manner that the cone of

monotone directions is the same for both paths.

9 Summary and Conclusion

In summary, we have provided a method to solve a large catalogue of problems on simple polygons in
optimal time. The method relies on building the Structured Visibility Profile of a polygonal path in linear
time, and then using this data structure to obtain a partial triangulation of a polygon. We suspect that
there are many other problems on simple polygons for which triangulation is a bottleneck in the running
time and to which our methods can apply. We are currently investigating other problems.

For reference, we include below a summary of the problems solved in this paper. All problems are
solved in linear (optimal) time O(n), except for problem (P8), which is solved in optimal time O(n + k),
and problem (P9), which is solved in time O(Ln + k).

(P1) Given two points s and ¢ on or inside a polygon P, determine if there is a monotone (s, t)-path in
P and, if so, produce one. Also produce the set of all directions for which there exists a monotone
(s,t)-path. (This set is guaranteed to be a convex cone [ACM].)

(P2) Given two points s and ¢ on or inside a polygon P, determine if the (unique) shortest path from
s to t in P is monotone and, if so, produce it.

(P3) Given two disjoint simple polygons P and Q, determine the cone of all directions in which @ can
be translated arbitrarily far without colliding with P.

(P4) Given a simple polygon P and a line segment e within P, find the subset of P that is illuminated
if every point of e is a light source that casts light in every direction and the boundary of P is
opaque.

(P5) Given an edge e, preprocess P so that the following query can be answered in O(logn) time: for

a query point ¢, determine the portion of e that ¢ can see.

(P6) (Ray shooting from an edge) Given an edge e, preprocess P so that the following query can be
answered in O(logn) time: for a query point ¢ € e and a direction d, determine the point on the

boundary of P where a bullet would exit if fired from ¢ in direction d.
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Figure 29. Proof of Theorem 15.



(PT7) (Convex rope problem) Given a point s on the convex hull of P, determine those points on the
boundary of P that admit “convex ropes” from s around the outside of P.

(P8) (Illumination by a convex body) Given a convex k-gon @ within simple polygon P, determine the
subpolygon of P that is weakly illuminated by a light source occupied by Q.

(P9) (Link reachability) Given a simple polygon P with n vertices and a convex k-gon Q within P,
determine that portion of P that is at link distance < L from Q and triangulate it.

(P10) (Monotone Min-Link Path) Given points s and ¢ in a simple polygon P, determine if there is a

monotone (s,t)-path in P, and if so produce a minimum link-distance (s,t)-path in P.
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