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ABSTRACT

This is a multivariate extension of a k-cycle selection model with normal
distribution, as discussed by Robson (BU-171-M). In the selection problem, we
assume that the p-dimensional tralt vector X 1s observed with errors in the ith
cycle as Zi =X+ Ei’ where X and.gi, i=1, 2, e, k, are all multivariate
p-dimensional normal vectors and independent of each other, Selection at it" stage
retains the upper P1 fraction for the next stage., We shall consider two kinds of
selections, componentwise selection and selection using a linear function on Zi‘
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the conditional distribution of W given Z = z is
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So the conditional mean of W has 1'" component
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Let 39 denote the U vector with U 3 deleted, ﬁzen given UJ. =z 5 39 is dis~
tributed as
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vwhere R, is the matrix R, with J*" row and column deleted,
Rpj. is the J** column of R, without the J*" element.
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Alternatively, if the selection uses linear functions on _'x_'i and chooses:
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where B is the correlatlon matrix of X and V.

Similer to before
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In actual computation for the multidimensionsgl normal integralv
Pr{y = c}
where v is a pk~1l or k-1 dimenslonal vector and

-V ~N(o, R)

most of the work for dimension higher than four have been restricted to special
cases of the correlgtlon matrix R. A general discussion of this topic and bibli-

ography given by Gupta (AMS, 34, pp. 792-838) will be very helpful.



