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This work examines how the life history parameters effect the stable age distribution
of the different classes and compares these results with the standard single sex model.
The conditions necessary for a population projected forward in time to reach a stable
age distribution is analyzed. The conditions for existence are dependent on the nature
of the mating function, i.e. the rate at which the two sexes find each other and mate.
In addition, the assumptions under which these mating functions are constructed have
important implications for the dynamics of the population and ultimate age distribu-
tion, stable or not. An analysis of when including both sexes becomes essential to the
understanding of reproductive strategies, examination of whether a population fulfils
the necessary assumptions about mating to make certain statements about population
growth, growth rates and relative fitness, and outlining an accessible approach to mod-
eling the joint life histories will be of practical value. Toward this end, a framework for
discrete-time two-sex models with age structure is developed. In addition a marriage
(mating) function based on an analogy with foraging theory and preferences based on
the predispositions of one age group for another is proposed. Some of the properties

of these models and their solutions are also investigated.
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Chapter 1
Introduction

1.1 History and Motivation

I will examine how the life history parameters effect the stable age distribution of the
different classes and compare these results with the standard single sex model. The
more the life history of the sexes diverge the more important the tracking of both sexes
become. Although this may seem an obvious conclusion, the fact remains that struc-
tured two sex models are not very commonplace. Analyses are often of the population
projected forward in time to some stable age distribution. However, conditions under
which such a stable age structure can exist are dependent on the nature of the mating
function, that is the rate at which the two sexes find each other and mate. In addition
the assumptions under which these functions are constructed has important implica-
tions for the dynamics of the population and ultimate age distribution, stable or not.
An analysis of when including both sexes becomes essential to the understanding of
reproductive strategies, examination of whether a population fulfils the necessary as-
sumptions about mating to make certain statements about population growth, growth
rates and relative fitness, and outlining an accessible approach to modeling the joint
life histories will be of practical value. To date most of the work in this area has
been done for age-structured continuous time models or non age-structured discrete
time population models for example see Castillo-Chavez, et al. [4], R. Pollak [37], [38],
[39], Hoppensteadt [18], Caswell [5], Kendall [23], Keyfitz [24], [25], [26], Fredrickson
[11], Hadeler [13], [14], [15], M. Iannelli [21], M. Martcheva [30], F.A. Milner [33], and
others.

Population models have broad application in general, not only the obvious field of



demography but ecology, forestry, fisheries, epidemiology, population genetics, sociol-
ogy, and economics to name a few. Clearly many applications can benefit from having
a two-sex age structured framework. In particular population genetics and sexually
transmitted diseases require inclusion of both sexes and the addition of age structure
can increase the accuracy of both the distribution and timing of the spread of genes or
infection respectively. Demography has a long history and even the concept of stable
age structure can be traced back to the eighteenth century with its introduction by
Leonard Euler [8]. The first purely mathematical model of a population is attributed
to Thomas Malthus[28] in 1798. The combination of the two, stable age structure and
rigorous mathematical treatment came at the beginning of the twentieth century with
A. J. Lotka and F. R. Sharpe [44] with an integral equation approach. McKendrick
[32] and later von Foerester [10] reformulated the problem in terms of PDE’s. The
two approaches are referred to as the Sharpe-Lotka and McKendrick—von Foerester
models.

Two sex models first appeared with a model by Kendall in 1949 [23]. There is no
age structure in this model, but he introduces three possibilities for a marriage function
(a function for predicting the number of marriages between males and females per unit
of time). These are proportional to geometric mean, arithmetic mean, and minimum of
the total number of single males and single females in the population. Fredrickson [11]
later (1971) suggested the harmonic mean as function that satisfied, what he considered
the self-evident conditions that if there are no singles of either sex there are no marriages
and that the number of marriages must change in proportion to the total population size
(the marriage function is homogeneous of degree one). His two sex model also included
age structure. Further development followed with work by Hoppensteadt [18] and
Hadeler [13]. Hadeler, in his model, includes the duration of marriage. McFarland

[31] reviews marriage functions and proposes seven additional conditions (“axioms”)



that a marriage function should satisfy. These deal with existence, non-negativity,
and the signs of the partial derivatives of the marriage function (see ‘Properties for a
“nice” marriage function’ below). Martcheva [29] examines the existence, uniqueness
and well-posedness of marriage functions in the Fredrickson-Hoppensteadt model.
Marriage and mixing functions have been used extensively in the modeling of sex-
ually transmitted diseases, Heathcote and Yorke [17] used the idea of preferences to
explain like-with-like mixing patterns. Blythe and Castillo-Chavez [2] develop gener-
alized one-sex mixing functions as perturbations of proportionate mixing. Castillo-
Chavez and Busenberg [3] formulate a two-sex mixing approach for populations with
preferences for fixed characteristics. In both the one-sex and two-sex cases preferences
are measured as deviations from random mixing. Hsu Schmitz and Castillo-Chavez
[19] further develop non-random mixing with the use of male and female affinity ma-
trices to describe the preferences that one group has for another. Castillo-Chavez, et
al. [4] discuss discrete-time two-sex models without age structure and investigate some

of the properties of the models and their solutions.

1.1.1 Goals of this dissertation

In this work I will attempt to develop a framework for discrete-time two-sex models
with age structure. In addition I will develop a marriage function based on an analogy
with foraging theory and preferences based on the predispositions of one age group for

another. I also investigate some of the properties of these models and their solutions.



1.2 A Select Chronology of Population Modeling and Demog-

raphy

(Adapted from M. Tannelli, M. Martcheva, and F.A. Milner [22] with some additions
relevant to the current work).

¢.3800BC Babylonia. First recorded census

225BC Emilius Mercer (Roman Jurisconsul) Romans took a census every 5 years.
Recorded mortalities or life expectancy - very inaccurate.

¢.200BC Ulpian (successor to Mercer) updated tables, much more accurate, used
for 1600yrs.

1086 Domesday book. William the Conqueror (Census)

1208 Leonado Pisano (Fibenacci). Rabbit populations in “Liberabaci”

1570 Girolamo Cardano. Formula for expectancy of life

1662 John Graunt. “Natural and Political Observations Upon Bills of Mortality”
(Life table concept)

1693 Edmund Halley. “Estimation of the Degrees of the Mortality of Mankind.”
First “modern” life table.

1760 L. Euler. “A general investigation into the mortality and multiplication of the
human species” Stable age distribution. Enabled population projections from incom-
plete data.

1766 Daniel Bernoulli. Continous analysis (continuous age dependent force of mor-
tality)

1798 Thomas Malthus. First formal mathematical model of population growth

1825 Benjamin Gompertz. “On the nature of the function expressive of the law of
human mortality.” (Density dependence)

1837 Aldolphe Quetelet “Sur L’homme et le development de ses faculté” (Logistic



equation suggested)

1838 Pierre-Francois Verhulst. “A note on the law of population growth” (Logistic
equation)

1860, 1867 William Makeham. “On the law of mortality” Variations on Gompertz

1886 Richard Bockh. “Statistisches Jahrbuch der Stadt Berlin” Net reproductive
rate.

1911 F.R Sharpe & A.J. Lotka. “A problem in age-distribution” (Integral equations)

1922 A.J. Lotka. “Stability of the Normal Age Distribution”

1926 A.C. McKendrick “Applications of mathematics to medical problems” PDE
approach

1928 R. Pearl. “The rate of living; being an account of some experimental studies
on the biology of life duration.” Life tables for Drosophila (first animal population life
table?)

1938 V. Volterra. “Population growth, equilibria, and extinction under specified
breeding conditions: a development and extention of the theory of the logistic curve.”

1938 F.S. Bodenheimer “Problems of animal ecology” Life tables for several species

1941 William Feller. “On the integral equation of renewal theory” (Rigorous proof
of stable age distribution)

1945 P.H. Leslie. “On the use of matrices in certain population mathematics.”

1947 P.H. Karmel. “The relations between male and female reproductive rates”

1947 E.S. Deevey Jr. “Life tables for natural populations of animals”

1949 W.C. Allee “Principles of animal ecology”

1954 Lamont Cole “The population consequences of life history phenomena”

1959 H. Von Foerster. “Some remarks on changing populations” (More on the PDE
approach)

1967 N. Keyfetz “Reconciliation of population models: matrix, integral equation



and partial fraction.”

1969 J.H. Pollard “Continous-time and discrete-time models of population growth.”

1971 A. Fredrickson “A mathematical theory of age structure in sexual populations:
Random mating and monogamous marriage models”.

1975 F. Hoppensteadt. “Mathematical theories of populations: Demographics, Ge-
netics and Epidemics.”

1987 R. Pollak “The two-sex model with persistent unions: a generalization of the
birth matrix-mating rule model”.

1989 K. Hadeler. “Pair formation in age structured populations”

1989 C. Castillo-Chavez, S Busenberg, K. Gerow. “Pair formation in structured
populations”

1996 C. Castillo-Chavez, W. Huang, and J. Li. “On the existence of stable pairing
distributions.”

2005 M. Tannelli, M. Martcheva, F.A. Milner. “Gender-structured Population Mod-

eling”



Chapter 2

Notation and Definitions

I will try to adhere to the following conventions: Roman upper case are un-scaled state
variables, upper case Fraktur font is for sets, and Calligraphic font (usually upper case)
is for functions of state variables (these will always be specified). Lower case Roman,
Greek and Fraktur are constant parameter values, time, and scaled state variables. A
tilde (7) will be placed over male symbols when necessary to distinguish them from
female symbols.

For age notation relating to couples I will use subscripts to indicate current age and
superscripts to indicate ages at which the individuals were mated. Although the two
conventions are equivalent there are occasions when the manipulation of expressions
are more convenient in one form versus the other.

Finally, when we deal with a population that has reached a stable age distribution
we will use an underscore to indicate the value of a variable at some arbitrary base
time or a variable that becomes constant withe respect to time. For example for a
population with a stable age distribution F; (0) = F, and B; (t) = B,. For variables
that are defined only for a population at a stable age distribution no underscore is

used, e.g. x;.

2.1 State variables

F;(t) number or density of females in age class i at time ¢
M, (t) number or density of males in age class j at time ¢
C,i’j () number or density of reproductive couples, at time #

females mated at age 4, males mated at age j for i units of time



Ff(t) number or density of single females in age class ¢ at time ¢
MJS (t) number or density of single males in age class j at time ¢
F4 (t) number or density of all adult (reproductive age classes) females at time ¢
My (t) number or density of all adult (reproductive age classes) males at time ¢
F*(t) number or density of all adult single females at time ¢
M7 (t) number or density of all adult single males at time ¢
F(t) number or density of all females at time ¢
M (t) number or density of all males at time ¢
C'(t) number or density of all reproductive couples, at time ¢
S;j (t) secondary sex ratio of males age j to females age i at time ¢
§°(t)  the set of all adult single female state variables at time ¢
9M° (1) the set of all adult single male state variables at time ¢
¢ (t) the set of all couple state variables at time ¢
Z;, Yy;  proportions of individuals in each age group
Ta, Ya proportions of individuals that are adults
Z;L] proportions of couples in each age group and

length of marriage out of all couples
fi, m; fraction of each age class that is single (by sex)
(f), (m) proportion of all single female and male

adults of reproductive age

NEI(FE(t), 9% (t),€(t)) a function determining the number of new pair bondings

between females of age ¢ and males of age j at time ¢



2.2 Parameters

2.2.1 Age

R
jor

minimum reproductive age classes of females and males

&
&

maximum reproductive ages of females and males

e
jo}

maximum age of females and males

2.2.2 Swurvival

Di, p; Pprobabilities of survival for females and males from the
current age classes, ¢ and j, to the next, i+1 and j+1
7T2’j probability of a pair - female mated at age 4, and male at age j
remaining mated from the A-1 to the next unit of time
l;, gj probabilities of survival for females and males
from birth to ages 4 and j respectively
ﬁ;{j probability of survival of a marriage for h units
of time by a couple mated at the ages of i and j

A" mean expectation of survival of a marriage for

a couple that were mated at ages i and j

2.2.3 Reproduction

f;l] fecundity (female births) of couples mated at ages ¢ and j for A time units
f;lj fecundity (male births) of couples mated at ages ¢ and j for h time units
(fi) ] <fi’j> mean expected fecundities of a couple that were mated
at ages i and j averaged over the lifetime of the marriage
f, f maximum fecundity for females and males respectively
B;(t) age specific birthrates of females per female

B; (t) age specific birthrates of males per male



2.2

Qg5

Pi j

10

O’Z’j the subjective primary sex ratio (the expected ratio of
male births to female births for individual parents that

mated at ages 7 & j and been mated for i time units )

.4 Marriage function

female age predisposition (probability that a female age j
will want to court a male age i upon encountering him)
male age predisposition (probability that a male age 4
will want to court a female age j upon encountering her)
joint predisposition (probability that a male age i
and female age j will want to court each other)
M:;» 1 —m;; probability that a single male (j) or single female (i) will initiate
courtship given an encounter with the opposite sex of indicated age
w; ; preference coefficient of female age 4 for male age j (time spent in mating
activities between i & j per search time attributable to males age 7)
w; ; preference coefficient of male age j for female age i (time spent in mating
activities between ¢ & j per search time attributable to females age )
v;; preference probability (standardized fraction of time that initiating
females of age 7 spend in mating activities with males age j)
V;; preference probability (standardized fraction of time that initiating
males age j spend in mating activities with females of age 7 )
¢ ¢; average fraction of total time that a single (female or male)
spends pursuing mating activities.
;. proportion of courting couples that marry
hi; average “individual-hours” it takes for a courtship between

a male age j and a female age i



11
2.3 Time variables and Rates

IG,iG generation times for females and males
A, A Mean ages of of childbearing in a population with a stable age distribution

Hl’él Mean ages of childbearing in a cohort

> th

Mosf o m central moments of the maternity functions
T  average length of time to successfully find a mate
T, time devoted to searching for a mate
T. courting time
T, time devoted to non-mating activities

&;; rate of encounter that single females age ¢ have with single
males age j per unit time searched per single female age 4
&i; rate of encounter that single males age j have with single
females age 7 per unit time searched per single male age j
k; ; rate of encounter that single females age 4 have with single males age j per unit
time searched per single female age i per fraction of single males that are age j
k;; rate of encounter that single males age j have with single females age i per unit
time searched per single male age j per fraction of single females that are age 4
U; 4, U; ; maximal rates of marriage between female i & male j for female
initiating and males initiating respectively
Qi; (t) potential overall rate of marriage per female ¢ per male j
7,4 (t) fraction of time interval before all females age i and/or males age j are mated
Ui ; potential marriage rate with respect to fraction of single females (1)
and males (j) within each age class
U, ; realized marriage rate with respect to fraction of single females (i)
and males (j) within each age class occuring in 7; ;

A asymptotic growth rate of the population



Chapter 3

A Brief Example

Suppose we have a sexually reproducing population with a life history where individuals
live for a maximum of 3 years and have offspring in second and last years of their life.
The usual way of modeling the population would be to follow the dynamics of the
females and ignore the males role in determining the overall dynamics of the population.
There are three equations governing these dynamics. The first two express the number
of females in age classes 1 and 2 at time ¢ + 1 which have survived from time ¢ (and age
classes 0 and 1 respectively). The constants py and p; are the fraction of the respective

age class that survives the year.

F1 (t + 1) = pOFO (t) 5 (31&)
The third equation is
Fo(t+1)=BiF (1) + BaFy (1), (3.1¢c)

where By and B, are age specific birthrates (fertilities) of females per total number of
females aged 1 and 2 (individuals do not reproduce in the first year after they are born
so By = 0). Note also that B; and By are constants and are fertilities averaged over
the entire number of females of each age class regardless whether all the females are

actually reproducing.

Looking at the same population but now considering monogomous mating and

including males explicitly, we have the same set of equations for survival of the females

12
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F(t+1) = poFo(t), (3.2a)

And now of course we have the males

Mi(t+1) = poMo (1), (3.2¢)

My(t+1) = piM(t). (3.2d)

In addition we have the number of reproductive couples. First let C’,i’j (t) be the
number, at time ¢, of reproductive females (producing first offspring for this couple at
age 1) that are paired with males (producing first offspring for this couple at age j) and
have been producing offspring for h units of time. The fraction of females and males
remaining mated after a single reproductive season is 7 given that they both survived

to the next mating season. Then

Cl (t+1) =pi imCy (1) (3.3)

This is the only survival equation for existing marriages since all other couples have
at least one member that was already in the last year of reproduction after marrying.
There are four equations governing the number of new pair bondings between females
of age ¢ and males of age j at time ¢. The number of new couples at the beginning
of time interval ¢ + 1 coming from mating, and courtship that occurred during the
previous time interval ¢. Consider the following marriage function,

Co™ T (t+1) = pipQug (8) F7 (t) M () 7y (8), (3.4a)

7
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Qi’j (t) = w— 27J~ =7 + o— - ) (34b)
Zi/:(lel 'Uz'/,j“Fjﬁ (t) Zjlzgfl 'UZ',]'/ Mjsl (t)

1 1
S ay Qi (8) M2 (1) 25y 4 Qurg (1) F (2) } '

Qi ; (t) is the potential (or “desired”) rate of pair formation. 7;,(t) is the frac-

Ti,j (t) = min {1, (34c)

tion of a time interval that it takes, given @);; (¢), to pair up all the available sin-
gles of age i (female) or j (male). In other words 1/ Zf/;laq ig (t) M3 (t) and
1/5°97)  Qu; (t) F3 () are the expected fractions of a time interval to “use up” all
available single females age ¢ or single males age j respectively. If these quotients are
greater than one, then the number of singles are not limiting and potential rate is
realized. They are less than one if the demand for a particular age-sex exceeds the
supply.

The reason that m does not appear in these equations is that I consider a couple
mated when they have had sex for reproductive purposes (almost always true for all
non-human matings) so the number of couples that are potentially producing offspring
is the number that has conceived and survived to the next season, if they had split
up after conceiving it would not matter to the math. I will use the term “matings”
interchangably with the phrase “pair bonding”. In other words, “mating” as used here
refers to the semi-permenant union of a male and female over successive reproductive
seasons and does not refer to a single reproductive event except as a special case.
In addition the accounting is such that the pair formation process is considered over
at the end of time interval ¢ but the couples resulting from this process are counted
as a reproductive couple at the beginning of the next time interval (¢ +1). It is
perhaps unfortunate that the mating formulas are called “marriage functions” in the
literature since in truth we aren’t interested in the social, religious, or legal aspects of
pair formation — only the reproductive aspects. In human demography, as currently

practiced, it is impossible to separate the two. Be that as it may, I will continue to
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use the term marriage in the broad sense of the word as a coupling, and it will be used
synonymously with reproductive mating. In addition, and with the preceding in mind,
when I say a couple is “first mated at ages ¢ and j and has been mated for h units
of time” I mean that this couple produced its first offspring at ages ¢ and j and have

been producing offspring for A units of time.

Co' (t+1) = pofoToo (1) Qoo (t) Fy (8) M (1), (3.5a)
Co* (t+1) = popr7oa (1) Qo (1) Fy (8) M3 (1), (3.5b)
Co' (t+1) = pipotio(t) Quo (1) FY (8) M (1), (3.5¢)
Co? (t+1) = pupiria () Qua (1) FF (1) M5 (1), (3.5d)

where F (t) and M3 (t) are the number of singles at time ¢. The interpretation of the

parameters in Equation 3.4b will be dealt with in detail later on, for the time though we

note their units. For (1 units:
_ [marriages between ¢ & j (resulting from males initiating)] s . o
<_ [single males age j][time spent in mating activities between female ¢ & male 5] )2 (Slmllar for uzﬂ)' The

parameter ¥;; is preference probability, i.e. it is the fraction of time that initiating
males age 7 would spend in mating activities with female of age ¢ given equal numbers
of all age females (similar for v;;). 7, ; is the fraction of courtships between females
age ¢ and males age j that occur due to male searching and 1 — 7, ; is the fraction of
courtships between females age ¢ and males age j that occur due to female searching.

The number of single females of a given age are determined by subtracting the total

number of paired females from all females of that age

FE(t) = Fy(t) (3.6a)
Fi(t) = F(t)—Cy (1) —Cy™ (1) (3.6b)

Fi(t) = F(t)—Cy' (1) -Gy (t) — Cy' (1) (3.6¢)
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and similarly for single males

Mg (t) = Mo (1) (3.7a)
M (t) = Mi(t)—Cy' () — g (1) (3.7b)
M3 (t) = Mx(t) = Cy® (t) = Cg” (1) = Cy' (1) (3.7¢)

The total number of female and male births resulting from reproduction during the

time interval ¢ are,

Fy(t+1) = f'Co' (8) + fo°Co () + [ CF (8) + f5°Ca () + f O () (3.8)

My (t+1) = fo'Co™ (1) + f°Co™ () + fo ' G (1) + fo "Cr* (1) + fi 'Oy (8) (3.9)

Here the f/7’s are the fecundities (female births) of the couples mated at ages i and j
and mated for h time units, and the ~,i’j ’s are the fecundities (male births). In order
to compare the two sex model with single sex models, we calculate the agespecific
birthrates (fertilities) of females per female and males per male as follows'. If F; (t) = 0
then B; (t) = 0 and if M, (t) = 0 then B; (t) = 0 otherwise,

1

Bi(t) = g (G )+ A£G 1) (3.100)

By(t) = (f31Co (6) + £ (1) + fr' eyt (#) (3.10D)

1
£ (1)

!There is no reason other than consistency with the single sex (female only) models
that I choose to express these as females per female and males per male. 1 could
have just as easily chosen males per female and females per male, or half offspring per
male and per female. In fact Pollard ([40] continuous model, [41] discrete model) does
define the birthrates as males per female and females per male in his models to ensure
matched growth rates in male and female subpopulation when marriage functions are
not explicitly include in the models.
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Bi(t) = Mf(t) (Fton o)+ st () (3.11a)
By(t) = Mj(t) (R0 () + 222 () + f'el 1) (3.11b)

Rearranging and substituting these definitions into the generation birth equations we

have,

Fo(t+1) = By(t) Fi(t) + B2 (t) Fa (t)

(3.12)

Mo (t+1) = By (t) My (1) + By (t) My (t) (3.13)

3.1 Example

I will use the following set of parameter values in the above equations. The suvival

probabilities are py = 0.400, p; = 0.900, py = 0.300, and p; = 0.800.Individuals of

both sexes can potentially reproduce in their second and third years (ages 1 and 2).

The probability that a couple will remain together for both those years (given both

the male and female partners were age 1 when they first mated) is 7 = 0.900. The

maximal rates of pair formation are

Up,0 Uo,1 0.500 0.144 1~L070 ’&,071

Ui,0 U1l 0.300 0.320 17,170 7:L171

The preference probabilities are

V=", = {)z’,j = 0.625.

0.400 0.372

0.500 0.500

There is no discrimination between ages however there is only a 62.5% chance that given

an encounter with the opposite sex the opportunity for courtship will be exploited. The
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fecundities by age and length of marriage are

[ a1 2 [ ]
0 0 _ 20 40 | fll’l _ 50,
I 40 60
fol o f? 30 50 _
N , fi =820
T 40 70
Initially there are no couples,
Cr7(0) = 0.
The initial number of singles are
£5(0) Fy (0) Mg (0) Mo (0)
Fi(0) | = 0 ; M;(0) | = 0
F3 (0) 0 M3 (0) 0

Fy (0) 100 M, (0) 100
F@O) | =| 0 |5 | M(0)|=] O
F (0) 0 M, (0) 0

In order to compare with the single sex case I simulate the two sex case with the
above parameters and then calculate the birth rates once a stable age distribution and
constant gross fertilities are achieved (Figure 3.1). I do this for two single sex models:

female births attributable to females, and male births attributable to males. In the
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one sex models these fertilities are treated as constants over the entire simulation,

By 0 B, 0
B, | =1235831|; | B, | =] 55083
B, 1.9604 B, 1.6685

The results of simulation are shown in Figure 3.1. The first two top panels show the
fertilities of females (B) and males ([;’) for the two sex model. These vary wildly until
the population starts to reach a stable distribution. The values for the single sex case
were taken at ¢ = 30. In Figure 3.2. the top three panels show the population (log
scale) of each of the age classes for females in the two sex case (0’s) and one sex case
(x’s) although the ultimate growth rate achieved is the same (A = 1.393) the initial
behavior of the two models is quite different with often one model increasing while the
other decreases. The bottom three panels are for the males and show similar behavior.
Also the total population size is much lower once the systems have stabilized (the one
sex model lags the two sex by about 3.9 time steps for females and about 4.8 time steps
for males). The reason for this is the large spikes in fertility (Fig.3.1) early on in the
two sex model as compared to the single sex models where the fertility is held constant.
The two sex model has constant fecundities (births per reproductive couple). The two
sexes differ in the details of the growth and sizes of the different age categories due
to the differences in their fecundities and survival rates. Yet they eventually achieve
the same growth rate by virtue of the fact that reproduction is ultimately controlled
by the number of reproductive pairs. . The fertilities of the single sex models are
calculated from the two sex model after they have stabled on. Back calculating with
these when the population is much smaller and more variable results in the lag in
population growth exhibited by the single sex vs. two sex model where the births can

track the rapid increase in the number of couples forming early on.
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Figure 3.1: Birth rates
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Chapter 4

Generalization of the Model

The population density is observed at the beginning of a specified time interval. This
time interval is typically defined as the time between two consecutive breeding seasons;
age classes will correspond to this interval. Other definitions are possible, for example
insect population are frequently modeled along a “physiological” time scale (the prod-
uct of ambient temperature and time measured in degree-days). Or we may wish to
base our time unit on the length of some developmental stage or benchmark. In any
event, here I will use the breeding season as our yardstick. I will number the first age
class 0 (newborns) and these consist of all individuals born between the beginning of
the breeding season up to the beginning of the next breeding season. Define the age
parameters «, and & as the minimum reproductive age classes, and the w and @ are the
maximum reproductive ages of females and males respectively. The potential number
of breeding season available to females and males are w— o+ 1 and ©— a+ 1, and the
maximum possible number of breeding seasons is min {w — a, & — &} +1. If i and j are
the ages at which the couple is first paired then the actual number of breeding seasons
available to females and males are w— i+ 1 and ©— j+ 1 respectively so the maximum
number of breeding seasons available to a given couple is min {w — i, — 5} + 1, and
that couple is currently ¢ + h and j + h years old (female and male respectively). The
maximum age for females is Q and the maximum age for males is ).

Let F; (t) be the total number or density of females in age class ¢ at time ¢ and
M, (t) be the number or density of males in age class j at time ¢. Also let p; and p; be
the probabilities of survival for males and females from the current age classes, ¢ and

j, to the next, i + 1 and j + 1. We then have the following iterative relationships

22
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Fii(t+1) = pE({#) >0 (4.1)

M (t+1) = p;M;(t) =0 (42)

I will denote the number of pairs of a particular age class in two ways. First let
C77 (t) be the number, at time ¢, of reproductive females (first mated at age i) that
have been paired with males (first mated at age j) for h units of time, this will be
equivalent to Ch,;ip j+n (t). Henceforth, for all variables and parameters involving
couples, I will use the superscript position when I want to denote ages at which the
couple first mated, and the subscript position for when I want to express the pair in
terms of their current age (see Appendix I). Define the probability of a female that
paired at age ¢ with a male age 7, remaining mated after h reproductive seasons as
Wﬁ{j given that they have previously paired for h — 1 seasons'. Note that this event
conditions on the probability that they both survive to the next reproductive season,
and that although the survival probabilities of mated males and females are usually
different than the corresponding survivals of the un-mated cohort I will, for the sake of
simplicity, assume that the variation has negligible impact on the mean overall survival

rate. Then

Cyly (t+1) = pipnpjnm, Gy () ifh>0,i > aand j > a (43)

Denoting single females as

Fi = (4.4)

min{i—a,0—&} &—h ~i—h,j . .
F; > o Zj SO i a<i<w

2

'The notation “mj,;;” will not be used in this paper.
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and single males as

M. if

M; = o - (4.5)
M, — yomemedmh e h ot i G <

[N
|
[

.

VAN
(VAN
&

Define the set of all adult single females at time ¢ to be

F() = {F(t):ie(a—Lw-1)

§° is a subset of R !

the set of all adult single males

m () = {M;(t):je(@-1Lw-1)}

J

M® is a subset of R¥—H1

and the set of all couples

¢t) = {C7(t):j€e(@w),je (@r),he (0,mn{w—ao—a})}
@ is a subset of R F)x@=at)x(min{w—a,b-a}+1)
Let N7 (F(t),9M* (t),€(¢)) be a function determining the number of new matings
between females of age i and males of age j at time ¢ (this function will be discussed
in detail later on.) I will consider the number of newly established couples at the
beginning of time interval ¢ as coming from those marriages that occurred during the
previous time interval ¢ — 1. I also will calculate the rates associated with finding,
courting and marrying a mate as a processes dependent on the state of the system
in a single interval of time. Of course, in reality the factors effecting these rates can

be extremely complex and the result of states integrated over either multiple (possible
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discontinuous) time intervals or fractions of a time interval or both. In any event we

will consider

Coij (1) = Co” (t) = picapym NTTH7H(F (1= 1), 9 (¢ — 1), € (t — 1)) (4.6)

The p;,_1p;_1 term is because both individuals in the pair must survive for the pair to

: 1,51
survive and we take m'

= 1 (the fraction of separations between the end of the
t — 1 interval and the t interval is negligible or is so minimal it can be absorbed into

the other rate constants). Now if i < v or j < & then the following conditions hold,

il ()= 0, N (3" (1), 2 (£),€ (1)) =0, and 7} = (4.7

That is, there are no couples in the previous season to carry over if at least one of the
pair will be in their first reproductive season in that time interval - so all pairs are new.

Andif i+h>worj+h > then,

Cy(t)=0,and 77, =0 (4.8)

Here I am defining “couples” only as reproductive pairs, and we will assume
that, even though couples may exist outside the reproductive span determined by their
ages, for the purposes of the model I will count them as a couple only when they are
within that span and “single” otherwise. I also assume that individuals outside this
span have no influence on the pair formation process (such as competing for singles or
otherwise interfering with or facilitating marriages). The initial and final reproductive
ages are defined when fecundity of males and females are negligible (prior to mating
and after senescence). The expected number of female births (fecundity) of a couple

together for h seasons and mated at age (¢, 5) is f,’zj , and the expected number of male
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births is /7. If i <aori+h >w,and j < & or j+h > & then the following

conditions hold,

fil =0and fi’ = (4.9)

The total number of female and male births resulting from reproduction during the

time interval ¢ are,

w @ min{i—a,j—a}

Fo(t+1) = Y > Z FriiChis (1) (4.10a)

i=a j=a&

w & mln{z o, j—a}

My(t+1) = ZZ Z FriiChis (1) (4.10D)

And the age specific birthrates of females per female and males per male are (for

a>i>w,and a>j>w),

min{i—a,j—&} i Cha o (t if F;(t)>0
s = | O G () () (111a)
0 if Fi(t)=0
) ( mm{zayoc} i Chai(t) if M (t) >0
Bi(t) = @) ica Johe s () ¢) (4.11b)
0 if M;(t)=0

Rearranging and substituting these definitions in Equations 4.10a and 4.10b we have,

My(t+1) = i B; (t) M; (t) (4.12b)

The flows between the various subpopulations are illustrated (for males) by the

compartment time-line in Figure 4.1.
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Figure 4.1: Compartment diagram.
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The final step in the development of the model is to express the generation equations
for the number of births at time ¢ + 1 in terms of the adult population at time ¢

backtracked to the numbers at their birth (j time steps before). Let

1 if 1=0
bk if i>1
5 1 if j=0

| [Lope if 5>1

these are probabilities of survivals from birth to the specified age. And

. 1 it h=0
Ly = N (4.14)

[Thco piskbianmy’ if h>1
this is probability of survival of a marriage for A mating seasons by a couple mated at
the ages of ¢ and j (female and male respectively). Note that if i+h > wor j+h > ©
then £ = 0 since ;7 , = 0 in this case. By iterating Equations 4.1, 4.2 and 4.3 and
substituting 4.13a, 4.13b and 4.14 we can express the number of males and females
of any age in terms of the number of births that produced them and the number of

couples by the number of marriages that produced them (indices h, i and j now start

at 1 rather than 0),

F(t) = p1Fiq1(t—1)
= piiipioFi o (t—2)
= Di—1Pi—2 - pokp (t — 1)

= 0,Fy (0, — 1) (4.15)
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M;(t) = pj1M;(t—1)
= Dj_1Dj—aM;_o (t —2)
= Pj_1Pj_2- - PoMo (t — )

= LMy (t—j) (4.16)

Cl(t) = Pisn-1Djan1my’ 1 C2y (E—1)
= Dith P h 1T Dih—aDin—amy ) s Cl, (t — 2)
= Pith AP AT Dich 2Pjn 2Ty g
- pipymy Gy (¢ — h)

= LY0W (t—h 4.17
h 0

The number of births at time ¢ + 1can now be expressed in terms of the number of
births of their parents generation ¢ + 1 time units ago. Substituting 4.15 and 4.16 in

Equations 4.12a and 4.12b we have,

Fy(t+1) = ZB ) 0 Fy (t — 1) (4.18a)

My(t+1) = ZB M, (t — 7) (4.18b)

The secondary sex ratio of males age j to females age i (primary sex ratio for male

and female ages 0) at time ¢ is

Sy (1) = M) (4.19)

and the subjective primary sex ratio (this is the ratio of the expected number of male
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births for each female birth to individual parents that were mated at ages i & j and
been mated for h units of time),

£i,]

oy = L. (4.20)
h

One would expect that for genetically determined sexes this should be close to one

unless there is some type of gamete selection going on. For environmentally determined
sexes this ratio can potentially be much more variable and differ quite a bit from one.
However, there is strong evolutionary pressure for the sex ratios to be such as to produce
equivalent growth rates in both sexes [45]. Whenever the numbers of one sex are under
represented in the population, that sex will have a selective advantage unless there is

some sort of environmental covariance that counter balances that advantage [9].



Chapter 5
Asymptotic growth-rate

I will now investigate the conditions necessary for the population to reach a time
independent growth-rate, that is look for geometric solutions, that is solutions of the

form \ :

Fi(t) = ApFi(t—1)=XpF;(t—2) == ApF;(0), (5.1a)
M;(t) = MMy (t—1) =N, M;(t—2)=---=\,,M,;(0), (5.1b)
Chl(t) = AeCy (t—1) = MG (t—2) =+ = M0} (0), (5.1c)

and show that all growth rates must be the same (i.e. Ap = A\yy = Ao = A.)
Define the initial conditions for a geometrically growing population (denoted by an

underscore) at some arbitrary time ¢ = 0

F,=F(0) 5 M;=M,;(0) ;C =G’ (0). (5.2)

i ==

Thus,

Fi(t) = ApEy 5 M (t) = Ny M, 5 and 7 (t) = ACy. (5-3)

Substituting 5.3 in Equations 4.18a and 4.18b

NTTE, = ) Bi(t) X Ey,

X;df—lMO = Z Bj (t) Zj)\HiMO,
j=a

31
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we obtain after canceling like terms

1 = Z B; (t) tAp Y, (5.4a)

1 = ZB (t) 60,77, (5.4b)

In Equations 5.4a and 5.4b above the RHS’s are functions of ¢ but the LHS’s are not.
The only way for this to happen is for the fertilities (B and l’;’) to be constants with

respect to time, that is B; (t) = B; and B; (t) = B, when there is geometric growth.

The equations then become

1= > B A, (5.5)

1 = ZB 0; A, (5.5b)

These are just the discrete Lotka-Euler equations expressed for each sex. They are
similar to the characteristic equations of the associated Leslie matrices with \’s the

eigenvalues.
5.1 Existence and uniqueness of eigenvalues

I will now demonstrate the existence of the eigenvalues, this is a reiteration of an
argument made originally by Haldane [16] and later by Charlesworth [7] and Yodzis
(whom we follow closely [48]). T am introducing nothing essential, but repeating the
argument here to show it holds for each of the sexes (for the two sex case) when they
are treated separately. 1 will then show that the A found in both cases must be the

same for the entire population (females, males and couples).
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5.1.1 Existence of eigenvalues

Define the function ® (¢) = —1 + 32 B,;& Y. The roots of this equation are
then the solutions to the characteristic equation above (the \’s). Now as & — 07
then ® () — oo and as £ — oo then ®({) — —1 so by the intermediate value
theorem there exists at least one real positive root. In addition the derivative of
®(¢)is (&) = =32 (i +1)Bl:& " which shows that ® (€) is strictly decreasing
for positive values of £. Thus there is only one real positive root of ® (£) (that is
® (Ar) = 0) which we will denote \jp. In general the roots of ® (£) can be written

Mer = 1€ =1y, (cos ¢y, + isind,). So for ® (A\gr) we have

O (M) = —1+ Y Bty e = g (5.62)
= 14 Byl Hemitn) (5.6b)

= —1+Y Bl (cos [, (i +1)] +isin[~¢, (i +1)]) (5.6c)
= -1+ iﬁi&rk(m) cos [—¢y, (1 + 1)]

+Y_ Biliry "V sin [~ (i +1)] (5.6d)

=«

Separating the real and imaginary parts we get

Re® (Ap) = —1+Y Bl cos[—¢; (i+1)] =0 (5.7a)

Im®(A\p) = Y By ™ Vsin[—¢, (i+1)] =0 (5.7b)
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Rearranging and simplifying

1= > Bitir, "V eos gy (i +1)] (5.8)
0 = Y B, “Vsinlgy (i + 1)) (5.8b)

Now suppose that there is a A\gr greater in modulus than A\ip (i.e. [A\ip| > [Ap|). But

(i+1) (i+1)

|Agr| =71K 0T <Typo0rT] > T for all s. This implies that

1= Bty " > 3" Bt >N BtV cos[p, (i+1)] (5.9)

Which contradicts the requirement from the real part of & (A\) that
o Bilirs 0+ cos [, (i +1)] = 1. Therefore there is no eigenvalue larger in modulus
than >\1F~

What if there is a A\yr equal in modulus to Ajp (i.e. |Ap| = |A1p|)? This implies

that r, =7 and cos[p, (i+ 1) =1foralli = ¢, (i+1) = 2n;7 (n; =0,1,2,...) or

o, = (szf) So for any two different ages + = a and ¢ = b, where B, and B, are greater

(Q(fo) = (Qbi—hf) or ny = %na. Now if for these two ages a+1 and b+1

than zero, we have
are relatively prime and since both n, and n;, are integers then n, = m (a + 1) where
m is an integer so that n, = m (b + 1) but then both ¢, (a +1) =2n,m=2m(a+1)7
and ¢, (b+ 1) = 2nym = 2m (b+ 1) 7 so that ¢, = 2mm in both cases. Thus cos¢, =1
and sin ¢, = 0 and so \,r is real and has the same modulus as A\, therefore A\, = A\{F.
The effective fertilities (B;) are called “honest” (see also Hoppensteadt [18]) whenever
we have at least two ages where B, and B, > 0 and a+ 1 and b+ 1 are relatively prime.
It follows then that for honest fertilities that there is a unique real positive solution to
the characteristic equation (A;r) that has the greatest modulus of all the eigenvalues.

This eigenvalue is the dominant eigenvalue.
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5.1.2 Swustained oscillations

Fertilities are “dishonest” when there is only a single age of reproduction other than
age zero (semelparity) or reproduction is at two or more ages that all satisfy the
common factor condition (for example ages 1 (i +1=2) and 3 (i + 1 =4). In these
cases reproduction is periodic and gives rise to the phenomena of “population waves”.
In reality only cases where species are semelparous are common. A didactic example
using three age classes was given by Bernardelli [1] which exhibits sustained oscillations

in all three age classes.

5.1.3 Uniqueness of asymptotic growth rate (dominant eigen-

value)

A fixed ratio between age classes implies that the fertilities become time independent
once a stable age distribution is achieved. As we noted before, the RHS’s of Equations
5.4a and 5.4b are functions of ¢ but the LHS’s are not. From this we obtained 5.5a
and 5.5b. This also implies that the growth rates of all the subpopulations must be
the same. In order to show this we substitute 5.3 in Equations 4.11a and 4.11b and

rearrange,

@ min{i—a,j—a&}
. _< )tZ ZJ iy St (5.102)
2 — h,i,j I -1Ua
j=a

=i

B t w mln{z o, j—a&} Ch
I _717.]
- ()X ¥ Ay (3100)

=«

Again the LHS’s are constant with respect to time. Since the RHS’s are functions the
power of ¢, the ratios inside the brackets must be equal to 0 or 1. And since we are

not interested in the trivial case, \p = A\¢ = A\yy = A. Now from 4.13a, 4.13b, 4.14



36

and 5.3 we have,

= gi)\iiﬂo (5.11a)
M; = [ ;)7M, (5.11b)
Cy o= LAy (5.11c)

The Lotka-Euler equations, then are interchangeable for both sexes and provide the

same eigenvalues as required. To see this note that

L= D By (5.12a)
w @ min{i—a,j—a&}
Chis
=2 Z i Z{’]W\ () (5.12b)
i=o j=& =

w & mm{z o, j—a}

=3y Z fh”_h” (5.12¢)

i=a j=& =0

w & 1’1’111’1{2 o, j—a}

E, = ZZ Z fh,i,th,z',j (5.12d)

i=a j=&

But this is just the total number of female births at time 0 where f,;; is a fixed
parameter defined as the number of female births per couple (of male age j, female
age ¢ and mated h years). Similarly fhm is a fixed parameter defined as the number

of male births per couple, so we can get the total number of male births at time 0 by

replacing f,; ; with fh,z’,j

w & min{i—o,j—&} w & min{i—a,j—a&}

Z Z Z JniiChi; = My = Z Z Z ho,i,thJﬂ' (5.13)

i=a j=a i=a j=&
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Then working backwards

w & min{i—a,j—a&}

M, = ZZ Z fh,i,jgh,z',j (5.14a)

i=a j=d&
w & mln{z a,j—&} B Chl' .

1 = Z Z Z fh,z’,j_M: (5.14b)
i=a j=& -

& w mln{z a,j—&}

L=22 X o St o= (5.14¢)

j=& i=«

1 = Z B ix Y (5.14d)

5.1.4 Conditions on marriage function

I will have to admit to some slight of hand, since I assumed that C}7 (t) = \' C}
But what I failed explore was the fact that the number of couples are them-

selves dependent on the number of males and females in the population by the relation

Co? (t) = picaPy T NH 1 (F (t—1),9(t —1),&(t — 1)). Now in general C}7 (t)

will equal A C}7 only if C¢/ = A 'p,_1pj NTH971 (52, 20, €)

= pi1 P N (ATIEE AT, AT E) that is AT (90, €) must be a homo-

geneous function. The proof is as follows. Assuming \ exists

Gy (t) = N'Cy (5.15)

By rewriting the left hand side we obtain

Col(t) = piap; NTWLFE(t—1), M (t—1),C(t—1)) (5.16a)

= pi 1p] 1/\/‘2 1,5— 1()\75 18' )\t 1ms )\t 1@) (516b)



38

And by rewriting the right hand side we obtain

NCH = XCy (0) (5.17a)
= ANpi 1P aNTHTHE (1), M (=1),¢(~1)) (5.17b)
= Atpz'—125j—1/\/’i_1’j_1 ()\_1 3, AT A‘lg) (5.17¢)

So equating the last lines of each of these, canceling the p;_1p,_1 term and multiplying

through by A™" we have

)\715'/\/‘2'71,]'71 ()\1571557 )\tflms7 )\tflg) :Nifl,jfl ()\71 ﬁé" )\71@57 Aflg) (518)

fort=1

)\*1/\/‘2’*1,]'71 (ﬁ.iﬂ&‘)g) — ]vz'—l,j—l ()\71 557 Aflm.i Aflg) (519)

If this is true we will have the existence and uniqueness of solutions to the character-
istic equation given above and the population will asymptotically approach a stable
(geometric) age distribution for honest fertilities and either stable or periodic geometric

distributions for semelparous and dishonest (iteroparous) fertilities.
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5.2 Sex ratios

Note also that the secondary sex ratios at each age become fixed over time,

M, IXTM, N
=1,7 3J ( ) E2 g/l)\—zEO gz)\—z —010

(5.20)

and the (objective) primary sex ratio (the sex ratio at birth)

Soo = E_o (5.21)

But

w @ min{i—a,j—a&}

= A" Z Z Z fh,i,th,z’,j

i=a j=&

and

w @ min{i—a,j—a&}

=AYy Z i iChi;

i=a j=a&

(5.22a)

)

PREDDIND Dl - S F /P
AT 5 Sopntizes—al J0,3Ch i 5

min{i—a,j—d&} ~ifh,j7hcifh,j7h
_ 22 aZ] az f~h —=h (522b)

Zz OLZJ azmm{z i=a fh,’ianh,i,j

min{w—4,0—j5} z’,jcﬂ',jo_i,j
— Eita Xyos Y I h —h h (5.22¢)

DD Dyl azmm{” I o

We can see that the objective primary sex ratio (the primary sex ratio realized by the

population) is a weighted average of the subjective primary sex ratios (the primary sex

ratios at the individual level).
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5.3 Recap

In summary (and for convenient reference) we write the crude birth rates and the Lotka

type characteristic equations

@ min{i—a,j—a}
Bo= S Y, S (5.23)
= — h,i,j F .
j=a h=0 =i

w min{i—a,j—a} C

B, = Z Z Fuig _]\?’j (5.23b)
i=a h=0 ==j
1 = > B £; \0Y (5.24a)

1= Y B ;A0 (5.24b)
j=d&



Chapter 6

Proportions

Assuming the existence of non-trivial (positive) solutions of the above stable age dis-
tribution (A > 0) then we can make the following statements regarding proportions of
individuals within each age class. Summing up total females (maximum longevity 2),
total males (maximum longevity Q), total mated couples, total newly mated females
of age i, total newly mated males of age j, and total couples mated for h seasons (I
will use dot notation to indicate sums over the entire range of particular index when

other indices are not summed over).

6.1 Proportions derived from state variables

Q Q
F =Y F,M=> M, (6.1a)
=0 =0
Fy = iﬂz , My = iMJ (6.1b)
i=« =&
min{w—i,0—j} N min{i—a,j—&}
Qi] = Z Q;{ljv Q'ﬂﬂ' = Z Qh,i,j? (61C)
h=0 h=0
w—h o—h
e =>"Y "¢, (6.1d)
i=a j=&
w & min{i—a,j—&}
=22 2 G

i=a j=a& h=0

w & min{w—1,0—j5}

= Z Z Z c. (6.1e)

i=a j=a& h=0

41
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We can then express the proportions of individuals in each age group once a stable

age structure is reached. Let

|
<
|
B

I

T = Ei,yjzi,ﬁAEE,andyAEE (6.2)
i QZ’J i QZ:J C.; (G
z? = Eh, P ol Zeij = Q 2 and 2z = Eh (6.3)
The fraction of each age class that is single (by sex) is
F$ M?
= = d m, = =—. 6.4
f F, an mJ M] ( )
The proportion of all single female and male adults of reproductive age is
FS MS
) = E ,and (m) = ﬁA. (6.5a)
Note also that for monogamous mating (the assumption here)
F? c
= ==1-= d 6.5b
M? c
= = =1- = 6.5
m) = =1 (6:50)

Dividing Equations 5.11a, 5.11b and 5.11c by F', M and C respectively we obtain

r, = U\ 'z, (6.6a)
yj = gj)\ijyo, (66b)

Z;g _ Ezj)\_hzé’j. (6.6¢)
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Summing and rearranging

1
Ty = —————, 6.7a
' Z?:ogi)‘_z ( )
1
Yoo = Za (6.7b)
Zj:[)g])‘
Define
N min{w—1i,0—75} N
A= N L, (6.8)
h=0

(see footnote!) for couples mated at ages i and j, this is the expected number of
couples mated for all lengths of time per new couple. Or (A™ )_1 is the fraction of all

couples mated at ages ¢ and j, that are in their first season (time interval).

w & [minfw-i@—j} © @
=22 X AT A =D > AT (6.9)
i=a j=a& h=0 i=a j=&

and some more relationships

LA
Zk:O 2
D
Yy = QJ—N_k (6.10Db)
Zk:o 2
Fy YL.E < > LiX”
. = =4 _— Lgizazdi p; = =i=a 6.10c
CCETTE TR 010
M, YiaMi & Y sl
M M j=a 22:0 oA~
) F. F Fs
M = FA_ZZ;FA ‘F~ FF,F

=Y Fg= M (6.11)

2

!Since the notation “mj,; ;" is undefined so is Ly ;; and A; ;.
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and

I j=a j=&
= Y Z;}:a CiATmy
= Y Yy o e (6.12)
e A > ica biA
6.2 Sex ratio and birth rates
6.2.1 Primary sex ratio
The objective primary sex ratio is
min{w—1%,0—j5} zgﬁzg)\hzg 4,7
Suo— POy Drilt) i I (6.13)

SIS e

6.2.2 Birth rates (fertilities)

I will here derive the crude birth rates in terms of proportions. The next few line will
just show the algebraic manipulations necessary to arrive at the correct expressions for
female and male fertilities. For female, expanding the ratio of couples aged ¢ and j
and together for h seasons (i.e. paired females) to total females of age i (C);;/F;) in
terms of ratios (€}, ; ;/C the fraction of a particular age classification out of all couples,
C/F , the fraction all couples (i.e. paired females) out of all adult females, F,/F the
fraction of all adult females out of all females and F,/F the fraction of all females age

i out of all females) and then substituting parameter values we have

& min{i—a,j—a}

Cuiy C F
B-) Y AR PR
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& min{i—a,j—a&} -
= fnag znig (L=Af)) —

T

<
I
o)}
>
I

o

@ min{i—a,j—a&}

T4
= Y Frigonig
T; “—
j=a& h=0

w o _; @ min{i—a,j—a}
S A S
- (1 DS m Z Z Z Friig2nig

@ min{i—a,j—a}
Zz’ oag A
e S S
B j=a h=0
w @ min{i—a,j—a&}
e e VD S A
@ min{i—a,j—a}
’— 1_ i’ i— 7 i—
e Ml MR S R

And for males we go through a similar process

w min{i—a,j—a&}

= Z Z ho,i,j Zh,i,j (1 — <m>) y_A

Yj

w min{i—a,j—a&}

_ yA Z Z fh,i,jzh,i,j

Z@:&gv)\_jm' Z:& _' w min{i—a,j—a&}
(1— L T DD Jnigmmag

=« h=0

Z(I) gj/)\_j w min{i—a,j—a&}

_ 2.j=a —my)
- i g § FriiZni
J 1=«

Zu‘)’_~ f])\ 1 _mJ w min{i—a,j—a}

_ 2uj=a Fi—hj—h _i—hj—h
= B\ h Zh
J i=o




46

o f A\ 3’ 1 — w min{i—a,j—a} } ' } ' ' '
_ Z =& £ - - J Z Z }zl—h,g—hﬁz—h,j—hAthé—h,g—h‘ (619)
J i=a

The final expression is the ratio of all couples to males (for instance) of age j times the

expected fertility of all males of age j (the double sum on the right) in a stable age

structured population.
6.3 Reexpression of characteristic equations

By plugging in the above reformulation for the crude birth rates, we can express the

characteristic equations in terms of proportions also. For females

w @ min{i—a,j—a}
(Zg)\ 1-]3)22 Z fzh]hzh]h

i'= i=a j=a&

w & min{i—a,j—a&}
SO SRIEEID o ol S S RN

i=a j=a&

(Z 1_f )) rmn{wzaw &} i Z 2 hoj— h i— h] h)\ (h+1)Zé—h,j—h

1=a+h j=a+h

Sy e

i=a j=&

(Z A (1= )

Zl_

)min{u o,0—6} w—h O—h

w & min{w—i,0—3}
(Zf A1 =y >ZZzé’j > J fid L0\~ (h+ D) (6.21)

il= i—a =& h=0

And for males by analogy

1_25 0; A~UTD



47

& & w min{w—i,0—j}
= AT (1 —my 25 Fil L7 X~ .
(Zf A ))ZZ i > R Aty (6.22)
jl=&

j=& i=a h=0

6.3.1 Expected fecundity over the lifetime of a marriage

For a population at stable age distribution we define

me{w i,0—j} fi,jﬁi,jA—h me{w i,0—j} fi,jﬁi,jA—h

i\ — v

<f > - Zmln{w L,w—7} Ez ])\ h A (623&)
- mln{w L,O0—j} 76,5 pigy—h mln{w i,0—3} Fij pigy—h

i\ Done LN 2 FraLhin- 6230

< > - thi%{w_i@_j} LZj)\—h Absi ( : )

These are the expected fecundities of a couple that were mated at ages ¢ and j averaged
over the lifetime of the marriage in a stable age structured population. And
Fi,j n{w—i, G-} i pij iy
B <f > thln{w i,0—7} ’th’JEhJA h

iy = N/ In ~ 6.24
<U > <fz,g> me{u i,w—j} fz,]L;ZJA—h ( )

is the averaged subjective primary sex ratio for a couples that were mated at ages i and

j (averaged over the lifetime of the marriage in a stable age structured population).

6.3.2 Characteristic equations using expected fecundity

1= (Zf AT (1 -5, )ZZU”W\”Z” (6.25)

i= i=a j=&
and
1= (Z A0 (1 - w)) SO (A (6.26)
§'=é i—a j=6&

All the above expressions of the characteristic equations are the expected fraction of

the population paired times the expected population produced per couple (the double
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sum) in a stable age structured population for example rearranging Equation 6.25

D AT (1 =) = — ! . (6.27)
(fid) A zg?

e

i'=«

i=aj

I
[o}}

6.4 Fisher’s reproductive value.

The concept of reproductive value has it’s analogy in finance. As Fisher [9] puts it

“The analogy with money does, however, make clear the argument for
another simple application of the combined death and reproduction rates.
We may ask, not only about the newly born, but about persons of any
chosen age, what is the present value of their future offspring; and if the
present value is calculated at the rate determined as before, the question
has the definite meaning — To what extent will persons of this age, on
average, contribute to the ancestry of future generations? The question is
one of some interest, since the direct action of Natural Selection must be

proportional to this contribution.”

Another way of interpreting these is at the present time one girl age ¢ will contribute
to future generations (on average), at some specified point in time, as much as V;
newborn girls now. These values typically increase up until the age of first reproduction
and then start to decline again. The reason for this is that the reproductive value
takes into account both the delay in time till reproductive ages and the probability of
surviving to those ages. The reproductive values for newborns (when i or j = 0) are

just the original characteristic equations in the previous section.
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If V; is the reproductive value for a female at age ¢ and f/J is the reproductive value

for a male age j.

P

Vi = & Z Bl =D = 72 B lp)~E+Y (6.284)
Ly - max{i,o} v k=i
A if i <a

= i (6.28D)

XN Bulph Y it i > a

~ \ @ . NG .
Vi = = S B =25 B a0 (6.29a)
gj k=max{é,j} 7 k=j
A if j <&
— & - (6.29b)

”Z,”B,gek kD i § > &

Rewriting in terms of proportions we have

i w & min{fw—io—j}
Vi = X (Z“ (k+1) >ZZ Z FELENTRZET(6.30)

i'=a j=&
~ )\j G w len{wzw]}uﬂ .
Vo= = (Zm—“*” (1- )ZZ > e e
J k=j i=a j'=&

6.5 Gross and Net reproductive rates

The gross reproductive rate is the expected number of offspring that a newborn will

have over its lifetime if it survives from birth to the end of the reproductive span.
GRR = > B, (6.32a)

w w & min{i-a,j-&}
- ( (1— s )ZZ Z IR T (6.32D)

i= i=a j=&
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for females. And

GRR = (6.33a)

M
[

e

J

& w min{i—a,j—a&}
- ( (1—my )ZZ Z il mi=h(6.33b)
=&

j=& i=a

for males.

The net reproductive rate is the expected number of offspring that newborns have
from birth to the end of the reproductive span (subject to survival). In other words
the factor by which the population will increase in one generation. For a population

with a stable age distribution it is

R, = Y B (6.34a)
Z:aw w & min{i—a,j—a&} ' , } '
= (Z o (1= ) Y Z y T T (6.34b)
i'=a i=a j=&

for females. And

R, = ZB]’~j (6.35a)
j=&
" B @&  w min{i—a,j—a&} B ' ' ,
_ zj,(1—mj,)> i i=hi=h (g 35p)
i—a j=a& i=a  h=0

for males.
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Since A, ¢;,and Zj are all non negative and for B,, Ej,there is at least one value of

each which is positive on the intervals [o, w] and [&, @] respectively then

R, < lel<leR <1 (6.36)
Ry = led=1aR,=1 (6.37)
Ry, > 1leA>1aR >1 (6.38)

This can easily be shown by a Taylor expansion of the characteristic equations. For

example for females,

1 = zw:g,.& A0

- Z@.& +3 ) (- (Z ; k) (A—1)" B,

= B+ Y)Y (1) (sz> (A — 1) B, (6.39)
Hence
Ry=1+\-1)> (i+1)Bili—O[(A—1)7] (6.40)

When A = 1 each of the higher degree terms of the Taylor expansion are zero, so
R, = 1. Conversely when R, = 1 the higher degree terms of the Taylor expansion
must sum to zero, and the only way for this to happen is if A = 1 due to the positivity
of the B,/; terms. When \ > 1 the sign of the 1% degree term is positive so R, > 1.
When A < 1 the sign of the 1% degree term is negative so R, < 1. Again the converse

arguments hold true due to the positivity of the B,¢; terms.
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6.6 Generation time

Keyfitz [26] states

“The net reproductive rate Ry is the number of (her own) girl children

by which it is expected, under the current regime of mortality and fertility,

that a newly born girl child will be replaced. A reasonable definition of

T, the length of generation, is that it is the time in which this replacement

occurs”.

For the two sex model there will typically be two different generation times one for

females and one for males. By this definition we have for females

Fy (1)

RO (t) FO (t — T)

Sl Bit—=1)6EF (t—1—14)

Yor o Bi(t =1 =Tg) LiFy (t—1—Tg — 1)

And for a population with stable age structure

YL B MR,
B DI  HO U O
NTUE S BN

NTIReE 3 Bl

= Mo

So for females and males,

e =R, and Mo =R,

(6.41a)

(6.41b)

(6.42a)

(6.42b)

(6.42¢)

(6.43)
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Solving for T', and T, (for a non-stationary population, A # 1)

6.6.1 Mean age of parentage in a cohort.

The mean ages of parentage (e.g. childbearing for females) in a cohort are

Moments of the maternity (paternity) function

(6.44)

(6.45)

The moments of the maternity function (or paternity as the case may be) can be

written

R,(t) >, i"Bi(t)l;
Ro(t) Y2 Bi(t)¢;
Ro(t) _ X;-ad"Bi(0)0
Ry (t) SiaBi ()

(6.46)

(6.47)

(6.48)

(6.49)

These are parametric discriptions of the distribution of the crude birth rate over the

age of the females or males. For example y, is the mean age of parentage as I've already

stated, u, is the variance of age of parentage, 114 is the skewedness of age of parentage,
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etc. T’ll use these moments later on to compare the different measures for the time

between generations.

6.6.2 Mean age of parentage in a population with a stable age

distribution

The mean age of parentage in a population with a stable age distribution for females

and males respectively are

S iB AT

A=55 oy and A= 25— (6.50)
Yo Bl Y e Byl
But Y7, BA ) =1=52 B n 0+
A= Z iB.AN " and A = ngjgjﬁm) (6.51)
=« j=é

6.6.3 Moment-generating function and cumulant-generating

function for the net maternity function

Define (for females)

Y (&) =) B (6.52)

Writing successive derivatives
Lot = Yt (6.55
dé A o

L) = Y #Btes (6.53D)
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Evaluated at £ =0

(o = Zﬁi&zﬁo (6.54a)
d “
b © L ;zﬁi&:ﬁl (6.54b)
2 “
d_§2¢ (€) o = ; i’B.l; = R, (6.54c)
d" o
! © o ;z&&—ﬂn (6.54d)

and

o En

n=0

Then % is the moment generating function for net maternity function and In [%]
ELT)) =20

is the cumulant generating function

1 da R

In {%ﬂ => nni—T (6.56)

n=1

To relate the cumulants to the moments of the maternity function

o Ron
. {@w(@] _ 2o L (6.57a)
dg R, D neo Bny
2 o Rnins 2R\
En[)]  Diofeag  (Tipfd (6.57h)
df EO Zn:O Rn+1 nl Zn:O an
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Evaluating at £ =0

In e =0 (6.58a)
| Ry | £=0
4 [LO) B (6.58b)
d§ L Eo dle=0 Ry
d2 r 7 2
Ny LA | (&) (6.58)
d§ v €=0 Ry Ry
The Taylor expansion is
VO] _ R, (R (R & &
In | 2222 =2 2 _ (X S .= S 4. 6.59
n[ﬁo RO§+ R o 5 T l€1£+/i22+ (6.59)
So the cumulants can be related to the central moments as xk; = g—; = W ke =

2

Note that analogous expressions can be written for the paternity functions

6.6.4 Relation between the mean age of parentage in a cohort,
the mean age of parentage in a population with a stable

age distribution, and the generation time.

If we let £ = —In A then we can write the expression for generation time (for females)
as
In R, 1 1 1 P (—InA)
poo B 1 LN 1 6.60
6T Tn T Ina n(ﬁo) T A “[ AR, (6.60)

since 39 (—InX\) = >0, B;¢; Y s the characteristic equation (equals 1)



S7

In A
= 1+ o Ko

In A
= e -

Now assuming B, ~ constant with respect to A

d
51/1 (—InA)

Relating A to the cumulants

—Lyp(—=1In )
_ 12N
4= A (—In \)

_ d;‘; i B

- i iB A )

= —A

[denominator = 1]

= 25 %00 = (—)\d%\ (—ln)\)) <Liw (5))

¥ (§) dXdg

1 d d

¥ (&) dE

- eV (&) =oe I (¥ (&)

¥ (§) d€ 3
() )

R,

(6.61a)

(6.61D)

(6.61c)

(6.61d)

(6.62a)

(6.62b)

(6.62c¢)

(6.632)
(6.63b)
(6.63c)

(6.63d)
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_ 4 {ln (w)] [R, is constant with respect to ¢] (6.63e)

dg R,
d o~ &
= ; fon (6.63f)
B oC é-nfl
= Yoh (6.63¢)
= _ In\)" !
= -1 n(i 6.63h
>0 e (6.630)
Then A in terms of the moments is
o > n—1 (ln )\)ni1
In \ In \)
= K1 — TFLQ + %I‘Lg — (664b)
In \)?
= El_(ln)‘)ﬁg+( 2)&3—--- (6.64¢)
Twice the generation time minus A gives
n 2
oy = 2+2p — (), + 8y —
—A = — { — (InA)p, + lm) S, — w (6.65)
2IG_A = 2—|—/j,1 (ln)\)HB_...
Solving for T; to a second degree approximation we have
(A + E1)
Torml4—=—— (6.66)

2

A slight over estimate with error on the order of { 12 ,u This is different than reported
in Caswell [5] {T o R~ M} which is due to my starting count of age at 0 whereas

he starts at 1 (see also Coale, [6] for the continuous time derivation). A similar result

),

holds for the male generation time i ~1+ (i) For a stationary population the
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time between generations is exactly the mean age of reproduction (starting counting

at 0) plus one.

To = 1+p =1+ B (6.67a)
To = 1+0, =1+ jB; (6.67b)
j=d&

since A = 1 implies Ry and RO =1.



Chapter 7
Marriage function

7.1 Conceptualizing the marriage function

7.1.1 Properties for a “nice” marriage function

The marriage function N7 (§F* (t) , 9% (¢), € (¢)) is a function determining the number
of new pair bondings between females of age ¢ and males of age j at time t. There are
seven mathematical constrants (conditions) expressing the behavior a “nice” function
should have. The first six of these conditions are somewhat intuitive. ~Conditions
(i)-(v) and (vii) have been stated in one form or another by many authors, see for
example McFarland [31] and Fredrickson [11]:

(i) the marriage rate is always non-negative,

NI (F°,90°,€) > 0 (7.1)

(ii) if there are no singles of either sex of any age class then there are no marriages

in the corresponding age class,
NI (F°,9°,€) =0 if either F =0, or M =0 (7.2)

(iii) the number of marriages of particular age couples cannot be larger than the

minimum number of singles of either sex available to marry,

Zj N (35,000, €) < Ff (7.3a)

and > NY(F,0°,¢) < M; (7.3b)

60
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(iv) increasing or decreasing the number of singles in the age classes marrying,

changes the rate of marriage between those age classes in the same direction,

52N (37,907, €) = 0

for ' >0, and M; >0 (7.4)
)

aM;Ni’j (8%, 9m°,¢) >0

(v) increasing or decreasing the number of singles in the age classes other than

those marrying, changes the rate of marriage in the opposite direction (competition),

srs N (3,00, €) < 0

TN (37,900, €) < 0

7

for F? & Fi,;>0,and M & M, >0  (7.5)

(vi) increasing or decreasing the number of already mated couples of any age classes,

changes the rate of marriage in the opposite direction (interference)

a . ;1 s
aC“’lem (3°,M°,¢) <0 for F >0, Mj>0,and C;” >0
h

(7.6)

(vii) scaling all components by a constant (positive) factor scales the rate by the

same factor (homogeneity),

N (EF, kN° k@) = kN (5,95, €)  for k > 0 (7.7)
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7.2 Proposal of a marriage function

7.2.1 DMarriage rates and the type II functional response

There are various possibilities for the specific form of the marriage function. The
most common approach is to base the rate of contact between sex-age classes on some
partition of a generalized (power) mean of the interacting classes (Keyfitz,1972 [24],
and Schoen, 1981 [43]), with a generalized form of the harmonic mean usually the
function of choice since it meets all of the criteria listed above. However, rather than
just using a function chosen for it’s mathematical properties I will develop a model
here based on a process of encounters and sequential courtships. The approach I take
is analogous to the extention of predator-prey interaction in Holling’s disk equation
(a type II functional response; Holling, 1959 [20]) that is further developed into a
prey-based optimal diet model of foraging behavior by Stephens and Krebs (1986 [46]).
Following these developments define T as the average length of time to successfully
find a mate, T, as the time within that interval that an un-mated individual - the
“searcher” (sounds better than predator in this context) - devotes to searching for a
mate, and 7T, as courting time (equivalent to “handling time” in the foraging theory
jargon) . In this case I include pre-reproductive mating related behaviors in the
definition of courting (such as nest building) though the courtship time includes all
unsuccessful courtships as well as the successful ones. 1 will also specify a fixed
amount of time devoted to non-mating activities T,. So T = Ts + 1. + T,. If the
average number of marriages per male in this time interval is N then marriage rate per

single male is n

T+ 1.+ 1,
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The time spent doing non-mating related activities is a constant fraction (1 — ¢) of the
total time T, = (1 — &) T bwt T = T+ 1. +T, 80T, = (1 — &) Ts+(1 — &) T+ (1 — &) 7.

Solving for T, explicitly T, = %ETS + %Tc

~ N
n = = =
Ty + T + (55T + 152T0)
¢N
_ 7.9
T T (7.9)

Probability of initiating a courtship

I will also assume that the encounters between males and females can be partitioned
into courtships initiated by the males and those initiated by females. When courtships
are initiated by males we will say that the males are the searchers, and when initiated
by females we will say that females are the searchers. Define n and 1 — n as the
probabilities that a given courtship was initiated by a male or a female respectively.
The initiation will be viewed as an instantaneous event so that the probability of
simultaneous initiation by both parties is negligible. There is a fair amount of research
that has been done on who and how initiation of courtship takes place in humans (see
for example [47] , [42], [12]). Monica Moore for example provides a list of 52 different
non-verbal signals that females use to initiate courtships and their frequency of use in
approximately 200 subjects [34] and in a separate study the nonverbal signals used to
discourage courtship [35]. T. Perper estimates that women are responsible for initiating
courtships about 2/3 of the time [36]. I am unaware of any studies that breaks down
initiation by age though. In many organisms it will no doubt be the case that these
parameters will be rather nebulous quantities and difficult to measure. There are many
factors that could come into play such as pheromones, sounds out of range of human
hearing, subtle display patterns, or other signals which are not recognized by human

investigators. Indeed it would not be surprising that the frequency of initiation also
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turns out to be confounded by the the age predispositions (see below) and relative
density of the sexes of those age classes. Of course this is not necessarily the case
for all organisms though, and in many cases, particularly when one sex or the other
exclusively initiates, the situation is more clear cut.

Now if € is the rate of encounters that a male makes with single females per unit

[encounters]
[time searched][male]

time searched (units: ), q is the fraction of courtships that result in a
[marriages|

conriships] ), and p is the fraction of encounters that result in courtships

marriage (units:
[courtships]
[encounters]

(units: , an encounter is considered a potential courtship) then N = nqu'T 5

is the average number of marriages per male that occur in length of time 7s. If the

“individual-hours” spent courting per courtship is A (units: [tim“[zzzﬂﬁgil[ga]%]) then the

overall time spent courting is 7, = hpET,. Hence the marriage rate per single male is

= nacpET, _ ngipE
T, + hpET, 1+ hpé

(7.10)

An analogous expression can be formulated in the same way for the marriage rate per

single female.

7.2.2 Age specific marriage rates

Now let [S (SS)] g (or just & ; for short) equal the rate of encounter that single males
age 7 have with s:mgle females age ¢ per unit time searched per single male age 7, The
constant ¢; is the average fraction of total time that a single male spends pursuing
mating activities, ¢;; is the proportion of courting couples that marry, and h,; is
the average “individual-hours” it takes for a courtship between a male age j and a
female age i (we assume that this is the same whether male or females initiate). The

probabilities that single males (j) or single females (z) will initiate an encounter with

the opposite sex of indicated age are 7, ; and (1 -, j) respectively.
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Age predispositions and joint age predispositions

Define a;; as the probability that a male age j will want to court a female age i

[courtships between 7 & j (acceptable to males)]) And a. . is the
. ij

upon encountering her (unlts: [encounters between 7 & 7]

probability that a female age ¢ will want to court a male age j upon encountering
him. I will call these the age predispositions. The joint predisposition is a; ja;; = p; ;
(probability that a male age j and female age ¢ will want to court each other). Then

the rate at which male searchers age j marry females age i is (at time t)

n; Jéng,jm &y ()
1 + Z ’—a 1 pZ, hilﬂ'gilﬂ' (t)

n;;(t) = (7.11)

7.2.3 Explicit encounter rates

Assume that mixing is proportional to the fraction of single females that are age i so

that the encounter rate is

. - Fs(t
81'7]' (t) = k@j ( )s . (712&)
Zz’—a 1 F ( )
When females age i search the encounter rate is
MS

VS M ()

Where l%z ; 1s the rate of encounter that single males age j have with single females age ¢

per unit time searched per single males age j per fraction of single females that are age ¢

[encounters between ¢ & j (resulting from males searching)]
time searched][single males age j][fraction of single females that are age ¢

(units: ; ]). Noting that [fraction
of single females that are age 7| X [search time] is the average search time wherein females

of age i are encountered [search time attributable to females age ¢| we can re-express the



66

[encounters between 7 & j (resulting from males searching)] )

units as <[sear(;h time attributable to females age 4 |[single males age j|

C k RO
~ /’717] Jp’L ] ,]QZ,] Z“—’ 1a L Fls”( )
+ Ez’—a 1 Pir Zlv.] i'j e //,a L F3 Fs,(b)

= o it (0 (7.13b)
S Ein () + 30020y po ki shi 5 F3 (1)

The average marriage rate between males age 7 and females age ¢ when males age

j are initiating the encounters

(7.14a)

Similarly for females age ¢ initiating with males age j

Ff(tng (1) = a- 77”)0’[) ik My () F7 () (7.14b)

chu L (1 pigrhi ki o) M, (t)

7.2.4 Preferences

Preference coefficient

Let
Wij =1+ p; jhiki; (7.15)
o [time courting between female ¢ & male j ]
(umts. 1+ search time attributable to females age ¢
g

[tlme spent in mating activities between female ¢ & male 7 ]
[search time attributable to females age i |

). Call this the preference coefficient of

male age j for female age i. And, of course w; ; = 1+ p; ;h; jki ;.
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Preference probability

Rather than dealing with the preference coefficient it may be more intuitive and prob-

ably easier to estimate a preference probability i.e.

o Wy
Vijg =

_ (7.16)
Dy Wit g

This is the standardized fraction of time that initiating males age j spend in mating
activities with female of age i (it is the fraction of time that initiating males age j
would spend in mating activities with female of age ¢ given equal numbers of all age

females'). Let

oo MgCikiPigis _ MiiCikiiPisis (7.17)
" 1 + pi,jhi,jki,j Qz}i,j

[marriages between ¢ & j (resulting from males initiating)] .
single males age j][search time attributable to females age ¢ | *

(units: :

ime spent in mating activities between female 4 & male
ti pent i ting activities bet f lei & le j
[search time attributable to females age i |

o [marriages between ¢ & j (resulting from males initiating)] )
" [single males age j][timne spent in mating activities between female 7 & male j | /?
. . ~ Iy “ .
and u;; = (1— nm) cikijp; ;ij/wij- 1 will express the rate ¢;k;;p; ; as “existent

courtships” per unit time, this means that because courtships resulting from males
initiating is calculated from the rate l;;” p; ; as if this were a continual process without
break for non-mating activities, and mating activities are only occurring for a ¢; fraction
of the time, then to get the number of courtships that “exist” in the time that is
actually available we adjust by this factor (¢;). Note that wu;; and @, ; are the maximal
rates of marriage between female ¢ & male j for female initiating and males initiating
respectively. By maximal we mean that (for @, ; for example) this would be the rate

per male age j if the adult female population consisted entirely of females age ¢ or if

!There is an assumption here that the preferences also do not effect the time spent
on non-mating activities.
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males age j had a sole preference for females age :. We can then write

~ 0, F7 (1) .
M?(t)n (1) = ——2 w; ; M? (t 7.18a
O () = s M (0 (7.150)
And for females initiating
vi i M; (t)

wi F2 (1) (7.18h)

Big B (1)
!

D represents the actual fraction of time that
il=a—1 1.7 4!

initiating males age j spend in mating activities with female of age i, and a similar

interpretation for the females initiating.

7.2.5 The overall marriage rate

To obtain the overall rate we sum the two rates.

vZaJ‘Fz (t) & - M3 (t)+ Vi,j J ()

NY(t) = =7 ij 51
Dir—a Ui i F (1) ’ Zj’:d—l v; 5 M, (t)

u;  F (1)

NU(t) = Qiy (B° (1), M (1)) Fy (t) M; (t) (7.20)

where

Qi (8° (1), (1)) = ( e o ) (7.21)
J Zz’l;}l_l Uz'IJF;S; (t) Zj’:lc]_1 Uz’,j’M;, (t)
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(or just Q;; (t) for short). The average marriage rate between males age j and females

age ¢ once a stable age distribution is obtained is

Ml’] _ - 1,7 Z~,J + — 1,7 Y4,7 >E;SMS (722&)
(zi,_;_lw,jzz Sia vig My )
= Q, EM; (7.22b)

7.2.6 Competition, interference, and facilitation

I note in passing that we can also include terms for competition, interference, and
facilitation in the denominator. If, for example, the rate of mixing with singles of a
particular age is reduced by competition from others of the same sex and /or interference

from already mated individuals the rate (for males) might look like

a; ;0; 5 F7 (t)

5—1 w min{i'—a,j—a} 1 (7.23a)
GMp)+ > X OGO )+ 30 U B (1)
j=a—1 i'=a h=0 '=a—1
and for females
’Uq" "UL MS (t)

w—1 @ min{ifa,;fdj} - O—1 (723b)
, > 1§i’F;S' )+ > hZO Uy Chiy (t)+ > lvi,j/MjS, (t)
i'=a— j'=& = §'=a—

Rather than expand this mess I will just note that we can easily see that the numerator
of N7 (t) stays the same while the denominator re-scales in terms of F (t) and M? (t)
and gains terms C},;  (t) summed over ¢ and h, and j and h separately. One would
expect that the values of the v’s are large in comparison to the ¢’s and ¢’s and that

therefore the overall rates are reduced but the relative rates are affected less so, since
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the individual effects tend to average out. In further developments I will not here
consider these explicit types of competition or interference from (potentially) non-
mating interactions. Even so there are still indirect effects due to the reduction of
numbers of available mates from marriages that do occur. And finally I also note, in
passing, that the actual mating behavior often violates some of the seven conditions for
a “desirable” mathematical function. For instance the mere occurrence of a marriage
may induce social facilitation (copying) among peers (violation of condition vi.), or
increasing the number of competing males (for instance) for a limited number of females
may cause non-linear increase in the number of marriages (violation of conditions v
and/or vii), or mating may be non- monogamous (violation of conditions iii and vii).
For monogamous systems though condition iii must be met (particularly in the case of

discrete time to avoid the embarrassment of negative quantities!)

7.2.7 A quick fix for excessive rates

If the total number of marriages of singles predicted is greater than the number avail-

able, that is Y271, B (£) M: (£) Qi (1) > M (£) or 20, ¥ (#) M2 (1) Quy (1) >
F? (t) then distribute the marriages among singles in proportion to the relative rates
of marriage. The rationale for this is that the time until all the available singles of a
particular age are mated is proportional to the reciprocal of the total marriage rate
for that age class. For example, in the case of female age ¢ marriages, if the to-
tal number of marriages of females predicted is greater than the number available:
Fr ()27 M () Qi (1) > FY (1) or 3270 M; (£)Quy (#) > 1. Now in general
the number of female mates age i that are desired in a single time interval is F¢ (t) =
Fs(t) % ica 1 Qi () M (t) (“d” for desired female mates). But if the RHS is large

enough then all single females age i are mated before the end of the time interval.

They are all mated in some fraction of the time interval 7 (0 < 7 < 1), such that
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TF?(t) = F¢ (t). Then

TR (t) = F (t) = TF} (1) Qi (t) M7 (1) (7.24)

and

T=—=7 (7.25)
dica 1 Qg (1) M (1)

The right hand side of Equation 7.24 can then be rewritten as

TF(t) = F7 (1)
_ Qo () ME L, () F7 () | Qia (t) M5 (1) F7 (2)
. S a1 Q)M () S Qi () M ()

J/ . J/

marriages beh;f;en F2&M:_ marriages be;g'een FP&M¢E (726)
Qi1 (t) M3, (t) F7 (t)
o—1 5
Djma1 Qi () M7 (1)

Vv
marriages between F*& M2
[ @o—1

Thus we see that the distribution of the marriages of females age ¢ to males age j is

Qgi,j(t)M; ® F? (t). Similarly if the total number of marriages of males predicted is
Zj:a—l Qi,j(t)]wf(t)

too high: 321 Q. (t) F* (t) > 1, then we the distribute the marriages of males age

y ; i,J Fq‘,s s : w— s
j to females age i as Zf;?,vl(c?i,j(i)t;f(t) M (t), and if both Sl Qi (t) P (t) > 1, and
Zf;;_l Qi (t) M7 (t) > 1, are true then we take the minimum distributed number of
marriages.

Thus the natality function looks like

N (t) =735 () Quy (t) F (t) M (2) (7.27)

J

where @); ; (t) is defined in 7.21, and

Dgma1 Qi () M (8) D i—gq Qi (1) £ (2)
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For the number of couples
Co™ M (t+1) = pipymiy (1) Qi (1) FY (8) M (t) (7.29)

For the stable age distribution we have N/ =z, , Q. jEfM 2. And from Equations

4.6 and 5.1c we have Qf)’j = A"'pi1p; TN so that

cirtivt — g PPig o (7.30)

~= Tij \ ]

7.2.8 More on proportions

Age distribution of new couples

Dividing through Equation 7.30 by C we obtain

3 s

i+1j+1 DiD; £ M
ZO / - _1] )\-]ngj C C] (731)

Expanding using stable age solutions for the proportions (6.2, 6.4, 6.5a, 6.11, and

6.12)

A png Q E r FA Mj/ Mj’ M M,
’ Ly Y\ EEE C My, M M, C

=1, P20Q, (fewvrz (1= ()™") (mywywi' (1 — (m) ™)

. i -1
= pzp] Q f,L 1— Zz’— Ly A"
_l J )\ T ‘ ZZ’— £1’>\—Z’ ZZ’— £1’>\—1’

~ . ) ~ o —1
gj/)\_J Zj:& gj')\ ! my
X m]/ﬁ 1-— 7
Zj’:& g]")\ Z]’:aé A
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B N\ )\ Fim .
pszQQi | < _ &/\41f2 ) ( _ ?]/\ﬂ'lmj ) (7.32)
I\ ime A (1= i) Zj’:d LA (1 —my)

This can be simplified as

Sl pfj&@A’”“)Ii,ijfimj

= €i+1gj+1)f“*j“)zjﬁjUi,jfimj (733)

where the potential marriage rate with respect to fraction of single males and females

within each age class is

Now

cQ. .
U, —t (7.34)

7] o ~ ~ o
[Simated " (1= fo)] [Shea b 7 (1= my)
B U; jU; 4 U; jVi
QQ” Togw-l - /O + =5 M O
D i—a Vi (£5/ C) ijzaq Vi, g (—j’/ Q)
B Ui jV;,j Ui jV;,j
T «—w-1 -~ FSF, FF 51 M2 My m M
Dima 1 VI T I Lp—ant Vi T, 5 A, O

Ui, Vi, U;, ;U545

+ =
w—1 ~ — —1 o— — -1
S iy O eyt (1= (f)) ey Ui myypys (1— (m))

_ arl',j'ﬁijA (1 - <f>) ui,j:Uj,fyA (1 — <m>)

w—1 ~
Diima 1 U iy Ej’z&—l Ui, 5 W50 Y

i Bij Yo oA (1 DN L
E;uf;(llq By il A" > i—a LA

Uz V5 5 Zf’:d gjl)\_jl (1 Z?:& gj/)\_j'mj/ >
Siza 1 vigmy Ly A > b A

Ui j0ij D oi—e, A" (1—f) n Ui, jVi,j Z;)':& fj’)‘_j (1 —my)
S a1 Tl N S S 1 Vil A my

i'=a—1 §l=é&

(7.35)
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Substituting line 7.35 for QQM in definition 7.34

U; j0;
—1 ~ o ” ~ il
(E;‘f:a,l Vyr gl N fz") (ZC;':& LA (1 - mj’))
Ui, 5V5,5

+ . ~ ” w —
(S o) (a1

Uiﬂ' =

(7.36)

Factoring out the ratio of singles of a particular age class to total number of couples

in the denominator of the time interval fraction, z, ; can be rewritten

Ti; = min {17 o—1 ! s ’ wo—1 ! S } (737)
Ej’=5é*1 QQMI (MJ'/Q) Zi’:a—l QQi/J (Ez’/g)

Furthur expanding and substituting the relevant expressions in the denominator of the

second term of the time interval fraction above,

&1
L
&
L

, M, M, M M
> €0, (M3/C) = 3 0O AT
=a 1 o T _

= CQ, myyyys (1- ()~

Ej’j’_:iifl QQ@jlmj'yj'
ya (1 — (m))

w—1
E]‘/:&,1 QQZ],mJIyJ/

- > (1= {m))”

w— ~ _ o ~ . 1
_ Ej'=13471 QQi,j/mjlgj')\ ! 1 _ Zj:d gj’/\ 7 my
Z?':a Zj’)‘_j/ / '
>3 a CQ, myly AT
>oia by AT (1 —my)

= (i AT (1 —f@) ( wz Ui,j,z?j,w’mj,) (7.39)

i'=a '=a—1
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Similarly
w—1

i'=a—1 '=a-1

> CQ,. (/o) = (Zf/\’ 1—m]><z Us jlo X" fi

So
( )
L,
T, . = min , =
—,7 Z:; aézl)\ Z( )ZJ 1o¢ 1 zjlfjl)\ J ’
1
[ X0 s Lyx—i (1 m,)zw,ja LU LA™t i)

) (7.40)

(7.41)

Finally define the realized marriage rate with respect to fraction of single males and

females within each age class

Uij =1, ;Ui

Then the number of new couples from 7.33 is

i+1,5+1 1)
) =U,, ]€2+1£]+1)‘ I fz

So summing over all indices for zfl’j and substituting Equations 6.6c

w @ min{fw—1i,0—j}

i=a j=&
w & min{w—%,0—j5}
=22 X ATs
i=a j=& h=0
w @
_ 4,5 0]
=D D> A%
i=a j=&

Substituting the RHS of Equation 7.43 for zé’j then

L= N ANGEN Y fimy

i—a j=&

(7.42)

(7.43)

(7.44a)

(7.44b)

(7.44c)

(7.44d)
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Shifting indices
w—1 @-1 _
1= Z Z A”LHI&»H@-H/\*(’“H)Z/lz’,jfimj (7446)

i=a—1 j=a—1

Expanding the @« — 1 and & — 1 terms,

o—1 w-—1 w—1
1 = Z Z AFLIRG 0 AT Sy 4 Z TRy Y N VA
j=6& i=a i=a

w—1
+ Z AT N Uy my + A LN 6 (7.44f)

j=a

Proportion of singles in each age class

Now looking at the proportion of single males in each age class a little more closely

M, if j=a-—1

2 a-—1

me{w o,j— a}zla _zgh if &S]

M —

w

IN

So if & < j < & we re-express the identity above in terms of proportions

w min{w—i,j—&}

M, - M = Z Z cy (7.45a)

s “)mm{wzgoz} ii_h
M3\ M. o
1-—=2 )= = — —L 7.45b
(%)% MMAZZ = o
w min{w—%,j—a&}

(1—my)y; = Z Z 27" (7.45¢)

=

(1-m) = y—%<1—<m>)z Z P (7.45d)

Expanding the proportion of couples in terms of new pairs and then those in terms of
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the marriage rate

w min{w—4,j—a&}
my -1 <1_ _m]) SN A (7.460)
J g
j'=a i=—a

=1- (Zj—w LT (- mj,)> > A (7.46b)

i'=a

w w—1
=1- (gjl)\j Z gj/)\ij’ (1 — mj/)> Z Ai+1’j£i+1gj)\i(i+j)ui7j71f¢mjf1 (7460)
j'=a

i=a—1

Factoring out the terms dependent on j on the RHS (' is a dummy variable) we have

i=a—1

m;=1- (Z LA (1 —my ) (Z AFYIY ol N fz) m; (7.47)

And similarly for the females

w—1
=1- (Zé A ]. — le)> ( Z Ai’j+1uil7jl7j+1)\jmj) fz;l (748)

=a—1

’L/_

Note that the terms in parenthesis on the RHS of 7.47 and 7.48 are constants with
respective to age class. In order to simplify the following manipulations I’ll define the

following two constants

=
Ly
Il
VR
M-
~
b\
>
Ly
—
|
3
~__—
&/\
€
N
=
+t
Ly
<
L
R
S
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The individual terms of Equation 7.47 can be written as a function of these constants

Ma41

Ma42

1— f(jmj,l
1— Ks

1 — Ko + Kani K

11— f(&+2 + f(&+2f(5¢+1 — Ka+2f(&+1f(a

jfg nm:&
1=> (-1)"]] Ki-m
n=0 m=0

And simarlarly for the individual terms of Equation 7.48

fi
fa
foz—l— 1

foz—l—Q

fi

fi

Note that

1 — Kifi1
1- K,

11— Ka+1 + Ka—l—lKa

11— Ka+2 + Ka—l—QKa—i—l - Ka+2Ka+1Ka

%

n=uoa

i—«

55

n=0

1=> (=) ] Kiza-m

n

()" [ Ki-m

Ki = (1—1)/fia

and Kj = (1 — mj) /mj,1

(7.50a)
(7.50b)
(7.50c¢)

(7.50d)

(7.50e)

(7.50f)

(7.51a)
(7.51b)
(7.51c)

(7.51d)

(7.51e)

(7.51f)

(7.52a)

(7.52b)
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that is K; and K. ; are the ratio of fraction mated in a given age class to the fraction

single in the prior age class for females or males.

Sex ratios

The final elements needed for a complete solution to our system comes from the sex

ratios. Manipulations of Equations 5.20, 6.3, 6.4, 6.6c and 6.8 yield the following

M, C* M, C*®
s My T moam o
Sod ™ p T R, 00T _F, Cg°
—x e
cov F _F. C
1 P &
 Tmg e (1 fa> Ze
L ee (1 —my) 2o
T—fa < Q) ~e

. (1_f0£) Ez azmm{w el Z;za
(1_ma) Z] azmm{w o,w—j} }o;]

B (1_fo¢>zz OLzmm{w 00— a}EzaA—h i,&
(1_ma)zj azmm{u) o,0— ]}EQJA h a]

-, A
(1= ma) o Az

(1= fa) S04 ARG LN, o
(L —ma) S5 amy Ao lip AUy jm,

But from Equations 5.20, 6.13, 4.20 and 7.43

éa,d =

g&)\fds g A~ Zl az] azmln{u) i,w—j} fi,jﬁi,j )\_h i,j

g A~ Zz azg azmm{w i,0—j} fi,ja'{j Ui_1,j—1fz’gj>\_(i+j+h)fz’—1mj—1

ga)\fa—0,0 f A~ 21 QE] azmm{u) 7,0— J}fzgﬁz]A h zg

g A~ ZZ . Zg . me{w i,0—j} fi’jﬁz’j Z/{i—l,j—lgigj>\_(i+j+h)fi—1mj—1

(7.53a)

(7.53b)

(7.53c)

(7.53d)

(7.53e)

(7.53¢)

(7.54a)

(7.54b)
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Hence equating the two RHS’s of 7.53f and 7.54b

(1= fa) Doy AN G A Y, oy
(1 —ma) Y5y AT Ul AU,y jm,

LN S ST PO LU AT g (7.55)
g AT QZ] azmm{w W&} ij»C;:jujfl,jflgigj/\i(i_“_'_h)fiflmjfl '

But from 6.21, 6.22, and 7.43 we have

w w @ min{fw—i,0—j}
- (Zfﬂ‘_i’ (1 —Fa ) > Z I L3 Uy ja iGN gy

i=a j=a
(7.56)

i'=«

& & w min{w—i,0—j}
1:(2@-” (1= m; )ZZ S R U s
j=& i=a
(7.57)

i'=a

So the RHS of 7.55 is o ,
A (Sisa o™ (1= 1))
, (7.58)

Then

(1—fa) 21 a—1 AT a€z+1)\ Z/{z,&—lfi

(1= ma) Yoms A AUy jmy g\ (Z}‘i:a LA (1 - mj'))
(7.59)

or the fraction females mated in the first reproductive age class is directly proportional

to the fraction males mated in the first reproductive age class

laA™® (22/_ LA (1 fz">) Soiay AT AU,
(1—fa) = - - (1—mjs)
far™ (Zj’:d LA™ (1= mj')> S AL AT Y o,

(7.60)



Chapter 8

Solutions with age-invariant parameters

In the following section I will develop the relationships between the fraction of indi-
viduals that are single in the first reproductive age class and all the other age classes
for each sex when the life history parameters are assumed constant for all age classes
and reproductive parameters are constant for all reproductive adult age classes. 1 will
also flesh out a relationship between the fraction single males and the fraction single
females in the first reproductive age classes. In part 2 I will derive another relationship
between fraction singles male and female in the first reproductive age classes. Then
in part 3 I will put these together so that we will have the fraction singles in all age
classes for both sexes. Finally in Part 4. I will determine the growth rate (A) of the
population, completing all the elements needed for a complete solution of our system.
The point of all this is to examine, in a sense, the “average” behavior of the model so

that we can have at least some frame of reference for when things get more complicated.

8.1 Part 1. Relating singles of all age classes to the first re-

productive age class.

Assume the single season survival probabilities are the same with regards to age, that
is p; = p, and p; = p. And also suppose that the probability that a marriage will
survive (given that neither partner dies) from any season to the next is independent
of the ages of the individuals and the length of time that they have been mated ( i.e.

7 = ). Then ¢; = pi, {; = p, L = (ppr)". Summarizing
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pi = p, Bj=5 andm’ =7 (8.1a)
b= 9,6 =p, and £; = (ppr)" (8.1b)
NS -\ 14min{w—i@—j}
i _ppm _ (PPT 1
oo () (- ()Y e
The age class variables become
(p/N) P\ (, P
. = — =(=) (1=-% (8.2a)
S0 (p/ ) (A) < A)
p/N)’ Py’ p
> ko (B/A)
o (/N @
> ko (D/A) ,
= TV gy o
Yo BN \A
For the fraction of adult males and females that are single
£ . - Z;
w -1,
= (Z m”) > LA
_ 13 i (3>” ;i (8.4)
1— (g)wfa—kl p A
M® .y
M4 ) Jz_; Ya ’
@ -1 5
= (Z ~j/\j> lej/\ﬂm]
=& j=a
s
= —— = m, (8.5)
(1—(%) )Z Ao
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I will also assume there is no age distinction for search rates, fraction of time devoted to
reproductive activity, courtship time, or courtship preferences. So @; ; = @ and u; ; = u
(courtships per single male or female respectively per unit time are the same for all
ages). Also 7;; = ¥, and v;; = v (time that males and females respectively spend
in reproductive activity per time searched is the same for all ages). And I will also
assume that the fraction of marriages between females and males that occur due to
male searching is the same regardless of age 7, ; = 7. Finally the fraction of courtships

that result in marriage is independent of age so that from 7.36 and 7.42

Ui; =1;;Ui,
U — U; 05 5
RS I e 5 a1
(Ew:aq Vi jtir fi') Zj’z& 3’ (1 —my)
Ui, jVij

+ - ~ y w —’
S e S

L,
Z;; = min [(Zf;l@_l Uz',j'gj'xj’mj'> (Ziff:a A" (1 - fy))] o
[(233;2_1 Ui',jgi')\_i/fz"> (fo:a G A7 (1= mj/))] B

U=r1U0 (8.6)
U oy -
(it v (®) ) (Zime (B (1= my))
l (8.7a)
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canceling the v’s and v’s

U = Y :
(o ) (Z5ee B (1= my))

(ke (B my) (. @) (1 =10) s

1,
r=ming [U(X50 B ™) (T (@) a-1)] (8:8)

(S @) (T @) a-m)]
Substituting for 7 and canceling terms

U,

u=min g [(S5 () m) (S (B 0-10)] (89)

i & =\ g -1
(T @) (T (B 1 =my)]
8.1.1 The expected number of couples mated for all lengths

of time per new couple with age invariant parameters.

In order to simplify things considerably I will make the following approximation for

Equation 8.1c. Noting that

o -1 P T4min{w—a,o—&} i -1
<A< (12 ~ (== Sy 1
eaos (o) (o () J(-mm) e

Then for A > ppr there exists an £ such that

ppr) e ppr\
WA= [1- (%= — = 11
wmas (1 (2)) (1) s

where 0 < ¢ < min{w — a,w — &}
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This is essentially saying that newl couples comprise a constant fraction of all couples

mated at the same ages. It is a rather rough approximation but a very useful one.

8.1.2 Ratios of fraction mated to fraction single one age step

younger

Making the appropriate substitutions for age invariant parameters the definition 7.49a

K;= im—j’a—w)) <A+u£mf> (8.12a)
SEE ) (S @)
(B ) (S0 e
() () ) EE 0 ) (S0
(8.12d)

And after substitution of age invariant parameters definition 7.49b similarly becomes

w w—1
i i ~ _ 4 gj_ )\
K; = ( am (1—]3.,)) (J} ALY 0 Jm]) &1 (8.13a)

i'=

(i <£>il (1- m) (S AR (%)M mj> (8.13b)
pﬁﬁ) (i (3)1/(1—&)) (CUZI AbiH1 (g)jmJ) (8.13¢)
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() (097 (B0 ) (26

: (8.13d)

=a—1

But then K; and K ; is the same for all values of ¢ and j for which 8.12d and 8.13d are

valid. SoKiszoragigwandf(j:f(forézgjSJJ.

8.1.3 Fractions single

i+l : _\ n—& j:&+1 N
S )
n=a& n=0
~\ J—a+2
1- ()
_ ) (8.14)
1+ K
](z = 1- Z(_l)n_a H K
i+1 - i7;+1
= YRS Y (K
n=« n=0
1 _ (_K>2’70¢+2
= 1
1+ K (8.15)
But
mg = 1-K—=K=1-m,4 (8.16a)

fo = 1-K=K=1-1, (8.16b)
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Substituting in 8.14 and 8.15

) .
1-— (-K) B 1— (m& o 1)]—&—1—2

m, = 8.17a

’ 1+ K 2 —mg (8.17a)
1 _ (_K>ifa+2 1 _ (fa _ 1)1’*044-2

o _ 8.17h

i 1+ K 21, (8.17D)

Recall that K; and f(j are the ratios of fraction mated in a given age class to the
fraction single in the prior age class for females or males respectively. Or in other
words the fraction mated in a given age class is proportional to the fraction single in
the prior age class for females or males respectively 1 —§; = f;_1 K and 1 —m; = mj_lf( .
This of course makes sense — if there is a larger fraction of singles available to mate
at a given age then its not surprising that a larger fraction of the next age class is
mated. In this case the ratio of the fraction mated to the fraction single in the prior
age class is the same for all age classes. Since the first age classes that are eligible
to mate are « — 1 and & — 1 and all individuals are single in those age classes we
have 1 — f; = f;_1 (1 — fo) and 1 —m; = m;_; (1 — mg), This rather simple observation
has some remarkable consequences. For example expanding f; in terms of f, for the

sequence of ¢’s

far1 = 1—fa+1i (8.18a)
fare = 0+42fo — 22+ 12 (8.18b)
fars = 1—2fa+4f2 — 32 +fa (8.18¢c)
fata = 0+ 3fq — 6F; + 7, — 4f, + 12 (8.18d)
fors = 1—3fo+9f2 — 13§ + 112 — 58 + 15 (8.18¢)

foin Z(Z (-1 (Z))fm (8.186)

m=0 \k=m
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Let’s look at a plot of these first as a function of f, for a few values of ¢ and then as a
function of ¢ for few values of f,.

Figure 8.1 shows that for f, ranging from 0 to 1 the values of f; (for i = o, +
La+2,a+7,a+ 8 a+ 19,a + 20,and oo) alternate from high to low, or low to
high in successive age classes, and the amplitude of the alternation can be related to
the initial fraction remaining single (or fraction marrying). These alternate between
greater than fo, (= 1/(2 — f.)) and less than f.. (but greater than f,). For example
when f, = 0.2 (20% of the females age « are single) then 84% of the females in next
age class (1 = o+ 1) are single and 32.8% of the females age a + 2 are single, etc. (fo
=55.55%)

Each line in Figure 8.2 shows the sequence of f;’s for particular initial values of f,,.
For example the line with the square symbols start out with f, = 0.5 at the y-intercept
(k = 0), the next value (k = 1) is fo41 = 0.75 and so on progressing with dampning

“oscillations” toward it’s asmototic value of fo, = 2/3
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Figure 8.1: {; as a function of f,
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Figure 8.2: f,., as a function of k
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8.1.4 Marriage rate

Rewriting U in terms of mg and f, we start with 8.7b and 8.9

U = , “ .
(St () 5) (Sha (B (1= my))
Uu
(Zome &) 0 =10) (Zizhes (B my)
U )
U = ming w270 <1—f1/>1z;311(%)1 my
(| Zoa(®) (1“13-%)2?21(%) fir )

Substituting and expanding the sums in the denominators above using 8.17a and 8.17b

R Y

(O () o
S-S OG-S @ em

) :Zkk (5 -+ fa (:Zkk (5) - o _11>az :Z: (p o 1))1> (8.200)
B <; - ;Z) (:ik 5 -7 _ll)al :ij (p fa” 1))2> (8.200)
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For males ) |
PG
(g)dfk (1 B (§ a7a+1) (ms — 1)2% (1 [(§) (ma — 1)}a7a+1>
T 2-ms { -2 (1+2(1—ma)) (8.21)
and ) |
2 @) a-m
C(1—ma\ [P\ (1 - (% JF&H) (mg — 1)1 " (1 — [(2) (ma — 1)}“’*&“)
N (Q—mf) <X> (1-%) - (1+2(1-my))
(8.22)
Define N |
-8 0
O [0-@)  -m) (1) e -] ")
T2 m, [ -0 + (ES Ty (8.23)
-5 @)
@ [A-®"") -1 (1-[(®) o -1
2k [( (-3 L. ((1+§(1—fa)) >] (524
Note that
2 (g)J (1-m;) = (1—my) <§) vig_l <§)ij

= (1-ma) (%) - (8.25)
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and
SR uew = u-w ) S @)
= (I-fa) (%) G (8.26)
Then
U = 1 —ma) () a7 + IO o (8.27a)

1 1
U = minq U, _ _
{U @60 T (@) GG}

(8.27b)

Now substituting 8.24 and 8.25 into 8.12d; and 8.23 and 8.26 into 8.13d yields

K = UGG (%) (1 - 7%) B (1 - (@) 1+£> (1 —mg) (8.28a)
K = UGG (%) (1 - %) B (1 - (@) M) (1—fa) (8.28b)

But these and 8.16a and 8.16b imply that

UGG (%) (1 - @) h (1 - (?) M) =1 (8.29)

or

(8.30)
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8.1.5 Fraction new couples relative to couples mated for all

lengths of time

And then this with 8.27 yields

= min up up p p |
- {(1—m&)+(1—fa)’(1_fa)7(1_md)} (8.31)

1 ’ (8.32)
Ma =2~ P ~ pr\ 14€ '
(1—22) (1 o) — up (1 — (22)")
The second term (single females limiting) yields f,:
pr\ 1€
(1- (z)™)
fo=1— [y P (8.33)
(1 - 5F)
And the third term (single males limiting) yields mg:
1 (- (8.34)
mg = 1 — — D .
(1 - 2F)

8.2 Part 2. Sex ratios in the first reproductive age classes

To determine the complimentary values of mg or f, we expand the secondary sex ratio
for ages @ and a. From Equation 7.53f with age-invariant parameters

<Zé’j = Ui—l,j—lfz’gjA_(iﬂ“)fi—lmj—l — U (%)1 (%)j >‘_1fz’—1mﬂ'_1>
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(1 —m)ZZ SR\ Gt PR/ S/ /g

Sos = (1—ma)2 A0 AT IY ) my
(R T AT () (B) i
(- ma) S AT () (2w
IR DIC D >y (N
Cema) ()T (D)

And 7.54b with age-invariant parameters becomes,

S . = QSOO (%) Zz aZ] azmm{w o J}fﬁ A " 2]

T T B) L T T oy
B (g)a']gzw Z] . (me{u i,0— ]}E A~ >
(§)afz Z] . (Emm{w 10— ]}E A )

Rearranging

~

1—f, =

i=a—1

— I [
~—
) M
- €
€
| 2
—
—~
>3
N
S
=

>3/ S >3

—

—~
P
~—

Q

Now substituting the definitions of G and G' (Equations 8.25 and 8.26)

(1—](&) ((1— B -t (1-]

2 —fa

(8.35a)

(8.35D)

(8.35¢)

(8.36a)

(8.36D)

(8.36¢)

(8.37)

(8.38a)

(8.38D)



~ o), (=) (-®™)  a-ma) (1= [®) s -]
(%) \2—ma (1-%) (1451 —ms))
(8.39)
8.2.1 Number of reproductive age classes less than 3
For w — o and @ — & less than 2, Equation 8.39 becomes
W=
w=a |l (1=fa) =0 ()" (2) (1 - ma) (8.40a)
w=at 1] (1+5f) 1—f) =0 (%) (§) " (- m)
w=a+1
w=all 1=f) =0 ()" (&) (14 2ms) (1 — my) (8.40Db)
w=a+1 || (1+2f) 1 —fa) =0 ()" (&) (1 + Zma) (1 — ma)

S G— —a 2 .
Forw=a+1and @ = &+1, and 20 < (£) ' (%)1 <§$§> or f, close to 1, Equation

8.39 is approximately

um><t§>GJ(14M@%@“§u+%wum§) 110)
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5\ G— —a 2
Forw=a+1and ® = &+ 1, and 20 > (%) 1(%)1 (%) or mg close to 1,

Equation 8.39 is approximately

-y = ) (1 (1 18 0+ A A f‘”) (5.422
Z BT 0D
(1+%a) (§)°
~ ) ) (g5, (8.42D)
o(1+%) (%)

8.2.2 Number of reproductive age classes 3 or greater.

If we expect f, > ms then make the following approximations. For the case when

mg =0 then denote G by “Gy” and Equation 8.23 becomes

S\ O—at 14k
. (1—(§) ) 0 if@—a+1iseven
= — — k= (8.43)
) (- ®7) 1 #@—a+1isodd
Letting 1 — A,_ns-a be the mg intercept of Equation 8.39 , that is A,_as-a =

(1 = fa)|my—o » then we have

_0. (%) - (%) G (8.44)

Thus the term A,_, o_s is defined implicitly and must be obtained numerically. The
fraction of mated females in the first reproductive age class (1 — f,) can be approxi-
mated as

1—m&
2—1’(1&

(1—f0) ~ Av—ao-a < ) , forw—a,ando—a>1 (8.45)
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Similarly if ms > f, then /L)_a@_d =(1- m&)|fa:O and

(1-—my) =~ zzlwfa,aka (; : ]]za) (8.46)

The term /L,_a,,;,_& is also defined implicitly by

X ( () Arnas(1- <§Awm>““)ﬂ
1

(1- %) (1 + gﬁw—a,@—&>

ot <§) - G (8.47)

and

G (1 - (%)wiaHM) - 0 ifw—a+1iseven (8.48)
®'™(1-®")

For f, > ms when w — « is large we have

— fa <1 o (%)wiaH) (1—fa) Ca /AN
(é—fc) ( (1-2) + (1+:l§(1fa))) “0<§> (%) Go (8.49)

1 fw—a+1isodd

0 ~ -0 1—§> <—) <§> Go (8.50)

(- <§ I <1—§> (=) (2) e
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solving for the relevant root we have the m; intercept as

Awfa,d)fd = (1 - fa)|ma:[)

—
>3
SN—"
)
/N
[—
|
—
>
SN—
€
|
)
+
—
N———
|
VS
(Y]
tle
|
)
25
) _
N———
Q
—
>
SN—
S
[—
|
—
s
SN—"
[N}
N———
£
N———

(1~ fo) & Au—aoma (1 — ma) (8.53)

and again we approximate 1 — f, as

(1-—my) ~ zzlwfa,aka (; : ]]za) (8.55)
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8.2.3 Population growth rate very large

When A > max {p, p} then we have in for all values of w — @ and @ — &

(I—fo) o <§)& (%)ﬂ (1—mg) (8.56)

8.3 Part 3. Putting the pieces together.

From 8.31

(%) (1 (%) 1+5> o o T o )

8.3.1 One reproductive age class

Case whenw =aand v =a = ¢ =0 and (1 —{,) :O'(%)& (%)ﬂ(l—m&)

— min | —22 ()" v B _» a
1= {(1—m&)+U(é)d(l_m&yo_(ﬁ)a(l_m&)?(1_%)} (8.57a)

(1— ma) = min {ap P <§) - (%)a up, 0! <§) - (%)aﬁp} (8.57b)
(1 - f.) = min {a (%)& (%)*a @ip + uf, B, op (%)& (%) a} (8.57c)

<(7 (%)& (%)_a ap + up, up + o (%)_& (%)a uﬁ) no shortages
(1 —Fo,1—mg) = <p57 o~ ! (%)_& (%)aﬁ> female limit

<U (B (%) ™"p, p) male limit
(8.58)
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8.3.2 Number of reproductive age classes 3 or greater.

For f, > ms when w — « is large we have (1 — fo) & Aw_0s-a (éjza)

up up D P

~ mi 8.59
o (1 N m&) ! Ap_cio-a (;—ma) 7 Av_ap-a (%) 7 <1 - m&) ( )
Case (i) no shortages
pp (1- %)
= < —— 8.60a
Apap—aD—D (1 _ (%)”*a“) (8.60a)
1_@ 2(1— ~_Aw7a£)7&~ D
(- {)~+1 < U=wp &-&D ) b (8.60b)
<]_ — (%)w @ > (1 - U)p - Awfoc,cbfd 1% Awfa,d)féz
or
~ . ppj ~
upp_ . (1 ) )~ < . (.61)
Aw,a@,& (1 — U) p—up (1 . (@)w—a—l—l) Awiaﬁ)i&p —p
Case (ii) females limiting
pp (1—5%)
= < ~ (8.62)
. ap — s\ W—a+1
Awfoc,wfocp p (1 — (pT) )
and
20— w)p—Avapatip _p _  (1=%) (8.63)
(1 - U)ﬁ - Awfa,d)f&ap Awfoc,cbfd <1 —_ (fﬂ)(:)_d+1> ‘
p)
Case (iii) males limiting
-5 P (8.64)
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and
1— B b
L) < T (8.65)
(1 _ (%) ) w—o,O—& b 1%
Then putting them together
( (apAu oz atup) (1-(282)° 1)
1_@ +ﬂ 1_ ppT w—a+1
(ﬁp(zﬁlw:@)a-l-pvl(ﬁ)(l—)\(p)’% ®7a+1> (1) He Shortages
(1*%)14“)7&:@7&7’“?(%7 %yufa‘i“l
1—f p0-(5)" ")
— 5 =
= ﬁ(l_gmj\i)&Jﬂ) (i) female limit  (8.66)
1-— mg ~ &
() Ao P ()
Aufayg_,,ap(1*<2;£)wia+l)
- NG — a1
(1‘%)“(:(&21 ) (iii) male limit
o1 ()" ")
\ (1_%>

8.3.3 Population growth rate very large or maximum age of

reproduction very large

When A > max {p,p, 7}, or @ and w — oo then this implies that £ — oo and
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Putting them together

( (AR () o(B e (1)
(B)70-5) " () (%) ¢
(1—Fa,1 —mgz) =~ <<1_72%)’ g(ﬁ)(g(lpm) female limit (8.69)
A SN X
op(£)" D ‘mi
\ <(§ (1 mZz) (1 2E) male limit

8.4 Part 4. Population growth rate

From Equation 7.56, 7.44b and 7.43 the characteristic equation is

w @ min{fw—i,0—j}
1= (Z &/)\ 1 — ](2 ) Z Z Z f}i’jﬁz’jui_Lj_lfigj)\7<i+j+h)f¢_1mj_1

i'= i=a j=a&

(8.70a)
w w & minfw-io—j5}
:f(Z( ) >ZZ Z ATz (8.70b)
1= § (Z; (%)Z (1- fw)) (8:70c)
gy @ [L ) am ([ 60
AT T2 (1-%) (1+50-7))
(8.70d)
8.4.1 One reproductive age class
Case whenw =aand v =a =¢=0and (1 —f,) = O’(%)d (%)_a(l —mg)
o (%)& (%)70‘ up + up no shortages

1—fo=min{ female limit (8.71)

o (%)d (%)_ap male limit
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The characteristic equation reduces to

I (p\*®
1=2= (_> 1—f, 8.72
(2 (-1 8.72)
§ ((7 (%)& up + (%)a uﬁ) no shortages
1= % (% @ female limit (8.73)
f%" (%)& male limit

For the case when there are no shortages and & # « we let A = ¢” and estimate by a

Taylor series about r = 0

_ / P\ P\Y
0 = 1-— X (o (X) up + <X> up) (8.74a)
= Xt f (oA"p ap + A p up) (8.74b)

e(&+a+1)r _ f (0‘80”25& ~p + edrpauﬁ) (874C)

0= (1— f(op%up+ p*up)) + (& + a+1— f (cap®ap + ap®up)) r + O (r*) (8.75)

f (op%ap + p*up) — 1
a+a+1— f(oaptip + ap*up)

~

(8.76)

Ifa=

o}
I
[—

A= \/f (optp + pup) no shortages
A=+ fpp fermale limit (8.77)

A=+/ofpp male limit
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8.4.2 Population growth rate very large or maximum age of

reproduction very large

When A > max {p,p, 7}, or @ and w — oo then this implies £ — oo

(7 (&) a0+ (&) up) (8)" (1= 2)7 w0 shortages

(1 —fa) =ming 5 (1 — 2m)"! female limit ~ (8.78)
op (%)& (%)70[ (1 — @)71 male limit

£(o () i+ (3)"wp) (1 B2)™" no shortages
1= % (%)a (1 — %)71 female limit (8.79)
prg (%)& (1- P—:\’T)fl male limit

To a first degree Taylor expansion (with caution)

( f(aﬁaﬁp—kp"‘uﬁ)f(lfpﬁw) hort
exp T+ (&t ) (1—ppm)—F(oop® up+ap®up) no shortages

(8.80)

fﬁpﬂ—(l—pﬁﬂ) female limit

exp < Tra(l_ppm)

o fpp®—(1—ppn)
\ eXp( 1+a(1—ppr) )

male limit

Of course the value of lambda needs to be determined before we know whether we
have a limiting case or not, so these estimates must be put back into the conditions for
determining the case. This could presumably cause instabilities in the solution if we
solve by iterating, since the conditions for determining the case are based on a fixed
value of \, whereas A is itself dependent on which case is pertinent. In such cases the
solution of the system may be dependent on initial conditions. From the characteristic

equation however
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(8.81b)
Thus A increases monotonically with the fraction mated within the first reproductive
age class (1 — f,), so when explicit solutions of A are available the case that provides
the correct value of fraction mated also provides the correct value of A. For example

from the semelparous case (one reproductive age class) we have

([ f(op®ap+pup)—1 .
~ exp <&+a+1f(gaﬁaﬂp+&pauﬁ) (07 7£ «
no shortages
1
: [f (op*ap + p™up)] =+ & =a
A = min (8.82)
1
(fpp*)=+ female limit
1
\ (Ufpﬁa) a+1 male limit

This is not the method usually used to estimate A. That method, proposed by Lotka
[27], expands the characteristic equation in a Taylor series and uses the first two mo-

ments of the maternity function to estimate A

where the cumulants k;and ko are as defined in Equation 6.59. The problem here
though is that the birth rates B; and B ; are not actually constant (or even linear) with
respect to A. At this juncture we have not investigated the optimal way to estimate A,

or even if extending Lotka’s method provides an improvement over the above method.



Chapter 9

Discussion and future work.

In this work I have hopefully provided a useful framework for the simulation of discrete-
time two-sex age structured population models. I have shown the conditions necessary
for geometric growth in these models in general, including direct proof that the homo-
geneity condition on marriage functions is a necessary condition for geometric growth
and a stable age structure. Given this one condition all the other aspects of “normal”
single-sex population structure apply, the population as a whole and all subgroups
asymptotically approach a stable age structure for honest fertilities and both sexes
necessarily grow at the same rate. I calculate the generation time for males and
females and show that for discrete time models this generation time differs slightly
(by 1 time step) from the generation time calculated from continuous time models. I
also hope I have opened the door for more discussion on marriage functions and have
provided some ideas of my own on how a function might be constructed from a more
behaviorally based approach and still meet the conditions for marriage functions set
forth by McFarland [31] and Fredrickson [11]. The explicit expression of the population
structure in the general case is quite complicated and I have “distilled” the equations
as much as possible in order to bring them to a point where at least numerical calcula-
tions can be performed and the general structure of solutions is apparent. Even in the
case of age invariant parameters though, these expressions are still quite complicated.
For numerical solutions simulation may be the quickest and simplest method.
Examining population dynamics with both sexes considered becomes more impor-
tant as the life histories of the two sexes diverge, and/or the sex ratios become skewed
away from dynamics adequately described by the female limiting case. It is the mar-

riage function in conjunction with the fecundities of the particular reproductive pairs
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and described with regard to a particular classification (e.g. age) that gives the proper
growth rates and dynamics for the population. In a way this is analogous to effective
population size in population genetic models. In fact the effective population size for
skewed sex ratios is proportional to the harmonic mean of the number of each sex, this
is similar in form to the harmonic mean marriage function discussed in Chapter 7.

Ongoing work includes the collecting of data on age predispositions, initiation prob-
abilities, and as many other direct estimates of marriage function parameters as possible
without resorting to inverse methods (back calculating parameter estimates that give
the best fit to population data). Although there is an huge number of factors that
go into determining marriage rates it is hoped that some general agreement between
the models prediction and the actual marriage rates will provide some validation or at
least provide a guide to improving the model (or throwing it out completely).

Future work will include searching for optimal estimation methods for model vari-
ables and growth rates. In addition I will soon try projecting an actual (US?) pop-
ulation and comparing to historical data. Given success in these areas, inroads to
stochastic versions of the model will provide some insight to confidence of projections,
parameters and other information inaccessible from deterministic models such as prob-
ability of extinction or time to extinction. Applications to other types of population

structuring or epidemic model (for example) is also a potentially fruitful area.



Appendix A

Manipulation of Sums Over Their Ranges

The following equivalencies exist in the manipulation of sums over their ranges,

Cy? () = Chirngen (t) » and Gy (1) =Cy 7" (1)

w—n &—n min{w—i,0—j} N w—n min{w—i,0—&} o—h N
$5Y e - £ Sa
i=a j=& i—a h—n =&

min{w—a,0—&} w—h &—h

S 3 3 30

i=a j=é&
w—1n &—n min{w—i,&—j} w—n min{w—i,0-&} 5—h
> > Z Chivngen @) = S 33 Crivngin (1)
i=a j=& o e —a
" min{w—a,o— Z}w h]“) h
= Z Z Z C’h Ji+h,j+h )
i=a j=é&
@  minfi—a,j-a&} min{i—a,@—&} &
Z > Z Ch,ij(t) = Z Z D> Chaiglt
i=a+n j=a+n i=a+n j=&+h

min{w—a,o— a} w

= > Z Chaij (1)

h=n 1=a+h j=&+h
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w @ min{i—a,j—a} w min{i—ao—-a} o

>y S e - 2 TS s g

i=a+n j=a+n h=n i=a+n h=n j=a&+h
min{w—a,0—&} w o

- Y Y YAt

h=n 1=a+h j=&+h
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