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Details are given of some of the combinatorics associated with lotteries where 

tickets have r numbers chosen from the first n integers. 

INTRODUCTION 

Recent years have seen an increasing spread of various forms of lotto throughout the individual 

states of the U.S.A.; and in overseas countries, too. Almost all versions of these lotteries are 

adaptations of the Genoese lottery discussed by Bellhouse (1991). Earlier origins, back some two 

thousand years, can be traced to the the Han Dynasty in China, suggests Morton (1990). Whatever 

the origins, the current forms ask a player to pick r (usually 6) numbers from the first n (often 54) 

integers. Prizes are determined by the r numbers shown on the r ping pong (or other) balls selected 

at random from an urn containing such balls numbered 1 through n. We call those r numbers the 

draw, and refer to such a lottery as an r/n lottery. Then a player's ticket wins the Jackpot if its r 

numbers are the same as the draw. (If several players are winners they share the prize equally.) 

In addition, for at least some values of w < r, tickets having exactly w of their r numbers 

coinciding with w of the numbers in the draw also win prizes. These prizes are less (usually much 

less) than the Jackpot won by having all r numbers the same as those of the draw. And in many 

lotteries, some of these prizes also depend on some other random drawing as well; e.g., a 

"supplementary" or (r + l)th number or a drawing from a pack of 52 playing cards. 
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What is interesting about current lotteries is that quite a range of values are used for n, from 

39-54. Although the probability of winning a Jackpot is, in all cases, extremely small (or at least so 

it appears to me), the relative magnitude of the probabilities can be greatly affected by n. For 

example, the probability of winning in a 6/54 lottery is 12.8% of that in a 6/39 lottery: put another 

way, the probability of a ticket winning the Jackpot is almost 8 times as large in a 6/39 lottery as in 

a 6/54 lottery. Of course, both probabilities are small: 1 out of 3,262,623 in a 6/39 lottery and 1 out 

of 25,827,165 in a 6/54 lottery. 

THE r/n LOTTERY 

The number of possible draws in a r/n lottery is the number of combinations of r things chosen 

from n, which we represent by 

' nc - n. 
r - r!(n- r)! · (1) 

In most lotteries, a ticket consists of r different numbers, the same number of numbers as in the 

draw. In the U.S.A., $1 buys one such ticket in some states, and two such tickets in others. In the 

latter, the published odds are usually given on a $1 (i.e., two-ticket) basis, and in most such lotteries 

every ticket that is the same as the draw shares equally in the Jackpot. To simplify discussion, and 

particularly for comparing different lotteries, we shall consider all probabilities on a per-ticket basis, 

thus ignoring the costs of a ticket and the possibility of multiple sales of tickets bearing the same 

numbers. Then from (1) the probability of a ticket containing the draw, which we shall denote by 

PJ(r, n) =probability of a ticket winning the Jackpot= 1 /ncr= r!(n- r)! / n!. (2) 

A ticket having the same r numbers as the draw wins the big prize, the Jackpot. But tickets 

having exactly w( < r) of their r numbers occurring in the r numbers of the draw also win prizes, for a 

limited number of values of w, such as r- 1, r- 2 and r- 3. And the prizes are much smaller than 

the Jackpot. For a given w, the number of possible tickets having exactly w numbers occurring in the 

draw shall be denoted Nw(r, n). Each ticket has rcw sets of w numbers. For a given value of w, a 

ticket will be a winning ticket if the draw contains exactly w of the numbers that are on the ticket, 

together with r - w numbers that are not on the ticket, chosen from the n - r such numbers available.· 
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The number of such possible choices is n-rcr-w· Therefore, as is implicit in Bellhouse {1991), 

{3) 

and clearly Nr(r, n) = 1. Thus, for w ~ r, the probability of a ticket having exactly w numbers 

occurring in the draw is, for w = r, r- 1, · ··, 2, 1, 0, 

(4) 

Notice that for w = r this is PJ(r, n) of {2). And, of course, we can observe the well known result 

that 

so that, as one would expect, 

r 
:E Pw(r, n) = 1 . 

w=O 

{5) 

An algebraic proof of (5), in contrast to the familiar combinatoric proof, is that rcw is the coefficient 

of xw in (1 + x)r and n-rcr-w is the coefficient of xr-w in (1 + x)n-w. Therefore Nw{r, n) is the 

coefficient of xr in (1 + x)n when the latter is factored as (1 + x)w (1 + x)n-w. Hence summing over 

all values of w gives ncr, the coefficient of xr in {1 + x)n. An extension of this method of proof is 

shown in the Appendix. 

A recurrence relationship between Nw(r, n) and Nw_1(r, n) is, from (3) 

w(n-2r+w) 
Nw_1 (r, n) = ( )2 Nw(r, n) 

r-w+1 
for w = r, r-1, ···, 1, 0 . (6) 

This, along with Nr(r, n) = 1, provides convenient computing formulae for Pw(r, n). Thus for r = 6 

we have Nw(6, n) for w = 6, 5, · · ·, 0 as 

N5(6, n) = 6(n- 6) 

N4(6, n) = 1.25(n- 7)[N5(6, n)] 

N3(6, n) = a(n- 8)[N4(6, n)] 

N2(6, n) = 136 (n- 9)[N3(6, n)] 

N 1 (6, n) = .08 (n- 10)[N2(6, n)] 

N0(6, n) = l6 (n- ll)[N1(6, n)]. 

(7) 



And for r = 5 we have Nw(5, n) as 

N4(5, n) = 5(n- 5) 

N3(5, n) = (n- 6)[N4(5, n)] 
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N2(5, n) = !(n- 7)[N3(5, n)] 

N1(5, n) = i<n- 8)[N2(5, n)] 

N0(5, n) = .04(n- 9)[N1(5, n)] 

(8) 

All this is the basis of the probabilities for most (if not all) of the state lotto games in the 

U.S.A. They all have the characteristic that a player's ticket must have exactly the same number of 

numbers on it as does the draw. A variation on this is to allow tickets to have fewer numbers. 

TICKETS HAVING FEWER NUMBERS THAN THE DRAW 

In the preceding discussion of the r/n lottery the players' tickets always contain the same 

number of numbers as is in the draw, namely r. A variation on this is to have tickets that can consist 

of t < r numbers. Then such a ticket will be said to share the Jackpot if all of its t numbers are 

among the r numbers of the draw. Notice that now the Jackpot is shared because, fort < r there can 

be more than one ticket with t numbers occurring in the draw. Denote the possible number of such 

tickets in a r/n lottery by N(t, r, n). Then, with an argument similar to that preceding (3), no 

matter which particular r numbers constitute the draw, the t numbers on a ticket will share the 

Jackpot if the other r- t numbers of the draw are chosen from then - t numbers that are not in the 

ticket. And the number of such possible choices is n-tcr-t· Hence 

N(t, r, n) = n-tcr-t . (9) 

Although (9) is derived on the basis oft < r, it also applies to t = r, for then N(r, r, n) = 1. And so 

fort < r 

PJ(t, r, n) = probability that a ticket oft(~ r) numbers 

will share the Jackpot 

n-tc ;nc . 
r-t r' (10) 
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and fort= r it is clear that PJ(r, r, n) = 1 jncr = PJ(r, n) of (2). 

An alternative derivation of (10) is that for the r numbers of the draw there are ret possible 

tickets for sharing the Jackpot. And since the total number of possible tickets is net 

The equivalence of {10) to (11) is that 

n-tc jnc = (n-t)! r!(n-r)! 
r-t r (r-t)!(n-r)! n! 

= _rL (n-t)! 
(r-t)! n! 

= _r_! _ (n-t)!t! 
(r-t)!t! n! 

= rctfnct. 

And from {12) 

r(r-1) ·· · (r-t+1) 
PJ(t, r, n) = ( ) ( ) n n-1 ... n-t+1 

as shown in Bellhouse (1991), where it is attributed to Euler. 

Comparable to the recurrence relationship (6) for Nw(r, n) we have, for N(t, r, n) of (9) 

( ) n-t+1 ( ) N t-1, r, n = r-t+1 N t, r, n . 

Hence, with N(r, r, n) = 1 and for r = 6, we get from (14) 

and 

N(6, 6, n) = 1 

N(5, 6, n) = n - 5 

N(4, 6, n) = ~(n- 4)[N(5, 6, n)] 

N(3, 6, n) = l<n- 3)[N{4, 6, n)] 

N(2, 6, n) = !<n- 2)[N(3, 6, n)] 

N(1, 6, n) = t(n- 1)[N(2, 6, n)] 

N(O, 6, n) =in [N(1, 6, n)] = nc6 . 

Comparable to (5) we can also note that 

r 
L: N(t, r, n) = ncr_1 

t=1 

Proof of (15) and (16) is given in the Appendix. 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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THE KENO VARIATION 

A game known as Keno, and available in several states, is that of having tickets with t :$ r 

numbers on them with winning tickets being those having w :$ t numbers occurring in the draw. 

Denote by Nw(t, r, n) the number of possible tickets that have w of their t numbers occurring among 

the r numbers of the draw which, as usual, has been chosen from integers 1, 2, · · ·, n. In again using 

an argument similar to that of deriving (3) we now have, for given w, tcw winning tickets for tickets 

of size t (i.e., t numbers). And for each to be a winning ticket the draw must haver- w numbers 

chosen from then- t numbers that are not on the ticket. Therefore 

A recurrence formula for this, analogous to (6), is 

w(n_:_t-r+w) 
Nw_1(t, r, n) = (t-w+1)(r-w+1) Nw(t, r, n) 

which does, of course, reduce to (6) when t = r. Special cases of (17) are shown in Table 1. 

TABLE 1 

Special cases of Nw(t, r, n) of (17) 

Special case: t=r w = t w = t = r 
Nw(t, r, n) of (17): Nw(r, n) of (3) N(t, r, n) of (9) 1 

And, for each value of t 

t t 
I: Nw(t, r, n) = I: tcw n-tcr-w =ncr 

w=O w=O 

as may be proven by exactly the same argument as used following (5). 

From (17) and (19) we then have, comparable to (4), 

Pw(t, r, n) =probability that a ticket oft(:$ r) numbers will 

have w( :$ t) numbers occurring in the draw 

= Nw(t, r, n) I ncr 

- tc n-tc ;nc - w r-w r · 

(17) 

(18) 

(19) 

(20) 

., 
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Fort= r this is Pw(r, n) of (4), as one would expect; for w = tit is PJ(t, r, n) of (10) and for w = t 

= r it is PJ(r, n) of (2). And for calculating (19) we have from (20) 

w(n-t-r+w) 
p w-1 (t, r, n) = (t-w+1)(r-w+1) Pw(t, r, n) . (21) 

An alternative derivation of (20) similar to deriving (11), is that a ticket can win with exactly w 

of its numbers in rcw ways; and for each, the ticket must also have t - w numbers selected from 

n - r that are not in the draw. This can be done in n-rct-w ways. Therefore, for given w, the 

number of winning tickets is rcw n-rct-w· But the possible number, for all w = 0, · · ·, t, is net. 

Hence 

That this equals (20) is so because 

rc n-rc ;nc = r! (n-r)! 
w t-w t w!(r-w)! (t-w)!(n-r-t+w)! 

t! (n-t)! 
- w!(t-w)! (r-w)!(n-r-t+w)! 

- tc n-tc ;nc - w r-w r' 

which is (20). 

OTHER CONSIDERATIONS 

t!(n-t)! 
n! 

r!(n-r)! 
n 

Another whole set of combinatoric considerations is that of establishing the number of tickets in 

a -r/n lottery that can contain different patterns of consecutive numbers; 6 consecutive numbers, or 

exactly 5 consecutive numbers and one other number, and so on. Morton (1987) deals with this in 

some detail. 
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APPENDIX 

Proof of (15) is as follows. 

r r t E N(t, r, n) = E n- cr-t 
t=l t=l 

r 
= E coefficient of xn-r in (1 + x)n-t 

t=1 

=coefficient of xn-r in [(1 + x)n-1 + (1 + x)n-2 + ... + (1 + x)n-r] 

=coefficient of xn-r in (1 + x)n-r[(l + x?-1 + (1 + x)r-2 + ... + 1] 

=coefficient of xn-r in (1 + x)n-r[(l + x)r- 1] I x 

= coefficient of xn-r in [(1 + x)11 I x- (1 + x)n-r I x J 

=coefficient of xn-r in [(1 + x)n I x J 

- nc - nc - n-r+1- r-1 · 

Proof of (16) is easy: 

nc + nc = d + n! 
r r-1 r!(n-r)! (r-1)!(n-r+1)! 

' = 1 ( n. 1) 1 ( n - r + 1 + r) r. n-r+ . 


