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It is well known that the Kauffman Bracket Skein Module of a knot comple-
ment Kq(S3 \ K) is canonically a module over the Z2-invariants of the quantum
torus, AZ2q , and this module determines the colored Jones polynomials Jn(K;q)
of the knot K. Berest and Samuelson identified a conjecture for knots under
which a close variant of Kq(S3 \K) canonically becomes a module over a certain
Double Affine Hecke Algebra, from which they defined a family of polynomials
Jn(K;q, t1, t2) generalizing the classical polynomials of Jones.

In this thesis an analogue of Habiro’s cyclotomic equation for the Jn(K;q)
is discovered for Jn(K;q, t1, t2). An integrality result for the coefficients in this
equation is found as a corollary, offering evidence for the conjecture of Berest
and Samuelson for all knots.

Separately, the conjecture of Berest and Samuelson is studied at the particu-
lar value q = −1 where it is known to relate to properties of SL2(C)-character
varieties of knots. Computational methods are used to establish that the conjec-
ture holds for some non-invertible knots, which was not previously known.
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CHAPTER 1

INTRODUCTION

1.1 Background

The broad thrust of this thesis is the exploration of the deformation theory of

algebras and modules arising in low dimensional topology.

To introduce topology, let us fix an oriented knot K ⊂ S3. If we delete a

tubular neighborhood of this knot, there is a natural choice of generators for the

fundamental group of ∂(S3 \ K) � S1 × S1 - a meridian/longitude pair (m, l) -

which determines the peripheral map

αK : π1(S
1 × S1) → π1(S

3 \ K).

This map is known, due to a combination of theorems of Waldhausen [33] and

Gordon and Luecke [9] to be a complete knot invariant. However, the map

above can be quite complicated, and so it is a common theme to instead take a

group G and study how αK relates representations of π1(S1 × S1) and π1(S3 \ K)

into G.

Let us begin with the example G = C∗. As π1(S1 × S1) � Z2, a representation

of this into G is determined by a point of (C∗)2, which we can give coordinates

(m, l). Since π1(S3 \ K) abelianizes to Z with generator m, any G-rep of it is

determined by the single element of C∗ with coordinate m. Thus the restriction

map can be viewed as the morphism of varieties

ι : C∗ → (C∗)2

m 7→ (m, 1)
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Note that the map above on representation spaces for G = C∗ is identical for

all knots, since all knot groups have the same abelianization. Thus from the

perspective of a topologist this choice of G gives no distinguishing information

about our knot K. However, if we replace C∗ with SL2(C), the group homomor-

phism αK induces functorially a morphism of SL2(C)-character schemes

X(αK) : X(S
3 \ K) → X(S1 × S1)

or dually, a map of commutative rings

X(αK)
∗ : O(X(S1 × S1)) → O(X(S3 \ K)). (1.1)

In this case the ring O(X(S1 × S1)) admits a simple description: it is the ring

of invariants C[X±1, Y±1]Z2 , where Z2 acts by simultaneously inverting X and Y.

However, the target ring O(X(S3 \ K)) depends on K, and the map X(αK)∗ re-

mains quite interesting. For example, the kernel of X(αK)∗ determines the A-

polynomial of the knot K and thus by work of [23] already distinguishes K from

the unknot. It is this map of rings and its deformations we are interested in.

Let us explain precisely what we mean by “deformations” of a ring map.

The main idea of what follows can be seen in very simple geometric example(s).

First, we will revisit our first topological case from a different perspective. Con-

sider the case of the affine line C including into its cotangent bundle T ∗C as the

zero section:

ι : C→ T ∗C

x 7→ (x, 0)

dual to this is a ring map

ι∗ : C[x, y] → C[x]
x 7→ x, y 7→ 0.
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As T ∗C is a symplectic manifold, its ring of functions carries a Poisson bracket.

Thus one may ask about the existence of a noncommutative deformation of

C[x, y] in the direction of this bracket. It is well-known that such a deforma-

tion can be realized in the form of the Weyl algebra

Ah̄(C) =
C〈x, y〉

yx− xy = h̄

and in fact more is true: the algebraAh̄(C) acts on C[x] via its standard represen-

tation as differential operators x 7→ x, y 7→ h̄ ∂
∂x

. This action can be described as

a ring map

ι∗h̄ : Ah̄(C) → EndC(C[x]). (1.2)

Let us now look at the “multiplicative” verson of this story. The inclusion

ι : C∗ → (C∗)2

X 7→ (X, 1)

is dual to the map of rings

ι∗ : C[X±1, Y±1] → C[X±1]
X 7→ X, Y 7→ 1

which is exactly the restriction map of character rings for G = C∗ discussed

above.

While not quite a cotangent bundle, (C∗)2 nonetheless carries a natural Pois-

son structure corresponding to the symplectic form ω = dx
x
∧

dy

y
. In this case

as well there is a noncommutative algebra which realizes a deformation of the

algebra structure on C[X±1, Y±1], namely the quantum Weyl algebra:

Aq =
C〈X±1, Y±1〉

〈XY − q2YX〉
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Of course, more is true in this case as well: the algebraAq also acts on C[X±1] via

difference-operators, Y.Xn = q−2nXn and X.Xn = Xn+1. This action also can be

described as a map of rings

ι∗q : Aq → EndC(C[X±1]). (1.3)

It is now important to make two observations about the examples ending in

equations (1.2) and (1.3). First: we were not considering ι∗ in either case as a map

of Poisson algebras. Second: even if we had been, the process of deformation is

in no way functorial so we could not have expected ι∗ to deform into a map of

algebras. However, in both cases the same phenomenon occurs: we start with

f : A0 → B

a ring map of commutative algebras with A0 Poisson, and At some family of

associative algebras depending on twhich deform A0. We then find for general

t ring maps

ft : At → EndC(B)

which give B a module structure over At.

Deforming the particular map of interest (1.1) is not a novel concept. Work

of many authors (see [6] for a summary) has established that there is a functor

from the category of 3-manifolds with morphisms open embeddings to C-vector

spaces (depending on a complex parameter q) called the Kauffman Bracket

Skein Module

Kq : 3-Mfld → Vect

such that Kq(S1 × S1 × [0, 1]) carries an algebra structure, and the “thickened”

version of the inclusion

α[0,1] : S
1 × S1 × [0, 1] → S3 \ K (1.4)
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induces a vector space map

Kq(α[0,1]) : Kq(S
1 × S1 × [0, 1]) → Kq(S

3 \ K) (1.5)

which can be shown to define a left Kq(S1 × S1 × [0, 1])-module structure on

Kq(S
3 \ K). When q = −1, every vector space K−1(M) gains the structure of a

commutative C-algebra, and the maps induced functorially by K−1 become C-

algebra maps. Additionally, when q = −1, there is a natural isomorphism of

functors

η : K−1(−)→̃O(X(−))

which identifies K−1(S
1 × S1 × [0, 1]) with O(X(S1 × S1)) and takes K−1(α[0,1]) to

X(αK)
∗. Thus (1.5) represents a 1-parameter deformation of (1.1). Just as in the

q = −1 case, we may also describe explicitly the algebra Kq(S1 × S1 × [0, 1]). A

theorem of Frohman and Gelca [3] shows Kq � A
Z2
q , where Z2 acts by simultane-

ously inverting X and Y.

The functor Kq also is related to the colored Jones polynomials, central ob-

jects in quantum topology. It is essentially a theorem of Kauffman [15] that

Kq(S
3) � C. In the case of a knot K ⊂ S3, ifD2 ×S1 represents a tubular neighbor-

hood of the knot, the inclusion

D2 × S1 t S3 \ K→ S3 (1.6)

determines a topological pairing

〈 , 〉 : Kq(D
2 × S1) ⊗

A
Z2
q
Kq(S

3 \ K) → C (1.7)

of AZ2q -modules. It is a theorem of Kirby and Melvin [27] that this pairing de-

termines the sequence of Laurent polynomials in Z[q±1] associated to a knot K

known as the colored Jones polynomials Jn(K;q). Specifically, we have

Jn(K;q) = (−1)n−1〈∅, Sn−1(Y + Y−1).∅〉 (1.8)

5



where Sn−1(X+X−1) = Xn−X−n

X−X−1 are Chebyshev polynomials and ∅ represents the

empty skein.

In [2], Berest and Samuelson sought to further deform (1.5) by applying the

representation theory of Double Affine Hecke Algebras (or DAHA). They begin by

noting that the DAHA of type C∨C1, denoted Hq,t, is an algebra depending on 5

deformation parameters (q, (t1, t2, t3, t4)) which is closely related to the algebra

Aq o Z2, where Z2 acts by simultaneously inverting X and Y. In particular, if we

let Dq be the localization of Aq o Z2 at all nonzero polynomials in X, there is an

embedding due to Sahi [29]

φ : Hq,t → Dq

whose image consists of the subalgebra generated by X,X−1 and the operators

T0 = t1sY −
qt1X+ t2
q−1X−1 − qX

(1− sY), T1 = t3s+
t3X

−1 + t4
X−1 − X

(1− s)

where s is the generator of Z2 and ti = ti − t
−1
i

. Note that when t = (1, 1, 1, 1),

the subalgebra is isomorphic to Aq o Z2.

Berest and Samuelson then define the nonsymmetric skein module of a knot K

to be the left Aq o Z2-module given by

K̂q(S
3 \ K) := Aq ⊗AZ2q

Kq(S
3 \ K) (1.9)

Let K̂q
loc
(S3 \ K) denote the localization of the nonsymmetric skein module at

nonzero polynomials in X, and η : K̂q(S
3 \ K) → K̂q

loc
(S3 \ K) be the natural

localization map. The embedding φ gives K̂q
loc
(S3 \ K) the structure of a Hq,t-

module.

The authors then compute these nonsymmetric skein modules for the un-

knot, the figure-eight knot, and the (2, 2p + 1)-torus knots. They show in every
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case, K̂q(S3\K) is free and finitely generated over the subalgebraC[X±1] ofAqoZ2.

Thus in all these cases, the localization map η is injective. Moreover, they show

that the action of Hq,(t1,t2,1,1) on K̂q
loc
(S3 \ K) preserves the image of η; taken

together, this gives their

Theorem 1. (Berest, Samuelson, 2016) For K the unknot, figure-eight knot or any

(2, 2p+ 1)-torus knot,

1. The localization map η : K̂q(S
3 \ K) → K̂q

loc
(S3 \ K) is injective.

2. The action of Hq,(t1,t2,1,1) preserves the image of η

and thus K̂q(S3 \ K) carries the natural structure of a Hq,(t1,t2,1,1)-module.

That half of the parameters (t3, t4) cannot be realized as deformation param-

eters in this way is interesting and is studied in the original paper, but will not

concern us in what follows.

It has been shown by Le [17] in the case of two-bridge knots and Marche [20]

in the case of torus knots that the skein modules Kq(S3 \ K) are free and finitely

generated over the subalgebra C[X + X−1] of AZ2q corresponding to the skein of

the meridian. Thus in all these cases one would imagine K̂q(S3\K) would be free

and finitely generated over C[X±1], and (1) would hold. Berest and Samuelson

then posed the main conjecture of their paper: that the above theorem could be

extended to all knots.

Conjecture 1. (BS Conjecture) Let K be any knot, and η : K̂q(S
3 \K) → K̂q

loc
(S3 \K)

the natural localization of the nonsymmetric skein module of K at all nonzero polyno-

mials in X. Then

7



1. The map η is an injection.

2. The natural action of Hq,(t1,t2,1,1) on K̂q
loc
(S3 \ K) preserves the image of η

and thus K̂q(S3 \ K) carries the natural structure of a Hq,(t1,t2,1,1)-module.

The operator Lt1,t2 = Yt1,t2 +Y
−1
t1,t2

:= T1T0+T
−1
0
T−1
1

acting on C[X±1] occupies a

central place in the theory of DAHA; it is known as the Askey-Wilson operator. It

can be shown that Lt1,t2 preserves the subspace of symmetric functionsC[X+X−1]

and for generic parameters is diagonalizable in this basis. The eigenvectors of

this operator are the famous Askey-Wilson polynomials [24]. Note that when t1 =

t2 = 1, Y1,1 = Y in Dq and thus Lt1,t2 is a natural t-deformation of Y + Y−1.

As an application of their conjecture, Berest and Samuelson use this operator

to define a two-parameter family of knot invariants which deform the colored

Jones polynomials, which we will call the generalized Jones polynomials. A key

fact which they use is if q4 , 1, then a pairing between right (resp. left) AZ2q -

modulesM,N

M ⊗
A
Z2
q
N→ C (1.10)

naturally induces a pairing between right (resp. left) Aq o Z2-modules M̂, N̂

M̂ ⊗AqoZ2 N̂→ C (1.11)

This, along with the Askey-Wilson operator Lt1,t2 = Yt1,t2 + Y−1
t1,t2

, allows the

definition

Definition 1. Let K be a knot for which the BS conjecture holds. Let K̂q(D2 × S1)

represent the nonsymmetric skein module of the solid torus and

〈, 〉 : K̂q(D
2 × S1) ⊗AqoZ2 K̂q(S

3 \ K) → C
8



the pairing naturally induced by the topological pairing. Then define the generalized

Jones polynomials Jn(K;q, t1, t2) associated to K by

Jn(K;q, t1, t2) = (−1)n−1〈∅, Sn−1(Yt1,t2 + Y
−1
t1,t2

).∅〉 (1.12)

where ∅ in a nonsymmetric skein module K̂q(M) is an element uniquely determined by

the empty skein in the symmetric skein module Kq(M).

Note that by construction, when (t1, t2) = (1, 1), (1.12) becomes (1.8),

and thus Jn(K;q, 1, 1) = Jn(K;q). It can also be shown that Jn(K;q, t1, t2) ∈

C[q±1, t±1
1
, t±1
2
].

The subcase of the BS conjecture where q = −1 is of independent interest

and was studied in [34]. Let π denote a finitely generated group, and introduce

the Brumfiel-Hilden algebra associated to π

Hπ :=
C[π]

{[g, h+ h−1] ∀g, h ∈ π}
, H+π := {a ∈ Hπ | a = σ(a)}

where σ : Hπ → Hπ is the anti-automorphism given by reduction of the map

g 7→ g−1 on C[π]. Let us return to the case π = π1(S
3 \ K), and let (m, l) ⊂ π

be a peripheral system. In the original work of Brumfiel and Hilden [10] is the

following conjecture

Conjecture 2. (BH Conjecture) Let H+π[m±1] be the subalgebra of Hπ generated by

H+π andm±1. Then we have

l ∈ H+π[m±1] (1.13)

One of the central results of [34] establishes the relation of the BS Conjecture

at q = −1 to the BH Conjecture

Theorem 2. (Berest, Samuelson, 2018) Assume that the map

(m−m−1) : H+π→ H+π[m±1]

9



given by multiplication bym−m−1 is injective. Then, the BS Conjecture at q = −1 is

equivalent to the BH Conjecture.

Thus, the BS Conjecture for arbitrary q may be viewed as a quantization of

the classical BH conjecture.

1.2 Main Results

Part I of this thesis is focused on exploring the BS conjecture in the special case

q = −1, specifically the BH conjecture. Commenting on results of Berest and

Samuelson, Francis Bonahon suggested that “if the BH conjecture fails, it should

fail for a non-invertible knot”. All previously known examples for which the BH

conjecture was proven to hold were invertible knots, i.e. knots K for which there

is a group automorphism

ρ : π1(S
3 \ K) → π1(S

3 \ K)

such that if (m, l) is the peripheral system, ρ(m) = m,ρ(l) = l−1.

The first contribution of this thesis can now simply be described as a further

investigation of the BS conjecture in the new case of a non-invertible knot, in

the specific case q = −1. (Recall that work of Trotter [32] establishes that the

(p, q, r)-pretzel knot is non-invertible provided p, q, r are all distinct odd num-

bers)

Theorem 3. For (p, q, r) = (3, 5, 7) and (3, 5, 9), the pretzel knots Kp,q,r satisfy the

Brumfiel-Hilden conjecture.

10



The proof of Theorem 3 is reduced to a computer calculation. The resulting

code has the following virtue:

Remark 1. The code developed to establish Theorem 3 also allows for (relatively) effi-

cient determination of SL2(C) character schemes for 3-generator groups.

This, in turn, leads to the possibility of computing more efficiently A-

polynomials of knots which admit 3-generator presentations of their knot

groups. To the best of the author’s knowledge, current technology for com-

puting A-polynomials either depends on a 2-generator presentation of the knot

group or, alternately, an efficient decomposition of the complement into tetra-

hedra ([7], [4]).

Additionally at the q = −1 level, where everything can be viewed purely

group-theoretically, our deformation problem can also be posed for virtual

knots. The result of this is the following theorem.

Theorem 4. For every 2-bridge knot K, there exists an infinite family of virtual knots

{Kn}, n ≥ 1 such that (the analogue of) the Brumfiel-Hilden conjecture holds.

Part II of this thesis is devoted to the study of the generalized Jones poly-

nomials as defined by Berest and Samuelson. It can also be viewed as new

evidence in support of the BS conjecture for arbitrary knots K and arbitrary q.

To explain the result, we must first recall a classical fact from quantum topology.

Habiro [11] found a remarkable formula - the so-called cyclotomic expansion

for the ordinary colored Jones polynomials {Jn(K;q)} for any knot K:

Theorem 5. (Habiro, 2001)

Jn(K) =
1

q2 − q−2

n−1∑
i=0

i∏
j=−i

(q2(n+j) − q−2(n+j))Hi(K)

11



where Hi(K) are integral Laurent polynomials in q, depending on K.

The terms Hi(K) are known as the Habiro cyclotomic polynomials of K. The

coefficients of Habiro’s cyclotomic expansion will appear repeatedly; we intro-

duce the notation

cn,i :=
1

q2 − q−2

i∏
j=−i

(q2(n+j) − q−2(n+j)), i = 0, 1, . . . , n− 1

We also must recall the inductive definition of the Macdonald polynomials in

terms of the Pieri relations. For a parameter β ∈ C∗, define pn(X,β|q) ∈

Cq[X+ X−1], Cq = C(q) by

p0 = 1, p1 = X+ X−1 (1.14)

pn+1(X,β|q) = (X+ X−1)pn(X;β|q) +
(1− qn)(1− β2qn−1)

(1− βqn−1)(1− βqn)
pn−1(X,β|q) (1.15)

The main theorem of this thesis is an explicit (t1, t2)-deformation of Habiro’s

cyclotomic formula.

Theorem 6. If K satisfies the BS conjecture, then Jn(K;q, t1, t2) is given by

Jn(K;q, t) =

n−1∑
k=0

c̃n,k(q, t1, t2)Hk(K) (1.16)

where Hi(K) ∈ Z[q±1] are the Habiro cyclotomic polynomials of K. In the particular

case t2 = 1, the coefficients c̃n,k are given by the formula

c̃n,k(q, t, 1) =
pn−k−1(q

2(k+1)t−1;q4(k+1)|q4)

pn−k−1(q2(k+1);q4(k+1)|q4)

 k∏
i=1

q2i+1t−1 − q−2i−1t

q2i+1 − q−2i−1

 cn,k (1.17)

As a result of the proof of Theorem 6, we have the following corollary.

Corollary 1. The expressions c̃n,i, and thus Jn(K;q, t1, t2), lie in Z[q±1, t±1
1
, t±1
2
].

12



Contrast this with the original cyclotomic expansion: in that case, the most

surprising part of the theorem is that the Hi(K) were integral Laurent polyno-

mials in q.

We offer two proofs of the formula in Theorem 6 when t2 = 1. The first is

based on an inductive argument, using the Pieri relations defining the Macdon-

ald polynomials. The second uses a change of variable argument to deduce the

same result from a generating function perspective. Of course, the two proofs

are related.

1.3 Future Work

An important conjecture in the study of Jones polynomials is the Volume Con-

jecture (see [21])

Conjecture 3. (Murakami, 2007) Let Jn(K;q) be the nth colored Jones polynomial,

normalized so that its value on the unknot is 1. Then

lim
n→∞

1

n
log |Jn(K; e

2πi/n)| =
1

2π
Vol(S3 \ K)

where Vol(S3 \ K) is the simplicial volume of the manifold S3 \ K; when S3 \ K is

hyperbolic, this coincides with its volume.

The simplest case for which the Volume Conjecture is known is the figure-

eight knot E. In fact, in the case of the figure-eight knot, a deformation of the

limit is known, as the following theorem [22] of Murakami illustrates.

Theorem 7. (Murakami, Yokota, 2012) Let E be the figure-eight knot. There exists a

neighborhood U of 0 in C such that for any u ∈ (U \ πiQ) ∪ {0}, the following limit

13



exists

lim
n→∞

1

n
log Jn(K; exp((u+ 2πi)/n)) (1.18)

and this limit determines the SL2(C) Chern-Simons invariant associated with an irre-

ducible representation of π1(S3 \ E) to SL2(C) determined by the parameter u.

The proofs of both of these statements are organized around Habiro’s cy-

clotomic formula for the figure-eight. It would be very interesting to see how

the parameters t1, t2 enter into this limit; that is, it would be very interesting to

compute

lim
n→∞

1

n
log

∣∣∣∣∣∣ Jn(E)(e2πi/n, t1, t2)Jn(U)(e2πi/n, t1, t2)

∣∣∣∣∣∣ . (1.19)

as our deformation parameters t1, t2 are fundamentally different from Mu-

rakami’s deformation parameter u in that they are independent of the variable

q and do not represent simply a different specialization of it.

As in the t2 = 1 case we have an explicit formula for our deformed Habiro

coefficients c̃n,k(q, t, 1), perhaps (1.19) could be computed in a manner similar

to that of the limits in [21], [22].

1.4 Organization

The first three chapters after this one consist entirely of background material.

Chapter 2 contains a digest of the theory of character schemes and all results

from Brumfiel-Hilden theory which go into the proofs of Theorems 3 and 4.

Chapter 3 reviews the Kauffman Bracket Skein Module, its relation to SL2(C)-

character schemes and the quantum torus. Chapter 4 assembles the few theo-

rems about the A1 and C∨C1-DAHA that will be used in the proof of Theorem

14



6.

The longest chapter is Chapter 5; it contains a more lengthy restatement of

the BS conjecture and the proof of Theorem 6 (Main Theorem), along with the

derivation of Corollary 1. It depends only on Chapters 3 and 4 for background

material. Finally, Chapter 6 contains the proofs of Theorems 3 and 4, and only

depends on Chapter 2. It describes in pseudocode an algorithm which is docu-

mented in the appendix.
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CHAPTER 2

CHARACTER VARIETIES

2.1 General Case

In this section we offer a basic treatment of the theory of representation schemes

and character schemes, following Lubotzky and Magid [1]. We will try to strike

a balance between the general and the specific, as each perspective can be valu-

able in its own right.

As a first concession to specificity, we fill fix our base field to be C through-

out, and for usGwill always meanGLn or SLn. Of course many results here can

be extended to arbitrary algebraically closed base fields k of characteristic 0 and

more general (e.g. matrix) groups. For us, we will consider G as functors from

commutative C-algebras to groups.

Fix a finitely generated group π and a group G, and let Hom(π,G) be the

functor from commutative C-algebras to sets given by taking Hom(π,G)(A) =

HomGrp(π,G(A)). Functoriality of Hom(π,G) is a consequence of the functo-

riality of G. The first result about this functor is the following:

Proposition 1. The functor Hom(π,G) is representable. That is, there exists a

commutative C-algebra O(Hom(π,G)) along with a representation ρu : π →
G(O(Hom(π,G))) such that for any commutative C-algebra A and any represen-

tation ρ : π → G(A), there exists a unique f : O(Hom(π,G)) → A such that

ρ = Hom(π,G)(f) ◦ ρu.

Proof. We will focus on the GLn case, and indicate as we proceed what are the
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modifications for the SLn case.

As π is finitely generated, choose a presentation π = 〈gp | rq(g1, ..., gn)〉 with

1 ≤ p ≤ m and q ∈ Q. Call B = C[x
(p)

i,j
], 1 ≤ i, j ≤ n, 1 ≤ p ≤ m, and denote

by X(p) the n×nmatrix with entries the variables x(p)
i,j

, so det(X(p)) is an element

of B. Let C be the algebra formed from B by inverting all of these elements. (In

the G = SLn case, C is instead the algebra formed by dividing B by the ideal

generated by det(X(p)) − 1).

For each rq consider the product rq(X
1
, ...., X

m
) ∈ GLn(C). Letting [rq]i,j de-

note the (i, j)-th entry of this matrix, we can define the ideal J of C to be that

generated by

{[rq]i,j − δi,j | 1 ≤ i, j ≤ n, q ∈ Q}

Finally, set O(Hom(π,G))) = C/J. If we denote the image of x(p)
i,j

and X(p) in the

quotient by x(p)
i,j

and X
(p)

, respectively, we can define the representation ρu by

sending ρu(gp) = X
(p)

.

For any other C-algebra A and any other representation ρ : π→ GLn(A), the

equation

ρ = Hom(π,G)(f) ◦ ρu

requires that f(x(p)
i,j
) = [ρ(gp)]i,j. As the x(p)

i,j
generate O(Hom(π,G)), f is

therefore unique if it exists. Of course it does exist, as the relations defining

O(Hom(π,G)) are precisely those that are satisfied by any G-representation of

π.

�

Note that while demonstrating the existence of O(Hom(π,G)) required
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a presentation of π, general properties of representing objects implies that

O(Hom(π,G)) is unique up to unique isomorphism. We will also denote by

Hom(π,G)) = Spec(O(Hom(π,G))) (which the reader probably saw coming)

and call this the nth representation scheme of π in G. When the functor of points

and not the space is meant, we will make a note of this.

By construction,Hom(π,G) parametrizes representations of π intoG, which

are often best thought of up to conjugation. The following proposition tells us

how this equivalence looks scheme-theoretically.

Proposition 2. The map α : G × Hom(π,G) → Hom(π,G) is a morphism of

schemes, where α(T, ρ) = TρT−1. More is true: α is a group scheme action in the

sense that

1) I · ρ = ρ for all ρ.

2) T1 · (T2 · ρ) = (T1T2) · ρ.

Proof. What is meant above is simply for every C-algebra A, α is the map on

sets

G(A) ×Hom(π,G)(A) → Hom(π,G)(A)

taking (T, g 7→ ρ(g)) to (g 7→ Tρ(g)T−1). In this sense, properties (1) and (2) are

evident. That this is a natural transformation is readily checked, from which it

follows again by representability that this is given by a scheme map. �

This gives the important corollary that G(C) acts on O(Hom(π,G)) by ring

maps. Unraveling the functorial language shows that this action is precisely the

anticipated one. Let T ∈ G(C), and let Y(p) = TX
(p)
T−1 in the language of before.

Then the assignment x(p)
i,j
7→ [Y(p)]i,j defines a ring map of O(Hom(π,G)) as the
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entries of the Y(p) satisfy the same relations as the X
(p)

:

αT : O(Hom(π,G)) → O(Hom(π,G))

which is the one produced by general theory above.

Let us denote by O(X(π,G)) = O(Hom(π,G))G(C). Our next objective will be

to demonstrate that for a fixed G both the assignments

π→ O(Hom(π,G)), π→ O(X(π,G))
are functorial in the variable π.

Proposition 3. If φ : π1 → π2 is a group homomorphism, then the map φ∗ :

Hom(π,G) → Hom(π,G) given by ρ 7→ ρ ◦ φ is a map of schemes, and thus dually

induces a map φ∗ : O(Hom(π1, G)) → O(Hom(π2, G)). This map restricts to a map

φ∗ : O(X(π1, G)) → O(X(π2, G)).
Proof. As in the previous cases, it is easy to check that φ is a natural transfor-

mation. That the map φ∗ restricts to a map from O(X(π1, G)) → O(X(π2, G)) is a

consequence of the fact that the natural transformations onHom(π,G) defining

the G(C)-action and φ∗ commute, as can be seen:

(TρT−1) ◦ φ = T(ρ ◦ φ)T−1

�

Let us summarize what has been shown: for G either GLn or SLn and π any

finitely generated group, there exists a C-algebra O(Hom(π,G)) parametrizing

representations of π into G in the sense that there are bijections (natural in A)

HomAlg/C(O(Hom(π,G)), A) → HomGrp(π,G(A))
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Moreover, G(C) acts on O(Hom(π,G)) by ring automorphisms and thus there

is a well-defined invariant ring O(X(π,G)). Finally, the assignment π →
O(Hom(π,G)) is functorial and all morphisms are G(C)-equivariant, so the

assignment π → O(X(π,G)) is functorial as well. It is a nontrivial result

that for π a finitely presented group, the ring O(X(π,G)) is always finitely

generated as a C-algebra. Thus we define the character scheme of π in G as

X(π,G) := Spec(O(X(π,G))).

Also appearing in the literature are the terms “representation variety” and

“character variety” of a pair (π,G). The former, denoted Hom(π,G), is the zero

locus of the ideal J defining O(Hom(π,G)). Thus, strictly speaking, it may not

be irreducible. The ring of regular functions on Hom(π,G) is then given by

O(Hom(π,G)) = O(Hom(π,G))/
√
0.

The “character variety” of a pair (π,G), denoted X(π,G) is defined in terms

of O(X(π,G)). While it is not evident from the definition that O(X(π,G))) is

always a finitely generated algebra provided π is also finitely generated, it is

true that this is the case. In fact, fixing a presentation of π gives a realization

O(X(π,G))) � C[y1, ..., ym]/I

for some ideal I, defining an affine algebraic set, the vanishing locus of I. Define

X(π,G) as the vanishing locus of I, and thus O(X(π,G)) = O(X(π,G))/
√
0.

2.2 SL2(C) character varieties

One of the natural appearances of G-character varieties in nature comes when

G = SL2(C) and π is the fundamental group of a three-dimensional manifold.
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Work of Thurston [31] showed that in some sense “many” three-manifolds M

carry a hyperbolic structure, determined by a discrete faithful representation

ρ : π1(M) → PSL2(C)

and that this representation always admits a lift to SL2(C). Thus, the SL2(C)

character variety for π = π1(M) represents in some sense the moduli space of

hyperbolic structures on M. In what follows we will implicitly specialize to the

SL2(C) case and use the shorthand

O(Hom(π)), Hom(π), Hom(π)

O(X(π)), X(π), X(π)

to denote the objects

O(Hom(π, SL2(C))), Hom(π, SL2(C)), Hom(π, SL2(C))

O(X(π, SL2(C))), X(π, SL2(C)), X(π, SL2(C)).

A reader that is familiar primarily with character varieties in the setting of

3-dimensional manifolds is most likely familiar with the exposition given by

Culler and Shalen in their seminal work [18] on splittings of 3-manifolds. Thus

to make the notation above more accessible, we present their development of

character varieties here in our language.

Fix a finitely generated group π. For any element g ∈ π, we have via the

universal representation ρu(g) an element of SL2(O(Hom(π))). Thus taking

trg = tr(ρu(g)) ∈ O(Hom(π)) gives an element which lies in O(X(π)). Denoting

this map in aggregate Tr : π→ O(X(π)), Culler and Shalen define their “ring of

characters” RCS to be the image of Tr inside O(X(π)). To pass to an algebraic set,

they give the following argument that RCS is finitely generated provided π is.
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Theorem 8. (Culler, Shalen, 1983) Let π be a finitely generated group with generating

set g1, ..., gn. Then the set

{trg | g = gi1gi2 ...gik , }

with all indicies i1, ..., ik distinct generates RCS.

Proof. The proof is based on the trace identity

tr(x)tr(y) = tr(xy) + tr(xy−1) (2.1)

which holds for all x, y ∈ SL2(C) due to the Cayley-Hamilton theorem for

SL2(C), y+ y−1 = tr(y) · I. Let R0
CS

be the subring of RCS generated by the traces

as in the statement of the theorem. We first show that for all g ∈ π of the form

g = gm1

i1
gm2

i2
...gmk

ik
, mi ∈ Z

where all the ij are distinct we have trg ∈ R0CS. The proof will be by induction on

the integer

ν =

k∑
i=1

Ki

where Ki = −mi if mi ≤ 0 and mi − 1 if mi > 0. Note that if ν = 0, there

is nothing to prove. Else, we may assume (by conjugating g if necessary) that

mr , 0, 1. In the casemr < 0, we have

g = ggir · g
−1
ir

and thus by applying (2.1) we find

trg = trggir trg−1
ir

− trgg2
ir

where each trace term on the right hand side corresponds to an element of π

with strictly smaller ν. A similar reduction applies when mr > 0, using instead

g = gg−1
ir
· gir .
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Now consider the general case, g = gm1

i1
...gmk

ik
with not all ij distinct. Our

argument will now be via induction on the number of repeated indicies. We

may assume there exists at least one repeated index by virtue of what we have

already shown. We may also assume (replacing gwith a conjugate if necessary)

that there exists some j < k with ij = ik, and critically we may choose this

conjugate in a way which does not increase the count of repeats. Writing

V = gm1

i1
...g

mj

ij
W = g

mj+1

ij+1
...gmk

ik

we have, again applying (2.1)

trg = trVW = trVtrW − trVW−1

and note that each of the words V , W and VW−1 have at least one fewer repeat

than g. This completes the proof. �

At this point, it is unclear how RCS and O(X(π)) are related. As we will see

in the next section, RCS is actually all of O(X(π)).

2.3 Brumfiel Hilden Theory

In this section, we will keep the specialization of the previous section, namely:

all representation and character varieties are with respect to SL2(C).

To study concretely the structure of O(X(π)), we would like a method of

building a presentation for O(X(π)) from a presentation of π. This is handled in

an exhaustive manner in the text [10] of Brumfiel and Hilden. As we will make

central use of the theory and language they develop in their text, we give here

a summary of both.
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To any SL2(C)-representation ρ of πwe have a corresponding algebra map

Cρ : Cπ→M2×2(C) (2.2)

given by extending C-linearly. We can say slightly more, however; since for any

g ∈ π we must have ρ(g) + ρ(g−1) = tr(ρ(g))I - the Cayley-Hamilton identity in

SL2(C) again - we can form the algebra

Hπ :=
Cπ

〈[h, g+ g−1] ∀h, g ∈ π〉

and by construction the map Cρ always factors to give a map

Hρ : Hπ→M2×2(C). (2.3)

Note that the anti-involution ι : Cπ → Cπ taking ι(g) = g−1 descends to a

well-defined map on Hπ. Let us call the C-linear projections onto the 1,−1-

eigenspaces of this map +,− respectively, so that on group elements

g+ =
g+ g−1

2
g− =

g− g−1

2

As the elements of the +1 eigenspace are central by the defining relations ofHπ,

they form a commutative subalgebra H+π which should be thought of as “all

the traces” of representations of π

H+π := 〈g+ g−1 | g ∈ π〉 ⊂ Hπ.

The elements of the −1-eigenspace do not form an algebra, though they are

a module over H+π. Calling them H−π, we have a splitting of Hπ as H+π-

modules:

Hπ = H+π ⊕H−π

Note that the relation between representations of π and maps from Hπ is pre-

cisely the same if we replace SL2(C) and M2×2(C) with SL2(A) and M2×2(A) for
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any C-algebra A. Thus, associated to the universal representation ρu of the pre-

vious section, we have an algebra map

Hρu : Hπ→M2×2(O(Hom(π))) (2.4)

The first major theorem established in Brumfiel and Hilden’s work is the

following:

Theorem 9. (Brumfiel, Hilden 1995) The map Hρu as described above is injective.

More precisely, if M2×2(O(Hom(π)))SL2(C) is the ring of SL2(C)-equivariant matrix-

valued functions onHom(π), then we can identify the images

Hρu(Hπ) =M2×2(O(Hom(π)))SL2(C)

Hρu(H
+π) = O(X(π)).

On its own, this theorem would be a curiosity. However, almost the entirety

of the rest of the work is devoted to giving compact presentations of H+π as a

ring and Hπ as a module over H+π when a presentation for π is known. Let us

give a few examples of these structural theorems, which we will lean on heavily.

The first proposition shows that for a finitely-generated group π,H+π is gen-

erated as a ring by finitely many explicit elements. Additionally, it shows that

Hπ is finitely generated as an H+π-module.

Proposition 4. (Brumfiel, Hilden 1995) Suppose π is generated by {gi}, 1 ≤ i ≤ n.

Let S ⊂ H+π be the subring given by S = C[g+
i
, (g−

j
g−
k
)+], j < k. Then H+π is

spanned as a module over S by {1, (g−r g
−
s g

−
t )

+}, r < s < t, and H−π is spanned as a

module over S by {g−
i
, (g−

j
g−
k
)−}, j < k. Thus, Hπ is spanned as a module over S by

{1, g−
i
, (g−

j
g−
k
)−, (g−r g

−
s g

−
t )

−}, j < k, r < s < t.
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While this can be useful in some particular cases, it serves mostly to instill

confidence that at the end of the day, any particular question about Hπ for a

finitely-generated group will be (at least theoretically) computationally accessi-

ble. To construct these algebras directly from a presentation of π requires first

determining the structure of HFn for Fn a free group on n generators and then

establishing how a surjection Fn → π relates HFn and Hπ.

2.3.1 Free Groups

Most of our interest will lie in studying HFn for n = 2, 3, so we will begin with

describing these algebras explicitly. For completeness, we will indicate how the

story extends to general n, though we will not need these results exactly.

For F2 = 〈a, b〉 the free group on two generators a and b, we introduce the

notation

x := a+, y := b+, z := (a−b−)+

|a| := a−, |b| := b−, |ab| := (a−b−)−

with this, we have the following

Proposition 5. (Brumfiel, Hilden, 1995) The commutative ring H+F2 is given by

k[x, y, z], which is a free polynomial algebra on the given three generators. As a module

over H+F2, H−F2 is spanned by the elements {|a|, |b|, |ab|}. As an associative algebra,

HF2 is determined by the following multiplication table
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|a| |b| |ab|

|a| x2 − 1 z+ |ab| −z|a|+ (x2 − 1)|b|

|b| z− |ab| y2 − 1 −(y2 − 1)|a|+ z|b|

|ab| z|a|− (x2 − 1)|b| (y2 − 1)|a|− z|b| z2 − (x2 − 1)(y2 − 1)

For F3 = 〈a, b, c〉 the free group on three generators, already the structure of

H+F3 is complicated. Unlike in the n = 2 case, HF3 fails to be a free module over

H+F3. Instead of looking for a presentation of HF3 as a H+F3-module, we will

therefore take the approach of looking for a subring S ⊂ H+F3 such that H+F3

and HF3 are free as modules over S. We will now need the additional notation:

|abc| = (a−b−c−)+,

∣∣∣∣∣∣∣∣∣
a

b

∣∣∣∣∣∣∣∣∣ = (a−b−)+,

∣∣∣∣∣∣∣∣∣
a

c

∣∣∣∣∣∣∣∣∣ = (a−c−)+,

∣∣∣∣∣∣∣∣∣
b

c

∣∣∣∣∣∣∣∣∣ = (b−c−)+,

Proposition 6. (Prop 6.5 and 7.4 in [10]) Let S ⊂ H+F3 be the subring given by

S = C[a+, b+, c+,

∣∣∣∣∣∣∣∣∣
a

b

∣∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣
a

c

∣∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣
b

c

∣∣∣∣∣∣∣∣∣]
then

1. The ring S is a free polynomial ring on its generators.

2. As an S-module, H+F3 is free of rank 2 with basis {1, |abc|}.

3. As an S-module,HF3 is free of rank 8with basis {1, |abc|, |a|, |b|, |c|, |ab|, |ac|, |bc|}.

We note that this has the corollary that H−F3 is also free as a S-module, since

the S-module basis for HF3 is an extension of that for H+F3.

To then use this to determine the structure of HF3 as an algebra in its totality

would require recording an 8×8multiplication table. While this will eventually
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be necessary to do in the code, for now we will simply note the proposition

which would give us all the information we need.

Proposition 7. (Prop. 5.7 in [10]) With respect to the decomposition Hπ = H+π ⊕

H−π, we have for all u, v,w, x, y, z ∈ Hπ

1. |u||x| =
u

v
⊕ |ux|

2. |u||xy| = |uxy| ⊕

 xu |y|−
y

u
|x|


3. |xy||u| = |uxy| ⊕

 yu |x|−
x

u
|y|


4. |xyz||u| =

u

x
|yz|−

u

y
|xz|+

u

z
|xy|

5. |uv||xy| =
u v

y x
⊕

 uy |vx|+
v

x
|uy|−

u

x
|vy|−

v

y
|ux|


6. |uvw||xy| =

v w

y x
|u|−

u w

y x
|v|+

u v

y x
|w|

where
u v

y x
:=

u

y

v

x
−
u

x

v

y

To continue in this way for general HFn, one may hope to repeat the general

picture: produce a subring S ⊂ H+Fn over which both H+Fn and HFn are rela-

tively simple - hopefully free - modules over S. While the natural extension of

the S used for n = 2, 3 and its variants fail to be polynomial algebras for n ≥ 4,

we do have the following result.
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Proposition 8. (Brumfiel, Hilden 1995) If Fn is a free group, H+Fn is an integral

domain and HFn is a torsion-free H+Fn-module.

2.3.2 Quotient Groups

Proposition 9. (Brumfiel, Hilden, 1995) If π is obtained from π̂ by dividing out by the

normal subgroup generated by a family of words {wj(g±1i )} where {gi} are elements of π̂,

then Hπ is obtained from Hπ̂ by dividing by the two-sided ideal generated by {wj − 1}.

Hπ � Hπ̂/((wj − 1))

Proof. The surjection π̂ → π induces a surjection on the level of group algebras

and thus a surjection from Hπ̂ to Hπ. Since all wj are sent to the 1 in the group

algebra, they are also killed by this surjection, and we have a well-defined map

Hπ̂/((wj − 1)) → Hπ

To obtain an inverse, let’s call B = Hπ̂/((wj − 1)). The natural map

π̂→ U(B)

to the group of units of B factors through π. Additionally, for all g ∈ π̂ (and thus

g ∈ π), the image of g+ g−1 is central in B since g+ g−1 is central in Hπ̂ and this

surjects onto B. As such, there is an induced map

Hπ→ B

which can be shown to be the inverse of the above map by following elements

of π̂. �
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We note that the surjection above maps H+π̂ onto H+π. This proposition

admits the following refinement, which makes it computationally effective:

Proposition 10. (Brumfiel, Hilden 1995) Using the language of the previous proposi-

tion, with {xj} = {wj(g
±1
i
) − 1} ⊂ Hπ̂, define I = ((xi)) and additionally I+ = {x+ | x ∈

I}, I− = {x− | x ∈ I}. Then we have

1) H+π = H+π̂/I+

2) I+ is the ideal generated by (x+
i
, (x−

i
g−
i
)+, (x−

i
g−
i
g−
j
)+).

3) I− is spanned as an H+π̂-module by the elements

{x+
i
g−
j
, x+
i
(g−
j
g−
k
)−, x−

i
, (x−

i
g−
j
)−, (x−

i
g−
j
)+g−

k
, (x−

i
g−
j
)+(g−

k
g−
l
)−}

Proof. (1) Note first that for the generators xj of I, we also have ι(xj) ∈ I since

−w−1
j
(wj − 1) = w−1

j
− 1. Since ι is an antiautomorphism, by extension we

thus have ι(I) = I and therefore I+ ⊂ I as x+ =
x+ι(x)

2
. This in turn guarantees

I+ = I ∩H+π̂. Since

H+π � H+π̂/(I ∩H+π̂)

we have the result. The proofs of (2) and (3) follow from longer computations.

�

2.3.3 Examples

With the results of the two previous sections we can begin to compute a few

examples of Hπ and H+π for two-generator groups.

Example: HZ2
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Note that since Z2 is abelian, the algebra HZ2 is simply the group algebra

C[a±1, b±1]. Thus the only interesting part of this example is giving the struc-

ture of H+Z2 and describing HZ2 as a module over H+Z2. Since the free abelian

group on two generators has the presentation 〈a, b | ab = ba〉, by the above

propositions we consider the two-sided ideal I in Hπ2 generated by

ab− ba = (x+ |a|)(y+ |b|) − (y+ |b|)(x+ |a|) = 2|ab|

For H+Z2, since (|ab|)+ = (|ab||a|)+ = (|ab||b|)+ = 0, I+ must be generated by

(|ab||a||b|)+ = (|ab|(z+ |ab|)+ = z2 − (x2 − 1)(y2 − 1). Thus

H+Z2 � C[x, y, z]/(z2 − (x2 − 1)(y2 − 1))

As for the module structure of H−Z2: since H−Z2 is given as an H+π2-module

as H−π2/I
−, we use the previous proposition to produce generators of I− as an

H+π2-module:

{|ab|, |ab||a| |ab||b|}

{|ab|, z|a|− (x2 − 1)|b|, (y2 − 1)|a|− z|b|}

So if we defineM := C[x, y] ⊗ {|a|, |b|} and giveM a H+Z2-module structure via

x.(f(x, y)|a|+ g(x, y)|b|) = xf(x, y)|a|+ xg(x, y)|b|

y.(f(x, y)|a|+ g(x, y)|b|) = yf(x, y)|a|+ yg(x, y)|b|

z.(f(x, y)|a|+ g(x, y)|b|) = (y2 − 1)g(x, y)|a|+ (x2 − 1)f(x, y)|b|

The obvious mapM→ H−Z2 is an isomorphism of H+Z2-modules.

Example: H+π, π the knot group of the (p, q)-torus knot

We know (see [8]) that the (p, q)-torus knot for 2 ≤ p < q, gcd(p, q) = 1

admits the following two-generator presentation

π = 〈a, b | ap = bq〉
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We will use the following simple observation: if c ∈ Hπ, then cn = Tn(c
+) +

Un−1(c
+)c− for all n, where Tn(x) and Un(x) are Chebyshev polynomials of the

first and second kind, respectively, given by the recurrences

T0 = 1, T1 = x, Tn+1 = 2xTn − Tn−1

U0 = 1, U1 = 2x, Un+1 = 2xUn −Un−1.

In this case, we are looking for I+ where I = ((Tp(x) − Tq(y) + Up−1(x)|a| −

Uq−1(y)|b|)). This is generated by

I+ = (Tp(x) − Tq(y), (x
2 − 1)Up−1(x) − zUq−1(y), zUp−1(x) − (y2 − 1)Uq−1(y))
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CHAPTER 3

QUANTIZATION: THE KBSM CONSTRUCTION

3.1 Kauffman Bracket for S3

Here we recall some elementary knot theory and give the Kauffman-bracket

construction for the Jones polynomial. Refer here to the original paper of Kauff-

man [15].

For us, a knot (resp. link) will be a smooth embedding of S1 (resp. tn
i=1S

1)

into S3, considered only up to ambient isotopy of S3. Thus a representative of

a knot will simply be a particular choice of embedding. More precisely: two

embeddings

ι1, ι2 : S
1 → S3

are said to be equivalent if there exists a continuous map

F : S3 × [0, 1] → S3

such that Ft is a homeomorphism for all t, F0 is the identity and F1 ◦ ι1 = ι2.

Note that our knots and links carry an orientation naturally induced by the

orientation of S1; composing a knot K with the involution x → −x of S1 gives

the reverse of a knot, denoted −K. We say that two knots K1, K2 are equivalent

as unoriented knots if either K1 = K2 or K1 = −K2. Viewing S3 as R3+, the

one-point compactification of R3, a representative of a knot can be chosen such

that the projection to R2 is transverse, and moreover has at worst double points.

Such a projection of a knot is called a knot diagram. An example is given below:
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Figure 3.1: Fig-8 diagram

It is a classical theorem of Reidemeister that any two diagrams representing

the same knot are related by the following collection of elementary local moves.

(a) RI (b) RII

(c) RIII

Figure 3.2: Reidemeister Moves

By local it is meant that outside of the picture given, the diagrams remain

the same.

Kauffman, in his study [15] of the skein relation defining the Jones polyno-

mial, found it useful to consider the notion of “regular isotopy” of links. His

definition was simply that two links were regularly isotopic if they arose from

diagrams related by only Type II and III moves. This definition can be moti-

vated geometrically by introducing the notion of a framed knot. A framed knot is

an embedding

S1 × [0, 1] → S3

considered up to ambient isotopy, with a framed link being defined similarly.
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Restricting the embedding defining a framed knot to S1 × {1/2} defines a knot,

which then gives rise to a diagram. It can be shown that K1, K2 are equivalent as

framed knots if and only if the diagrams D1, D2 resulting from this procedure

are related by Type II and III moves.

Define a function on knot diagrams, the writhe w(D) as follows: to each

crossing p in the diagram D, assign the value ε(p) following the rule

(a) +1 (b) −1

Figure 3.3: Writhe

and set w(D) =
∑

p ε(p). It can be readily computed that w(D) is not invariant

under all three Reidemeister moves, but is an invariant of regular isotopy. The

main discovery of Kauffman was the following

Theorem 10. (Kauffman, 1987) The function

〈.〉 : Unoriented diagrams → Z[A,A−1]

defined on knot diagrams inductively by the rules:

= A + A−1

= −(A2 +A−2)

Figure 3.4: Skein Relations

is invariant under regular isotopy. (As in the Reidemeister moves, the pictures represent

a local portion of a diagram which is otherwise unchanged.) The normalization of the

empty diagram is taken to be 1.
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It is clear that the first “skein” relation allows one to reduce a diagram to

one with a series of disjoint circles, upon which the normalization relation can

be used repeatedly to compute a value. The theorem of Kaufmann is that this

value does not depend on the choice of diagram in the unoriented regular iso-

topy class one starts with. Moreover, it can be readily shown that while not

invariant under the Type I move, the Kauffman bracket enjoys a fairly simple

transformation:

= −A−3

Figure 3.5: Type I Behavior

This equation coupled with the regular isotopy invariance of the bracket

polynomial immediately implies that the following Laurent polynomial is an

invariant of oriented links:

J(L;A) := (−A)−3w(DL)〈DL〉

where DL is any diagram representing L.

It was observed by Kauffman that, properly normalized, this coincided with

the definition of the then new polynomial invariant of oriented knots given by

Jones in his seminal paper [14].

Theorem 11. (Kauffman, 1987) Let VK(t) be the invariant of an oriented knot K as

given by Jones. Then we have the equality

J(K; t−1/4) = VK(t).
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3.2 Skein Module for arbitraryM3

In an attempt to organize a large body of work arising after the discovery of

the Kauffman bracket polynomial and the HOMFLY-PT polynomial, Przytycki

in [25] defined the Kauffman Bracket Skein Module (KBSM) of an oriented 3-

manifold.

Here we give a definition of the KBSM as agrees with Przytycki. Fix a com-

mutative ring R along with a choice of r ∈ R×. For M an oriented 3-manifold,

denote by L the set of ambient isotopy classes of framed, unoriented links inM

(including the empty link). Let L ′ denote the R-submodule of RL generated by

all terms of the form

= −(r2 + r−2)

=r + r−1

Figure 3.6: Framed skein relation

where outside of these oriented 3-balls the framed links can be any common

embedding. Then define

S2,∞(M;R, r) := RL/L ′

as the (R, r)-skein module ofM. In the case R = C and r = q, we will denote this

C-vector space simply by Kq(M). A few comments are in order: we will state

them for Kq(M), which will be in the continuation all we will consider, though

the statements hold for the more general (R, r) case as well.
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Remark 2. (Functoriality) If ι :M1 →M2 is an oriented embedding, then it induces a

map Kq(ι) : Kq(M1) → Kq(M2).

Remark 3. (Monoidal) There is a natural isomorphism Kq(M1 tM2) → Kq(M1) ⊗

Kq(M2)

Remark 4. (Surfaces = Algebras) If M = Σ × [0, 1] where Σ is a surface, then Kq(M)

carries the structure of an associative, unital algebra.

Remark 5. ((∂M , ∅) = Modules) If ∂M = Σ, then Kq(M) carries the structure of a

left module over the algebra Kq(Σ × [0, 1]).

Proof. (1) is evident from the definition of the equivalence classes defining

Kq(M), since embeddings will preserve skein relations.

(2) Since the union is disjoint, any embedding f : tn
i=1S

1 × [0, 1] → M1 tM2

must split as f1 t f2, where fi : t
ni

i=1S
1 × [0, 1] → Mi, i ∈ 1, 2. Regular isotopies

similarly split, and so the map

[f] → [f1] ⊗ [f2]

is the isomorphism we seek.

(3) This is a consequence of Remarks (1) and (2), as the embeddings fi :

[0, 1] → [0, 1], i = 0, 1 given by fi(x) = 1/3x + 2/3i give an embedding f1 t f0 :

[0, 1] t [0, 1] → [0, 1] which in turn induces

Σ × [0, 1] t Σ × [0, 1] → Σ × [0, 1]

and thus gives a multiplication µ : Kq(M) ⊗ Kq(M) → Kq(M). Note that in

this multiplication, elements on the left are stacked “on top of” elements on the

right.
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(4) This is also a consequence of Remarks (1) and (2), along with the fact that

in the smooth category if N(∂M) is a regular neighborhood of the boundary of

M, there is a retraction which is isotopic to the identity r : M → M \ N(∂M)

that can be used along with the inclusion of N(∂M) � ∂M × [0, 1] to define an

embedding

ιN(∂M) t r : ∂M × [0, 1] tM→M

and thus a functionA : Kq(∂M×[0, 1])×Kq(M) → Kq(M). It is apparent (with the

outward pointing normal convention) that this functionA satisfies the necessary

relations with µ established before to define a left action of Kq(∂M × [0, 1]) on

Kq(M). �

Note: In what follows, the skein algebras of three manifolds Σ × [0, 1] - in

particular, the three manifold S1 × S1 × [0, 1] - will be important. As such, the

notation Kq(Σ) will be used as shorthand to signify Kq(Σ × [0, 1]).

3.3 Relation to O(X(M))

Historically, what we now call “skein theory” - the study of the algebraic struc-

ture of skein algebras and modules associated to 3-manifolds - was advanced

with little more tying it to “classical” topological invariants (e.g. the fundamen-

tal group, homology) than the Jones polynomial. Connections between evalua-

tion of the Jones (or colored Jones) polynomial(s) at certain values and classical

invariants were explored in [14], [26], and most impressively in [27]. In contrast,

not much before 1998 was widely known about entire skein modules.

The work of Przytycki and Sikora in their two papers [12], [13] changed this.
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It is their main result which we relate in this section.

At the special value q = −1, the skein relation

=−1 + −1

Figure 3.7: Skein at −1

implies that strands of skeins may be passed through themselves at will in

K−1(M), and thus their framings can also be changed at will. In particular, this

means that a skein consisting of a single loop at q = −1 is identifiable with

its core circle up to free homotopy. Further, this means that if L(M) denotes

the C-vector space of all formal linear combinations of (not framed) links in M,

K−1(M) is a quotient of L(M).

Observe as well that at q = −1 the vector space K−1(M) becomes a commu-

tative algebra with the multiplication L1 · L2 = L1 ∪ L2. Strictly speaking, this

does not produce another skein - however, a general position argument can be

made to choose representatives of both L1 and L2 so that their union is disjoint,

and crucially the ability to pass strands through each other gives that this is

well-defined, independent of this choice. It is natural to then ask: is there an

algebraic way to view this geometrically defined multiplication on K−1(M)?

Recall from Proposition 1 the definition of the universal representation ρu

associated to a group π1(M) and its SL2(C)-representation schemeO(Hom(M)).

If composed with taking the trace, these maps together give a composite map

Tr : π1(M) → O(X(M)) (3.1)
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such that Tr(γ) only depends on the conjugacy class of γ in π1(M).

We now define a function T from the vector space of all formal linear combi-

nations of links inM, denoted L(M), toO(X(M)). Fix a basepoint p ofM and for

any knot K, choose a path connecting p to K, producing an element γK ∈ π1(M).

Set

T(K) = Tr(γK)

since two different choices of path lead to conjugate γK, this is well defined. For

links L = K1 ∪ K2 · · · ∪ Kn, set

T(L) = T(K1)T(K2) . . . T(Kn).

and finally extend T by linearity to define it on the vector space of all links. Now

it is possible to state the theorem:

Theorem 12. (Przytycki, Sikora, 1998) The map T : L(M) → O(X(M)) descends to

give an isomorphism of commutative algebras

T : K−1(M) → O(X(M))

The subtlety in the proof comes in establishing the skein relation, which un-

der T becomes the fundamental SL2(C) trace relation tr(A)tr(B) = tr(AB) +

tr(A−1B).

3.4 Kq(S
1 × S1) and the colored Jones polynomials

The link between the noncommutative algebra of the DAHA and skein theory

is established by a beautiful theorem of Frohman and Gelca. For the original
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text, refer to [3]. Because this theorem will play such an essential role in what

follows, we reproduce it here.

For any surface Σ, it is not difficult to see that Kq(Σ) is spanned as a vector

space by simple closed multicurves on Σ× 1
2

via projecting onto this level surface

and resolving crossings. It can be shown that these multicurves in fact form a

C-basis of Kq(Σ). In the case Σ = S1 × S1, multicurves are of the form (m, l)n

where (m, l) is the curve that wraps around m times in the meridian direction

and l times in the longitudinal direction, where m and l are relatively prime,

and n counts the number of parallel copies of this curve.

A different basis was taken by Frohman and Gelca: for any polynomial

p(x) ∈ C[x] and any simple closed curveC on S1×S1, denote by p(C) ∈ Kq(S1×S1)

the image of the linear combination of Cn’s given by the coefficients of p. In par-

ticular, take the Chebyshev polynomials of the first kind Tn, defined by

T0 = 2, T1 = x, Tn+1 = xTn − Tn−1

and consider the basis

(m, l)T = Tgcd(m,l)

(
m

gcd(m, l)
,

l

gcd(m, l)

)
The observation to be made here is the

Lemma 1. (Product Formula) The basis {(m, l)T } above satisfies the following product

identity

(m, l)T ∗ (r, s)T = q
ms−lr(m+ r, l+ s)T + q

−ms+lr(m− r, l− s)T

Independently, consider the quantum torus

Aq :=
C〈X±1, Y±1〉

〈XY − q2YX〉
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where q is a complex parameter. The group Z2 acts on Aq by simultaneously

inverting X and Y, and so the invariant elements form a subalgebra AZ2q . This

subalgebra is spanned by elements of the form XmYl + X−mY−l, and if we take

the shifted basis

{fm,l = q
−mlXmYl + q−mlX−mY−l}

it is then a calculation to show that the fm,l satisfy the same multiplication rule

as the (m, l)T . Thus we arrive at the

Theorem 13. (Frohman, Gelca, 2000) The assignment (m, l)T → fm,l extends to an

algebra isomorphism

Kq(S
1 × S1) → AZ2q .

Let us now relate this theorem to the colored Jones polynomials. Associated

to the decomposition

S3 = (S1 ×D2) t (S3 \ K)

we have a map on skein modules - the topological pairing

〈, 〉 : Kq(S
1 ×D2) ⊗Kq(S1×S1) Kq(S

3 \ K) → Kq(S
3) � C.

Note that this is Kq(S1 × S1)-balanced since a skein in the intersection of S1 ×D2

and S3 \ K can just as readily be considered as lying in either space. Using the

above theorem, identify Kq(S1 × S1) with AZ2q . The following theorem tells us

that the data recorded by the colored Jones polynomials Jn(K;q) lies entirely in

this topological pairing.

Theorem 14. (Kirby, Melvin, 1991) The colored Jones polynomials Jn(K;q) are given

by the formula

Jn(K;q) = (−1)n−1〈∅.Sn−1(Y + Y−1),∅〉
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where ∅ represents the empty skein. (With this convention, we have the normalizations

Jn(O;q) =
q2n − q−2n

q2 − q−2
, J1(K;q) = 1

for O the unknot and K any knot, respectively.)
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CHAPTER 4

DOUBLE AFFINE HECKE ALGEBRAS

4.1 Type A1

Our goal in this section will be to give a definition of the Macdonald polynomi-

als, pn(x), a family of polynomials in one variable depending on two complex

parameters (q, t). These polynomials are orthogonal with respect to a certain

inner product on the line and are intimitely related to the Double Affine Hecke

Algebra or DAHA of type A1. We will take a roundabout way to do this, es-

sentially reversing the historical story. First, we will define the A1-DAHA and

investigate its polynomial representation. Subsequently, we will define the Mac-

donald polynomials as eigenvectors of a particular element of the DAHA acting

in the polynomial representation. We will conclude by explicating some prop-

erties of the Macdonald polynomials which follow from this presentation and

will be useful in what follows. The principal reference throughout will be the

book of Cherednik, [5].

4.1.1 Definition and PBW Theorem

The DAHA of typeA1 is an associative, unital C-algebra depending on 2 invert-

ible complex parameters q1/2, t1/2, defined by

Hq,t =
C〈X±1, Y±1, T 〉

I

where I is the two-sided ideal generated by the relations

TXT = X−1, TY−1T = Y
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Y−1X−1YXT 2q1/2 = 1

(T − t1/2)(T + t−1/2) = 0

Alternately, note that the final relation implies that T is invertible, with inverse

T − (t1/2 − t−1/2); we can alternately choose a generator π = YT−1 and define the

same algebra via
C〈T, X±1, π〉

J

where J is the two-sided ideal generated by

TXT = X−1, π2 = 1, πXπ−1 = q1/2X−1

(T − t1/2)(T + t1/2)

We want to realize this algebra as representing some family of operators on

C[X±1], Laurent polynomials in X. The relevant result is the following

Theorem 15. (Cherednik, 2005)

(i) (PBW property) The elements XnT εYm, n,m ∈ Z, ε = 0, 1 form a basis of Hq,t

(ii) Using s(f(X)) = f(X−1) and π(f(x)) = f(q1/2X−1), the formulas

T → t1/2s+
t1/2 − t−1/2

X2 − 1
(s− 1), X→ X, Y → πT

define a representation of Hq,t in the space C[X±1]. It is faithful for q apart from

roots of unity.

Proof. It is easier to check this defines a representation in the second presenta-

tion, where the abstract generator π acts as the operator of same name. The
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relations only involving π and X are quickly verified; the only two remaining

are

TXT = X−1, (T − t1/2)(T − t−1/2)

We check the first, where it is sufficient to check on the monomials Xj:

TXT.Xj = TX.(t1/2X−j − (t1/2 − t−1/2)X−j

j−1∑
k=0

X2k)

= (t1/2s+
t1/2 − t−1/2

X2 − 1
(s− 1)).(t1/2X−j+1 − (t1/2 − t−1/2)X−j+1

j−1∑
k=0

X2k)

since the second term is even, it is killed by the s−1 term in T and preserved

by the s operator, giving

= tXj−1 + (t− 1)
Xj−1 − X−j+1

X2 − 1
− (t− 1)X−j+1

j−1∑
k=0

X2k

= tXj−1 + (t− 1)X−j+1

j−2∑
k=0

X2k − (t− 1)X−j+1

j−1∑
k=0

X2k

= Xj−1 = X−1.Xj

The computation in the case of the Hecke-type relation is similar, which es-

tablishes the first part of (ii). For (i), note that it is immediate from the relations

that every element in Hq,t lies in the C-span of the listed monomials. To demon-

strate these are linearly independent, consider their action first on 1:

XnT εYm.1 = t(n+ε)/2Xn
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which tells us that any dependence must split over dependences where n is

fixed. Further, we compute the action of the monomials on X, using the fact that

Y.X = q−1/2t−1/2X and T.X = t−1/2X−1:

XnT εYm.X =

 q−m/2t−m/2Xn+1 ε = 0

q−m/2t−(m+1)/2Xn−1 ε = 1

which tells us that for a fixed n, any dependence between monomials must

further split as dependences where ε is fixed. Since the operators X and T are

invertible, it now will suffice to show that the Yi are independent. Note that

Y.Xj = t−1/2q−j/2Xj+ lower order terms, and therefore any dependence

anY
n + an−1Y

n−1 + ...+ a0 = 0

induces for all j

ant
−n/2qjn/2 + an−1t

−(n−1)/2qj(n−1)/2 + ...+ a0 = 0 (4.1)

Let us choose n distinct j, call them j1, j2, ...jn. If we introduce a ′
k
= t−k/2ak, we

see assembling the various (4.1) together gives the statement

qnj1/2 q(n−1)j1/2 · · · qj1/2 1

qnj2/2 q(n−1)j2/2 · · · qj2/2 1

...
... · · ·

...
...

qnjn/2 q(n−1)jn/2 · · · qjn/2 1





a ′n

a ′
n−1

...

a ′
0


= 0

But the matrix above is a Vandermonde matrix, and therefore as long as q is

not a root of unity, the fact that all ji are distinct guarantees that this matrix is

invertible. Thus the Yn are linearly independent and we are done with (i) and

(ii) simultaneously. �

48



4.1.2 Macdonald Polynomials

Let us continue examining the polynomial representation of the DAHA, restrict-

ing attention to the action of the Y operator. Of interest will be the following

theorem, which appeared originally in slightly different language in [19].

Theorem 16. (Macdonald, 1988) The operator Y+Y−1 preserves the spaceC[X+X−1] of

symmetric polynomials. For pairs (q, t) such that the sequence {qn/2t1/2 + q−n/2t−1/2}

consists of distinct values, there exist polynomials pn ∈ C[X+ X−1] such that

pn = Xn + X−n + lower terms

(Y + Y−1)pn = (qn/2t1/2 + q−n/2t−1/2)pn

Proof. For the first statement, note that the relations in the first presentation of

Hq,t tell us that T commutes with Y + Y−1. We can now characterize symmetric

polynomials in terms of the operator T : a polynomial p(X) is symmetric if and

only if Tp(X) = t1/2p(X). The first statement then follows.

For the second statement, it will suffice to show that (Y + Y−1).(Xn + X−n) =

(qn/2t1/2 + q−n/2t−1/2)(Xn + X−n) + lower terms. Since Y = πT , it is readily com-

puted that

Y.(Xn + X−n) = t1/2(q−n/2Xn + qn/2X−n)

Y−1(Xn+X−n) = (t1/2qn/2−q−n/2(t1/2− t−1/2))Xn+(t−1/2q−n/2)X−n+ lower order

from which the equation follows. �

We will take as a definition that pn(X) are the Macdonald polynomials of

type A1. The first few of these polynomials are
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p0 = 1, p1 = X+ X−1, p2 = X
2 + X−2 + (t1/2 − t−1/2)

q1/2 + q−1/2

t1/2q1/2 − t−1/2q−1/2
.

It follows from this description of the pn and some symmetry properties of

the algebra Hq,t that much is known about these polynomials. For instance, we

have the following identities - see, e.g., [5]

Theorem 17. The Macdonald polynomials pn(X) satisfy the following properties:

(a) Duality: pn(t1/2qm/2)pm(t1/2) = pm(t1/2qn/2)pn(t1/2) for allm,n ∈ 0, 1, 2, ....

(b) Pieri Rule:

pn+1 = (X+ X−1)pn −

(
qn/2 − q−n/2

t1/2qn/2 − t−1/2q−n/2

) (
tq(n−1)/2 − t−1q(1−n)/2

t1/2q(n−1)/2 − t−1/2q(1−n)/2

)
pn−1

(c) Evaluation Formula:

pn(t
1/2) =

n−1∏
k=0

tqk/2 − t−1q−k/2

t1/2qk/2 − t−1/2q−k/2
, n ≥ 1

Other normalizations of these {pn} are common; for instance, if we take

πn(X) := pn(X)/pn(t
1/2), the Pieri relation becomes

(X+ X−1)πn =
tqn/2 − t−1q−n/2

t1/2qn/2 − t−1/2q−n/2
πn+1 +

qn/2 − q−n/2

t1/2qn/2 − t−1/2q−n/2
πn−1 (4.2)

4.2 Type C∨C1

This section should be viewed as an extension of the previous section. The goal

of this section is to summarize the properties of the DAHA of typeC∨C1, namely
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to describe its polynomial representation and the embedding of the DAHA into

Aq o Z2 of Sahi.

4.2.1 Definition and PBW Theorem

The DAHA of type C∨C1, denoted here by Hq,t is an associative, unital C-

algebra depending on 5 complex parameters, q and t = (t1, t2, t3, t4) given by

the presentation

Hq,t =
C〈T1, T2, T3, T4〉

I

where I is the two-sided ideal generated by the relations

(T1 − t1)(T1 + t
−1
1
) (T2 − t2)(T2 + t

−1
2
)

(T3 − t3)(T3 + t
−1
3
) (T4 − t4)(T4 + t

−1
4
)

T4T3T1T2 = q

Analogously to the Hq,t case, this algebra comes equipped with a representation

on the Laurent polynomial ring C[X±1].

Theorem 18. (Sahi, 1997) Let s0, s1 denote the linear operators on C[X±1] defined by

s0(X
m) = q−2mX−m and s1(Xm) = X−m. Then if we set

S1 = t1s0 +
(t1 − t

−1
1
) + (t2 − t

−1
2
)q−1X−1

1− q−2X−2
(1− s0)

S3 → t3s1 +
(t3 − t

−1
3
) + (t4 − t

−1
4
)X

1− X2
(1− s1)

then the assignments Ti → Si i = 1, 3, T2 → q(S0 − (t1 − t
−1
1
))X and T4 → X−1(S1 −

(t3 − t
−1
3
)) define a faithful representation of Hq,t into C[X±1].
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A proof of this statement in this exact language can be found in [24], but the

original proof of this fact dates back to [29]. That the linear operators Si satisfy

the Hecke-type relations of the Ti allows us to rewrite the last two assignments

as T2 → qS−1
0
X and T4 → X−1S−1

1
. That the assignments give a representation is

easy; showing that the resulting representation is faithful occupies the bulk of

the work.

Remark 6. Assuming this theorem, we could alternately take as generators for Hq,t

the elements T := T3, Y := T3T1 and X±1, identifying Hq,t with its image under the

representation. With these generators, our relations then become

XT = T−1X−1 − t4

T−1Y = Y−1T + t1

T 2 = 1+ t3T

TXY = q2T−1YX− q2t1X− qt2 − t4Y.

Recalling the quantum torusAq = C〈X±1,Y±1

XY=q2YX
along with the action of Z2, define

Aq o Z2 as

Aq o Z2 =
C〈X±1, Y±1, s〉

XY = q2YX, sX = X−1s, sY = Y−1s, s2 = 1
.

We then have the following observation, which will be essential in what follows.

Remark 7. The algebra Hq,t for q = q, t = (1, 1, 1, 1) is isomorphic to Aq oZ2 via the

assignments

T 7→ s, X 7→ X, Y 7→ Y

in the language of the generators above.
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This observation can be unified with the existence of the defining polynomial

representation by considering Aq o Z2 as a subring of a larger algebra which

naturally acts on C(X±1): LetDq denote the localization of the algebra Aq oZ2 at

all nonzero polynomials in X. The result would be the following:

Theorem 19. (Sahi, 1999) The defining representation of Hq,t is equivalent to the ex-

istence of an algebra embedding

φ : Hq,t → Dq.

and the image of φ preserves the subspace C[X±1] ⊂ C(X). Moreover, the natural local-

ization map

η : Aq o Z2 → Dq

is injective, and when t = 1, the images of φ and η coincide, with η−1 ◦ φ defining an

algebra isomorphism between Hq,t → Aq o Z2
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CHAPTER 5

BS CONJECTURE

5.1 Recap of Conjecture

In this section we will recount the main developments of [2], omitting all proofs.

At this point, we know two enticingly related facts: the first of which is for

every oriented knot K, the vector space Kq(S3 \ K) is an AZ2q -module (the result

of Frohman and Gelca). The second is that Hq,t, the DAHA of type C∨C1, is an

algebra deformingAqoZ2. If Kq(S3\K) were instead aAqoZ2-module, we could

follow the general philosophy of the Introduction and ask when this module

structure is a restriction of a more general Hq,t-module structure on the same

space. However, it is easy to produce aAq oZ2-module from an AZ2q -module via

extension by scalars.

Definition 2. The nonsymmetric skein module K̂q(S3 \ K) is defined by

K̂q(S
3 \ K) = Aq ⊗AZ2q

Kq(S
3 \ K)

Since Aq is a left Aq o Z2-module, K̂q(S3 \ K) carries the structure of a left

Aq o Z2-module. Recall that we denoted by Dq the localization of Aq o Z2 at

all nonzero polynomials in X. Denoting the corresponding localized module as

K̂q(S
3 \K)loc, by the theorem of Sahi we have that K̂q(S3 \K)loc is a Hq,t-module.

We can now state the BS conjecture in its entirety:

Conjecture 4. (BS Conjecture) The following conditions hold, for any knot K:

1. The map η : K̂q(S
3 \ K) → K̂q(S

3 \ K)loc is injective.

54



2. If φ : Hq,t → Dq is the embedding of Sahi, then the image of φ preserves the

image of η.

and thus K̂q(S3 \ K) carries the structure of a Hq,t-module by the action

a.m = η−1(φ(a).η(m))

A computation in the case of the unknot reveals that this conjecture is overly

optimistic. While (1) holds, (2) fails to hold if either t3 or t4 is not 1. However,

by modifying the conjecture to fix t3 = t4 = 1, the authors show that this does

in fact hold for (2, 2p+ 1) torus knots, the trefoil and the figure eight knot.

More important to us, however, are the generalized Jones polynomials

{Jn(K;q, t1, t2)} which the authors produce for a knot K, assuming this conjec-

ture holds. Recall the formula of Kirby and Melvin [27], relating the colored

Jones polynomials to the topological pairing:

Jn(K;q) = (−1)n−1〈∅.Sn−1(Y + Y−1),∅〉

To relate this to the nonsymmetric setting, we need to understand a little more

about the relationship between AZ2q and Aq o Z2. In particular, if we denote by

e = 1+s
2

in Aq o Z2 where s is the generator of Z2 we have the following lemma.

Lemma 2. (Satake isomorphism) The algebras AZ2q and e(Aq o Z2)e are isomorphic via

the map a→ ae.

Thus for any AZ2q -module M, we must have M is isomorphic to eM̂ as AZ2q -

modules, where in truth it is e(Aq o Z2)e acting on eM̂, but we use the Satake

isomorphism to identify the two. In particular, the C-vector spaces

M ⊗
A
Z2
q
N M̂e ⊗e(AqoZ2)e eN̂
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are isomorphic via the map (m,n) → (me, en). Since the latter is clearly a

subspace of M̂⊗AqoZ2 N̂, we can use this identification to then make sense of the

inclusion

ι :M ⊗
A
Z2
q
N→ M̂ ⊗AqoZ2 N̂. (5.1)

We will want to know when linear maps out of the domain of (5.1) can be ex-

tended to the target; this is the content of the following proposition.

Proposition 11. Suppose q4 , 1. To every pairing of AZ2q -modules

〈, 〉 :M ⊗
A
Z2
q
N→ C

there exists a unique pairing

〈, 〉 : M̂ ⊗AqoZ2 N̂→ C
lifting the former.

Applying this to the topological pairing Kq(S1×D2)⊗Kq(S1×S1)Kq(S
3 \K) → C,

we can then introduce

Definition 3. The generalized Jones polynomials associated to the DAHA action are

given by

Jn(K;q, t1, t2) = (−1)n−1〈∅.Sn−1(Yt1,t2 + Y
−1
t1,t2

),∅〉 (5.2)

where Yt1,t2 = sT0 is the Cherednik-Dunkl operator in Hq,t.

Note that this Yt1,t2 is precisely the Y defined in our alternate presentation of

the DAHA; we simply stress here its t-dependence to reflect how it deforms the

original formula of Kirby and Melvin. Since Y1,1 = Y, we see that automatically

Jn(K;q, 1, 1) = Jn(K;q).

56



5.2 Nonsymmetric skein modules and pairings

First, we recall the standard (symmetric) description of the skein module ofD2×

S1 and the (right) action of AZ2q induced by the inclusion of the boundary torus,

where the torus is oriented to be the boundary of the knot complement.

The generators of AZ2q are X + X−1, Y + Y−1 and XY + X−1Y−1, which we will

denote x, y and z, respectively. Under the isomorphism identifying the skein

module of the oriented torus with AZ2q , the meridian and longitude are sent to x

and y, respectively, and the (1, 1) curve is sent to q−1z. The skein module of the

solid torus is identified with C[u], where un is identified with n parallel copies

of the (0-framed) longitude. Under this identification, the empty skein becomes

the element 1. Thus we have:

Lemma 3. The right action of AZ2q on Kq(D2 × S1) � C[u] is determined by

1.p(y) = p(u), 1.x = −(q2 + q−2), 1.q−1z = −q−3u

Proof. The first formula holds by definition of the isomorphism of Kq(D2 × S1)

with C[u]. The second holds as the meridian is contractible inside D2 × S1 and

the third as the (1, 1) curve is simply the longitude with a positive framing twist.

That these formulas are sufficient to describe the action of a general element

follows from the fact that the following relations hold in AZ2q

qxy− q−1yx = (q2 − q−2)z

qzx− q−1xz = (q2 − q−2)y

qyz− q−1zy = (q2 − q−2)x.
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Repeated application of these commutator relations allows us to write any el-

ement of AZ2q as a sum of monomials, with powers of y appearing only on the

left. This, combined with the fact that z acts as −q−2y, is sufficient to express the

action of a general element of AZ2q in terms of the action of elements of the form∑
ai,jx

iyj ai ∈ C.

As x acts by a scalar, C-linearity of the action tells us that our initial information

will be sufficient to determine how this element acts. �

To produce the non-symmetric version of this skein module, we need the

following “effective” version of producing M̂ fromM forM either a left or right

AZ2q -module.

Proposition 12. Suppose q4 , 1. Let M be a right AZ2q -module. If M ′ is a right

Aq o Z2-module such that M ′e is isomorphic to M as AZ2q -modules (using the Satake

isomorphism), thenM ′ is isomorphic to M̂ asAqoZ2-modules. The identical statement

is true with “left” replacing ”right” and eM ′ replacingM ′e.

This is a consequence of the Morita equivalence of the algebrasAZ2q andAq o

Z2 when q4 , 1. Using this, it is easy to check the following.

Proposition 13. Let V = C[U±1] and give V a right Aq o Z2-module structure via the

formulas

f(U).g(Y) = f(U)g(U−1), f(U).X = −f(q2U), f(U).s = −f(U−1)

then V is isomorphic to K̂q(D2 × S1) as Aq o Z2-modules.

Proof. To employ the previous proposition, we need to produce an isomorphism

of Ve with Kq(D2 × S1). Consider

f : Kq(D
2 × S1) → Ve
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f(u) → (U−U−1)f(U+U−1)

By computing in Ve, we find:

(U−U−1).f(Y + Y−1) = (U−U−1)f(U+U−1)

(U−U−1).(X+ X−1) = −(q2 + q−2)(U−U−1)

(U−U−1).q−1(XY − Y−1X−1) = q−3(U−U−1).(Y + Y−1)

Note that under the isomorphism these computations become precisely the

module-defining equations of Lemma 1, and therefore the module structures

are identical. �

At this stage, a remark is in order:

Remark 8. Lifting the formula of Kirby and Melvin to the nonsymmetric pairing gives

us the identity:

Jn(K, q) = (−1)n−1〈Sn−1(u), 1〉

= (−1)n−1〈(U−U−1)Sn−1(U+U−1), 1〉 = (−1)n−1〈Un −U−n, 1〉 (5.3)

One other non-symmetric skein module will be of importance to us, namely

that of the complement of the unknot, or S1×D2. The skein module of the unknot

is identified with C[x], where by xn is meant n parallel copies of the (0-framed)

meridian. As before, we have a structure observation for the symmetric action:

Lemma 4. The left action of AZ2q on Kq(S1 ×D2) � C[x] is determined by

x.f(x) = xf(x), y.1 = −(q2 + q−2), z.1 = −q−3

And we have the following desymmetrization
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Proposition 14. Let V = C[X±1] and give V a left Aq o Z2-module structure via the

formulas

X.f(X) = Xf(X), Y.f(X) = −f(q−2X), s.f(X) = −f(X−1)

then V is isomorphic to K̂q(S1 ×D2).

The proofs of both of these are identical to the case of the solid torus. More-

over, the identification of eV with Kq(S1 ×D2) is explicitly given by

f : Kq(S
1 ×D2) → eV

f(x) → (X− X−1)f(X+ X−1).

We pause here to make a very simple remark, which will appear as an im-

portant fact in later proofs in this chapter:

Remark 9. If 〈, 〉 : K̂q(D2×S1)⊗AqoZ2 K̂q(S
1×D2) → C denotes the pairing between the

nonsymmetric skein modules of the solid torus and the unknot, then 〈1, 1〉 , 0 provided

q4 , 1.

This follows from the fact that 〈U −U−1, X − X−1〉 = 1, as this represents the

pairing of the two empty skeins.

5.3 First formula for c̃n,i

In this section we will give a formula for the coefficients c̃n,i of the Main Theo-

rem (Theorem 6) which will be used later to establish specifically the nice for-

mula in the t2 = 1 case. To this end we will establish the
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Theorem 20. For all knots K, there exist universal expressions an,p ∈ C(q)[t±11 , t
±1
2
]

such that

Jn(K;q, t1, t2) =

n∑
p=1

(−1)n+pan,pJp(K;q)

whenever the left hand side is defined. Moreover, the an,k are given recursively with

boundary conditions

a1,1 = 1, an,0 = 0, an,k = 0 (k > n)

and recursion

an+1,k = Akan,k−1 + (Ak −Ak+1)an,k +A−kan,k+1 − an−1,k

where

Ak :=
q2k−1t−1

1
− q−2k+1t1 + t2

q2k−1 − q−2k+1

.

and by combining this with Habiro’s cyclotomic expansion get the formula

we desire as a

Corollary 2. Let an,p be as in the previous theorem. Then

Jn(K;q, t1, t2) =

n−1∑
i=0

c̃n,iHi(K)

where

c̃n,i =

n∑
p=1

(−1)n+pan,pcp,i (5.4)

and cn,p are the coefficients in Habiro’s cyclotomic formula.

We stress here that while this corollary could be taken as the first state-

ment in Theorem 6, it is not at all evident that the c̃n,i as described here live
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in Z[q±1, t±1
1
, t±1
2
]. It is also not clear from this formula how the particularly nice

case t2 = 1 produces such a compact formula.

The following lemma regarding computing in K̂q(D2 × S1) � V = C[U] will

be used

Lemma 5. For any P(X) ∈ C(X), we have in V

Uk.P(X) = P(−q2k).Uk

Uk.P(X−1) = P(−q−2k).Uk

for all k ∈ Z

Proof. The result for monomials is a direct result of the definition of the Aq o Z2

action. For polynomials and then rational expressions it follows by linearity. �

Now we can give the proof of Theorem 20.

Proof. We begin by noting that by the use of the Kirby-Melvin formula

Jp(K;q) = (−1)p−1〈Up −U−p, 1〉

and the definition of the generalized Jones polynomials

Jn(K;q, t1, t2) = (−1)n−1〈U−U−1.Sn−1(Yt + Y
−1
t ), 1〉

The statement of the theorem is equivalent to

〈U−U−1.Sn−1(Yt + Y
−1
t ), 1〉 =

n∑
p=1

an,p〈U
p −U−p, 1〉.

Note that since S0(x) = 1, we have the first base case trivially

J1(K;q, t1, t2) = 〈(U−U−1).1, 1〉 = J1(K;q)
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which implies a1,1 = 1 and a1,p = 0 for all p > 1.

In the second case, we have S1(x) = x, and thus

J2(K;q, t1, t2) = 〈(U−U−1).(Yt + Y
−1
t ), 1〉

Recall the definition of Yt and Y−1
t :

Yt = t1Y +
qt1X

−1 + t2
qX−1 − q−1X

(s− Y)

Y−1
t = t1Y

−1 +
qt1X+ t2
qX− q−1X−1

(s− Y−1) − t1s

Defining the operator

a(X) =
qt1X

−1 + t2
qX−1 − q−1X

we note that we may write Yt and Y−1
t , and thus their sum, more compactly

Yt = t1Y + a(X)(s− Y)

Y−1
t = t1Y

−1 + a(X−1)(s− Y−1) − t1s

Yt + Y
−1
t = t1(Y + Y−1) + (a(X) + a(X−1))s− (a(X)Y + a(X−1)Y−1) − t1s (5.5)

Using the Lemma, we can calculate

(U−U−1).(Yt + Y
−1
t ) = a2,2(U

2 −U−2) + a2,1(U−U−1)

where

a2,2 = (t1 − a(−q
−2)) a2,1 = t1 − a(−q

2) − a(−q−2) a2,p = 0 (p > 2)

Since Ak can be shown to coincide with t1 − a(−q−2(k−1)), we see that a2,2 = A2,

and a similar computation shows a2,1 = A1 − A2. It also follows from this that

a2,p = a2,0 = 0 for all p > 2.
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Thus the statement of the theorem holds for n = 1, 2. To establish the in-

ductive step, we will use the defining recursion for the Chebyshev polynomials

Sn(x)

Sn(x) = xSn−1(x) − Sn−2(x)

Thus we assume the statement of the theorem holds for some n,n− 1, that is:

(U−U−1).Sn−1(Yt + Y
−1
t ) =

n∑
p=1

an,p(U
p −U−p)

(U−U−1).Sn−2(Yt + Y
−1
t ) =

n−2∑
p=1

an−1,p(U
p −U−p)

and we compute

(U−U−1).Sn(Yt+Y
−1
t ) = (U−U−1).Sn−1(Yt+Y

−1
t ).(Yt+Y

−1
t )−(U−U−1).Sn−2(Yt+Y

−1
t )

n+1∑
p=1

an+1,p(U
p −U−p) =

n+1∑
p=1

an,p(U
p −U−p).(Yt + Y

−1
t ) −

n+1∑
p=1

an−1,p(U
p −U−p)

where we can extend the sums to all be of the same range based on the

boundary conditions mentioned above. Focusing attention on the first sum on

the right hand side, an application of Lemma 5 gives

(Uk−U−k).(Yt+Y
−1
t ) = (t1−a(−q

−2k))(Uk+1−U−(k+1))+(a(−q2k)+a(−q−2k)−t1)(U
k−U−k)

+(t1 − a(−q
2k))(Uk−1 −U−(k−1))

(Uk−U−k).(Yt+Y
−1
t ) = Ak+1(U

k+1−U−(k+1))+(Ak−Ak+1)(U
k−U−k)+A−k+1(U

k−1−U−(k−1))

Inserting this back into the summations and comparing coefficients of (Uk−

U−k) on both sides gives the result

an+1,k = Akan,k−1 + (Ak −Ak+1)an,k +A−(k+1)+1an,k+1 − an−1,k

�
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5.4 Proof of Theorem 6

In this section we will produce a second formula for the coefficients c̃n,i which

will finish the proof of Theorem 6. Along the way we will observe how Corol-

lary 1 follows from the proof. Specifically, section 5.4.1 will introduce generat-

ing functions associated to the c̃n,i and sketch how two lemmas (Lemma 7 and

Lemma 8) allow us to give a new formula for the c̃n,i from which Corollary 1

follows. Sections 5.4.2 and 5.4.3 then contain the proofs of these two lemmas.

The formula in the special case for t2 = 1 in Theorem 6 will be addressed in

5.4.4. It will be alternately rederived using the method of generating functions.

This is not strictly speaking a logically independent proof; however, it offers an

important sanity check as the resulting formula itself carries some significant

complexity.

5.4.1 Generating Function

We will want to in essence still use (5.4) as our starting point for calculating a

nicer form for c̃n,i. Recall that the an,p are implicitly defined by the equation

(U−U−1).Sn−1(Yt + Y
−1
t ) =

n∑
p=1

an,p(U
k −U−k)

Instead of working with the element-wise recurrence for the an,p within (5.4),

it turns out to be much more convenient to use the defining recurrence for the

Sn(Yt + Y
−1
t ) and employ generating functions. Let us extend the definition of

the an,p formally to negative p via an,−p = −an,p; then we can introduce the
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functions

Fn(U) =

∞∑
p=−∞an,pU

p

between which we have the recursive statement which is equivalent to Theorem

20:

Fn(U).(Yt + Y
−1
t ) = Fn+1(U) + Fn−1(U). (5.6)

We will also find it useful to use the extension of the Chebyshev polynomials to

negative n, namely S−n(x) = −Sn−2(x), so that Fn(U) is defined for all n.

This turns out to be fruitful because we have the following

Lemma 6. Let P(i)(X) be the operator defined by

P(i)(X) =

i−1∏
j=1

(q2jX− q−2jX−1)(q−2jX− q2jX−1) i = 1, 2, ... (5.7)

where the empty product is 1. If f(U) =
∑∞

p=1 ap(U
p −U−p), then

f(U).P(i)(X) =

∞∑
p=1

ap ·

p−1∏
j=p−i+1

(q2(p+j) − q−2(p+j))

p+i−1∏
j=p+1

(q2(p+j) − q−2(p+j))(Up −U−p)

In particular, acting by P(i)(X) and summarily evaluating the resulting function of U

at U = −q2 gives

f(U).P(i)(X)

∣∣∣∣∣∣
U=−q2

= (q2 − q−2)

∞∑
k=1

(−1)kakck,i−1 (5.8)

Proof. By Lemma 5 in the previous section, we compute

Uk.P(i)(X) =

i−1∏
j=1

(q2jq2k − q−2jq−2k)(q−2jq2k − q2jq−2k)

U−k.P(i)(X) =

i−1∏
j=1

(q2jq−2k − q−2jq2k)(q−2jq−2k − q2jq2k)

where both coincide with the product in the statement in the lemma, and thus

we are done. �
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Thus from the conclusion of the Lemma we recognize we have rewritten

c̃n,i =
(−1)n

q2 − q−2
Fn(U).P

(i+1)(X)|U=−q2 . (5.9)

The key idea is to now introduce the formal parameter λ and define

F(U, λ) =

∞∑
n=1

Fn(U)λ
n (5.10)

and its variants,

F(i)(U, λ) := F(U, λ).P(i)(X) (5.11)

We will seek to prove a determinantal expression for F(i)(−q2, λ), from which

will follow Theorem 6, and in particular will show Corollary 1. First it is neces-

sary to prove the following two lemmas:

Lemma 7. For all i, there exists a sequence {αi
k
}i
k=1 ∈ Z[q

±1] such that

F(i)(−q2, λ) =

i∑
k=1

αikF(−q
2(2k−1), λ)

Lemma 8. For all i, there exist bi,j ∈ Z[q±1, t±11 , t
±1
2
, λ±1] such that

n∑
j=1

bi,jF(−q
2j, λ) = −(q2i − q−2i)

Before we embark on the proofs of the lemmas, let us see how they allow us

to conclude a determinantal formula for F(i)(−q2(2i−1), λ).

Lemma 8 tells us we have a triangular system of equations for the

F(−q2(2i−1), λ), i.e. for any i, we have



b1,1 0 · · · 0

b2,1 b2,2 · · · 0

...
...

. . .
...

b2i−1,1 b2i−1,2 · · · b2i−1,2i−1





F(−q2, λ)

F(−q4, λ)

...

F(−q2(2i−1), λ)


=



−(q2 − q−2)

−(q4 − q−4)

...

−(q2(2i−1) − q−2(2i−1))


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Writing this as B2i−1F2i−1 = −β2i−1 for short, where of course

F2i−1 =



F(−q2)

F(−q4)

...

F(−q2(2i−1))


β =



q2 − q−2

q4 − q−4

...

q2(2i−1) − q2(2i−1)


we then have by Cramer’s rule F(−q2k) = detBk

2i−1/detB2i−1, where Bk
2i−1 is

B2i−1 with its kth column replaced by −β2i−1.

Combining this with the Lemma 7, we conclude that if we consider the 2i×2i

matrix

Ci =



0 αi
1

0 αi
2

· · · αi
i

(q2 − q−2) b1,1 0 0 · · · 0

(q4 − q−4) b2,1 b2,2 0 · · · 0

(q6 − q−6) b3,1 b3,2 b3,3 · · · 0

...
...

...
...

. . .
...

(q2(2i−1) − q−2(2i−1)) b2i−1,1 b2i−1,2 b2i−1,3 · · · b2i−1,2i−1


then by cofactor expansion along the top row we have the equation

det(Ci) = −

i∑
k=1

αik(−det(Bk2i−1))

= det(B2i−1)F(i)(−q2, λ)

and thus, realizing that det(B2i−1) is simply a product of diagonal entries, we

obtain

F(i)(−q2, λ) =
det(Ci)

det(B2i−1)
=

det(Ci)∏2i−1
j=1 bj,j

. (5.12)
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Combining (5.12) and (5.9), we arrive at the following expression for the c̃n,i,

where [λn](f(λ)) represents the coefficient of λn in a formal power series expan-

sion of f(λ)

c̃n,i =
(−1)n

q2 − q−2
[λn]

det(Ci+1)∏2i+1
j=1 bj,j

 . (5.13)

Corollary 1 results from this expression since the first column of Ci+1 is divisible

by q2 − q−2, and the determinant of Ci+1 with the first column rescaled is a

polynomial in λwith coefficients in Z[q±1, t±1
1
, t±1
2
].

5.4.2 Proof of Lemma 7

The two lemmas in essence correspond to the two operators acting on F(U, λ);

the first one is related to the operator Pi(X).

We begin by making the following observation about the nonsymmetric

pairing:

Proposition 15. For all F(U) ∈ C[U±1] such that F(U−1) = −F(U), and all k ∈ Z, we

have

〈F(U) , Xk − X−k〉 = F(−q2k) · 2 · 〈1 , 1〉

Proof. It will suffice to show this for the basis {Um −U−m}; note that

〈Um −U−m , Xk − X−k〉

= 〈1.(Y−m − Ym) , Xk − X−k〉

= 〈1 , (−1)m(q2mkXk − q−2mkXk) − (−1)m(q−2mkX−k − q2mkX−k)〉

= ((−q2k)m − (−q2k)−m) · 〈1 , Xk + X−k〉
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= ((−q2k)m − (−q2k)−m) · 2 · 〈1 , 1〉

�

We will also use the structure of Pi(X); recall that since

Pi(X) =

i−1∏
j=1

(q2jX− q−2jX−1)(q−2jX− q2jX−1)

is symmetric in X,X−1 of degree 2i− 2, we must have

(X− X−1)Pi(X) =

i∑
k=1

αik(X
2k−1 − X−2k+1)

for some αi
k
. The αi

k
lie in Z[q±1] since they are differences of coefficients of Pi(X),

which evidently lie in this same ring. Putting this together with the Proposition

allows us to compute

Fi(−q2, λ) · 2 · 〈1 , 1〉 = 〈F(U, λ).Pi(X), X− X−1〉

= 〈F(U, λ), Pi(X)(X− X−1)〉

=

i∑
k=1

αik〈F(U, λ), X
2k−1 − X−2k+1〉

=

i∑
k=1

αikF(−q
2(2k−1), λ) · 2 · 〈1 , 1〉

and thus dividing through by the nonzero 2 · 〈1 , 1〉 gives the result.

5.4.3 Proof of Lemma 8

This lemma is based on examining the action of the other operator acting on

F(U, λ), namely the Yt + Y−1
t operator. Recall that by definition we have the

relations

Fn(U)(Yt + Y
−1
t ) = Fn+1(U) + Fn−1(U)
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and thus, by multiplying through by λn and summing, we get

F(U, λ)(Yt + Y
−1
t ) = λ−1F(U, λ) − λ−1F0(U) + λF(U, λ) + F−1(U)

F(U, λ)(Yt + Y
−1
t − (λ+ λ−1)) = −(U−U−1)

By evaluating this expression on both sides atU = −q2i for various iwe will get

our result. It is possible to do this without employing the pairing; however, to

preserve a similar style with the proof of the previous lemma, we will use

〈F(U, λ)(Yt + Y
−1
t − (λ+ λ−1)) + (U−U−1) , Xi − X−i〉 = 0

and letting the operator Yt + Y−1
t act on the other side of the bracket will give

what we want.

The proof follows from the fact that the operator Yt + Y−1
t preserves the the

space of odd polynomials and their natural grading. Later, however, the exact

value of these coefficients will be of use to us, so we compute them now. As

(s− Y)

qX−1 − q−1X
.Xi − X−i

= −(qi + q−i)

i∑
l=1

(q−1X)i−(2l−1)

we have

Yt.(X
i − X−i) = t1(−q

−2iXi + q2iX−i) − (qi + q−i)

i∑
l=1

(q−1X)i−2lt1

− (qi + q−i)

i∑
l=1

(q−1X)i−(2l−1)t2 (5.14)

and similarly, since
s− Y−1

qX− q−1X−1
.Xi − X−i
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= (qi + q−i)

i∑
l=1

(qX)i−(2l−1)

we also have

Y−1
t (Xi − X−i) = t1(−q

2iXi + q−2iX−i) + (qi + q−i)

i∑
l=1

(qX)i−2(l−1)t1

+ (qi + q−i)

i∑
l=1

(qX)i−(2l−1)t2 + (X−i − Xi)t1 (5.15)

And thus, combining, we have:

(Yt+Y
−1
t ).(Xi−X−i) = −(q2it−1

1
+q−2it1)(X

i−X−i)+(qi+q−i)

i−1∑
l=1

(qi−2l−q−i+2l)Xi−2lt1

+ (qi + q−i)

i∑
l=1

(qi−(2l−1) − q−i+(2l−1))Xi−(2l−1)t2 (5.16)

Since the RHS is evidently odd in X, we have as a result that

(Yt + Y
−1
t ).(Xi − X−i) =

i∑
j=1

b
′

i,j(X
j − X−j)

where, for future use, we record that the b ′
i,j

are given by

b
′

i,j =


−(q2it−1

1
+ q−2it1) j = i

(qi + q−i)(qj − q−j)t1 j , i j ≡ i mod 2

(qi + q−i)(qj − q−j)t2 j , i j+ 1 ≡ N mod 2

and thus, we may again use linearity of the pairing to conclude

0 = 〈F(U, λ)(Yt + Y
−1
t − λ− λ−1) + (U−U−1) , Xi − X−i〉

=

i∑
j=1

b
′

i,j〈F(U, λ) , X
j −X−j〉− (λ+ λ−1)〈F(U, λ), Xi −X−i〉+ 〈U−U−1 , Xi −X−i〉
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= 2 · 〈1 , 1〉

 i∑
j=1

bi,jF(−q
2j, λ) − (λ+ λ−1)F(−q2i, λ) + (−q2j + q−2j)


And thus we note that by taking

bi,j =

 −b
′

i,j
+ (λ+ λ−1) i = j

−b
′

i,j
i , j

we observe we have concluded the proof of the lemma.

5.4.4 Special case: t2 = 1

In this section, we will examine in detail a specific subcase of Lemma 7, namely

when the parameter t2 = 1, and establish the explicit formula given in Theorem

6. In this case, a certain ‘miraculous coincidence’ will take place and the deter-

minantal formula (5.13) in the general case will reduce to a product. Specifically,

we will prove the following theorem:

Theorem 21. The deformed Habiro coefficients c̃n,i(q, t1, t2) admit the following

closed-form expression when t2 = 1:

c̃n,i(q, t, 1) =
(−1)n+i+1

q2 − q−2
[λn]


(∏2i+1

j=1 (q
2j − q−2j)

) (∏i+1
k=2Ak

)
∏i+1

k=1(q
2(2k−1)t−1 + q−2(2k−1)t+ λ+ λ−1)

 (5.17)

where, recalling from a previous section

Ap =
q2p−1t−1 − q−2p+1t

q2p−1 − q−2p+1

From which we will derive the equation that was promised in Theorem 6,

c̃n,k(q, t, 1) =
pn−k−1(q

2(k+1)t−1;q4(k+1)|q4)

pn−k−1(q2(k+1);q4(k+1)|q4)

 k∏
i=1

q2i+1t−1 − q−2i−1t

q2i+1 − q−2i−1

 cn,k. (5.18)
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Notation: The proof of Theorem 21 will feature large expressions in the vari-

able q, which will be dramatically compacted by the use of the following nota-

tion which we will adopt:

[n] = qn − q−n n = qn + q−n

[n]! = [n][n− 1]...[1]

(
n

k

)
q

=
[n]!

[k]![n− k]!

Proof. (Theorem 21) We begin by observing that the conclusion of Lemma 7 can

be significantly simplified in the case where t2 = 1. If we restrict ourselves to

the cases of odd i, we have:

Lemma 9. (Lemma 7, t2 = 1 case)

For all i ≥ 1, there exist di,j ∈ Z[q±1, t±11 , λ
±1] such that

n∑
j=1

di,jF(−q
2(2j−1), λ) = −[2(2i− 1)]

Since we have di,j = b2i−1,2j−1, we have explicit values for these coefficients:

di,j =

 q2(2i−1)t−1
1

+ q−2(2i−1)t1 + λ+ λ
−1 i = j

− 2i− 1 [2j− 1] i , j

�

So just as before, we can consider this as a matrix equation:

d1,1 0 · · · 0

d2,1 d2,2 · · · 0

...
...

. . .
...

di,1 di,2 · · · di,i





F(−q2, λ)

F(−q6, λ)

...

F(−q2(2i−1), λ)


=



−[2]

−[6]

...

−[2(2i− 1)]


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which yields a determinantal formula, analogous to the general case, but now

with a matrix half the size; namely, if we consider the (i+ 1) × (i+ 1) matrix

Ei =



0 αi
1

αi
2
· · · αi

i−1 αi
i

[2] d1,1 0 · · · 0 0

[6] d2,1 d2,2 · · · 0 0

...
...

...
. . .

...
...

[2(2i− 3)] di−1,1 di−1,2 · · · di−1,i−1 0

[2(2i− 1)] di,1 di,2 · · · di,i−1 di,i


then in this particular case

Fi(−q2, λ) =
det(Ei)∏i
j=1 dj,j

We claim that the Ei are closely related to one another, and thus it is possible to

give a simple inductive computation of det(Ei).

To compute det(Ei+1), first use column operations to clear the top row; since

αi+1
i+1 = 1, the resulting matrix which we’ll call E(1)

i+1 is

0 0 0 · · · 0 1

[2] d1,1 0 · · · 0 0

[6] d2,1 d2,2 · · · 0 0

...
...

...
. . .

...
...

[2(2i− 1)] di,1 di,2 · · · di,i 0

[2(2i+ 1)] di+1,1 − α
i+1
1
di+1,i+1 di+1,2 − α

i+1
2
di+1,i+1 · · · di+1,i − α

i+1
i
di+1,i+1 di+1,i+1


Recall the defining equation for the αi+1

k
:

(X− X−1)P(i+1)(X) =

i+1∑
k=1

αi+1
k

(X2k−1 − X−2k+1)
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Since P(i)(q2) = 0 provided i ≥ 2, by evaluating both sides at X = q2, we obtain

0 =

i+1∑
k=1

αi+1
k

[2(2k− 1)].

Therefore, if we denote ei,j =
∑i

k=1 α
i
k
dk,j, row operations adding multiples of

all rows to the last results in the matrix E(2)
i

0 0 0 · · · 0 1

[2] d1,1 0 · · · 0 0

[6] d2,1 d2,2 · · · 0 0

...
...

...
. . .

...
...

[2(2i− 1)] di,1 di,2 · · · di,i 0

0 ei+1,1 − α
i+1
1
di+1,i+1 ei+1,2 − α

i+1
2
di+1,i+1 · · · ei+1,i − α

i+1
i
di+1,i+1 di+1,i+1


By swapping the last row up into the second row and preserving the order of

all the remaining rows, then dividing the second row by its penultimate entry,

we obtain the last matrix:

E
(3)

i
=



0 0 0 · · · 0 1

0
ei+1,1−α

i+1
1

di+1,i+1

ei+1,i−α
i+1
i

di+1,i+1

ei+1,2−α
i+1
2

di+1,i+1

ei+1,i−α
i+1
i

di+1,i+1
· · · 1

di+1,i+1

ei+1,i−α
i+1
i

di+1,i+1

[2] d1,1 0 · · · 0 0

...
...

...
. . .

...
...

[2(2i− 3)] di−1,1 di−1,2 · · · 0 0

[2(2i− 1)] di,1 di,2 · · · di,i 0


We now claim that the lower-left i × imatrix is exactly Ei, that is,

ei+1,j − α
i+1
j
di+1,i+1

ei+1,i − α
i+1
i
di+1,i+1

= αij. (5.19)
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It is this statement which we single out as being the “miraculous” moment

where the two operators P(i)(X) and Yt + Y−1
t relate, in the sense that the for-

mer operator is associated to the αi
j

terms and the latter associated to the dj,k

terms. We know of no conceptual reason to expect (5.19) to hold; yet it can be

demonstrated via direct (if sometimes long) q-computations. Let us show it.

Let us define si
j
= ei+1,j − α

i+1
j
di+1,i+1. We will show (5.19) by showing, for a

fixed i, both αi
j

and si
j
/si
i

are defined by the same recursion:

sii/s
i
i = α

i
i = 1

si
k
/si
i

si
k+1/s

i
i

= si
k

si
k+1

 = αi
k

αi
k+1

= −
[2(i+ k)]

[2(i− k)]
k < i

Proof. (Recursion for αi
k
)

The base case is immediate. To establish the recursion, assume we have

αi
k

αi
k+1

= −
[2(i+ k)]

[2(i− k)]

for some i and all k = 1, ..., i− 1. Then since we have

(q2iX−q−2iX−1)(q−2iX−q2iX−1)

i∑
k=1

αik(X
2k−1−X−2k+1) =

i+1∑
k=1

αi+1
k

(X2k−1−X−2k+1)

we have the recursion αi+1
k

= αi
k−1 − 4i αi

k
+ αi

k+1, and thus

αi+1
k

αi+1
k+1

=
αi
k−1/α

i
k
− 4i + αi

k+1/α
i
k

1− 4i αi
k+1/α

i
k
+ αi

k+2/α
i
k

=
−[2(i− k+ 1)]/[2(i+ k− 1)] − 4i − [2(i− k)]/[2(i+ k)]

1+ 4i [2(i− k)]/[2(i+ k)] + [2(i− k)][2(i− k− 1)]/[2(i+ k)][2(i+ k+ 1)]

which can be shown through a long computation to simplify to

−
[2(i+ 1+ k)]

[2(i+ 1− k)]

as desired. �
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Before we move on to the recursion defining the si
j
, let us pause here to note

that the above recursion gives us the following recognization of αi
k

as a certain

q−binomial coefficient:

αik = (−1)i−k
[2(i+ k)][2(i+ k+ 1)] · · · [2(2i− 1)]

[2(i− k)][2(i− k− 1)] · · · [2]
=

(
2i− 1

i− k

)
q2

(5.20)

Proof. (Recursion for si
j
)

First note that si
j

depends ostensibly on t1 and λ. Expanding the definition

of ei+1,j shows that, in fact, there is no λ dependence:

sij =

i+1∑
k=1

αi+1
k
dk,j − α

i+1
j
di+1,i+1

=

i+1∑
k=j+1

αi+1
k
dk,j + α

i+1
j

(dj,j − di+1,i+1)

= −

i+1∑
k=j+1

αi−1
k

2k−1 [2j−1]t1+α
i+1
j

(q2(2j−1)t−1
1
+q−2(2j−1)t1−q

2(2i+1)t−1
1
−q−2(2i+1)t1)

Further, it is convenient to introduce t+
1
:= t1 + t

−1
1

. If we do this, decomposing

si
j

into t+
1

and t1 components, we have

sij =
1

2
αi+1
j

(
2(2j− 1) − 2(2i+ 1)

)
t+
1

+

12αi+1j (
[2(2i+ 1)] − [2(2j− 1)]

)
− [2j− 1]

i+1∑
k=j+1

αi+1
k

2k− 1

 t1 (5.21)

In particular, we can compute a closed form for si
i
:

sii = −
1

2
[2(2i+ 1)][4i]t+

1
+

(
−
1

2
[2(2i+ 1)] 4i + [2i− 1] 2i+ 1

)
t1

with which we can turn the desired statement si
j
= αi

j
si
i
into a pair of q-identities

that we must establish, namely

αi+1
j

(
2(2j− 1) − 2(2i+ 1)

)
= −αij[2(2i+ 1)][4i] (5.22)
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1

2
αi+1
j

(
[2(2i+ 1)] − [2(2j− 1)]

)
− [2j− 1]

i+1∑
k=j+1

αi+1
k

2k− 1

= αij

(
−
1

2
[2(2i+ 1)] 4i + [2i− 1] 2i+ 1

)
(5.23)

Crucially, the ratios αi+1
k
/αi

k
admit a simple form - this follows directly from the

closed form produced by the recursion they satisfy - explicitly, they are

αi
k

αi−1
k

= −
[4i][2(2i+ 1)]

[2(i+ k)][2(i+ 1− k)]

with these, one sees that (5.22) is reduced to an explicit calculation and (5.23)

becomes a straightforward induction in j, the details of which we omit.

�

Given (5.19), we observe that since det(Ei+1) = (−1)i+1 det(E(3)
i+1) =

−si
i
det(Ei) = −[4i][2(2i+ 1)]Ai+1 det(Ei), we have the following for all i ≥ 1:

det(Ei+1) = −[2(2i)][2(2i+ 1)]Ai+1

and since in the base case we have

det(E1) =

∣∣∣∣∣∣∣∣∣
0 1

[2] d1,1

∣∣∣∣∣∣∣∣∣ = −[2]

we arrive at the promised closed form for det(Ei), and thus Fi(−q2, λ):

Fi(−q2, λ) =
(−1)i

(∏2i−1
j=1 [2j]

) (∏i
k=2Ak

)
∏i

k=1(q
2(2k−1)t−1

1
+ q−2(2k−1)t1 + λ+ λ−1)

(5.24)

which, combining with (5.9) as in the general case, finishes the proof.

The proof of (5.18) from Theorem 21 is, comparatively, much quicker:
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Proof. We first show that (5.24) implies the following shift equation in λ for our

generating function:

Fi(−q2, q2λ)

Fi(−q2, q−2λ)
=
λ+ t1
1+ λt1

q2i + q−2iλt1

q2iλ+ q−2it1
(5.25)

As the denominator of (5.24) does not depend on λ, we are led to the equa-

tion
Fi(−q2, q2λ)

Fi(−q2, q−2λ)
=

i∏
j=1

(q2(2k−1)t−1 + q−2(2k−1)t+ q−2λ+ q2λ−1)

(q2(2k−1)t−1 + q−2(2k−1)t+ q2λ+ q−2λ−1)

=

i∏
j=1

(q2(k−1)λ+ q−2(k−1)t)(q2k + q−2kλt)

(q2(k−1) + q−2(k−1)λt)(q2kλ+ q−2kt)

=
λ+ t

1+ λt

q2i + q−2iλt

q2iλ+ q−2it

Rearranging this equation and taking the coefficient of λn, we are led to the

following three-term recurrence in the { ˜cn,i−1} for a fixed i:

(q2it−1 + q−2it)[2n] ˜cn,i−1 = [2(n+ 1− i)] ˜cn+1,i−1 + [2(n− 1+ i)] ˜cn−1,i−1
and dividing through by cn,i−1 gives us

(q2it−1 + q−2it)
˜cn,i−1
cn,i−1

=
[2(n+ i)]

[2n]

˜cn+1,i−1
cn+1,i−1

+
[2(n− i)]

[2n]

˜cn−1,i−1
cn−1,i−1

This three-term recurrence relation can readily be shown through a calculation

to coincide with the Pieri relations (4.2) for the sequence {πn−i(q
2it−1;q4i|q4)}, or

equivalently the sequence {
pn−i(q

2it−1;q4i|q4)

pn−i(q2i;q4i|q4)
}. Thus the proof will be completed

provided we establish the two base cases for each i

c̃i,i−1 =

 i∏
j=2

Aj

 ci,i−1
˜ci+1,i−1 =  i∏

j=2

Aj

 q2it−11 + q−2it1

q2i + q−2i
ci+1,i−1
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This becomes straightforward once one establishes the following formulas

ai,i =

i∏
j=2

Aj ai+1,i = (A1 −Ai+1)

i∏
j=2

Aj

which are quick consequences of the induction defining the an,k, and then uses

the equations

c̃i,i−1 = ai,ici,i−1 ˜ci+1,i−1 = ai+1,i+1ci+1,i−1 − ai+1,ici,i−1
which give an explicit verification of the base cases. �

5.4.5 Alternate proof: t2 = 1 case

We can alternately derive (5.18) from (5.17) by recognizing the function of λ in

the latter as being a simple variant of a standard generating function for the

continuous q-ultraspherical polynomials Cn(X;β|q).

The polynomials Cn(X;β|q) are defined in terms of the Macdonald polyno-

mials pn(X;β|q) by the formula

Cn(X;β|q) =
(1− β)(1− βq) · · · (1− βqn−1)

(1− q)(1− q2) · · · (1− qn)
pn(X;β|q). (5.26)

TheCn(X;β|q) obey the following generating function identity, which is well

known (see, e.g., [28])

∞∑
n=0

Cn(X;β|q)λ
n =

(λβX;q)∞(λβX−1;q)∞
(λX;q)∞(λX−1;q)∞ (5.27)

which, when q = q4, β = q4i becomes

∞∑
n=0

Cn(X;q
4i|q4)λn =

1∏i−1
k=0(1− q

4kλX)(1− q4kλX−1)
.
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Before we start, let us note that we will work with the following equivalent

version of (5.17), where λ has been replaced by −λ to ease the amount of signs,

and we have shifted the index of i by 1:

˜cn,i−1 = [λn]

 ci,i−1
∏i

k=2Ak∏i
k=1(λ+ λ

−1 − (q2(2k−1)t−1 + q−2(2k−1)t))

 (5.28)

Consider the product appearing in the denominator of (5.28):

i∏
k=1

(λ+ λ−1 − (q2(2k−1)t−1 + q−2(2k−1)t))

Introduce the variables µ = q−2(i−1)λ and X = q2it−1, and this becomes

= q−2i(i−1)µ−i

i∏
k=1

(1− q4(k−1)µX)(1− q4(i−k)µX−1)

= q−2i(i−1)µ−i

i∏
k=0

(1− q4kµX)(1− q4kµX−1)

Thus by employing (5.27), we can rewrite (5.28) (after returning to λ, t variables)

as

˜cn,i−1 = ci,i−1  i∏
k=2

Ak

 [λn]
 ∞∑
n=0

q−2n(i−1)Cn(q
2it−1;q4i|q4)λn+i


or, more simply,

˜cn,i−1 = ci,i−1  i∏
k=2

Ak

q−2(n−i)(i−1)Cn−i(q
2it−1;q4i|q4) (5.29)

It is a consequence of (5.26) as well as the evaluation formula for pn(β1/2;β|q)

(Theorem 17) that

q−2(n−i)(i−1)ci,i−1Cn−i(q
2it−1;q4i|q4) = cn,i−1

pn−i(q
2it−1;q4i|q4)

pn−i(q2i;q4i|q4)

which allows us to conclude

˜cn,i−1 =  i∏
k=2

Ak

 pn−i(q2it−1;q4i|q4)pn−i(q2i;q4i|q4)
cn,i−1

which is exactly (5.18).
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CHAPTER 6

BS CONJECTURE (QUASI-CLASSICAL)

This chapter will be concerned with the BS conjecture of before, at the special

value q = −1. Our goal will be to reduce this conjecture to a statement which

can be checked computationally for a fixed knot K which admits a knot group

on 2 or 3 generators.

In [34], the authors relate the BS conjecture at q = −1 to a conjecture made

previously by Brumfiel and Hilden about the peripheral map

HαK : HZ2 → Hπ1(S
3 \ K).

Theorem 22. (Berest, Samuelson, 2018) Let X, Y ∈ HZ2 be the class of the meridan

and longitude, respectively. If we assume the ring map

(X− X−1) : H+π1(S
3 \ K) → H+π1(S

3 \ K)[X±1]

a 7→ (X− X−1)a

is injective, then the BS conjecture at q = −1 holds provided

Y ∈ H+π1(S
3 \ K)[X±1] (6.1)

where we have identified X and Y with their images under αK.

In the paper establishing this theorem, the authors show that all torus knots,

2-bridge knots and some invertible torus knots satisfy (6.1) - a class strictly

larger than for which the general conjecture (at all q) is known. Notably, this

class lacked an example of a non-invertible knot.
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6.1 Case of pretzel knots

In this section we describe the approach to produce code which will verify (6.1)

for the (3, 5, 7) and (3, 5, 9)-pretzel knots, known to be non-invertible by work

of Trotter [32]. The result is the following

Theorem 23. For both the (3, 5, 7) and (3, 5, 9)-pretzel knots, (6.1) holds.

Proof. We can reduce the decision problem defining (6.1) to that of checking

whether or not two explicit modules over polynomial rings intersect or not,

which can be calculated efficiently using the software Macaulay2. Efficiency

will be important, as the generators of our modules over polynomial rings will

quickly become of very large degree.

Step 1. Recall the presentation of π := π1(S
3 \ Kp,q,r), where K(p,q,r) is the

(p, q, r)-pretzel knot and p = 2k+ 1, q = 2l+ 1, r = 2m+ 1:

π = 〈a, b, c|r1, r2, r3〉

r1 : (ab
−1)ma(ab−1)−m = (bc−1)k+1c(bc−1)−k−1

r2 : (bc
−1)kb(bc−1)−k = (ca−1)l+1a(ca−1)−l−1

r3 : (ca
−1)lc(ca−1)−l = (ab−1)m+1b(ab−1)−m−1.

A meridian-longitude pair is given by (m, l) = (a,w), where

w = (ab−1)−m(bc−1)k+1(ca−1)−l(ab−1)m+1(bc−1)−k(ca−1)l+1.

Step 2. Employ the structure theorems for HF3 (Theorems 6, 7) to produce

it explicitly in Macaulay2. This amounts to producing a free rank-8 module H
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over a polynomial algebra in 6 generators, along with a matrix M : H ⊗H → H

describing the multiplication in this algebra.

Computational note: The multiplication table is large (a 64 × 8 matrix), but

thankfully due to the rules defining the multiplication, it is quite sparse. One

may naturally worry about the possibility of introducing an error in such a large

table; a good consistency check (which we perform) is to verify the associativity

of multiplication defined via M for a few triples of elements of H, chosen at

random. Additionally, in the particular case of our pretzel knot computation,

we can exploit the fact that all of our generators are conjugate. This has the nice

effect that three of the generators of the underlying polynomial algebra coincide

in the quotient and thus we may write everything with two fewer variables.

Step 3. Since the natural surjection p : F3 → π induces a surjection Hp :

HF3 → Hπ, we have Y ∈ H+π[X±1] iff Ỹ ∈ R + kerHp for some R which maps

onto H+π[X±1] and some Ỹ which maps onto Y. Using the result (10) on the

structure of such ideals, we can generate given r1, r2, r3 a particular R + kerHp.

To do this quickly, we write a method which can take a word in the generators

a, b, c and produce its image in HF3. Finally, we generate a Ỹ and check the

inclusion.

Note: Here is where most of the computational difficulty is encountered.

First of all, since the presentation is Wirtinger, one may remove any one of the

relations. The length of the relations does not make computing any particular

generator of kerp difficult, but since there are enough generators, it is lengthy

to check if any given element is in kerp. Add to this the fact that the longitude

is (already for the smallest k, l andm) of quite high degree and the computation

becomes demanding. Most of the effort seems to lie in computing Grobner bases
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for all of these modules, which is not something at the moment seems to have

an easy solution.

One may hope that an alternate presentation may ameliorate some of these

difficulties, but after exhausting many natural attempts it appears as if the diffi-

culty is innate. Introducing, e.g. x = a, y = ab−1, z = bc−1, the gains one makes

in simplicity of presentation are weighed against the fact that now one has lost

the virtue of having all 3 generators conjugate, and so the polynomial algebra

underlying everything again expands.

The full Macaulay 2 code can be found in the appendix. �

6.2 Case of virtual knots

One way to produce examples of knots satisfying (6.1) is to use coverings of

knot groups. Suppose that π1, (m1, l1) is one knot group with peripheral system

for which (6.1) is known and π2, (m2, l2) for which it is unknown. If there exists

an epimorphism

p : π1 → π2

m1 7→ m1, l1 7→ ma
2 l2

then since p(H+π1) = H+π2 and p(X1) = X2, we have necessarily that Y2 ∈

H+π2[X2].

Coverings of knots, both preserving and not preserving peripheral structure

in this way, were studied by Silver and Whitten in [30]. Either notion of covering

naturally induces a partial order on knots; the authors were then compelled to

86



examine how this partial order extended to the more general class of virtual

knots.

Briefly, virtual knots are equivalence classes of knot diagrams which have in

addition to the usual over/under-crossings a “virtual crossing”

Associated to these virtual knots are fundamental groups with peripheral

data, defined in a fashion naturally extending the typical Wirtinger presentation

of the usual knot group; see [16] for a full discussion.

In his work, Silver shows that for the figure-8 knot, a knot which does not

cover any other knot (in any sense considered), there exists a sequence of virtual

knots which it does cover. We discover that the method of proof explicated in

this work can be extended to more generally cover any 2-bridge knot, and thus

arrive at the

Theorem 24. Given any 2-bridge knot k, there exists an infinite family of virtual knots

kq, q ∈ N such that the knot group of k maps onto the knot group of kq. If the pe-

ripheral systems of the two groups are (m, l) and (mq, lq), then this covering takes

m→ mq, l→ lq.

Proof. The fundamental group of a 2-bridge knot k is given by

πk = 〈a, b, | aw = wb〉

where w is a word in a, b. We will produce a particular virtual knot kq with

fundamental group

πkq = 〈a, b, | aw = wb, aqba−q = b〉
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in such a way that it will be clear the image of the peripheral system of πk under

the natural projection to πkq maps onto the peripheral system of the latter.

Let us assume we have a 4-plat presentation for k, that is, a presentation as

k as the closure of a 3-braid β in the following way:

β

Without loss of generality, we may assume β = ασ±1
2,3

We now aim to “virtualize” this crossing in a controlled way; that is, make

one of the following two replacements:

...
...

and thus our kq will be just k virtualized with one chain of length q. Let us

label the curves appearing in both diagrams:

We now collect the following lemmas:

Lemma 10. If the classical region contributes the Wirtinger relation c = aba−1 or c =

a−1ba, then the virtualized region contributes c = a−q+1baq−1 or c = aq−1ba−q+1,

respectively. All of the new arcs introduced in the virtual region may be written in

terms of a, b and c.
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a b

c a ...

a b

c a

b a

a c ...

b a

a c

Lemma 11. When computing a longitude l for the fixed meridian a, if in the classical

case one gets

l = w1a
±1w2a

−s

with the isolated a referring to passing through the crossing underneath the a

strand, in the virtual case we have

l = w1a
±(−q+1)w2a

−s+q

Lemma 12. One may always swap labels of b and c in such a way that a and b are

generators of πk, and the Wirtinger presentation for πk omitting the relation arising

from this crossing is of the standard form

πk = 〈a, b | aw = wb〉

Note: Lemmas 10 and 11 hold for any crossing in any knot diagram, but

Lemma 12 is highly specialized to the current case. The proofs of the lemmas
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are straightforward. From the lemmas, the proof of the result follows quickly:

Combining Lemmas 10 and 12, we see that πkq has the presentation:

πkq = 〈a, b | aw = wb, c = aq−1ba−q+1〉

(Here we are assumming the original crossing gave the relation c = a−1ba,

but the other case is identical.) As aw = wb must implicitly imply c = a−1ba,

we may rewrite this last relation as

a−1ba = aq−1ba−q+1 ⇒ b = aqba−q

and so we have the presentation

πkq = 〈a, b | aw = wb, b = aqba−q〉

.

Combining Lemmas 11 and 12, if we assume the original longitude is of the

form w1aw2a
−s, then the longitude of the virtualization is w1aa−qw2a

−s+q. But

as w2 is a word in a, b and a−q commutes with both a and b in πkq , we have

w1aa
−qw2a

−s+q = w1aw2a
−s ∈ πkq

and so the virtual longitude is exactly the reduction of the classical one. �
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APPENDIX A

CODE FOR PRETZEL KNOTS

{*

Here we create HF_3 and the multiplication table.

This is "Step 2."

*}

kk = QQ

R = kk[t_0,t_1,t_2,t_3,t_4,t_5]

Hpi = Rˆ8

m1 = Hpi_{0}

m2 = Hpi_{1}

m3 = Hpi_{2}

m4 = Hpi_{3}

m5 = Hpi_{4}

m6 = Hpi_{5}

m7 = Hpi_{6}

m8 = Hpi_{7}

m9 = Hpi_{1}

m10 = matrix((t_0ˆ2-1)*Hpi_0)

m11 = matrix(t_3*Hpi_0 + Hpi_4)
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m12 = matrix(t_4*Hpi_0 + Hpi_5)

m13 = matrix((t_0ˆ2-1)*Hpi_2 - t_3*Hpi_1)

m14 = matrix((t_0ˆ2-1)*Hpi_3 - t_4*Hpi_1)

m15 = matrix(Hpi_7 + t_3*Hpi_3 - t_4*Hpi_2)

m16 = matrix((t_0ˆ2-1)*Hpi_6 - t_3*Hpi_5 + t_4*Hpi_4)

m17 = Hpi_{2}

m18 = matrix(t_3*Hpi_0 - Hpi_4)

m19 = matrix((t_1ˆ2-1)*Hpi_0)

m20 = matrix(t_5*Hpi_0 + Hpi_6)

m21 = matrix(t_3*Hpi_2 - (t_1ˆ2-1)*Hpi_1)

m22 = matrix(t_3*Hpi_3 - t_5*Hpi_1 - Hpi_7)

m23 = matrix((t_1ˆ2-1)*Hpi_3 - t_5*Hpi_2)

m24 = matrix(t_3*Hpi_6 - (t_1ˆ2-1)*Hpi_5 + t_5*Hpi_4)

m25 = Hpi_{3}

m26 = matrix(t_4*Hpi_0 - Hpi_5)

m27 = matrix(t_5*Hpi_0 - Hpi_6)

m28 = matrix((t_2ˆ2-1)*Hpi_0)

m29 = matrix(Hpi_7 + t_4*Hpi_2 - t_5*Hpi_1)

m30 = matrix(t_4*Hpi_3 - (t_2ˆ2-1)*Hpi_1)

m31 = matrix(t_5*Hpi_3 - (t_2ˆ2-1)*Hpi_2)

m32 = matrix(t_4*Hpi_6 - t_5*Hpi_5 + (t_2ˆ2-1)*Hpi_4)

m33 = Hpi_{4}

m34 = matrix(t_3*Hpi_1 - (t_0ˆ2-1)*Hpi_2)
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m35 = matrix((t_1ˆ2-1)*Hpi_1 - t_3* Hpi_2)

m36 = matrix(t_5*Hpi_1 - t_4*Hpi_2 + Hpi_7)

m37 = matrix((t_3ˆ2-(t_0ˆ2-1)*(t_1ˆ2-1))*Hpi_0)

m38 = matrix((t_4*t_3-(t_0ˆ2-1)*t_5)*Hpi_0

- t_4*Hpi_4 + t_3*Hpi_5 - (t_0ˆ2-1)*Hpi_6)

m39 = matrix((t_4*(t_1ˆ2-1)-t_3*t_5)*Hpi_0

+ (t_1ˆ2-1)*Hpi_5 - t_3*Hpi_6 - t_5*Hpi_4)

m40 = matrix(((t_1ˆ2-1)*t_4-t_3*t_5)*Hpi_1

- (t_3*t_4-(t_0ˆ2-1)*t_5)*Hpi_2

+ (t_3ˆ2-(t_0ˆ2-1)*(t_1ˆ2-1))*Hpi_3)

m41 = Hpi_{5}

m42 = matrix(t_4*Hpi_1 - (t_0ˆ2-1)*Hpi_3)

m43 = matrix(t_5*Hpi_1 - t_3*Hpi_3 - Hpi_7)

m44 = matrix((t_2ˆ2-1)*Hpi_1 - t_4*Hpi_3)

m45 = matrix((t_3*t_4-(t_0ˆ2-1)*t_5)*Hpi_0

- t_3*Hpi_5 + t_4*Hpi_4 + (t_0ˆ2-1)*Hpi_6)

m46 = matrix((t_4ˆ2-(t_0ˆ2-1)*(t_2ˆ2-1))*Hpi_0)

m47 = matrix((t_4*t_5 - t_3*(t_2ˆ2-1))*Hpi_0

- t_4*Hpi_6 + t_5*Hpi_5 - (t_2ˆ2-1)*Hpi_4)

m48 = matrix((t_5*t_4-t_3*(t_2ˆ2-1))*Hpi_1

- (t_4ˆ2-(t_0ˆ2-1)*(t_2ˆ2-1))*Hpi_2

+ (t_3*t_4-t_5*(t_0ˆ2-1))*Hpi_3)

m49 = Hpi_{6}

m50 = matrix(Hpi_7 + t_4*Hpi_2 - t_3*Hpi_3)
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m51 = matrix(t_5*Hpi_2 - (t_1ˆ2-1)*Hpi_3)

m52 = matrix((t_2ˆ2-1)*Hpi_2 - t_5*Hpi_3)

m53 = matrix(((t_1ˆ2-1)*t_4-t_3*t_5)*Hpi_0

- (t_1ˆ2-1)*Hpi_5 + t_3*Hpi_6 + t_5*Hpi_4)

m54 = matrix((t_5*t_4 - t_3*(t_2ˆ2-1))*Hpi_0

- t_5*Hpi_5 + t_4*Hpi_6 + (t_2ˆ2-1)*Hpi_4)

m55 = matrix((t_5ˆ2-(t_1ˆ2-1)*(t_2ˆ2-1))*Hpi_0)

m56 = matrix((t_5ˆ2-(t_1ˆ2-1)*(t_2ˆ2-1))*Hpi_1

- (t_4*t_5-t_3*(t_2ˆ2-1))*Hpi_2

+ (t_4*(t_1ˆ2-1)-t_3*t_5)*Hpi_3)

m57 = Hpi_{7}

m58 = matrix((t_0ˆ2-1)*Hpi_6 - t_3*Hpi_5 + t_4*Hpi_4)

m59 = matrix(t_3*Hpi_6 - (t_1ˆ2-1)*Hpi_5 + t_5*Hpi_4)

m60 = matrix(t_4*Hpi_6 - t_5*Hpi_5 + (t_2ˆ2-1)*Hpi_4)

m61 = matrix(((t_1ˆ2-1)*t_4-t_3*t_5)*Hpi_1

- (t_3*t_4-(t_0ˆ2-1)*t_5)*Hpi_2

+ (t_3ˆ2-(t_0ˆ2-1)*(t_1ˆ2-1))*Hpi_3)

m62 = matrix((t_5*t_4-t_3*(t_2ˆ2-1))*Hpi_1

- (t_4ˆ2-(t_0ˆ2-1)*(t_2ˆ2-1))*Hpi_2

+ (t_3*t_4-t_5*(t_0ˆ2-1))*Hpi_3)

m63 = matrix((t_5ˆ2-(t_1ˆ2-1)*(t_2ˆ2-1))*Hpi_1

- (t_4*t_5-t_3*(t_2ˆ2-1))*Hpi_2

+ (t_4*(t_1ˆ2-1)-t_3*t_5)*Hpi_3)

m64 = matrix((t_4ˆ2*(t_1ˆ2-1)

+t_3ˆ2*(t_2ˆ2-1)+t_5ˆ2*(t_0ˆ2-1)
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-(t_0ˆ2-1)*(t_1ˆ2-1)*(t_2ˆ2-1)

-t_3*t_5*t_4-t_4*t_3*t_5)*Hpi_0)

MT1 = matrix( m1 | m2 | m3 | m4 | m5 | m6 | m7 | m8 )

MT2 = matrix( m9 | m10 | m11 | m12 | m13 | m14 | m15 | m16 )

MT3 = matrix( m17 | m18 | m19 | m20 | m21 | m22 | m23 | m24 )

MT4 = matrix( m25 | m26 | m27 | m28 | m29 | m30 | m31 | m32 )

MT5 = matrix( m33 | m34 | m35 | m36 | m37 | m38 | m39 | m40 )

MT6 = matrix( m41 | m42 | m43 | m44 | m45 | m46 | m47 | m48 )

MT7 = matrix( m49 | m50 | m51 | m52 | m53 | m54 | m55 | m56 )

MT8 = matrix( m57 | m58 | m59 | m60 | m61 | m62 | m63 | m64 )

MT = matrix( MT1 | MT2 | MT3 | MT4 | MT5 | MT6 | MT7 | MT8 )

{*

A skippable assocativity check:

This is "Step 2"

*}

MT(Hpi_2**MT(Hpi_3**Hpi_4)) - MT(MT(Hpi_2**Hpi_3)**Hpi_4)

MT(Hpi_3**MT(Hpi_4**Hpi_5)) - MT(MT(Hpi_3**Hpi_4)**Hpi_5)

MT(Hpi_1**MT(Hpi_4**Hpi_5)) - MT(MT(Hpi_1**Hpi_4)**Hpi_5)

{*
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Recording words in three letters as lists of integer pairs.

The first integer may be one of 0, 1 or 2, corresponding

to the 3 generators,

while the second integer, the exponent, is unrestricted.

(Currently storing words relevant to pretzel knots)

This is "Step 3"

*}

xmy = {(0,1),(1,-1)}

ymx = {(1,1),(0,-1)}

ymz = {(1,1),(2,-1)}

zmy = {(2,1),(1,-1)}

zmx = {(2,1),(0,-1)}

xmz = {(0,1),(2,-1)}

k = 1

l = 2

m = 3

p = 2*k+1

q = 2*l+1

r = 2*m+1

96



{*

All methods in this block are subordinate to the last method,

asRingElt,

which creates the corresponding element of Hpi from a list

formatted as above.

This is "Step 3"

*}

f = (i,j) -> if (j == 0) then Hpi_0 else (

if (j == -1 or j == 1) then (t_i*Hpi_0 + j*Hpi_(i+1)) else (

if j < 0 then MT( (t_i*Hpi_0 - Hpi_(i+1))**f(i, j+1) ) else (

MT( (t_i*Hpi_0 + Hpi_(i+1))**f(i, j-1) ) )))

List _ Sequence := (x,y) -> apply(toList y, i -> x#i)

isFormatted = method()

isFormatted List := L -> if length L == 0 then true else (

if instance(L#0, Sequence) then (

if length(L#0) == 2 then (

if (L#0#0 == 0 or L#0#0 == 1 or L#0#0 == 2) then isFormatted L_(1 .. length(L)-1)

else false )

else false )
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else false )

asRingElt = method()

asRingElt List := L -> if isFormatted L then (

if length(L) == 0 then Hpi_0 else (

MT(asRingElt(L_(0 .. length(L)-2))**f(L#(length(L)-1)))))

{*

Here we use the methods to convert our strings into ring elements.

We then use them to create the relations/longitude elements.

Specifically, we are creating the relations/longitude for Trotter’s

presentation of the (p,q,r) pretzel knot from the paper

"Invertible Knots Exist".

This is "Step 3"

*}

xmy = asRingElt xmy

ymx = asRingElt ymx

ymz = asRingElt ymz

zmy = asRingElt zmy

zmx = asRingElt zmx

xmz = asRingElt xmz
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raise = (r, n) -> if n == 1 then r else MT(r**raise(r, n-1))

r1 = MT(raise(xmy, m)**MT(f(0,1)**raise(ymx, m)))

- MT(raise(ymz, k+1)**MT(f(2,1)**raise(zmy, k+1)))

r2 = MT(raise(ymz, k)**MT(f(1,1)**raise(zmy, k)))

- MT(raise(zmx, l+1)**MT(f(0,1)**raise(xmz, l+1)))

r3 = MT(raise(zmx, l)**MT(f(2,1)**raise(xmz, l)))

- MT(raise(xmy, m+1)**MT(f(1,1)**raise(ymx, m+1)))

l = MT(

MT(

MT(

MT(

MT(raise(ymx, m)**raise(ymz, k+1))

**raise(xmz, l))

**raise(xmy, m+1))

**raise(zmy, k))

**raise(zmx, l+1))

rels = {r1, r2, r3}

{*

The output of this code creates the two-sided ideal generated by

the relations r_1, r_2 and r_3 within H\pi, the ideal

itself given by the image of the relation matrix rMatrix.
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This is "Step 3"

*}

rMatrix = L -> if length(L) == 0 then 0*Hpi_{0} else (

M = 0*Hpi_{0};

for i to 7 do (for j to 7 do M = M | matrix(

MT(Hpi_i**MT(L#0**Hpi_j))));

M | rMatrix(L_(1 .. length(L)-1)))

{*

Here we pose the important question: Does the longitude element

in Hpi lie in the sum of the spaces Hplus

and the relation ideal Irel?

This is "Step 3".

*}

Irel = image rMatrix(rels)

Hplus = image matrix ( Hpi_{0} | Hpi_{7} | Hpi_{1} |

matrix((t_0ˆ2-1)*Hpi_6 - t_3*Hpi_5 + t_4*Hpi_4) )
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L = image matrix l

isSubset(L, Hplus + Irel)
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