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Abstract

Most epidemiological models of sexually-transmitted diseases (STD's) consider populatlons of single -
individuals. These models assume that every encounter by a susceptible possibly involves a different partner and
such individuals get infected, with a constantiprobability per encounter, by infected partners. In order to match the
model with data it is assumed that the probability of infection per "encounter” sums over all sexual contacts during
a partnership. Although in reality the majority of individuals live in steady partnershlps, itis usually assumed that
these models are good approximations.

Models that use a different approach show other results. Th1s papcr presents a bnef ovcmew of recent
models that take into account pair formation and explicitly follow pairs in the equations.The effect of prostitution’
on the Dietz/Hadeler model is investigated. Some results are compared with those from the usual "single” models
without pairs. Simulations show that the disease can spread up to threc nmes more slowly in paxr formanon
models than in the approximated models without pairs. -~ -

1. Pair Formation and Mixing

Population structure determines the pattern of the spread of a disease. In the AIDS epidexrﬁé;’-‘for :
example, there appear to be several risk groups with nonproportional mixing among them. -
Mixing behavior recently has received a great deal of attention (see for example Jacquez et al.
(1988), Sattenspiel and Simon (1988), Hyman and Stanley (1988,1989), Blythe and Castillo-
Chavez (1989)). However, most of the studies of sexually-transmitted diseases (STD's)
concentrate on homosexual populations and have not dealt with the heterogeneities introduced by
two sexes and pair formation. Although the majority of individuals live in steady partnerships,
these models do not follow pairs in the equations. They implicitly assume that the duration of
partnerships is zero and that all sexual contacts happen instantaneously. This approximation may -
be justified in highly sexually active subgroups, but otherwise one has to take into account the
fact that pairs of susceptibles are practically immune and that pairs with at least one infected
partner do not spread the disease outside the pairs as long as they remain together and do not
.ve other partners. This can strongly influence the initial phase of an epidemic because the
majority of existing pairs consist of susceptible individuals.



It is therefore important in the modelling of sexually transmitted diseases, as in human
demography, to have a mathematical description of the formation and dissolution of pairs.
ixing behavior of individuals produces one constraint on pair formation. Before the formation
a pair there must be an encounter between possible partners. A first approach to pair
formation is thus the "encounter-mating" model, in which pair formation involves two steps: the
encounter of a possible partner and the decision whether to "mate". The mixing pattern
determines the encounter step. The decision to mate is often treated as instantaneous step but this
may not be true. Individual preferences are often not easily recognizable at the first encounter
(Gimelfarb (1988a,b)). The two terms "mixing" and "preference"” are often confused. The terms
refer to different phenomena: mixing describes which individuals are met, preference describes
which individuals are likely to be chosen (for instance as partners). Whereas mixing between
subgroups must be symmetric, i.e. subgroup i mixes as many times with subgroup j as subgroup j
mixes with subgroup i, preferences need not be symmetric. In models to describe mixing
patterns in AIDS, preferences often are not considered.”

Until about 1947 all population models considered only one sex. They typically focused on
the female population because births are more easily attributable to the mother. But the same
models were also applied to the male sex. Kuczynski (1932) calculated the female and male net

. reproductlon numbers for France 1920-3 (the average number of daughters (sons) that will be

" bom to a female (male)) and he found the female rate to be 0.977 and the male rate to be 1.194.

One-sex models Would therefore predict either a decrease or an increase of the population,

pendmg on the sex Kuczynskl at that time explained these differences in the rates as bemg due
As a first attempt to overcome the inconsistencies in one-sex populatlon models, A. H.
Pollard (1948) attrlbuted amﬁerally the number of male births to females and the number of
female births to males_ Kendall (1948) suggested some different deterministic approaches to this
so-called "two-sex problem". First he considered the simplest one-sex model

xX'=(A-px, T 1).
where x(t) is the number of females at time t, A the birth rate and p the death rate. Then he
generahzed this equation to two sexes:

= -ux + 12 A(x,y),

Y’ = -y + 12AKy), )
where the term A(X,y) is symmetric in x and y and describes the births due to males and
females. It is easy to see by subtracting one equation from the other, that an initial excess of one
sex will disappear in time in this model. Later Kendall (1949) considered a model that explicitly
followed single females x, single males y, and couples p:

X' =-ux + A+Wp - 9x.y),

y' =-uy + O"+“')p - (p(x’}'): (3)

P = -2up + @(xy),



where the birth and death rates A and p are the same for males and females. ¢(x,y) describes the

. number of new pairs. Kendall assumed @(x,y) to be p min(x,y), p = const. Although thxs model o

is quite realistic, it has the disadvantage of assuming that male and female btrth and death rates e

equal, which is often a poor approximation. A - v
Since 1949 numerous authors have worked on the two sex problem Keyfitz (1972), Parlett

(1972) and J.H.Pollard (1973) designed and discussed models with different matmg functions -

and understood that a realistic mating function is definitely nonlinear.. McFarland (1972) and ;

Fredrickson (1973) spemfied some conditions that had to be sausﬁed by a matmg functl sonfic i
(i) Definiteness: ' -

'In the absence of males and females there should be no
©0.y)=9(x,0)=0. | | e I S ON
(i) Homogeneity: T S PO SR S
If the sex ratio remains constant, the pair formation i mcreases e
proportional to the total population size, it
P(ox,0y) = wp(x,y) forall a,x,y20
(111) Monotonicity: - A
. The pair fonnauon mcreases 1f the number of males
"uz20,v20 then (p(x+u,y+v) 2 (p(x,y) forall x,y

m1mmum functlon

¢(xy) = p min(x,y),
the geometric mean

e(xy) = pxy, )
and the harmonic mean
oxy) = 2p xy/(x+y). (10

These demographic models based on Kendall's model assume that the birth rate is linear in
the number of pairs. To study the behavior, J. H. Pollard (1973) looked for exponential
solutions. Hadeler et al.(1988) confirmed this approach with the theory of homogeneous
evolution equations. This theory has also the potential of being applicable to a wider class of
population models and epidemiological models (e.g. Nold (1980), Busenberg and van den

.‘iessche (1989), Busenberg et. al. (1989)). Hadeler et al. (1988) used this technique to
investigate the qualitative behavior of a general two-sex model of the Kendall type. They added a
break-up rate for pairs with a general pair-formation law, and showed that if the mortalities of



males and females do not differ very much there is a globally attractive two-sex exponential
solution with constant sex ratio (see also Yellin and Samuelson (1974)). Instead of birth rates
depending linearly on the number of pairs, one can also consider a constant recruitment rate x in

Qemo graphic models:

x' = K-uUx+ (G'Hl)P - (p(x?Y)’
y = K-py+ (G+Wp - ox.y), b
p' = -(G + 2u)p + (P(X,Y),

where 0is a constant break-up rate, p the death rate (independent of sex, for simplicity) and ¢
satisfies the conditions (i)-(iii). In this model exponential solutions do not play an essential role
because the equations are not homogenous. There is always a globally stationary solution (x,y,p),
where p is determined by the equation N

(K-px/-p) = (G+2)p Y

If one assumes that the numbers of both sexes are approximately equal, then the mating
functions (8)-(10) are essentlally mdlstmgulshable What then is the value of discrimination
among the mating functions? One area where the distinction becomes important is that of age--
structured models. Pair formation clearly depends strongly on the ages of the md1v1dua]s and the

.umbers in different age classes can be very different.

Several papers about matmg ‘models (e.g. ‘Goodman (1967) Frednckson (1971) Keyﬁtz
(1972), Hoppensteadt (1975), Staroverov (1977), Hadeler (1989a,b), and several others) have
treated age structure, which I do not consider further in this paper. Goodman (1953) considers
stochastic rather than deterministic models; other papers investigated mating functions inmodels
of populatlon genetics (e.g. Wilson (1973), Wagener (1976) or Karlin (1979)). An apphcatlon
of preferred or assortative mating in one-sex models is presented in Levin and Segel (1982). ©~

2. Two-Sex Models in Sexually Transmitted Diseases

Dietz (1987, 1988) and Dietz and Hadeler (1988) presented a two-sex model for diseases
spread through sexual contacts among heterosexuals. They assumed that a pair begins with the
first sexual contact and that an individual can be member of only one pair at a time. The

.pulation is divided into eight disjunct classes:

X single females, noninfected;



CLREE

x; single females, infected;
yo single males, noninfected;
| y1 single males, infected;
@  poo pairs, both partners noninfected;
Po1 pairs, only male infected;
p1o pairs, only female infected;
P11 pairs, both partners infected.

. Individuals are recruited only into the noninfected single classes with a constant Tate . Smgle'
:.5 females and males are ‘removed w1th constant death rates Mo (unmfected) or pi (mfected), and by
- formmg a pair. Parrs end by breakmg upor by death of one partner The break-up rate is a
e econstant o. Furthermore it is assumed that the probablhty of infection in one sexual contactisa

l constant h and that the average number of sg,u\al contacts within a pair is B Then the model

e equations read:

. dxg/dt=x- uoxo+(uo+0)poo+(u1+c)po' -~ (oo - ,<pol,
+dyo/dt =1 - Uoyo + (1o+0)Poo +(u1+6

1 dxu/dt = - paxs + (Ho+0)p10 +H({1+O)P1
dyy/dt = =- u1Y1+(u0+G)P01 +(ll1+6)P1 i
dpo()/dt '(ZPO*'G)POO"‘(POO» R
,, . dPOl/dt = -(uoHu+o+hB)por +(1-h)¢ol,f
: dpro/dtr— -(urHio+o+hB)pro + (1-h)@ucs fo i
dPu/dt -(2H1+6)P11 + hBPOI + hBPlo' heo +vh‘Plo +ou.

,, ('13)

fN‘ ‘b\'

__ Th18 model contains the demographxcvm _
owill call it the Dietz/Hadeler or PSI-model (Palr formation - SI - model). The pair formatlon Qis’
defined by

Gij(X0X1,y0,y1) = Pij ¥j Xi / (Xo+x1) ' (14)

which is derived from a model where males of type j meet females of type i with fraction
xj/(xo+x1) and mate with a constant rate pjj without competition (male dominance). Although
this function satisfies the conditions (i), (ii), (iii) it has the effect that for very small numbers of
females there are a larger number of pairs formed than the total number of females. To avoid
this problem the authors assume in their paper that the number of females is greater than or

ual to the number of males.

- Alternatively, assume that females of type i will encounter males of types 0 and 1 in the
proportions Cijp : &j; and that males of type j will encounter females of types O and 1 in the

(l.l) 1f there is no mfectron in the populatlon and I



i

proportions Boj : B1j, Qio+oii=1 and Boj+B1j=1. Assume that aijj and Bij are density dependent,
i.e.

Q@ o= o0y, Bij=Bijxom). 15)

T

"'If, furthermore, xj=1yj for i=0,1 (18) is exactly the same function as (14). Dietz and Hadeler

Furthermore, again let be pijj be the probability that a female of type i forms a pair with a male
of type j, given a meeting. Then

@ij(X0,X1,Y0,¥1) =
2pij aij xi Bij yj / (o xi + Bij vj)- (16)

This function is a generalization of the harmopic mean (10) and of the preferential mating in
Levin and Segel (1982). If we assume random mixing,

aij = yj /(yoty1), Bij = xi /(xo+x1), a7
the mating function (16) simplifies to (see also Hadeler and Ngoma (1989))

| - @ij(X0,X1,y0,¥1) =
2pij xi yj / (%o + X1+ Yo + ¥y1)- as)

(1988) showed that there is always a trivial noninfected stationary solution (io,io,0,0,ﬁoo,0,0,0).
They derived a threshold condition for existence of another stationary solution which is
determined by the sign of D,where -

D = hpor [211(R1+0) + O(uo+o+B)]
- mu+o)(por+o+uoHu+hp). (19)

Stability analysis is carried out for the special case with symmetric assumptions and no disease-
induced mortality.

Dietz (1988) compares these results to those of a simplified model which does not explicitly
follow pairs. He matches the probability of infection appropriately by adjusting the parameters
of the simplified model. Even so, with realistic parameters, the PSI-model reaches its
equilibrium about three times more slowly than the approximate model. Also the equilibrium

revalence of the disease is significantly lower in the original model.

The Dietz/Hadeler model presents an initial step towards the development of more general
models of disease transmission. A realistic approach to AIDS must take into account more



complex social and sexual behavior. For instance the use of an average number of sexual contacts
within a pair is doubtful: Furthermore, individuals can also- get infected through sexual partners =
other than their "social" partner, such as prostitutes or steady liasons. One should also buﬂd bothf’?"i- :
.omosexual pairing and needle sharing by IV drug users into the model. Another 1dea 1s to‘

extend the model to variable infectivity over time (see Castillo-Chavez (1989)).
Hadeler and Ngoma (1988) considered a model similar to the PSI-model where they
considered vertical transmission. In some diseases the time scales of the recruitment rate and of

| - the demographic process are roughly equal. In this case it may be appropriate to’ define the

~ recruitment to be linear in the numbers of pairs. Mathematlcally the model contains Kendall's
" model (3) if there is no infection. In this case exponentlal solutlons play an 1mportant role and
. the authors use the stability analysrs in Hadeler et. al. (1988). Rt Ry

SRR i
3. Pair Formation Models with Female Prostitutes ' I f

without paJrs? In order to investigate these questions let us introduce two addmonal classes of
female prostitutes, Fo and F;. Again, 0 means noninfected, 1 infected. For simplicity assume that
the interaction of prostitutes and males consists of a single sexual contact with duration zero.
Prostitutes become infected through males and transmit the virus into the male population but
have no interaction with females (see Fig.2). Let ysdt and ycdt be the number of sexual contacts

per unit time with prostitutes by single men and paired men respectively. One can assume that g
and ¢ are linear in the male variable,

ys(Fiyj) = OyjE/(Fo+hy), - (20)

@ik = EpkiFi/FotFy). @1

L R A b v

‘teady partnershxp at a , time. Dletz (1988) showed m snnulatlons that in the PSI-model the‘vu'us i
spread much more slowly, even if in, models w1thout palrs the . rate of encounters ‘andit‘he:«;f;;




Let kg be the constant recruitment rate of noninfected prostitutes and vg,v; the rates at which

noninfected and infected prostitutes retire from their business. Let the "social" pair formation be
described by the harmonic mean function (16). Since my interest is to look at the possible effects

‘)f prostitutes in the dynamics of a STD, we start by random mixing (17,18). The new model
reads:

dxg¢/dt = ¥ - Hoxo + (Ko+0)Poo +(IL1+0)Po1 - Poo - Po1;

dy¢/dt = x - Woyo + (Mo+0)Poo +(L1+0)P10 - Poo - P10 - hys(F1,¥0);
dxy/dt = - uix1 + (Ho+0)p1o H(H1+06)P11 - Q10 - Q115

dyy/dt = - piy1 + (Lo+0)por +(11+6)P11 - Po1 - @11+ hys(F1,y0);

dpoo/dt = -(2+0)poo + Poo - hyc(F1,poo);
dpor/dt = -(Uo+p1+0+hB)por + (1-h)@or + hyc(F1.poo); (22)
dpio/dt = -(Ui+po+o+hB)pio + (1-h)@10 - hye(F1,p10);
dpyy/dt = -(211+0)p11 + hBpo1 + hPpio + heor + heio + @1
+ hyc(F1,p10);

dFy/dt = xg - VoFp - hys(Fo,y1) - hyc(Fo,po1) - hyc(Fo.p11);
dFy/dt = - viF1 +hyg(Fo.y1) + hyc(Fo,po1) + hyc(Fo.p11)-

.wﬂl call this model the PSI+P model.

Again-there is always a noninfected state (xo,xo,O O,poo,O 0,0 Fo,O) Assume that the rate of
pair formation does not depend on the infection

Poo=pPo1=P10=P11=P, (23)
and furthermore that the pair formation rate with prostitutes is the same for single and coupled
men,

0=E )
The Jacobian of the system in the noninfected state shows the stability behavior in this infection-
free state. After some cumbersome calculations one gets the threshold condition

D; = Vvoxh2[(d;p2+dop+d3)(2Uo+0) + (f1p2+f2p+d3)p]62
+ (ip2+1p+3)Keo(p+240+011) (25)

for the noninfected state to be locally asymptotically stable. Here

P d; = -[wad-h)2+ v2] < 0,
d; = 2mci[(1-h)a+b] < 0,



d3 = -pic12(2p+0) < 0,
fi = d; + hZac; < 0,
= -[c1{a(u1(1-h)+h2B)+2u1b} + h2B2(1-h)a] < O,
.1 = vib[(1-h)u;(2u1+0)-hoc,],
b = 2vipi2ci[(1-h)a+b] > O,
I3 = viu+o)p2ci2 > 0,

S°
|

and a'=;+0, b=h(+c+p)+u1, ¢1= Mot+0o+hp,
C2 = Lot +o+.

If there is no pair formation with prostitutes (8 = € = 0), then the threshold condition is identical
to that in the Dietz/Hadeler model. Fix h,uo,u1,0, B,vo,v1,K,Kg and vary p, 6. Then we have the
two cases:

Casel (I;<0)
If the average number 3 of sexual contacts within a pair or the infection probability h is

"high", then 1; < 0, and we get the following domain of stability:

air formation rate
ith prostitutes

O A

1 Kol V{KE

h VoK

*
—12-\]12 -4, P
21, pair formation rate

of "social" pairs

Case2 (1;>0)
If B or h is "low" then 1; > 0. In that case the "social" pair formation does not play an

important role in the spread of the disease. For every p there is an interval [0,09] where the
d'.ase-free equilibrium is still stable.



pair formation rate

with prostitutes
O A
. _1_ _uu plv IKE ;
h VoK ,

4 4 L 77 AR

P

pair formation rate
of "social” pairs

In order to understand the effect of considering a class of female prostitutes in pair formation
models let us approximate another model. If the break-up rate ¢ tends to infinity in the PSI+P

model we arrive at the following model which neglects pairs:

dxo/dt = x - HoXg - 2kqxoy1/(Xo+X1+yo+y1);
dyo/dt = X - poyo - 2kqx1ye/(Xo+x1+yot+y1) - h8yoF1/(Fo+F1);
dx;/dt = - p1x; + 2kqxoy1/(Xo+X1+yo+y1);

@/t =- puy: + Zkgriyo/Crotxityoryn) + hOyoRUFo+F); @) |}

dFy/dt = xg - VoFp - h8y Fo/(Fo+F));
dFy/dt= -viF; + heylFo/(F0+F1).

Here k is the number of partners per unit time and q is the prébability of getting infected from
one partner. This model assumes that all sexual contacts with one partner occur at the same time.
k and q take the place of the parameters p, G, 3, h in the original model. For this model the

threshold (compare with (25)) is
D; = vipokp(kq)? + pih2xvd2 - vio1 2k, 27)

To get a sense of the difference between these models with and without pairs, let us assume
some realistic values for the parameters. In the noninfected state the total number of (single and
coupled) females and males must each be /. Let x be 200,000 per year and o= 0.02 per year,
soghat the number of individuals at risk in the infection-free state is 20 million (Hethcote and
YO™e (1984)). Let us further assume that xg is 16,667, vo =0.067 and v; = 0.125 per year. Then




- - in the infection-free equilibrium we have about 250,000 prostitutes. Let p be 4.5 per year, 6 be 1
and o be 0.46 per year, y; = 0.1, h = 0.002 and 3 =100 per year. To match the probability of

infection and the pair formation rate in both models, we use the formulas
@ = (w+o)yl+pl
and
q = 1-(1-h)¢, where ¢ = 1+B/(uo+0)

as in Dietz (1988). We then calculate k =0.43 and q =0.342 per year.

These parameters yield case 1 in the pair formation model (22). For both models PSI+P and
(26) the infection free state is unstable. The models differ in the time to approach the
equilibrium. Simulations show that if the noninfected state is unstable, there is always an
endemic equilibrium. The model without pairs reaches its equilibrium more than twice as fast as
the original model with pairs. The infection prevalence in the endemic equilibrium is
significantly lower in the pair formation model (see Fig. 1).

(28)

Maximum Equilibrium
after % infected after % infected
Model without| 1485 348.5
pairs (26) years 314% years 311 %
8 =0
; 5135 689
PSI+P
I+P model years 148 & years 148
8 =0
Model without| (43 3495
pairs (26) years 321 %8 years 315%
0 =1
PSI+P model 488 665.5
years 15.3 % years 153 %
8 =1

Fig. 1: Comparison of simulations of the PSI+P model and model (23). The time to
equilibrium is measured when the distance of the trajectory and the equilibrium
is for the last time more than 1000 individuals.
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Fig.2: Possible interactions in a two-sex model of heterosexuals with prostitution.

Discussion

A brief overview of pair formation and two-sex models in epidemics has been presented. The
model of Dietz and Hadeler has been extended by considering an additional class of female

stitutes to look at the effects of female prostitution on the dynamics of pair formation models.
It was assumed that prostitutes interact only with the male population. Social structure other than
sex still has been ignored.




Simulations indicate that only high values of 0, the rate at which males visit prostitutes, alter
the course of the disease significantly. This result depends strongly on the transmission
probability per sexual contact. As in the Dietz/Hadeler model, a comparison to a model not

plicitly considering pairs shows that the prevalence of the disease in the pair formation model
is much lower than in the model without pairs, even if prostitution is considered. Whereas in the
model without pairs the equilibrium prevalence for certain realistic parameters is about 30%,
the pair formation model with female prostitutes shows a prevalence of about 15%. Simulations
indicate also that the equilibrium is reached twice as fast in the model without pairs. (see Fig.1).

In reality prostitutes are not a social class "outside of society"; their mixing behavior is
much more complex. In models with prostitution there are a lot of uncertainties. Estimates of the
number of prostitutes in the United States lie inbetween 80,000 and 800,000 (Castillo-Chavez,
personal communication). It is also difficult to get an idea of the magnitude of 6.

Unfortunately pair formation models are very cumbersome to analyze and the number of
parameters that have to be estimated is very large. Although simulations cannot replace
analytical treatment, one may get some useful insights into the behavior of these models.
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