Modeling Particulate Wash-Off on Rough, Impervious Surface: Field Experiments

Molly Lebowitz
Cornell University

Note: Press 'skip' on remote to advance slides.
MODELING PARTICULATE WASHOFF ON A ROUGH IMPERVIOUS SURFACE BASED ON FIELD EXPERIMENTS

1. Wash-off setup
2. Wash-off data
3. Modeling theory
4. Roughness
5. Model

The model is based on the equation:

\[e = kM^x + P \]

The sections of the model are determined experimentally as explained below.
MODELING PARTICULATE WASHOFF ON A ROUGH IMPERVIOUS SURFACE BASED ON FIELD EXPERIMENTS

Research Experience For Undergraduates, Summer 2005

1. Experimental wash-off setup
 - Quartz sand
 - Spatial density: 1.5 g cm⁻³
 - Grain diameter: 1.9 mm
 - Flow: 15.4 L min⁻¹
 - Total: 54.6 L
 - Simulated rain and separately controlled overland flow created realistic storm characteristics on an asphalt parking lot.

2. Wash-off data
 - Photos taken at various time intervals during a 2-hour trial. Note formation of fingers. Various replications show scatter in peak time and intensity. This is due to slightly different conditions during trials. Only the identical replicates 1 and 2 will be compared to the model.

3. Defining model theory
 - Mass balance:
 \[\frac{dM_s}{dt} = -aM_s = e = \frac{e}{t} \]
 - Precipitation intensity:
 \[P \]
 - Detachability coefficient (a function of M_s): \(e = aM_s \)

4. Characterizing roughness
 - Rubber models of the asphalt surface were taken in multiple high and low rain同志 touch areas in various directions across the road. A 10 cm long, 1 mm wide slot was immersed from each model and the wash was eluted using a high-resolution scanner.

5. Applying the model
 - \(e = kM^{1+\beta}P \)

(a) Singular rough surface
(b) Superimposed varying rough surfaces

The red curve is the model's prediction based on the test parameters and using the functions for a and f found in step 4. Since the peak was higher than observed and the tail did not fit the 'fingers' seen in the data, we created b, the superposition of contributions from areas with varying roughness characteristics (dashed lines). Another possible variation among 'fingers' of the pulse could be varying flow velocities across the surface.

(Close-ups follow.)
1 experimental wash-off setup

quartz sand
spatial density: 2 g cm$^{-2}$
grain diameter: >180 micron <250 micron

rainfall
intensity: 5.6 cm hr$^{-1}$
drop diameter: 1.15 mm

flow
overland: 19.4 L min$^{-1}$
total: 34.6 L min$^{-1}$

Simulated rain and separately controlled overland flow created realistic storm characteristics on an asphalt parking lot.

Removable screens used to catch sediment were exchanged every three minutes during a trial. Each sample collected indicated total loss during the three-minute time interval.

pressure 19 lb in$^{-2}$
Photos taken at various time intervals during a 2-meter trial. Note formation of ‘fingers.’ Various replications show scatter in peak time and intensity. This is due to slightly different conditions during trials. Only the identical replicates 1 and 2 will be compared to the model.
Lisle (1998) proposed the following mass balance:

\[\frac{\partial M_s}{\partial t} + \frac{\partial vM_s}{\partial x} = e - h \]

precipitation intensity

\[\frac{dM_g}{dt} = h - e \]

ejection

\[e = aPM_g \]

'detachability' coefficient (a function of \(M_g \))

The functions for \(a \) and \(f \) are determined experimentally as explained below...

Since the rough surface in this study introduces cavities that can hold particle mass not necessarily contributing to the available pool of particles on the surface, another term is required to adjust \(M_g \) based on what is available in the top layer.

\(f \) is defined as the "ejectable" fraction of \(M_g \). Since a drop has at most enough energy to eject particles within 2 layers deep, "ejectable" sediment is mass found above a depth of 0.42 mm in the cavities of the surface (≈ two particle diameters).
Rubber molds of the asphalt surface were taken to represent high and low traffic load areas in various directions across the grade. A 10 cm long, 1 mm wide strip was trimmed from each mold and the profile was digitally imaged using a high-resolution scanner.

Measure: Average cavity length, l_c, at 0.04 cm depth intervals over length, L.

Determine: $\Sigma l_c/L = \text{fraction of length covered by exposed sediment}$

$= \text{fraction of area covered by exposed sediment}$

$\text{Vol}_g = \text{total cavity volume at depth, } d = \Sigma \text{volume of each depth interval} \leq d$

$M_g = \text{cavity volume} \times \text{bulk density of particulate}$

$f = \text{fraction of ejectable particulate} = \text{particulates in top depth interval} / M_g$

$A_0 = (l_c/2)^2 / 4 \times \text{drop diameter}/2$

$a = A_0 / \text{drop volume} = 3(l_c/2)^3 / 4 \times \text{drop diameter}/2^3$

Lisle defined $a = A_0 / V$ where A_0 is the area influenced by drop impact and V is drop volume. On our rough surface, A_0 becomes cavity size unless drop impact area is not limited.
Using the data from 9 rubber asphalt molds, the above power functions were fit to describe both the detachability coefficient, a, and the fraction of ejectable surface mass in terms of M_g. The functions were then incorporated into the model developed by Shaw et al.
applying the 5 model: $e = kM_g^{1+\beta}P$
The red curve is the model’s prediction based on the test parameters and using the functions for a and f found in step 4.

Figure a shows the model prediction for a simple rough surface. Since the peak was higher than observed and the tail did not fit the ‘fingers’ seen in the data, we created b, the superposition of contributions from areas with varying roughness characteristics (dashed lines). Another possible variation among ‘chunks’ of the pulse could be varying flow velocities across the surface.

