Maximizing Influence in a Competitive Social Network: A Follower’s Perspective

[Extended Abstract]

Tim Carnes, Chandrashekhar Nagarajan*, Stefan Wild†, and Anke van Zuylen‡
School of Operations Research and Industrial Engineering
Cornell University
Ithaca, NY 14853
{tcarnes, chandra, stefan, anke}@orie.cornell.edu

ABSTRACT

We consider the problem faced by a company that wants to use viral marketing to introduce a new product into a market where a competing product is already being introduced. We assume that consumers will use only one of the two products and will influence their friends in their decision of which product to use. We propose two models for the spread of influence of competing technologies through a social network and consider the influence maximization problem from the follower’s perspective. In particular we assume the follower has a fixed budget available that can be used to target a subset of consumers and show that, although it is NP-hard to select the most influential subset to target, it is possible to give an efficient algorithm that is within 63% of optimal. We further generalize these results to the case when the costs of targeting particular consumers are nonuniform. Our computational experiments show that by using knowledge of the social network and the set of consumers targeted by the competitor, the follower may in fact capture a majority of the market by targeting a relatively small set of the right consumers.

Keywords

Approximation Algorithms, Social Networks, Viral Marketing, Network Analysis, Targeted Marketing

1. INTRODUCTION

The spread of a new idea or product is often studied by modeling a social network as a graph where the nodes represent individuals, and edges represent interactions between individuals. These interactions could include the recommendation of a particular product and such recommendation networks and their effects on consumer purchasing have recently been analyzed in [15] and [16]. Further, there has been recent statistical support that such network linkage can directly affect product adoption [9]. Based on these empirical studies, we can formulate assumptions on how people affect the people they interact with. We can then use these graphs to answer questions such as: “If customers influence each other in their decisions to buy products, which customers should be targeted to maximize the expected profit of a new product?” and “How large of a consumer base needs to be targeted for a new technology, product, or idea to capture a significant share of the market?”

Motivated by the declining effectiveness of traditional mass marketing techniques [15], many recent papers have studied these and similar types of questions. The algorithmic problem of designing viral marketing strategies, marketing techniques which exploit pre-existing social networks to reach consumers, was studied by Richardson and Domingos [21], and Kempe, Kleinberg and Tardos ([12] and [13]). Their research builds on a “word-of-mouth” approach examined in a marketing context by Goldenberg et al. in [8]. In the aforementioned works, the producer of a new product is assumed to have the ability to “influence” a particular set of consumers within the social network – either through targeted advertising, providing free samples, or adding monetary incentive – to adopt the new product. If these people influence some of their friends to also try the product, and these friends in turn recommend it to others, and so forth, the producer can create a cascade of recommendations. The question then becomes how to choose an initial subset of so-called early adopters to maximize the number of people that will eventually be reached, and hence be likely to purchase the product. The size of the subsets allowed is assumed to be limited due to marketing budget constraints. Kempe et al. develop general models for the spreading of influence, show that finding the most influential set of nodes is NP-hard, and give an approximation algorithm for finding a set of nodes that approximately maximizes the expected influence.

The models developed by Kempe et al. assume that there is only one company introducing a product. However, producers of consumer technologies often must introduce a new product into a market where a competitor will offer a comparable product. The introduction of Nintendo’s Wii, to compete with Sony’s Playstation 3, and Blu-ray discs, competing with Microsoft’s HD DVD, are recent canonical examples of such behavior. When adoption of the technology is not free, it is unlikely that a typical consumer will use both products. Furthermore, even if a competing product is superior, consumers are often reluctant to switch technologies if they must bear a cost of transition which may outweigh any direct benefits of the technology [6]. The question whether

*Research supported by NSF grant CCF-0514628.
†Research supported by a DOE Computational Science Graduate Fellowship under grant number DE-FG02-97ER25308.
‡Research supported by NSF grant CCF-0514628.
in this setting a competing product can survive and will be
adopted by a significant fraction of the market, or if it will
eventually disappear, has been studied in numerous works,
including [10], [17], and [23].

It is not always the case that the product with the largest
number of early adopters can translate this initial edge into
market dominance. A classical example where such tipping
did occur is the demise of the BETA format due to the VHS
format’s initial popularity. However, Katz and Shapiro note
that consumer heterogeneity coupled with distinct features
of rival products tends to limit tipping in markets where con-
sumers care more about a product’s features than its overall
prevalence [11]. Hence it is an interesting question to con-
side how a company with a smaller marketing budget may
effectively infiltrate a market in which a stronger competing
company is also present.

Historically, competition between two products has largely
been addressed from an economic modeling perspective and
focused on areas such as market equilibrium. For exam-
ple, in [2] and [3], primarily network-independent properties
are employed to model the propagation of two technologies
through a market. Tomochi et al. [23] offer a more game-
theoretic approach which relies on the network for spatial
coordination games. However, they do not address the prob-
lem of taking advantage of the social network and viral mar-
keting when introducing a new technology into a market.

In this paper, we study the algorithmic problem of how to
introduce a new product into an environment where a com-
peting product is also being introduced. We focus on the
case when a company can keep itself hidden from a com-
petitor until the moment of introduction. We assume that
the company has a fixed budget for targeting consumers
and knows who its competitor’s early adopters are – either
through extensive market research or industrial espionage.
We first develop two models for the spread of adoption of
the two products through the network. We show that find-
ing the most influential set of a given size for the company
to target – the set that maximizes the expected number of
people that will adopt the new product – is NP-hard under
the proposed models in this setting. From a game theoretic
point-of-view, this can also be viewed as calculating the
company’s best response to a competitor’s move in a Stackel-
berg game [7].

Following Kempe et al. we show that using well known
results on submodular functions [18], we can give a
\((1 - \frac{1}{e} - \varepsilon)\)-approximation algorithm for finding the most influential
set of nodes. Additionally, using a result of Sviridenko [22],
we generalize the allowed subsets to be limited based upon
cost rather than simply size, hence allowing different costs to
be associated with targeting different subsets of customers.
We will empirically show that a company can obtain a larger
market share than its unsuspecting competitor even if the
competitor has a much larger marketing budget. Further,
we show that knowing who the competitor’s early adopters
are, hence being able to apply our algorithm, will allow the
company to capture a given percentage of the market using
a much smaller marketing budget.

In the sequel we use the words technology and product
synonymously. We discuss useful results from related work
in Section 2. Building on these results, we describe the mod-
els we developed for the spread of two competing technolo-
gies in Section 3 and the results derived for these models in
Section 4. In Section 5 we give the results of some numerical

simulations of the behavior of these models, and we present
conclusions and further research directions in Section 6.

2. Background

We begin by recalling some existing results central to the
present work.

Submodular function maximization: Given a ground
set \(V\), a function \(f : 2^V \rightarrow \mathbb{R}\) is said to be submodular
if \(f(S \cup \{v\}) - f(S) \geq f(T \cup \{v\}) - f(T)\) for all \(v \in V\) and
sets \(S \subseteq T \subseteq V\). We further say that \(f\) is monotone if
\(f(S \cup \{v\}) \geq f(S)\) for all \(v \in V\) and subsets \(S \subseteq V\).

For a non-negative, submodular, and monotone function
\(f\), and the optimization problem

\[
\max \{ f(I) : |I| = k, I \subseteq V \},
\]

the greedy Hill Climbing Algorithm repeatedly adds the ele-
ment from \(V\) that gives the greatest improvement, by solving

\[
\max \{ f(I \cup \{v\}) : v \in V - I \}
\]

until \(|I| = k\). In [18] Nemhauser et al. show that hill climb-
ing yields a \(1 - \frac{1}{e} - \varepsilon\)-approximation: if \(I\) is the set found by
the Hill Climbing Algorithm, and \(\gamma(I)\) maximizes (1), then
\(f(I) \geq \left(1 - \frac{1}{e} - \varepsilon\right) f(\gamma(I))\). This result has been extended [12] to
show that for any \(\varepsilon > 0\), there is a \(\gamma > 0\) such that when
using a \((1 + \gamma)\)-approximation of \(f(\cdot)\) in (2), we obtain a
\((1 - \frac{1}{e} - \varepsilon)\)-approximation.

Sviridenko recently generalized the result from Nemhauser
et al. to include problems of the form (1) with an additional
knapsack-type constraint [22]. In particular, for a set of
non-negative weights \(\{c_i : i \in V\}\) and a budget \(B \geq 0\), we
now consider the problem:

\[
\max \left\{ f(I) : \sum_{i \in I} c_i \leq B, I \subseteq V \right\},
\]

where \(f\) is again a non-negative, submodular, and mono-
tone set function. An extension of hill climbing, iteratively
adding to \(I\) elements \(v \in V - I\) which maximize

\[
\max \left\{ \frac{f(I \cup \{v\}) - f(I)}{c_v} : c_v + \sum_{i \in I} c_i \leq B \right\},
\]

until \(c_v > B - \sum_{i \in I} c_i\) for all \(v \in V - I\), is described in [14].
Sviridenko showed that this version of hill climbing yields a
\((1 - \frac{1}{e})\)-approximation to (3).

Influence maximization on a network in the single
technology case: The spread of a single technology through
a network has been approached using different diffusion mod-
els (see for example [12], [13], [21], [24]). Here we describe the
independent cascade model introduced by Kempe et al.
[12] which resembles the models we will develop in the case
of competing technologies.

We assume some set of nodes \(I\) initially uses the tech-
nology. The diffusion process then unfolds in discrete time
steps. When a node \(u\) first adopts the technology, it gets a
single chance to make its neighbor \(v\) adopt the technology.
It succeeds with probability \(p_{uv}\) independently of the history
so far. In the next time step, the nodes which just adopted
the technology get a chance to influence their neighbors and
so on. Note that the process is progressive: once a node has
adopted the technology, it will not go back to the state of not having adopted it.

The quantity of interest is then the influence function \(\sigma(I) \), signifying the expected number of nodes that eventually adopt the technology given the initial set of adopters \(I \). In [12] Kempe et al. address how to choose an initial set \(I \) of some fixed size \(k \) to maximize \(\sigma(I) \). Kempe et al. previously showed that solving (1) when \(f \) is the influence function \(\sigma \) is NP-hard but that \(\sigma \) is submodular. Hence if \(\sigma \) can be approximated (say with numerical simulations) arbitrarily well, then for any given \(\varepsilon > 0 \), hill climbing gives a \((1 - \frac{1}{e} - \varepsilon)\)-approximation algorithm for finding an influential initial \(k \)-set \(I \).

Our results: We propose two models for the simultaneous diffusion of two competing technologies on any network given an initial set of early adopters for each technology. Influence functions \(\sigma(I_A | I_B) \) are defined to quantify the success of a technology’s choice of initial adopters. While the proposed models for diffusion are conceptually simple, we show that maximizing such influence functions subject to a budget is computationally intractable. However, in each case we are able to show that the influence function is non-negative, submodular, and monotone, and hence hill climbing provides an approximation algorithm. We have also generalized these results to address heterogeneous costs for targeting consumers.

3. MODELING THE DIFFUSION OF TWO TECHNOLOGIES

We now extend the independent cascade model to the case of two competing technologies. In particular, we propose two models for describing how two technologies simultaneously diffuse over a given network.

Consumers are again modeled as nodes in a network and links between nodes represent interaction between consumers. We assume that our network is an undirected graph \(G = (V, E) \) with \(|V| = n \) nodes and \(|E| = m \) edges. Nodes can take on one of three states – \(A \) and \(B \) referring to the two technologies of interest, and \(C \) denoting that neither technology is adopted. We can specify two initial sets of nodes – a set of initial adopters of \(A \), \(I_A \subseteq V \), and a set of initial adopters of \(B \), \(I_B \subseteq V \) (with the implicit assumption that \(I_C = V - (I_A \cup I_B) \)). We assume that \(I_A \cap I_B = \emptyset \). We assume that once a node has chosen a technology, it will not change to another technology, but that nodes that are using one of the two technologies can influence their neighbors that are not using either technology in their decisions to adopt one of the two technologies.

As in the independent cascade model for a single technology, we assume that if \(u \) has adopted a particular technology, then \(u \) influences neighbor \(v \) with probability \(p_{uv} \). Henceforth, we say that an edge is “active” with probability \(p_{uv} \) independently of the history so far. However, it is now possible that \(v \) is influenced by multiple neighbors that use different technologies. We will propose two models that govern this “diffusion” of technologies \(A \) and \(B \), starting from the sets of initial adopters, given the set of active edges of the network. In other words, the models we develop operate on a random subgraph of the social network \(G \), where each edge is included independently with probability \(p_{uv} \).

Given such a diffusion model, and the assumption that initially a set of consumers, \(I_B \), is already using technology \(B \), company \(A \) would like to choose a set of \(k \) consumers, \(I_A \), to target so as to maximize the expected number of consumers reached eventually.

Let the influence function \(f(I_A | I_B) \) be the expected number of consumers that will adopt technology \(A \), given that initially the set \(I_A \) is using technology \(A \) and the set \(I_B \) is using technology \(B \). We are hence after a solution of the influence maximization problem:

\[
\max \{ f(I_A | I_B) : I_A \subseteq V - I_B, |I_A| = k \}.
\]

If the cost of targeting consumers varies from consumer to consumer, a company may instead wish to maximize its revenue subject to some budget \(B \). Given non-negative costs \(\{c_i : i \in V\} \), the more general from of (5) is then:

\[
\max \left\{ f(I_A | I_B) : I_A \subseteq V - I_B, \sum_{i \in I_A} c_i \leq B \right\}.
\]

For ease of exposition, throughout the sequel we suppress these costs and will assume that \(c_v = 1 \) for all \(v \in V \).

3.1 A Distance-based model

Our first model is related to competitive facility location [5] on a network. In this model, the location of a node in the network is important, as well as the connectivity of a node. The idea is that a consumer will be more likely to mimic the behavior of an early adopter if their distance in the social network is small.

We assume that for each edge \((u, v) \in E \), we are also given a length \(d_{uv} \). If no length is specified we assume that all edges have length 1. In the following we will assume all edges have length 1, however the results can easily be extended for arbitrary non-negative edge lengths. We let \(I = I_A \cup I_B \) be the set of all initial adopters.

Let \(d_u(I, E_a) \) denote the shortest distance from \(u \) to \(I \) along the edges in \(E_a \), with the notation \(d_u(I, E_a) = \infty \) if and only if \(u \) is not connected to any node of \(I \) using only active edges. If \(d_u(I, E_a) < \infty \), let \(\nu_u(I_A, d_u(I, E_a)) \) and \(\nu_u(I_B, d_u(I, E_a)) \) be the number of nodes in \(I_A \) and \(I_B \), respectively, at distance \(d_u(I, E_a) \) from \(u \) along edges in \(E_a \). Given that \(d_u(I, E_a) \) is the shortest distance from \(u \) to \(I \) along the active edges of \(G \), we will say that node \(u \) adopts technology \(i \in \{A, B\} \) with probability

\[
\frac{\nu_u(I, d_u(I, E_a))}{\nu_u(I_A, d_u(I, E_a)) + \nu_u(I_B, d_u(I, E_a))}.
\]

\(1\) If \(d_u(I, E_a) = \infty \), we say that \(u \) will adopt neither technology (state \(C \)) because it is not connected to any of the initial adopters by active edges. Henceforth, we assume that any node \(u \) under consideration is connected to some \(v \in I \) in \(G \).
where the expectation is over the set of active edges. We fix I_B and try to determine I_A so as to maximize the expected number of nodes that adopt technology A:

$$\max \{ \rho(I_A|I_B) : I_A \subseteq (V - I_B), |I_A| = k \}. \quad (8)$$

3.2 Wave propagation model

Although both of the models we propose here reduce to the independent cascade model of Kempe et al. [12] if there is no competition (if we let $I_B = \emptyset$), our second model for propagation is closer in spirit to the independent cascade model. We motivate this model through the example shown in Figure 1.

In this example, with the edges shown being active, our previous distance-based model gives node v a probability of $\frac{d}{2}$ of adopting technology A, even though it has only two neighbors, one of which adopts technology A and one of which adopts technology B. Under the alternative model presented here a node copies the technology adoption of a neighboring node randomly chosen from the set of its neighbors that are closest to the initial sets (I_A, I_B). In the example, and given the set of active edges shown, this corresponds to giving node v a probability $\frac{1}{2}$ of adopting A and $\frac{1}{2}$ of adopting B.

We can think of the propagation as happening in discrete steps. In step d, all nodes that are at distance at most $d - 1$ from some node in the initial sets have adopted technology A or B, and all nodes for which the closest initial node is farther than $d - 1$ do not have a technology yet (where the distance is again with respect to active edges). Then

$$P(u|I_A, I_B, E_a) = \frac{\sum_{v \in S} P(v|I_A, I_B, E_a)}{|S|}.$$

For initial sets I_A, I_B, let

$$\pi(I_A|I_B) = E \left[\sum_{v \in V} P(v|I_A, I_B, E_a) \right]$$

denote the expected number of nodes that adopt technology A. For fixed I_B, we seek a solution to:

$$\max \{ \pi(I_A|I_B) : I_A \subseteq (V - I_B), |I_A| = k \} \quad (9)$$

4. APPROXIMATION ALGORITHMS FOR INFLUENCE MAXIMIZATION

For each of the diffusion models proposed in Section 3 we now show that the decision versions of (8) and (9) are NP-hard but that the corresponding influence functions are nonnegative, monotone and submodular. It will then follow from [18] and [22] that we can use a greedy hill-climbing algorithm to get a $(1 - \frac{1}{\gamma})$-approximation algorithm for these problems. In general it will not be possible to exactly solve the subproblems (2) and (4), as this requires exact evaluation of $\rho(\cdot|I_B)$ and $\pi(\cdot|I_B)$. However, using simulations we can get arbitrarily close approximations of the values needed in (2) and (4). This then allows us to obtain $(1 - \frac{1}{\gamma} - \varepsilon)$-approximation algorithms for both models [12].

Theorem 1. For any given I_B with $|V - I_B| \geq k$, the Hill Climbing Algorithm gives a $(1 - \frac{1}{\gamma} - \varepsilon)$-approximation algorithm for (8).

Proof. Given inputs (I_A, I_B), and a set of active edges E_a, $\rho(I_A|I_B)$ can be efficiently evaluated using Algorithm A provided in the Appendix. The algorithm relies on a single all-pairs shortest paths computation and has overall complexity $O(|V|^3)$. Using simulations, we can then approximate $\rho(I_A|I_B) = E[\rho(I_A|I_B)|E_a]$ to within $(1 + \gamma)$ for any $\gamma > 0$ (where the running time depends on $\frac{1}{\gamma}$). Hence we can implement the greedy hill-climbing algorithm using $(1 + \gamma)$-approximate values for $\rho(I_A \cup \{v\}|I_B)$ in polynomial time. Monotonicity and submodularity of $\rho(\cdot|I_B)$ will be shown in Lemma 2 and Lemma 3, respectively. The approximation guarantee is then an immediate consequence of the results in Section 2.

Theorem 2. For any given I_B with $|V - I_B| \geq k$, the Hill Climbing Algorithm gives a $(1 - \frac{1}{\gamma} - \varepsilon)$-approximation algorithm for (9).

Proof. Given inputs (I_A, I_B) and a set of active edges E_a, $\pi(I_A|I_B)$ can be efficiently evaluated using Algorithm B in the Appendix. The algorithm relies on a single all-pairs shortest path computation and has overall complexity $O(|V|^3)$. We can approximate $\pi(I_A|I_B) = E[\pi(I_A|I_B)|E_a]$ to within $(1 + \gamma)$ for any $\gamma > 0$, hence we can implement the greedy hill-climbing algorithm using $(1 + \gamma)$-approximate values for $\pi(I_A \cup \{v\}|I_B)$ in polynomial time. Monotonicity and submodularity of $\pi(\cdot|I_B)$ will be shown Lemma 5 and Lemma 6, respectively. The approximation guarantee is again an immediate consequence of the results in Section 2.
Before proceeding, we note that to show NP-hardness and the desired properties of the influence functions, it suffices to consider the case when \(p_{uv} = 1 \) for all edges (or equivalently, \(E_a = E \)): NP-hardness of a special case clearly implies NP-hardness of the more general case, and the expected value of the desired properties of the influence functions, it suffices to consider the case when \(E_a = E \), the decision version of the set cover problem asks if there is a collection of \(k \) sets covering all elements in \(E \). Without loss of generality we assume that every element is covered by at least one set and that \(k < \min(m, n) \). We reduce the NP-hard set cover decision problem to the decision version of (8).

Given an instance \((S, E, k)\) of set cover, we construct a graph \(H \) as follows. We add a node \(s_i \) for each set \(s_i \subseteq S \) and a node \(e_j \) for each element \(e_j \in E \). We add an additional node \(x \) and connect it to each \(e_j \) through another node \(d_j \) (see Figure 2). Lastly, for a constant \(\kappa > 0 \) to be specified in the subsequent lemma, we construct a cluster \(C_j \) of \(\kappa \) nodes for each \(j = 1, \ldots, n \) and connect each of the nodes in \(C_j \) to \(e_j \). The following lemma completes the reduction by specifying the value of \(\kappa \).

Lemma 1. Let \(\kappa > (k + 1)(m + n) \) and \(I_B = \{x\} \). There is a collection of \(k \) sets which cover \(E \) if and only if there is a set \(I_A \) of \(k \) nodes in the graph \(H \) such that \(\rho(I_A|I_B) \geq n(\kappa + 1) \).

Proof. If there a collection of \(k \) sets covering \(E \) then we prove that no set \(I_A \) of \(k \) nodes can be the initial adopters of \(A \) and still achieve \(\rho(I_A|I_B) \geq n(\kappa + 1) \). Consider the nodes \(e_1, \ldots, e_n \). There exists a node \(e_j \), which adopts technology \(B \) with probability at least \(\frac{1}{k+1} \) since any set \(I_A \) of size \(k \) cannot be within a distance of 1 from all \(e_j \) (by the construction of \(H \) and lack of a cover). This implies that \(e_j \) and all nodes in \(C_j \) adopt technology \(B \) with probability at least \(\frac{1}{k+1} \). So

\[
\rho(I_A|I_B) \leq \left(n - \frac{1}{k+1} \right)(\kappa + 1) + \frac{m+n}{\binom{k+1}{2}d_1} \leq n(\kappa + 1) + (m+n) - \frac{1}{k+1}(\kappa + 1) < n(\kappa + 1).
\]

Having shown the hardness of (8), we now turn to the Lemmas required in Theorem 1 and show that the influence function \(\rho \) is both monotone and submodular. We assume without loss of generality that every edge is active with probability 1, and for ease of notation, we will write \(d_a(I) \) instead of \(d_a(I, E_a) \). Furthermore, we will drop the subscript \(u \) when \(u \) is clear from the context.

Lemma 2. For any \(I_B \), \(\rho(I_A|I_B) \) is a monotone function of \(I_A \).

Proof. For a fixed \(u \in V \) and initial set \(I_B \), it suffices to show for any \(v \in V - I_B \), and any \(I_A \subseteq V \), the probability that \(u \) adopts \(A \) given the initial set \(I_A \) is at most the probability that \(u \) adopts \(A \) when the initial set is \(I_A \cup \{v\} \), that is:

\[
\frac{\nu(I_A, d(I))}{\nu(I_A, d(I)) + \nu(I_B, d(I))} \leq \frac{\nu(I_A \cup \{v\}, d(I \cup \{v\}))}{\nu(I_A \cup \{v\}, d(I \cup \{v\})) + \nu(I_B, d(I \cup \{v\}))}.
\]

We note that the shortest distance from \(u \) to a node in \(I \) is not smaller than the shortest distance from \(u \) to a node in \(I \cup \{v\} \), so \(d(I) \geq d(I \cup \{v\}) \).

Now, if \(d(I \cup \{v\}) < d(I) \), then \(\nu(I_B, d(I \cup \{v\})) = 0 \), so the right hand side is 1, and the inequality clearly holds. Otherwise, \(\nu(I_B, d(I \cup \{v\})) = \nu(I_A, d(I)) \), and \(\nu(I_A, d(I)) = \nu(I_A, d(I \cup \{v\})) \leq \nu(I_A \cup \{v\}, d(I \cup \{v\})) \) and the inequality holds since for real numbers \(c \geq a \geq 0 \) and \(b > 0 \),

\[
\frac{c}{c+b} \geq \frac{a}{a+b}.
\]

Lemma 3. For any \(I_B \), \(\rho(I_A|I_B) \) is a submodular function of \(I_A \).

Proof. For a set of initial adopters of \(A, S \), and a node \(x \in V - (S \cup I_B) \), we define the increase in the probability

![Figure 2: Graph H for set cover reduction.](image-url)
that node u adopts technology A when adding x to the initial set S as:

$$P(u, S, x) = \frac{\nu(S \cup \{x\}, d(S \cup \{x\} \cup I_B))}{\nu(S \cup \{x\}, d(S \cup \{x\} \cup I_B) + \nu(I_B, d(S \cup \{x\} \cup I_B))} - \frac{\nu(S, d(S \cup I_B))}{\nu(S, d(S \cup I_B) + \nu(I_B, d(S \cup I_B))}.$$

We need to show that for any node $u \in V$ and $S \subseteq T \subseteq V$, $P(u, S, x) \geq P(u, T, x)$.

Let $d_1 = d(S)$, $d_2 = d(T)$, $d_3 = d(I_B)$. Since $S \subseteq T$, $d_1 \geq d_2$. We analyze three cases:

Case 1 ($d_1 \geq d_2 \geq d_3$): If $d(u, x) > d_3$, adding x does not change the probability of u adopting A. So $P(u, S, x) = P(u, T, x) \geq 0$. If $d(u, x) < d_3$, then adding x makes u adopt A with probability 1. It then follows from the monotonicity of ν that

$$P(u, S, x) = 1 - \frac{\nu(S, d(S \cup I_B))}{\nu(T, d(T \cup I_B))} \geq P(u, T, x).$$

If $d(u, x) = d_3$, then $\nu(S, d(S \cup I_B)) = \nu(S, d_3)$ and $\nu(T, d(T \cup I_B)) = \nu(T, d_3)$, and these both increase by 1 if x is added. Furthermore, $\nu(I_B, d(X \cup I_B)) = \nu(T, d_3)$ for $X \in \mathcal{S}_u \cup \{x\}, T \cup \{x\}$. So we need to show that

$$\frac{\nu(S, d_3) + 1}{\nu(S, d_3) + 1 + \nu(I_B, d_3)} \geq \frac{\nu(T, d_3) + 1 + \nu(I_B, d_3)}{\nu(T, d_3) + 1 + \nu(I_B, d_3)}.$$

This equation can be easily checked to be true using the fact that $\nu(S, d_3) \leq \nu(T, d_3)$.

Case 2 ($d_3 \geq d_1 \geq d_2$): In this case $\nu(I_B, d(X \cup I_B)) = 0$ for $X \in \mathcal{S}_u \cup \{x\}, T \cup \{x\}$. In this case the probability that u adopts A is 1 for initial sets $X \in \mathcal{S}_u \cup \{x\}, T \cup \{x\}$, so $P(u, S, x) = P(u, T, x) = 0$.

Case 3 ($d_1 \geq d_3 \geq d_2$): Since $d_3 > d_2$, u will adopt technology A with probability 1 if the initial set is $T \cup \{x\}$. So $P(u, T, x) = 0$, and $P(u, S, x) \geq 0$ holds by Lemma 2.

4.2 Wave propagation model

Since it suffices to show that $\pi(I_A | I_B)$ is monotone and submodular in the special case that every edge in the graph is active with probability 1, we will restrict ourselves to this case and write $P(u, I_A, I_B)$ instead of $P(u, I_A, I_B, E_a)$ for the probability that node u adopts technology A when the initial sets for technology A and B are I_A and I_B, respectively and the set of active edges is E_a.

Let the decision version of (9) be to determine if there is a set I_A of size k with $\pi(I_A | I_B) \geq M$ for any $M \in \mathbb{Q}$. We then have the following result.

Theorem 4. The decision version of (9) is NP-hard.

Proof. We reduce the NP-hard set cover decision problem to the decision problem of (9) as in Theorem 3. Given an instance (S, E, k) of set cover, we construct the same graph H constructed in the proof of Theorem 3. The following lemma completes the proof.

Lemma 4. Let $k > (m+1)(m+n)$ and $I_B = \{x\}$. There is a collection of k sets which cover E if and only if there is a set I_A of k nodes in the graph H such that $\pi(I_A | I_B) \geq n(k+1)$.

Proof. If there is a collection of k sets covering E then we can take I_A to be the k nodes corresponding to those sets. This gives $\pi(I_A | I_B) \geq n(k+1)$ by the same argument given in the proof of Lemma 1.

If there is no collection of k sets that cover E then we prove that no set I_A of k nodes can be the initial adopters of A and still have $\pi(I_A | I_B) \geq n(k+1)$. Consider the nodes e_1, \ldots, e_n. Any set I_A of size k cannot be within a distance of 1 from all e_j (by the construction of H and lack of a cover). So there exists a node e_j which adopts technology B with probability at least $\frac{1}{m+1}$ because one of its neighbors d_j has $P(d_j | I_A, I_B) = 0$ and is at distance 1 from I and at most $m+1$ of its neighbors are at distance 1 from I. So $P(e_j | I_A, I_B) \leq \frac{m}{m+1}$. This implies that e_j and all the nodes in C_j adopt technology A with probability at most $\frac{m}{m+1}$. So for any initial set I_A of size k,

$$\pi(I_A | I_B) \leq \sum_{v \in V} P(v, I_A, I_B) \leq \sum_{v \in e_j \cup C_j} (m+n) + (n-1)(\frac{m}{m+1}) \leq (n-1)(\frac{m}{m+1}) + (m+n) < n(k+1).$$

We again benefit from the valuable properties of monotonicity and submodularity.

Lemma 5. For any I_B, $\pi(I_A | I_B)$ is a monotone function of I_A.

Proof. To prove monotonicity we need to show that $P(u | S \cup x, I_B) \geq P(u | S, I_B)$ for all $x \in V - I_B$. We employ the same notation as in Section 4.1 and let $n(u) = |\{u : (u, v) \in E\}|$ denote the neighbors of node v. Note that $P(d(u, S \cup x, I_B) \leq P(d(u, S \cup I_B))$ then $P(u | S \cup x, I_B) = 1 \geq P(u | S, I_B)$ which proves monotonicity. So the interesting case is when $d(u, S \cup x, I_B) < d(u, S \cup I_B)$. We prove $P(u | S \cup x, I_B) > P(u | S, I_B)$ for this case by induction on the distance $d = d(u, S \cup I_B)$.

Base case: $d = 1$. If x is not a neighbor of u then $P(u | S \cup x, I_B) = P(u | S, I_B)$. If x is a neighbor of u then $P(u | S \cup x, I_B) = \frac{1 + n(u) + |S \cup I_B|}{1 + n(u) + |S \cup I_B|} = \frac{n(u) + |S \cup I_B|}{n(u) + |S \cup I_B|} = P(u | S, I_B).$

Induction step: Now we prove monotonicity for nodes u such that $d(u, S \cup I_B) = d$ assuming monotonicity for all the nodes v with $d(v, S \cup I_B) < d$. Let S be the set of neighbors of u which are at a distance $d - 1$ from $S \cup I_B$. Let K be the set of neighbors of u which are at a distance $d - 1$ from $S \cup I_B$. Let $K = |K|$.

Note that all $v \in K$ have $P(v | S \cup x, I_B) = 1$. The
probability of \(u \) accepting technology \(A \) is then:

\[
P(u|S \cup x, I_B) = \frac{K + \sum_{v \in S} P(v|S \cup x, I_B)}{K + |S|} \geq \frac{\sum_{v \in S} P(v|S \cup x, I_B)}{|S|} = P(u|S, I_B).
\]

The second inequality follows from the induction assumption that monotonicity holds for the nodes \(v \) with \(d(v, S \cup I_B) < d \) and the fact that all nodes in \(S \) are at a distance \(d - 1 \) from \(S \cup I_B \). □

Lemma 6. For any \(I_B \), \(\pi(A|I_B) \) is a submodular function of \(I_A \).

Proof. We will show that for two sets \(S \subseteq T \subseteq V - I_B \), and a node \(x \in V - I_B \), we have that \(\forall u \in V \)

\[
P(u|S \cup x, I_B) - P(u|S, I_B) \geq P(u|T \cup x, I_B) - P(u|T, I_B)
\]

by induction on \(d = d(u, x) \). If \(d = 0 \), then clearly the inequality holds. Suppose it holds for any \(v \) such that \(d(v, x) = d - 1 \).

As in the proof of Lemma 3, we consider different cases for the distance from \(u \) to the closest node in \(S \), \(T \) and \(I_B \). Let \(d_1 = d(u, S), d_2 = d(u, T), d_3 = d(u, I_B) \). It is easy to see that the proof of Lemma 3 also works for our alternative model, except for the case when \(d_1 \geq d_2 \geq d_3 \) and \(d_3 = d(u, x) \).

Let \(S \) be the set of neighbors of \(u \) with the closest node from \(T \cup I_B \) at distance \(d - 1 \) so that:

\[
P(u|S, I_B) = \frac{\sum_{v \in S} P(v|S, I_B)}{|S|}.
\]

Note that each neighbor of \(u \) that is at distance \(d - 1 \) from \(x \) but is at distance greater than \(d - 1 \) from the nodes in \(S \cup I_B \), adopts \(A \) with probability 1. Let \(K \) be the number of such nodes, then:

\[
P(u|S \cup x, I_B) = \frac{K + \sum_{v \in S} P(v|S \cup x, I_B)}{K + |S|}.
\]

Therefore the difference in the probability of \(u \) adopting \(A \) is:

\[
P(u|S \cup x, I_B) - P(u|S, I_B) = \frac{\sum_{v \in S} P(v|S \cup x, I_B)}{K + |S|} - \frac{\sum_{v \in S} P(v|S, I_B)}{K + |S|} = \frac{\sum_{v \in S} (P(v|S \cup x, I_B) - P(v|S, I_B))}{K + |S|}.
\]

Similarly, let \(T \) be the set of neighbors of \(u \) for whom the closest node from \(T \cup I_B \) is at distance \(d - 1 \), and let \(L \) be the number of neighbors of \(u \) that are at distance \(d - 1 \) from \(x \), and at distance greater than \(d - 1 \) from \(T \cup I_B \). Then:

\[
P(u|T \cup x, I_B) - P(u|T, I_B) = \frac{\sum_{v \in T} (P(v|T \cup x, I_B) - P(v|T, I_B))}{L + |T|} + \frac{L}{L + |T|} \sum_{v \in T} (1 - P(v|T, I_B))
\]

We now establish the following three inequalities:

\[
\sum_{v \in S} (P(v|S \cup x, I_B) - P(v|S, I_B)) \geq \sum_{v \in T} (1 - P(v|T, I_B)) \geq \sum_{v \in T} (1 - P(v|T, I_B)) \quad (10)
\]

Clearly these inequalities imply that

\[
P(u|S \cup x, I_B) - P(u|S, I_B) \geq P(u|T \cup x, I_B) - P(u|T, I_B)
\]

To prove (10), let \(K \) and \(L \) be the set of neighbors of \(u \) that are at distance \(d - 1 \) from \(x \), and at distance greater than \(d - 1 \) from \(S \cup I_B \) and \(T \cup I_B \), respectively. (So \(K = |K|, L = |L| \)). Since \(S \subseteq T \), we have \(K \subseteq L \) and hence \(K \leq L \). Now, \(T \cap L \) is the set of neighbors of \(u \) that are at distance \(d - 1 \) from \(T \cup x \cup I_B \), and \(S \cup K \) is the set of neighbors of \(u \) that are at distance \(d - 1 \) from \(S \cup x \cup I_B \), so \(S \cup K \subseteq T \cup L \). Since \(T \cap L = S \cap K = \emptyset \), we get that \(K \leq L \) \(K \leq L \). Combining this with \(K \leq L \) we obtain (10).

To prove (11), we note that for \(v \in T - S \), we must have \(P(v|T, I_B) = P(v|T \cup x, I_B) = 1 \). Since \(v \notin S \), the shortest distance from \(v \) to any node in \(I_B \) is greater than \(d - 1 \), and since \(v \in T \), there must be a node in \(T \) that is at distance \(d - 1 \) from \(v \). Hence:

\[
\sum_{v \in T} (P(v|T \cup x, I_B) - P(v|T, I_B)) = \sum_{v \in S} (P(v|T \cup x, I_B) - P(v|T, I_B)) \geq \sum_{v \in S} (P(v|S \cup x, I_B) - P(v|S, I_B)) = \sum_{v \in S} P(v|S \cup x, I_B) - P(v|S, I_B)
\]

where the inequality follows from induction. We established above that \(K + |S| \leq L + |T| \), which completes the proof of (11).

For (12), we again use the fact that \(P(v|T, I_B) = 0 \) for \(v \in T - S \) and obtain:

\[
\sum_{v \in T} (1 - P(v|T, I_B)) = \sum_{v \in S} (1 - P(v|T, I_B)) \leq \sum_{v \in S} (1 - P(v|S, I_B)),
\]

where the inequality follows from monotonicity. The fact that \(|T| \geq |S| \) gives (12). □
5. NUMERICAL SIMULATIONS

In this section we analyze the behavior of both models and the resulting influence sets of each on a real network – the coauthorship graph based on papers in theoretical high-energy physics. Empirical evidence suggests that coauthorship graphs are representative of typical social networks [19]. By choosing to run our experiments on the data from an actual social network as opposed to generating random graphs, we are able to obtain results that are more specifically applicable to the motivations for our models.

The specific dataset we employed was the PROXIMITY HEP-Th database based on data from the arXiv archive and the Stanford Linear Accelerator Center SPIRES-HEP database provided for the 2003 KDD Cup competition with additional preparation performed by the Knowledge Discovery Laboratory, University of Massachusetts Amherst [20]. After minor preprocessing, the network consisted of 8392 distinct authors and 461 separate connected components (of size at least 2), the largest of which contained 7034 authors.

We ran simulations of the greedy Hill Climbing Algorithm on this network, where the I_B set was chosen according to several different heuristics. As discussed in [12] the heuristics of choosing high-degree nodes and central nodes are often used in the sociology literature to find influential sets of nodes. Here the high-degree heuristic chooses nodes in order of highest degree, while the central node heuristic chooses nodes with low average distance to other nodes. The average distance is calculated by taking the average of a node’s distance to all other nodes, where the distance between unconnected nodes is the number of nodes in the graph. In addition to these two heuristics, we also ran simulations where the nodes of I_B are chosen uniformly at random.

We used each of these three heuristics to choose an initial set I_B of fixed size $|I_B| = 100$ corresponding to a little more than 1% of the nodes in the network. For each of these I_B sets, we ran the greedy Hill Climbing Algorithm to determine the most influential I_A set, where $|I_A|$ ranged from 1 to 100 nodes. Since the problem of finding the best I_A of a fixed size is NP-complete, we compare the results of the algorithm against three heuristics for choosing the I_A set from $V - I_B$: high-degree nodes, central nodes, and nodes uniformly at random.

As in Kempe et al. [12], we begin by giving each edge (u, v) in the network a probability $p_{uv} = .1$ of being active. We suppress the details of the simulation procedure employed, but note here that when $p_{uv} \in (0, 1)$, many random subgraphs must be generated to both obtain a node with the largest marginal expected influence and to evaluate the overall influence of all methods.

Figure 3 shows the size of the market which product A captures for increasing values of $k = |I_A|$ using the distance-based model detailed in Section 4.1, where the 100 nodes of I_B are chosen uniformly at random. As shown in Figure 4, when I_B is chosen greedily – following the hill climbing algorithm of Kempe et al. in the single technology setting – all of the heuristics for choosing I_A require many more initial nodes to capture the same size of the market as when I_B is chosen at random. As expected, from B’s perspective this greedy choice of I_B also outperformed the high-degree nodes and central nodes heuristics, and hence we fix I_B to be this best choice for B.

In all of the experiments which we conducted, the Hill Climbing Algorithm outperformed the other heuristics. This can be attributed to the fact that the Hill Climbing Algorithm takes into account the effect of both the nodes in I_A and I_B when using our greedy algorithm for choosing I_A in the distance-based model. Here we see that our approximation algorithm allows A to capture a larger market share than B by targeting only 44 consumers (recall that B targeted 100 consumers). Since the growth in the total number of adopters of A and B is much slower than the growth of A’s influence, this figure shows that A’s increase in market share is mostly due to drawing consumers away from its competitor. Thus we see that, by virtue of knowing what consumers B will target, A is in fact at an advantage in following its competitor.

Figure 6 shows how much larger an initial set each of the heuristics require relative to the greedy algorithm’s initial set to attain some specified level of influence. Here we
see that to influence 500 consumers, the high-degree nodes heuristic requires an initial set which is approximately 1.5 times larger than that required by the greedy algorithm. In particular, this quantifies how much better the greedy algorithm performs relative to the popular heuristics. This information could also be used by A to determine the value of knowing precisely what consumers B will target, since the other heuristics do not require this knowledge.

The figures for the results of the wave propagation model with $p_{uv} = .1$ are similar to those for the distance-based model, and are hence omitted. We note that the same is true for the results obtained for the two models when $p_{uv} = 1$, corresponding to all edges in the graph being active.

This situation arises when edges represent geographical connections such as in the case of competitive facility location and hence we again choose to show results for the distance-based model. Since interactions are now deterministic, the greedy algorithm for finding I_B will iteratively select one node in the largest untargeted connected component. Thus in Figure 7 we consider the resulting influence of A when I_B is instead chosen using the high-degree nodes heuristic. We again note behavior similar to that in Figures 3 and 4 but that the resulting magnitude of influence is much greater because of the prevalence of interactions in the graph.

For the same setting, Figure 8 shows the marginal gain in influence which A enjoys from targeting an additional consumer. While the behavior shown can be inferred from the previous figure, it is instructive to observe that simply greedily targeting the most influential consumer yields an approximate expected return of more than 180 eventual adopters. We note that given costs for targeting consumers, this figure could help a company decide at what point the cost or targeting an additional consumer outweighs the marginal return expected from this action. For example, in the case of competitive facility location, if opening an additional facility costs roughly 20 times the profit realized from gaining an additional customer, according to Figure 8 company A would choose to open no more than 75 facilities.

6. CONCLUDING REMARKS

In this paper we studied the spreading of two competing technologies, A and B, in a social network. We addressed the question of finding an initial set of nodes to target for technology A, given that the initial set of nodes adopting technology B is known. To our knowledge, this work represents the first treatment of such questions. We proposed two basic models for the spreading of technologies through a network, in which the two technologies propagate in exactly the same way. These models and our results can be easily extended to handle additional competitors. We believe our results could also be extended to include more general cases, for example by having different acceptance probabilities for the two technologies, or by allowing the rate at which influence travels in the graph differ for the two technologies.

From a game-theoretic perspective, the question we study is that of finding a best response to the first player’s move in a Stackelberg game. A natural next step would be to study the optimal behavior of the first player, given that she knows that the second player will use our approximate best response, and ultimately to study the Nash equilibria of this Stackelberg game. We believe that, irrespective of B’s strategy for choosing I_B, A can outperform B with a relatively small budget simply by choosing consumers second. Other interesting games that could be considered using our models are the simultaneous version of this game, and the game where the two players take turns in targeting nodes.

Lastly, using our first model with edge probabilities equal to 1, these problems can also be seen in the context of competitive facility location [1, 4] on a network, but we are not aware of any previous results for competitive location games on a network.

7. ACKNOWLEDGMENTS

This paper stems from work done in a course taught by Jon Kleinberg whom we thank for valuable feedback along the way. We are also grateful to Eric Friedman and David Williamson for their helpful comments on an earlier draft.
8. REFERENCES

APPENDIX

A. ALGORITHM A:

Evaluating $\rho(I_A|I_B)$ for a given E_a

Solve an all-pairs shortest path problem on $G_a = (V, E_a)$.

Let $E(i, j)$ be the length of the shortest $i \rightarrow j$ path in G_a.

For each $v \in V$

- Compute $d = \min_{u \in I} E(u, v)$.
- Compute $\nu_a(I_A, d)$ and $\nu_a(I_B, d)$ using E_a.

Let $q(v) = \nu_a(I_A, d) + \nu_a(I_B, d)$.

Output $\rho(I_A|I_B) = \sum_{v \in V} q(v)$.

B. ALGORITHM B:

Evaluating $\pi(I_A|I_B)$ for a given E_a

Solve an all-pairs shortest path problem on $G_a = (V, E_a)$.

Let $E(i, j)$ be the length of the shortest $i \rightarrow j$ path in G_a.

Let $I_A = \{x_1, x_2, \ldots, x_r\}$.

Let $\delta(v, S) = \min_{u \in S} E(v, u)$.

Initialize $P(v|\emptyset, I_B) = 0 \quad \forall v \in V$

For $i = 1, \ldots, r$ do the following:

$P(x_i|\{x_1, \ldots, x_i\}, I_B) = 1$

For $\Delta = 1 : \max_{u \in V} E(x_i, u)$

While there is an unupdated node v with $D(v, x_i) = \Delta$:

- Let $d = \delta(v, \{x_1, \ldots, x_{i-1}\} \cup I_B)$
- If $\Delta < d$ then
 - $P(v|\{x_1, \ldots, x_i\}, I_B) = 1$
- If $\Delta > d$ then
 - $P(v|\{x_1, \ldots, x_i\}, I_B) = P(v|\{x_1, \ldots, x_{i-1}\}, I_B)$
- If $\Delta = d$ then let:
 - $S = \{u : (u, v) \in E_a, \delta(u, \{x_1, \ldots, x_i\} \cup I_B) = \Delta - 1\}$
 - $P(v|\{x_1, \ldots, x_i\}, I_B) = \sum_{u \in S} P(u|\{x_1, \ldots, x_i\} \cup I_B)$
 - (Note that all nodes in S are updated before v).

Output $\pi(I_A|I_B) = \sum_{v \in V} P(v|I_A, I_B)$.