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The NORTA method is a fast general-purpose method for generating samples of a random vector

with given marginal distributions and given correlation matrix. It is known that there exist

marginal distributions and correlation matrices that the NORTA method cannot match, even

though a random vector with the prescribed qualities exists. In this case we say that the correlation

matrix is NORTA defective (for the given marginals). We investigate this problem as the dimension

of the random vector increases. Simulation results show that the problem rapidly becomes acute,

in the sense that an increasingly large proportion of correlation matrices are NORTA defective.

Simulation results also show that if one is willing to settle for a correlation matrix that is “close”

to the desired one, then NORTA performs well with increasing dimension. As part of our analysis

we develop a method for sampling symmetric positive definite correlation matrices uniformly (in

the Lebesgue measure sense) from the set of all such matrices. This procedure can be used more

generally for sampling uniformly from the space of all symmetric positive definite matrices with

diagonal elements fixed at positive values.
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1. INTRODUCTION

There is a growing need to capture dependence between random variables that serve

as primitive inputs to stochastic models. In a manufacturing setting, for example,

the processing times of a single job at different stations may be correlated due to

characteristics of the job such as size. In financial engineering, Das et al. [2001]

claim that the risk profile of credit portfolios can be understated if correlation is

ignored. Further applications have recently been reported in cost analysis [Lurie

and Goldberg 1998], and in decision and risk analysis [Clemen and Reilly 1999]. If

simulation is used with such models, then we need methods for efficiently generating

samples of correlated random variables. We examine the case where the correlated

primitive inputs of a model are finite in number and hence can be characterized

jointly as a random vector.

We focus on the NORmal To Anything method of random vector generation

described by Cario and Nelson [1997]. The NORTA method belongs to a family

of methods that address the problem of generating samples of a finite-dimensional

random vector with a given set of distributions for the individual components (their

marginal distributions) and a given measure of dependence between them, which

in the NORTA case is either the product-moment or the rank correlation matrix.

Definition 1.1. The product-moment correlation matrix for a random vector X =

(X1, . . . , Xd) is the correlation matrix (i.e., a symmetric positive semidefinite matrix

with unit diagonal elements) ΣX = (ΣX(i, j) : 1 ≤ i, j ≤ d) where

ΣX(i, j) =
Cov(Xi, Xj)

(VarXi VarXj)1/2
.

The rank correlation matrix is of the same form except that now

ΣX(i, j) =
Cov(Fi(Xi), Fj(Xj))

(VarFi(Xi) VarFj(Xj))1/2
,

where Fi and Fj are the distribution functions of Xi and Xj respectively.
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Remark 1.2. The product-moment correlation is a measure of linear correlation

between random variables. Rank correlation is often preferred to product-moment

correlation as a measure of dependence for two reasons. First, it is always defined,

even if the random variables involved have infinite variance. Second, it is invariant

with respect to strictly increasing transformations of the random variables involved.

The philosophy of specifying marginals and correlations to model dependent ran-

dom variables is clearly an approximate one, since the joint distribution is not com-

pletely specified by this information. One hopes (but is not guaranteed) to capture

the essence of the dependence between the random variables. This approach has

the advantage that it is very easy to specify the marginal distributions and corre-

lation matrix based on information obtained from sample data. An alternative is

to fully specify the joint distribution. The primary difficulty in this case is that

a tremendous amount of information is typically required to specify (and fit) such

a joint distribution. Furthermore, special methods must be devised to generate

random vectors with the given joint distribution, and this can be a practically in-

surmountable problem for a model of even moderate complexity (Law and Kelton

2000, p. 479). Another alternative is to settle for a parameteric family of distribu-

tions where the marginal distributions come from a restricted class [Devroye 1986;

Johnson 1987].

Another argument in support of modelling random vectors using marginals and

correlations relates to the use of diffusion approximations for modelling stochastic

systems. In many cases the limiting diffusions depend only on the first two moments

of the input distributions. Therefore, there is some insensitivity in performance

measures computed from these models to the exact form of the input distributions.

In general then, if a form of this insensitivity is present in a model, then the

approach discussed here for modelling random vectors is quite reasonable.

The NORTA method produces a random vector with the desired properties via

a componentwise transformation of a multivariate normal random vector, and cap-

italizes on the fact that multivariate normal random vectors are easily generated;
ACM Journal Name, Vol. V, No. N, Month 20YY.
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see e.g., Law and Kelton [2000], p. 480. Cario and Nelson [1997] traced the roots

of the method back to Mardia [1970] who studied bivariate distributions, and to

Li and Hammond [1975] who concentrated on the case where all of the marginals

have densities (with respect to Lebesgue measure). Iman and Conover [1982] im-

plemented the same transformation procedure to induce a given rank correlation in

the output. Their method is only approximate, in that the output will have only

very approximately the desired rank correlation.

The NORTA method is a very efficient and easy to implement sampling method,

and has seen use in a variety of contexts. Clemen and Reilly [1999] use the NORTA

procedure to induce a desired rank correlation in the context of decision and risk

analysis. Lurie and Goldberg [1998] implement a variant of the NORTA method for

use in cost analysis. Henderson et al. [2000] adapt the NORTA method to generate

samples of dependent quasi-random vectors. The NORTA method is also routinely

used in portfolio models in industry.

So the NORTA procedure is often the method of choice for generating random

vectors with prescribed marginals and correlation matrix. But can the NORTA

procedure be used in all circumstances that require sampling such random vectors?

To define this question more precisely we need a definition.

Definition 1.3. A product-moment (rank) correlation matrix Σ is feasible for a

given set of marginal distributions F1, . . . , Fd if there exists a random vector X with

marginal distributions F1, . . . , Fd and product-moment (rank) correlation matrix Σ.

The question we examine in this paper is whether the NORTA procedure can

match any feasible correlation matrix for a given set of marginals.

For 2-dimensional random vectors, the NORTA method can match any feasible

correlation matrix. This follows immediately from the characterizations in Whitt

[1976]. However, this does not hold for dimensions 3 and greater. Both Li and Ham-

mond [1975] and Lurie and Goldberg [1998] postulate examples of 3-dimensional

random vectors where the NORTA procedure might fail, but do not establish that

the counterexamples exist, i.e., that the example correlation matrices are feasible.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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A necessary, but not always sufficient, condition for feasibility is that the given

matrix is a correlation matrix, i.e., a symmetric, positive semidefinite matrix with

unit diagonal elements. To see why this is not sufficient, consider a random vector

that consists of an exponential random variable with mean 1 and a uniform (0,1] ran-

dom variable. The maximum (minimum) product-moment correlation that can be

induced between the two random variables is ±√3/2, which is strictly less (greater)

than +1 (−1). (Note that if correlations of 1 or -1 were achievable, then one ran-

dom variable would be a linear function of the other, which is clearly impossible

given the distributions specified.) In general then, the range of correlations that

can be achieved between two random variables is a subinterval of [-1,1]. Hence for

the case of the exponential-uniform pair, any matrix

 1 r

r 1


,

where
√

3/2 < |r| ≤ 1, defines a 2× 2 correlation matrix, but not a feasible correla-

tion matrix. Thus, determining the feasibility of a given matrix for a specified set

of marginals is not trivial.

In Ghosh and Henderson [2001; Ghosh and Henderson [2002a], a computational

procedure is developed based on chessboard distributions to determine whether a

given correlation matrix is feasible for the marginal distributions or not. Using this

procedure one can rigorously establish that such counterexamples do exist. Let us

call feasible correlation matrices that cannot be matched using the NORTA method

NORTA defective matrices.

Based on the numerical results obtained in Ghosh and Henderson [2002a] we

conjectured that as the dimension grew, more and more feasible correlation matrices

would be NORTA defective. This is the first aspect of the feasiblity problem that

we investigate in this paper. We estimate, for each dimension, the probability that

the NORTA procedure fails to work for a feasible rank correlation matrix chosen

uniformly from the set of all feasible correlation matrices. Kurowicka and Cooke

[2001] also looked at this problem, but they worked with a probability distribution
ACM Journal Name, Vol. V, No. N, Month 20YY.
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that is not uniform over the set of all feasible correlation matrices. Our results

confirm their finding that the probability the NORTA procedure fails to work grows

rapidly with dimension. This suggests that the NORTA procedure is unlikely to be

effective in high dimensional problems.

However, suppose that we are willing to accept a random vector with the pre-

scribed marginals, and a correlation matrix that is, at least approximately, the

required correlation matrix. In Ghosh and Henderson [2002a] we describe a semidef-

inite programming approach that can assist in this regard.

The proposed augmented NORTA method works in exactly the same manner as

the original method unless a NORTA defective matrix is encountered. For such a

matrix, a semidefinite program is solved, and the results are then used to modify the

inputs given to the NORTA generation step in the hope that the generated random

vector has a correlation matrix that is “close” to the desired one (it has the same

marginal distributions). The numerical results in Ghosh and Henderson [2002a]

indicate that this holds for the 3-dimensional case. In this paper, we examine

higher dimensions, exploring how the augmented NORTA method performs as the

dimension increases. Specifically we estimate the average distance (measured in an

appropriate sense) between the correlation matrix given by the augmented NORTA

procedure and the desired (possibly NORTA defective) matrix.

The results indicate that NORTA can typically get very close to a target corre-

lation matrix, even in very high dimensions. So in high dimensions, while NORTA

is (very) unlikely to be able to exactly match a desired correlation matrix, it is

typically able to match a correlation matrix that is very close to the desired one.

An important part of our analysis is the development of a method for sampling

uniformly from the set of all correlation matrices of a given dimension. We choose

to call this method the Onion Method for reasons that will be clear once the work-

ing of the method is explained. The method is easily generalized to generate from

the set of symmetric positive definite matrices with arbitrary (fixed) positive di-

agonal entries. Thus a possible use of (an appropriately modified version of) the
ACM Journal Name, Vol. V, No. N, Month 20YY.
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sampling scheme might be to study the performance of algorithms that operate

on such matrices. In related work, Marsaglia and Olkin [1984] survey methods for

sampling random correlation matrices, but none of the methods they mention sam-

ples uniformly over the set of all correlation matrices (of fixed dimension). Edelman

[1989] shows how the distribution of a symmetric positive definite matrix can be

expressed as a function of the distributions of the matrices of its eigenvalue decom-

position (Theorems 3.1 and 3.2), although we do not use this result in our analysis.

The onion method can also be used to sample from bounded non-uniform densities

on sets of the kind mentioned above, via standard sampling frameworks like the

acceptance-rejection method.

The onion method is simple to implement since it uses nothing more than stan-

dard tools from the simulation input modelling toolkit, and sample generation is

very fast. Indeed, the most complex and computationally demanding part of the

method involves sampling from univariate beta distributions, which is a very well-

studied problem with many efficient algorithms available (see Law and Kelton 2000,

p. 467).

This paper, which is an outgrowth of Ghosh and Henderson [2002b], is organized

as follows. The next section reviews the NORTA procedure and indicates why some

matrices may be NORTA defective. Section 3 discusses our simulation framework

for estimating the performance of NORTA as the dimension increases. Section 4

describes the random matrix sampling procedure. In Section 5, we return to the

NORTA method, briefly describing the SDP augmentation proposed in Ghosh and

Henderson [2002a], and studying how this augmented method performs in higher

dimensions.

2. THE NORTA PROCEDURE

Suppose that we wish to generate i.i.d. replicates of a random vector X = (X1, . . . , Xd)

with prescribed marginal distributions

Fi(·) = P (Xi ≤ ·), i = 1, . . . , d,

ACM Journal Name, Vol. V, No. N, Month 20YY.
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and product-moment or rank correlation matrix

ΣX = ΣX(i, j), 1 ≤ i, j ≤ d.

The NORTA method generates i.i.d. replicates of X through the following proce-

dure.

(1) Generate an IRd valued joint normal random vector Z = (Z1, . . . , Zd) with

mean vector 0 and covariance matrix ΣZ = (ΣZ(i, j) : 1 ≤ i, j ≤ d), where

ΣZ(i, i) = 1 for i = 1, . . . , d. (Since the variances of each component have been

chosen to be 1, ΣZ also represents the product-moment correlation matrix of Z.)

(2) Compute the vector X = (X1, . . . , Xd) via

Xi = F−1
i (Φ(Zi)), (1)

for i = 1, . . . , d, where Φ is the distribution function of a standard normal random

variable, and

F−1
i (u) = inf{x : Fi(x) ≥ u}. (2)

The vector X generated by this procedure will have the prescribed marginal

distributions. To see this, note that each Zi has a standard normal distribution,

so that Φ(Zi) is uniformly distributed on (0, 1), and so F−1
i (Φ(Zi)) will have the

required marginal distribution.

The covariance matrix ΣZ should be chosen, in a preprocessing phase, so that it

induces the prescribed correlation matrix ΣX on X. However, there is no general

closed-form expression that gives ΣZ in terms of ΣX . Indeed, determining the right

ΣZ is the most difficult step in implementing the NORTA method.

Each component of ΣX has been shown to depend only on the corresponding

component of ΣZ . As in Cario and Nelson [1997], we can define cij(z) = ΣX(i, j)

to represent the correlation between Xi and Xj as a function of the correlation z

between Zi and Zj , when Xi and Xj are generated as in (1). Cario and Nelson [1997]

show that under certain very mild conditions cij(·) is a non-decreasing, continuous

function. This result helps us perform an efficient numerical search for a value
ACM Journal Name, Vol. V, No. N, Month 20YY.



The NORTA Method in Higher Dimensions · 9

ΛZ(i, j) that solves

cij(ΛZ(i, j)) = ΣX(i, j). (3)

Hence a numerical estimate ΛZ of ΣZ can be determined by solving a number of

one-dimensional root-finding problems. Unless stated otherwise, we assume that a

solution exists for (3) for all i and j. This assumption is without loss of generality,

since if ΣX is feasible, then (3) must have a solution for all i and j. Henderson

et al. [2000] also show that under slightly stronger assumptions, ΛZ(i, j) in (3) is

uniquely determined by ΣX(i, j).

The matrix ΛZ is constructed in a way that does not necessarily ensure that it

is positive semidefinite. It might indeed turn out to be indefinite, in which case it

cannot be a valid covariance matrix for a joint normal distribution, and NORTA

will fail. Li and Hammond [1975] postulated the following example to demonstrate

this possibility. Suppose that X = (X1, X2, X3) is a random vector with uniform

(0, 1] marginals, and correlation matrix

ΣX =




1 −0.4 0.2

−0.4 1 0.8

0.2 0.8 1


 .

For the special case of uniform marginals, (3) can be solved analytically (Kruskal

1958) to give

ΛZ(i, j) = 2 sin
(π

6
ΣX(i, j)

)
. (4)

The unique solution ΛZ for the given ΣX turns out to be indefinite.

This example is of course valid only if such a uniform random vector X exists.

Li and Hammond [1975] did not show this. Ghosh and Henderson [2002a] de-

velop a computational procedure that can determine, for almost any (in a Lebesgue

measure sense) given correlation matrix, whether it is feasible for a given set of

marginal distributions (assumed to be continuous and have bounded support) or

not. Applying this procedure to the Li and Hammond example gives a construction

of the random vector, so that it does, indeed, exist. Ghosh and Henderson [2002a]
ACM Journal Name, Vol. V, No. N, Month 20YY.
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generate a number of such feasible matrices for three-dimensional uniform random

vectors that are NORTA defective. The numerical results suggest a structure to

the failure of NORTA. To explain this observation more carefully we need some

notation.

Suppose that the marginal distributions F1, . . . , Fd have densities with bounded

support, and are fixed. With an abuse of notation, we can view a d× d correlation

matrix as an element of a d(d − 1)/2 dimensional vector space, since there are

d(d− 1)/2 elements above the diagonal, the matrix is symmetric, and the diagonal

elements are equal to 1. Let Ω denote the set of feasible correlation matrices. (The

definition of Ω depends on whether we consider product-moment or rank correlation,

but we suppress this dependence in our discussion.) We view this set as a subset

of d(d − 1)/2 dimensional space. Ghosh and Henderson [2002a] prove that in this

setting Ω is nonempty, convex, closed and full-dimensional.

Returning to the discussion above, we found that in 3 dimensions, NORTA defec-

tive matrices tended to occur near the boundary of Ω. Moreover, the indefinite cor-

relation matrices ΛZ determined for the joint normal distribution from (3) seemed

to lie close to (but outside of) the set of symmetric positive semidefinite matrices.

So NORTA defective matrices tended to occur near the boundary, and they were

never too distant from a NORTA feasible matrix.

3. NORTA IN HIGHER DIMENSIONS

NORTA appears to fail most often when the correlation matrix is close to the

boundary of the set Ω. Now, in a sense that can be made precise, “most” points

in certain sets in high dimensions lie close to the boundary. For example, consider

the interior of the unit hypercube [− 1
2 , 1

2 ]d in IRd represented by the hypercube

[− 1−ε
2 , 1−ε

2 ]d, where ε ∈ (0, 1). The ratio of the volume of the interior to that of

the whole set is (1− ε)d, which decreases rapidly to 0 as d increases.

This suggests that feasible matrices within the set Ω may become increasingly

likely to be NORTA defective as the dimension of the problem increases, so that

the feasiblity problem that NORTA faces may become increasingly acute as the
ACM Journal Name, Vol. V, No. N, Month 20YY.
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dimension increases.

Let us consider this possibility in the context of generating samples of a uniform

random vector, i.e., a random vector with uniform (0, 1] marginal distributions.

This case has special significance to the NORTA method because, by construction,

the method has to generate a uniform random vector (Φ(Z1), . . . , Φ(Zd)) as an

intermediary step. Furthermore, the rank correlation matrix of a NORTA-generated

vector with continuous marginal distributions coincides with the product moment

correlation matrix for the intermediate uniform random vector.

This special case also has two advantages. First, the function cij is explicitly

known; see (4). Hence, a correlation matrix for the uniform random vector can be

easily tested for NORTA feasibility. One simply computes the (symmetric) matrix

ΛZ as given by (4) and checks whether it is positive semidefinite or not. Note

that if ΛZ is positive semidefinite then a joint normal random vector Z with this

correlation matrix exists, and this vector transforms through NORTA to a random

vector with the desired correlation matrix. On the other hand a correlation matrix

must be positive semidefinite, so if ΛZ is indefinite, then it is not a correlation

matrix and NORTA will fail.

Second, it has recently been established [Kurowicka and Cooke 2001] that the

set of all feasible correlation matrices for uniform marginals, say Ω, coincides with

the set of all symmetric positive semidefinite matrices with ones on the diagonal.

Thus the problem of estimating the probability of NORTA infeasibility reduces to

the following algorithm.

(1) Let n ≥ 1 be given.

(2) Let ΣX(1), . . . , ΣX(n) be an i.i.d. sample chosen uniformly from

Ω = {Σ : Σ = ΣT , Σ º 0, Σjj = 1 j = 1, . . . , d}. (5)

(3) For each i = 1, . . . , n let ΛZ(i) be obtained from ΣX(i) using the componen-

twise relation (4).

(4) Estimate the probability of NORTA infeasibility by the proportion of matri-
ACM Journal Name, Vol. V, No. N, Month 20YY.
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ces in {ΛZ(i) : i = 1, . . . , n} that are not positive semidefinite.

(The matrix inequality A º 0 signifies a constraint that the matrix A be positive

semidefinite.)

Note that in estimating the probability of NORTA infeasibility we have had to

choose a probability distribution on Ω. The uniform distribution (with respect

to Lebesgue measure) is a natural choice, and is the one we prefer to work with.

Kurowicka and Cooke [2001] give estimates for the probability of NORTA feasibility

using a different distribution on Ω.

A straightforward approach (and one that we adopted) to estimating the proba-

bility of NORTA infeasibility is to combine three well-known methods in simulation

estimation: acceptance-rejection, importance sampling and ratio estimation. We

used importance sampling and acceptance rejection on the hypercube [−1, 1]
d(d−1)

2

(Ω is a strict subset of this hypercube) to choose correlation vectors from Ω. We

then used ratio estimation (see, e.g., Henderson [2001]) to estimate the probability

of NORTA infeasibility. The estimator of the probability of NORTA infeasibility is

therefore of the form

∑n
i=1[I(ΣX(i) º 0, ΛZ(i) 6º 0) 2−d(d−1)/2

φ(ΣX(i)) ]
∑n

i=1[I(ΣX(i) º 0) 2−d(d−1)/2

φ(ΣX(i)) ]
, (6)

where I represents the indicator function (i.e., returns 1 if its arguement is true,

and 0 otherwise), and the matrices ΣX(i) are chosen independently with density φ

from the hypercube [−1, 1]
d(d−1)

2 . We chose the density φ in a heuristic fashion.

This method of estimation works well in lower dimensions but we found that it

became excessively slow as the dimension increased. Indeed, it took more than two

days to generate on the order of a thousand samples of positive definite matrices

even for a dimension as low as d = 12. With a better choice of φ the algorithm

would presumably be much faster, but it is not clear how to choose φ. A better

sampling technique is needed.
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4. THE ONION METHOD

Our goal is to construct a method that samples exactly, and very quickly, from the

uniform distribution on the set Ωd as defined in (5), when viewed as a subset of

IRd(d−1)/2. We use the suffix d to emphasize the dependence on the dimension d.

We thus have to construct a procedure that samples uniformly from the convex,

closed, compact and full-dimensional set Ωd (these properties are established in

Ghosh and Henderson 2002a), i.e., generate samples from the density

f(Σ) ∝ 1 , ∀ Σ ∈ Ωd, (7)

where f is a function of the d(d− 1)/2 upper-diagonal elements of Σ.

For a matrix Σ let Σk represent its k × k dimensional principal leading minor

(i.e., the upper-left k × k submatrix of Σ), and fk represent the marginal density

of Σk when Σ has the joint density (7). Let q be the vector such that

Σk =


 Σk−1 q

qt 1


 .

We call q the completion of Σk−1 in Σk.

The onion method is iterative in that it starts with the one-dimensional matrix

1 and then “grows out” the matrix to the dimension desired by successively adding

an extra row (and the corresponding mirrored column) chosen from an appropriate

distribution. This successive layering approach is the inspiration behind its name.

Marsaglia and Olkin [1984] use a similar matrix-growing approach in their algorithm

to sample correlation matrices with a given set of eigenvalues, but they apply it to

transform diagonal elements of arbitrary positive definite matrices to 1 in order to

form correlation matrices from them. Ouellette [1981] points out some other uses of

the layering approach, notable among them being the numerical method proposed

by Guttman [1946] to compute inverses of large non-singular matrices.

To be more precise the onion method is as follows.

(1) Let Σ1 be the 1× 1 matrix 1.

(2) For k = 2, . . . , d

ACM Journal Name, Vol. V, No. N, Month 20YY.



14 · S. Ghosh and S. G. Henderson

(a) Let q be a column vector in IRk−1 chosen, independently of all else, from density

ϕk(·; Σk−1) say.

(b) Set

Σk =


 Σk−1 q

qt 1


.

(c) Next k.

The densities ϕk, which determine the kth layer, are conditional densities that

depend on the partial matrix Σk−1 constructed thus far. We now state the key

result that motivates the iterative sampling scheme, and in particular provides the

form of the ϕks.

Proposition 4.1. Let fk be the marginal density of Σk when Σ is distributed

as in (7). Then

fk(Σk) ∝ (det(Σk))
d−k

2 ∀ Σk ∈ Ωk , ∀ 2 ≤ k ≤ d.

The marginal density fk represents the joint marginal density of the components

Σk−1 and q of Σk, and Proposition 4.1 expresses fk as a function of Σk−1 and q

(through Σk). The density ϕk of the completion q can then be obtained from fk

by conditioning on a fixed Σk−1, k = 2, . . . , d. The key to the generation scheme

is the fact that the expression obtained for ϕk by this conditioning arguement can

be unravelled in terms of Σk−1 and q in a way that allows for easy generation of q

for a fixed Σk−1.

We describe an efficient scheme to sample q from ϕk after we prove Proposi-

tion 4.1. We need two preliminary results for the proof. Let I(·) be the indicator

function.

Lemma 4.2. If m ≥ 0 and A is some symmetric p.d. matrix in Ωd, then

C =
∫

IRd
I(xtAx ≤ 1) (1− xtAx)mdx = L(m, d) · det(A)−

1
2 ,

where 0 < L(m, d) < ∞ is independent of A.
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Proof. Since A is symmetric and positive definite, it has a unique upper trian-

gular Cholesky factor A1/2 say, so that A = (A
1
2 )tA

1
2 . Applying the linear change

of variables w = A
1
2 x gives

C = | det(A)−
1
2 | ·

∫

IRd
I(wtw ≤ 1) (1− wtw)mdw

= det(A)−
1
2 · L(m, d).

The function g(w) = I(wtw ≤ 1) (1−wtw)m is non-negative, bounded and non-zero

only over the compact region that forms the unit ball in IRd. Hence 0 ≤ L(m, d) <

∞. Since g(0) = 1 and g is continuous about 0, L(m, d) > 0.

For the second result that we use in the proof of Proposition 4.1, first note that

any positive definite symmetric d× d matrix A can be written as a product of two

matrices, akin to a first step in an LU factorization of A, as

A =


 B q

qt 1


 =


 B 0

qt 1





 I B−1q

0 1− qtB−1q


, (8)

where B = Ad−1. The quantity 1 − qtB−1q is called the Schur complement of B

in A. Ouellette [1981] is a useful source of literature on Schur complements. In

particular, Ouellette [1981] points to the result obtained in Guttman [1946] that

rank(A) = rank(B)+I(1−qtB−1q). This immediately gives us the following lemma.

Lemma 4.3. A necessary and sufficient condition for A to be positive definite is

that B be positive definite, and 1− qtB−1q > 0.

Ouellette [1981] also describes a result that follows from (8) and was first shown by

Frobenius [1968]:

det(A) = det(B) (1− qtB−1q). (9)

We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1. We use induction on k from d to 2 to complete

the proof. The result is immediate for k = d, since the density (7) in this case is

the density we are aiming for in the first place. This establishes the base case.
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Let Ψk = {q ∈ IRk| qt(Σk)−1q ≤ 1}. Then, by Lemma 4.3, Ψk represents the set

of all completion vectors q of Σk in Σk+1. For any general k, assuming that the

induction hypothesis holds for k + 1, we get

fk(Σk) =
∫

Ψk

fk+1(Σk+1) dq (10)

∝
∫

Ψk

det(Σk+1)
d−k−1

2 dq (11)

=
∫

Ψk

det(Σk)
d−k−1

2 (1− qtΣ−1
k q)

d−k−1
2 dq (12)

∝ det(Σk)
d−k−1

2 · det(Σk)
1
2 (13)

= det(Σk)
d−k

2 .

The first step (10) above expresses the marginal density of Σk as the function

that results from integrating out the (k + 1)th column, the completion vector q,

from the marginal density of Σk+1 over the set Ψk. The inductive hypothesis gives

(11). The equality (12) uses (9), and (13) follows from Lemma 4.2.

Thus the induction hypothesis holds for k, and hence is true for all k from d to

2.

We now determine the densities ϕk used in the iterative generation procedure

from the marginal densities of Proposition 4.1. As mentioned before, the densities

fk represent the joint densities of Σk−1 and its corresponding completion vector q

in Σk. Hence, if Σk−1 were fixed at A say, we would have that

ϕk(q) = fk|{Σk−1=A}(Σk)

∝ det





 A q

qt 1







d−k
2

= det(A)
d−k

2 · (1− qtA−1q)
d−k

2 .

Therefore, given Σk−1, the conditional density for its completion vector q is

ϕk(q) ∝ (1− qtΣ−1
k−1q)

d−k
2 ∀ q ∈ Ψk−1. (14)

Next comes the question of generating from densities of the form (14). For

this we employ a sequence of variable transformations. First we apply the linear
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transformation w = Σ−1/2
k−1 q, where Σ−1/2

k−1 represents the upper triangular Cholesky

factor of Σ−1
k−1, to get that

ϕk(q)dq ∝ ϕ̃k(w)dw,

where ϕ̃k(w) ∝ (1−wtw)(d−k)/2, and w ∈ IBk−1, the unit ball in IRk−1 (the constant

Jacobian term that arises out of the transformation is included in the proportion-

ality constant). Hence, to sample q from ϕk we could equivalently generate a w

from ϕ̃k and set q to be the appropriate linear transformation of w.

Now, ϕ̃k is radially symmetric, as is the set IBk−1. Thus if we apply a polar

transformation w = (r, θ), where r is the l2-norm of w and θ = (θ1, . . . , θk−2)

represents the angles of the polar transformation (refer Kendall [1961] p. 15 for a

treatment of polar transformations in higher dimensions), then

ϕ̃k(w)dw ∝ (1− r2)
d−k

2 J(r, θ) drdθ1 . . . dθk−2

= (1− r2)
d−k

2 rk−2dr (cos θ1)k−3 (cos θ2)k−4 . . . cos θk−3 dθ1 . . . dθk−2

∝ h(r)dr

where J(r, θ) represents the Jacobian term of the variable transformation and ex-

pands out as given in the second equation, and h(r) = (1−r2)
d−k

2 rk−2. The second

equation implies that the distribution of r is independent of the distributions of the

angles θi. Moreover, the radial symmetry of the integrand also gives us that ϕ̃k(w)

affects only the distribution of r, and the angles need to be sampled such that a

point is chosen uniformly on the surface of the unit hyperball IBk−1.

This suggests that we can sample a w from ϕ̃k by instead first sampling a radius

from a normalized version of h and then multiplying by a point chosen uniformly

over the surface of the unit ball IBk−1. Such a point can be generated by normalizing

a joint-normal independent random vector (i.e., one with the identity matrix as its

correlation matrix) to have unit norm. The radius has to be sampled from h, but

note that under yet another change of variable y = r2, we have that

h(r)dr ∝ yα1−1(1− y)α2−1dy,
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which (after normalization) is simply a univariate beta density function with param-

eters α1 and α2. For our case, the parameters α1 and α2 turn out to be (k−1)/2 and

(d− k)/2 respectively. Law and Kelton (2000 p. 467) points to extensive literature

on generating from beta distributions.

To recap, at the kth stage of the iterative generating procedure, to generate

a sample q of q from ϕk given the matrix Σk−1 already constructed, we do the

following:

— Sample y = r2 from a beta distribution with α1 = (k−1)/2 and α2 = (d−k)/2,

— Sample a unit vector θ uniformly from the surface of IBk−1,

— Set w = rθ, and finally

— Set q = Σ
1
2
k−1w.

This completes the description of the onion sampling method.

This exact sampling method is very competitive when estimating statistical prop-

erties of the set Ωd when compared to methods like the one described in Section

3. First, since sampling from ϕi can be reduced to the problem of sampling from a

univariate beta distribution (and a joint-normal independent random vector), this

method scales very well with dimension. In our study we were able to generate sam-

ples consisting of many thousands of matrices up to dimension d = 25 in a matter of

hours. Second, this method does not involve a ratio-estimation step, which means

that the estimation is more straightforward to implement. For a given sample size,

we also found the results to be more accurate.

As noted before, this method can be generalized and applied very easily to gener-

ate uniformly from sets of symmetric positive definite matrices with any arbitrary

(fixed) positive diagonal elements. One simply has to modify the method by sub-

stituting the diagonal values of 1 assumed in this section with the corresponding

positive values at the appropriate places (the definition of Ψk in the proof of Propo-

sition 4.1 is one such place). The constants of the variate generation method would

be affected accordingly (for instance, the beta variate generation would not be over

(0, 1]).
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One can also use this method to sample from any bounded non-uniform density f

defined on a set of symmetric positive definite matrices of the kind mentioned above.

One simply uses the acceptance-rejection framework of random variate generation

to do this, namely by first generating a point s uniformly from the set and then

checking whether fmax ∗ U ≤ f(s) (where U is an independent uniform random

variable, and fmax = maxx f(x)) in order to accept s as a sample.

The beta distribution used to sample the polar variable r above can be replaced

with any distribution over the positive real line. Thus the onion method can also

sample from any member of the family of distributions on the set of symmetric

p.s.d. random matrices that are radially symmetric under an affine transformation

(the first transformation in the sequence above).

5. FIXING NORTA

We used the exact sampling approach of Section 4 to estimate the probability of

NORTA infeasibility for various dimensions. Our results are given in Figure 1,

where the probability is plotted against dimension. The plot establishes that the

feasiblity problem rapidly becomes acute as the dimension increases. It would seem

that NORTA can only be successful in low-dimensional problems, but this is in fact,

not the case.

Recall that in Ghosh and Henderson [2002a] the indefinite matrices ΛZ were

observed to lie very close to the set of feasible correlation matrices for joint normal

random vectors (i.e., the set of positive semidefinite matrices with ones on the

diagonal). This led to the suggestion in Ghosh and Henderson [2002a] that the

setup stage of NORTA be augmented with an SDP that is used, if ΛZ turns out

indefinite, to find a matrix ΣZ that is “close” to ΛZ and is positive semidefinite.

The matrix ΣZ is then used within the NORTA method.

Why is this approach reasonable? In Theorem 2 of Cario and Nelson [1997] it

is shown that under a certain moment condition, the output correlation matrix

is a continuous function of the input covariance matrix ΣZ used in the NORTA

procedure. So if ΣZ is “close” to ΛZ , then we can expect the correlation matrix of
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Fig. 1. Probability of NORTA infeasibility, based on sampling 15,000 matrices uniformly from Ω

in each dimension. Also shown are 95% confidence intervals.

the NORTA generated random vectors to be close to the desired matrix ΣX . The

moment condition always holds when we are attempting to match rank correlations,

and we can expect it to hold almost invariably when matching product-moment cor-

relations. Therefore, it is eminently reasonable to try and minimize some measure

of distance r(ΛZ , ΣZ) between ΛZ and ΣZ .

The SDP falls under the broad class of matrix completion problems; see Alfakih

and Wolkowicz [2000], or Johnson [1990]. For this case, given ΛZ as data, we wish

to choose a symmetric matrix ΣZ to

minimize r(ΣZ , ΛZ)
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subject to ΣZ º 0, (15)

ΣZ(i, i) = 1.

The metric r(·, ·) can be chosen as desired. In particular, choosing either the L1

metric

r(A,B) =
∑

i>j

|Aij −Bij |

or the L∞ metric

r(A, B) = max
i>j

|Aij −Bij |

makes the minimization problem an SDP-constrained problem with a linear objec-

tive function. Efficient algorithms, and public domain codes implementing them,

are available for solving semidefinite problems of this type; see Wolkowicz et al.

[2000].

Numerical studies conducted in Ghosh and Henderson [2002a] indicate that in 3

dimensions this SDP augmentation yields NORTA generated random vectors with

correlation matrices that are close to the desired ones. One might then ask whether

this remains the case as the dimension increases.

We use a setting identical to that used in Section 3 for this study, and our

measure of performance is the expected L1 distance that we have to move from the

desired correlation matrix to reach a NORTA feasible one. This means that the

minimization problem (15) is solved with r(·, ·) as the L1 metric.

Figure 2 plots the results. We see that the expected L1 distance increases as

the dimension d increases at what might be perceived as a linear rate, although a

superlinear rate seems more likely. If the rate of increase is indeed linear, then,

since there are d(d − 1)/2 matrix entries above the diagonal, the average change

per entry is (eventually) decreasing with dimension. Of course, it is possible that a

small number of entries change by a large amount. The L∞ distance is also shown,

and we see that indeed, at least one entry is changed by an increasing amount as

the dimension increases.

It might be preferable from a modelling standpoint to instead minimize the L∞
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Fig. 2. Performance of the SDP-augmented NORTA in higher dimensions. 15,000 matrices were

generated uniformly from Ω and the semidefinite program, with r taken as the L1 distance, solved

for the NORTA defective cases. The solid line gives the expected L1 distance with 95% confidence

intervals as marked, with the average taken only over NORTA defective matrices. The dotted line

gives the corresponding expected distance as measured in the L∞ metric.

distance, so that one tries to minimize the maximum deviation between the achiev-

able and target correlations. The results in this case are shown in Figure 3. We see

that the expected L∞ distance appears to remain constant at around 0.005 or even

decrease with dimension. The corresponding L1 distance appears to still grow at a

superlinear rate.

Table I shows the maximum deviation observed in correlations (the L∞ distance)

for a sample of 1000 matrices. The matrices that were found NORTA defective
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were put through both the SDP-augmented methods, and the maximum deviation

in correlations observed is recorded in the table. For the second column the SDP

was solved with r as the L1 metric, while the third column takes r to be the L∞

metric. The trends observed in the expected values of the L∞ distances in Figures 2

and 3 are reflected in the maximum values of the L∞ distances in Table I. The

maximum deviation for the case where the SDP is solved for the L1 metric is seen

to grow at a linear rate, while in the L∞ case the maximum remains constant at

around 0.015 or even decreases with dimension. This indicates that the corrective

step involved in the SDP-augmented NORTA method appears to do well even in

worst cases.

While the total absolute change in correlations seem to grow in either case,

Figure 3 suggests that one could attempt a hybrid of the L1 and L∞ approaches

by, for instance, minimizing the L1 distance subject to an upper bound on the L∞

distance, and thus avoid changing any single component of the correlation matrix

by too high a value, while keeping the total change within reasonable limits.

We remark here that the SDP framework used here in searching for a “close”

positive definite matrix in the SDP problem (15) allows us a certain degree of

control on how the search is performed. For instance, we can restrict the change in

certain components by adding additional constraints on the SDP.

Thus, the SDP-augmented NORTA problem performs well on average even in

higher dimensions. It generates random vectors with correlation matrices which

are close to the desired ones, while keeping changes to the individual correlations

within reasonable limits.

We conclude that despite the feasibility problem, the NORTA method is a viable

method even in high dimensional problems.

Computational results also show that the SDP problem in the SDP-augmented

method is solved within a very reasonable amount of time when the L1 metric is

used as r. However we find that the L∞ SDP problems, formulated as in Prob-

lem 15, become increasingly harder to solve as the dimension increases. So we are
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Fig. 3. The SDP-augmented NORTA in higher dimensions. For each dimension, 15,000 matrices

were generated uniformly from Ω and the semidefinite program, with r taken as the L∞ distance,

solved for NORTA defective matrices. The solid line gives the expected L∞ distance with 95%

confidence intervals as marked, with the average taken only over NORTA defective matrices. The

dotted line gives the corresponding expected distance as measured in the L1 metric.

presently considering methods to improve on the present formulation. We will also

be evaluating other alternatives to the SDP formulation presented above.
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