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Abstract-- In this paper, a novel approach of using a function 

space Markov chain to model a nonlinear, highly time varying 
load such as an Electric Arc Furnace (EAF) is proposed. After 
identifying the state space, this approach generalizes the original 
state case (where state is the element to be analyzed) to the 
function case (which analyzes the cycle-vector as an element) and 
uses the same fundamental idea of Markov-like modeling. Thus 
make it more convenient and powerful for current/voltage 
prediction of such loads in a distribution system. Several 
approximations for the cycle-vector are investigated to reduce 
complexity of the problem and heavy burden of the computation. 
The simulations derived from FFT frequency decomposition 
method, when compared with actual EAF data, appear to give 
better results than other approximations proposed based on both 
accuracy and efficiency indices. 
 

Index Terms-- Electric Arc Furnace, Function Space, Markov-
like Models, Prediction. 

I.  INTRODUCTION 

E lectric arc furnaces are widely used in today's steel 
industry. EAF can be either alternating current (ac) or 
direct current (dc). The dc units consume less energy and 

fewer electrodes, but they are more expensive. The EAF is a 
good choice for steel making because of its productivity, 
precision, flexibility and some advanced applications (such as 
alloy). Besides, it is cheap and fast to build an electric furnace 
factory. However, since it is a large, highly nonlinear and time 
varying load, EAF introduces serious power quality problems 
to its nearby power systems. Accurate modeling of the EAF is 
essential to solve this problem. The arc length, arc voltage and 
arc current were expressed by empirical formulas using 
related v-i characteristics in [1,2]. Also, [3] proposed a flicker 
compensation technique using stochastic and sinusoidal time 
varying laws. The EAF current was considered as a 
deterministic chaotic system in [4]. A frequency domain 
method to analyze the harmonic EAF current was employed in 
[5]. 

The observation about the arcing process with its current 
illustrated in Fig. 1 indicated that it is stochastic in nature [1]. 
As a consequence, Markov chain is an appropriate choice for 
modeling of EAF load [6-8]. Modeling of point or state as 

basic element is possible to make one or more points ahead 
prediction. But that is not enough for real time operation to 
improve power quality promptly. A novelty of the approach 
proposed in this paper is to generalize the state case idea to the 
cycle-vector case so that prediction of one or more cycles of 
EAF current/voltage is achievable. In the following, the data 
under study refers to current because it is much more non-
linear than voltage applied to the arc furnace. Since a cycle, as 
it is defined in section II.A, is a function over a random length 
of time involving of several random variables from the 
recorded current/voltage time series, the model is called 
function space valued Markov-like model. The original cycle-
vector function is too complex and cumbersome to describe 
and process since state space is too large. Several simple 
functions are brought in for approximation and ease of 
computation. Such functions are FFT frequency 
decomposition, polynomial fit, and function of maximum, 
minimum, time length and waveform shape for each cycle—
f(Max; Min; Cycle length; Shape). These functions are to be 
described in detail in section II. The approximations are 
studied through extensive predictions. The results and analysis 
are presented in section III. Predictions from ARMA process 
with Kalman Filtering are also compared with these results. 
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Fig. 1  Illustration of actual EAF current and voltage 

II.  BASIC MARKOV MODELING 
Given a nonlinear time series {x’

j} with a continuous state 
space, break up the range of the global minimum to global 
maximum into a finite number, say N, of intervals and 
discretize the time series {x’

j} into {xj} with state space 
{1,2,…. N} by setting xj∈State k if x’

j falls in the kth interval, 
Now consider an EAF current time series {xj,  j=1,2,…M} 
with its state space S={1,2,…. N} as illustrated in Fig. 2 . 
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πkl is an estimate of one step transition probability 
 for the first order chain {x}. 
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Fig. 2  Illustration of states used in Markov-like model 
 

If πkl≈πhkl for all h, k and l, then the time series is a first 
order Markov-like chain and the transition matrix P=(πkl) 
represents the model [9]. If it is not so, test if πghkl ≈πhkl for all 
g, h, k and l, if so, it is a second order Markov-like chain with 
the transition matrix estimated to be P=(πhkl) and so on. This 
statement is based on the basic theory as follows: If the 
sequence {xj} were a first order Markov chain, then the 
conditional probability that xj+1∈ l given xj∈k, xj-1∈h should 
be the same as the probability that xj+1∈ l given only xj∈k. An 
estimate of the two quantities is respectively πhkl and πhk. Thus 
if πkl is approximately equal to πhkl for all h, k and l, then the 
time series {xj} resembles a realization of a Markov chain. For 
this reason, the time series {xj} will be referred to as a first 
order Markov like chain. Similar interpretation applies to 
second order, third order Markov like properties. 

The Markovian property is tested for the EAF current and 
part of the results is illustrated in Tables I and II. When k=3 
and l=4 in a first order Markovian property check, h has two 
possibilities, 2 or 3. With the increase of the data sample size, 

πkl and πhkl become closer and closer. This is more obvious for 
the second order Markovian property check as in Table II, 
where the difference between πghkl and πhkl can be ignored. 
Thus a second order Markov-like chain is a good fit. 
 

TABLE I  PART OF THE RESULTS FROM FIRST ORDER MARKOVIAN PROPERTY 
TEST FOR EAF CURRENT WITH k=3, l=4 

πh kl Data Interval 
h =2 h =3 πkl 

70s~90s 0.500000 0.250000 0.230769 
30s~90s 0.200000 0.184211 0.166863 

20s~120s 0.187563 0.172213 0.177541 
 

TABLE II  PART OF THE RESULTS FROM SECOND ORDER MARKOVIAN 
PROPERTY TEST FOR EAF CURRENT WITH h=9, k=10, l=11 

Data Interval πg h kl with g =9 πhkl 
70s~90s 0.090909 0.088435 
30s~90s 0.051147 0.049896 

20s~120s 0.042086 0.042208 

III.  FUNCTION SPACE APPROACH 
In the Markov model proposed in section II, state was 

considered as the element. If it were used for prediction of a 
cycle, which is about 167 points at a sampling frequency of 
10,000 Hz for the data, the accumulation of errors should be 
large and the accuracy is suffered. For one time step ahead 
prediction, the accuracy of prediction maybe remarkable but it 
is not so practical since data measurements and 
communications in power system may not be fast enough for 
fast, adaptive and accurate compensation. 

We now describe an extension of the above to that of a 
function space approach, where a cycle-vector is regarded as 
the basic element to be analyzed.  

A.  Definition of a Cycle 
For the EAF current or voltage, their waveforms are not 

sinusoid and it is difficult to get a strict period. Here the cycle 
is defined as the interval between two consecutive positive 
crossing points, where a level is fixed after it is identified as 
the zero level. A cycle begins when the time series has a 
positive crossing, i.e., it goes from below zero to above zero, 
and ends when the next positive crossing takes place. In 
between it increases to a maximum followed by a decrease to 
a minimum with a negative or down crossing of zero level and 
then increase to a positive or up crossing of zero level, as 
illustrated in Fig. 3. In this case, each cycle consists of a 
random number of xj’s and the lengths of intervals are varying 
from cycle to cycle. The range of frequencies of the EAF is 
generally between 51Hz to 71Hz from the actual data.  

B.  Generalize From the State Case to Cycle-case:   
Let η1, η2, η3, …., ηM’ (here M’ is the number of cycles) 

be consecutive cycles as in the following: 

1c3211 x,......,x,x,x=η  

......
x,......,x,x,x 21111 cc3c2c1c2 ++++=η  

where c1, c2, c3…is the number of time points in cycles 1, 2, 
3…, respectively. Thus η is the Cycle-vector. 

Now {ηj, j=1,2,…M’} is a new time series and the Markov-
like theory described in section II can be applied to it. In 
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particular, if {ηj} is a first order Markov chain, then the 
conditional distribution of ηi+1 giving ηi is the same as that of 
ηi+1 giving ηi, ηi-1,…… η1. That is to say: 
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where   s1, s2,… si+1 ∈S = {1, 2, …N} 
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Fig. 3  Definition of Cycle 

IV.  APPROXIMATIONS TO A CYCLE-VECTOR 
In reality, the direct use of cycle-case Markov-like chain 

over a cycle maybe not feasible. For example, if only 10 states 
are used, and a cycle has only 10 points, the state space for the 
cycle chain {ηj, j=1,2,…M’} would be 1010=10 billion. So it is 
too huge and not practical—memory requirement is high, 
computational work is heavy and beyond the computing 
power currently available. For applicability each cycle can be 
approximated by a small number of parameters. Several 
approaches for approximation are proposed below for an 
effective comparison.  

A.  FFT Frequency Decomposition: 
For the data of ith cycle ηi ={xj; j=1,2,… ci}, zero-padding it 

to C=max{ci, i=1,…,M’} numbers (Assign 0 to {xj; j=ci+1, 
ci+2,…C}). The FFT components are then defined by [10,11]: 
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Then the vector (Fi
x(1) Fi

x(2)…,Fi
x(C)) can represent cycle ηi.  

In practice, truncated number of frequencies can be used 
because the magnitude of some later frequencies is close to 
zero. Assume it is truncated up to Tr<<ci harmonics. 
Therefore η*

i ={Fi
x(k), k=1,2,…,Tr}, i=1,2,…, M’ is the new 

time series under study. The cycle by cycle Fourier series are 
illustrated in Table III. 

Here an important assumption about the underlying system 
will be made to simplify the problem, namely that signal of 
different frequencies are independent of each other. This 
implies that for different frequency numbers k=1,2,….,Tr, the 
time series {Fi

x(k), i=1,2,3…M’} are independent of each 
other, which is true for most systems. 

Under this assumption, Markov method can be applied to 
the time series {Fi

x(k), i=1,2,….M’} separately for each k (i.e. 
a column in Table III) with a first/second order Markov chain 
just like in section II. The jth frequency component of the 
(i+1)th cycle is estimated using its conditional expectation 
value giving the values of jth frequency component of the ith 
cycle, and (i-1)th cycle (if a second Markov chain is used) [1]. 
In this case, according to the time series theory [11], it gives a 
minimized mean squared error E(  when 

, where  is the predicted 
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x(j), h is the state for Fi

x(j) and Dl is the real 
value corresponds to state l. 

 

TABLE III FOURIER COMPONENTS FOR EACH CYCLE 
Fourier frequency components Cycle 1 2 … k … Tr 

1 F1
x(1) F1

x(2) … F1
x(k) … F1

x(Tr) 
2 F2

x(1) F2
x(2) … F2

x(k) … F2
x(Tr) 

… … … … … … … 
i Fi

x(1) Fi
x(2) … Fi

x(k) … Fi
x(Tr) 

… … … … … … … 
M’ FM’

x(1) FM’
x(2) … FM’

x(k) … FM’
x(Tr) 

 

After getting the estimate of all the Fourier components for 
(i+1)th cycle: Fi+1

x(1), Fi+1
x(2), ….., Fi+1

x(Tr), perform a re-
convolution (inverse FFT) to achieve data for (i+1)th cycle  
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for n=1,2, …..ci+1. Fig. 4 shows the structure of such a 
Markov-like model using FFT frequency decomposition.  

For convenience, one can also choose a fixed number of 
points for each cycle, that is to say, c1=c2=…=ci =…=C. 
Since the fundamental frequency of the system is 60Hz, it will 
be more convenient to set C=167≈10000/60 (with the sample 
rate—10,000 points per second). When taking account of the 
mechanism of FFT algorithm, zero-padding the C number of 
data to 256=28 points will increase the computational speed. 
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Fig. 4  EAF prediction model—frequency  decomposition 

B.  Polynomial Fit 
In this approach, the ith cycle },...,,{ 21 ici xxx=η  is 

approximated using a polynomial function: 
xi(t) =bi(1)+ bi(2)*t+ bi(3)*t2+ … bi(s+1)*ts   (9) 

where t=1, 2…, ci 
           s=the highest order of the polynomial function. 
Generally, for the sine-like waveforms, s=3 is enough (the 
higher order coefficients are zero in this case). 

Then build transition matrices for {bi(k), i=1,2,…M’} 
corresponding to k =1,2,…,s separately, just like in the FFT 
frequency decomposition method in Fig. 4 except that b(k) 
will replace F(k) for cycle i in, FFT* will be replaced by 
Polynomial Fit. Also, these transition matrices will be used in 
prediction with test data in a similar way. In addition, 
transition matrix for the length of the cycle ci should also be 
constructed and included in the prediction procedure. 

But the above suggestion is based on the assumption that 
{b(k), k=1,2,…,s} are independent of each other. In fact, this 
assumption doesn’t hold, thus the prediction results should be 
very bad, as it will be shown later. 
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To solve the problem of dependence, a new series called 
pattern index sequence, is generated in the following way: 
Mark the coefficients vector {b1(k), k=1,2,…,s} of the first 
cycle with pattern index 1.  

For the following consecutive cycles, compare the 
coefficients vector {bi(k), k=1,2,…,s} to the coefficients 
vector recorded as patterns. If the error is within accuracy for 
a specific pattern, Mark this cycle with the same pattern index 
as this pattern. Otherwise, create a new record by increasing 
the pattern index by 1. Table IV illustrates this procedure. 
Then build transition matrix on the pattern index and apply 
Markov-like method to it as the previous methods. Also, the 
coefficients corresponding to the pattern indices are recorded 
for prediction. 

 

TABLE IV  ILLUSTRATION OF PATTERN INDEX MATCHING 
cycle # cycle coefficients pattern index 

1 b1(1), b1(2),…, b1(s) 1 
2 b2(1), b2(2), …, b2(s) 1 (if |b2(k)-b1(k)|<ε for all k) or else 2 
… 
i 
 

… 

… 
bi(1), bi(2), …, bi(s) 
 

… 

… 
1 (if |bi(k)-b1(k)|<ε ) or 2 (if |bi(k)-b2(k)|<ε )  
or …even i 
… 

 

C.  Function of Max, Min, Cycle Length and Shape 
Since the waveform of the EAF variables, especially 

current, varies from time to time a sine function may not be 
sufficient to describe it. So a shape (S) concept is introduced. 
It is created through pattern index in the same way as the 
above approaches. First, cycle i with ηi ={x1, x2, …, x ci} is 
divided into R intervals, pattern index is applied on the 
averaging values of each interval. Table V is the illustration of 
the steps. 

 

TABLE V  PATTERN INDEX MATCHING STEPS FOR SHAPE 
cycle #. discrete data interval averages pattern index 
1 x1(1), x1(2),…,x1(c1), v1(1),v1(2),…,v1(R) 1 

2 x2(1), x2(2),…,x2(c2), v2(1),v2(2),…,v2(R) 1 (if |v2(k)-v1(k)|<ε ) 
or else 2 

… … … … 

I xi(1), xi(2),…, xi(ci), vi(1),vi(2),…,vi(R) 1 (if |vi(k)-v1(k)|<ε) or 2 
(if |vi(k)-v2(k)|<ε) or … i 

… … … … 
 

Corresponding to the maximum (M), minimum (m) and 
frequency or cycle length (L), there are several options for the 
prediction methods with selections from direct Markov chain 
or pattern indices. Here are some: 
i. Apply the direct Markov method on M, m, L and S 

separately, thus the function is expressed as f(M; m; L; S) 
ii. Process {M, m} with pattern index, L with direct Markov 

chain, so that the function becomes f({M, m}; L; S) 
iii. Make pattern index for {M, m, L} and get the function 

f({M, m, L}; S) 

V.  PREDICTIONS AND ACCURACY COMPARISONS 
All of the methods presented above were studied with the 

actual EAF data. This EAF is a 50 MVA three-phase ac unit, 
connecting to a 34.5 kV bus behind a specially designed EAF 
transformer rated at 100 MVA. Fifty seconds (30s~80s) of 
historical arc current of phase A is utilized to build the model 
and three other data sets (90s~100s~110s~120s), each of 10 

seconds, are used for prediction. Since a first order Markov 
chain is applied in these models, the first cycle will be 
processed in the beginning to give the initial conditions. 

Two kinds of prediction modes are tried when doing 
simulations. One is uncorrected course of prediction, which 
predict several future cycles based only on the information of 
two initial cycles (without measurements correctness). 
Another is prediction based on the corrected course of action, 
which predicts every next one cycle assuming that the 
information of the two immediate past cycles is known. The 
former mode allows more time for power system operations or 
measurements while the later one gives higher accuracy. 

The Markov property of EAF data is checked before using 
the Markov theory [1]. The result shows that a first order 
Markov-like chains are suitable and enough since one element 
has already contained one cycle of information from the EAF 
current. So it will be mainly used in the following. Fig. 5 
shows the first 0.25 seconds of prediction results, compared 
with the actual EAF current data, from frequency 
decomposition approach. The truncated harmonic number 
used here is 7. It is reasonable to do this since the spectrum 
magnitude after 300Hz is very small (less than 5% of the 
fundamental frequency magnitude), as seen in Fig. 6. Other 
function approximation methods are also examined. They are 
FFT frequency decomposition with 25 harmonics, polynomial 
fit with direct Markov method, polynomial fit with pattern 
index, f(Max; min; Length; Shape), f({Max, min}; Length; 
Shape) and f({Max, min, Length}; Shape). The simulation 
summary and comparisons for the first data set are shown in 
Table VI. The accuracy is based on the averaging (by cycle) 
RMS values of prediction error ei==|xi-x^

i|, which is called 
RMSE in the following. The third column shows these values 
for each method, the last column lists %RMSE, which 
represents the RMSE values in percentage of the peak value in 
EAF current. It appears that FFT frequency decomposition 
approach works well for this EAF model. The accuracy is 
much higher than other approaches. The accuracy of 
polynomial fit with direct Markov method is not high because 
of the dependence between the polynomial coefficients. In 
fact, when checking the dash line in Fig. 7, which is done by 
this approach, one can see that both the cycle periods and 
prediction values lose their synchronization to the test data. 
But after the pattern index was generated, the method 
improved a lot, as illustrated with ‘o’ in Fig. 7. Its accuracy 
can not be increased much further because the waveform 
shape can not be fitted efficiently into a third order 
polynomial. ARMA process [12], a traditional method for 
time series, was also used for prediction. Although Kalman 
Filtering technique was applied in this method, the result 
shows that it is not as effective as Markov chain with FFT 
decomposition method for the EAF current, as seen from Fig. 
5 and Table VI. To characterize the pattern of EAF current 
accurately, ARMA requires unrealistic high orders. 
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Fig. 5 Illustration of corrected course of prediction by frequency 
decomposition method 
 

 
Fig. 6 Illustration of FFT frequency spectrum for the EAF data 

 

We next compare the computational work needed for 
various approaches. Table VII shows how much computer 
resources are used in the first 5 approaches with better 
accuracy. This information can not be directly obtained for 
ARMA/Kalman, but it is estimated to cost over 100 seconds 
for the results to come out. It is interesting to see that the 
computer burden decreases a lot in FFT frequency 
decomposition approach when it uses 7 harmonics rather than 
25 harmonics. But its accuracy is not significantly degraded. It 
seems that the FFT frequency decomposition approach with 7 
harmonics is a good option for the EAF model. 

 

TABLE VI  COMPARISONS OF PREDICTION ACCURACY FOR THE FIRST TEST 
DATA SET 

Rank Approaches RMSE RMSE % 

1 FFT frequency decomposition  
 (with 25 harmonics) 214.039 3.982 

2 FFT frequency decomposition  
 (with 7 harmonics) 216.961 3.995 

3 f({Max, min}; Length; Shape) 220.761 4.107 
4 f({Max, min, Length}; Shape) 238.351 4.434 
5 f(Max; min; Length; Shape) 252.083 4.689 
6 ARMA with Kalman filtering 334.552 6.223 
7 Polynomial fit (pattern Index) 422.207 7.854 
8 Polynomial fit (direct Markov method) 3037.765 56.508 

 

 
Fig. 7 Illustration of corrected course of prediction by polynomial fit method 
(direct Markov approach and pattern index approach) 

 

TABLE VII  COMPARISON OF COMPUTATION RESOURCE USED 
Approaches Time(s) Memory(byte) 
FFT frequency decomposition  
 (with 25 harmonics) 692.189 40500000 

FFT frequency decomposition  
 ( with 7 harmonics) 3.628 11340000 

Polynomial fit (pattern Index) 5.342 19059057 
f({Max, min}; Length; Shape) 7.321 11841205 
f({Max, min, Length}; Shape) 7.848 3991153 

 

To make certain of the ranking, five approaches with higher 
ranks are applied for the two other data sets. Table VIII lists 
the results. It proves that the ranking is fair. The f({Max, 
min}; Length; Shape) and f({Max, min, Length}; Shape) 
function approximations show a good performance in the third 
test data. This is mainly due to the reason that the waveform 
shapes in this test data are pretty close to those of the 
historical data, which was used to build the model. Also, it can 
be found that the RMSE indices in these two data sets are a 
little higher than those of the first set. It is mainly due to the 
uncertainty of the data. This uncertainty even makes the 
accuracy of FFT frequency decomposition approach with 7 
harmonics better than the one with 25 harmonics. The time 
period of these two data sets are farther from the historical 
data, which are used to build the model. So the performance 
of the model on these data will be a little poorer. When the 
size of historical data used becomes larger, this difference will 
get smaller. 

Sometimes power system engineers hope that the model can 
predict somewhat further into future in order to allow more 
time for control or data acquisition operations. To satisfy this 
demand, predictions of three or more cycles ahead are 
evaluated. Fig. 8 illustrated the waveforms of predictions for 3 
and 12 cycles ahead respectively, using FFT frequency 
decomposition with 7 harmonics method. Also, Tables IX and 
X exhibit the performance of the major four approaches and 
ARMA/Kalman method in predicting 3 and 12 cycles through 
uncorrected course of prediction. The quality of the first three 
approaches in the table is not bad, and the prediction results 
are also very close to the test data. In addition, the comparison 
still shows that the FFT frequency decomposition with 7 
harmonics method is the best of approximations purpose. The 
polynomial fit approach and ARMA/Kalman is not so 
effective in prediction, which indicates that they didn’t 
characterize the EAF current very well. 
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TABLE VIII  COMPARISONS OF PREDICTION ACCURACY –THE SECOND AND 
THIRD TEST DATA SETS 

%RMSE indices Approaches the second data set the third data set 
FFT frequency decomposition  
 (with 25 harmonics) 

5.0444 5.6337 

FFT frequency decomposition  
 (with 7 harmonics) 

5.0304 5.6196 

Polynomial fit (pattern Index) 7.6413 9.1334 
f({Max, min}; Length; Shape) 5.9876 5.6207 
f({Max, min, Length}; Shape) 6.2524 5.7458 
ARMA with Kalman filtering 7.708 8.642 

 

 
Fig. 8 Illustration of uncorrected course prediction by FFT frequency 
decomposition with 7 harmonics (3 and 12 cycles ahead) 

 

TABLE IX  COMPARISON OF PREDICTION ACCURACY—3 CYCLES AHEAD 
%RMSE indices Approaches first data set second data set third data set 

FFT Frequency decomposition 4.8660 5.9713 6.7434 
f({Max, min}; Length; Shape) 5.2785 6.7776 6.7543 
f({Max, min, Length}; Shape) 5.5085 6.9667 6.9286 
Polynomial fit (pattern Index) 8.2511 8.1089 9.8776 
ARMA with Kalman filtering 8.869 8.972 9.536 

 

TABLE X  COMPARISON OF PREDICTION ACCURACY—12 CYCLES AHEAD 
%RMSE indices Approaches first data set second data set third data set 

FFT frequency decomposition  6.2352 7.2006 8.6528 
F({Max, min}; Length; Shape) 6.8922 7.9173 9.0272 
F({Max, min, Length}; Shape) 6.9984 7.2702 8.6606 
Polynomial fit (pattern Index) 9.6857 8.6564 11.4093 
ARMA with Kalman filtering 10.802 10.963 12.151 

VI.  RELATED CURRENT AND VOLTAGE MODELING 
In some heavy load buses, the variation of current may have 

significant influence on the voltage. In this case, Modeling on 
the related current and voltage can increase its accuracy. The 
major procedure of building such a model is similar to that for 
only current. Let {Vj, j=1,2,…M} to be the voltage time series. 
Using FFT approximation as an example, first apply FFT on 
each cycle of it as (7). 

)sin)1n(jVcos)1n(V(
C
1)k(F

1C

0n C
kn2

C
kn2V

i ∑ +−+=
−

=

ππ   

where FV
i(k) is the kth FFT component of ith cycle of voltage 

data {Vj, j=1,2,…ci }. Then construct the transition matrices 
considering the previous information about current, as it is 
shown in Fig. 9. Now the model is already. 
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Fig. 9  Building the transition matrices for related current and voltage model 

 

It is noticed that the state space is increased. If the EAF 
current is divided into N states, and EAF voltage, NV states, 
then the total states for related current and voltage is N×NV. In 
particular, they can be listed in sequence like (1,1), (1,2), 
…(1,NV), (2,1), (2,2),…(2, NV),…, (N,1), (N,2), …,(N,NV).  

The one-cycle-ahead prediction procedure is illustrated in 
Fig. 10 and some results for the voltage are shown in Fig. 11. 
Numerical analysis indicated that there is no significant 
difference for model on only voltage and the related model. 
The %RMSE value is 1.15 for the former and 1.16 for the 
latter model, both of which are small. But for EAF current, the 
%RMSE is over 4.6 for related model while it is 3.99 for the 
model on single current. This confirmed that EAF current and 
voltage do not closely related. The related model increased the 
state space and is affected much more by the uncertainty, thus 
decreased its computational accuracy. 
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Fig. 10  One-cycle-ahead prediction with the model for current and voltage 

 

 
Fig. 11 Some one cycle ahead prediction results for EAF voltage 

 

VII.  CONCLUSIONS 
In this paper, a function space valued Markov-like model 

for EAF current/voltage is introduced. After the generalization 
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from point-case EAF time series {Xi: i=1, 2, … M} to cycle-
case time series {ηj, j=1, 2, …M’} with ηj composed of a 
cycle of data from the original time series, it is possible to 
predict one or more cycles of data ahead. Several methods to 
approximate the cycle vector are proposed since it is not 
computationally practical to apply Markov-like method 
directly on the cycle chain. Compared to the other functions 
such as polynomial fit with pattern index, f({Max, min}; 
Length; Shape), f({Max, min, Length}; Shape) and ARMA 
process with Kalman Filtering etc., FFT frequency 
decomposition with 7 harmonics seems to perform better in 
both corrected course of prediction and uncorrected course of 
prediction for a few number of cycles. Although the accuracy 
may improve if the number of harmonics increases, it is at the 
expense of much larger computation burden. In addition, the 
analysis on related current and voltage revealed that they are 
not closely related, but it provides methodology for modeling 
multi variables which are influenced by each other. 
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