RUIN PROBLEM, OPERATIONAL RISK AND HOW FAST
STOCHASTIC PROCESSES MIX

PAUL EMBRECHTS AND GENNADY SAMORODNITSKY

ABSTRACT. The recent increasing interplay between actuarial and financial mathematics has led to a surge of risk theoretic modeling. Especially actuarial ruin models under fairly general conditions on the underlying risk process have become a focus of attention. Motivated by applications to the modeling of operational risk losses in financial risk management, we investigate the stability of classical asymptotic ruin estimates when claims are heavy, and this under variability of the claim intensity process. Various examples are discussed.

1. INTRODUCTION

Over the recent years, we have seen an increasing interest in the finer analysis of actuarial risk models. One of the main reasons being the growing importance of integrated risk management (IRM), and the resulting stochastic modeling of financial solvency; see for instance Doherty (2000), Briys and de Varenne (2001), Kaufmann et al. (2001). One important class of such models concerns ruin theory as it is known in the actuarial literature; see for instance Rolski et al. (1999) for a detailed overview for risk theory in general, and Asmussen (2000) for an up-to-date account on ruin theory. A further source of applications of the results presented in our paper stems from the area of Operational Risk (OpRisk). In the wake of quantitative modeling of market and credit risk for financial (typically banking) institutions, through Basel II (see Basel Committee on Banking Supervision (2001)) the quantitative modeling of operational losses has become a key consideration. The official Basel II definition of OpRisk reads as follows: “The risk of direct or indirect loss resulting from inadequate or failed internal processes, people and systems or from external events”. Typical examples include losses resulting from system failure,

1991 Mathematics Subject Classification. Primary 60E07, 60G10; Secondary 60K30.

Key words and phrases. ruin probability, heavy tails, supremum, negative drift, risk, operational risk, speed of mixing.

Research supported by Forschungsinstitut für Mathematik of ETH, Zürich. Samorodnitsky’s research was also partially supported by NSF grant DMS-00-71073 and by NSF/SRC grant DMI-97-13549 at Cornell University.
fraud, litigation, handling of transactions. The risk management aspects of OpRisk are currently under detailed discussion between the regulators, the financial institutions and academia; see for instance Danielsson et al. (2001) for an academic view on this topic. The so-called Pillar I of OpRisk will lead to a capital charge for this risk category. As a consequence, more detailed statistical modeling of operational losses will be called for. Though few publicly available data exist, he stylized facts of OpRisk data can easily be deduced from the fact that Basel II aims at the stochastic/economic modeling of low intensity, high severity events. Hence such losses have properties very similar to non-life insurance type losses such as: heavy-tailedness, arriving at discrete (though random) time instances, they may exhibit clustering and/or cyclic behavior due to exogenous economic factors. For instance, losses due to back-office errors in the handling of transactions no doubt depend on the volume of trades. As a consequence, methods from Extreme Value Theory (EVT) will play an important role; see Embrechts et al. (1997) and Embrechts (2000) for a review with applications to IRM. For the specific case of OpRisk; see Medova (2000). The excellent Crouhy et al. (2000) contains an overview on IRM in general, and OpRisk in particular; see also ORFI (1998).

It is clear that, as for any type of financial risk, a sound combination of qualitative and quantitative judgment is called for. In this paper, we concentrate on one piece of the more quantitative OpRisk puzzle. So far we are talking about mathematical research originating from quantitative IRM discussions. To be more precise, we concentrate on the type of OpRisk which comes from losses due to a malfunctioning of trade settlement in the back-office of a bank, say. The malfunctioning may for instance be due to the use of wrong quotes, volumes and/or currencies, or stemming from incomplete counterparty information. These important types of errors have some very clear characteristics which, as explained above, bring the loss process due to such errors close to actuarial modeling.

The following, rather basic model turns ought to be relevant. The OpRisk-loss process over the time period $[0, t]$ will be denoted by $(Y(t), t \geq 0)$. Typically, $Y(t)$ will have the form

$$Y(t) = \sum_{k=1}^{N(t)} Y_k, \quad t \geq 0,$$

for some counting process $(N(t), t \geq 0)$, and claim process $(Y_k, k = 1, 2, \ldots)$. As is done in insurance, one could think of some bank internal risk premium rate system which compensates the expected losses, i.e. we are looking at the process $(Y(t) - ct, t \geq 0)$. Alternatively, OpRisk losses can be reinsured and hence a reinsurance premium has to be quoted. Next,
within this system, an OpRisk–capital u_e can be defined as that initial capital which associates a given, small probability ε, to the event “over that accounting period, $Y(t) - ct$ will be larger than u_e”. How do we estimate such u_e? How can we use classical ruin theoretic estimates assuming that the loss intensity is random, only satisfying some very mild conditions? The results given in this paper address these questions. We now make the mathematical set-up more precise.

Let $(Y(t), t \geq 0)$ be a separable stochastic process, which, as discussed above, we view as a claim process. That is, for $t \geq 0$ we view $Y(t)$ as the total amount of claims received in the time interval $[0, t]$. Let $c > 0$ be the premium rate. We assume that

$$P \left(\lim_{t \to \infty} (Y(t) - ct) = -\infty \right) = 1. \label{eq:ruin}$$

The ruin probability

$$\psi_0(u) = P \left(\sup_{t \geq 0} (Y(t) - ct) > u \right) \label{eq:ruin_prob}$$

and its modifications are the main object of interest in Risk Theory; $\psi_0(u)$ describes the likelihood of eventual ruin when the initial capital is $u > 0$. The assumption \eqref{eq:ruin} means that the ruin is not certain if the initial capital is large enough. Most often this assumption is implied by the assumption that the long run claim intensity is smaller than the premium rate (positive loading)

$$\lim_{t \to \infty} \frac{Y(t)}{t} = \mu \quad \text{a.s.} \label{eq:long_run_claim}$$

for some $\mu < c$.

In the OpRisk applications discussed above one for instance has to deal with losses that occur more often when the transaction intensity is high. To understand the effect of this phenomenon on the likelihood of ruin, we introduce a stochastic process $(\Delta(t), t \geq 0)$, which is a right continuous nondecreasing stochastic process, satisfying $\Delta(0) = 0$ almost surely, defined on the same probability space as $(Y(t), t \geq 0)$. We view $(\Delta(t), t \geq 0)$ as a time change; if time runs faster, then losses occur faster as well. In practice, the time change process $(\Delta(t), t \geq 0)$ typically will be directly related to the volume of transactions process. For the EVT modeling of equity transactions data, see Chavez-Demoulin and Embrechts (2001).

We will assume that

$$\lim_{t \to \infty} \frac{\Delta(t)}{t} = 1 \quad \text{almost surely.} \label{eq:time_change}$$
This assumption says that, in the long run, the clock given by $\Delta(t)$ runs at the same speed as the natural clock. Clearly, any positive limit different from 1 in (1.4) can be made to fit into our discussion by a suitable modification of the claim process.

Consider the modified ruin probability

\[
\psi(u) = P \left(\sup_{t \geq 0} \left(Y(\Delta(t)) - ct \right) > u \right).
\]

Certain assumptions will have to be imposed to make sure that $\psi(u) \to 0$ as $u \to \infty$ and, hence, that the ruin is not certain in this modified situation.

An important question is, what is the effect of the time change Δ on the ruin probability? Is the modified ruin probability $\psi(u)$ asymptotically equivalent to the original ruin probability $\psi_0(u)$? Are the two of the same order as u goes to infinity? We will see that the answers to these questions (as well as the actual behavior of $\psi(u)$ for large u if the answers to the above questions are negative) depend heavily on certain mixing properties of the time change Δ. Specifically, how fast is the convergence of $\Delta(t)/t$ in (1.4) to 1? We will see that if $\Delta(t)/t$ converges to 1 fast enough, then the effect of the time change on the ruin probability is negligible for large values of initial capital u. On the other hand, if $\Delta(t)/t$ converges to 1 sufficiently slowly, then the modified ruin probability $\psi(u)$ may be of a different order of magnitude than $\psi_0(u)$.

In the present paper we deal with the so-called heavy tailed case, which arises when the claim process $(Y(t), t \geq 0)$ is heavy tailed. The literature on the ruin probability in the heavy tailed case is vast; see Embrechts et al. (1997) for a discussion of the situation with iid heavy tailed claims, as well as for numerous additional references, and Asmussen et al. (1999) and Mikosch and Samorodnitsky (2000b,a) for more complicated heavy tailed claim processes. For our purposes in the present paper it is not particularly important, most of the time, what kind of a heavy tailed claim process we are dealing with, and our main assumption of heavy tailedness is in terms of the ruin probability itself. Specifically, we will assume that

\[
\psi_0(u) \in \text{Reg} (-\beta) \quad \text{as} \quad u \to \infty
\]

for some $\beta \geq 0$, where $\text{Reg}(-\beta)$ is the collection of all functions of the type $f(u) = u^{-\beta} L(u)$, with L slowly varying at infinity.
2. Fast and slow mixing of the time change

One way to measure how fast the average clock rate \(\Delta(t)/t \) converges to its limit is by studying the probability

\[
(2.1) \quad g(u) = P \left(\left| \frac{\Delta(t)}{t} - 1 \right| > \epsilon \quad \text{for some } t > u \right)
\]

as \(u \to \infty \) for fixed \(\epsilon > 0 \). The main point of our first result below, Theorem 2.1, is that if \(g(u) \) is of a smaller order than the original ruin probability \(\psi_0(u) \), then the effect of the time change is negligible. To state the result precisely we need to introduce some new notation. For \(\epsilon \in \mathbb{R} \) let

\[
(2.2) \quad \psi_{0,\epsilon}(u) = P \left(\sup_{t \geq 0} (Y(t) - c\epsilon t) > u \right);
\]

clearly \(\psi_{0,1}(u) = \psi_0(u) \). We assume that

\[
(2.3) \quad \lim_{\epsilon \downarrow 0} \limsup_{u \to \infty} \frac{\psi_0(u)}{\psi_{0,\epsilon}(u)} = \lim_{\epsilon \downarrow 0} \liminf_{u \to \infty} \frac{\psi_0(u)}{\psi_{0,\epsilon}(u)} = 1.
\]

We also need to assume that ruin does not happen too soon. Specifically, assume that

\[
(2.4) \quad \lim_{\delta \downarrow 0} \limsup_{u \to \infty} P \left(\sup_{0 \leq t \leq \delta u} (Y(t) - ct) > u \right) = 0.
\]

Conditions (2.3) and (2.4) turn out to hold in virtually all examples of interest when the ruin probability \(\psi_0(u) \) is regularly varying. See the examples below.

Theorem 2.1. Assume that (2.3) and (2.4) hold. Under the assumption of heavy tails (1.6), assume that for every \(\epsilon > 0 \) and \(\delta > 0 \)

\[
(2.5) \quad \lim_{u \to \infty} \frac{g(\delta u)}{\psi_0(u)} = 0.
\]

Assume, further, that either \(\Delta \) is continuous on a set of probability 1, or that for some \(a \geq 0 \), on a set of probability 1,

\[
(2.6) \quad \text{the process } \{Y(t) + at, t \geq 0\} \text{ is eventually nondecreasing.}
\]

Then

\[
(2.7) \quad \lim_{u \to \infty} \frac{\psi(u)}{\psi_0(u)} = 1.
\]
Proof. For $t \geq 0$ let
\[
\Delta^{-1}(t) := \inf\{s \geq 0 : \Delta(s) \geq t\}.
\]
It is elementary to check that (2.5) implies that for every $\epsilon > 0$ and $\delta > 0$
\[
(2.8) \quad \lim_{u \to \infty} \frac{P\left(\left|\frac{\Delta^{-1}(t)}{t} - 1\right| > \epsilon \right. \text{ for some } t > \delta u)}{\psi_0(u)} = 0.
\]
Suppose first that Δ is continuous on a set of probability 1. Then for every $\delta > 0$ and $\epsilon > 0$
\[
\psi(u) \geq P\left(\sup_{t \geq \delta u} (Y(t) - c\Delta^{-1}(t)) > u\right)
\geq P\left(\sup_{t \geq \delta u} (Y(t) - (1 + \epsilon)t) > u\right) - P\left(\Delta^{-1}(t) > (1 + \epsilon)t \text{ for some } t > \delta u\right),
\]
and, hence, using (2.8) we conclude that
\[
\liminf_{u \to \infty} \frac{\psi(u)}{\psi_0(u)} \geq \liminf_{u \to \infty} \frac{P\left(\sup_{t \geq \delta u} (Y(t) - (1 + \epsilon)t) > u\right)}{\psi_0(u)}.
\]
On the other hand,
\[
P\left(\sup_{t \geq \delta u} (Y(t) - (1 + \epsilon)t) > u\right) \geq \psi_{0,1+\epsilon}(u) - P\left(\sup_{0 \leq t \leq \delta u} (Y(t) - ct) > u\right),
\]
and so by (2.4)
\[
\liminf_{u \to \infty} \frac{\psi(u)}{\psi_0(u)} \geq \liminf_{u \to \infty} \frac{\psi_{0,1+\epsilon}(u)}{\psi_0(u)}.
\]
Letting $\epsilon \downarrow 0$ and using (2.3) we see that
\[
(2.9) \quad \liminf_{u \to \infty} \frac{\psi(u)}{\psi_0(u)} \geq 1.
\]
On the other hand, suppose that (2.6) holds. Write for $\delta > 0$ and $\epsilon > 0$
\[
\psi(u) \geq P\left(\sup_{t \geq \delta u} ((Y(\Delta(t)) + a\Delta(t)) - a\Delta(t) - ct) > u\right)
\geq P\left(\sup_{t \geq \delta u} (Y((1 - \epsilon)t) + a(1 - \epsilon)t - a(1 + \epsilon)t - ct) > u\right)
- P\left(\left|\frac{\Delta(t)}{t} - 1\right| > \epsilon \right. \text{ for some } t > u)
\geq P\left(\sup_{t \geq (1-\epsilon)\delta u} \left(Y(t) - \frac{c + 2\epsilon a}{1 - \epsilon}t\right) > u\right) - g(\delta u),
\]
and using, once again, (2.8) and (2.4) we conclude that for every $\epsilon > 0$

$$\liminf_{u \to \infty} \frac{\psi(u)}{\psi_0(u)} \geq \liminf_{u \to \infty} \frac{\psi_0((1+2\alpha_{\epsilon}^{-1})/\epsilon)(u)}{\psi_0(u)},$$

and letting, once again, $\epsilon \downarrow 0$ and using (2.3) we see that (2.9) still holds.

In the other direction, for every $\delta > 0$

$$\psi(u) \leq P \left(\sup_{t \geq 0} (Y(t) - c\Delta^{-1}(t)) > u \right)$$

(2.10)

$$\leq P \left(\sup_{0 \leq t \leq \delta u} (Y(t) - c\Delta^{-1}(t)) > u \right) + P \left(\sup_{t \geq \delta u} (Y(t) - c\Delta^{-1}(t)) > u \right) .$$

Observe that

$$P \left(\sup_{0 \leq t \leq \delta u} (Y(t) - c\Delta^{-1}(t)) > u \right) \leq P \left(\sup_{0 \leq t \leq \delta u} Y(t) > u \right)$$

$$\leq P \left(\sup_{0 \leq t \leq \delta u} (Y(t) - ct) > u(1 - \delta c) \right) ,$$

and so using (2.4) and regular variation of ψ_0 we conclude that

(2.11)

$$\lim_{u \to \infty} \frac{P \left(\sup_{0 \leq t \leq \delta u} (Y(t) - c\Delta^{-1}(t)) > u \right)}{\psi_0(u)} = 0 .$$

On the other hand, for every $\epsilon \in (0, 1)$

$$P \left(\sup_{t \geq \delta u} (Y(t) - c\Delta^{-1}(t)) > u \right) \leq P \left(\sup_{t \geq \delta u} (Y(t) - c(1 - \epsilon)t) > u \right)$$

$$+ P \left(\Delta^{-1}(t) < (1 - \epsilon)t \quad \text{for some } t > \delta u \right)$$

and, hence, using (2.8) we conclude that

$$\limsup_{u \to \infty} \frac{\psi(u)}{\psi_0(u)} \leq \limsup_{u \to \infty} \frac{\psi_{0,1-\epsilon}(u)}{\psi_0(u)} .$$

Letting $\epsilon \downarrow 0$ and using (2.3) we see that

(2.12)

$$\limsup_{u \to \infty} \frac{\psi(u)}{\psi_0(u)} \leq 1 .$$

Finally, comparing the bounds (2.9) and (2.12) we obtain the statement of the theorem.

One may suspect that the assumption of continuity of the time change Δ in Theorem 2.1 is superfluous and is only an artifact of our proof. In fact, this assumption can be removed in a variety of situations; the alternative assumption (2.6) provides a naturally occurring situation where this is possible. However, Example 2.2 below shows that Theorem 2.1 is,
in general, *false* without the assumption of continuity of the time change \(\Delta \). We also note that the asymptotic upper bound on the ruin probability \(\psi(u) \) in Theorem 2.1 does not require the continuity assumption.

Example 2.2. Let \(X > 0 \) be a random variable such that \(P(X > u) \in \text{Reg}(-\beta) \) as \(u \to \infty \) for some \(\beta > 0 \). Define

\[
Y(t) = \begin{cases}
0 & \text{for } 0 \leq t < X, \\
2X & \text{for } X \leq t < X + 1, \\
0 & \text{for } t \geq X + 1.
\end{cases}
\]

Let \(c = 1 \). Then

\[
\psi_0(u) = P(2X - X > u) = P(X > u) \in \text{Reg}(-\beta)
\]
as \(u \to \infty \), while for \(\epsilon \in (0, 2) \)

\[
\psi_{0, \epsilon}(u) = P(2X - \epsilon X > u) = P(X > (2 - \epsilon)^{-1}u),
\]

and so (2.3) holds. Moreover, for every \(0 < \delta < 1 \)

\[
P \left(\sup_{0 \leq t \leq \delta u} (Y(t) - ct) > u \right) \leq P(X \leq \delta u, X > u) = 0,
\]

and so (2.4) holds as well.

Define

\[
\Delta(t) = \begin{cases}
t & \text{for } 0 \leq t < X, \\
t + 1 & \text{for } t \geq X.
\end{cases}
\]

Obviously, (1.4) holds. Moreover, for every \(\epsilon > 0 \)

\[
g(u) \leq P \left(\frac{1}{t} > \epsilon \text{ for some } t \geq \max(X, u) \right) \leq P \left(\frac{1}{u} > \epsilon \right) = 0
\]

for all \(u \) large enough. Therefore, (2.5) holds as well. However, \(Y(\Delta(t)) = 0 \) for all \(t \), so that \(\psi(u) = 0 \) for all \(u > 0 \) and (2.7) fails.

Roughly speaking, Theorem 2.1 shows that if the rate of “mixing” of the time change \(\Delta \) is fast enough, meaning that \(\Delta(t)/t \) is not “very far” from 1, measured with respect to the original ruin probability \(\psi_0 \), then the ruin probability is not much affected by the time change. The next result can be viewed as a counterpart of this statement: if the time change “mixes” slowly enough, once again, in the context of the original ruin probability, then the ruin probability is affected significantly by the time change. Of course, technical
conditions are required in both cases. The speed of mixing in the latter result is measured differently than in the former result, and the way we measure it turns out to be naturally related to the ruin probability after the time change.

Assume the positive loading condition (1.3), and define

\(\psi_1(u) = P \left(\sup_{t \geq 0} (\mu \Delta(t) - ct) > u \right) . \)

One can view \(\psi_1 \) as a version of the ruin probability \(\psi \) in which the stream of the claims \((Y(t), t \geq 0) \) is replaced by its long run average stream \((\mu t, t \geq 0) \). Let us introduce the \(\epsilon \)-modification of \(\psi_1 \). Let

\(\psi_{1,\epsilon}(u) = P \left(\sup_{t \geq 0} (\mu \epsilon \Delta(t) - ct) > u \right) . \)

Assume that

\(\lim_{\epsilon \downarrow 1} \lim_{u \to \infty} \inf_{t \geq 0} \frac{\psi_1(u)}{\psi_{1,\epsilon}(u)} = \lim_{\epsilon \downarrow 1} \lim_{u \to \infty} \sup_{t \geq 0} \frac{\psi_1(u)}{\psi_{1,\epsilon}(u)} = 1 . \)

We also assume that for every \(\epsilon > \mu/c \)

\(\lim_{u \to \infty} \sup_{t \geq 0} \frac{\psi_{0,\epsilon}(u)}{\psi_0(u)} < \infty . \)

As before, conditions (2.15) and (2.16) turn out to hold in virtually all cases when the ruin probabilities we are dealing with are regularly varying. See the examples below.

We define

\(h_\epsilon(u) = P \left(\left(\frac{Y(t)}{t} - \mu \right) < -\epsilon \text{ for some } t > u \right) . \)

Theorem 2.3. Assume that (2.15) and (2.16) hold. Assume, further, that either the processes \((Y(t), t \geq 0) \) and \((\Delta(t), t \geq 0) \) are independent, or that for any \(\epsilon > 0 \) and \(\delta > 0 \)

\(\lim_{u \to \infty} \frac{h_\epsilon(\delta u)}{\psi_1(u)} = 0 . \)

If

\(\lim_{u \to \infty} \frac{\psi_0(u)}{\psi_1(u)} = 0 , \)

then

\(\lim_{u \to \infty} \frac{\psi(u)}{\psi_1(u)} = 1 . \)
Proof. Define for $0 < \epsilon < 1$

$$T_{\epsilon,u} = \inf\{t \geq 0 : \mu \epsilon \Delta(t) - ct > u\}.$$

It is clear that $T_{\epsilon,u} \to \infty$ with probability 1 as $u \to \infty$. We have

$$\psi(u) \geq P \left(T_{\epsilon,u} < \infty, Y(s) - \epsilon \mu s \geq 0 \text{ for all } s \geq \frac{u}{\epsilon \mu} \right). $$

(2.21)

If $(Y(t), t \geq 0)$ and $(\Delta(t), t \geq 0)$ are independent, then it follows from (2.21) that

$$\psi(u) \geq \psi_{1,\epsilon}(u) \left(1 - h(1-\epsilon) \mu(u/\epsilon \mu) \right),$$

and we conclude by (1.3) that

$$\liminf_{u \to \infty} \frac{\psi(u)}{\psi_{1,\epsilon}(u)} \geq 1.$$

Letting $\epsilon \to 1$ and using (2.15) we conclude that

$$\liminf_{u \to \infty} \frac{\psi(u)}{\psi_{1}(u)} \geq 1.$$

(2.22)

On the other hand, it also follows from (2.21) that

$$\psi(u) \geq \psi_{1,\epsilon}(u) - h(1-\epsilon) \mu(u/\epsilon \mu),$$

and now (2.22) follows as before, using (2.18) (instead of independence) and (2.15).

In the other direction, for $\epsilon > 1$ we obtain from (2.21)

$$\psi(u) \leq P \left(\sup_{t \geq 0} (\mu \epsilon \Delta(t) - ct) > u \right)$$

$$+ P \left(\sup_{t \geq 0} (Y(\Delta(t)) - ct > u, \mu \epsilon \Delta(t) - ct \leq u \text{ for all } t \geq 0 \right)$$

$$\leq \psi_{1,\epsilon}(u) + P \left(\sup_{t \geq 0} (Y(\Delta(t)) - \epsilon^{1/2} \mu \Delta(t)) > \left(1 - \frac{1}{\epsilon} \right) u \right)$$

(2.23)

$$\leq \psi_{1,\epsilon}(u) + \psi_{0,\epsilon^{1/2} \mu^{-1}} \left(\left(1 - \frac{1}{\epsilon} \right) u \right).$$

Using (2.16) and (2.19) we see that for all $\epsilon > 1$,

$$\limsup_{u \to \infty} \frac{\psi(u)}{\psi_{1,\epsilon}(u)} \leq 1.$$

Finally letting $\epsilon \downarrow 1$ we conclude that

$$\limsup_{u \to \infty} \frac{\psi(u)}{\psi_{1}(u)} \leq 1,$$

which, together with (2.22), completes the proof of the theorem. \qed
Example 2.4. For $0 < H < 1$ let $\{W_H(t), t \geq 0\}$ be Fractional Brownian motion with parameter H – the H–self–similar Gaussian process with stationary increments; see e.g. Samorodnitsky and Taqqu (1994). Define for a $\sigma > 0$

$$\Delta(t) = t + \sigma \sup_{0 \leq x \leq t} |W_H(x)|, \quad t \geq 0.$$

(2.24)

This time change is continuous on a set of probability 1, and (1.4) holds. Moreover, this time change mixes very fast. Indeed, we have for $\epsilon > 0$ by H–self–similarity of W_H

$$g(u) = P\left(\frac{\Delta(t)}{t} - 1 > \epsilon \quad \text{for some } t > u\right)$$

$$= P\left(\sup_{0 \leq x \leq t} |W_H(x)| > \frac{\epsilon}{\sigma} tu^{1-H} \quad \text{for some } t > 1\right)$$

$$\leq P\left(\sup_{0 \leq x \leq 1} |W_H(x)| > \frac{\epsilon}{\sigma} u^{1-H}\right) + P\left(\sup_{x \geq 1} \frac{|W_H(x)|}{x} > \frac{\epsilon}{\sigma} u^{1-H}\right).$$

However, both $\{W_H(t), 0 \leq t \leq 1\}$ and $\{W_H(t)/t, t \geq 1\}$ are bounded Gaussian processes. Hence for some $C_1, C_2 > 0$

$$g(u) \leq C_1 \exp \left\{-\frac{\epsilon^2}{2C_2\sigma^2} u^{2(1-H)}\right\}$$

(see Adler (1990)) and so (2.5) holds for every $\delta > 0$ under the assumption (1.6) of heavy tails. This fast mixing of W_H is somewhat surprising for $H > 1/2$ because the increments of Fractional Brownian motion are long range dependent in that range of H. See, e.g. Beran (1994).

Example 2.5. Let

$$Y(t) = Y_0(t) + \mu t, \quad t \geq 0,$$

(2.25)

where $(Y_0(t), t \geq 0)$ is an H–self–similar symmetric α–stable (SaS) process with stationary increments with $0 < H < 1$ and $1 < \alpha < 2$. We refer the reader to Samorodnitsky and Taqqu (1994) for more details on both α–stable processes, their representations discussed below, and self–similarity. We assume that $(Y_0(t), t \geq 0)$ can be represented in the form

$$Y_0(t) = \int_{S} f_t(x) M(dx), \quad t \geq 0,$$

(2.26)

where (S, S) is a measurable space, M a SaS random measure on this space with control measure m, and $f_t \in L^\alpha(m)$ for all $t \geq 0$, such that

$$\int_{S} \sup_{t \geq 0} \left|\frac{f_t(x)}{1 + t}\right|^\alpha m(dx) < \infty.$$

(2.27)
It is well known that (2.26) with (2.27) hold for all H–self–similarity SaS process with stationary increments with $1 < \alpha < 2$ if $1/\alpha < H < 1$, whereas in the case $0 < H \leq 1/\alpha$ (2.26) with (2.27) is an assumption that holds in some cases and does not hold in other cases; see Section 12.4 in Samorodnitsky and Taqqu (1994).

Observe that by the self–similarity of Y_0

$$
\psi_0(u) = P \left(\sup_{t \geq 0} \frac{Y_0(t)}{1 + (c - \mu)t} > u^{1-H} \right) \sim C_\alpha K u^{-\alpha(1-H)}
$$
as $u \to \infty$, where C_α is a finite positive constant that depends only on α and

$$
K = \int_S \sup_{t \geq 0} \left| \frac{f(t)}{1 + (c - \mu)t} \right|^\alpha m(dx),
$$
and so (1.6) holds. Similarly, for all $\epsilon > \mu/c$

$$
\psi_{0,\epsilon}(u) \sim C_\alpha K_\epsilon u^{-\alpha(1-H)}
$$
as $u \to \infty$, with

$$
K_\epsilon = \int_S \sup_{t \geq 0} \left| \frac{f(t)}{1 + (c - \mu)t} \right|^\alpha m(dx),
$$
demonstrating that (2.3) holds as well. Furthermore, for any $\delta > 0$

$$
P \left(\sup_{0 \leq t \leq \delta u} (Y(t) - ct) > u \right) = P \left(\sup_{0 \leq t \leq \delta} \frac{Y_0(t)}{1 + (c - \mu)t} > u^{1-H} \right) \sim C_\alpha k(\delta) u^{-\alpha(1-H)},
$$
where

$$
k(\delta) = \int_S \sup_{0 \leq t \leq \delta} \left| \frac{f(t)}{1 + (c - \mu)t} \right|^\alpha m(dx).
$$
Since $k(\delta) \to 0$ as $\delta \to 0$, the assumption (2.4) holds.

No nondegenerate processes Y of this kind will satisfy (2.6) so in order to apply Theorem 2.1 one will have to assume continuity of the time change Δ as, say, in Example 2.4.

Example 2.6. Let Y be as in (2.25), but this time $(Y_0(t), t \geq 0)$ is a zero mean Lévy process with Lévy measure ρ. We assume that

$$
(2.28) \quad \rho((u, \infty)) \in \text{Reg}(\alpha) \quad \text{as} \quad u \to \infty
$$
for some $\alpha > 1$, and that for some $C > 0$

$$
(2.29) \quad \rho((-\infty, u]) \leq C \rho((u, \infty))
$$
for all $u \geq 1$. It follows from Theorem 5.3 in Braverman et al. (2000) that for all $\epsilon > \mu/c$

$$
\psi_{0,\epsilon}(u) \sim K_{\epsilon} u \rho((u, \infty))
$$
as \(u \to \infty \), where

\[
K_x = \frac{1}{(\alpha - 1)(\epsilon c - \mu)}.
\]

Therefore, (1.6) holds with \(\beta = \alpha - 1 \), and (2.3) holds as well. On the other hand, for all \(\delta > 0 \)

\[
P \left(\sup_{0 \leq t \leq \delta u} (Y(t) - ct) > u \right) \leq P \left(\sup_{0 \leq t \leq \delta u} Y_0(t) > u \right) \leq P \left(\sum_{j=1}^{[a]} \sup_{(j-1)\delta \leq t \leq j\delta} (Y(t) - Y((j-1)\delta)) > u \right).
\]

Here \([a]\) is the smallest integer greater or equal to \(a \). Since

\[
P \left(\sup_{0 \leq t \leq \delta} Y_0(t) > u \right) \sim \delta \rho((u, \infty))
\]

as \(u \to \infty \) (see e.g. Embrechts et al. (1979)), we can apply then the usual large deviation results (see e.g. Nagaev (1979)) to see that

\[
P \left(\sum_{j=1}^{[a]} \sup_{(j-1)\delta \leq t \leq j\delta} (Y(t) - Y((j-1)\delta)) > u \right) \sim uP \left(\sup_{0 \leq t \leq \delta} Y_0(t) > u \right) \sim \delta u \rho((u, \infty))
\]

as \(u \to \infty \). Therefore, the assumption (2.4) holds.

3. MIXING OF MARKOV CHAIN SWITCHING MODELS

A very important and widely used class of stochastic models in almost every area of application is that of Markov switching (Markov modulated, Markov renewal) models. We refer the reader to Çinlar (1975) for a general theory of such models. In the context of Operational Risk it is natural to consider a class of time change processes \(\Delta \) in which time runs at different rate in different time intervals, depending on the state of a certain Markov chain, and the Markov chain stays in each state a random amount of time, with the distribution that depends on the state. It turns out that this class of models is very flexible and mixing in this class of models can be either fast or slow. The speed of mixing in this class of models is our subject in this section.

Here is the formal setup. Let \((Z_n, n \geq 0)\) be an irreducible Markov chain with a finite state space \(\{1, \ldots, K\}\), transition matrix \(P\) and stationary probabilities \(\pi_1, \ldots, \pi_K\). Let \(F_j, j = 1, \ldots, K\) be probability distributions on \((0, \infty)\). \(F_j\) is the law of the holding time the system spends in state \(j\), whose mean \(\mu_j\) is assumed to be finite for \(j = 1, \ldots, K\). We denote \(\bar{\mu} = \sum_{j=1}^{K} \mu_j \pi_j\).
Let \((H_i^{(j)}, i \geq 1), j = 1, \ldots, K \) be \(K \) independent sequences of iid random variables such that \(H_i^{(j)} \) has the distribution \(F_j \) and describes the length of the \(i \)th sojourn in state \(j \). Transitions from state to state are governed by the transition matrix \(P \), and, given the present state of the Markov chain, its next state is independent of the sojourn times sequences.

Let \(r_1, r_2, \ldots, r_K \) be nonnegative numbers such that

\[
(3.1) \quad \frac{\sum_{j=1}^{K} r_j \mu_j \pi_j}{\sum_{j=1}^{K} \mu_j \pi_j} = 1.
\]

We define the time change \(\Delta \) to be an absolutely continuous process with

\[
(3.2) \quad \Delta(0) = 0, \quad \frac{d\Delta}{dt}(t) = r_j \text{ if at time } t \text{ the Markov chain is in state } j.
\]

Clearly, a complete definition of the time change \(\Delta \) requires a specification of the initial distribution \(p_1, \ldots, p_K \) of the Markov chain. This initial distribution has, however, no effect on the speed of mixing of the time change.

A simple renewal argument shows that (3.1) guarantees (1.4). It is our goal to relate the rate at which the average clock \(\Delta(t)/t \) converges to one to holding time distributions \(F_j, j = 1, \ldots, K \) and the parameters of the Markov chain.

Our main assumption is that of heavy tailed holding times. Specifically, we assume that there is a distribution \(F \) on \((0, \infty)\) such that

\[
(3.3) \quad F(x) \in \text{Reg}(-\gamma) \text{ as } x \to \infty \text{ and } \lim_{x \to \infty} \frac{F_j(x)}{F(x)} = \theta_j \text{ for } j = 1, \ldots, K
\]

for some \(\gamma > 1 \) and some \(\theta_1, \ldots, \theta_K \in [0, \infty) \) not all of which are equal to zero.

Let \(\epsilon > 0 \). The theorem below addresses the rate of decay of the probability \(g(u) \) in (2.1) as \(u \to \infty \). We mention that ideas similar to those we use in the proof of this theorem can also be used to obtain the asymptotic behavior of various other probabilities related to the time change process \(\Delta \), for example the probabilities \(\psi_1(u) \) and \(\psi_{1,\epsilon}(u) \) in (2.13) and (2.14). We put some of the auxiliary statements as lemmas at the end of this section.

Theorem 3.1. Let \(\epsilon > 0 \) be such that \(\{j = 1, \ldots, K : |r_j - 1| = \epsilon\} = \emptyset \), and let

\[
(3.4) \quad J_+(\epsilon) = \{j = 1, \ldots, K : r_j > 1 + \epsilon\}, \quad J_-(\epsilon) = \{j = 1, \ldots, K : r_j < 1 - \epsilon\}.
\]
Then

\[
\lim_{u \to \infty} \frac{g(u)}{uF(u)} = \frac{1}{\epsilon \beta} \left[\sum_{j \in J_+} \theta_j \pi_j (r_j - 1 - \epsilon)(r_j - 1)^{\gamma - 1} + \sum_{j \in J_-} \theta_j \pi_j (1 - r_j - \epsilon)(1 - r_j)^{\gamma - 1} \right].
\]

Remark 3.2. If \(\theta_j > 0 \) for at least one \(j \) such that \(r_j \neq 1 \), then it follows immediately from Theorem 3.1 that \(g(u) \) is regularly varying with exponent \(\gamma - 1 \) as \(u \to \infty \) for all \(\epsilon > 0 \) small enough.

Remark 3.3. The conclusion of the theorem is independent of the initial state or, indeed, of the initial distribution of the underlying Markov chain. Where it is convenient, we will denote in the proof below by \(j_0 \) the initial state of the Markov chain and assume it to be non-random. In most cases we will not use the explicit notation \(P_{j_0}, E_{j_0} \); the initial state will kept implicit in most cases.

Remark 3.4. The proof of Theorem 3.1 given below is fairly technical. Its idea is, however, very simple. Under the assumption (3.3) of heavy tails the event \(\{ |\Delta(t)/t - 1| > \epsilon \} \) if it occurs for a large \(u \), is caused, most likely, by a single long holding time, either with a state \(j \in J_+(\epsilon) \) or with \(j \in J_-(\epsilon) \). The reader can easily realize what is happening by checking two possibilities: the long holding time can end either before time \(u \) or after time \(u \). In both cases one figures out just how long this long holding time has to be by pretending that before the start of the long holding time and its end all the random quantities are about equal to their averages. The technical details in the proof are required to justify the above statements. We provide most of the details, but try to avoid duplication of the argument.

Proof. Denote

\[
E^+_\epsilon(u) = \left\{ \frac{\Delta(t)}{t} - 1 > \epsilon \text{ for some } t > u \right\} \quad \text{and} \quad E^-_\epsilon(u) = \left\{ \frac{\Delta(t)}{t} - 1 < -\epsilon \text{ for some } t > u \right\}
\]

and let for \(\tau > 0 \) small enough (we will specify just how small \(\tau \) has to be in the sequel)

\[
B_\tau(u) = \left\{ \text{for at most one pair } (i, j) \in \{1, 2, \ldots \} \times \{1, \ldots, K\}, H^{(j)}_{r} > (u + i)\tau \right\}
\]

\[
\sup \left(B_\tau(u) \cap B^{(r,+)}(u) \right) \cup \left(B_\tau(u) \cap B^{(r,-)}(u) \right),
\]
where
\[B^{(\varepsilon,+)}_{\tau}(u) = \left\{ \text{for exactly one pair } (i,j) \in \{1,2,\ldots\} \times J_{+}(\varepsilon), H^{(j)}_{i} > (u+)^{\tau} \right\} \]

and
\[B^{(\varepsilon,-)}_{\tau}(u) = \left\{ \text{for exactly one pair } (i,j) \in \{1,2,\ldots\} \times J_{-}(\varepsilon), H^{(j)}_{i} > (u+)^{\tau} \right\} . \]

We will show first that
\[(3.6) \quad \liminf_{u \to \infty} \frac{P \left(E^{+}_{\varepsilon}(u) \cap B_{\tau}(u) \cap B^{(\varepsilon,+)}_{\tau}(u) \right)}{uF(u)} \geq \frac{1}{\varepsilon \gamma \mu} \sum_{j \in J_{+}(\varepsilon)} \theta_{j} \pi_{j} (r_{j} - 1 - \varepsilon)(r_{j} - 1)^{\gamma-1} \]

and that
\[(3.7) \quad \liminf_{u \to \infty} \frac{P \left(E^{-}_{\varepsilon}(u) \cap B_{\tau}(u) \cap B^{(\varepsilon,-)}_{\tau}(u) \right)}{uF(u)} \geq \frac{1}{\varepsilon \gamma \mu} \sum_{j \in J_{-}(\varepsilon)} \theta_{j} \pi_{j} (1 - r_{j} - \varepsilon)(1 - r_{j})^{\gamma-1} . \]

Since the sets \(B_{\tau}(u) \cap B^{(\varepsilon,+)}_{\tau}(u) \) and \(B_{\tau}(u) \cap B^{(\varepsilon,-)}_{\tau}(u) \) are disjoint, this will imply that

\[\liminf_{u \to \infty} \frac{g(u)}{uF(u)} \geq \frac{1}{\varepsilon \gamma \mu} \left[\sum_{j \in J_{+}(\varepsilon)} \theta_{j} \pi_{j} (r_{j} - 1 - \varepsilon)(r_{j} - 1)^{\gamma-1} + \sum_{j \in J_{-}(\varepsilon)} \theta_{j} \pi_{j} (1 - r_{j} - \varepsilon)(1 - r_{j})^{\gamma-1} \right] . \]

Note also that the statements (3.6) and (3.7) are of the same nature, and so we really need to prove only one of the two. We choose to prove (3.6), and this is what we proceed to do now.

For \(j = 1,\ldots,K \) and \(i = 1,2,\ldots \) let \(T^{(j)}_{i} \) be the starting time of the \(i \)th sojourn in state \(j \) of the underlying process. For \(j \in J_{+}(\varepsilon) \) and \(i = 1,2,\ldots \) consider the events

\[E^{(1)}_{\varepsilon,\tau,i,j}(u) = \left\{ T^{(j)}_{i} + H^{(j)}_{i} \geq u, \ r_{j} H^{(j)}_{i} + \Delta \left(T^{(j)}_{i} \right) > \left(T^{(j)}_{i} + H^{(j)}_{i} \right) (1 + \epsilon), \ H^{(j)}_{i} > (u+i)^{\tau} \right\} \]

and

\[E^{(2)}_{\varepsilon,\tau,i,j}(u) = \left\{ T^{(j)}_{i} + H^{(j)}_{i} < u, \ r_{j} H^{(j)}_{i} + \Delta \left(T^{(j)}_{i} \right) + \left(\Delta(u) - \Delta \left(T^{(j)}_{i} + H^{(j)}_{i} \right) \right) > (1 + \epsilon)u, \ H^{(j)}_{i} > (u+i)^{\tau} \right\} . \]
Notice that
\[
E^{+}_e(u) \cap B_\tau(u) \cap B^{\epsilon,+}_\tau(u)
\]
\begin{equation}
\cup \left(\bigcup_{j \in J_+} \bigcup_{i=1}^{\infty} \left(E^{(1)}_{e,\tau,i,j}(u) \cap B_\tau(u) \right) \bigg) \cup \left(\bigcup_{j \in J_+} \bigcup_{i=1}^{\infty} \left(E^{(2)}_{e,\tau,i,j}(u) \cap B_\tau(u) \right) \right)
\end{equation}
\[::= E^{1,+}_e(u) \cup E^{2,+}_e(u) \].

Note that all the events in the above unions are disjoint and, in particular, the events \(E^{1,+}_e(u) \) and \(E^{2,+}_e(u) \) are disjoint.

We start with estimating the probability of the event \(E^{(1)}_{e,\tau,i,j}(u) \cap B_\tau(u) \). Assume that \(\theta_j > 0 \). For \(\delta > 0 \) we have
\begin{equation}
P \left(E^{(1)}_{e,\tau,i,j}(u) \cap B_\tau(u) \right) \geq P \left(E^{(1)}_{e,\tau,\delta,i,j}(u) \cap B_\tau(u) \right),
\end{equation}
where
\[
E^{(1)}_{e,\tau,\delta,i,j}(u) = \left\{ H_i^{(j)} > \max \left(u - i \left(\frac{\bar{\mu}}{\pi_j} - \delta \right), \frac{\epsilon \bar{\mu} + \epsilon \delta + 2\delta}{r_j - 1 - \epsilon}, (u + i) \tau \right) \right\},
\]
\[
i \left(\frac{\bar{\mu}}{\pi_j} - \delta \right) \leq T_i^{(j)} \leq i \left(\frac{\bar{\mu}}{\pi_j} + \delta \right), \Delta \left(T_i^{(j)} \right) > i \left(\frac{\bar{\mu}}{\pi_j} - \delta \right),
\]
\(j \in J_+ \), \(i = 1, 2, \ldots \). We now estimate the probability in the right hand side of (3.11) in different ranges of \(i \). Denote for \(j \in J_+ \)
\begin{equation}
s^+_j(\epsilon) = \frac{\epsilon}{r_j - 1 - \epsilon} > 0,
\end{equation}
and
\begin{equation}
D^{+,\epsilon}_j(\delta) = \delta \left(\frac{2\epsilon + 3 - r_j}{r_j - 1 - \epsilon} \right).
\end{equation}
We consider only \(\delta > 0 \) so small that
\[
(1 + s^+_j(\epsilon)) \frac{\bar{\mu}}{\pi_j} + D^{+,\epsilon}_j(\delta) > \left(1 + \frac{1}{2} s^+_j(\epsilon) \right) \frac{\bar{\mu}}{\pi_j} > 0.
\]
Let \(\lambda > 0 \) be a small positive number. The first range of \(i \) we consider is
\begin{equation}
\lambda u \leq i \leq \left(\frac{1}{\bar{\mu}} \left(\frac{1}{1 + s^+_j(\epsilon)} + D^{+,\epsilon}_j(\delta) \right) \right) u.
\end{equation}
Notice that for some $\tau_1(\epsilon) > 0$, if $0 < \tau < \tau_1(\epsilon)$ then in our range of i

$$u - i \left(\frac{\mu}{\pi_j} - \delta \right) \geq \max \left(i \frac{\mu}{\pi_j} + \epsilon \delta + 2\delta, (u + i)\tau \right).$$

Therefore,

$$\begin{align*}
P \left(E^{(1)}_{\epsilon, \tau, \delta, i, j}(u) \cap B_\tau(u) \right) &\geq P \left(H^{(j)}_i > u - i \left(\frac{\mu}{\pi_j} - \delta \right) \right) \\
&- P \left(T^{(j)}_i \leq i \left(\frac{\mu}{\pi_j} - \delta \right) \right) - P \left(\Delta \left(T^{(j)}_i \right) \leq i \left(\frac{\mu}{\pi_j} - \delta \right) \right) \\
&- P \left(T^{(j)}_i > i \left(\frac{\mu}{\pi_j} + \delta \right), H^{(j)}_i > (u + i)\tau \right) \\
&- P \left(\left\{ H^{(j)}_i > (u + i)\tau \right\} \cap (B_\tau(u))^c \right) \\
&:= \overline{F}_j \left(u - i \left(\frac{\mu}{\pi_j} - \delta \right) \right) - \sum_{l=1}^{4} e_{l, i, j}(u).
\end{align*}$$

(3.15)

By Lemma 3.5 and (3.14) we have

$$e_{l, i, j}(u) \leq C_1^{(j)} e^{-C_2^{(j)} i} \leq C_1^{(j)} e^{-C_2^{(j)} \lambda u}$$

for $l = 1, 2$. Now, by the ergodic theorem, for every $j = 1, \ldots, K$

$$\frac{T^{(j)}_i}{i} \rightarrow \frac{\mu}{\pi_j} \text{ a.s. as } i \rightarrow \infty.$$

Therefore, for all u large enough and, hence, i large enough,

$$e_{3, i, j}(u) = P \left(T^{(j)}_i > i \left(\frac{\mu}{\pi_j} + \delta \right) \right) P \left(H^{(j)}_i > (u + i)\tau \right) \leq \delta \overline{F} \left(u - i \left(\frac{\mu}{\pi_j} - \delta \right) \right),$$

(3.17) where we have used regular variation of \overline{F}, which also shows that for all u large enough,

$$e_{4, i, j}(u) \leq P \left(H^{(j)}_i > (u + i)\tau \right) \sum_{m=1}^{\infty} \sum_{k=1}^{K} P \left(H^{(k)}_m > (u + m)\tau \right)$$

(3.18)

$$\leq \delta \overline{F} \left(u - i \left(\frac{\mu}{\pi_j} - \delta \right) \right).$$

We conclude by (3.16)–(3.18) that for all u large enough and all i in the range (3.14)

$$P \left(E^{(1)}_{\epsilon, \tau, \delta, i, j}(u) \cap B_\tau(u) \right) \geq \left(\theta_j - 5\delta \right) \overline{F} \left(u - i \left(\frac{\mu}{\pi_j} - \delta \right) \right).$$

(3.19)
We next consider i in the range

$$i > \left(\frac{1}{\frac{\pi_j}{\pi_j} \left(1 + s_j^+(\epsilon) \right) + D_j^{+,*}(\delta)} \right) u. \tag{3.20}$$

Notice that for some $\tau_2(\epsilon) > 0$, if $0 < \tau < \tau_2(\epsilon)$ then in our range of i

$$i \frac{\epsilon \frac{\pi_j}{\pi_j} + \epsilon \delta + 2\delta}{r_j - 1 - \epsilon} \geq \max \left(u - i \left(\frac{\pi_j}{\pi_j} - \delta \right), (u + i) \tau \right).$$

Therefore, we can write as in (3.15)

$$P \left(E^{(1)}_{i, \tau, s, i, j}(u) \cap B_\tau(u) \right) \geq \bar{F}_j \left(\frac{\epsilon \frac{\pi_j}{\pi_j} + \epsilon \delta + 2\delta}{r_j - 1 - \epsilon} \right) - \sum_{l=1}^{4} c_{l, i, j}(u),$$

and the same argument as above shows that for all u large enough and all i in the range (3.20)

$$P \left(E^{(1)}_{i, \tau, s, i, j}(u) \cap B_\tau(u) \right) \geq (\theta_j - 5\delta) \bar{F} \left(\frac{\epsilon \frac{\pi_j}{\pi_j} + \epsilon \delta + 2\delta}{r_j - 1 - \epsilon} \right). \tag{3.21}$$

We conclude that for all u large enough,

$$P \left(E^{1,+}_i(u) \right) \geq \sum_{j \in J_+(\epsilon)} \sum_{i \geq \lambda u} P \left(E^{(1)}_{i, \tau, s, i, j}(u) \cap B_\tau(u) \right)$$

$$\geq \sum_{j \in J_+(\epsilon)} (\theta_j - 5\delta) \left(\sum_{\lambda u \leq i \leq u \left(\frac{\pi_j}{\pi_j} \left(1 + s_j^+(\epsilon) \right) + D_j^{+,*}(\delta) \right)^{-1}} \bar{F} \left(u - i \left(\frac{\pi_j}{\pi_j} - \delta \right) \right) \right)$$

$$+ \sum_{i > u \left(\frac{\pi_j}{\pi_j} \left(1 + s_j^+(\epsilon) \right) + D_j^{+,*}(\delta) \right)^{-1}} \bar{F} \left(\frac{\epsilon \frac{\pi_j}{\pi_j} + \epsilon \delta + 2\delta}{r_j - 1 - \epsilon} \right), \tag{3.22}$$

$$:= \sum_{j \in J_+(\epsilon)} (\theta_j - 5\delta) \left(S_{1,j}(u) + S_{2,j}(u) \right).$$
Notice that for \(u \) large enough

\[
S_{1,j}(u) \geq \int_{\lambda u + 2}^{\infty} \frac{1}{\pi_j - \delta} \left(\frac{\bar{\pi}(1 + s_j^+ (\epsilon))_{\pi_j^{-1} + D_j^{+; x}(\delta))^{-1}}{x - \left(\frac{\bar{\pi}}{\pi_j} - \delta \right)} \right) dx
\]

\[
\geq \left(\frac{\bar{\pi}}{\pi_j} - \delta \right)^{-1} \int_{\lambda}^{\infty} \left(\frac{1 - (\pi_j/\bar{\pi} - 2\delta)}{1 - \lambda (\pi_j/\bar{\pi} - 2\delta)} \left(\frac{\pi_j}{\bar{\pi}} (1 + s_j^+ (\epsilon)) + D_j^{+; x}(\delta) \right)^{-1} \right) \bar{F}(x) dx
\]

\[
\sim \left(\frac{\bar{\pi}}{\pi_j} - \delta \right)^{-1} \left[u \left(1 - (\bar{\pi}/\pi_j - 2\delta) \left(\frac{\bar{\pi}}{\pi_j} (1 + s_j^+ (\epsilon)) + D_j^{+; x}(\delta) \right)^{-1} \right)
\]

\[
\sim \left(\frac{\bar{\pi}}{\pi_j} - \delta \right)^{-1} \frac{1}{\gamma - 1} \left[u \left(1 - (\bar{\pi}/\pi_j - 2\delta) \left(\frac{\bar{\pi}}{\pi_j} (1 + s_j^+ (\epsilon)) + D_j^{+; x}(\delta) \right)^{-1} \right)
\]

\[\text{as } u \to \infty, \text{ by the regular variation of } \bar{F}, \text{ where we used Karamata’s theorem (see e.g. Theorem 0.6 in Resnick (1987)). Similarly, for } u \text{ large enough}
\]

\[
S_{2,j}(u) \geq \int_{u}^{\infty} \frac{1}{\pi_j (1 + s_j^+ (\epsilon))_{\pi_j^{-1} + D_j^{+; x}(\delta))^{-1}} \bar{F} \left(\frac{\epsilon_{\pi_j} + \epsilon \delta + 2\delta}{r_j - 1 - \epsilon} \right) dx
\]

\[
\geq \frac{r_j - 1 - \epsilon}{\bar{\pi}/\pi_j + \epsilon \delta + 2\delta} \int_{u}^{\infty} \left(\frac{1 + s_j^+ (\epsilon)_{\pi_j^{-1} + D_j^{+; x}(\delta))^{-1}}{(s\pi_j^{-1} + \epsilon \delta + 3\delta (r_j - 1 - \epsilon))^{-1}} \bar{F}(x) dx
\]

\[
\sim \frac{r_j - 1 - \epsilon}{\bar{\pi}/\pi_j + \epsilon \delta + 2\delta} \frac{1}{\gamma - 1} u \left(\frac{\bar{\pi}}{\pi_j} (1 + s_j^+ (\epsilon)) + D_j^{+; x}(\delta) \right)^{-1} \frac{\epsilon_{\pi_j} + \epsilon \delta + 2\delta}{r_j - 1 - \epsilon}
\]

\[
\sim \frac{r_j - 1 - \epsilon}{\bar{\pi}/\pi_j + \epsilon \delta + 2\delta} \frac{1}{\gamma - 1} \bar{F}(u) \left(\frac{\bar{\pi}}{\pi_j} (1 + s_j^+ (\epsilon)) + D_j^{+; x}(\delta) \right)^{-1} \frac{\epsilon_{\pi_j} + \epsilon \delta + 2\delta}{r_j - 1 - \epsilon} \sim \frac{1}{\gamma - 1}
\]

as \(u \to \infty, \) once again by the regular variation of \(\bar{F} \) and Karamata’s theorem.
RUIN PROBLEM AND OPERATIONAL RISK

We conclude by (3.22)–(3.24) that for all \(\delta > 0 \) and \(\lambda > 0 \) small enough,

\[
\liminf_{u \to \infty} \frac{P \left(E_{\epsilon}^{1+}(u) \right)}{u F(u)} \geq \frac{1}{\gamma - 1} \sum_{j \in J_+} \left(\left(\frac{\pi_j}{\pi} - \delta \right)^{\gamma - 1} \left(1 - \left(\frac{\pi_j}{\pi} - 2\delta \right) \left(\frac{\pi_j}{\pi_j (1 + s_j^+(\epsilon)) + D_j^{+,-}(\delta)} \right)^{-(\gamma - 1)} - 1 - \lambda \left(\frac{\pi_j}{\pi_j} - 2\delta \right)^{-(\gamma - 1)} \right) \right) \]

Letting \(\delta \to 0 \) and \(\lambda \to 0 \) we conclude that

(3.25) \[
\liminf_{u \to \infty} \frac{P \left(E_{\epsilon}^{1+}(u) \right)}{u F(u)} \geq \frac{1}{\mu(\gamma - 1)} \sum_{j \in J_+} \left(\frac{\pi_j}{\pi_j (1 + s_j^+(\epsilon))} \right)^{\gamma - 1} - 1 .
\]

Notice that (3.25) has been proved under the assumption that \(\theta_j > 0 \) for every \(j \in J_+ \) but it is entirely obvious that if \(\theta_j = 0 \) for some \(j \in J_+ \) then (3.25) still follows, with the sum in its right hand side having appropriately fewer nonzero terms.

We proceed with estimating, in a similar manner, the probability of \(E_{\epsilon,\tau,i,j}^{(2)}(u) \) in (3.10). Concentrating on the event \(E_{\epsilon,\tau,i,j}^{(2)}(u) \cap B_\tau(u) \) for \(j \in J_+ \), we still may and will assume that \(\theta_j > 0 \). For \(\delta > 0 \) we have, as before,

(3.26) \[
P \left(E_{\epsilon,\tau,i,j}^{(2)}(u) \cap B_\tau(u) \right) \geq P \left(E_{\epsilon,\tau,i,j}^{(2)}(u) \cap B_\tau(u) \right),
\]

where

\[
E_{\epsilon,\tau,i,j}^{(2)}(u) = \left\{ \begin{array}{ll}
H_i^{(j)} \leq u - i \left(\frac{\pi_j}{\pi} + 2\delta \right), & H_i^{(j)} > \max \left(u - \frac{\epsilon + \delta}{\pi_j r_j - 1 + \delta} + iD_j^+ (\delta), \ (u + i)\tau \right), \\
T_i^{(j)} \leq i \left(\frac{\pi_j}{\pi_j} + \delta \right), & \Delta \left(T_i^{(j)} \right) > i \left(\frac{\pi_j}{\pi_j} - \delta \right), \\
\Delta(u) - \Delta \left(T_i^{(j)} + H_i^{(j)} \right) > (1 - \delta) \left(u - T_i^{(j)} - H_i^{(j)} \right) \end{array} \right\},
\]

where

(3.27) \[
D_j^+ (\delta) = \frac{2 - \delta - \frac{\pi_j}{\pi}}{\pi_j r_j - 1 + \delta}.
\]
Let once again $\lambda > 0$ be a small positive number. Consider i in the range

$$
\lambda u \leq i \leq \left(\frac{r_j - 1 - \epsilon}{(r_j - 1 + \delta) \left(\frac{\mu}{\pi_j} + 3\delta + D^+_j(\delta) \right)} \right) u.
$$

As before, for some $\tau_3(\epsilon) > 0$, if $0 < \tau < \tau_3(\epsilon)$ then in our range of i

$$
u \left(\frac{\epsilon + \delta}{r_j - 1 + \delta} + iD_j^+(\delta) \right) > (u + i)\tau
$$
as long as $\delta > 0$ is small enough. Therefore,

$$
P \left(E_{\tau, \delta, u, \lambda}^{(2)}(u) \cap B_t(u) \right) \geq P \left(u \left(\frac{\epsilon + \delta}{r_j - 1 + \delta} + iD_j^+(\delta) \right) \leq H^{(j)}_i \leq u - i \left(\frac{\mu}{\pi_j} + 2\delta \right) \right)
$$

$$
- P \left(T^{(j)}_i > i \left(\frac{\mu}{\pi_j} + \delta \right), H^{(j)}_i > (u + i)\tau \right) - P \left(\Delta \left(T^{(j)}_i \right) \leq i \left(\frac{\mu}{\pi_j} - \delta \right) \right)
$$

$$
- P \left(\Delta(u) - \Delta \left(T^{(j)}_i + H^{(j)}_i \right) \leq (1 - \delta) \left(u - T^{(j)}_i - H^{(j)}_i \right), T^{(j)}_i + H^{(j)}_i \leq u - i\delta, H^{(j)}_i > (u + i)\tau \right)
$$

$$
:= \overline{F}_j \left(u \left(\frac{\epsilon + \delta}{r_j - 1 + \delta} + iD_j^+(\delta) \right) - \overline{F}_j \left(u - i \left(\frac{\mu}{\pi_j} + 2\delta \right) \right) \right) - \sum_{l=1}^{3} e_{l, i, j}(u).
$$

Notice that $e_{l, i, j}(u)$ with $l = 1, 2$ was handled in (3.16) and (3.17) above. Similarly, by the strong Markov property,

$$
e_{3, i, j}(u) \leq P \left(\Delta(t) \leq (1 - \delta) t \right) \text{ for some } t > i\delta \right) P \left(H^{(j)}_i > (u + i)\tau \right).
$$

By the ergodic theorem,

$$
\frac{\Delta(t)}{t} \to 1 \quad \text{as } t \to \infty.
$$

Therefore, the first term in the right hand side in (3.30) goes to zero as $u \to \infty$ uniformly in i in the the range (3.28). Using, once again, the regular variation of \overline{F} we conclude that for all u large enough,

$$
e_{l, i, j}(u) \leq \delta u \overline{F}(u) \quad \text{for } l = 1, 2, 3
$$

for all i in the the range (3.28) and $j \in J_+(\epsilon)$. Letting

$$
d = \frac{r_j - 1 - \epsilon}{(r_j - 1 + \delta) \left(\frac{\mu}{\pi_j} + 3\delta + D^+_j(\delta) \right)}
$$
we have, therefore, for all \(u \) large enough,

\[
P\left(E^{2,+}_{\epsilon,\tau}(u)\right) \geq \sum_{j \in J_+} \left(\theta_j - \delta \right) \sum_{\lambda \alpha \leq i \leq d \alpha} \left(F \left(u - \delta \frac{\epsilon + \delta}{r_j - 1 + \delta} \right) + iD^+_{\frac{\epsilon + \delta}{r_j - 1 + \delta}} \right) \\
- F \left(u - i \left(\frac{\mu}{\pi_j} + 2\delta \right) \right) - 3\delta uF(u)
\]

(3.32)

\[
\geq \sum_{j \in J_+} \left(\theta_j - \delta \right) \left(\sum_{\lambda \alpha \leq i \leq d \alpha} F \left(u - \delta \frac{\epsilon + \delta}{r_j - 1 + \delta} \right) - \sum_{\lambda \alpha \leq i \leq d \alpha} F \left(u - i \left(\frac{\mu}{\pi_j} + 2\delta \right) \right) \right) \\
- 3 \sum_{j \in J_+} \theta_j \delta uF(u) := \sum_{j \in J_+} \left(\theta_j - \delta \right) \left(S_{3,j}(u) - S_{4,j}(u) \right) - 3 \sum_{j \in J_+} \theta_j \delta uF(u).
\]

Clearly, if \(\delta > 0 \) is small enough, then

(3.33)

\[
S_{3,j}(u) \geq ((d - \lambda)u - 2)F \left(u - \delta \frac{\epsilon + \delta^{1/2}}{r_j - 1 + \delta} \right)
\]

for all \(u \) large enough. Observe, further, that as in (3.23) and (3.24), as \(u \to \infty \),

\[
S_{4,j}(u) \leq \int_{\lambda \alpha}^{d \alpha} F \left(u - x \left(\frac{\mu}{\pi_j} + 2\delta \right) \right) dx
\]

(3.34)

\[
\sim \left(\frac{\mu}{\pi_j} + 2\delta \right)^{-1} \frac{1}{\gamma - 1} \left[u \left(1 - d \left(\frac{\mu}{\pi_j} + 2\delta \right) \right) F \left(u \left(1 - d \left(\frac{\mu}{\pi_j} + 2\delta \right) \right) \right) \\
- u \left(1 - \lambda \left(\frac{\mu}{\pi_j} + 2\delta \right) \right) F \left(u \left(1 - \lambda \left(\frac{\mu}{\pi_j} + 2\delta \right) \right) \right) \right].
\]

We conclude by (3.32), (3.33) and (3.34) that for all \(\delta > 0 \) and \(\lambda > 0 \) small enough,

\[
\liminf_{u \to \infty} \frac{P\left(E^{2,+}_{\epsilon,\tau}(u)\right)}{uF(u)} \geq \sum_{j \in J_+} \left(\theta_j - \delta \right) \left[(d - \lambda) \left(\frac{\epsilon + \delta^{1/2}}{r_j - 1 + \delta} \right)^{-\gamma} \\
- \left(\frac{\mu}{\pi_j} + 2\delta \right)^{-1} \frac{1}{\gamma - 1} \left(1 - d \left(\frac{\mu}{\pi_j} + 2\delta \right) \right)^{(\gamma - 1)} \\
- \left(1 - \lambda \left(\frac{\mu}{\pi_j} + 2\delta \right) \right)^{(\gamma - 1)} \right] - 3 \sum_{j \in J_+} \theta_j \delta.
\]
Letting \(\delta \to 0 \) and \(\lambda \to 0 \) we conclude that

\[
\liminf_{u \to \infty} \frac{P(E_{\epsilon,\tau}^2(u))}{uF(u)} \geq \frac{1}{\mu} \sum_{j \in J_+(\epsilon)} \theta_j \pi_j \left[\frac{1}{1 + s_j^+(\epsilon)} \left(\frac{s_j^+(\epsilon)}{1 + s_j^+(\epsilon)} \right)^{-\gamma} \right. \\
\left. - \frac{1}{\gamma - 1} \left(\left(\frac{s_j^+(\epsilon)}{1 + s_j^+(\epsilon)} \right)^{-(\gamma - 1)} - 1 \right) \right].
\]

(3.35)

Now the statement (3.6) follows from (3.10), (3.25) and (3.35). As mentioned above, this is enough to establish the asymptotic lower bound in our statement.

We will prove now the corresponding asymptotic upper bound. We will, actually, prove that

\[
\limsup_{u \to \infty} \frac{P(E_{\epsilon}^+(u))}{uF(u)} \leq \frac{1}{\epsilon^\gamma \mu} \sum_{j \in J_+(\epsilon)} \theta_j \pi_j (r_j - 1 - \epsilon) (r_j - 1)^{\gamma - 1}.
\]

(3.36)

Since the corresponding result for the event \(E_{\epsilon}^-(u) \) can be established in the same way, this will be enough to finish the proof of the theorem.

For \(\tau > 0 \) we define the event

\[
A_{\tau}(u) = \left\{ H_i^{(j)} \leq \tau(u + i) \quad \text{for all pairs} \quad (i, j) \in \{1, 2, \ldots \} \times \{1, \ldots , K\} \right\}.
\]

(3.37)

Our first goal is to check that for all \(\tau \) small enough

\[
\lim_{u \to \infty} \frac{P(E_{\epsilon}^+ \cap A_{\tau}(u))}{uF(u)} = 0.
\]

(3.38)

Observe that

\[
E_{\epsilon}^+(u) = E_{\epsilon}^{(1)}(u) \cup E_{\epsilon}^{(2)}(u),
\]

(3.39)

where

\[
E_{\epsilon}^{(1)}(u) = \left\{ T_i^{(j)} + H_i^{(j)} \geq u, \quad r_j H_i^{(j)} + \Delta \left(T_i^{(j)} \right) > \left(T_i^{(j)} + H_i^{(j)} \right) (1 + \epsilon) \right\}
\]

for some \((i, j) \in \{1, 2, \ldots \} \times J_+(\epsilon) \}

and

\[
E_{\epsilon}^{(2)}(u) = \left\{ T_i^{(j)} + H_i^{(j)} < u, \quad r_j H_i^{(j)} + \Delta \left(T_i^{(j)} \right) + \Delta(u) - \Delta \left(T_i^{(j)} + H_i^{(j)} \right) > (1 + \epsilon)u \right\}
\]

for some \((i, j) \in \{1, 2, \ldots \} \times J_+(\epsilon) \}.\]
Therefore, (3.38) will follow once we show that

\[
\lim_{u \to \infty} \frac{P \left(E_e^{(i)} \cap A_{\tau}(u) \right)}{u F(u)} = 0
\]

for \(i = 1, 2 \). Since the arguments for \(i = 1 \) and \(i = 2 \) are very similar, we only prove (3.40) for \(i = 1 \).

Let \(\lambda \) be a positive number satisfying

\[
\left(1 + \frac{1}{\lambda} \right) \tau \leq \frac{\epsilon}{4 \min_{j=1}^{K} \left(\frac{1}{\pi_j r_j} \right)},
\]

and write

\[
E_e^{(1)} = E_e^{(11)} \cup E_e^{(12)},
\]

where

\[
E_e^{(11)}(u) = \left\{ T_i^{(j)} + H_i^{(j)} \geq u, r_j H_i^{(j)} + \Delta \left(T_i^{(j)} \right) > \left(T_i^{(j)} + H_i^{(j)} \right) (1 + \epsilon) \right\}
\]

for some \(i \leq \lambda u \) and \(j \in J_+(\epsilon) \}

and

\[
E_e^{(12)}(u) = \left\{ T_i^{(j)} + H_i^{(j)} \geq u, r_j H_i^{(j)} + \Delta \left(T_i^{(j)} \right) > \left(T_i^{(j)} + H_i^{(j)} \right) (1 + \epsilon) \right\}
\]

for some \(i > \lambda u \) and \(j \in J_+(\epsilon) \}

Let us introduce some notation. For a state \(j \) let \(I_1^{(j)}, I_1^{(j)}, \ldots \) be the times between subsequent returns of the underlying Markov chain to state \(j \). Similarly, let \(I_1^{(j_0, j)} \) be the time of the first visit to state \(j \) starting at the initial state \(j_0 \). Note that

\[
P \left(E_e^{(11)} \cap A_{\tau}(u) \right) \leq \sum_{j \in J_+(\epsilon)} \left[P \left(\left\{ I_1^{(j_0, j)} \geq \frac{1}{2} u (1 - \tau (1 + \lambda)) \right\} \cap A_{\tau}(u) \right) \right]
\]

\[
(3.43) + \sum_{i \leq \lambda u} P \left(\left\{ I_1^{(j)} + \ldots + I_{i-1}^{(j)} \geq \frac{1}{2} u (1 - \tau (1 + \lambda)) \right\} \cap A_{\tau}(u) \right).
\]

Let \(N_1^{(j)}, N_1^{(j)}, \ldots \) be the numbers of steps it takes the underlying Markov chain to return to state \(j \), and let \(N_1^{(j_0, j)} \) be the number of steps it takes the underlying Markov chain to visit to state \(j \) starting at the initial state \(j_0 \). Since the Markov chain is finite and
irreducible, the random variables $N_1^{(j)}$ and $N_1^{(j+1)}$ have exponentially decaying tails. Note, further, that, by Lemma 3.6, for every $i \leq \lambda u$,

$$P \left(\left\{ I_1^{(j)} + \ldots + I_{i-1}^{(j)} \geq \frac{1}{2} u (1 - \tau(1 + \lambda)) \right\} \cap A_\tau(u) \right)$$

(3.44)

$$\leq P \left(\sum_{k=1}^{N_1^{(j)}} (H_k^* \wedge \tau(1 + \lambda)) u \geq \frac{1}{2} u (1 - \tau(1 + \lambda)) \right) ,$$

where H_1^*, H_2^*, \ldots are iid random variables independent of $N_k^{(j)}$, $k \geq 1$ with distribution F^* (described in that lemma). Exponential Markov inequality immediately tells us that there is a $\theta_1 > 0$ such that for all $i \leq \lambda u$

(3.45)

$$P \left(N_1^{(j)} + \ldots + N_{i-1}^{(j)} > 2\lambda u E N_1^{(j)} \right) \leq e^{-\theta_1 \lambda u} .$$

Furthermore,

$$P \left(\sum_{k \leq 2\lambda u E N_1^{(j)}} (H_k^* \wedge (1 + \lambda) u) \geq \frac{1}{2} u (1 - \tau(1 + \lambda)) \right)$$

(3.46)

$$\leq P \left(\sum_{k \leq 2\lambda u E N_1^{(j)}} ((H_k^* \wedge (1 + \lambda) u) - E (H_k^* \wedge (1 + \lambda) u)) > \frac{u}{8} \right)$$

as long as

$$\lambda \leq \frac{1}{2 E N_1^{(j)}} \wedge 1 \quad \text{and} \quad \tau \leq \frac{1}{8} .$$

Applying Lemma 3.7 with $c = (1 + \lambda) u$ we immediately conclude that for some $\theta_2 > 0$

(3.47)

$$P \left(\sum_{k \leq 2\lambda u E N_1^{(j)}} ((H_k^* \wedge (1 + \lambda) u) - E (H_k^* \wedge (1 + \lambda) u)) > \frac{u}{8} \right) \leq \theta_2 u^{-\frac{1}{1+\tau}} .$$

Bounding in the similar the way the first term under the sum in the right hand side of (3.43) we immediately conclude from the above that for all $\lambda > 0$ and $\tau > 0$ small enough and such that (3.41) holds,

$$\lim_{u \to \infty} \frac{P \left(E_c^{(11)} \cap A_\tau(u) \right)}{u F(u)} = 0 .$$

(3.48)
Before proceeding to treat $P\left(E^{(12)}_e \cap A_\tau(u) \right)$ we note, for the future use, that the same argument as the one used above to establish (3.48) shows also the following. For a fixed $\tau > 0$ let

\begin{equation}
T_\ast = \inf \left\{ T^{(j)}_i : j = 1, \ldots, K, \ i = 1, 2, \ldots \quad \text{and} \quad H^{(j)}_i > \tau(u + i) \right\}.
\end{equation}

Then for all $\tau > 0$ small enough

\begin{equation}
\lim_{u \to \infty} \frac{P\left(\sup_{0 \leq t \leq T_\ast} \left(\Delta(t) - (1 + \epsilon)t > u \right) \right)}{uF(u)} = 0.
\end{equation}

We now switch to estimating $P\left(E^{(12)}_e \cap A_\tau(u) \right)$. Note that for any $\lambda > 0$

\begin{equation}
P\left(E^{(12)}_e \cap A_\tau(u) \right) \leq \sum_{j \in J_+(\epsilon)} \sum_{i \geq \lambda u} P\left(\left\{ T^{(j)}_i + H^{(j)}_i \geq u, \right\} \right),
\end{equation}

\begin{equation}
\tau_j H^{(j)}_i + \Delta \left(T^{(j)}_i \right) > \left(T^{(j)}_i + H^{(j)}_i \right) (1 + \epsilon) \cap A_\tau(u) \right) := \sum_{j \in J_+(\epsilon)} \sum_{i \geq \lambda u} P\left(E^{(3)}_{e,i,j}(u) \cap A_\tau(u) \right).
\end{equation}

Let \mathcal{G} be the σ-field generated by the process $(Z_n, n \geq 0)$, i.e. by the sequence of states the system goes through. Note that for every $j \in J_+(\epsilon)$ and $i \geq \lambda u$

\begin{equation}
P\left(E^{(3)}_{e,i,j}(u) \cap A_\tau(u) \right)
\end{equation}

\begin{equation}
\leq P\left(\left\{ \tau_j (r_j - 1 - \epsilon)(u + i) + \Delta \left(T^{(j)}_i \right) - (1 + \epsilon)T^{(j)}_i > 0 \right\} \cap A_\tau(u) \right)
\end{equation}

\begin{equation}
:= P\left(E^{(3)}_{e,i,j,\tau}(u) \cap A_\tau(u) \right) = E\left(P\left(E^{(3)}_{e,i,j,\tau}(u) \cap A_\tau(u) \right) \right).
\end{equation}

For $l, j = 1, \ldots, K$ and $i \geq 1$ let $J_{l,j}(i)$ be the number of visits to state l until the ith visit to state j. Obviously, $J_{l,j}(i)$ is measurable with respect to \mathcal{G} for all l, j, i. Notice that

\begin{equation}
E\left(J_{l,j}(2) - J_{l,j}(1) \right) = \frac{\pi_l}{\pi_j},
\end{equation}

and so, since the Markov chain is finite and irreducible, for any given $\rho > 0$ there is $\theta_3 > 0$ such that

\begin{equation}
P\left(\left| \frac{J_{l,j}(i)}{i} - \frac{\pi_l}{\pi_j} \right| > \rho \right) \leq \theta_3 e^{-\rho/\theta_3}
\end{equation}

for all $l, j = 1, \ldots, K$ and $i \geq 1$.
For $\rho > 0$ so small that

\[(3.54) \quad \sum_{l=1}^{K} \frac{\mu_l}{\pi_j} \left(\frac{\pi_l}{\pi_j} - \rho \right) \geq \frac{\epsilon \rho}{2\pi_j} \]

for all $j \in J^+(\epsilon)$ we let

\[A_{i,j}(\rho) = \left\{ w : \left| \frac{J_{l,j}(i)}{i} - \frac{\pi_l}{\pi_j} \right| \leq \rho \text{ for all } l = 1, \ldots, K \right\} \in \mathcal{G} \, .\]

It follows from (3.53) that for some $\theta_3 = \theta_3(\rho) > 0$

\[(3.55) \quad P \left(E_{e,i,j,\tau}^{(3)}(u) \right) \leq \theta_3 e^{-i/\theta_3} + E \left(1 \left(A_{i,j}(\rho) \right) P \left(E_{e,i,j,\tau}^{(3)}(u) \big| \mathcal{G} \right) \right) \, . \]

Denote

\[W_i^{(j)} = \left(\Delta \left(T_i^{(j)} \right) - (1 + \epsilon)T_i^{(j)} \right) - E \left(\Delta \left(T_i^{(j)} \right) - (1 + \epsilon)T_i^{(j)} \right) = \left(\Delta \left(T_i^{(j)} \right) - (1 + \epsilon)T_i^{(j)} \right) - \sum_{l=1}^{K} \mu_l J_{l,j}(i) (\tau_l - 1 - \epsilon) \, . \]

We have then

\[(3.56) \quad P \left(E_{e,i,j,\tau}^{(3)}(u) \big| \mathcal{G} \right) = P \left(\left\{ \tau (r_j - 1 - \epsilon)(u + i) + W_i^{(j)} > \sum_{l=1}^{K} \mu_l J_{l,j}(i) (1 + \epsilon - \tau_l) \right\} \cap A_{\tau}(u) \big| \mathcal{G} \right) \leq P \left(\left\{ W_i^{(j)} > \frac{i \epsilon \rho}{4\pi_j} \right\} \cap A_{\tau}(u) \big| \mathcal{G} \right) \]

by (3.54) and (3.41).

Let S_n be the sojourn time the system spends in the nth state it visits (i.e. in state Z_n); then the total increase of the time Δ during that sojourn is $r_{Z_n} S_n$. Then

\[W_i^{(j)} = \sum_{n=0}^{\sum_{l=1}^{K} J_{l,j}(i) - 1} U_n, \]

where

\[U_n = ((r_{Z_n} - 1 - \epsilon) S_n) - E ((r_{Z_n} - 1 - \epsilon) S_n), \quad n \geq 1. \]
We conclude that

\[p \left(\left\{ W_{i}^{(j)} > \frac{\epsilon M}{4\pi j} \right\} \cap A_{\tau}(u) \right| G) \leq P \left(\sum_{n=0}^{K} U_{n} \mathbf{1}(S_{n} \leq \tau(u + n)) > \frac{i}{4\pi j} \right| G) \]

Denote

\[U_{n}^{*} = U_{n} \mathbf{1}(S_{n} \leq \tau(u + n)) - E \left(U_{n} \mathbf{1}(S_{n} \leq \tau(u + n)) \right| G), \quad n \geq 0, \]

and observe that

\[E \left(U_{n} \mathbf{1}(S_{n} \leq \tau(u + n)) \right| G) \to 0 \]

as \(u \to 0 \) uniformly over \(\omega \in A_{i,j}(\rho) \) and \(n \geq 0 \). Furthermore, \(U_{0}^{*}, U_{1}^{*}, \ldots \) are, conditionally on \(G \) independent zero mean random variables, and for some absolute constant \(C > 0 \), for all \(\omega \in A_{i,j}(\rho) \) and \(n \geq 0 \), \(|U_{n}^{*}| \leq C\tau(u + n) \). For all \(u \) large enough, for all \(\omega \in A_{i,j}(\rho) \) and \(i \geq \lambda u \) we have then

\[P \left(\left\{ W_{i}^{(j)} > \frac{\epsilon M}{4\pi j} \right\} \cap A_{\tau}(u) \right| G) \leq P \left(\sum_{n=0}^{K} U_{n}^{*} > \frac{i}{8\pi j} \right| G) \]

(3.57)

We are now in a position to apply Lemma 3.7 with \(c = C\tau \left(u + \sum_{i=1}^{K} J_{i,j}(i) \right) \) to conclude that there is a \(\theta_{2} > 0 \) and \(\tau_{0} > 0 \) such that for all \(0 < \tau \leq \tau_{0} \), all \(\omega \in A_{i,j}(\rho) \), all \(i \geq \lambda u \), and all \(u > 0 \) large enough,

\[P \left(\left\{ W_{i}^{(j)} > \frac{\epsilon M}{4\pi j} \right\} \cap A_{\tau}(u) \right| G) \leq \theta_{2}^{i^{-\tau/\theta_{2}}} \]

(3.58)

Therefore, we conclude by (3.51), (3.52), (3.55), (3.56) and (3.58) that for all \(\lambda > 0 \) and \(\tau > 0 \) small enough

\[\lim_{u \to 0} \frac{P \left(E_{e}^{(12)} \cap A_{\tau}(u) \right)}{uF(u)} = 0. \]

(3.59)

Now the statement (3.40) with \(i = 1 \) follows from (3.48) and (3.59).

Next for \(\tau > 0 \) define the event

\[B_{\tau}(u) = \left\{ H_{i}^{(j)} > \tau(u + i) \right\} \]

(3.60)

for at least two different pairs \((i, j) \in \{1, 2, \ldots \} \times \{1, \ldots, K\} \).
It is an immediate consequence of Lemma 3.8 that for for any \(\tau > 0 \)

\[
(3.61) \quad \lim_{u \to \infty} \frac{P(E^+_\tau(u) \cap B_\tau(u))}{u F(u)} = 0.
\]

Therefore, if follows from (3.38) and (3.61) that to establish (3.36) it is enough to prove that

\[
(3.62) \quad \lim_{\tau \downarrow 0} \limsup_{u \to \infty} \frac{P(E^+_\tau(u) \cap C_\tau(u))}{u F(u)} \leq \frac{1}{\epsilon \gamma \mu} \sum_{j \in J_\epsilon} \theta_j \pi_j (r_j - 1 - \epsilon) (r_j - 1)^{\gamma - 1},
\]

where

\[
(3.63) \quad C_\tau(u) = \left\{ H^{(j)}_i > \tau(u + i) \text{ for exactly one pair } (i, j) \in \{1, 2, \ldots \} \times \{1, \ldots, K\} \right\}.
\]

To this end let

\[
(3.64) \quad C^+_\tau(u) = \left\{ H^{(j)}_i > \tau(u + i) \text{ for exactly one pair } (i, j) \in \{1, 2, \ldots \} \times \{1, \ldots, K\}, \right. \\
\left. \text{ and the corresponding } j \in J_\epsilon \right\} \subset C_\tau(u).
\]

We will first check that for all \(\tau > 0 \) small enough

\[
(3.65) \quad \lim_{u \to \infty} \frac{P(E^+_\tau(u) \cap (C_\tau(u) \setminus C^+_\tau(u)))}{u F(u)} = 0.
\]

Let \(T_*, H_* \) and \(r_* \) be, correspondingly, the starting time, the length of the holding time satisfying \(H^{(j)}_i > \tau(u + i) \) and the corresponding rate \(r_j \), see also (3.49). Note that on the event \(C_\tau(u) \) these are well defined random variables. Moreover, for some \(0 < \epsilon' < \epsilon \), \(r_* < 1 + \epsilon' \) on the event \(C_\tau(u) \setminus C^+_\tau(u) \). Consider the events

\[
S_1(u) = \{ T_* > u \}, \quad S_2(u) = \left\{ T_* + H_* \leq \frac{u}{2} \right\}, \quad S_3(u) = \left\{ T_* \leq u, T_* + H_* > \frac{u}{2} \right\}.
\]

Notice that replacing any holding time \(H^{(j)}_i \) with \(j \notin J_\epsilon \) and such that \(T^{(j)}_i > u \) by \(\min \left(H^{(j)}_i, \tau(u + i) \right) \) cannot take a realization in \(E^+_\tau(u) \) to the complement of this event. Therefore, replacing \(H_* \) with \(\min (H_*, \tau(u + i)) \), we can use the same argument as that used in the proof of (3.48) to see that for any \(\tau > 0, \delta_1 > 0 \) and \(\delta_2 > 0 \)

\[
(3.66) \quad \lim_{u \to \infty} \frac{P(E^+_\tau(u) \cap (C_\tau(u) \setminus C^+_\tau(u)) \cap S_1(u))}{u F(u)} = 0,
\]

and that same argument we used to prove (3.48) also gives us that

\[
(3.67) \quad \lim_{u \to \infty} \frac{P(E^+_\tau(u) \cap (C_\tau(u) \setminus C^+_\tau(u)) \cap S_3(u))}{u F(u)} = 0.
\]
Now, with $0 < \epsilon' < \epsilon$ as above write
\[
P \left(E^+(u) \cap (C_{\tau}(u) \setminus C^+(\tau)) \cap S_2(u) \right) \\
\leq P \left(E^+(u) \cap (C_{\tau}(u) \setminus C^+(\tau)) \cap S_2(u) \right) \\
\cap \left\{ \Delta(T_* + H_* \leq (1 + \epsilon)(T_* + H_*) + \epsilon - \epsilon' u) \right\} \\
+ P \left(E^+(u) \cap (C_{\tau}(u) \setminus C^+(\tau)) \cap S_2(u) \right) \\
\cap \left\{ \Delta(T_* + H_* > (1 + \epsilon)(T_* + H_*) + \epsilon - \epsilon' u) \right\} \\
:= P(D_1(u)) + P(D_2(u)) .
\]

Observe that, on the event $D_2(u)$, $\Delta(T_* - (1 + \epsilon)T_* > (\epsilon - \epsilon')u$, and so it follows from (3.50) that for all $\tau > 0$ small enough,
\[
\lim_{u \to \infty} \frac{P(D_2(u))}{uF(u)} = 0.
\]

On the other hand, on the event $D_1(u)$, we have
\[
\sup_{t \geq u/2} (\Delta(t + T_* + H_*) - \Delta(T_* + H_*) - (1 + \epsilon')t) > 0 ,
\]
and then the strong Markov property and the argument leading to (3.67) give us
\[
\lim_{u \to \infty} \frac{P(D_1(u))}{uF(u)} = 0
\]
for all $\tau > 0$ small enough. In conclusion, for all $\tau > 0$ small enough
\[
\lim_{u \to \infty} \frac{P(E^+(u) \cap (C_{\tau}(u) \setminus C^+(\tau)) \cap S_2(u))}{uF(u)} = 0 ,
\]
and now (3.65) follows from (3.66), (3.67) and (3.68).

Summing up, to finish the proof of the theorem we need to show that
\[
\lim_{\tau \to 0} \lim_{u \to \infty} \sup_{u \to \infty} \frac{P(E^+(u) \cap C^+(\tau))}{uF(u)} \leq \frac{1}{\epsilon'(1 - \epsilon')^2} \sum_{\delta \in \mathcal{I}_+} \theta_j \pi_j (r_j - 1 - \epsilon) (r_j - 1)^{-1}.
\]

Let T_*, H_* and r_* be, as above, the starting time, the length of the holding time satisfying $H_1^{(j)} > H(u + i)$ and the corresponding rate r_j, and let I_* be the corresponding i ($= 1, 2, \ldots$). For $\delta > 0$ write
\[
P \left(E^+(u) \cap C^+(\tau) \right) = P \left(E^+(u) \cap C^+(\tau) \cap \{ T_* + H_* \geq u(1 - \delta) \} \right) \\
+ P \left(E^+(u) \cap C^+(\tau) \cap \{ T_* + H_* < u(1 - \delta) \} \right) := P(D_3(u)) + P(D_4(u)) .
\]

We have
\begin{equation}
\sum_{j \in J_+(\epsilon)} \sum_{i=1}^{\infty} P \left(H_i^{(j)} > \max \left(u(1-\delta) - i \left(\frac{\tau_j}{\pi_j} + \delta \right), \frac{c_n}{r_j} - \frac{\epsilon}{r_j-1-\epsilon} \right) \right)
\end{equation}

Now, a computation entirely analogous to the one in (3.22), (3.23), and (3.24) gives us

\begin{equation}
\lim \sup_{\delta \downarrow 0, u \to \infty} \frac{\sum_{j \in J_+(\epsilon)} \sum_{i=1}^{\infty} P \left(H_i^{(j)} > \max \left(u(1-\delta) - i \left(\frac{\tau_j}{\pi_j} + \delta \right), \frac{c_n}{r_j} - \frac{\epsilon}{r_j-1-\epsilon} \right) \right)}{uF(u)}
\end{equation}

We now check that the last two probabilities in the right hand side of (3.71) are, asymptotically, small. Denote the events measured by these two probabilities by \(D_{31}(u) \) and \(D_{32}(u) \) correspondingly. Observe that for a \(\lambda > 0 \)

\begin{equation}
P \left(D_{31}(u) \right) \leq P \left(\bigcup_{j \in J_+(\epsilon)} \bigcup_{i > \lambda u} \left\{ \Delta \left(T_i^{(j)} \right) > i \left(\frac{\tau_j}{\pi_j} + \delta \right) \right\} \cap A_{i,j;\tau(u)} \right)
\end{equation}

where for \(j = 1, \ldots, K \) and \(i = 1, 2, \ldots \)

\(A_{i,j;\tau(u)} = \)

\(\left\{ H_i^{(k)} \leq \tau(u + l) \text{ for all pairs } (l, k) \in \{1, 2, \ldots\} \times \{1, \ldots, K\} \text{ such that } T_i^{(k)} < T_i^{(j)} \right\} \).

Now the same application of Lemma 3.7 as we used to prove (3.40) shows that

\begin{equation}
\lim \limsup_{\tau \downarrow 0, u \to \infty} \frac{P \left(D_{311}(u) \right)}{uF(u)} = 0
\end{equation}

for all \(\delta > 0 \) and \(\lambda > 0 \). On the other hand, it is clear that

\begin{equation}
\lim \limsup_{\lambda \downarrow 0, u \to \infty} \frac{P \left(D_{312}(u) \right)}{uF(u)} = 0
\end{equation}
for all $\delta > 0$. Therefore, we conclude that

\begin{equation}
\lim_{\tau \downarrow 0} \lim_{u \to \infty} \sup_{u} \frac{P(D_{31}(u))}{u F(u)} = 0
\end{equation}

for all $\delta > 0$. Furthermore,

\begin{equation}
P(D_{32}(u)) = P(D_{32}(u) \cap \{r_{\ast} + \Delta(T_{\ast}) > (1 + \epsilon')(H_{\ast} + T_{\ast})\}) + P(D_{32}(u) \cap \{r_{\ast} + \Delta(T_{\ast}) \leq (1 + \epsilon')(H_{\ast} + T_{\ast})\}) = P(D_{321}(u)) + P(D_{322}(u)),
\end{equation}

where we recall that $0 < \epsilon' < \epsilon$ is such that $r_{j} < 1 + \epsilon'$ for all $j \notin J_{+}(\epsilon)$. Now, for a $\lambda > 0$

\begin{equation}
P(D_{321}(u)) \leq P(D_{311}(u)) + P(D_{312}(u)) + P \left(\bigcup_{j \in J_{+}(\epsilon)} \bigcup_{i > \lambda u} \left\{ T_{i}^{(j)} \leq \lambda \left(\frac{\mu}{\pi_j} - \delta \right) \right\} \right),
\end{equation}

and so it follows from (3.74), (3.75) and Lemma 3.5 that

\begin{equation}
\lim_{\tau \downarrow 0} \lim_{u \to \infty} \sup_{u} \frac{P(D_{321}(u))}{u F(u)} = 0
\end{equation}

for all $\delta > 0$. Furthermore,

\begin{equation}
P(D_{322}(u)) = P \left(D_{322}(u) \cap \left\{ \frac{\Delta(t)}{t} > 1 + \epsilon \text{ for some } u < t < T_{\ast} \right\} \right) + P \left(D_{322}(u) \cap \left\{ \frac{\Delta(t)}{t} > 1 + \epsilon \text{ for some } t > H_{\ast} + T_{\ast} \right\} \right).
\end{equation}

Since time T_{\ast} is the beginning of the only holding time $H_{i}^{(j)} > \tau(u + i)$, the first probability in the right hand side above describes a situation of the type (3.38), and so the same argument gives us

\begin{equation}
\lim_{u \to \infty} \frac{P \left(D_{322}(u) \cap \left\{ \frac{\Delta(t)}{t} > 1 + \epsilon \text{ for some } u < t < T_{\ast} \right\} \right)}{u F(u)} = 0
\end{equation}

for all $\delta > 0$ and $\tau > 0$ small enough. Finally, by the strong Markov property

\begin{equation}
P \left(D_{322}(u) \cap \left\{ \frac{\Delta(t)}{t} > 1 + \epsilon \text{ for some } t > H_{\ast} + T_{\ast} \right\} \right) \leq P \left(\sup_{0 \leq t \leq T_{\ast}} \left(\Delta(t) - (1 + \epsilon)t > u(1 - \delta)(\epsilon - \epsilon') \right) \right),
\end{equation}

and so it follows from (3.79) and (3.50) that

\begin{equation}
\lim_{u \to \infty} \frac{P(D_{322}(u))}{u F(u)} = 0
\end{equation}
for all \(\delta > 0 \) and \(\tau > 0 \) small enough and, hence, by (3.76) and (3.80) we get

\[
\lim_{\tau \downarrow 0} \lim_{u \to \infty} \frac{P(D_{32}(u))}{uF(u)} = 0
\]

for all \(\delta > 0 \). Now we conclude by (3.72), (3.76) and (3.81) that

\[
\lim_{\delta \downarrow 0} \lim_{\tau \downarrow 0} \lim_{u \to \infty} \frac{P(D_3(u))}{uF(u)} \leq \frac{1}{\mu(\gamma - 1)} \sum_{j \in J_+(\epsilon)} \theta_j \pi_j \left(\left(\frac{s_j^+(\epsilon)}{1 + s_j^+(\epsilon)} \right)^{-\gamma} - 1 \right).
\]

Now, a similar decomposition of the event \(D_4(u) \) gives us a corresponding upper bound

\[
\lim_{\delta \downarrow 0} \lim_{\tau \downarrow 0} \lim_{u \to \infty} \frac{P(D_4(u))}{uF(u)} \leq \frac{1}{\mu} \sum_{j \in J_+(\epsilon)} \theta_j \pi_j \left[\frac{1}{1 + s_j^+(\epsilon)} \left(\frac{s_j^+(\epsilon)}{1 + s_j^+(\epsilon)} \right)^{-\gamma} - \frac{1}{\gamma - 1} \left(\frac{s_j^+(\epsilon)}{1 + s_j^+(\epsilon)} \right)^{-(\gamma-1)} - 1 \right],
\]

and so the statement (3.69) follows from (3.82) and (3.83). This establishes the asymptotic upper bound and, hence, completes the proof of the theorem.

We conclude this section with several statements required in the proof of Theorem 3.1. Some of these statements are well known, and we present them here for completeness. We use the notation introduced earlier in the section. The first lemma shows that the starting times of the sojourns of the underlying process in different states are very unlikely to be much smaller than their means.

Lemma 3.5. For every \(j = 1, \ldots, K \) and \(\delta > 0 \) there are positive numbers \(C_1^{(j)} \) and \(C_2^{(j)} \) such that for all \(i \geq 1 \)

\[
P\left(T^{(j)}_i \leq i \left(\frac{\mu}{\pi_j} - \delta \right) \right) \leq C_1^{(j)} e^{-C_2^{(j)} i}
\]

and

\[
P\left(\Delta \left(T^{(j)}_i \right) \leq i \left(\frac{\mu}{\pi_j} - \delta \right) \right) \leq C_1^{(j)} e^{-C_2^{(j)} i}.
\]

Proof. Since the proofs of both statements are very similar, we only prove (3.85). It is, of course, enough to consider \(i \geq 2 \). With the usual notation \(P_j \) and \(E_j \) meaning that \(j = 1, \ldots, K \) is the initial state of the Markov chain, we have for any \(\theta > 0 \)

\[
P \left(\Delta \left(T^{(j)}_i \right) \leq i \left(\frac{\mu}{\pi_j} - \delta \right) \right) \leq P_j \left(\Delta \left(T^{(j)}_{i-1} \right) \leq i \left(\frac{\mu}{\pi_j} - \delta \right) \right)
\]
\[
\leq \exp \left\{ \theta i \left(\frac{\bar{\mu}}{\pi_j} - \delta \right) \right\} E_j e^{-\theta \Delta (T_{i-1}^{(j)})}
\]
\[
= \left(\exp \left\{ \theta \left(\frac{\bar{\mu}}{\pi_j} - \delta \right) \right\} E_j e^{-\theta \Delta (T_1^{(j)})} \right)^{i-1} \exp \left\{ \theta \left(\frac{\bar{\mu}}{\pi_j} - \delta \right) \right\}.
\]

However,
\[
E_j \Delta (T_1^{(j)}) = \sum_{k=1}^{K} \frac{\pi_k}{\pi_j} \mu_k r_k = \frac{\bar{\mu}}{\pi_j}
\]

by (3.1). Therefore, there is a \(\theta > 0 \) such that
\[
E_j e^{-\theta \Delta (T_1^{(j)})} \leq \exp \left\{ -\theta \left(\frac{\bar{\mu}}{\pi_j} - \frac{\delta}{2} \right) \right\}
\]

and our statement follows with
\[
C_1^{(j)} = \exp \left\{ \theta \left(\frac{\bar{\mu}}{\pi_j} - \frac{\delta}{2} \right) \right\}, \quad C_2^{(j)} = \frac{\theta \delta}{2}.
\]

The next lemma puts a common stochastic bound on the sojourn random variables.

Lemma 3.6. Under the assumption (3.3) there is a nonnegative random variable \(H^* \) with a distribution \(F^* \) such that \(H^* \geq H_1^{(j)} \) for every \(j = 1, \ldots, K \) and \(\lim_{x \to \infty} F^* (x)/F(x) = \theta^* \) for some \(\theta^* \in (0, \infty) \).

Proof. Let \(H \) be a random variable with distribution \(F \). It follows from (3.3) that for every \(j = 1, \ldots, K \) there is a \(b_j \geq 0 \) such that \((\theta_j + 1) H + b_j \geq H_1^{(j)} \). Now set \(H^* = \max(\theta_1, \ldots, \theta_K) + 1) H + \max(b_1, \ldots, b_K) \). \(\square \)

The following inequality for sums of independent uniformly bounded zero mean random variables is very useful.

Lemma 3.7. Let \(Y_1, \ldots, Y_k \) be independent zero mean random variables such that for some \(c > 0, |Y_n| \leq c \) a.s. for \(n = 1, \ldots, k \). Then for every \(u > 0 \)
\[
P \left(\sum_{n=1}^{k} Y_k > u \right) \leq \exp \left\{ -\frac{u}{2c} \arcsinh \frac{cu}{2 \text{ Var} \left(\sum_{n=1}^{k} Y_k \right)} \right\}.
\]

Proof. See Prokhorov (1959); also Petrov (1995), 2.6.1 on p. 77 or Lemma A.2 in Mikosch and Samorodnitsky (2000b). \(\square \)
The next lemma shows that it is very unlikely that two different holding times are both sufficiently long to matter as far as the rate of mixing is concerned.

Lemma 3.8. For any \(\tau > 0 \) the event \(B_\tau(u) \) in (3.60) satisfies

\[
\lim_{u \to \infty} \frac{P(B_\tau(u))}{u F(u)} = 0.
\]

Proof. This statement is an immediate consequence of Lemma 2.7 in Mikosch and Samorodnitsky (2000b).

\[\qed\]

4. Conclusion

Beyond the modeling of insolvency related to non–life insurance, more recently, ruin estimation for general claim processes has become important as a potential methodological tool in the analysis of operational risk losses in banking. The discussion on how to calculate a risk capital charge for OpRisk within the Basel II Pillar I setup is currently underway. The present paper is not taking a stand on that discussion. However, given that a Pillar I OpRisk charge emerges, more refined insurance–type risk processes are called for. These models will in particular have to cater for stochastic intensities driven by exogenous economic factors, and at the same time allow for heavy–tailed claim amounts. Our results contribute to the methodology underlying the OpRisk discussion in showing how classical ruin estimation results are “robust” with respect to stochastic changes away from a constant intensity model. Through various examples, it is shown which intensity models allow for such robustness. Especially the model treated in Section 3 on Markov chain switching models was motivated by practical OpRisk considerations where underlying market variables may switch randomly between states indicating various levels of economic activity. The way the results are formulated, there is still a long way to go before the “right” model emerges. Our contribution will hopefully add some further understanding to the general class of models which allow for a ruin theoretic analysis.

Though our results were presented with eventual OpRisk applications in mind, it should be obvious that the same results apply to numerous other areas of applied research, as there are non–life insurance mathematics, teletraffic and internet data, dam theory and storage models in operations research.

Department of Mathematics, ETHZ, CH-8092 Zürich, Switzerland

E-mail address: embrechts@math.ethz.ch

School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY 14853

E-mail address: gennady@orie.cornell.edu