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Remark 2 We cannot characterize so far all Lévy processes for which Theorem 3.2 holds. However,
the present argument given for that theorem easily shows that its statement holds when, say, gy is
equivalent to the tail of a distribution in S(«), and p_ is of a smaller order. Then, in particular,

T
lim P IX (01t > 2) ~T. (3.30)

= (44(p)) pl(a/T)

The case when p_ is equivalent to the tail of a distribution in S(«), and p4 is of a smaller order

is, of course, similar.

Acknowledgment Remarks of the anonymous referee helped the authors to improve the presen-
tation of Proposition 2.1 and to simplify its proof.
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< P(/O1 X (t)|dt > 2 — 7) + P(/O1 W,(t)|dt + /01 1Z,,()]dt > «, /01 | Da()]dt > 7).

Therefore, by (3.22) and the properties of exponential distributions,

_ P(fy1X(1)]dt > z)
=00 A4 (p)ps(e) + A (p)p(2)

Ee® [) Xn(t)dt Ee—® L Xn(t)dt>
Eeo‘fol X(t)dt Ee—c fo X (t)at

[a% 1Wn d —a 1Wn d !
Ee fo1 (¢) t7 Ee fol (t) t>E<€af° |Zn(t)|dt1(/1 | Do(t)]dt > 7)).
Ee® Jo X()dt Ee @ Jo X(0)dt 0

From this (3.19) follows as before once we observe that

< e max(

+ max(

Ee® S W (2)]dt — Ee® I |X,(t)|dt7

Ee—aly Waldt _, p—a [, X (0)ldt

where (X.(%), t > 0) is a process with stationary independent increments and characteristic exponent

o (B) = /OO (¢ —1— 0 21(Jo]| < 1)) p(de),

— 00

and that )
E (e fo Oty 7D, (1))dt > 7))
0

1 1
< (B |Zn(t)|dt)1/2(P(/ |Do(t)]dt > 7))!/?
0
1 1
< (E/ €2a|Zn(t)|dt)1/2(P(/ IDa(1)|dt > 7))?
0 0
1 1
< (E/ (e2aZn(t)+€—2aZn(t))dt)1/2(P(/ | D(t)]dt > 7))/
0 0

1
< K(P( [ IDa(tldt > 7)),
0
where k is an absolute constant. This completes the proof of Theorem 3.1 in its full generality. N

Remark 1 Theorem 3.1 establishes the tail distribution of the L! norm of Lévy process on the
interval (0,1). The case of L! norm on an interval (0,T) for a 7' > 0 reduces to the above by a simple
change of variable. As a corollary, we obtain that under the assumptions of Theorem 3.1 and under
its notation we have

T
lim P 1X (01t > 2) =T. (3.29)

T (440) (/T + (4-(0) (/T
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Now, X,, is a process with characteristic functional of the type (3.20), and, moreover, its Levy
measure is

P = Pl 11 nle + M0go/my + 02010 pmy + 028 _g jn2y-
In particular, p, satisfies the assumptions of the theorem. Therefore, (3.22) holds. Of course, both
(3.23) and (3.24) hold as well.

Write
X(t) = Wa(t) + Zu(t), t >0, (3.27)

Xoa(t) = Wa(t) + Un(t), t > 0, (3.28)

where the processes W,, = (W,,(¢),t > 0), Z, = (Z,(t),t > 0) and U,, = (U,(t), t > 0) are processes
with stationary independent increments, with corresponding characteristic exponents

bw. (6) = /len (¢ — 1 - i6 21(J2| < 1)) p(da),

g, (8) = b8 — 02672 +/ 1 - ib21(ja| < 1))p(dz)

l/n
and
Py, (8) = n(e®/™ — 1) + n|n(ef7/" — 1) 4+ n2(e=0/7 1)),
The processes W,, and Z,, are independent in (3.27), and the processes W,, and U,, are independent
n (3.28).
Observe that if B = (B(t), t > 0) is a Brownian motion with drift b and dispersion o, then, as

before, we obtain
Z,= B

and
U,=B

as n — oo weakly in D[0, 1] equipped with Skorohod’s J; topology.

We use once again the embedding theorem quoted above to put everything on the same probability
space in the following way. Let W,, be the same in (3.27) and (3.28) and live on (€4, Fy, P;), and let
Z,,U,, and B live on another probability space, (€23, F2, P2) in such a way that

Z, — B as,

U, — B as.

in D[0,1] as n — oo. Observe that (3.25) holds with D,(t) = Z,(t) — Upn(t),t > 0.
Fix once again a v > 0. We have

/|X )t > z) = /|X )t > «, / X (8 |dt—|—/ X (8) — Xa(0)]dt > o)
P(/O1 X (8)|dt > 2 — ) + P(/O1 X (8)|dt > z, /01 [Du(t)]dt > 7)

14



Observe that

lim Be o Xadt _ 4 (4, (3.23)
and )
lim Ee=Jo Xn(0d _ 4 (p). (3.24)

By an embedding theorem (see e.g. Theorem IV.3.13 of Pollard [Pol84]) we may assume that
(X(t),t > 0)and (X,(t), t > 0) are defined on the same probability space in such a way that

X, — X as n — o0 a.s. in D[0,1]

and the process (D, (t) = X(t) — X,(t), t > 0) is independent of the process (X(t), ¢ > 0). Then, in
particular,

/1 D(1)|dt < Igax X (8) = Xn(t)] = 0 (3.25)

a.s. as n — oo. Moreover, Ee” Jo 1Pn(@)lde < Eeaf Du(t)dt Eeaf Du(®)dt 55 easily seen to be bounded
in n.

Let (Xo(t) = X(t) — bt,t > 0). Then the process Xg = (Xo(t), ¢ > 0) is a compound Poisson
process, and so for this process the statement of the theorem has been proved to be true. Fix a v > 0.
For all 2 > 0 big enough we have

/|X )dt > @) = /|X )t > «, / X0 (¢ |dt—|—/ X (8) — Xa(0)]dt > o)
gp(/o |Xn(t)|dt>w—’7)—|-P(/0 |X(t)|dt>x,/0 Da(t)ldt > 7)

< P([ 100t > 2 )+ P( [ 1Xo(0ldt > o~ o, [ 1Dale)de > 7).

Therefore, by (3.22) and the properties of exponential distributions,

P(fy1X(1)]dt > =)
im .
v=00 Ap(p)p4(z) + A_(p)p-(z)
Ee® [o Xn(t)dt Ee—® [ Xn(t)dt>
Eeo‘flx (t)dt ’ Ee—afolX(t)dt
Iy 1XO t)dt —a | Xo(t
Ee fol )dt g, Jy > bl p( / DoBldt > 7).
Eeafo X (t)dt Ee—af X (t)dt

We now use (3.25) and let first n — oo and then v — 0 to obtain (3.19).
We now consider the general case of characteristic exponent given by (1.2). The argument is similar
to the one before. For an n > 1 let X,, = (X,(¢),t > 0) be a process with stationary independent

< e max<

—|—max<

increments and characteristic functional given by

¢n(0) — n(eibe/n . 1) + n[n(ew(r/n _ 1) + n?(e—ieg/n2 . 1)] _I_/

(6% —1- 0 21(|2| < 1)) p(dz).
|z|>1/n

(3.26)
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(recall that (—1)! = 1), and so (3.9) will follow if we prove that for every n > 2 and 2 < k < n,

Pk
o @t ) (3.17)

To this end observe that it follows from (3.10) and (3.14) that for every n > 2 and 2 < k < n,

PAEE) e e
mﬁg‘lﬂc K (2‘|‘m,r1p(a)mu—1p(_a)) /()(p_(;){—p_ﬂ;))ﬂ,(dt), (3.18)

where for i = 1,...,n — 1 H; is the law of (1 — Zp — Zl')].(zn—lz'<1)’ and H, is the law of (Z1 + ...+
j=0 “J=
Zn_l)].(zn—l 7;<1)" Now (3.17) follows from (3.18) and Lemmas 2.2, 2.3 and 2.4. This proves (3.9).
j=0 “I=

Now the conclusion of Theorem 3.2 in the compound Poisson case follows from (3.9), (3.8) and

(3.5). W

We have, therefore, established the conclusion of Theorem 3.1 for compound Poisson processes.
As announced, our next step is to prove this theorem in the general case.

PROOF OF THEOREM 3.1 IN THE GENERAL CASE: We start with observing that [} |X(t)|dt >
| J X (t)dt|. Therefore, (3.5) shows that we only need to prove that

 P(fIx(0)]dt > x)
A A (el + A () = 219

We add first a possibility of a drift. Specifically, let p be still finite, and suppose that

— ibh +/ )pldz). (3.20)

Foran n > 1 let X,, = (X,(¢),t > 0) be a process with stationary independent increments, with

Lévy exponent given by
n(6) = n(e®0/m — 1) + / )oldz). (3.21)

Observe that
X, = X as n — oo weakly in DJ[0,1].

The latter space is equipped with Skorohod topology J;. See e.g. Skorohod [Sko57]. Now, X,, is a
compound Poisson process and its Lévy measure is given by

prn = p+ ndgy/ny-
In particular, p,, satisfies the assumptions of the theorem. Therefore, as we know by now,

) P(fo | Xn(t)|dt > o)
im -
z—00 Eeaf Xn(t)dt ~ ( ) + Ee™ ozfo Xn(t)dtﬁ_(w)

=1. (3.22)
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< P(Y1+I§1<aT§|Y2—|—...—|—Yj| > m)—I—P(—Y1—|—1§1<ag{|Y2—|—...—|—Yj| > ) (3.11)
§2P(m<aX|Y1—|—...—|—Yj| >z)<2C(PYi+...+Y,>2)+P(-Y1 —...-Y, >uz)).
]_n

It follows from Lemma 1.1(iii) that there is a finite positive constant K such that for all z > 0 and
n>1,

P(zn: Vi > ) < Kp ' (14 my-1 ()" oy () (3.12)
k=1
and .
PO Vi< —2) < Kp ' (14 myu-1,(—a)" p_(2). (3.13)
k=1

Let V be a random variable with distribution H concentrated on [0,1], and independent of
Y1,...,Y,. Then by (3.11), (3.12) and (3.13) we obtain

P(V(|Yi] + max[¥s + ...+ Y]) > 2)
<2cn /01 (p(kzijl Vi > %) + P(kz: Vi < —%))H(dt) (3.14)

<4KC™ut (2 + mu_lp(a)mﬂ_lp(—a)) " /Ol(p_(

In particular, using for: =1,...,n—1

z
t

)+ e (S)H(dL).

V= (1 — Zg — Z,')l( ;:01 7;<1)

and (2.23) with £ = 2, m = n — 2 we conclude that for every i =1,...,n— 1,

P((|Y1|+1}1<a3|yz+...+Y;|)(1—zo—zi)>:c) (3.15)

<AECT I (24 myos (0)myy(~a)) " (0= 375 (2) + pa(2)).

Similarly, using

V=21+...+7Z,4

and (2.23) with £ = n — 2 and m = 2, we obtain the same bound

P((vi] + max |V 4+ Y214+ Zpor) > z) (3.16)

n—1
< AR (24 my @ (—) " (1= 375 (2) + (@),
Therefore, we obtain by (3.10), (3.15) and (3.16)

o n k x oo n—1
Z Z m < Z_: 4KC™(n+ 1)p™ ! (2 + mu_lp(a)mu_lp(—a)) (n=3)"' <

n=2 k=2
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Define for &k > 2
Ay ={w € B, :sign(Y1)=---=sign(Y1 4+ -+ -+ Yi_1) = —sign(Y1 + -- -+ Y& )} .

The events Ag, Az, ... are obviously disjoint. Let

Dn:Bn\(LnJ A) .
k=2

Observe that for every w € D,

1 1
5, = / X (#)]dt = |/ X(t)dt]. (3.8)
0 0
Denote )
AF(2) = {w € A : / X (8)|dt > o),
0
k =2,...,n. The next assertion is crucial:

L T Yie, P(44(0))
ot p(a) + pala)

= 0. (3.9)
We now prove (3.9). Denote ¢, = sign(Y; + -+ Yx), k> 1 and
Up=(1-Zo— 21— — Zu_1).

Fix an w € U7_, Ax. We get from (3.7)

Sn = Y1 (€nln + nf &2Z;) + Yz (enlUn + nf &Z;) + 4 Yoo1 (enUn + en-1Zn 1) + Yoy
j=1 =2

< Willmax(1 = Zo = Zi) V (Z1 + .. Zn-1)) + ZolYa| + Za|Ya + Y + ...
+Zp 1Yo+ .+ Y|+ UnlYo 4+ ... + 1,
< [Yillmax(1 - Zo — Z)V (Z1 + ... Zn-1)] (3.10)
+(Zy+Zs+ ...+ Zya + Up) j<a;<|Y2+...+Yj|
< (|Ya] + I?Sardez +...+ Yj|)[1gr?garf{—1(1 —Zo—Z)V(Z1+ ... Zp1)].

We will use the following simple observation: for any random variable Y there is a constant
C € [1,00) such that for every n > 1 and z > 0,

P(m<aX(Y1—|—...—|—Yj) >z)<C"PY1+...+Y, > ),
VAL

where Y7,Y5,... are i.i.d. copies of Y. Therefore, for any = > 0,

P(|Y1] +I§1<ag{|Y2 +...+Y]>2)

10



Theorems 3.1 and 3.2 are equivalent to each other because the random variable Iy = [} X (t)dt is
clearly infinitely divisible with characteristic function

+ 30%2%1(|z] < 1)

10z

oo ez _ 1 _ 9y
Eexp (iOIO) = exp (i@b/Q —0*0%/6 + / p(dm)). (3.4)
— o0
In particular, the positive and the negative parts of the Lévy measure of Iy are given by p_ and p4
accordingly. Under the assumptions of the two theorems above we know by Proposition 2.1 that both
p— and py are equivalent to the tails of distributions in S(a). By Lemma 1.1 we obtain

P( /OIX(t)dt| > ) = P(/O1 X()dt > ) + P(/OlX(t)dt < ) (3.5)

~ Ap(p)ps(a) + A (p)p-(2)

as T — 00.

It is interesting to find out how wide is the class of Lévy processes for which (3.3) holds. We do
not know the answer yet.

Our argument will go as follows. We will first prove Theorem 3.2 for the particular case when the
Lévy process X is a compound Poisson process. Together with (3.5) this will establish the statement
of Theorem 3.1 for that particular case. We will then extend the latter to the general case, from which
the general case of Theorem 3.2 will follow after appealing once again to (3.5).

Proor or THEOREM 3.2 FOR COMPOUND P0OISSON CASE: Here

Eexp (z'HX(t)) = exp <t/ (eiez _ 1) p(dﬂ:)),

— 00

[o.¢]

where p is now a finite measure. We write
N(t)
X(t)=> Y, t>0, (3.6)
k=1

where {N(t),t > 0} is a Poisson process with the rate 4 = p(R) independent of a sequence of i.i.d.
random variables {Y, k > 1} with the distribution p#=!p. Denote N = N(1) and consider the events
B,={w:N=n}, n=0,1,....

Let {T'x, k¥ > 1} be the arrival times of N(-). Put

Zo=T1, Zx=Tep1 - Tk k>1.

Then {Zg, k > 0} are independent exponential random variables with mean 1/u. If w € B,,, then

1
| IX@ldt = 11120+ [+ ValZa 44 [V + oo+ Voot Zacy (3.7)
0

‘|‘|Y1+""|’Yn|(1_Z0_Z1_"'_Zn—l)ESn-



The following is the main theorem of this paper. It gives the exact tail behavior for the probability
1
P(I(1)> A) = P(/ X(Dldt > )
0

when the left and the right tails p_ and p, are equivalent to the tails of distributions in S(a). We
remark that a weaker result,

P(fy1X@ldt>2)  P(Ji1X(#)dt > o)

0 < lim — - < lim - — o0
A @) S @)+ (o)

follows, when p_(z) + p4+(2) is also equivalent to the tail of a distribution in §(a), from the general
theory of subadditive functionals of infinitely divisible processes with exponential tails developed in
Braverman and Samorodnitsky [BS95]. The result of the present paper gives the exact weights one

needs to put on the positive and negative parts of the integrated Lévy measure, p4(z) and p_(2z) to
make the limit exist, and equal to 1.

THEOREM 3.1 Suppose that py and p_ are equivalent to the tails of distributions in S(a). Then

. P(fy1X(1)]dt > =) , o)
a0 Ap(p)p+(z) + A-(p)p-(z) '

where )
Ay(p) = Betlo .= Eeo Jy X(@)dt

© 2 — 1 —az— 1a?2?1(|z] <1
— ax

1
A_(p) = Eeob = Ee— Jo X(t)dt

| — la22?21(|z| < 1
:exp(—ab/2—|—a202/6_/ e + ar — 5afz*1(|z| < )p(dx)),
oo oz

and where py and p_ are defined by (3.1).

Theorem 3.1 is closely connected with the next theorem. In fact, the two are reformulations of each
other. We state the two theorems separately both because the latter one exhibits a rather unexpected
property of Lévy processes with exponential tails and because our strategy in the proof will be to
switch from one formulation to another at the appropriate moments.

THEOREM 3.2 Under assumptions of Theorem 3.1,

. P(f3 |1X(1)]dt > x)
== P(| 3 X(t)dt] > z)

=1. (3.3)



Proor: Let T, = Z1+ ...+ Z,,n > 1 and N(¢) = max{n : T, < t},¢ > 0. Using the notation
P* for the continuous part of the distribution of U we have by the standard properties of Poisson
processes,

P (U<z)=PT, <2,Tiym <1)

x k-1
:/0 ,uke_“t(kt_l)!P(N(l—t)) > m)dt

for 0 < 2 < 1, and so
k-1

h(z) = uke_“zhp(]v(l —z))2m)
= pkemw (kx _1)'e_ﬂ(1—1’) i (w1 =2) /it

as required. W
The following lemma is an immediate corollary of Lemma 2.3.

LEMMA 2.4 Let .
W = <1 —~ ; Z]-> 1{25271 <1}

Then the continuous part of W has the density given by the formula

m—1 x] o k—1
g(z) = pFe <e"“” -3 j!> M (2.21)

J=0

for0<z<1lifm>0and

g(x) = pker(=7) (1(];:6)1’3_,1 (2.22)
for0O<z<1lifm=0,
Remark. It follows from Lemma 2.3 that for0 <z < 1
h(z) < pr , (2.23)
(m—1)!(k—-1)!

where we put (—1)! = 1. Lemma 2.4 gives us the same bound for g(z).

3 Tail distribution of the L! norm

Let X be a Lévy process as defined by (1.1) and (1.2). For an & > 0 we define py(z) = p(z,00) and
p-(z) = p(—o0, —z). Let

b= [ o (Dt petwr= [ o (%)ar. (3.1)



Therefore, by (2.16), for every et < s < (1 — €)t,

/:O F(x — Sy)F(dy) < Celsup FE:) /:OF(:C ; y)F’(y/t)dy/t

—1g t z>a F(Z)
< Ce tsup Fﬁéﬁ) F x Fy(x)
=>a F(z)
Lo PG
<Celsup F(2) F(g)

using once again the fact that F € S(a). We conclude finally that

Ly(z) < Cetsup F(liE)G(m) (2.17)

- z>a F(Z)

It follows now from (2.13), (2.14), (2.15) and (2.17) that
Jim, Gaf()) <c(#((0.0)+H(01-0.1)+¢ s Flg()) ) +21+e Dmg(a). (238)

Letting first b — 1, then ¢ — oo and then € — 0 establishes the only important part of (2.4). The
finiteness of mg(a) follows from that of mp(«). This completes the proof. W
The next assertion is an easy consequence of Lemma 2.1.

LEMMA 2.2 Suppose H has a density h on an interval (€,1) such that the limit
i 1620 = 1)

ezists. Then ~
x
im P28 _ ).
We conclude this section with some elementary estimates involving Poisson arrivals. Let {Z, k >
1} be i.i.d. random variables with exponential distribution with mean 1/pu.

LemMA 2.3 Let m and k be positive integers and

k
U= ;Zj1{2?znzj§}.

Then the continuous part of U has the density given by the formula

m—1 i i
- e p(1—z)\ okt
h(z) = e M<eu(1 ) z% i >(k S (2.19)
o
0<z<1l. Ifm=0, then
i :L.Ic—l
h(z) = pke 1) (2.20)

forO<z <1,



It easily follows from the relation F(az) = o(F(z)), a > 1, that for every 0 < b < 1

/ / F,+ Fy(2)H(dt)H(ds) = o(G* G(a)). (2.9)
Taking into account the symmetric role of ¢ and s, we get
53/

G+ Gla) ~ 2/ / </ ) (dy))H(ds)H(dt). (2.10)

Let @ > 0. For z > a divide the region of integration over y into two parts: [0, s7!a] and (s71a, 00)
and denote the corresponding integrals by I; and I3. In the sequel C will be a generic finite positive
constant that may change between appearances.
Calculation for I;. Fix 0 < € < 1. We have sy/t < a/b since y < s7!la and b < t < 1. The
assumption F' € S(«) implies that there is z; = 21(a, b, €) such that for z € [0,a/b] and z > 2
F(z - z)

W < (14 €)e**, (2.11)

see e.g. Cline [Cli86] . On the other hand,
asyt™' — asy = a%(l —t) < aa(d™! —1). (2.12)

Hence, for all z > x4

—1

L <2(1+€) /blH(dt) /Ot(/o af(%)easy/tF(dy))H(ds)

-1
z

2(1 + e)ealb™ 1) /OlF(t)H(dt) 01 /0 " oo P(dy)H (ds) (2.13)

< 2(1 4 €)e* 7 Vmg(a)G(z).

Calculation for I;. Now divide the segment [0, ¢] into three parts: [0, €t], (et, (1 —¢€)t] and ((1—€)t,1
and denote the corresponding integrals by Io1, Io and I3. Since F € S(a), then F x F(z) < CF(z).
Therefore,

121§// Fv F(o)H(ds)H(dt) <c// H(dt)= CH((0,))G(z).  (2.14)

Reasoning similarly we obtain

I3 < CH(b(1-¢€),1))G(z). (2.15)
Now turn to the integral I33. We have

io F(w_tSy)F(dy):/oof(xt;y)F’(y/s)dy/s. (2.16)

a a

It follows from (2.6) that for y > ¢ and 0 < s < (1 — €)t,

F/(%) < CF(Z) < Csup F&ﬁ) .
()~ F(y) T e F(2)




ProoF: We may assume without loss of generality that the H((G, 1]) > 0 for every 6 € (0,1). The
case H({1}) > 0 being quite simple, we will consider the more interesting case H({1}) = 0. It is
obviously enough to prove our statement in the case H({0}) = 0. We may assume further, without
loss of generality, that p is a probability measure. Let F be the cumulative distribution function
(c.d.f.) of p. Then pp is the tail of a probability measure as well, and we denote its c.d.f. by G. Since
it is easy to see that G € £(«), we only have to show that

for every G € L(a), and therefore our remaining task is to prove that

z@o G;(i()w) < 2mg(a) < oo. (2.4)

It is well known (see e.g. Cline [Cli86]) that for every F € L(a)

F(z) = k() exp(— /OI a(v)dv) ) (2.5)

where k(z) — k > 0 and a(z) > 0, a(z) - a as z — oo.
Keeping the same a(-) in (2.5) but replacing k(-) with k1(-) = k, we obtain the tail of yet another
distribution in £(«), say Fy. Let Gy be the c.d.f. of 1 — py corresponding to that case. Observe that

lim f(m) = lim ?(w) =
5 Fafa) oo G (o)

If F; € 8(a) implies G; € 8(a), then Lemma 1.1 (ii) shows that F € S(«) implies G € S(a).
Therefore, it is enough to prove the proposition under the assumption k(z) = k in (2.5).
Observe that in the latter case F is absolutely continuous and

Jlim Flo) =a. (2.6)

For a b > 0 denote

Then
m(m):/o /0 By + Fy() H(dt) H(ds) (2.7)

and

Glz) = /01 Fy(2)H(dt). (2.8)
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A function h : R — Ry is said to be equivalent to the tail of a distribution in S(a) if there is an

F € S(a) such that

lim @ =1.

A—o0 (A)
In the case when h is right continuous, non-increasing and converges to zero at infinity, it follows from
Lemma 1.1 (ii) that % is equivalent to the tail of a distribution in S(«) if and only if the distribution
G on [0,00) defined by G(z) =1 — min(1, h(2z)) is in S(a).

In the following section we collect and prove auxiliary results needed for the proof of the main

result of the paper, which stated and proved in Section 3.

2 Preliminary results and estimates

Let p be a finite measure on [0,00). We use the usual notation for the tail of p, p(z) = p(z, ), z > 0,
and we introduce further the integrated tail of p by

More generally, given a probability measure H on [0, 1] we set

pute) = [ o(%)H(0) (2:2)

LEmMMA 2.1 Letp € L(a), a > 0. For0<é <1

LR (2.3)

ProoF: Forany 0 <e < é

One the other hand,

[T o(Ga<a-on(; %),

(az)

Since p € S(a) implies

=1l

lim =0

6
for every a > 1, (2.3) follows. W

Let X be a random variable with a distribution in S(a), and U be a bounded non-negative ran-
dom variable, independent of X and not identically equal to zero. It has been proven by Cline and
Samorodnitsky [CS91] that the distribution of ¥ = XU belongs to the class S(a) if @« = 0. The
following proposition is an extension of this statement to the case a > 0.

ProrosITION 2.1 Let p € S(a), a > 0. If H((O,l]) > 0 then py is equivalent to the tail of a
distribution in the class S(a).



treated using the general results of Rosinski and Samorodnitsky [RS93]. The corresponding case of
exponential tails of Lévy measure could not be precisely described by the existing results, with only
partial information available (see Braverman and Samorodnitsky [BS95], and it is our goal in this
paper to find the exact asymptotic distribution of the sample path integral I(T') = fOT | X (t)|dt under
the assumption that the the tails of both positive and negative parts of the Lévy measure p belong in
the appropriate sense to the exponential class S(a).

We remind the reader that a distribution F' on [0, 00) belongs to the exponentail class S(a), a > 0
if

[:= lim LF(/\) exists and is finite (1.3)
and F € L(a), where B
L(a)={F: lim M =e %, any v > 0}. (1.4)

u=ee F(u)

Occasionally we will abuse the terminology a bit and apply the expression p € £(«) to finite (not
necessarily probability) measures on [0, 00).

We will use several well-known facts about distributions with exponential tails, which are collected
for convenience below.

First of all, in the remainder of this paper S(a) refers to the collection of distributions on the whole
of R which are in £(a) and for which (1.3) holds. The extensions of the quoted results to this more
general case are entirely straightforward. See Willekens [Wil86], and also Bertoin and Doney [BD93].

LeMMA 1.1 Let F € S(a), a > 0. Then

(1) (Chover, Ney and Wainger [CNW73], Cline [Cli87]) mp(a) = [ e** F(dz) < o0 and | =
2mp(a) in (1.3).

(7) (Embrechts and Goldie [EG82], Cline [Cli87]) If the limit ¢; = lim .o %((;‘)) exists and is finite

for two distribution functions G1, G4 then

G+ Go( A
Moreover, G; € S(a) if ¢; > 0.
(14i) (Chover, Ney and Wainger [CNW73], Embrechts and Goldie [EG82]) For every n > 1,
F*"()\)
F(\)

limy o0 = nmp(a)"~t. Furthermore, there is a K < oo such that for everyn > 1 and A > 0

F(\)/FN) < K (14 mp(a)".

w) (Embrechts and Goldie [EG82]) For a p > 0 let G(z) = e *YN2° L F*n(z). Then
n=0 pn!

limy_ oo % = pmg(a). More generally, if G is an infinitely divisible distribution such that the
right tail p of the corresponding Lévy measure p is equivalent to the tail of a distribution in S(«), then
: G(x
limy oo % = mg(a). B

(v) (Cline [Cli86]) Let G € L(a), and supyyo G(A)/F(A) < oo. Then H = F x G is in S(a) and

H(A) ~ mg(a)F(A) 4+ mp(a)G(A) as A — .



L' norm of Lévy processes with exponential tails **
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Abstract

For a Lévy process {X(¢),t > 0} with both left and right tails of the Lévy measure in the
exponential class S(«) we compute the tail distribution of the sample path L' norm on an interval
of finite length.

1 Introduction

Throughout this paper X = {X(¢), 0 <t <1}, X(0) =0 a.s., is a process with stationary independent
increments (Lévy process). Its characteristic function can then be written in the form

E exp (i@X(t)) = exp (tuﬁ(@)) , (1.1)

where

B(8) = b8 — 02672 + /_o:o (¢ — 1 — ib21(J2| < 1)) p(d) (1.2)

with b € R, 0 > 0 and p a Borel measure such that [*° (1 A 2?)p(dz) < co (the Lévy measure of X).

It is well known that a Lévy process has a measurable version, and in the sequel we will without
any further notice take a measurable version of X and any other process with stationary independent
increments. Studying the distributional properties of the integrals of the absolute values of Lévy
processes is not an easy task. In the case of Brownian motion this can be done using Kac’s formula
(which can be even made to work for the integral of the Brownian bridge), as demonstrated by Shepp
[She82]. However, this approach does not seem to be convenient to use in the case of more general
Lévy processes, for the resulting equations become too complicated. Therefore, other approaches are
called for. For Lévy processes with subexponential tails of the Lévy measure, such integrals can be
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