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ABSTRACT. Second order regular variation is a refinement of the concept of regular variation which is useful
for studying rates of convergence in extreme value theory and asymptotic normality of tail estimators. For a
distribution tail 1 — ' which possesses second order regular variation, we discuss how this property is inherited
by 1 — F2 and 1 — F*2. We also discuss the relationship of central limit behavior of tail empirical processes,
asymptotic normality of Hill’s estimator and second order regular variation.

1. Introduction.
In this paper we assume that the distribution function F' is concentrated on [0, 00). The tail 1 — F'(z) is
regularly varying with index —a, o > 0 (written 1 — F' € RV_,,) if

. 1= F(tx) o

The distribution tail 1 — F' is second order regularly varying with first order parameter —a and second order
parameter p (written 1 — F' € 2RV (—«, p)) if there exists a function A(t) — 0, ¢ — oo which ultimately has
constant sign such that the following refinement of (1.1) holds:

1—F(tz) @ .
(1.2) tliglo % =H(z):= c;l‘_o‘/1 u’"rdu, x>0

for ¢ # 0. Note that for z > 0
cx™%logz, if p=0,
H(z) = { cemozl=l if 0
o Lp <V
It is well known (Geluk and de Haan (1987), Theorem 1.9) that if (1.2) holds with H(z) not a multiple
of =%, then H satisfies the above representation, |A| € RV, and no other choices of p are consistent with
A(t) — 0. Moreover convergence in (1.2) is uniform in 2 on compact intervals of (0,00). See de Haan and

Stadtmiiller (1995) for a related discussion.

Key words and phrases. regular variation, second order behavior, tail empirical measure, extreme value theory, convolution,
maxima, Hill estimator.

The research by L. de Haan and S. Resnick was partially supported by Nato Collaborative Research Grant CRG 901020
and S. Resnick received some support from the Tinbergen Institute of Erasmus University Rotterdam. S. Resnick gratefully
acknowledges the hospitality of Erasmus University. S. Resnick and C. Stdricid were also partially supported by NSF Grant
DMS-9400535 at Cornell University .



2 J. GELUK, L. DE HAAN, S. RESNICK AND C. STARICX

Second order regular variation has proven very useful in establishing asymptotic normality of extreme
value statistics and also for the study of rates of convergence to extreme value and stable distributions (de
Haan and Resnick, 1995; de Haan and Peng, 1995a,b,c; Smith, 1982).

An example of the statistical uses of second order regular variation is as follows: Suppose Z1,..., 7, are
iid random variables with common distribution F' satisfying (1.1). A commonly used estimator of o~ is
Hill’s estimator

Z(i)

k
1
Hin =23 log —
k, k; 8 Zors

where Z(1) > -+ > Z(,) are the order statistics of the sample. Under the assumption that the number of
upper order statistics £ used in the estimation satisfies k — oo, k/n — 0,

1

P _
Hk,n_>a )

and under a von Mises condition there exists constants a;}l such that
VE(Hg = ap ) = N,

where N is a normal random variable (Mason, 1982; Hall, 1982; Dekkers and de Haan, 1989; Resnick
and Starica, 1995a; Davis and Resnick, 1984; Csorgo and Mason, 1985). In order to construct confidence
statements for the inference, one needs to replace ay, ,, by o in the central limit theorem and for this one needs
to know \/E(a,;; —a~1) — 0 as n — co. A convenient way to assure this is by assuming 1 — F' € 2RV (—a, p).
(See also Resnick and Starica, 1995b and Kratz and Resnick, 1995.)

A related statistical problem assumes that one observes X, ..., X, where {X,} is a stationary infinite
order moving average process of the form

Xe=> ¢jZij, t=0,+1,42, ...

j=0

where {Z;} are iid with common distribution satisfying (1.1) and (1.2). Resnick and Staricd (1995a) have
proven that the Hill estimator applied to X1,..., X, is a consistent estimator of o~!. In order to assess
the performance mathematically of this estimator and to compare it to competing procedures, the asymp-
totic normality must be investigated. In order to do this successfully, one must understand how second
order regular variation behaves under convolution and this was the strongest motivation for the present
investigation.

First order behavior of regularly varying tails under convolution is fairly tame: If 1 — F' satisfies (1.1),

then the convolution tail 1 — F*2 satisfies
1—F*2(t) ~2(1 = F(t), (t— o).

Feller (1971) has a straightforward and clear analytical proof and Resnick (1986, 1987) proves this probabilis-
tically using point processes. However, second order regularly varying tails behave rather more complexly.
In Section 2 we prepare the way by discussing behavior of distribution tails of maxima Z; V Z5 of iid
random variables having common distribution F satisfying (1.2). The behavior turns out to depend on how
. 1=F(@)
lim —— "/
imo  A(t)
behaves. Section 3 gives some results for convolution tails and Section 4 discusses a probabilistically equiv-
alent statement to (1.2) involving the central limit theorem and shows that in a manner to be made precise
in Theorem 4.2, asymptotic normality of Hill’s estimator is equivalent to second order regular variation.
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We end this introduction with two examples.
Example 1.1, log gamma distribution: Suppose X, X5 are iid with standard exponential density.
The log gamma distribution is the distribution of exp{X; + X»2}. For z > 1,

Plexp{X; + X2} > 2] =P[X1 + X3 > log z]
=exp{—logz} + exp{—logz}logx
=z Y1 +logz):=1— F().

Thus for z > 1

1— F(tx) 1 _1< log x )
_el g _05%

1— 7 (1) 1+ logt
Nx_llogm
logt
and thus
1-F(tz) -1
. 1-F(t) | )
o S = e
and with A(?) = 1/logt? we have o = 1,p = 0 and
. 1=F(@)
lim —————= = 0.
1moo A()

Example 1.2, Hall /Weiss class: Suppose for z > 1, a« > 0, p < 0 that
T _
1—F(x):§x A1+ 2P).

Then as t — oo

1—F(tz) e a 14 (tz)”
Tore T {TIJ“*}

~eT (2P = 1)tP

and so we may set A(t) = pt* and

0, if o] <o,
im L= L0 _ lpl=1, if |p| = o
t—co |A(t)| iy ’

oo, if |p| > a.

2. Maxima.
As preparation for further work, we begin with a two dimensional result.

Theorem 2.1. Let Zy,7, be non-negative iid random variables with common distribution F satisfying
(1.2). Then forx > 0,y >0

P{[Z:>tz]u[Z>>1ty]} —a —a
) T—F(1) - (@7 +y™") _ _ —a
(2.1) lim mw = H(e)+ H(y) — ()
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provided
L 1-F(t)
(2.2) zli»rgo TR L, ]| < oo.
If |l] = oo, then
P{[Z,>te]u[Za>ty]} Ty
— Y
(2.3) lim 1-F() ( ) =—(zy)~“

Proof. We have

P{[Zy > tz] U[Zs > ty]} = 1 — F(ta)F(ty) = 1 — F(tz) + 1 — F(ty) — (1 — F(tz))(1 — F(ty))

and so
P{[Zl >1tf]fg([t§2 > ty]} _ (I—a 4 y—a)
C(1=F() )\ (1=Fly) )\ (L= F(t)(1 = F(ty))
(24) —<Ti7ﬂ7_r )*(Ti?ET_y )‘( L-F() )

and the stated results follow. 0O
By letting x = y, we immediately get the Corollary about tail behavior of distribution of maxima.

Corollary 2.2. Let 71,75 be non-negative iid random variables with common distribution F' satisfying
(1.2). Then for z > 0

P[Z\VZy>tx] _ g

. 1-F(t) _ ) _ %
(2.5) tlir& A 2H(z) — lx
if
1Py

and if || = oo

Pl[Z 1V Z3>tx] _9p—a
. 1-F(t) —_%2a
2. | = —
(2.7) R 10 v

Remarks:
(1) Changing normalizations in (2.5) yields
PlZVvZ3>tx] —a

. P[ZVZ2>t]
(2:8) Jim, AD)

1
=(1+ §al)H(;1:), x>0

so that P[Z1 V Z3 > t] € 2RV (—«, p). Note that for [ # 0 we have —a = p since 1 — F(t) ~ [A(t).
Similarly, modifying (2.7) yields

PlZivZy>te] r 1
. PlZ1VZ3>1] _ T —o - )

-
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so that in this case, P[Z1 V Z3 > t] € 2RV (—a, —«). Thus P[Z; > t] and P[Z; V Z3 > t] may have
different second order parameters.

(2) Applying Theorem 2.1 with # replaced by z/c¢; and y replaced by y/c2 where ¢ > 0, y > 0, ¢ >
0, e =1,2 yields

P{lc1Z1>tx]U[c2Z2>ty]} _ (Ca$_a 4 ey~
1-F 1 2Y ) - - o o —o
(2.10) @) A0 = H(zeTh) 4+ H(yey ') — le e (zy)
if (2.6) is satisfied. The second order behavior of P[c1Z1V ¢aZ2 > t] under condition (2.5) is obtained
by setting z = y as follows
PleiZ Ve Za>ta] €% 4 Q)2
(2.11) L=F) Am(l £) = H(xer ) + H(ze;') — 1cfc§a™2 o> 0,

extending (2.5). A similar modification of (2.7) holds.

The following proposition asserts that the relations (2.1) and (2.3) characterize second order regular
variation of the underlying distribution tail function. Moreover the normalizations A(t) and 1 — F'(¢) are the
only possible.

Proposition 2.3. Define forx >0, y > 0

P{[Zy > tz] U [Zs > ty]}
1—F(t)

LHS(t,z,y) := — (™% 4y %).

Suppose further there exists a function ¥(t) > 0 such that for all x > 0,y >0

LHS(t,z,y)

(2.12) lim o0 =c(z,y)

t—o0

where ¥(t) — 0 (¢t — o0) and the function c(z,y) satisfies |¢(z,y)| < oo for all z,y and ¢(z,2) # a12™% +
asx~2% for any choice of real a1, ay. Then 1 — F satisfies (1.2) with A(t) ~ cy(t) for some ¢ # 0 and

. 1=F(t) .
(2.13) zlgg TAQD € [0, 00) exists.

Proof. Since ¢(t) — 0 and |c(z, y)| < oo it follows that

1 — F(tz) (1— F(tz))?

LASz,2) = A3—py — )~ = pq

—0 (t— c0).

Obviously for z > 1 we have (1 — F(tz))?/(1 — F(t)) — 0 as t — oo and hence it follows that 1 — F' € RV_,.
Observe that

LHS(t,1,1)  —(1—F(t))
vty ()
Hence if ¢(1,1) = 0 we have 1 — F(t) = o(¢(¢)) implying (1 — F(tz))?/(1 — F(t)) = o(3(t)), as t — oo for

z > 0. As a consequence, for z > 0

(2.14)

—¢(1,1).

o 1-F(s) o -a
LHS(,z,x) _ T=F) +o(l) = c(x,z) as t— oo.

¥(t) b(t)/2
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Since ¢(z, ) is not a multiple of 27, it follows from Geluk and de Haan (1987), Theorem 1.9 that ¢(z, z) =
cH(z) with ¢ # 0 and H as in (1.2) and hence 1 — F' € 2RV (—a, p). Therefore, there exists a function A
such that (1.2) is satisfied and

LHS(t,z,x)
(1)

=(2H (z) + 0(1))% — (z72* 4 o(1))

=(2H (z) + 0(1))% +o(1).

1- F(t)
(1)

Let t — oo and we conclude

c(z,z)=2H(z) lim —=

and hence we get

219 Jim 55 = 5

Thus, if ¢(1,1) = 0, then 1 — F'(t) = o(A(?)),t — .
In case ¢(1,1) # 0 we have 1 — F(t) ~ —c(1, 1)¥(t), and therefore

1—F(tx —

LHS(t,z,2) T=r@y — % " (1= F(tz))’1-F(t)
o e 0-F@)
1-F(te) =
= 1_F1/(;t()t)/2 +272%(1,1) 4+ o(1) — c(z,2) as t— oo.
It follows that for z > 0
1—F(tx =
(2.16) 1*&;)/2 —e(z,2) —¢(1, D)™ (t — ).

By assumption the right hand side is not a multiple of =%, hence (1.2) holds with some function A(¢) ~
c1¥(t) (t — 00), where ¢; # 0 is a constant. O

Remark:

(1) In case c¢(z,z) = cx=2 for some ¢ # 0 it follows that ¢ = ¢(1,1) and

(e -2 =0, 5>0

as t — oco. Hence %(%2 —27* = o(l — F(t)). Thus, in this case if F satisfies (1.2), then the limit

in (2.13) is infinite.

3. Convolution.

In the sequel we denote 1 — F' by F'. The results for convolution are more complex than for maxima. In
order to prove the main result Theorem 3.2 we first need a lemma.
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Lemma 3.1. Suppose for i = 1,2 that F; € 2RV (—a«y, pi), 1.e. F; satisfies (1.2) with auxiliary function A;.
Further suppose

Fipa(z) = kiFy(z) = (di + o(1)) Ai(2) Fy(z) (2 — o0)
and
Fi(r —-b)— Fl(l‘) = O(AZ'(‘JJ)FZ'(I)) (z — 00),
where k; > 0,b,d; € R. Then as z — oo

Fs« Fy(x) — Fs(x) — Fy(x)
=kiko(Fy * Fo(z) — Fi(z) — Fa(z)) + O(Z Ai(z)Fi(x)).

i=1

Proof. By assumption, for € > 0 there exists @ > 0 such that for i = 1,2

Fi(z) <e, Fipa(x) = kiFi(z) < (di +)Ai(2)Fi(z), 2> a
It follows that for z > a
(3.1)

F3 % Fy(z) — Fa(z) = /Ox Fs(z — u)dFa(u)
< /OH Folz — w)dFa(u) + (Fa(e — a) — Fa(z))

<hy /Ox_a Fi(x — w)dFa(u) + (ds +¢) /OH Ar(z — u)Fy (2 — u)dFa(u)
+ ka(Fo(x — a) — Fa(z)) + o(Az(2) Fa(2))
=k I + (di + &) o + o( Az(z) Fa(z))  (z — o0).

Now I; is estimated as follows.

(3.2) I, = /Ow—a Fi(z — u)dFy(u) = /Ox Fi(z — u)dFa(u) + o Az (z) Fa(z))
_ /Ox—a Fy(x — w)dFy(u) + Fy(x) — Fa(x) + O(Z Ai(x)Fi(x))
<ks /Ox_a Fo(z — u)dFy(u) + (da +¢) /0’”—‘1 As(z — u)Fo(z — u)dFy(u)+

+ Fi(z) = Fa(z) + O(Z Ai(x)F(z))

i=1

k(P Tale) = Fie) + (o +) [ Aale =) Fale — )iy (w)

+ Fy(2) — Fu(z) + O(Z Ai(2)Fi(z)) (2 — 0).

i=1

Since A, € RV, and for i = 1,2 we have F € RV_,,, we have

/0 T Aa(e — w)Pa(e — w)dFy(u) ~ Ag(x)Fa(2)
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and since a lower inequality for I; can be proved similarly, combination with (3.2) gives
—_— — — — — 2 —
I = ka(Fy + Fy(z) — Fi(x)) + Fi(z) — Fa(z) + daAs(2) Fo(z) + oY As(2) Fi(z)).
i=1

Substituting F4(m) = ngQ(J;) + (d2+ o(l))AQ(m)Fz(r) we find

(3.3) I = ko(Fy * Fo(z) — Fi(x)) + Fi(z) — ko Fa(z) + O(Z Ai(z)Fi(x)).

i=1

Similarly regular variation of A;, F} and Fy implies

(3.4) I ~ Ai(z)Fi(2) (z — o).

Since a corresponding lower inequality for (3.1) can be proved similarly, combination of (3.1), (3.3) and (3.4)
gives an expression for Fy* Fy(z) — Fy(z). Subtracting Fs(z) = ki Fi(z) + diAy(z)Fi(z) + o( A1 (z) Fi(z))
then gives the required result. O

Theorem 3.2. Suppose Z1, Zy are iid non-negative random variables with common distribution function F
satisfying (1.2) and suppose ¢1 > 0, ¢a > 0. There exist for each case two functions A and H such that

P(CIZ1T62Z2>t‘1:) _ (Ca + Ca)l,—a
(3.5) lim LO N a— - V)
e W

for z > 0. Define £, = —T?*(1 — a)/T(1 — 2a) for a<1.If
I a<l1
1. p< —a and F(t)/A(t) — o0 ast — oo, then fi(t) = F(t) and fNI(I) = %€ xT 2.
2. p > —a and F(t)/A(t) — | < 0o ast — oo, then A(t) = A(t) and H(x) = leFc§éan™2" +
H(crle) + H(ey'x),
II. « =1 and the mean u is finite
1. p<—landtA(t) — 1 < 0o ast — oo, then A(t) =t~' and H(z) = 2uecicae™? + I(H(c] 2) +
)
2. p>—1andtA(t) — co ast — oo, then fi(t) = A(t) and [;T(x) = H(c7 e)+ H(cyte),
. a>1
1. p<—1land tA(t) — | < 0o ast — oo then A(t) =t~ and H(z) = ap(cfcs + cre§)z "1 +
(e ) + H(cy 1)),
2. p> —1 and tA(t) — oo ast — oo then A(t) = A(t) and H(x) = H(cT )+ H(cy ).

Proof. The proof for I is based on Lemma 3.1 and Lemma 2.1 (Geluk (1995)). It is known (de Haan (1995))
that there exists a distribution function Fy with Fy € 2RV (—«, p) and Fy(0) = 0 which has a differentiable
density fo € RV(—a — 1) such that

(3.6) F(t) — Fo(t) = o( AWV F (1)) (t — o).

Let Z}, Z3 be iid non-negative random variables with common distribution Fy. First we prove 1.2. We intend
to apply Lemma 3.1 to

Fi(t) =P(Z; < 1), Fo(t) = P(Z; <1),
Fg(t) IP(01Z1 St), F4(t) IP(CQZQ St)
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In order to apply the Lemma, we first verify its hypotheses. From (3.6) and the fact that F' satisfies (1.2) it
is clear that Fy and Fy satisfy (1.2) as well (with the same function A). Note that as ¢ — oo for i = 1,2

P(e;Z; > t) — e P(ZF >t)  F(t/c;) — cfFylt)
A(t) Fo(t) AW F()
_ F(t/es) = Folt/es) Alt/ei) F(t/ex)
A(t/ei)F(t/e)  At)Fo(1)
Fo(t/ei) — i Fo(t)
A(t)Fo(t)

So the first condition of Lemma 3.1 is verified with k1 = ¢, ks = ¢§, d1 = H(cl_l), dy = H(cz_l). The
second condition reads
Fo(tj by — Fo(t)  Fo(t(1—0b/t))— (1 —b/t)=*Fo(t) (1—b/t)">—1

Fo(H)At) Fo(t)A(t) A(t)

The first term tends to 0 for ¢ — oo due to the uniform convergence in the second order condition (1.2).
Since (1 —b/1)"* — 1~ ab/t and —p < & < 1 the second term clarifies as

(1—b/t)=*—1  ab

A(t) ~ 7w

as t — oo. Since the hypotheses of the Lemma are verified it follows that as t — oo

P(e1Zy + caZa > t) — P(c1Zy > t) — P(caZy > t) Fo'?(t) — 2F4(t) F(t)

AOFQ) SR T R T R
P(c1Z1 + caZa > 1) — P(c1Zy > t) — P(caZy > t) oo
(3.7) AOFD — lEycfes
(3.8) Fo () — 2F(1) e,

F2(t)

(Omey and Willekens (1986)) and F(t)/A(t) — [ from the assumptions of 1.2. To finish the proof for this
case one applies (3.7) with ¢; replaced by ¢;/z (¢ = 1,2) and adds

P(e1Zy > ta) — c?;r_"F(t) P(eaZy > ta) — ch_aﬁ(t)

39 A0 F () A F(1)

— H(e7le) + H(cy'x).

The proof of I.1 follows the same path, the only difference being that instead of Lemma 3.1 we will employ
Lemma 2.1 (Geluk (1995)). The choice of o from Lemma 2.1 is « = 2. Defining F; to Fy as above it follows
from (1.2) and (3.6) that the first condition in the Lemma is verified with k1 = ¢§, ks = ¢3,d1 =0, d3 = 0.
The second condition reads

Fo(t — b) — Fo(t) :Fo(t(l —b/t) (1~ b/t)~“Fo(t) A(t)
Fo (1) Fo(t)A(t) Fo(t)
1—-b/t)"*—1
G/ ity
Fo(t)
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The first term on the right hand side tends to 0 since both factors tend to zero (by uniform convergence

n (1.2) and by assumption respectively). The second behaves like ab(tFo(t))~t. Since we are under the
assumptlon that F' € RV_, with o < 1, we have that tFy(t) — oo as t — oco. Therefore the hypotheses of
Lemma 2.1 are verified. Thus comblnatlon of Lemma 2.1 with (3.8) above gives

P(0121 + codo > t) — P(c121 > t) — P(CQZQ > t) o o
F2(t) — Lacicy.

(3.10)

Since in this case A(t) = o(F(t)) (3.9) implies
P(e1 7y > ta) — c‘fa:_aF(t) A?) n P(caZs > ta) — o™ (t) A?)
A F (1) F(t) At F (1) F(t)

)
The proof of I.1 is finished if we replace ¢; by ¢;/2 (i = 1,2) in (3.10) and add (3.11).
For cases IT and IIT a different approach is needed. Decompose P(c1 71 4 ¢aZ3 > t) as follows

—0

(3.11)

P(e1Z1 + ¢eaZy > 1) =P(e1Z1 + eaZq >t,c121 V eaZa > )+ P(e1Z1 + 222 > t,c1 71V caZy < t)
=P(c1Z1VeaZa >t)+ P(erZ1 +¢2Z2 > t,e1721 VeaZy <t,c121 NeaZa < t/2)
+P(crZy+caZa>t,c0Z1VeaZa <t,e1Z1 NeaZy > t/2)
=P(c1Z1 > t)+ P(caZs >1) — P(c171 > t)P(caZz > 1)

+ /Ot/2(F3(t —u) — F3(t))dFa(u) + /()t/z(F4(t —u) — Fu(t))dFs3(u)
+ (F1(t/2) — F1(1))(Fa(t/2) — Fa(1)).
where I3 and Fy are defined as above. Therefore
(P(c1Z14¢a25 > t) — P(c1Z1 > t) — P(caZy > 1))/ (A(t)F (1))

_AGtfer) Pitfes) [ F((tfer)(L—u/t) = Ftfer)
0 ol P Atje) )

At/er) F(t/er) /”2 P((/e)(d = u/D) = Ft/e)

i FO F(t/enA(t/er)
n F(t) (F(t/(261)) B F(t/ﬁ)) <F(t/(202)) B F(t/02)) _F() F(t/e))F(t/co)
Ay N F@) F(t) F(t) F(t) O

A(t) A(t]ey) F(t]e) /W PULIA) (1 — u /1)@
0

At) A(t) F(1) A(t/e2)
L F(t/es) /t/zt((l —u/t)"* — 1)dFs(u)

ng(U)

tA(t) F(t)
A) At/er) F(tfer) [ PR - (-
T30 A0 P /0 Alt/er) dFy(u)

1 F(t)e)) [M? Y ,
70 F(t)/o (1= u/t)™™ = 1)dFy(u)

L E@) ((F(t/(%l)) _ F(t/m)) (F(t/(%z)) _ F(t/Cz)> _ F(t/61)F(t/Cz)>
A(t) F(t) F(t) F(t) F(t) F2(t)
—A(t)1+ ! I+ Al )HI+ LIV+ @V
CA(t) A A(t) tA(t) A(t)
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The expression of interest becomes

P(01Z1 + oy > t) — (C? + C%)F(t) P(c1Z1 + coldy > t) — P(01Z1 > t) — P(C2Z2 > t)

F(O)A() A)F(t)
P(c1Z,>1) o P(caZy>1) o
A [ TFm  —9 T @
* A(t) A(t) * A(t)
A1) 1 F(t)
~T0 (I+ 111+ VI)+ A (II+1V) + 1 v,

where V' I denotes the expression between brackets in the middle term. The second order variation assumption
(1.2) implies that V and VI converge as t — oo. Under the assumption of finite mean we prove that
I, 11,111 IV also converge. The argument, based on Lebesgue’s dominated convergence theorem follows.
Due to symmetry we consider only I and /1. Define

o) — F((t/ca)u) —u=*F(t/cs)
Gi(u) = F(t/ca) At/ 2) .

Since (1.2) holds locally uniformly, it follows that for any € > 0, there exists a tg such that, for ¢ > ¢ and
all z € [1/2,1]

H(z)—e < Gi(z) < H(z)+e.
The limits of integration in I assure that 1/2 < 1 — u/t < 1 and therefore G4(1 — u/t) can be bounded as
follows
277 -1 1—wu/t)? -1
—e< (1-— u/t)‘“% e
p p

< Gy(l—u/t) < (1- u/t)—a% ..

20(

€.

The previous bound together with the fact that G¢(1 — u/t) — 0 as t — oo implies by Lebesgue’s dominated
convergence theorem that I — 0 as ¢t — co. For II notice that as t — oo

t{(l—u/t)y"*=1) — au
and that
0<t((l—u/t)y " =1)<2(2% = )u
for 0 < u<t/2since s — ((1—s)"*—1)

F(t/e)
F (o)

/s is non-decreasing on (0, 1). Therefore

Il =

1)2
/0 (1 —u/t)~% = 1)dF3(u) — acicqpu.

To summarize one has
lim P(01Z1 + 9 dy > t) — (C? + Cg)F(t)
t=oo F(t)A(t)

- - . A
=(H(eTh) 4+ H(ezh)) lim =2
(HET + 7)) Jim Z 0
. 1 _ F(t)
+ap(cred + cfes) lim ——— + 2% ey (297 — 1) 2.
pi(escs 1 2)t~oo tA() res( )A(t)
Making specific choices of A(t) one recovers the different limit functions specified in items IT and III of the
theorem. 0O
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4. Central limit theorem.

The first order regular variation of distribution tails has an exact probabilistic equivalent in the weak
convergence of associated point processes to a Poisson process limit. This has been a very useful tool in
studying heavy tailed phenomena which are quite complicated functionals of iid random variables. See
Resnick (1986, 1987). We present a probabilistic equivalent of second order regular variation which is
then applied to discuss the equivalence of second order regular variation and asymptotic normality of Hill’s
estimator.

The connection between second order regular variation and the central limit theorem stems from the
following invariance principle.

Proposition 4.1. Suppose {Z,,n > 1} are iid non-negative random variables with common distribution F
whose tail is regularly varying so that (1.1) holds. Let b(t) be the quantile function defined by

o= (7)o

1 n
vn(-) = z Z €2:/b(n/k)(")
i=1

so that kv,(A) is the cardinality of {i : Z;/b(n/k) € A}. Then if k = k(n) satisfies k — oo and k/n — 0, we

have

Let the tail empirical measure be

(4.1) V(v ((z,00]) = Evp((z,00])) = W(2~%)

in D((0, c0]), where {W(t),t > 0} is a standard Brownian motion.

Note that
n n

1—F(b(= .

"1 r ()

The proof of the result is based on the Lindeberg—Feller central limit theorem and does not differ much
from the classical proof in Billingsley (1968). See de Haan and Resnick (1993), Resnick and Starica (1995b),
Mason (1988).

Here is a characterization of second order regular variation based on the central limit theorem. The setup
in Proposition 4.1 is still in force.

Evn((2,0])) =

Theorem 4.2. Suppose 1 — F' € RV_,. We have that 1 — F' is second order regularly varying iff for some
6 € [0,1) there exists a function U € RVy such that U(t) — oo ast — oo and there exists a function
g(z), > 1 not identically zero such that with k = [U(n)] we have for each z > 0

n

(4.2) Vk (% Z €2, /b(n/k)(T,00] — @l‘_a) = W(@™") +g(x)

i=1
in (0,00). In this case, 1 — F € 2RV (—a, p) with

ol a0
a+2|p|’ F=1 "¢

and

(4.3) O e
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where the function A is specified as follows. Define

t
4.4 h(t) = —— _
( ) ( ) U(t) € RVi_,,
where 0 <1 -6 <1,
(4.5) x(t) =Uoh™(t) € RV o_
and

1
(4.6) A(b(?)) = € RV_q/a.

X(t) 1-6

Proof. Suppose first that 1 — F' € 2RV (—«, p) and (1.2) holds. Then
A(t) € RV,, b(t) € RV,

so that
A(b)) € RV,/a.
Define JE
z
Vi) = € RV1 Lol
(2) A(b(z)) sta
so that
VT e RV_za
at2lpl’
and set

t
Ult)=z ———— € RV 3, .
®) V=(1) AT

13

We may set 0 = —22L and then 0 < ¢ < 1. Thus U()/t — 0 as t — oco. Furthermore we claim that

a+2]p]

U(t) — oo. If |p| > 0, this claim is obvious. If not, note U(t) — oo iff t2/V = (t) — oo iff V2(t)/t — oo iff

1/A?(b(t)) — oo which follows from the fact that A(¢) — 0.
Now we may set k = [U(n)] confident that £ — co and k/n — 0. Also we observe that

VEA(b(n/k)) =v/n\/k/nA(b(n/k))
_ AL/ [U(n)])
=V n/[U(n)]

(v <Un)>)_1
=V (V(V=(Va)) ™
~1

as n — 00. So it follows that

1 u
\/E(%ZEZ,/b(n/k)(I,OO]—l‘ )

=V Y ezscnp(e o) = 21— F(bln/R)2))
+Vk (%(1 — F(b(n/k)x)) — =)
(1= F(b(n/k)) - )
A(b(n/k)

=W(z=%) + 0,(1) + VEA(b(n/k)) <%

=>W(z™") + 1H(z),
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so the desired result holds with ¢ = H.

Conversely, suppose
n

\/%(% Z 6Z,/b(n/k)("r’ OO] - r_a) = W(r_a) + g(:L‘)

i=1

Referring to Proposition 4.1, we conclude that

gL = Fb(n/k)z)) — 2=

vk g(x).
Define ) )
A = o X0 =
So n
X((](n)) ~ U(n),
where U € RV, 1 > 0 > 0 and
h(t) = %t) € RVi_q, h‘_(t) € va/(l_g).

It follows that

SO

Therefore
(1=F((n/k)z))—z—°

A(b(n/k))

and a standard argument (Geluk and de Haan, 1987) allows the conclusion that

n
k

— g(z)

1—F(tz) g
1-F(?) _ g(r)
A(t)

-

and with

we get 1 — F' € 2RV (—a, p) as claimed. O

Remark: Examining Theorem 4.2, one sees that (4.2) in fact holds in D(0, oo] and with ¢ = H.
We now discuss the relationship between asymptotic normality of Hill’s estimator and second order regular
variation.

Theorem 4.3. Suppose 1 —F € RV_,, and that the von Mises condition holds: F' has a density F"’ satisfying

) I
g @)
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Then 1 — F is second order regularly varying iff for some 6 € [0, 1) there exists a function U € RV} such that
U(t) — oo as t — oo and there exist non-zero constants ¢ and ¢ > 0 such that with k = [U(n)] we have

(4.7) VE(Hg —a™) = N(c,0?).

Proof. Suppose 1 —F € 2RV (—«, p) so that (1.2) holds. From Theorem 4.2, there exists U € RVp, U(t) — oo
and with k = [U(n)] we have

(4.8) \/E(% 262,/b(n/k)(r, ool —27%) = W(a™") + H(z)

i=1
in D(0, c0]. Applying Vervaat’s lemma (Vervaat, 1972) to the convergence

1 n
‘/];(% D zipinpiy (@ 0] — ) > W(a) + H(a™®)

i=1

in D[0, c0), we get on taking inverses

(4.9 VE ((% Z 2t ()7, oo]) - ) = —(W(2) + H(z™H)
and thus _

(4.10) Vk ((ii’;%)w - x) = —(W(z)+ H(z="/%))

in D[0, 00) and

(4.11) [ii’“/’”]i)) =1

in R. In fact, (4.8), (4.10) and (4.11) hold jointly in D(0, co] x D[0,00) x R. Applying composition of the
third and the first components of this joint convergence yields

1 Zs2 ™Y [ Zpana T,
Vk (z;ezi/z(k+l)(x)oo] - < b(n+//<7) ) ’ < b(n+//{7) ) o )
= (W(2™®) + H(x), =(W(1) + H(1))z™")

in D(0,00] x R. Remembering that H(1) = 0, we get by addition

1< —a
\/E(%Z€Zl/z(k+l)(l‘,00]—l‘ )
i=1

n

1 Zanz)
=k (E Eezl/z(km(x,oo] B ( b((];:/ls) ) )

i=1

()

=>W(x)+ H(z~%) —z™“W(1)
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and so a continuous mapping argument (map z(-) — floo z(s)/s ds) yields (cf. Resnick and Starica, 1995b)
o

Ve(Hn - é) = /100 W(x-a)df + /100 H(z)ii _va)

Note - 4
/ H(z)= #0
1 x

and so the limit is normal with non-zero mean as required.
Conversely, suppose (4.7) holds. From Davis and Resnick (1984) or Csorgo and Mason (1985) we have

n [ ds 1
VE (HM -2 /b(n/k)u - F(s))?) = N(0, )

and the convergence to types theorem yields

from which it follows that

foo 1-P(s)ds 1
t 1-F(1) s o

A(?)
where A(t) is defined as in (4.6). Second order regular variation then follows from the following Proposition
and the proof of Theorem 4.3 is complete. O

—c

The following result is the second order version of Karamata’s theorem. It is similar to the second remark
following de Haan’s (1995) Theorem 1.

Proposition 4.4. Suppose F is a distribution concentrating on [0,00). Then
1—F €2RV(—a,p)
iff there exists a function A(t) satisfying A > 0, A(t) — 0 and A € RV, for some p < 0 such that

fOO 1—F((:c))d_x 1
. 3 1-F(t) = a
(4.12) lim A0 —c#0,

where c¢ is a non-zero constant,

Proof. Begin by assuming (4.12) and for specificity suppose that ¢ > 0. Then there exists a function V € RV,

such that o _p e

0 Cde\' (= F@)t !
(o [C0-r D) = e = v

Thus

So integrating from 1 to z gives for some k£ > 0

Ja-ro S et [ )
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and therefore we get a representation for 1 — F'| namely

k e 1 ds
1-F(z)= ﬁv(z)exp{—/1 m:}

We may now use this representation to prove the second order regular variation. We have for z > 1

1-F(tz _a a4V (t z s —o
(4.13) 1—F((t)) - _ a—1+V((tx)_) exp{— [, a—1+1V(ts) E)-u
' V(t) V(t)

and writing
a4 V() L. V() -Vt
a~l+V(tz) a~l 4+ V(tx)

we get the second order ratio in (4.13) equal to

e It V() =V(ta) o= avie) g
= + e 1 14V (is)a s
V(t) V(t)(a=! 4+ V(tz))

=z~ *[I+ 11].

Since V(t) — 0,

/w aV(ts) ds 0
1 1+ aV(ts) s

and therefore as t — oo

T aV(ts)‘ ds =
I Ozf1 1+aV(ts) s _}az/ Sp_1d52a2 <,’L‘p—1) ’
V(t) 1 P

and
V(te)
V()

II~a<1— )—>a(1—$p).

So the limit of the second order ratio is of the form

as desired.
Conversely, suppose 1 — F' € 2RV (—a, p) so that (1.2) holds. Write

0 1-F(x) de 1-F(ts —a
R - /°° (1—F<t> —3 )ds
At) 1 At)

The result follows by applying dominated convergence to the integral on the right. For p = 0, this step is
justified by Theorem 1.20(ii) of Geluk and de Haan (1987) and for p < 0 the justification is Theorem 1.8 of
Geluk and de Haan. O
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