ON THE HEIGHT OF THE MINIMAL HILBERT BASIS

by

J. Liu, L.E. Trotter, Jr.
and G.M. Ziegler

This research was partially supported by NSF Grant DMS89-20550.
On the Height of the Minimal Hilbert Basis

JIYONG LII, LESLIE E. TROTTER, JR. & GÜNTHER M. ZIEGLER

Abstract. We present a simple geometric proof of a result due to Ewald and Wessels: in a pointed, polyhedral cone of dimension \(n \geq 3 \) with integer-valued generators, any linearly independent generator representation for a minimal Hilbert basis element has coefficient sum less than \(n - 1 \).

We consider here subsets of \(\mathbb{R}^n \) of the form \(K = \{ \sum_{i=1}^{m} \lambda_i a_i : \lambda_i \geq 0, 1 \leq i \leq m \} \), with \(a_1, \ldots, a_m \in \mathbb{Q}^n \), i.e., finitely generated, rational (convex) cones. We denote \(K = \text{cone}\{a_1, \ldots, a_m\} \). \(K \) is nontrivial if it properly contains \{0\} and pointed if it contains no linear subspace properly containing \{0\}. When \(K \) is nontrivial and pointed, its extreme rays provide a unique (up to positive scaling) minimal set of generators.

When \(K \) is finitely generated, there also exists a finite set of vectors, a Hilbert basis, which generates \(K \cap \mathbb{Z}^n \) under nonnegative integral combinations. For instance, when \(K = \text{cone}\{a_1, \ldots, a_m\} \), with \(a_1, \ldots, a_m \) integral, the integral elements in the (half-open) zonotope \(\{ \sum_{i=1}^{m} \lambda_i a_i : 0 \leq \lambda_i < 1, 1 \leq i \leq m \} \) constitute a Hilbert basis for \(K \). When \(K \) is nontrivial and pointed, then its integral elements have a unique minimal Hilbert basis consisting of those members of \(K \cap \mathbb{Z}^n \) which are not sums of other members of \(K \cap \mathbb{Z}^n \).

Our interest here is in properties of minimal Hilbert bases and we thus assume henceforth that \(K = \text{cone}\{a_1, \ldots, a_m\} \) is nontrivial and pointed. We also assume, for \(1 \leq i \leq m \), that \(a_i \) is the shortest integral vector on the extreme ray \(\{ \lambda a_i : \lambda \geq 0 \} \), i.e., that \(a_i \in \mathbb{Z}^n \) and \(\gcd\{a_{ij} : 1 \leq j \leq n\} = 1 \), where \(a_{ij} \) denotes the \(j \)-th component of the vector \(a_i \). Finally, we assume with no loss in generality that \(K \) is full-dimensional; i.e., \(\text{rank}\{a_1, \ldots, a_m\} = n \).

For background material on cones and Hilbert bases, the reader is referred to Schrijver [5]. Now let \(x \) be an element of the minimal Hilbert basis for \(K \). By Carathéodory's Theorem, there are linearly independent generators \(a_{i_1}, \ldots, a_{i_n} \) so that \(x \in \text{cone}\{a_{i_1}, \ldots, a_{i_n}\} \); i.e., \(x \) is in the simplicial subcone of \(K \) generated by \(a_{i_1}, \ldots, a_{i_n} \). Of course, \(x \) may be contained

This research was partially supported by NSF Grant DMS89-20550.
in many such simplicial subcones, and we define the height of \(x \) as

\[
h(x) = \max\{\sum_{i=1}^{n} \lambda_i : x = \lambda_1 a_{i_1} + \ldots + \lambda_n a_{i_n}; \ \lambda_i \geq 0, 1 \leq i \leq n; \ \text{rank}\{a_{i_1}, \ldots, a_{i_n}\} = n\}.
\]

Motivated by a question of algebraic geometry, G. Ewald [1] posed the problem of determining an upper bound on \(h(x) \). Subsequently, Ewald and Wessels [2] established that \(h(x) \leq n-1 \) and demonstrated, moreover, that this bound is sharp. Here we indicate a simple geometric proof of this result, discovered independently and motivated by results in Liu [3]. We also see that equality \(h(x) = n-1 \) cannot occur for \(n > 2 \).

Theorem. Let \(K \) be an \(n \)-dimensional pointed polyhedral rational cone, \(n \geq 3 \), and let \(x \) be a minimal Hilbert basis element for \(K \). Then \(h(x) < n-1 \), and this bound is best-possible.

Proof. Suppose \(x \in C' \), where \(C' = \text{cone}\{a_1, \ldots, a_n\} \) and the generators \(a_1, \ldots, a_n \) define a simplicial subcone of \(K \). We consider the polyhedron defined by the nonzero, integral elements of \(C' \); i.e.,

\[
P' : = \text{conv}\{\mathbb{Z}^n \cap (C' \setminus \{0\})\}.
\]

The facets of \(P' \) separating \(P' \) from the origin induce a partition of \(C' \) into subcones, each generated by elements of the minimal Hilbert basis for \(C' \). If any of these facets has an integral element in its (relative) interior, this element can be used to further refine the partition. Moreover, by triangulating, we may assume that each cone in the partition is simplicial (see [4, Theorem 3.4] for details). We will thus assume that \(C' \) is partitioned into simplicial subcones, say \(C' = \bigcup_{i=1}^{P} C_i \), with each \(C_i \) generated by elements of the minimal Hilbert basis of \(C' \). Consider \(x \in C_1 = \text{cone}\{b_1, \ldots, b_n\} \), where \(b_1, \ldots, b_n \) define a facet of \(P' \), where \(b_i \) is in the minimal Hilbert basis for \(C' \), with \(b_i = \sum_{j=1}^{n} \lambda_{ij} a_j, \sum_{j=1}^{n} \lambda_{ij} \leq 1 \) and \(\lambda_{ij} \geq 0 \), for \(1 \leq i, j \leq n \).

Now \(x \) is in the minimal Hilbert basis for \(K \), hence also for the subcones \(C' \) and \(C_1 \). Thus \(x \) is in the parallelepiped defined by \(b_1, \ldots, b_n \) and we can write \(x = \sum_{i=1}^{n} \alpha_i b_i \), where \(0 \leq \alpha_i \leq 1 \), for \(1 \leq i \leq n \). If \(\sum_{i=1}^{n} \alpha_i > n-1 \), then the element \(x' \) obtained by reflecting \(x \) from the apex, \(\sum_{i=1}^{n} b_i \), of the parallelepiped, i.e., \(x' = (\sum_{i=1}^{n} b_i) - x = \sum_{i=1}^{n} (1-\alpha_i) b_i \), would be an integral vector of \(C_1 \), and hence of \(C' \), not in \(P' \). Thus we must have \(\sum_{i=1}^{n} \alpha_i \leq n-1 \). Finally, since \(x = \sum_{i=1}^{n} \alpha_i b_i = \sum_{i=1}^{n} \alpha_i (\sum_{j=1}^{n} \lambda_{ij} a_j) = \sum_{j=1}^{n} (\sum_{i=1}^{n} \alpha_i \lambda_{ij}) a_j \), with \(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \lambda_{ij} \leq n-1 \), it follows that the height of \(x \) is bounded above by \(n-1 \).

Furthermore, if \(\sum_{i=1}^{n} \alpha_i = n-1 \), then the reflected point \(x' \) has to coincide with one of the vectors \(b_j \), by construction. But this implies that \(x = \sum_{i \neq j} b_i \), which is not an element of the minimal Hilbert basis for \(n \geq 3 \).

To see that the bound is sharp, let \(d > 1 \) be an integer and suppose \(K \subseteq \mathbb{Q}^n \) is the simplicial cone generated by \((1, \ldots, 1, d) \) and the \(n-1 \) unit vectors \(e_1, \ldots, e_{n-1} \). It is not difficult to see that the minimal Hilbert basis for \(K \) consists of the \(d \) vectors \(\frac{d}{2}(1, \ldots, 1, d) + \sum_{i=1}^{n-1} \frac{d-1}{d} e_i \), for \(0 \leq t \leq d-1 \), along with the \(n \) generators of \(K \). The vector of maximum
height is achieved for \(t = 1 \), i.e., for \(x = \frac{1}{d}(1,\ldots,1,d) + \sum_{i=1}^{n-1} \frac{d-1}{d} e_i \). Thus \(h(x) = \frac{1}{d} + \frac{(n-1)(d-1)}{d} = (n-1) - \frac{n-2}{d} \), so that as \(d \) increases, \(h(x) \) is arbitrarily close to \(n-1 \).

The class of examples used in the proof to demonstrate that the height bound is as tight as possible was also discovered by Ewald and Wessels [2]. Note that for these examples, the nonzero vectors in the parallelootope for \(K \) coincide with the minimal Hilbert basis. Such parallelootope cones are studied further in Liu [3].

Finally, we remark that the proof here still applies for any minimal Hilbert basis (not necessarily unique) when \(K \) is not pointed; in this situation the height of any element of any minimal Hilbert basis is less than \(n-1 \).

References

Jiyong Liu, Leslie E. Trotter, Jr.
School of OR&IE
Cornell University
Ithaca, New York 14853, USA

Günter M. Ziegler
ZIB-Berlin
Heilbronner Str. 10
W-1000 Berlin 31, Germany