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Abstract

Kojima, Megiddo and Mizuno investigate an infeasible interior-point algorithm (or an exterior
point algorithm) for solving a primal-dual pair of linear programming problems and they demon-
strate global convergence of it. Their algorithm finds approximate optimal solutions of the pair
if both problems have interior points, and they detect infeasibility when the sequence of iterates
diverges. Zhang proves polynomial-time convergence of an infeasible interior-point algorithm un-
der the assumption that both primal and dual problems have feasible points. In this paper, we
show that an algorithm in the framework of the Kojima-Megiddo-Mizuno algorithm solves the
pair of problems in polynomial time without this assumption. We also propose an O(nL)-iteration
infeasible interior-point algorithm.
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1 Introduction

The primal-dual infeasible interior-point algorithm for linear programming is a simple variant of
the primal-dual (feasible) interior-point algorithm developed by Megiddo [7], Kojima, Mizuno, and
Yoshise [2, 3], Monteiro and Adler [9, 10], and Tanabe [12]. However the theoretical behavior of the
algorithm is not as well known as for the interior-point algorithm. The algorithm has been studied
by Lustig [4], Lustig, Marsten, and Shanno [5], Marsten, Subramanian, Saltzman, Lustig, and
Shanno [6], Tanabe [13], etc., and is known as one of the most efficient interior-point algorithms
(see for example [5, 6]). Kojima, Megiddo and Mizuno [1] demonstrate global convergence of
an infeasible interior-point algorithm. Their algorithm finds approximate optimal solutions of
the primal-dual pair if both problems have interior points, and they detect infeasibility when the
sequence of iterates diverges. Then Zhang [14] proves polynomial-time convergence of an infeasible
interior-point algorithm under the assumption that both primal and dual problems have feasible
points. Since the infeasible interior-point algorithm directly solves original primal and dual linear
programming problems, we usually do not know whether the problems are feasible or not. In this
paper, we show polynomiality of an algorithm in the framework of the Ko jima-Megiddo-Mizuno
algorithm without this assumption. The algorithm [1] is very flexible. We add some conditions on
the initial point, the step size control and the stopping criterion to show the polynomiality.

Zhang’s algorithm and ours require O(n®L) iterations. After the presentation of the original
version of this paper, Potra [11] proposed an O(n'*®L)-iteration infeasible interior-point predictor-
corrector algorithm. In section 4, we construct an O(nL)-iteration infeasible interior-point al-
gorithm, which is a variant of the Kojima-Megiddo-Mizuno algorithm and use the idea of the
interior-point predictor-corrector algorithm proposed by Mizuno, Todd, and Ye [8].

2 A polynomial-time infeasible interior-point algorithm

Let A be an m x n matrix, b € R™, and ¢ € R*. Consider the standard form linear program
(P) Minimize cTa
subject to Az =b, >0,
and its dual
(D) Maximize by
subject to ATy +z=¢, z>0.
Throughout the paper, we assume that the matrix A has full row rank, i.e., rank A = m. We call
(z,y,z) an (infeasible) interior point if > 0 and z > 0, and a feasible interior point if Az = b,
z>0 ATy+ z=cand z > 0.

We first describe the Kojima-Megiddo-Mizuno infeasible interior-point algorithm. Let 0 <7 <
L,y > 0,74 >0, ¢ >0, and ¢g > 0. The algorithm generates a sequence {(z*,y*, z5)} in the
neighborhood

N=A(z,y,2) : >0,z>0,
T2 > 'y:cTz/n (i=1,2,...,n),
2Tz > y,||[Az — b]] or ||Az — b < ¢,
27z > 74| ATy + z —¢|| or ATy +z ¢l <}



of the path of centers, which consists of the solutions (z,y, z) to the system of equations

Az - b
ATy4+z—-c | =0 (1)
Xz~ ue

for all i > 0. Here X = diag(z) denotes the n x n diagonal matrix with the coordinates of a vector
zcRrande =(1,....,1)T € R*. Let 0 < 31 < B2 < Pz < L At each iteration, we assign the
value By(2*)T 2% /n to the parameter y, and then compute the Newton direction (Az, Ay, Az) at
(x*,y*, 2*) for the system (1) of equations, that is, (Az, Ay, Az) is the unique solution of the
system of linear equations

A 0 0 Az AzF - b
0o AT 1T Ay | =-| ATy +2F-c |, (2)
z¢ o Xx* Az Xkzk — e

where X* = diag(z*) and Z* = diag(z*). The parameters [, and 33 control the primal and dual
step lengths. We can take an arbitrary initial point (z',y’, z!) € N. Now we are ready to state
the Kojima-Megiddo-Mizuno algorithm, where ¢ and w* are positive constants.

The Kojima-Megiddo-Mizuno infeasible interior-point algorithm

Step 1: Let k = 1.

Step 2: If
(@)= < e [|Az* ~ bl < ¢ and [|ATy" + 2" —cll < ca

I(2*, 25)[h > w . (3)

then stop.

Step 3: Let u = B1(2*)Tz*/n. Compute the unique solution (Az, Ay, Az) at
(z*,y*, 2%) of the system (2) of equations.

Step 4: Let @* be the maximum of &’s < 1 such that the relations

(zF,y*, 2%) + a(Az, Ay, Az) €N,
(2* + ada)T(* + adz) < (1 - a(l - B2))(=")" 2"

hold for every a € [0, &].

Step 5: Choose a primal step length a';j € (0,1}, a dual step length ak € (0,1] and a new iterate
(zht1, yk+l 2F+1) such that

((Ek+1,yk+l,zk+l) — (:Bk + a';}”A:I:,yk + asAy, 2k + aﬁAZ) &€ N,
()T 2kl < (1= ak(1 - Bs))(2*)T 2%

Step 6: Increase k by 1. Go to Step 2.



Kojima, Megiddo and Mizuno [1] show that the algorithm terminates in a finite number of
iterations, and they get a value of w* such that if (3) holds then there are no interior points of (P)
and (D) in a wide region defined in advance.

Let
po > min{||(w, w)||e : Au = b, ATv + w = ¢ for some v},

and let p > po be a constant for which we want to find the optimal solutions =* of (P) and (y*, z*)
of (D), if they exist, such that

(2", 2%)llec < P
Note that it is easy to compute a value of py and we do not assume existence of the optimal
solutions.

Now we state our main results which we will prove in the next section.

Theorem 2.1 Let (z!,y',2!) = yop(e,0,e) for a constant o € (0,1]. In the Kojima-Megiddo-
Mizuno algorithm, suppose that we use

N ={(z,y,2) : ©>0,z>0,
vim > yetz/n (i=1,2,...,m),
|Az! - bl|zT z > || Az - b|(z") 2",
|ATy! + 2 —cllaTz > ATy + z — el (=) 2"}
instead of N, we take

CB].; = Cz§ = _‘k,
and we add one more stopping criterion
.k T4+7v, & :
(¥, 24l > Sl (k)= and 6 > 0 (4)
e P

at Step 2, where 8' = 1 and
gFtl = (1 — a*)o* for i=1,2,3,....
When ¥, Yo, B1, B2 and B3 are independent of the input data, the algorithm terminates in
O(n2L)
iterations, where
L' = max{ln((z")T 2" /¢),In(|| Az’ — bl|/e,), In(|ATy + z' — ¢ll/€a)}-

Moreover if the algorithm stops by the condition (4), there are no optimal solutions ™ of (P) and
(y*, 2%) of (D) such that ||(2", =) < p-

As shown in [1], we have

(Az* — b, ATyF + 2F —¢) = 0*(Az' - b, ATyl 42 —¢). (5)

So (z*,y*, z*) € N implies
(mk)Tzk > Qk(ml)Tzl. (6)

This condition for (z*,y*, 2*) is used in Zhang [14].
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3 Proof of the Theorem

In this section, we prove Theorem 2.1. The next Lemma is due to Kojima Megiddo and Mizuno
[1].
Lemma 3.1 Suppose that

| Az;Az —yAzT Az/n|<n and | AzTAaz|<ny (7)
hold at the kth iteration. Then & > o™ for

ak*-.-min{l Bl =) @)= py(ah)T2 (ﬁz—m)mkﬂ"zk}.
? n'f] ? 7’] 3 lr]

Proof: In Section 3 of [1], the result above is shown for a lower bound o~ instead of a*™, where

Bi(l —v)e prer (B2 — Br)e
ng oo 7

o™ = min {1, } and € = min{e, Yp€p, Yd€d}-

We can prove Lemma 3.1 from the discussion in [1]. O

We will show that (7) holds for
n = 0(n)(z")T 2"

Then from Lemma 3.1, we have

ak > §/n?
for a positive constant §. Since we have
k-1 § k-1
gk = (1-a*) < (1—7> ,

Lis n
t=x1
k-1

(@)=% < [ -a¥(1-ps)) )" ="

ey

=
(Az* — b, ATy* + 2F —¢) = 6*(Az' - b, ATyl 4 21 —¢),
we obtain the first assertion in Theorem 2.1, that is, the algorithm terminates in O(n?L’) iterations

where L’ is defined in Theorem 2.1.

Lemma 3.2 At each iteration of Algorithm A, we have
DAz = —6°QD (' - u)+ 65T - Q)D(z! —w') — (I - Q)(XZ) "3 (Xz* — pe),
Ay — _gk(yl _ ,01)
~(AD?AT)'AD ($* D7} (2! —w!) + 0¥ D(2! —w') - (X 2)7*%(X 2" - ne))
DAz = 65QD-'(z' - u') - 65(I - Q)D(z' — w') — Q(XZ) %Xz~ - pe),

where X = diag(z*), Z = diag(z*), D = X%32~9%, Q = DAT(AD?AT)~' AD and (u',v", w")
is a solution of Au=b,ATv +w = c.



Proof: It can be directly verified that (A, Ay, Az) is the solution of the system (2). O

Since Q and I — Q are orthogonal projection, we have

ID" Az < 65D (! - u)]| + ¥ D(z" - wh)l| + [(X 2) (X 2" — pe)ll,
IDAz|| < 64D (z! - ul)|| + 0| D(z" — wh)l| + (X 2)7"H(X 2" — pe)l.

From the definition of p and pg, we can assume that
(s whlleo < po < p-
Then —pe < x! — u! < 2pe and —pe < z! — w! < 2pe. Thus we have

ID"'Az|| < 6%20|D el + 6*2p]| Del| + [[(X 2)"°5(X 2 — pe)|

< %%MXZY“MWW+Hﬁm+JZ}w%ﬂw—um%ﬂ4ﬂ2
=1
< 46%p||(X Z)708|l|I(=F, 2P| + \1 (zk)Tzk — 2np + zn:,ﬁ(a:fzf -1,

=1

Assume that 8¢ > 0. By using z¥zF > y(z*)T 2% /n for each i, u = f1(z*)T 2% [n, and ||(2F, 2F)|| <
l(z*, 2%)|l1 < %’,%(mk)Tzk, we see
(o]

|ID~*Az|| < 46%p n__1+ 10 GRYT ok 4 [(@k)T 2k — 28, (2F)T 2% + _ﬁ_%(wk)Tzk
B y(@F) Tz 130%p v
2
W+ 1-28; + pi (zk)T 2k,
2
ﬂ70 7

We also have this inequality without the first term in the bracket if g = 0. Thus we have
|D-!Az|| = O(v/n)y/(z*)TzF and || DAz|| = O(y/n)y/(z*)T 2* as well, which imply that |azT Az| =
O(n)(zF)Tz*F and |Az;Az| = O(n)(z*)Tz* for each i. Hence we have (7) for n = O(n)(z*)T 2*,
and we have proved the former assertion of Theorem 2.1. We show the latter assertion of Theorem

2.1 in the next lemma.

Lemma 3.3 If||(z*, zF)|1 > ;{L;%Ql;(mk)Tzk holds at the kth iteration of the algorithm, then there
are no optimal solutions = of (P) and (y*, z*) of (D) such that ||(z*, 2*)||ec < p-

Proof: Assume that we have optimal solutions z* of (P) and (y*, z*) of (D) such that ||(z*, 2*)||cc <
p. From (5), we see that

A(6Fz! + (1 - 65z — 2F) = 0,
AT(OFy' + (1 — 6F )y — y*) + (6% + (1 - 6F)z" - 2F) = 0.

So we have
(kal + (1 _ ak)m* _ mk‘)T(kal + (1 _ ek)z* _ zk) — 0’
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which implies
(Ok:cl—{—(l—Bk)m*)Tzk—}-(szl+(1—0k)z*)T:ck = (Qk:cl+(1—Ok)w*)T(szl+(1—9k)z*)+(:ck)Tzk.
By using this equality, ! = 2! = ygpe, z* < pe, z* < pe, and 272f = 0 for each ¢, we have
8 (rop)ll(z*, 2Nl = 65((z")Ta* + (2!)T2F)
(Hkml + (1 _ gk):l:*)Tzk + (9k21 + (1 _ gk)z*)ka
— (ekml + (1 _ Ok)m*)T(Okzl + (1 _ Gk)z*) + (mk)Tzk
< nbfyop® + ()75

IN

From (6), (2*)Tz* > 0F(2!)T 2! = nf*+3p?. Hence we have
O yopll(@®, 25Nl < (14 1/70)(@")T 2,

which contradicts the assumption of the lemma. O

4 An O(nL)-iteration variant

We have shown that the Kojima-Megiddo-Mizuno infeasible interior-point algorithm terminates
in O(n2L) iterations by adding some conditions. The algorithm is based on the O(nlL)-iteration
primal-dual path following algorithms proposed by Kojima, Mizuno and Yoshise [2] and Mizuno,
Todd and Ye [8], which use the neighborhood {(z,y,2) : ziz > v&lz/n (i = 1,2,---,n) and
(z,y,z) is a feasible interior point } of the path of centers. In this section, we construct an
O(nL)-iteration variant of the infeasible interior-point algorithm. The variant is based on the
O(+/nL)-iteration interior-point predictor-corrector algorithm proposed by Mizuno, Todd, and Ye
[8]. For v; € (0,1), we define a neighborhood of the path of centers:

No(m) = {(z,y,2): & >0,z > 0,[| Xz - (2T z/n)e| < nalz/n}.
An O(nL)-iteration infeasible interior-point algorithm

Step1: Let k=1,0< 81 < B2 <1,0< 70 < 1,71 = 1/4,p > 0,6 =1, and (2,9, 2") =

70'0(67076)‘
Step 2: If
(@h)TzF < ¢, | A2 — bl < ¢ and [|ATYF +2* el < e
or 1
l(z*, %)) > jZO(w‘“)Tzk and 6 >0 (8)
750%p
then stop.

Step 3: Let u = B1(x*)Tz* /n. Compute the unique solution (Az, Ay, Az) at (z*,y*, z*) of the
system (2) of equations.



Step 4: Let @* be the maximum of @’s < 1 such that the relations

(®, 9", 2" + a(Az, Ay, Az) € No(271),
(2" + adz)T (2" +adz) < (1-o(l- Bo))(xF)T 2F,
(zF + aAz) (2" + adz) > (1-a)f*(x!)2! (9)

hold for every a € [0, a].
Step 5: Let (z',4',2') = (2F, y*, zF) + a¥(Ax, Ay, Az) and 6F+1 = (1 — aF)6F.

Step 6: Compute the solution (Az', Ay', Az’) of the system of equations:

A 0 0 Az’ 0
z o x|\ az X @72
7

Let (zh+l yhtl 25+1) = (2 ¢/, 2') + (AZ', Ay, AZ').

Step 7: Increase k by 1. Go to Step 2.

Theorem 4.1 When vq, 31, and 32 are independent of the input data, the algorithm above termi-
nates in O(nlL') iterations, where L' is defined in Theorem 2.1. If the algorithm stops by the con-
dition (8), there are no optimal solutions &* of (P) and (y*,z*) of (D) such that ||(z*, 2*)||ec < p-

Note that we have (5) and (6) for each k by (2), (9), and (10). The proof of the second
assertion is exactly same with Theorem 2.1. In the remainder of this section, we prove the first
assertion of the theorem. At first, we show that (z*,y*, z*) € Ny(71) for each k. It follows from
(z!,y!, 2') € M2(1) and the next Lemma.

Lemma 4.2 (Mizuno, Todd, and Ye [8]) If (2',y, 2') € Na(211) fory1 = 1/4 and (Az', Ay', AZ')
is the solution of (10) then (z',y', 2') + (Az', Ay', Az') € Ny(m1).

Lemma 4.3 Suppose that
lAX Az — (AzTAz/n)e|| <n and | AzT Az |<q (11)

hold at the kth iteration. If (%, y*,z*) € No(y1) then @ > oF™ for

e G pEhTE (8 - B
- " 2y n n ’

Proof: From (2), we have

(28T 2% — a((2*)T2F - pi1(a*)T2F) + o’ azT Az
(1 - a+ Ba)(z)TzF + a2 Azt Az.

(* + adz)T (2% + aAz)

Il



Since oF" < min{B(x*)T 2% /n, (82 — B1)(zF)Tz* [y} and |Az' Az| < 7, we have

(2F + aAz) (2" + adz) < (1-a(l =) (") 2k
(F + adz)T(2F + adz) > (1-a)(zh)T2 (12)

for any 0 < a < o*”. The second inequality implies (9). Hence we only need to show that
I(X* + adX)(* + adz) - p(a)e]l < 2mip(e)
for any 0 < a < of", where

pla) = (2" +adz)T(zF +adz)/n
(1-a+ Bra)(z") 2% /n + oAz Az/n.

We see that
(X" + 2 AX)(a* + adz) - ol

= || X*2F - a(XF2F - ()T 2*/n)e) + P AX Az
——((l—a+ﬂla)(wk)T k/?l—{—a?Aa:TAz/n)eH

< (1- @)Xk (@)= el + a2 AX Az — (AaT Az/n)e]
< (- am(eh s DELE,

< 2(1 - )@t

S 2’)’1#(0')3

where the last inequality follows from (12). O

As shown in the previous section, we have |D~'Az|| = O(y/n)y/(x*)T2z* and ||DAz|| =
O(y/n)y/(z*¥)Tzk. So we have (11) for n = O(n)(z*)Tz*. Hence there exists § > 0 such that

a* > 6§/n at each iteration of the algorithm. Then we can prove Theorem 4.1 in the same way
with the proof of Theorem 2.1.
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