STABILITY CRITICAL GRAPHS AND
EVEN SUBDIVISIONS OF K_4

by

Research partially supported by NSF Grants ECS8504077 and DDM-8814644.
Stability Critical Graphs and Even Subdivisions of K_4

E. C. Sewell
John M. Olin School of Business
Washington University
St. Louis, Missouri 63130-4899

L. E. Trotter, Jr.*
School of OR&IE
Cornell University
Ithaca, New York 14853

April 17, 1992

Abstract

A graph is stability critical (α-critical) if the removal of any edge increases the stability number. We give an affirmative answer to a question raised by Chvátal, namely, that every connected, critical graph that is neither K_2 nor an odd cycle contains an even subdivision of K_4.

All graphs in this paper are assumed to be finite, simple and undirected. For graph $G = (V, E)$, we also denote $V(G) = V$ and $E(G) = E$. A set of mutually nonadjacent nodes in a graph G is called a stable (independent) set. A maximum stable set (MSS) is a stable set of maximum cardinality. The stability number of G, denoted by $\alpha(G)$, is the cardinality of a maximum stable set in G. A stable set S saturates G if $|S| = \alpha(G)$. The degree of a node v in G is denoted by $d(G, v)$ (whenever G is clear from the context, it will be suppressed from the notation). A node with degree equal to zero is said to be isolated. K_n is the complete graph on n nodes. A graph $G' = (V', E')$ is a subgraph of $G = (V, E)$, denoted $G' \subseteq G$, if $V' \subseteq V$ and $E' \subseteq E$. If $W \subseteq V$, then $G[W]$ denotes the subgraph.

*Research partially supported by NSF Grants ECS-8504077 and DDM-8814644
induced by W; i.e., $G[W]$ has node set W and two nodes are adjacent in $G[W]$ if and only if they are adjacent in G. If $v \in V$, then $G - v$ will also be used to denote $G[V \setminus \{v\}]$. If $(u, v) \in E$, then $G - (u, v)$ denotes the subgraph $(V, E \setminus \{(u, v)\})$.

An edge of G is said to be critical if its deletion increases the stability number. G is α-critical if every edge of G is critical. Throughout this paper, critical will always mean α-critical. If (v, w) is a critical edge of G, then there is a MSS in G that contains v and there is a MSS that contains w. This follows by considering a MSS S in $G - (v, w)$. Since (v, w) is critical, S must have cardinality $\alpha(G) + 1$, which then implies that $v, w \in S$. Thus, $S \setminus \{v\}$ and $S \setminus \{w\}$ are MSS’s in G that contain w and v, respectively. If G is a critical graph and $(v, w) \in E$ with $d(v) + d(w) > 2$, then there is a MSS in G that contains neither v nor w. To see this, assume, without loss of generality, that $(u, v) \in E(G)$ with $u \neq w$ and let S be a MSS in $G - (u, v)$. Then $S \setminus \{v\}$ is the desired MSS in G. Finally, if G is critical and $v \in V$ with $d(v) = 1$, then v and its neighbor form a component of G, since every MSS in G contains either v or its neighbor.

The number $|V| - 2\alpha(G)$, denoted by $\delta(G)$, plays an important role in the study of critical graphs, as demonstrated by the following theorem given by Hajnal in 1965 [4] ($\delta(\cdot)$ will be used as generic notation whenever the graph has not been specified).

Theorem 1 (Hajnal) If G is a critical graph with no isolated nodes, then $d(v) \leq \delta(G) + 1 \ \forall v \in V$.

This theorem is useful in characterizing critical graphs with small values of $\delta(\cdot)$. Let Γ^δ be the set of all critical graphs with $\delta(\cdot) = \delta$ and let Γ^δ_c be the set of all connected graphs in Γ^δ. If $G \in \Gamma^\delta_0$, then every node of G has degree at most one, which implies that G is K_2. If $G \in \Gamma^\delta_1$, then every node of G has degree at most two. Since G is connected, G must be either a simple path or a cycle. But $\delta(G) < 1$ for all simple paths and even cycles, so G must be an odd cycle. A subdivision of a graph is obtained by replacing its edges by simple paths, i.e., by inserting new nodes of degree two into the edges. An even subdivision results when the number of new nodes inserted into each edge is even. Hence, Γ^δ_1 consists of even subdivisions of K_3. The situation for Γ^δ_2 is more complex, but Andrásfai [1] established the following theorem in 1967.
Theorem 2 (Andrásfai) \textit{If }$G \in \Gamma^2_c$, \textit{then }G \textit{is an even subdivision of }K_4. \\

In 1978 Lovász [6] established that for each fixed value of δ there is a finite set of graphs (a finite "basis") such that every graph in Γ^2_c is an even subdivision of one of these basis graphs. The preceding discussion together with Theorem 2 imply that K_2 is the basis for Γ^0_c (in fact, K_2 is the only graph in Γ^0_c), K_4 is the basis for Γ^1_c and K_4 is the basis for Γ^2_c. Furthermore, in [7] it is shown that there is a finite basis for Γ^2_c using the more general operation defined in the following theorem. (The basis for Γ^2_c is given explicitly in [7].) \\

Theorem 3 (Lovász and Plummer) \textit{Let }G \textit{be a critical graph and }x \textit{a node of degree two in }G. \textit{Let }y \textit{and }z \textit{be the neighbors of }x. \textit{If }y \textit{and }z \textit{are adjacent, then }$\{x, y, z\}$ \textit{forms a component of }G. \textit{If }y \textit{and }z \textit{are not adjacent, then no node different from }x \textit{is adjacent to both of them and furthermore, if the edges }(x, y) \textit{and }(x, z) \textit{are contracted, the resulting graph }G' \textit{is critical with }$\alpha(G') = \alpha(G) - 1$ \textit{and }$\delta(G') = \delta(G)$. \textit{Conversely, suppose }G' \textit{is a critical graph and }w \textit{is any node of }G'. \textit{Split }w \textit{into two nodes }y \textit{and }z, \textit{each of degree at least one, create a new node }x \textit{and connect it to both }y \textit{and }z. \textit{Then the resulting graph }G \textit{is critical with }$\delta(G) = \delta(G')$. \\

A subgraph H of G is said to be a δ-subgraph of G if H is critical, $V(H) = V(G)$, $\alpha(H) = \alpha(G)$ (hence $\delta(H) = \delta(G)$) and H does not contain any isolated nodes. In 1975 Surányi [11] proved the following two results concerning δ-subgraphs. \\

Lemma 4 (Surányi) \textit{Let }G \textit{be a critical graph and }$(v, w) \in E(G)$. \textit{If }H \textit{is a }δ-subgraph of $G - v$, \textit{then }$d(H, w) = d(G, w) - 1$. \\

Theorem 5 (Surányi) \textit{If }G \textit{is a critical graph without isolated nodes and }$v \in V$ \textit{with }$d(v) > 1$, \textit{then there exists a }δ-subgraph of $G - v$. \\

Harary and Plummer [5] showed that every critical graph with $\delta(\cdot) \geq 1$ contains an odd cycle, i.e., an even subdivision of the basis graph for Γ^1_c. In 1975 Chvátal [3] proved that every connected, critical graph with $\delta(\cdot) \geq 2$ contains a subdivision of K_4 and he posed the question of whether every connected, critical graph with $\delta(\cdot) \geq 2$ must contain an even subdivision of K_4, i.e., an even subdivision of the basis graph for Γ^2_c. The following theorem establishes an affirmative answer to this question.
Theorem 6 If $G = (V, E)$ is a connected, critical graph with $\delta(G) \geq 2$, then G contains an even subdivision of K_4.

Proof. We first note that we may assume with no loss of generality that $d(G, v) \geq 3$, $\forall v \in V$. To see this, note that G is connected, so G contains no isolated nodes. Furthermore, if G had a node of degree one, then G could only consist of a single edge, contradicting $\delta(G) \geq 2$. Finally, if $d(G, x) = 2$, suppose $(y, x), (z, x) \in E$ with $y \neq z$. Then Theorem 3 implies $(y, z) \notin E$. Thus, again by Theorem 3, we can remove x and identify y and z to obtain a connected, critical graph G' with $\delta(G') \geq 2$. It is not difficult to see that G contains an even subdivision of K_4 provided G' does, so we replace G by G'. Repeated application of this argument allows us to assume $d(G, v) \geq 3$, $\forall v \in V$.

We may further assume that no proper subgraph of G satisfies the assumptions of the theorem, i.e., that G is minimal with respect to the stipulations connected, critical and $\delta(G) \geq 2$ (else we could replace G by such a subgraph and proceed with the proof). It follows that we need only consider cubic graphs, for if $d(G, w) > 3$ with $(v, w) \in E$, then let H be a δ-subgraph of $G - v$ (see Theorem 5). By Lemma 4, $d(H, w) \geq 3$. If H' is the component of H containing w, then H' is connected and critical with $\delta(H') \geq d(H', w) - 1 \geq 2$ (see Theorem 1), contradicting the minimality of G.

The proof thus reduces to showing that any connected, critical, cubic, minimal graph $G = (V, E)$ contains an even subdivision of K_4. We denote $n = |V|$, $\alpha = \alpha(G)$ and $\delta = \delta(G)$.

Claim 1 Suppose $v \in V$ and H_v is a δ-subgraph of $G - v$. Let $E_v = E \setminus E(H_v)$. Then:

(i) $\alpha(H_v) = \alpha(G)$ and $\delta(H_v) = \delta(G) - 1$.

(ii) H_v consists of isolated edges and $\delta - 1$ odd cycles.

(iii) If $(v, w) \in E$, then w is contained in an odd cycle in H_v.

(iv) $\alpha(G - v - e) = \alpha \forall e \in E_v$.

(v) If $(v, w) \in E$, then $E_v \cap E_w = \{(v, w)\}$.

(vi) $\forall w \in V$, some edge incident to w is in E_v.

(vii) Let $C_1, \ldots, C_{\delta-1}$ be the odd cycles in H_v and e_1, \ldots, e_s be the isolated edges. If I is a stable set in G with $|I| = \alpha$ and $v \notin I$, then I saturates $C_1, \ldots, C_{\delta-1}$ and e_1, \ldots, e_s.

4
Proof.

(i) Since G is critical, there exists a MSS which does not include v. Therefore, $\alpha(H_v) = \alpha(G - v) = \alpha$ and $\delta(H_v) = (n - 1) - 2\alpha(H_v) = n - 1 - 2\alpha = \delta - 1$.

(ii) H_v is a δ-subgraph, so there are no isolated nodes. Each component of H_v must be connected and critical; moreover, minimality of G forces $\delta(\cdot) \leq 1$ for each component of H_v. Therefore, each component is an isolated edge or an odd cycle (see the discussion preceding Theorem 2). Furthermore, $\delta(H_v)$ equals the sum of $\delta(\cdot)$ for each component, so H_v contains $\delta - 1$ odd cycles.

(iii) This follows from Lemma 4 and (ii).

(iv) Suppose $e \in E_v$. Then $\alpha(G - v - e) \geq \alpha(G - v) = \alpha$ and $\alpha(G - v - e) \leq \alpha(H_v) = \alpha$.

(v) Suppose $(v, w) \in E$ and $e \in E_v \cap E_w$. It is easy to see that $(v, w) \in E_v \cap E_w$, so suppose that $e \neq (v, w)$. Let I be a stable set in $G - e$ with $|I| = \alpha + 1$. Clearly, I cannot contain both v and w, so without loss of generality assume $v \notin I$. Then I is a stable set in $G - v - e$ with $|I| = \alpha + 1$, which is a contradiction to (iv).

(vi) Let $w \in V$. If no edge incident to w is in E_v, then w has degree three in H_v, contradicting (ii).

(vii) Suppose I is a stable set in G with $|I| = \alpha$ and $v \notin I$. Then I is a stable set in H_v with $|I| = \alpha(H_v)$. Therefore, I induces a MSS in each component of H_v; i.e., I saturates $C_1, \ldots, C_{\delta-1}$ and e_1, \ldots, e_δ.

Now let $x \in V$ and let $e_1 = (x, w_1)$, $e_2 = (x, w_2)$, $e_3 = (x, w_3)$ be the three edges incident to x. Let H_x, H_1, H_2 and H_3 be δ-subgraphs of $G - x, G - w_1, G - w_2$ and $G - w_3$, respectively. Let C_i be the odd cycle in H_i that contains x, for $i = 1, 2, 3$. Let P_{ij} be the path from w_i to w_j on $C_k \setminus \{x\}$, where $1 \leq i, j, k \leq 3$ are distinct indices. Obviously, P_{ij} has odd edge-length. Note that P_{ij} and P_{ji} have the same underlying undirected path. Now we want to show that $C_1 \cup C_2 \cup C_3$ contains an even subdivision of K_4. The main difficulty is that the P_{ij}'s may intersect. The remainder of the proof concentrates on finding nonintersecting subpaths of the P_{ij}'s that are of the correct parity to form an even subdivision of K_4. See Figure 1.

In our subsequent development we let I_i be a stable set in $G - e_i$ with $|I_i| = \alpha + 1$, for $i = 1, 2, 3$.

5
Claim 2 The nodes of P_{ij} alternate between I_i and I_j. (See Figure 2.)

Proof. It is easy to see that $|I_i| = \alpha + 1$, $w_k \notin I_i$ and $\alpha(H_k) = \alpha$ imply that $|I_i \cap V(C_k)| = (|V(C_k)| + 1)/2$. This implies the nodes on P_{ij} which are of even distance from w_i are in I_i. Similar reasoning holds for w_j and I_j. \hfill \Box

Claim 3 P_{ij} contains exactly one edge, call it e_{ij}, such that neither of its endnodes is in I_k. (See Figure 3.)

Proof. The stable set $I_k \setminus \{w_k\}$ saturates C_k, so C_k contains exactly one edge such that both of its endnodes are not in I_k. This edge must lie on P_{ij} because $x \in I_k \setminus \{w_k\}$. \hfill \Box

Let a_{ij} be the first node of e_{ij} encountered when traversing P_{ij} from w_i to w_j and let Q_{ij} be the subpath of P_{ij} from w_i to a_{ij}. Note that Q_{ij} and Q_{ji} are node-disjoint, whereas P_{ij} and P_{ji} specify the same underlying undirected path. Note also that Q_{ij} or Q_{ji} may consist of a single node.
Figure 2: Distribution of I_1 on C_3.

Figure 3: The alternation of the I_i's on Q_{12} and Q_{21}.
Claim 4 \(I_j \cap Q_{ij} = I_k \cap Q_{ij} \) and \(I_i \cap Q_{ji} = I_k \cap Q_{ji} \); i.e., the nodes of \(Q_{ij} \) alternate between \(I_i \) and \(I_j \cap I_k \) with the first and last node of \(Q_{ij} \) in \(I_i \) and (the nodes of \(Q_{ji} \) alternate between \(I_j \) and \(I_i \cap I_k \)). (See Figure 3.)

Proof. Let \(P \) be the path from \(a_{ij} \) to \(a_{ji} \) on \(C_k \setminus \{e_{ij}\} \). Claim 3 implies that alternate nodes of \(P \) must be in \(I_k \). Now, \(x \in I_k \) implies \(w_i \notin I_k \) and \(w_j \notin I_k \). Furthermore, \(a_{ij} \notin I_k \) and \(a_{ji} \notin I_k \), by definition. Finally, by Claim 2, \(Q_{ij} \) alternates between \(I_i \) and \(I_j \), and the result follows. \(\square \)

We observe that the proof of Claim 4 also demonstrates that \(a_{ij} \in I_i \), for any distinct index pair.

Claim 5 The path \(P_{ik} \) contains no node of \(Q_{ji} \) (nor of \(Q_{jk} \)). (See Figure 4.)

Proof. Since \(P_{ik} \) alternates between nodes of \(I_i \) and \(I_k \), it contains no node of \(I_i \cap I_k \) nor any node of \(I_j \setminus (I_i \cup I_k) \). But \(Q_{ji} \) alternates between nodes in \(I_j \) and \(I_i \cap I_k \). \(\square \)

We now denote \(E_x = E \setminus E(H_x) \) and \(E_i = E \setminus E(H_i) \), for \(i = 1, 2, 3 \).

Claim 6 Let the edges of \(P_{ij} \) be labeled \(d_1, \ldots, d_r \). Then the edges with odd index are not in \(E_x \) and the edges with even index are in \(E_x \); i.e., the edges of \(P_{ij} \) are alternately in and not in \(E_x \), with the first and last edge not in \(E_x \).

Proof. Let \(d_m = (u, v) \) be an edge of \(P_{ij} \) with \(m \) odd. (See Figure 5(a).) Suppose \(d_m \in E_x \) and \(I \) is a stable set in \(G - d_m \) with \(|I| = \alpha + 1 \). Then, by Claim 1(iv), \(d_m \in E_x \) implies \(x \in I \). Thus \(w_k \notin I \), so Claim 1(vii) implies both \(I \setminus \{u\} \) and \(I \setminus \{v\} \) saturate \(C_k \). A simple parity argument shows that this cannot happen, so \(d_m \notin E_x \). Now suppose \(m \) is even and consider the three edges adjacent to \(v \). (See Figure 5(b).) One of these edges is \(d_{m+1} \), which is not in \(E_x \) by the above argument. Another one of the edges is in \(E_k \) and therefore not in \(E_x \), by Claim 1(v). Hence, the remaining edge, \(d_m \), must be in \(E_x \) by Claim 1(vi). \(\square \)

Now let \(P_{12} = v_0, d_1, v_1, d_2, \ldots, d_r, v_r \) where \(v_0 = w_1 \) and \(v_r = w_2 \). For \(i = 1, 2, 3 \), let \(y_i \) be the last node of \(P_{i,i+1} \) encountered when traversing \(P_{i,i+2} \) from \(w_i \) to \(w_{i+2} \), where addition is performed modulo 3. (See Figure 6.)
Figure 4: The structure of the Q_{ij}'s.

Figure 5: The distribution of edges in E_x on P_{ij}.
Figure 6: P_{ij}'s partitioned by the y_i's.

Claim 7 The number of edges between w_i and y_i on $P_{i,i+1}$ is even.

Proof. By symmetry it suffices to show this for the case of w_1, y_1 and P_{12}. From Claim 5, P_{13} cannot use any node on Q_{21} and P_{12} cannot use any node of Q_{31}, so $P_{13} \cap P_{12} \subseteq Q_{12} \cap Q_{13}$. According to Claim 4, the nodes of both Q_{12} and Q_{13} alternate between I_1 and $I_2 \cap I_3$. Therefore, if a node lies on both P_{12} and P_{13}, then its distance from w_1 along P_{12} must be of the same parity as along P_{13}. Suppose that y_1 is of odd (edge-) distance from w_1 on P_{12}; i.e., $y_1 = v_m$ with m odd. (See Figure 7.) Then y_1 is of odd distance from w_1 on P_{13} and, by Claim 6, the next edge on P_{13} must be in E_x. (Note that $v_m = w_2$ is impossible, since $w_2 \in Q_{21}$; thus d_{m+1} exists.) However, the only edge incident to v_m that is in E_x is d_{m+1} (since $d_m \notin E_x$ and $f \notin E_x$, where f is the edge of G that is incident to y_1 and is not on C_3). Therefore, v_{m+1} is the next node on P_{13}, which contradicts the choice of y_1 as the last node on P_{12} when following P_{13} from w_1 to w_3. \hfill \Box

Claim 8 Let R_1 be the subpath of P_{12} from y_1 to y_2. Let R_2 be the subpath of P_{23} from y_2 to y_3 and let R_3 be the subpath of P_{31} from y_3 to y_1. Let C be formed by adjoining R_1, R_2
and R_3. Then C is an odd cycle.

Proof. The paths R_1, R_2 and R_3 are disjoint by construction, except for their endnodes y_1, y_2 and y_3, so C is a simple cycle. Since y_1 is of even distance from w_1 on P_{12}, y_2 is of even distance from w_2 on P_{12} and P_{12} is an odd path, then R_1 must be an odd path. The same holds for R_2 and R_3. Thus, C has an odd number of edges. \Box

Claim 9 Let path S_1 be formed by adjoining (x, w_1) to the subpath of P_{12} from w_1 to y_1. Let S_2 be formed by adjoining (x, w_2) to the subpath of P_{23} from w_2 to y_2. Let S_3 be formed by adjoining (x, w_3) to the subpath of P_{31} from w_3 to y_3. Then S_1, S_2, S_3 and C form an even subdivision of K_4.

Proof. Since y_i is of even distance from w_i on S_i, S_i must be an odd path, $i = 1, 2, 3$. By the choice of the y_i's, the S_i's and C are mutually disjoint, except for y_1, y_2 and y_3. From Claim 8, C is an odd cycle and y_1, y_2, y_3 divide it into arcs of odd length. \Box

The determination of the even subdivision of K_4 depicted in Figure 9 completes the proof of the theorem. \Box

With the aid of Theorem 6, it is easy to see that if $G \in \Gamma_c^6$ with $\delta \geq 2$, then G contains a graph in Γ_c^0, Γ_c^1 and Γ_c^2. An interesting open question is whether or not this can be
Figure 8: The subpaths R_1, R_2 and R_3.
Figure 9: An even subdivision of K_4 centered at x.
generalized to the following: If $G \in \Gamma_c^\delta$ with $\delta \geq 1$, then G contains a graph in each of $\Gamma_c^0, \Gamma_c^1, \ldots, \Gamma_c^{\delta-1}$. Of course, an affirmative answer would imply that G contains an even subdivision of a basis graph from each of $\Gamma_c^0, \Gamma_c^1, \ldots, \Gamma_c^{\delta-1}$.

Berge [2] proved that every pair of adjacent edges in an α-critical graph is contained in a chordless odd cycle. This result can be restated as every pair of adjacent edges in an α-critical graph is contained in a subgraph which is in Γ_c^1. The above development shows that those graphs which are minimal in the sense required in the proof of Theorem 6 satisfy the more general stipulation that every triple of edges which share a common endnode is contained in a subgraph which is in Γ_c^2, i.e., an even subdivision of K_4. We conjecture that this property remains valid for all α-critical graphs.

We close by mentioning that the characterization of α-critical graphs given in Theorem 6 is used in [10, 8] to show that every rank facet of the stable set polytope, other than those derived from edges and odd cycles, contains an even subdivision of K_4. This leads to a polynomial time algorithm to find a maximum cardinality stable set for the class of graphs which do not contain an even subdivision of K_4. While we are unaware of a polynomial time algorithm to recognize graphs which do not contain an even subdivision of K_4, the algorithm from [10, 8] can also take an arbitrary graph as input and in polynomial time either produce a maximum cardinality stable set or prove that the graph contains an even subdivision of K_4 (without actually finding the even subdivision of K_4). We also mention that in [8, 9] the concept of α-criticality is generalized to the case where weights are assigned to the nodes, and a characterization analogous to Andrásfai's theorem (Theorem 2) for graphs in Γ_c^2 is obtained.

References

