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Interim Analyses: the Repeated Confidence Interval approach

BY CHRISTOPHER JENNISON

School of Mathematics, University of Bath, Bath, BA2 7AY, UK.
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School of Operations Research and Industrial Engineering,
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'SUMMARY

Most clinical trials are monitored for early evidence of treatment
differences or harmful side effects and many sequential methods have been
proposed for this purpose. The repeated confidence interval approach,
which combines aspects of sequential estimation and testing, allows a full
exploration of the data at each interim analysis and does not depend on a
rigidly enforced statistical stopping rule.

In this paper we present the general principles underlying the construction
of repeated confidence intervals and describe how they can be used in
reaching a decision to terminate a study early. We discuss design
considerations, which depend on the form of early stopping anticipated, and
explain how the basic method can be adapted to cope with the problems of
unpredictable group sizes or, more generally, unequal increments in
information between analyses. Extensions of the method to handle normal
responses with unknown variance, survival data, categorical data and
multivariate normal observations are also presented.
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1. INTRODUCTION

1.1 The sequential approach

The theory of sequential statistical methods, stemming from the work of Barnard
(1946) and Wald (1947), was developed initially in the industrial setting where the
repetitive nature of production operations was conducive to their application in the areas of
acceptance sampling and process control. Benefits in terms of savings in sample size, time
and cost and in terms of control are well recognised. Medical studies involving humans or
animals would also appear to be a natural application for sequential statistical methods
because of the ethical need to monitor trials as they proceed. However, despite valuable
work by Armitage (1975) and others, formal acceptance of these methods has been slow.
Upon closer examination, the reasons for this become clear. Unlike industrial experiments,
the sampling units, patients, are by no means homogeneous. Second, no clinical trial will
ever be repeated under exactly the same conditions. Also, unlike a controlled industrial
setting, the rate at which statistical information accrues may be highly variable and
unpredictable. Fourthly, there may be multiple endpoints of interest and indeed the need to
consider some outcomes of interest may only become apparent as the trial progresses. An
example of this is the unexpected mortality side-effect in the University Group Diabetes
Project (UGDP) trial (DeMets, 1984). Finally, in medical applications, the decision to stop
the experiment, an important part of a sequential procedure, is not primarily a statistical
one. Instead the decision is a highly complex one involving many subjective factors.
Indeed Meier (1975, p. 526) claims it is a political problem rather than a medical, legal or
statistical one. We describe factors influencing the stopping decision in more detail in
Section 1.3 below. Because of its complex and subjective nature, the decision to terminate
a trial can be a cause for considerable controversy as, for example, happened in the
decision concerning the tolbutamide group in the UGDP study (Kolata, 1979). For other
examples see DeMets (1984). Standard sequential statistical analysis is not well equipped
to handle the non-rigid stopping rule and thus has not been able to help as much as might

be desired in providing objective input at times that stopping decisions must be made. In
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turn more objective input will help to dampen any controversy and make study results

more credible.

1.2 Examples

In order to follow the development of the methods we will propose, it is useful to

have a few typical examples in mind.

Example A: Acute quantitative responses

Here acute responses are available sequentially and modelled as independent
observations {X;, i=1,2, ...} which are normally distributed with mean 8 and variance 2.
Armitage (1975, p. 119) gives an example in which the {X;} represent differences in
recovery times for pairs of patients treated with two competing hypotensive agents.
Recovery times were measured in minutes and thus the responses can be considered
immediate relative to the length of the trial. Other examples (Whitehead, 1983, Sectiqns
3.2 and 3.4) that might lead to this model are comparisons between pairs of patients or
comparisons between two measurements made within the same patient. In each case the
measurement of response would be quantitative, such as tumour size, blood pressure, lung

function, or concentration of some chemical in the blood or urine.

Example B: Survival data

Consider a two-armed Phase III trial with staggered entry. In this case the responses
are (possibly censored) survival times. We may choose to analyse the data by a
proportional hazards model (see, e.g., Cox, 1972, p- 189), in which case, the hazard ratio is
a useful summary measure of treatment effect. Interim analyses will be made at the

periodic meetings of the Policy Advisory Board or similar committee.

In a post-marketing surveillance study, sometimes called a Phase IV clinical trial, a
single sample of patients on a given treatment is followed. Again patients usually enter the
study at staggered times. A primary response might be the time to occurrence of some

adverse effect and a parameter of interest is 6, the median response time. Again the
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accumulating data will be subject to periodic review.

Example C: Acute binary response — comparison of proportions

In a study currently being conducted in Mexico by Dr H. Martinez of Cornell
University, young children suffering from severe diarrhoea are randomised to one of two
treatments. Response is binary, success or failure', and is known within a few hours. The
trial duration is about six months, and for ethical reasons there will be four interim data
reviews. Here a parameter of interest might be the log odds ratio,
6 = log{p,(1-py)/p,(1-p,)}, where p; is the probability of success on treatment
i (i=1,2). Trials involving emergency treatments will usually be of this form; see, for

example, Bartlett et al. (1985).

Example D: Comparison of proportions with strata

Consider the monitoring of incidence data in a prospective stratified intervention
study. A pilot study under the direction of Dr L. Clark conducted in Qidong county in the
People’s Republic of China investigated the effect of a dietary supplement of selenium on
the prevention of liver cancer. The full design called for a study population of forty
townships each consisting of approximately 30,000 people. Based on demographic and
other characteﬁstics the forty townships were to be grouped in twenty pairs. One township
in each pair was to be chosen at random to receive a supplement of selenium in the salt
supply. The response variable is the number of incident cases of liver cancer mortality.
Here a summary parameter of interest might again be the log odds ratio, assumed
approximately constant across the strata, i.e., 8 = log {p;(1-p; j)/p2 i(1=p1 j)} where p;; is
the probability of an individual on treatment i (i=1,2) in the j’th stratum (township pair)
dying with liver cancer. The study was planned to last for ten years but interim reports
were to be made annually.

A similar problem occurs in the current study United States Air Force Project Ranch

Hand II which is assessing the effects of the herbicide Agent Orange. Here each case, or

pilot exposed to Agent Orange, is matched to several controls consisting of unexposed
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pilots of otherwise similar characteristics. Again an estimate of a common odds ratio
~ might be a useful summary statistic. It has been mandated that reports be made to the U.S.

Congress annually for twenty years.

1.3 Interim Analyses

Interim analyses are now required in the profocols of many long-term clinical trials.
For example, most trials sponsored by the U.S. National Institutes of Health require the
establishment of a policy advisory and data monitoring committee, which meets
periodically in order to monitor the accumulating data from the trial. The committee is
usually made up of clinicians, statisticians and an ethicist. These interim reviews enable
checks to be made on the record of adverse side-effects, accrual, compliance,
contamination, protocol violations, etc. but their primary purpose is to enable a decision to
terminate the trial prematurely if important differences between treatment arms become
apparent, a "positive” result. In this case, such a decision is clearly obligatory from an
ethical standpoint. However, it may also be ethically desirable to be able to stop a trial
early if it becomes evident that there is little or no difference between treatments, i.e., a
"negative” result. This will enable a new trial to start up with the next promising
experimental therapy. In some pharmaceutical industry trials, early stopping for negative
results is required for economic reasons; see the papers on "abandoning lost causes" by
Gould (1983) and Gould and Pecore (1982). Note that the ethical requirement of early
stopping coincides with the concept of statistical efficiency with respect to both efficient
treatment of patients and efficient use of resources. In a long-term trial, sequential
methods are naturally applicable and are necessary for valid treatment of accumulating
data, thus, there is an excellent opportunity to take full advantage of the possible

economies that sequential methods offer.
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1.4 Desiderata for a sequential procedure

Whereas continuous monitoring is desirable, it is often impractical, especially in large
multi-centre trials where policy advisory boards can only meet at periodic intervals. In fact
group sequential designs in which the data are examined at only a few times, five or ten,
say, during the course of a trial, are almost as efficient in terms of sample size and trial
duration as fully sequential procedures (Pocock, 1977, 1982, McPherson, 1982, Jennison,
1987).

A second consideration is whether the sequential procedure should have open or
closed boundaries. It has been recognised that closed procedures are preferable for medical
trials (Armitage, 1975, p. 34, Gail, 1982, p. 461), since it is usually necessary for funding
and logistical purposes to be able to set an upper limit on the number of patients to be
accrued. Open plans such as Wald’s {1947) sequential probability ratio test have the
optimum property of requiring a minimum expected sample size at certain parameter
values; however, the possibility of needing a very large sample, although unlikely, is a
serious disadvantage. In fact a conservative approach in which the worst case sample size
is only slightly higher than the corresponding fixed sample design can capture most of the
statistical efficiency of the optimal procedure (see Jennison, 1987). Restricting the
maximum sample size to five or ten per cent higher than a standard fixed sample test can

also alleviate problems of ensuring an adequate eventual sample size.

The third point is that each interim analysis should provide more than just a decision
to stop or continue the study. The major consideration here is that of flexibility. The
decision to stop a trial early is largely a subjective one and may be inadequately modelled
by the theory of standard sequential tests. DeMets (1984) documents the complex nature
of the decision making process by describing the experience of several large multi-centre
trials. The decision will depend on information on side-effects, quality of life of the
patients, on new developments in the medical literature and on the cost and ease of
administration of the treatments, as well as the statistical evidence. In pharmaceutical
industry trials, management and economic decisions will play the ‘major role. Also, ideas

about critical differences in treatment effects can change over time as the trial progresses.
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Conventional sequential statistical methods are ill-equipped to handle the situation in which
a rigid stopping rule may not be adhered to. Several authors mention that a particular
method can serve to aid the stopping decision; however, it is not clear exactly how this
happens if, say, the trial has continued past the statistical stopping time. Meier (1975) has
emphasised the distinction between decisions and conclusions as first pointed out by Tukey
(1960). The decision to stop or continue a trial depends on "so many complex elements
that it may seem hard to conceive of a broadly applicable statistical theory for it", (Meier
1975, p. 524). On the other hand, conclusions concerning treatment differences to be
drawn from the data are within the purview of statistical theory. Lai (1984, p. 2367)
expresses similar ideas when he describes a "separation principle” between inference
concerning the primary "scientific” objective of the study and stopping, which is related to
information about a variety of ethical and economic issues. In the following sections we
will describe a theory of repeated confidence intervals (RCI’s) which will offer the
flexibility needed for interim monitoring of clinical trials. Of course we shall not want to
give up the efficiency offered by conventional sequential statistical methods and, in Section

2.4, we shall show that the RCI approach does indeed yield high efficiency.

1.5 Confidence sequences and repeated confidence intervals

The idea of a confidence sequence for a parameter of interest @ was first introduced
by Herbert Robbins in the 1969 Wald Lectures (Robbins, 1970). An interval /, based on
the first n observations is constructed with the property that with probability no less than a
prespecified fraction, 1-2a, say, 6 belongs to every interval I,, for n=1,2,... . In
particular this property ensures that /, is a valid 1-2« confidence interval even if n is a
random optional stopping time (Robbins, 1970, p. 1404). Lai (1984) has described these
ideas in the context of clinical trials. However, so far it can be said that the theory has
had little practical impact. One reason for this is that the intervals are much wider than
those of the corresponding conventional fixed sample size intervals and hence less useful in
making inferences. They would be unacceptable to investigators accustomed to fixed

sample intervals.
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If one is concerned with constructing a finite set of intervals with the same
simultaneous coverage probability property, then a much narrower sequence of intervals
{Iy, k=1, ...,K} can be constructed by means of inverting a group sequential test. These
intervals are called "repeated confidence intervals" (RCI’s). Jennison (1982) and Jennison
and Turnbull (1984, 1985) first recommended their use and similar ideas have been
discussed by Lai (1984). Their construction will be described in detail in the next section.
In fact, by an extension of the methods, the maximum number of interim analyses, K, need
not be specified in advance nor need the analyses be at equally spaced or prespecified

times.

At each analysis the RCI provides confidence limits for the parameter of interest, 8,
which are valid whatever optional stopping rule might be employed. Here it should be
noted that use of the usual fixed sample confidence interval at each interim analysis will
lead to an overall error rate much higher than the nominal 2e. In the hypothesis testing
formulation, this so-called "multiple looks" effect has been described by Armitage,
McPherson and Rowe (1969). The RCI can be presented at the monitoring committee’s
meetings to be considered with all other relevant information when discussing early
termination of a study and the use of RCI’s allows the same deliberations at each interim
analysis as would be conducted in a study with a single analysis with automatic protection

against the multiple looks effect.

An RCI may also be used to summarise the information about the parameter of
interest, 6, in the final report upon termination of the study. Whitehead (1983, Chap. 5),
Jennison and Turnbull (1983), Tsiatis, Rosner and Mehta (1984), Atkinson and Brown
(1985), Chang and O’Brien (1986), Duffy and Santner (1987) and Kim and DeMets (1987)
present methods for deriving a confidence interval for @ following a sequential test, but
these methods are only applicable if the appropriate stopping rule is strictly enforced.
Reporting the current RCI upon termination gives a somewhat conservative interval but

allows greater flexibility as this interval is valid whatever stopping criterion is used.

In the next section, we describe the construction of repeated confidence intervals and

discuss the use of RCI’s as an aid to early stopping decisions. In the idealised situation



-8 -

where rigid statistical stopping rules can be applied, the RCI approach can be used to
construct such a rule. Although we have argued that this situation is not always
encountered in clinical trials, it is of interest because it permits efficiency comparisons
between different sequential procedures. Such comparisons, described in Section 2.4, show
that tests derived from RCI’s can be highly efficient by conventional criteria. Thus, RCI’s
provide a convenient method for constructing efficient sequential tests with rigid stopping
rules; in this context, they have the advantage of easily accommodating unequal increments
in information between analyses and their use of separate test statistics at different
parameter values can lead to greater accuracy in achieved error rates when dealing with
data such as, for example, survival data, for which only crude global approximations are

available.

In Section 3 we discuss design considerations and describe extensions to the basic
procedure for cases where the maximum number of analyses is not fixed in advance and
when the amounts of information accruing between analyses are unequal or unpredictable.
In the remaining sections we describe methodology for the following types of response
variable: normal response with unknown variance; survival data, in particular the
estimation of hazard ratios and quantiles of survival distributions; categorical data,
including binary response, the estimation of odds ratios in stratified and unstratified studies,

bioequivalence testing, case-control and intervention studies; multivariate normal response.

Tables of constants needed to construct RCI’s in the above applications are provided
in this paper. Throughout, we have used numerical integration techniques to calculate
these constants. Such methods have been widely used for normal observations with known
variance but there has been little work on exact calculations for other continuous
distributions. Aroian (1976) surveys early research in this area, including unpublished
work by J. Schmee (1974) on the sequential ztest. Increased computer power now makes

a full treatment of these problems a realistic proposition.
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2. THE REPEATED CONFIDENCE INTERVAL APPROACH

2.1 Definition
We start by considering the case where the maximum number of interim analyses, K,
is fixed in advance. Later, we shall discuss the situation when K is variable. We say that

the intervals {/;; k=1, ..., K} form a sequence of repeated confidence intervals with level

(1-2«) for a scalar parameter of interest 6 if they have the property:

Pyl foralll £k <K)=1-2a 2.

The recipe for constructing the intervals is as follows:

A. Specify a two-sided group sequential test of size 2. Various forms for such
a test have been proposed by several authors including Pocock (1977),
O’Brien and Fleming (1979) and Fleming, Harrington and O’Brien (1984).

B. At the k’th analysis (1 < k < K), place in /; all those values 6, which would
currently be accepted by that group sequential test of the null hypothesis
Hy: 0=6,.

Because the group sequential test has size 2a, we have

Po(0 el foralll <k <K)=Py(0is accepted atall 1 <k <KX)

1 — Py(01is rejected at some 1 < k £ K)

1-2a

and so, indeed, the intervals {/;; k=1,...,K} do have the property (2.1). It should be
noted that although a test is used in the construction of the RCI’s, its associated stopping
ruie is not normally used. If for some reason the study can be stopped before the K’'th

analysis, the RCI’s are effectively conservative since not all K intervals are seen.

The coverage property (2.1) would still be satisfied if I, were replaced by (M) [,

i<k
thereby giving narrower confidence intervals. However we prefer to use the intervals /, as

defined, since then /; is in general a function of the sufficient statistic for 8 based on data
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available at the k’th analysis. This also avoids the possibility of obtaining an empty

confidence interval.

A group sequential test of hypothesis Hy: 6=6, can be written in the form:
Reject Hy at stage k if |S(k,6p)| 2 ¢,  k=1,...,K

where S(k,6;) is a standardised test statistic appropriate for the type of response data being
monitored. The {c;; k=1, ...,K} are critical values constructed to ensure that the test has
size 2. Details of the construction and examples of standardised test statistics are given

in the following sections. The interval /; can then be written as:

I = (6: |S(k,0)| < c;) (2.2)

Although the definition (2.2) does not guarantee it, the sets {/;; k=1,...,K} are in
fact intervals except in very rare pathological cases, see, e.g., Brookmeyer and Crowley
(1982). (If this event occurs we could define /; to be the shortest interval containing the
set and the coverage probability will be conservative). Therefore we can write the

intervals in the form /; = (Qk,é-k) for 1 £k <K. The property (2.1) becomes:
Py, <6< @, foralll <k <K)=1-2a. (2.3)
The intervals we shall construct will be approximately symmetric, that is
Po(gy < @foralll <k<K)=P(§ >6foralll <k <K)=l-a. (2.4)

The second inequality is only approximate because of the possibility that 6; > @ for some
k and G—k < @ for some other k (1<k<K). However the probability of this event is

negligible and the departure from equality can be ignored in practice.

If the consequences for overestimating @ are different from those of underestimating 6
(see, for example, DeMets and Ware, 1980, Section 3.3), then asymmetric intervals might
be desirable. A different set of limits {(§¥, 4—9‘,""); k=1,...,K} can be constructed from a
group sequential test with size 2a* and critical values ¢, say. Then, by (2.4), the
asymmetric repeated confidence intervals {(8, 5k); k=1,...,K} will have level
approximately equal to l-a—a*. From now on we will consider only symmetric

confidence intervals and tests with equal error rates but the above remarks show that it is
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easy to adapt the ideas to the asymmetric case.

2.2 The prototype case: normal response with known variance

In this section we describe the construction of repeated confidence intervals in the
simple case of independent observations normally distributed with known variance, o2, and
unknown mean, 6, as described in Example A of ’Section 1.2. The methods here are also
appropriate for group sequential experiments with non-normal responses where sums of
observations have approximately normal distributions or with normal responses of unknown
variance where the variance can be reliably estimated from the first group of observations
(an exact treatment of normal observations with unknown variance is given in Section 4).
The methods for this case also serve as the basis for treating other situations such as those
described in Examples B, C and D of Section 1.2.

We first suppose that the responses are recorded sequentially in groups of equal size,
n, say. Let S, denote the sample sum of all nk observations available up to and including
the k’th group or analysis (1 < k < K). Repeated confidence intervals for @ can be based

on (2.2) with the standardised statistic S(k,8) given by:
S(k,8) = (S, — nké)[oVnk (2.5)
It will also be convenient to define a quantity §(k) called an "information time" or "process

time". In this case it is defined as §(k) = nk/c2, the Fisher information for 8. We also

define an unstandardised statistic $*(k,8) by

S*(k,0) = S(k,0NE(k) = (S, — nko)/c?.
The sequence {S*(k,0);k=1,...,K} has a multivariate normal distribution with zero
means, variances nk/c? and independent increments, ie., the covariances are
Cov(S*(k,8),5%(j,0)) = nklc? for k<j. Thus the {S*(k,0); k=1, ... , K} can be treated
as the values of a standard Brownian motion observed at times (4(k); k=1,...,K} in the

Brownian motion timescale. Suppose probabilities 7, 1 < k < K, are given such that
ﬂ'l+ vee +7EK = (2.6)

then from this knowledge of the joint distribution of {S*(k,0); k=1,...,K}, it is possible
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to construct constants {c;; k=1, ..., K} recursively, such that:
Py(1S(1,0)|<cy, ..., |S(hk=1,0)|<cr_y, S(K,0)2¢, ) = m, Q2.7)
and hence
Po{|S(k,0)|2c, forsome 1 £ k £ K} =2a (2.8)

Details of the recursive construction of these constants are given by Armitage, McPherson
and Rowe (1969), McPherson and Armitage (1971) and DeMets and Ware (1980). The
quantity 2z, can be viewed as the (2-sided) error probability "spent” at the k’th interim
analysis. The nominal two-sided significance level at the k’th analysis is 2a; where
ap = 1-P(c,) and O denotes the standard normal distribution function. The quantities

{me; k=1,...,K} and {;; k=1, ..., K} should not be confused.

Clearly there is a one-to-one relation between the three sets of constants
{ce; k=1,...,K}, {m; k=1,...,K} and {e;;k=1,...,K} and there have been several
suggestions in the literature as to how to choose them subject to the constraint (2.6). The
two best known suggestions are due to Pocock (1977) and O’Brien and Fleming (1979).
Pocock (1977) suggested setting a; = ... =ayg or equivalently ¢; = ... =cx = Zp(K,a), say,
a constant depending on K and «, chosen to satisfy (2.8). O’Brien and Fleming (1979)
chose constants ¢, = ZB(K,a)m (1 £k £K), where again Zz(K,) is a constant
chosen so that (2.8) is satisfied. This is equivalent to choosing boundary points that are
constant on the S*(k,0) scale. (It should be noted that this definition of Zy differs by a
factor of 1VK from that in Jennison and Turnbull (1984).) The constants Zp(K,) and
Zp(K,a) are tabulated in Table 1 for K=1, ..., 10 and 2« = 0.01,0.05 and 0.10. Earlier,
for the case of error 2a = 0.05, Haybittle (1971) had proposed using the values
€1=....= ¢x_1 = 3 and cx = 1.96, the standard 5% point for a fixed size test. This is
equivalent to setting a; = .... = ag_; = 0.00135 and ax = 0.025. In this case the left
hand side of (2.8) will obviously exceed 2a, but only by a slight amount. A fourth
suggestion by Fleming, Harrington and O’Brien (1984) was similar in nature. Their
proposal was to set 7y = .... = gy = &, say, and 7x = @ — (K-1)z. Typically = is

chosen to be small so that the ratio ag/« is close to one, for example, 0.8 or 0.9.
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(Table 1 about here)

The question of the appropriate choice of constants for a particular study will be
addressed in Section 3.2; for the present we confine ourselves to a few comments on the

qualitative features of three types of RCL

Let X—(k) = S,,k/(nk) be the sample mean at the k’th stage. Then, from (2.2) and
(2.5), the £’th RCI for the mean @ is given by:

I, = (X(k) - oc,/Nnk, X(k) + oc/Nnk ) (2.9)

Note that the usual unadjusted 1-2e confidence interval for 8 would be of the same
form as (2.9) but with c; replaced by & !(1-a). The ratio of the width of interval I, with
the usual unadjusted interval is ck/(D"l(l—a); this depends, of course, on the method
chosen to construct the {c;;k21}. For a = 0.05 and K = 5 and 10, Table 2 displays
these ratios for the three methods of Pocock (1977), O’Brien and Fleming (1979), and
Fleming et al. (1984). The parameter z in the last method was chosen so that u=0.3,
where pa = (K-1)z, which implies that ag/e is 0.9 approximately. The corresponding
boundary values {c,; k>1} can be calculated by multiplying the entries in Table 2 by
©~1(0.95) = 1.645.

(Table 2 about here)

From Table 2 it can be seen that the widths of RCI’s based on the Pocock method are
a constant multiple of those of the unadjusted intervals although, of course, the widths of
both intervals decrease at rate Vk (1 <k < K ). On the other hand, the O’Brien &
Fleming-based RCI’s are very wide at the beginning but decrease rapidly and are quite
close to the unadjusted interval at the last analysis. The RCI’s based on the last method of
Fleming er al. can be seen as a compromise: over the first K—1 looks, the intervals are
almost constant in relative width, but at the last look, the interval is hardly distinguishable

from the unadjusted interval. Although Table 2 shows relative widths for & = 0.05 and
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K = 5 and 10 only, these remarks apply in general for other values of & and K. Thus we
might recommend the Pocock-based RCI’s for situations where it is of equal importance to
obtain precise estimates of @ at all K analyses and the RCI’s based on the Fleming er al.
method when the interim analyses are much less important than the final analysis. The
RCI’s based on the O’Brien and Fleming method would be used in the situation where the
interim analyses become increasingly more importé.nt. The group size, n, can be chosen so
that the final interval Iy is some prespecified width, A, say. In this case the required group
size is n = 40'201%/K A%, The ratio of the final sample size to that required for a fixed
sample procedure which yields a confidence interval of the same width is

{cx/@ 1(1-@)}?, i.e., the square of the final entry in each column of Table 2.

2.3 The use of repeated confidence intervals to aid early stopping decisions

An RCI provides a statistical summary of the available information about a parameter
of interest at an interim analysis. By construction, the RCI is automatically adjusted for
"multiple looks" and it can therefore be regarded at each interim analysis with the same
level of confidence as a fixed sample size confidence interval in a non-sequential study.
The monitoring committee can combine the information provided by an RCI with
summaries of data on secondary endpoints and, possibly, external information in planning
the future course of a study. The most important decision in this context is that of early
termination: the precise way in which this decision is reached depends on the goal of the
study and its statistical formulation; three different examples are considered below.
Because of the strong influence of problem formulation on the scope for early stopping, the

aims of a study should be considered very carefully at the outset.

2.3.1 Two-sided tests

Suppose the parameter, 6, represents the difference between two treatments and we
wish to test the null hypothesis of no treatment difference Hy: 6 = 0 against the two-sided
alternative 6 # 0. Armitage, McPherson and Rowe (1969) developed the repeated
significance test for this problem and Pocock (1977) and O’Brien and Fleming (1979)
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adopted the same formulation for their group sequential tests. A study is terminated early
if Hy is rejected at an interim analysis, if the study continues to the final analysis and Hj

can still not be rejected, then H, is accepted.

Suppose that, say, Pocock type RCI’s for 6 are used to monitor a study. An obvious
way to test Hy: =0 is to terminate in favour of @ # 0 if ever an RCI fails to include
6 = 0. By definition of the RCI’s this happens éxactly when the Pocock test rejects Hy
and, thus, we have recovered Pocock’s original test. Similarly, the original test will be

recovered for other types of RCL

In this case, an RCI can be considered as an adjunct to the test of Hy: =0,
indicating which other values of @ are plausible, given the data; the RCI is more
informative than the test alone, in accordance with the now widely recognised fact that
confidence intervals are better data summaries than p-values. An RCI can be particularly
useful if opinion about an appropriate null hypothesis changes during the course of a study.
For example, suppose that 8 is the log hazard ratio between the survival distributions for
treatments A and B (assuming a proportional hazards model) and, as a study progresses,
there is evidence of a high incidence of serious side-effects on treatment B. To
compensate for this we might shift H, to, say, 8 = 0.2, thereby requiring an improvement
in survival to offset the discomfort or incapacitation caused by treatment B. The new rule

for early termination is simply to stop if an RCI for ¢ fails to contain 0.2.

It might be regarded as a dangerous practice to allow hypotheses to be altered in the
course of a study, particularly when members of the monitoring committee are not
completely disinterested in the study’s conclusions. (We would certainly not advocate this
in a study conducted to demonstrate a treatment’s efficacy or safety to a regulatory body.)
To provide protection from possible abuse, blinding should be maintained as long as
possible and contingencies should be discussed at the planning stage and written into the
protocol. On the other hand, it is clear from the descriptions of studies reported in DeMets
(1984) and Geller and Pocock (1987) that monitoring committees do take notice of
secondary end points and their attitudes to the originally stated goals will be affected; our

prime intention is to make available to the committee as full a summary as possible of data
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on the major end point for use in their deliberations.

2.3.2 One-sided tests

Several authors have recommended the use of one-sided sequential tests (see
Schwartz, Flamant and Lellouch (1980), De Mets and Ware (1980, 1982), Whitehead
(1983) and Jennison (1987)). The most appropriaie form of test will depend on the precise
nature of a particular study but, in general, a two-sided test is appropriate if the main goal
of a study is to answer the theoretical question of whether two treatments have different
effects whereas a one-sided test arises naturally from a decision theoretic formulation in

which the aim is to select the better of two treatments for future use.

Suppose 6 represents the difference between treatments A and B with respect to a
major end point. It might be felt appropriate to conduct a sequential test of 8 = 0 versus
6 < 0 and this would normally be treated as a test between two hypotheses, say, 8 = & vs
6 = -4, where §>0, with error rates a = P(Accept <0]|8=45)
= P(Accept 62 0| §=-5) at either hypothesis. Note that  is not confined to taking the
values *J, rather, these are convenient places to specify the operating characteristic of the
test, OC(0) = P(Accept 8 2 0/6). It could be that the interval (-6,5) represents an
indifference region, i.e., if —~§ < @ < § there is no strong medical reason to prefer one
treatment to the other; alternatively, the choice of & and § may be constrained by the
available sample size. It. is not necessary for the two "hypotheses" to be placed
symmetrically about 0. De Mets and Ware (1980) point out the need for asymmetric
hypotheses when an experimental treatment is compared to a standard: the new treatment
will only be accepted if it is shown to perform better than the standard and a test of 8 = 0
vs @ = A, where A > 0 if positive values of @ denote that the new treatment is superior,
may be adopted. Other considerations such as treatment cost or convenience or the level
of harmful side-effects may result in a shifting of these hypotheses or, equivalently, the
desired operating characteristic of the testing procedure. Meier (1975, 1979) proposes the
establishment of two points on the scale of treatment effectiveness, the "maximum

acceptable difference”, above which it would be unethical to treat with the inferior therapy,
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and the "least interesting difference”, below which it can be agreed that there is no
practical difference between the treatments. A similar proposal for trials comparing a new
therapy with a standard is made by Freedman, Lowe and Macaskill (1984). They introduce
a "range of equivalence", (8;,5,), where §; is the maximum improvement in the new
treatment that could still lead to retention of the standard as routine and &, (26;) is the
minimum improvement that would definitely lead to adoption of the new treatment.
Freedman and Spiegelhalter (1983) describe experience of an iterative questioning
procedure whereby consensus values of §; and &, can be agreed upon by the participating
clinicians. In almost all cases they found &; strictly less than &, and, thus, the interval

(6, ,8,) could be regarded as an indifference region.

RCI’s provide a natural way to monitor a study under any of the above formulations.
Suppose that 8 = &, and 6 = &, are two hypotheses or (J;,8,) is an indifference region for
0, then the study can be terminated at the k’th interim analysis in favour of the new
treatment if 6, > §; or in favour of the standard if 5}: < &. By Equation (2.4), the
probabilities of deciding in favour of the new treatment if @ < §; or in favour of the
standard if € = &, are both at most @. To ensure a conclusion, the sample size should be
chosen so that the final RCI cannot contain both §; and &,. This procedure stands in its
own right as a sequential test of 8 = §; vs @ = §, and it will be compared in terms of
efficiency with other scquential tests in Section 2.4. However, the procedure has greater
inherent flexibility since RCI’s retain their overall confidence level whether or not a
stopping rule is used and, thus, even if the study continues beyond an interim analysis at
which the RCI excludes §; or &, RCI's can be constructed at subsequent analyses in the
usual way. This property is important in situations similar to that described in Section
2.3.1 when opinions on the range of equivalence of two treatments change in the light of
evidence on secondary end points; the above procedure is easily adapted, simply by

substituting new values &;” and &, for the old &; and &,.
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2.3.3 Bioequivalence testing

Bioequivalence studies have attracted considerable attention in recent years (see, for
example, Dunnett and Gent (1977), Mandallaz and Mau (1981), Selwyn et al. (1981) and
Racine-Poon et al. (1986)). Dunnett and Gent (1977) discuss health care trials studying
innovations in patient care and cite the example of the handling of certain problems by a
nurse-practitioner instead of a physician. Here,. it is hoped to establish that the new
practice will not result in deterioration in the quality of patient care. This is a two-decision
problem and, thus, fits into the general framework of Section 2.3.2. A different situation
arises if the aim is to show that responses to two treatments are within a specified range of
each other in either direction. Racine-Poon er al. (1986) describe a study comparing a new
formulation of a drug with a standard formulation. The parameter 6 denotes the ratio of
mean responses and the two treatments are to be regarded as equivalent if 0.8 < 9 < 1.2.
In frequentist terms, a type I error arises if treatments are pronounced bioequivalent when
6 < 0.8 or 8> 1.2. It is quite straightforward to derive a sequential testing procedure
with type 1 error probability at most a from a sequence of 1 — 2a level RCI’s,
{(gk,é'k); k=1,...,K} : early stopping occurs if an RCI falls completely within or

completely outside the interval (0.8,1.2), thus, at analysis k£ (1 <k<K-1) one may

stop and accept bioequivalence if 6 2 0.8 and 51: <1.2
or

stop and reject bioequivalence if 51: <0.8 or 6, >1.2

and at the final analysis bioequivalence is accepted if 85 = 0.8 and 51( < 1.2, otherwise it
is rejected. It follows directly from (2.4) that the type I error is at most a. The power of
the test and its general statistical efficiency will depend on the sample size and type of RCI

used.
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2.4. The efficiency of tests derived from repeated confidence intervals

“Three forms of group sequential tests defined in terms of the end points of RCI’s
were described in Section 2.3. In this section we examine the properties of these "derived
tests" for normal data and show that they are highly efficient sequential tests in the usual
sense. In addition, examining the properties of the derived tests provides useful guidelines

for choosing the most appropriate type of RCI for a particular application.

2.4.1 Two-sided tests and bioequivalence testing

Consider the problem of testing the null hypothesis Hy: 6 =6, against a two sided
alternative when @ is the mean of a normal distribution with known variance. Pocock
(1982) shows that amongst group sequential tests with the same size and specified power
of 0.9 or more at an alternative hypothesis, repeated significance tests with constant
nominal significance level are nearly optimal in terms of expected sample size under the
alternative hypothesis while O’Brien and Fleming tests perform better under parameter
values at which the power is lower. Wang and Tsiatis (1987) propose a class of tests,
including both the Pocock and O’Brien and Fleming tests, and tabulate optimal tests within
this class according to various criteria. As explained in Section 2.3.1, if RCI’s are used to
test a null hypothesis Hy: 6 = 6,, the resulting stopping rule is simply the original test of
Hy: 6 =6, used in constructing the RCI’s. Thus, the procedure defined in terms of RCI’s
will have the same efficiency as the original test and an appropriate choice of RCI can be

made accordingly.

Bross (1952), Schneiderman and Armitage (1962) and Gould and Pecore (1982) have
proposed continuation regions with an inner boundary to allow early stopping under the
null hypothesis. Although there is no obvious mechanism for incorporating this feature in
the RCI approach for the two-sided test, the RCI based procedure for bioequivalence
testing defined in Section 2.3.3 is of this form. Gould and Pecore compare procedures
within a certain class with respect to their expected sample size under two parameter

values but there are, as yet, no general results on the form of optimal procedures of this

type.
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2.4.2 One-sided tests

We now turn to one-sided tests of the mean of a normal distribution with known
variance. Without loss of generality we consider tests of H;: 6 =—§ against H,: 8=4
- with error rates  under either hypothesis or, equivalently, tests of & < 0 versus 6 > 0 with
error rates  at @ = £ . The sequential probability ratio test (Wald, 1947) provides an
elegant solution to this problem and is known té minimise expected sample size when
0 = 6 or —5 amongst tests with the same or smaller error rates (Wald and Wolfowitz,
1948). The problem of minimising the expected sample size at € = 0, known as the
Kiefer-Weiss problem, has been studied by Anderson (1960), Lai (1973) and Lorden
(1976): the procedures proposed by these authors have the advantage of a finite maximum
sample size and smaller sample size variance than the sequential probability ratio test.
DeMets and Ware (1980, 1982) and Whitehead (1983) have adapted continuous boundaries
to the group sequential setting and Jennison (1987) has shown how optimal group
sequential tests can be found directly. Comparisons with optimal group sequential tests
allow us to assess the efficiency of tests derived from RCI’s and provide guidance as to the

most appropriate form of RCI to use.

In the notation of Section 2.2, suppose independent observations X; (i=1,2,...)
following a normal distribution with mean 6 and known variance, 0'2, are available

sequentially in up to K groups of size n. The RCI for @ after k£ groups of observations is
(X(k) ~ oci/Nnk, X (k) + oc,/Nnk)

where X (k) = S,./nk. The "derived test", which stops as soon as an RCI fails to include

both —¢ and &, has the formal stopping rule
stop at analysis k and accept H, if X(k) < & — oc,[Nnk

stop at analysis k and accept H, if X(k) 2 -6 + oc,/Nnk  k=1,...,K. (2.10)

To ensure termination at the K’th analysis, the group size, n, must be chosen so that the
width of the final RCI is 26, ie., n = 02c/K8%. It then follows immediately from (2.4)

that the error rates of this test under = +6 are equal and at most c.
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(Figs la, 1b, 2a, 2b about here)

Figs la and 2a show derived tests for K = 5 and a = 0.05 with the values 2 = 1
and & = 0.1645 chosen so that a fixed sample size test requires exactly 100 observations.
Fig. 1a shows the boundary of the group sequential test derived from Pocock based RCI’s.
(Note that stopping can only occur at nk = n, 2n,( 3n,4n or S5n). The unrounded value of
the required group size is n = 33.29 and critical values for S,, are +(—nks + 2.122Vnk)
for k=1,...,5. The origin of this derived test is illustrated in Fig. 1b (note the change of
scale on the S, axis): its upper boundary is the upper boundary of the Pocock repeated
significance test of Hy: 6=-6 vs Hy: 8#—6 and its lower boundary is the lower
boundary of a Pocock test of Hy: 6=6 vs Hy: @# 5, taking the intersection of the
continuation regions of the two two-sided tests shown in Fig. 1b yields the continuation

region of the one-sided test of Fig. 1a.

Figs. 2a and 2b show the corresponding test derived from O’Brien and Fleming based
RCP’s and its parent tests. In this case, the unrounded required value of n is 22.66 and

critical values of S, are * (—nks + 1.751V5n) for k=1, ..., 5.

As well as the efficiency properties to be discussed shortly, there are technical
advantages to constructing tests in this way for non-normal data. An example discussed at
greater length in Section 5.1 concerns the proportional hazards model for survival data with
log hazard ratio @: here, a separate score statistic can be used to test each null hypothesis
Hy: =6, in particular for 6, = § and -8, and advantage taken of the fact that
approximations to the distributions of score statistics are more reliable and better

understood under the null hypothesis than under an alternative.

(Table 3 about here)

The major qualitative differences between the two forms of derived tests are clearly
seen in Figs la and 2a. Very early stopping is more likely under the Pocock derived test

but this has a rather high maximum sample size, whereas the maximum sample size of the
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O’Brien and Fleming derived test is only a little larger than the fixed sample size. More
detailed properties of the derived tests are shown in Table 3. Firstly, we note that the tests
are only slightly conservative, the smallest error probabilities being 0.0441 as opposed to
the nominal 0.05 and this is a small price to pay for the flexibility gained. To assess the
efficiency of the tests, minimum possible expected sample sizes, E(N), have been
calculated, using the methods of Jennison (1987), under 6 = 0 and @ = + & and averaged
over five @ values ranging from 0 to 25. Here N denotes the total number of observations
taken on termination. In each case, the minimum is amongst group sequential tests with
the same group size and number of groups and with the same error rates at @ = + § as the
derived tests (further reductions of a few percent are obtained if error rates of 0.05 are
allowed). Note that for K=2 the maximum sample size and error probabilities at +J
determine the test, thus each test achieves its own minimum. In all cases, the Pocock
derived tests are very nearly optimal and the O’Brien and Fleming tests are fairly close to
optimality. Further improvements are possible: reference to Table 1 of Jennison (1987)
shows that the expected sample sizes of the Pocock derived tests can be obtained with
considerably lower maximum sample sizes whilst a narrowing of the wide early boundaries
of the O’Brien and Fleming derived tests would help reduce E(N) under non-zero 6. A
class of RCI’s and, hence, of derived tests, achieving these improvements will be
introduced in Section 3.3 but, for the moment, we would simply stress that efficient one-
sided tests defined in terms of repeated confidence intervals can be derived in a

straightforward way from the familiar Pocock or O’Brien and Fleming two-sided tests.

3. DESIGN CONSIDERATIONS

3.1 Sample size calculations

We first consider the case of normal observations with mean 6 and known variance,

2

o0“. A natural criterion governing the choice of sample size is the width of the final RCI

for . In a group sequential study with K groups of size n this interval has width
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20ckgNnK, thus, a group size n = 462c}/KA? is required for a final interval of width A.
For Pocock or O’Brien and Fleming tests cx = Zp(K,a) or Zg(K,a) respectively, values
of which appear in Table 1. We note that there is a "cost" for presenting the earlier
intervals, the final sample size is {cK/<I>"1(1—az)}2 times the fixed sample size needed to
produce a (1-2a) level confidence interval of width A (see Table 2). If a stopping rule
based on a testing problem is envisaged, A must be chosen accordingly. As described in
Section 2.4.2, (1-2a) level RCI’s can be used with the stopping rule (2.10) to give a one-
sided test of 8 = —§ vs @ = § with both error rates at most a and terminatiorﬁat the KX’th
analysis is ensured by setting A = 26 and, hence, n = azc,%/Ké‘z. Again the factor
{cK/<I>‘1(1 —-ctz)}2 appears as the ratio of the maximum sample size, nK, to that of a fixed
sample size test with the same error rates. This suggests an alternative strategy for
determining sample size: first, calculate the required fixed sample size, n; say, for your
objectives, then, if the non-sequential analysis involves (1—-2a) level confidence intervals
or tests with one sided error probabilities @, a group sequential study using (1-2a) level

RCI’s will be appropriate and a group size

should be used; here, K is the maximum number of groups and cx the final critical value
for the chosen form of RCI. This same strategy can be followed for non-normal data when
normal approximations are used in calculating RCI’s and it is particularly convenient when
standard sample size formulae for non-sequential studies are available. In other cases,

group sizes must be determined directly from the expression for the final RCI.

In many studies the rate at which information will accrue is not known in advance.
The entry rate of subjects is clearly of prime importance but other factors include the
variance of quantitative responses, the overall failure rate and level of competing risk
censoring in a survival study, or the overall incidence rate in a prospective epidemiological
study. Sometimes a pilot study can shed light on these issues but it is also possible to use
information obtained in the early stages of a study to plan its total duration and the times

of interim analyses. To avoid possible biases, it is important that such decisions should be
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based on estimates of the rate of accrual of information and not on observed differences in
response between treatment groups; also, termination should only be possible in these early
stages in extreme cases. If the observed information accrual rate is very different from
that originally anticipated, the goals of a study may need to be reconsidered and, in turn,
this will affect the appropriate choice of stopping rule. As an example, consider a study
designed to test between 6<0 and 620 for some parameter, 8, in which it was hoped to
achieve error probabilities a at @ = £6. If information accrues slowly but, for
administrative reasons, the maximum duration of the study remains fixed, the values of 6 at
which error rates « can be achieved will be farther apart, at @ = £§°, say, and for an
efficient sequential test & must be replaced by §” in the stopping rule (2.10). In order to
retain as much power as possible, one might instead change the form of sequential
procedure used; for example, moving from a procedure based on Pocock type RCI’s to one
based on O’Brien and Fleming type RCI’s reduces the width of the final RCI and, hence,
the distance between values of 6 at which error rates a are obtainable at the expense of
some opportunity for early stopping and an increase in expected sample size. The reason
for this is explained by the difference in maximum sample sizes of the two forms of
derived test shown in Table 3 and it is precisely in situations of this kind, where one is
struggling to obtain reasonable power with low patient accrual and a fixed maximum study
duration, that this consideration is most important. In such situations, it is more instructive
to consider the loss in power at a fixed maximum sample size than the increase in
maximum sample size at a fixed power when comparing sequential and non-sequential

procedures.

Only in the most carefully controlled experiments will group sizes be exactly as
planned but RCI’s adapt easily to minor variations in much the same way as a fixed
sample size analysis. The technical details of coping with unequal and unpredictable group
sizes will be treated in the next section. In some situations a little careful thought may be
called for. For example, if a study is conducted to select one of two treatments using a
one-sided test of the form described in Section 2.3.1, a large total sample size could

produce a final RCI for @ contained entirely between the critical parameter values §; and
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6, or a small total sample size could produce a final RCI containing both &; and &,. In
both these cases a decision could be made according to whether a point estimate for 8 is
above or below 3(6; + &,) although it would then be advisable to report the actual sample
size on which this decision is based. In cases where the sample size is particularly small
one might recognise this explicitly by introducing a third decision of "no formal
recommendation”, as suggested by Freedman, Lowé and Macaskill (1984), to be used when

the final RCI still contains both &, and &,.

3.2 Unequal and unpredictable group sizes

It is often not possible to achieve equal numbers of observations or, more generally,
equal increments in information between analyses. If interim analyses are conducted at
fixed calendar times but subjects arrive according to some random process group sizes will
not only be unequal but also unpredictable. This effect can be much more pronounced in
applications where observed statistical information plays the role of sample size, for
example, in a two population survival study where observed information is approximately

proportional to the total number of deaths in both treatment groups.

We shall describe the three available approaches to this problem in the case of normal
observations with mean 6 and known variance, o2, but the discussion is equally relevant to
other applications. Let the realised group sizes be denoted ny,...,ng and let
n(k) = n; +...+n, (1sk<K). Generalising the notation of Section 2.2, the standardised
statistic and information time are defined by S(k,8) = (Spky —n(k)6)/ oVn(k) and
J(k) = n(k)lo?. As before, we define S*(k,0) = S(k,0)VI(k) and the {S*(k,8); k>1)
behave as values of a standard Brownian motion observed at times (¢ (k); k21} in the
Brownian motion timescale.

The first approach, suggested by Pocock (1977, p. 197), is to ignore the unequal
group sizes and use the critical values {c;;k21} and nominal significance levels
{o; k21} calculated for equal group sizes. Analogously to (2.9), the k’th RCI for the

mean, 8, is then
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Iy = (X(k) — oc,/Vn(k) , X(k) + oc,/Vn(k)),

where, now, X (k) = Sncky/n(k). If group sizes are unequal the size of the Pocock test and,
hence, the overall confidence level of the RCI’s will not be the prespecified 1—2a but
Pocock suggests that, at least for his procedure with ¢; = ¢, = ... = ¢y, the confidence
level may be robust to small variations in group size. Our own calculations confirm this
for various choices of {c;; k21} and small variations in group sizes. For larger variations
some discrepancies do arise: with group sizes proportional to typical increments in
information from a two arm survival study under the proportional hazards assumption we
have found actual confidence levels of between 0.88 and 0.93 for a nominal level of 0.9.
Comparable results were obtained in the simulation study reported by DeMets and Gail
(1985).

An exact approach is proposed by Slud and Wei (1982) who suggest that exit
probabilities =y, ..., g, summing to «, be prespecified and critical values c¢; computed
sequentially as the actual group sizes are observed. Having found cy,...,ci_;, the
recursion proceeds by solving (2.7) for c;; this uses only the current and past group sizes,
ni,...,n, and not the unknown sizes of future groups, yet the exact confidence level for

the sequence {/; k=1} is maintained at 1 - 2a.

Whereas Slud and Wei (1982) propose that prespecified errors {7, ..., zg} should be
spent at each look, the third approach, due to Lan and De Mets (1983), spends type I error
in the test of Hy: =46, at a predetermined rate in the Brownian motion time scale, (k).
Here, an "error spending” or "use" function, f(t), is specified, where f(z) is nondecreasing
with f(0) = 0 and f(¢) = a for t21. A maximum amount of information, Qmax, must be
specified; for normal observations with variance o2, ¥ ,, = N,,,/02, where Noax 1s the
maximum possible number of observations. Defining v, =$(k)/4,,, = n(k)/N_,, we set
7, = f(vy) — f(v_1) and solve sequentially for ¢, ¢;, ... as before. Thus, conditional on
the value of v;, the probability of type I error at or before the &£’th analysis is f(v;). As
before, ¢, depends only on ny,...,n,. Note that here, unlike in the Slud and Wei
approach, there is no need to specify K, the total number of looks in advance. This

method has the appealing property that it is very finely tuned to the actual group sizes,
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spending more or less error, respectively, if the group size is larger or smaller than
anticipated. A disadvantage of the approach is the need for an accurate estimation of Nyax
ord, ., at the start of the trial: if a value of §,,,, is fixed and the total observed information
never reaches ¥, the confidence level will be greater than 1-2& and the RCT’s
conservative; if, on the other hand, ,,, is reached at an early stage, no use can be made of
any future data. The method is, however, very wéll suited to studies where both size and
power are specified and there is sufficient flexibility in the accrual process to ensure an

adequate sample size.

Fleming et al. (1984) have extended the Slud and Wei (1982) procedure to allow for
modification of the choice of K, the maximum number of analyses, during the course of
the experiment. For example, if K and =, ..., 7gx have been specified at the start of the
study but, after the k’th analysis, it is decided to change the maximum number of analyses
to K’, the subsequent RCI's are constructed using a new choice of specified exit

probabilities {#;’; i=k+1,..., K"} where

K K ,
Y m= Y om.
i=k+1 i=k+1

Fleming et al. (1984, p. 356) stress that the decision to modify the boundary must be
independent of the values of X N, ... ,X(k) or else the confidence level will not be
maintained. However, modifications could be made based on accrual rates, reports from
other trials or any variable independent of the outcome variable. In practice, such
modifications should be used with extreme care because of the possibility of abuse or loss
of credibility when reporting the results. Similar modifications could be made to the Lan
and De Mets use function, f(¢), if, during the course of a trial, it became apparent that .,
had been seriously over- or under-estimated. However, the same caveats apply and the
possibility of abuse and threat to credibility make such modification dangerous in practice

and to be avoided.

Overall, our recommendation is to adopt the first approach, using the nominal
significance levels for equal group sizes; if greater precision in the confidence level is

required, the Slud and Wei method of prespecified errors or the Lan and DeMets error
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spending function should be used, depending on the amount of control over information
accrual. A computer program to calculate critical values {cy; k21} for the Slud and Wei

and Lan and DeMets procedures is available from CIJ.

3.3 Choosing the number of interim analyses and type of RCI

We have already mentioned some of the qualifative differences between three types of
RCI, namely those based on Pocock, O’Brien and Fleming, and Fleming, Harrington and
O’Brien type tests of a null hypothesis. In extending this discussion there are two major
considerations, firstly, practical limitations and administrative convenience and, secondly,
statistical efficiency. These tend to exert conflicting influences and an acceptable solution
must find a balance between the two. In choosing the number of groups or interim
analyses, reductions in expected sample size must be balanced against the effort required to
perform more frequent analyses. This choice can be clarified at the planning stage by
presenting a summary of properties of procedures with different numbers of groups. For
example, our Table 3 could be used for the case of a one-sided test; the pattern here is
typical, the rate at which E(N) decreases diminishes as the number of groups increases and

a suitable design may well have only 5, 3 or even 2 groups.

The major qualitative difference between different types of RCI’s is the way in which
their widths vary over analyses. This is governed by the rate at which error is spent in the
original test of a null hypothesis on which the RCI is based and it influences directly the
extent of possible early stopping in derived tests. Very early stopping is often undesirable.
There may be procedural problems which need to be corrected at the start of a study or a
minimum length of follow up may be required to check statistical assumptions such as a
constant hazard ratio between treatment groups in a survival study. Also, as previously
mentioned, it is sometimes desirable to use the first one or two interim analyses to examine
the rate of patient entry or variability in subject response, but not differences in response
between treatments, in order to determine reasonable goals for a study and plan its
maximum duration and the times of interim analyses. O’Brien and Fleming argue that,

because their critical values, ¢, for 1 <k <K-1 are relatively large, cx is only slightly
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larger than the non-sequential critical value, & !(1-a) and the final analysis of their
sequential test will be very close to a fixed sample size analysis based on the same final
data. In terms of RCI’s, the first K—1 O’Brien and Fleming RCI’s are relatively wide but
the final interval is only slightly wider than the corresponding fixed sample size confidence
interval. These features stem from a low allocation of error to the early analyses and are
particularly desirable in the situation described in Section 3.1 where the maximum
available sample size is limited. In the light of these practical considerations we can now
add to the remarks made in Section 2.4 on the efficiency of stopping rules derived from
RCI’s. Firstly, if there is little likelihood of very early stopping, whatever responses are
observed, the first few RCI’s should be widened and the associated error probability in the
underlying test reallocated to later analyses. Secondly, if the maximum available sample
size is limited, O’Brien and Fleming type RCI’s which spend error sparingly before the

final analysis are to be preferred.

(Table 4 about here)

In Section 3.2 we described the Lan and DeMets (1983) "error spending function”
which enables adaptation of a test to unpredictable group sizes. This also provides a
convenient method of representing parametric families of tests which can be used with any
of the three approaches described in Section 3.2: in Pocock’s approximate approach equal

group sizes are assumed, 7, is set equal to f(k/K) — f((k—1)/K) and critical values c; are

calculated from (2.7) with n; =... =ng; in the Slud and Wei approach we keep the same
7, but calculate ¢, using (2.7) with the actual group sizes n; , ..., ng. The family defined
by

f@) = at? O<e<1

for p>1 offers a continuous spectrum of error spending functions with wider early
boundaries for higher values of p. Properties of one-sided tests derived from CI’s of this
type when the actual group sizes are in fact equal are shown in Table 4: as in Table 3, in

each case the minimum possible average expected sample size, with the average taken over
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five values of 6, was calculated using the numerical search procedure of Jennison (1987).
The value p=1 gives a derived test similar in performance to the derived test of a Pocock
type RCI but with lower maximum sample size whilst p=2.5 yields a derived test with the
same maximum sample size as the derived test of an O’Brien and Fleming RCI but lower
expected sample size. Taken as a whole this table facilitates the choice of both number of
interim analyses and the type of RCI for a study'in which the principle objective can be
formulated as a one-sided testing problem. Even if group sizes are unlikely to be equal, it
is sufficient to plan a study by comparing procedures on the basis of their properties when
group sizes are equal. We have studied the efficiency of derived tests using randomly
generated group sizes and our findings are that efficiency is robust to even quite large
variations in group sizes from that anticipated as long as Pocock’s approximate approach or
the Slud and Wei approach is used to handle the unequal group sizes. The Lan and
DeMets approach does, however, run into difficulties when the overall sample size is not

close to that expected.

4. NORMAL RESPONSES WITH UNKNOWN VARIANCE

4.1 Repeated r-intervals

We consider the same situation as that discussed in Section 2.2, except that the
variance, o2, of the independent normal observations is now assumed to be unknown. We
shall show how to construct RCI’s for the mean, 6, based on successive values of Student’s
t-statistic.

k

Suppose that there are n, observations in the k’th group, and let m, = ¥ n; (k21)

i=1

denote the cumulative sample size at stage k. Also define my = 0. Let X, .1,..., X,

denote the observed responses in the k’th group. We define

X =L $x, @1
me =1
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m; _
3 (X;-X(k))?

s2(k) = =L , “2)
mk—l

the sample mean and standard estimate of o2 at the kth analysis.

Repeated confidence intervals are based on the usual r-statistic:
S(k,0) = \my (X(k)-6)[s(k) (4.3)

which is the same as (2.5) with s(k) replacing o and my replacing nk. Below we describe
how the exit probabilities, z; (k=1), as defined in (2.7), can be computed for the sequence
of ¢-statistics, {S(1,0), S(2,6), ...}, and critical values {c;; k=1}. Constants {c; k=1}

can then be found so that

_ k)
I, = (X(h) - f—%ﬂ—;—

cps (k)

» X (k) + i

) 4.4)

for k21 is a RCI sequence with overall confidence level equal to some specified a.
The probabilities {z;; k=1} given in (2.7) are computed using a recursion similar to

that for the known o case, but now each iteration involves a double rather than a single

integral. Let
—_ 1 my
X, =— 2 X
nk i=m,,_1+1

be the mean of the £’th group. By straightforward algebra,

Moy =1) S2(k+1) = (mp=1) s200) + 3 (X;=Kpsy)?

i=mk+ 1

¢ DL R e )=X (K. @.5)

Ry

Define the scale invariant quantities

my (X (k)—6p)

k= (o}

and
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(m—1) 52(k)
= 2 .

k
o

The joint distribution of {S(1,6y), S(2,6;),...} when observations have mean 6 and
variance ¢ can be obtained from the joint distribution of {Z;, Ry, Z,, R;, ... } which, in
turn, can be constructed from successive conditional distributions. Firstly, Z; and R, are
independent with Z; ~ N(m;(6-6y)/c, m;) and Ri ~ x,?,l_l. The conditional distributions
of Z, given Z, and R, and of R, given Z;, R, and Z, are

6"90
fP(Zzlzl,Rl) ~N(Zy + ny

» N3)

and, using identity (4.5),

mymy [21 Zy ]2 2

P(R,\Zi,R,Z,) ~ R, + - + _
(R21Z,,Ry,Z,) ~ R, n |m " m Znp—1
In general
P(Ziv11Zy, Ry, Zy, Ry, oy Ziy Riy = P(Ziy1 | Z, RY)
0-6,
~ N(Zk + nk+1 "“‘c‘;‘-‘,ﬂ]ﬁ_l) (4.6)
and

P(Rev11Z1, Ry, Zy, Ry ooy Zyy Ry, Ziy1) = P(Ryy 11 Z3 Ry 241 1)

2

memey | 2y Zp

~Rp + =2 |5~ + 22 1. @.7)
TS| my Myt

Note that when the group size n;,, is equal to 1, the value of R, ; is completely
determined by Z;, R, and Z,, ;. Combining (4.6) and (4.7) for k = 0,1, ...,K-1 we can

obtain the joint density of (Z,, Ry, Zy, Ry, ..., Zg, Rg). Since

S(k,60) = \mg—1 Z,[\m R, , this determines the joint density of {S(k,8,); k=1, ...,K }.
Precise details of this recursion are given in Section 4.2.

6—6,

These joint densities depend on the parameters 8, 6, and o only through

However, the probabilities 7z, (k21) in (2.7) are always calculated with 6 =6, and hence
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they can be computed for specified {¢;; k21} without knowledge of 6 or o. Conversely, if
the {z; k=1} are given, values of {c;; k>1} satisfying (2.7) can be found successively. If
6 =06y, S(1,6p) has a central t-distribution with n;—1 degrees of freedom and c¢; can be
obtained from standard tables. Values of ¢; for k22 can be obtained using numerical

integration to evaluate the left hand side of (2.7).

Nominal significance levels of the z-statistic are defined by
o = 1=F(cy; mp—1) (k21)

where F( - ; v) denotes the cumulative distribution function of the t-distribution with v
degrees of freedom. In particular, @; = #;. For a repeated significance test with constant
nominal significance level one requires @) = ... = ax = a’, say. For K groups of equal size,
n, Table 5 shows values of Zp(K,n,a), which we define to be @ 1(1—a’) where a’ is
chosen to give an error rate of exactly 2«; the table includes ~values for a=0.05,
K=2,...,10 and n=3,5 or 10. The critical value for the case of known variance,
Zp(K,o,a), which is equal to Zp(K,a) of Table 1, is shown for comparison. The entries
were calculated by use of numerical integration and the recursive formulae of Section 4.2.
Pocock (1977 p. 195-6) recommended the use of the same nominal significance level for a
repeated -test as is needed for the case of known variance and presented simulation results
to support this suggestion. It is clear from Table 5 that only a slight adjustment to this
approximation is needed; in fact, the standard errors of Pocock’s simulation results do not
do justice to the accuracy of his proposal. As a typical example, for 5 groups of 3

observations the actual one-sided error probability is 0.055, compared to the desired 0.05.

(Tables 5 and 6 about here)

One is not restricted to constant nominal significance levels; any of the methods
described in Sections 2.2, 3.2 and 3.3 can be adapted to allow unknown variance. In the
case of the O’Brien and Fleming test for equal group sizes, it is natural to define the

{ck; k=1} in terms of significance levels:
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_ K
F(cp;m—1) = @ 1(ZB\/~1-C--)

where Zp = Zp(K,n,a) depends on the number of analyses, K, number of observations per
group, n, and one-sided error rate, . Values of Zg for K = 2,...,10, n=3, 5 or 10 and
2 = 0.1 are shown in Table 6, the value of Zz(K,0.05) from Table 1 being included for
comparison. Broadly speaking, arguments concerning the relative merits of ways to choose
the {c;; k=1} will be the same as in the known variance case. Of course, it will not now
be possible to choose group sizes in advance to guarantee a final interval of some
prespecified width (see Dantzig, 1940). The two-sample test of Stein (1945) might be
adapted to this setting; alternatively, an adaptive sampling approach in which group sizes
are chosen on the basis of the current estimate of o2 should give at least an approximate
procedure. We have also developed analogous procedures when the average range method
is used for estimating o2 instead of the sample variance, (4.2). These could be applied to

multiple sampling inspection plans by variables.

4.2 The recursive formula for the exit probabilities of the repeated t-statistics

Suppose boundary values cy, ..., cg or, equivalently, nominal levels a;, ..., g are
given. We wish to determine the exit probabilities {x; k=1,...,K} as defined in (2.7).

Maintaining the notation of Section 4.1, for k=2 let
Fi(z,r) = P(Zy<z, Ry<r and |S8(i,8y)|<c; for all 1<i<k—1)

and let
P 2
dzar

fk(zar) =

For k = 1, we define
fl(ZJ') = 81(2)}11(")

where gy is the normal density with mean m;(6—6,)/c and variance m; and k, is a 2’3:1—1

density function. For k > 1 we can recursively construct

Jes1(z,r) = ” fe(u,v) g1 (zlu,v) by  (rlu,v,z) du dv
Ci
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where

},

m.y
Cr = {(u,v): v>0, |u| < Ck\/ -
-

m,—1

8k+1(z|u,v) is the conditional density of Z, given Z, = u and Ry =v, and ki, (r|u,v,z)
is the conditional density of Ry, given Z; = u, Ry = v and Z;,; = z. The conditional
densities g;,; and h,; are given by Equations (4.6) and (4.7), respectively. Finally, for

k 2 1 the exit probabilities are given by

Ty = ”fk(u,v)dudv k=1
D,
where
m,v
D, = {(u,v): v>0, u> ck\/ k }.
mk-—l

5. SURVIVAL DATA

We now apply the RCI methods to survival data. Response times are commonly used
as end-points in analyses of clinical trials and of industrial life-testing experiments. For
the two-sample problem, typical in Phase III clinical trials, a commonly employed
approximating assumption is the proportional hazards model (Cox, 1972) in which the ratio
of the hazard rates of two response time distributions is assumed to be some constant, A,
say, independent of time. A convenient statistic for summarising the difference in survival
experiences between the two groups is then an estimate of this hazard ratio. In Section 5.1

we will describe how to construct RCI’s for A.

We may be monitoring the survival or failure experience of a single sample. This
occurs in a post-marketing surveillance study or Phase IV clinical trial. In this case,
repeated interval estimates of the median or other quantile of the response time distribution
are of particular interest as a summary statistic. In Section 5.2 we show how to construct

RCI’s for nonparametric estimates of these quantities.
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5.1 Construction of RCI’s for the hazard ratio
5.1.1 RCDT’s based on the logrank statistic

We consider the problem of comparing the survival experience of two groups of
patients, A and B, say. We assume a proportional hazards model, namely the hazard rate
for treatment A patients is A(¢) while that for treatment B patients is 4 2(z). Here, A(z) is
an unknown function and A, the hazard ratio, an unknown constant. The patients may
enter the study at staggered intervals and their response times may be subject to
independent competing risk censoring. It is desired to obtain RCI’s for A4 or, equivalently,

for 6 = log A.

At calendar time ¢, suppose there are d = d(¢) distinct uncensored death times in the
two groups pooled, denoted by 7; < 7, < ... < 74. Here 7; = 7;(¢) and we are assuming
no ties. These death times {7;} represent elapsed times between entry to the study and
death, and not calendar times. Let the number of subjects at risk at experimental time 7;
(i.e., known at calendar time ¢ to have survived a time 7;— in the study) on treatments A
and B be r;;(¢) and r;,(t), respectively. Then the logrank statistic (Peto and Peto, 1972) is
defined as

dg) ri ()
ril(t)+r,-2(t)

- 5;'(1‘)} 6.1

i=1
where 6;(¢) = 1 if the death at 7; was on treatment arm A and &;(¢) = 0 otherwise. Gail,

DeMets and Slud (1982) have shown that, as long as the numbers at risk on each arm

d
remain nearly equal and 6 = log4 is close to zero, the simple approximation L(z) ~ ¥ U;
i=1

where the U; are independent N(6/4,1/4) variables is quite reasonable. This approximation
is also suggested by asymptotic theory developed by Tsiatis (1981, 1982), Sellke and
Siegmund (1983) and Slud (1984), and supported by the further simulations of DeMets and
Gail (1985).

This simple approximation allows immediate application of the RCI methods of
Section 2. We define

L(ty) — 0d(1,)/4

S(k,0) =
(.6) Nd(t)l4

(5.2
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and
k) = d(z)l4 . (5.3)

RCI’s for 6 are then given by

4L(y)  2¢,  AL(t)  2c,

- , k=1,...,.K 5.4
S TV dw T i) 6

for appropriately chosen critical values {c;; k=1}.

If the calendar times #;,¢,,... are chosen so that there are equal numbers of deaths,
n = d(t;)—d(t;_,), between each analysis, then RCI’s based on either the Pocock or the
O’Brien and Fleming boundary with the corresponding critical values {cy; k=21}, given in
Section 2.2, can be easily calculated. A worked example is provided by Jennison and
Turnbull (1984, Table 7) who show how to construct both types of interval in a study with
10 interim analyses and 12 deaths between each analysis. (Actually, in their example they

used a stratified version of the logrank statistic in order to guard against time trends.)

The requirement of an equal number of deaths between each analysis is not always
convenient in practice. Clinical trial monitoring committees meet at regularly scheduled
calendar times without regard to the number of interim deaths. In their example, Jennison
and Turnbull (1984, Table 8) show that Pocock based or O’Brien and Fleming based RCI’s
were not much affected by performing analyses at six-monthly intervals instead of every 12
deaths, except at the very early looks. The simulation results of DeMets and Gail (1985)
also indicate robustness to unequal numbers of events between analyses. However, if the
numbers of events observed between interim analyses vary widely, as can happen in trials
with long accrual periods, then the more precise methods for calculating critical values
{cgs k21), described in Section 3.2, must be used. If one is concerned about lack of
preciseness caused by unequal increments in information, one should also be concerned
about the adequacy of the approximation for the joint distribution of {L(%); k21}, which
assumed that the hazard ratio was close to one and that the numbers at risk in each group
remained nearly equal. Clearly this will not be true if the two arms do not have balanced

sample sizes or if the hazard ratio is too large or too small. Simulations in Jennison and
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Turnbull (1984, Table 5) suggest that the approximation is no longer valid when the hazard
rate in one group is more than twice that in the other. In this case, we propose basing our
standardised statistic, S(k,8), on an alternative to the logrank statistic. This is described in

the following subsection.

5.1.2 RCDI’s based on score statistics

The logrank test was proposed for testing equality of two survival distributions. To
test the hypothesis 8 = 6, where 6 # 0 (A#1), a natural statistic is the efficient score

statistic based on the partial likelihood of Cox (1972). This is given by L(k,8,) where

Lo =Y |— 5:(1) 5.5)
s = i AY .
i=1 ril(tk) + eoriz(tk) k

The variance of this statistic is estimated by g (k,8p) where

J(k,0) =Y 5.6
(“.6) S [ + efrpal? 0

(%) rin (1) rin(t) €°

i
and we define our standardised statistic as

S(k,0) = L(k,0)/VI(k,0) (5.7

As suggested by the notation, the "information” or "process" time is given by (5.6)

and depends now on 6. Note that (5.5) reduces to (5.1) if 8 = 0. Also S*(k,e) = L(k,0).

Harrington, Fleming and Green (1982) have shown that when 8 is the true parameter
value, S(k,0) (1<k<K) are approximately jointly normal with zero means, unit variances

and Cov (S(k;,8), S(k,,8)) = NI(k; .00 9(k,,0) for k; < k,. Thus the {S*(k,6); k>1}

can be embedded in a Brownian motion and we are in the same situation as in Section 3.2.
However, the corrclations are no longer independent of 6 and, if we use the Slud and Wei
(1982) or Lan and DeMets (1983) approach, as described in Section 3.2, the constants
¢ = ¢ (@) will now depend on 6. Thus our k’th repeated confidence interval will be of

the form

(8: |S(k.0)]| < cr(8)). (5.8)
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This is somewhat cumbersome to deal with. However, simulation studies, reported in
Section 5.1.3, have shown that for fixed k; and &, the ratio $(k;,0)/d(k;,0) is
approximately constant over a wide range of 6. The advantage of this result is that a
single sequence of {cy;k>1)} can be computed using any single representative value of
8 (8 = 0, say) and the exit probabilities under other values of # are maintained to a very

high degree of accuracy.

Baseline covariate information is usually available in survival studies. Tsiatis, Rosner
and Tritchler (1985) show how such information can be incorporated into a sequential
logrank test and their simulation results demonstrate the importance of this modification for
avoiding conservatism if treatment allocation is balanced within strata defined by covariates
with a strong influence on survival. Their results and methods extend directly to the
construction of RCI’s although an important practical question is how crucial it is that the
vector of covariate parameters be estimated separately at each value, 6, of the log hazard

ratio.

5.1.3 Simulation results

A simulation study was conducted to evaluate the accuracy of the approximations to
distributions of test statistics described in Sections 5.1.1 and 5.1.2. The first is the simple
approximation to the distribuion of the sequence of logrank statistics,
{L(t); k=1, ...,K}, namely

d;

L(t) ~ El U;, (5.9)
where d; is the number of failures occurring by the k’th analysis, the U; are independent
N(6/4, 1/4) variables and 0 is the log hazard ratio. The second is the approximation to the
sequence of score statistics for testing Hy: 6=6y, {L(k,0);k=1,...,K}. If 6=6,, these
statistics have expectation zero and their distribution is taken to be jointly normal with
Var(L(k,8)) estimated by J(k,0), as defined in (5.6), and Cov (L(k;,9),L(k,;,0)) =
Var (L(k; ,0)) for k; <k;,.
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To assess the adequacy of these approximations in constructing RCI’s for the hazard
ratio, A=e?, the empirical probability of a sequence of 90% level RCI’s failing to contain
the true value of 1 was found for various study designs. Both Pocock and O’Brien and
Fleming based RCI’s were used with 5 or 10 interim analyses. Initially (Table 7), these
were implemented using critical values {c;; k=1,...,K} appropriate to equal increments
in information between analyses; subsequently (Table 8), the Slud and Wei method of
calculating critical values dependent on the observed information was used in selected
cases (apart from the problem of predicting the final observed information, similar results
are to be expected for the Lan and DeMets method). Estimates of the marginal probability
that the RCI at an individual analysis should fail to contain the true A were also calculated;
these estimates provide direct information about the adequacy of the normal approximation
to the marginal distributions of the test statistics and are helpful in detecting problems

caused by discreteness or skewness.

(Tables 7 and 8 about here)

In the simulations reported in Tables 7 and 8, subjects entered according to a Poisson
process with rate 100 over an accrual period of length 2. Subjects were randomly
allocated to one of two groups and potential failure times and competing risk censoring
times were generated. Failure times followed Weibull distributions with shape parameter p
= 0.33, 1 (exponential) or 3.0 with the scale parameter chosen so that the geometric mean
of the median failure time for the two groups was 2.5. Hazard ratios between the two
groups of 1, 1.5, 2 and 3 were used. The competing risk censoring time was generated
from an exponential distribution with failure rate 0.1. By reconstructing the information
available at each interim analysis, values of test statistics that would have been observeci at
these times were calculated and it was determined whether or not each RCI for A would
have contained the true hazard ratio. Times of interim analyses were 1,2,...,5 for
studies with 5 interim analyses and 0.5,1,...,5 for 10 analyses, expect in the case of

Weibull failure times with shape parameter 3.0 where times 2, 3,...,6 and 2,2.5,...,6.5
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were used in order to avoid extremely small numbers of failures at the first few analyses.

The results of Table 7 demonstrate that both approximations are accurate for the
experimental designs in question when the hazard ratio is close to 1 but the score statistic
approximation is better for hazard ratios away from 1. These findings are in general
agreement with the simulation results of Jennison and Turnbull (1984) and DeMets and
Gail (1985). Construction of RCI’s requires simultaneous testing of a range of parameter
values: although the simple approximation, (5.9), is appealing, since it provides a unified
treatment for a range of parameter values, the score statistic approximation is, in general,
more accurate and should be preferred. The approximation (5.9) is also inappropriate when
the ratio of the numbers at risk in the two groups is not close to 1, for example, if there is
unequal allocation of subjects between treatment arms. Unequal increments in information
are not a serious problem for the examples of Table 7: this was checked by calculating the
error probabilities for group sequential tests with the same critical values but independent
normal observations in groups of size proportional to the average observed increments in
information for the survival data, as defined in (5.6). The discrepancies in the error rates
for RCI's based on the score statistic at hazard ratios of 2 and 3 can be attributed to
inadequacies of the normal approximation: examination of the marginal probabilities of
rejecting the true hazard ratio at each analysis show that the score statistic has a skew
distribution at the early analyses; this explains the better performance of the O’Brien and

Fleming type RCI’s which allocate very little error probability to the first few analyses.

In the examples of Table 8, the numbers of failures at early analyses are sufficiently
large for the normal approximation to be adequate and discrepancies in the error rates for
score statistics with unadjusted critical values are mostly due to unequal increments in
information. The Slud and Wei method is clearly effective in correcting this problem.
Following the suggestion of Section 5.1.2, critical values based on observed information at
a representative hazard ratio other than the true hazard ratio were also calculated. This had
a minimal effect, the largest difference in empirical error rates between the two "adjusted"”
methods being 0.003. Comparison of the sequences {§(k,8); k=1, ...,K} over a range of

@ values in a more extensive set of simulation studies have convinced us that our results
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are quite typical for standard clinical trial designs and we would therefore recommend
that, as a labour saving device, a single representative hazard ratio be used in calculating

Slud and Wei or Lan and DeMets critical values {c;; k=1}.

In conclusion, we recommend that the score statistic and variance estimate (59) be
used to construct RCI’s. The normal approximation should be treated with caution at early
analyses if only a few (e.g., 20 or 30) failures havé occurred. If increments in information
between analyses are approximately constant (fluctuations between increments of up to
50% may well be acceptable) critical values {c; k21} for equal increments in information
may be used, otherwise the Slud and Wei or Lan and DeMets approach should be adopted

with critical values calculated at a single representative value, 4 = 1, say.

5.1.4 An example

To illustrate repeated confidence intervals for a hazard ratio, we have retrospectively
performed interim analyses on data from two arms of a clinical trial. The Eastern
Cooperative Oncology Group’s study EST 1573 compared treatments for squamous cell,
-adenocarcinoma and large cell cancer of the lung. Two of the treatments studied were (A)
a low dose schedule and (B) a high dose schedule of Adriamycin. The study had a two
year accrual period and most subjects had died within a further two years. From the date
of entry and eventual failure or censoring time of each participant we were able to
reconstruct the survival information that would have been available after 1, 2, 3 and 4

years.

(Table 9 about here)

Table 9 shows 90% level RCI’s for the hazard ratio, A, of treatment B to treatment A
for sequential designs with four yearly interim analyses and either Pocock or O’Brien and
Fleming based RCI’s. These intervals were calculated using the score statistic method and
the Slud and Wei correction for unequal increments in information, with critical values

(cks k=1,2,3,4}) calculated at the representative value, A=1. (The largest change in an
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end point if separate critical values are used for each A is 0.001.) No significant
differences in survival were found in this study but accrual to treatment B was terminated
and a new treatment arm introduced after a high incidence of treatment toxicity was
observed among patients receiving treatment B. We conjecture that a repeated confidence
interval for the hazard ratio between treatments A and B would have been a useful
summary of survival information at the time that the decision to drop treatment B was

taken.

5.2 RCI’s for the median survival time

We now consider the problem of monitoring the survival experience of a single group
of subjects. Again we assume staggered entry and the possible presence of independent
competing risk censoring. We describe the construction of RCI’s for the median survival
time, 6, based on accumulating data, although the methods can also be applied when the
parameter of interest is some other quantile or the survival probability at some fixed time.

This problem was considered by Jennison and Turnbull (1985).

To apply the methods of Section 2 we define

S(k,0) = 5}-@:%- (5.10)
’ Vi(6) '
and
J(k) =4(k,0) = V{1(6) (5.11)

Here §k(9) denotes the value of the Kaplan-Meier (1958) estimator of the survival
function, S(r), evaluated at response time 7 = 6, constructed using the data available at the

calendar time, 1, of the k’th analysis. V,(8) denotes the variance of S (k,6).
Jennison and Turnbull (1985) show that, as in Section 2.2, the sequence
S*(k,0) = {§k(9) - %}/Vk(e) k=1,...,K (5.12)

can be embedded in a standard Brownian motion at times $(k,0) for k=1,...,K in the
Brownian motion timescale. Operationally V,(8) in (5.10), (5.11) and (5.12) is replaced by

an estimate 17,((0) calculated from data available at the k’th analysis. This estimate should
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be consistent when @ is the true median. Based on theoretical considerations and extensive
simulations, Jennison and Turnbull (1985) recommend the constrained variance estimate of
Thomas and Grunkemeier (1975) as giving the most accurate coverage probabilities.
However the usual Greenwood formula estimate could be used, as could other estimators
surveyed by Slud, Byar and Green (1984). The result implies that the general procedures
of Section 2 can be applied to construct RCI’s of the form
(6: |5.(0)-3] < ciVi(8)}

fork=1,...,K.

Note that as in Section 5.1.2 the increments in §(£,6), k=1, ..., K, will be unequal
and unpredictable. They also depend on 6, causing the correlations to depend on 6.
However, the simulation studies of Jennison and Turnbull (1985) have shown that, under a
wide range of situations, the confidence level is maintained if we employ the first method
of Section 3.2, calculating critical values {c;;k21} as if the increments were equal.
Jennison and Turnbull (1985) give an example of these methods using follow-up data from

a cancer clinical trial.

6. APPLICATIONS TO BINARY DATA

6.1 RCI’s for the success probability in binomial data

A straightforward application of the normal theory of Section 2 is to the construction
of RCI’s for the success probability, 8, say, in group sequential Bernoulli trials. Binary
observations are available taking on one of two possible responses, success or failure, say.
Some examples are given by Armitage (1975, Chapter 3). Let S, ;) denote the cumulative
number of successes out of n(k) trials performed at the time of the k’th analysis. To apply

the theory of Section 2, we define
S(k,0) = (Suqiy = n(k)8) [Vn(k)6(1-6)

1(k,0) = n(k)6(1-6)
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and

S*(k,0) = Sy — n(k)8 .

By the multivariate central limit theorem, the joint distribution of
{S *(k,a); k=1,...,K} can be approximated by that of the values of a standard Brownian
motion observed at times {§(k,8);k=1,...,K }. It is interesting to note that here,

although $(k,0) does depend on 6, the correlations of the {S(k,8); k=1, ...,K} given by

Corr (S(k;,0),8(k2,0)) = N I(k;,6)/3(k,,6)

= \jn(kl)/n(kz) (kl <k2)

do not depend on 6. Hence, unlike in the examples of Sections 5.1.2 and 5.2, neither will
the critical values {c;; k=1, ...,K} of (2.7) depend on 6, enabling any of the methods of
Section 2.2, 3.2 and 3.3 to be employed directly. An application of these methods to

matched-pair case-control studies is described in Section 6.4.

6.2 RCI’s for the odds ratio in a 2x2 Table

We consider the comparison of two binary variables by constructing RCI’s for the log
odds ratio, 8, of the two success probabilities based on accumulating data. A typical
application has been described in Example C of Section 1.2. Suppose that after k£ analyses
we have observed cumulative totals of X (k) successes out of n(k) independent trials on
treatment A and Y (k) successes out of m(k) independent trials on treatment B. Let
N(k) = n(k) + m(k) and suppose that p, and pp are the success probabilities for
treatments A and B respectively. Finally, define the odds ratio y = p,(1-pg)/pg(1—p,)
and 6 = log y. (Use of @ rather than y reduces some problems of skewness in the

distributions of estimators.)

Pocock (1977) and O’Brien and Fleming (1979) proposed group sequential tests of
Hy: ps—pp = 0 or equivalently Hy: y = 1. These tests use a different variance estimate
from our tests for general y but they are asymptotically equivalent and their approximate
validity follows from the general results of Section 6.3 and the Appendix. Pasternack and

Shore (1980, 1981, 1982) subsequently applied Pocock’s test to cohort and to case-control
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studies. The triangular test (Whitehead, 1983, Sections 3.6, 4.2) can also be used in a

group sequential fashion to test Hj.
At stage k, the natural point estimate of 4 is §k = log y’;k where

~ X (k) (m(k)=Y (k) 6.1
Y= Y ) (k)X (6) D

and our standardised statistic is
S(k,0) = (8,~6)[NV,(8) (6.2)

where V,(0) is the variance of 5k (more correctly the asymptotic variance, see Robins,
Breslow and Greenland 1986). Because there is no explicit expression for V,(6),
operationally we replace V,(8) by a consistent estimate 17,5(0). The most convenient

estimator to use is Woolf’s (1955) estimator

__ 1, 1 oL, 1
X(k)  n(k)-X(k) Yk  m(k)-Y(k)

V.(0) =V, (6.3)

This estimator does not depend on 6 explicitly, a property which leads to simplifications in

calculating RCI’s. The information time is estimated by
q(k,0) = V! (6.4)
and $*(k,9) = (§k—9)/Vk. Repeated confidence intervals are given by
I = (8: 16,6 < ciWVi} = (Bu—cilVy, Dp+cinVy). (6.5)

In the Appendix we show that the joint distribution of {S”(k,8); k=1,...,K} can be
approximated by that of standard Brownian motion observed at times
{$(k,0); k=1, ...,K}. Therefore the general theory of Section 2 can be applied. Since
the times in the Brownian motion time scale, {\7,: 1; k=1}, do not depend on 6, the
problem of different rates of accrual of information for testing different values of 8,

encountered in Sections 5.1.2 and 5.2, do not arise.
We proceed as before either using the {c,; k=1} derived from Table 1 as if the looks

are equally spaced on the information time scale, or else using the Slud and Wei approach

described in Section 2.3, to calculate the critical values {c,; k>1}.
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A natural application of these RCI’s for an odds ratio is to bioequivalence testing
problems of the type described by Dunnett and Gent (1977). If (6,,6,) is defined as a
region of equivalence then the RCI’s can be used for early stopping if the current interval
I lies completely within (6;,6,) or completely outside (6;,6,), concluding equivalence or
non-equivalence, respectively. The situation is analogous to the case of normal responses

discussed in Section 2.3.3.

6.3 RCDI’s for a common log odds ratio in a stratified design

We consider a generalisation of the problem of Section 6.2 where now subjects are
classified as belonging to one of J strata. At the k'th analysis, frequencies
Xj(k), nj(k), Yj(k), mj(k), and Nj(k) are defined analogously to the definitions of Section
6.2 for each stratum j=1,...,J. The success probabilities on stratum J are denoted by py;
and pp; for treatments A and B respectively and we define yj = ij(l—ij)/{ij(l-—ij)}.
We assume a constant odds ratio model and it is desired to obtain interval estimates of
Y1 = ... = ¥y =y, say, or equivalently 8 = log w. Even if the odds ratio is not constant
across strata, an estimate of an assumed common odds ratio is often a convenient summary
of the difference between two treatments in the presence of confounding factors, as long as

the 6; = log y; do not vary greatly and have the same sign.

At stage k, we take as our estimator 6, of 6 the Mantel-Haenszel estimator (Mantel

and Haenszel, 1959), based on all data accumulated so far. That is §k = log y';k where

N J X.(k)(m(k)-Y.(k J  Y.(k)(n(k)-X;(k
. ___El i ><A;j<(k>) (k) /,~=1 i )(z(,},?) (k) 6.6
As in Section 6.2 we define
S(k,0) = (B-0)/NV(6) 6.7)
I(k,0) = Vil(e) (6.8)
and
S*(k,0) = (6,-0)/V,(6). (6.9)

The asymptotic variance of 5k, Vi(6), is estimated by y?,;‘ 2 Var y/}k where Var y?k is an
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estimator of the asymptotic variance of y’}k based on data observed up to and including the
k’th analysis. Although several estimators have been proposed for this quantity, the
preferred estimator is Vyg described by Robins er al. (1986). This estimator has the
advantage of consistency in both the asymptotic settings of a fixed number of strata with
increasing cell sizes and an increasing number of strata with bounded cell sizes. Dropping
the argument & on X;, Y;, m;, n; and Nj,' we define P; = (X;+m;-Y)IN,,
Qj = (Ty*n=XpDIN;, R = Xi(m;~Y))IN;, U = Yj(m;~X)IN;, R, = %; R; and U, = %; U
The estimator V¢ is then given by

2
Vys = szjZRj . HEEUAOR) Zijgj R 6.10)
2R 2R\ U, 2U2 U,

Note that the estimate of V,(6), l/;; 2 Vys = (U,/R,)? Vys » does not explicitly involve 6;
in fact, for J=1, this estimate is identical to Woolf’s estimate,

We show in the Appendix that if any one of the following three conditions holds, Cov

(S(ky,6), S(ky,0)} = N (k;,6)/9(k;,6) for ky <ky; thus, {S*(k,6);k=1,...,K} has

approximately independent increments and can be embedded in a Brownian motion in the

usual way. The conditions are:
(1) J =1, i.e., there is only one stratum (this case was considered in Section 6.2).

(2) Sample sizes on treatment A and treatment B grow at the same rate, this rate being
independent of the stratum, i.e., for each k=1, ni(k+1) = C(k) ni(k) and
mj(k+1) = C(k) mj(k) for 1<j<J where C(k) is some constant independent of the

Stratum j.

(3) The strata can be considered as a random sample from a "super-population” of
possible strata. At each look, one or more new strata are sampled, no new subjects
being added to a stratum used in a previous analysis. For example, this might be

applicable in a matched-set case-control or cohort study (Pasternack and Shore, 1982).

Even if none of these three conditions does hold, we conjecture that the Brownian motion
approximation for $*(k,9) will be quite good. Otherwise, to take proper account of

correlated increments in {S *(k,a); k21} the correlations between the {S *(k,a); k21} must
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be calculated using methods discussed in the Appendix, then more general multivariate
normal integrals must be evaluated, as described by Slud and Wei (1982). Once the

critical value, ¢, has been determined the £’th RCI for the log odds ratio is
I, = {0: |S(k,0)] < ¢}

which simplifies to I, = (6—c,\Vy, 6 + ¢, VV,).

(Table 10 about here)

Table 10 shows the results of a simulation study of the coverage probability of
sequences of RCI’s for a common odds ratio. The study included examples with a fixed
number of strata increasing in size in a manner meeting condition (2) above and examples
of matched pairs satisfying condition (3). It is readily seen that empirical error rates are
close to their desired values as long as sample sizes are sufficiently large, discrepancies
being most pronounced when the odds ratio is farthest from 1. Attained confidence levels
of O’Brien and Fleming based RCI’s are closer to 90% than those of Pocock based RCI’s
since they allocate less error probability to the early analyses, at which sample sizes are

smallest. Similar results were observed for 95% and 99% level RCI’s.

(Tables 11 and 12 about here)

As an illustrative example with a fixed number of strata of increasing size, consider the
hypothetical data in Table 11. These are cumulative frequencies representing case-control
data with six strata, collected in three stages. The frequencies at the third analysis are the
“Ille-et-Vilaine" data set (Breslow and Day, 1980, p. 137). The cumulative frequencies at
the first and second analyses are hypothetical values which might have been observed had
the study had a group sequential design. Sequences of RCI’s for the odds ratio are shown
in Table 12. Note that for both types of RCI the first interval fails to include 1 and an

exposure effect might have been concluded at this point.
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(Tables 13 and 14 about here)

The data in Table 13 provide an example with an increasing number of strata: each case is
matched with four controls and the exposure or non-exposure of each individual is
recorded. The frequencies at the third analysis form the "Leisure World" data set (Breslow
and Day, 1980, p. 174) which contains 63 matched sets. The hypothetical data at analyses
1 and 2 are counts that might have been observed under a group sequential study design.
Sequences of RCI’s for the odds ratio are shown in Table 14. Both types of RCI fail to
include 1 at either the first or the second analysis and an early decision in favour of an

exposure effect might have been made.

There has been considerable recent interest in "synthetic" case-control studies. Mantel
(1973) suggested using a random sample of controls when estimating an odds ratio in a
cohort study involving the relation between exposure and disease. Subsequent authors (for
example, Liddell, McDonald and Thomas, 1977 and Breslow er al., 1983) have considered
drawing random samples from each risk set to form a partial likelihood for a proportional
hazards model. The savings in computational effort or human effort involved in
assembling covariate data can be substantial. Adaptation of the methods of this section to
construct RCI’s for a common odds ratio in a synthetic case-control study is
straightforward. The "synthetic" approach could also be used with the methods of Section
5.1 to calculate RCI’s for a hazard ratio although careful attention must be paid to the

choice of random sampling mechanism (see Prentice, 1986).

6.4 RCI’s for Matched Pair Designs

A very special case of the stratified designs discussed in Section 6.3 is that of the
matched pair case-control or cohort study. The use of sequential methods in retrospective
case-control studies has been described by O’Neill and Anello (1978) and by Pasternack
and Shore (1982). Each stratum j now consists of two samples of size 1, i.e.,
nj(k) = m;(k) = 1, if the j’th pair has been observed by the k’th analysis. Again assuming

a common odds ratio, y, the Mantel-Haenszel estimate y’; reduces to the McNemar estimate
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where a(k) and b(k) are the number of discordant pairs of the first and second type,
respectively, observed by the time of the k’th analysis. Although the procedure of Section
6.3 could be applied (e.g., it might be reasonable to assume condition (3) holds), it is
easier to proceed directly. Let d(k) = a(k) + b(k) be the total number of discordant pairs
available at the k’th analysis. Then conditional on d(k), b(k) is binomial with success
probability ¢ = (1 + w)™!. Hence RCI’s for ¥ can be obtained by transforming RCI’s for
@ constructed using the methods of Section (6.1) with S,‘(k) = b(k) and n(k) = d(k).

6.5 An odds ratio regression model

In an epidemiologic study, the effect of an intervention upon the incidence of some
event of interest might be postulated as not immediate but gradual over time. The Qidong
study mentioned in Example D of Section 1.2 might be one such case. The introduction of
the selenium supplement into the salt supply might reasonably be expected to have a
gradual effect on the liver cancer incidence rates. Similarly the introduction of a nutrition
education program in a developing country might be expected to have a gradual but not
immediate effect on morbidity rates in pre-school children. When comparing a control
population with the treated population, a working model might be the log odds ratio

regression model:

log v, = 61
where y, is the odds ratio for the event of interest in year ¢ after the start of the study.
Here the regression coefficient 8 is the parameter of interest.

Let g, denote an estimate of the log odds ratio based only on frequency data collected
at #;, the time of the k’th analysis measured from the start of the study, and Ilet
oZ = Var Dk Correspondingly, define 6, = ¢,/1, and wp = (Var 6,)7! = t2[c?. The
weighted least squares estimate of @ based on all the data available up to time f, is given

by

.k k
6 =Y wb, [ 3 w (1<k<K).
i=1 i=1
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Defining Z; = w;6; we see that Z; has, approximately, a N(w;0, w;) distribution. If the
estimates {6;; k>1} are uncorrelated then the sequence
. k
S (k,0) =3 (Z;-w;0) (1<k<K)
i=1
has approximately the same joint distribution as the values of a standard Brownian motion

observed at times
k
Jk) =3 w;.
i=1

For unstratified or stratified studies 6, is given by the observed log odds ratio or
Mantel-Haenszel estimator, respectively. Correspondingly the variances o and weights wi
will be estimated either by Woolf’s estimator or by the Vg estimator of Robins et al.
(1986). Hence, RCI’s for the regression coefficient, 6, can be constructed according to the
methods of Section 2.2 with S(k,8) = S *(k,e)/‘f_g_(?)—. Note here that because the weights
wy depend on tE, the convenient method of constructing boundary values {c;; k21} as if
increments in information time between analyses, §(k+1) — $(k), are constant is likely to
be quite inaccurate. The later éstimatcs, 5k, provide much more information about the
value of 8. The Slud and Wei (1982) or Lan and DeMets (1983) methods for constructing
the {¢;; k=1} should definitely be preferred in this case.

7. MULTIVARIATE OBSERVATIONS

7.1 RCD’s for the multivariate normal mean with known covariance matrix

We assume that multivariate normal observations X;, X,,... of dimension p =1
with mean vector, @, and known covariance matrix, o2 %, are available sequentially. Here

2 is a known scale factor. By applying a linear transformation X; — X -}X; we can

c
assume X = I, without loss of generality. We could similarly assume c? = 1, but we will

not do so, looking ahead to Section 7.2 where o2 is unknown. We shall construct repeated
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confidence ellipsoids for @ with exact level 1 - . Siegmund (1980) derives analytic
approximations for sequential 2 and F tests. Our calculations, albeit for a subset of these

problems, are exact up to the error involved in the numerical integrations.

Data of this form might arise in a medical trial with multiple endpoints: Whitehead
(1986) describes several examples including a trial concerned with both length and weight
of new-born babies. Another application might be to an industrial sampling inspection

process where acceptance of batches is based on several variables.

k
As usual we denote the i’th group size by n; and let my = ¥ n; be the cumulative
i=1

my
sample size at the k’th analysis (k 2 1). We define Z(k) = > X;. The repeated
i=1

confidence ellipsoid for @ will be based on successive values of the statistic

1

ka'Z

S(k,8) = I Z(k) — myed, |12 . (7.1)

Note that the marginal distribution of S (k,8p) is chi-squared with p degrees of freedom and
non-centrality parameter m||@ - 6 ||%/a2, denoted by zpz (my]|6-6,1?/5?). In particular
we use this to obtain the distribution of S(1,6,). We proceed to show how to construct
recursively the joint distribution of { S(k,0p); k=1,...,K}. From this distribution with
0 = 6,, critical values {c;; k=1,...,K )} can be foﬁnd so that the sequence of confidence

sets {6: S(k,0) < ¢} for k=1, ..., K has exact level 1 — a.

For a Pocock (1977) type boundary with constant nominal significance levels, we set
¢y =...=cx = Cp(p.K,a), say. For boundaries analogous to those of O’Brien and
Fleming (1979) we set ¢ = (K/k) Cg(p,K,a). For the case of equal group sizes, the
required constants Cp(p,K,a) and Cp(p.K,a) are tabulated in Tables 15 and 16,
respectively, for values of & = 0.01, 0.05 and 0.10, k=1, ..., 10, and p=1,...,5. The
entries were calculated by use of numerical integration and the recursive formulae
described below. Note that when p=1, Cp(1,K,a) = Z3(K,a/2) and Cp(l,K,@) =
Zp(K,a/2)®. When K = 1, ¢; = Cp(p,1,0) = Cy(p,1,a), the usual percentage point of

the sz distribution.
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To derive the joint distribution of the {S(%,6y);k=1} under @ = 6, we note the
identity

S(h+1,60) = —— | ZK)-my80) + Zk+D-T(0)~ng, 160)]>

Mgyl ©

where Z(k+1)—Z(k)—ny, 609 ~ NP(O,nk+10'2[p) is independent of Z(k) and, hence, of
S(k,6y). Now, conditionally on Z(k),

S(k+1,6) ~ S(k,ao)] . 72

Mt o | 1ZGk)—myo |2 Mevl o | Mk
V4 = Z
Ny

P
Miy R L Miy

Therefore the sequence {S(k,6,); k=21} is Markov and the joint distribution of
{S(k,8g); k=21} under 6, can be constructed by multiplying together the conditional
densities of S(k+1,8y) given S(k,8y) for k> 1. Critical values {c;; k21} based on exit
probabilities {7;; k21} or nominal significance levels {a;; k=1} can be calculated in the
same way as for the univariate normal, known variance case but with non-central )52
densities replacing the normal densities.

Although not needed in order to calculate the repeated confidence sets for @, it is
instructive to calculate the exit probabilities for the sequence {S(k,6,); k>1} under the non
null case 8 # 6,. This is useful for power calculations of the derived tests (see Section
2.3). Without loss of generality, we can take 8 — 8, = [|8—-6,](1,0,0,...,0). We write
Z(k) - m8, = (ZW(k) , Z@P(k)), where the scalar ZM(k) is the first element of
Z(k) — m8y and ZP (k) is a (p—1)-vector denoting the remaining elements. Then, given
ZM(k) and T(k) = |ZP(k)||?, the conditional distributions of Z®M(k+1) and
T(k+1) = ||Z® (k+1)}|? are independent and given by

P(ZD*k+1) | ZV k) ~ NZDK) + ny 1 16 - 60l ngsy0?)
and
P(T(k+1) | T(K)) ~ mgp10? 22 1(T(K)Ing, 02)) .

The conditional distribution of S(k+1,8,) then follows from the relation
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1
m,o

S(k+1,8y) = {(ZDGh+1D? + T(k+1) }

2

The recursive formulae to determine exact probabilities therefore involve double rather

than single intervals, as in Section 4.2. Further details of their evaluation are omitted.

7.2 The case of unknown scale factor, o

We consider the same situation as in Section 7.1 where the multivariate normal
observations X;, X,, ... have covariance matrix ¢2X, I is a known pxp positive definite
matrix but now the scalar 62 is unknown. Again we may take X = I, without loss of
generality. We proceed as in Section 7.1, but replace o2 by the estimator

m;

> IX=Xo|?
Sz(k) — i=1

p(m—1)
where X(k) = Z(k)/m,.
The repeated confidence sets are therefore based on the sequendally computed F-
statistics {S(k,6p); k21} given by

Z - 2
SChg) = I Z(k)—my 8 (1% my 73

"ﬁ I1X;-X(0)|| 2/ (m—1)

i=1

Dividing numerator and denominator by p we see that marginally S(k,6;) ~ F . pm=})
under 8 = 6.

We now derive the joint distribution of {S(k,6y); k=1,...,K} when 8 = §,. Write
Uk) = || Z(k) - m6

SO

U(k)

S(k,0y) =
) = s

We proceed recursively. Firstly, U(1) and s2(1) are independent with m, o2 22 and

azzpz(ml-l) distributions respectively. For k 2 1, let e = (Z(k)-m8,)/ | Z(k)—m8,| be a
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unit vector in the direction Z(k)—m;60; and let the scalar random variable A and vector

random variable B to be defined by the orthogonal decomposition
Z(k‘l"l) - Z(k) - nk+190 =Ae + B

where BTe = 0.
Now, Ae + B is distributed as N, (0, ng,; ozlp) and by the spherical symmetry of this
distribution, A and B are independent of each other, as well as of Z(k). Using these facts

and the multivariate analogue of (4.5),
p(my,1=1) s2(k+1) =

mp M,y I Z(k+1)  Z(k) "2

p(m—1)s%(k) +
Rryy mp.q my;

+ 02 X -1)s (7.4)

we can derive the conditional joint distribution of U(k+1) and sz(k+1), given U(i) and
s2(i ) for 1 £ i £ k, from the relations

Uk+1) = GU(k) + A)? + || B||? (7.5)
and

p(my 1 —1) s2(k+1) =

p (my=1) s%(k) +

A- Uk) |? 2
My My g [mk M1 V ()] 1 s 7.6)

Myt my My, mé

where A, |[B]|> and C are independent scalar random variables with
A~ N©,my10%), |B|? ~ ngyy0?z2  and C ~ 62 X mi-1)-

Note that U(k+1) and s2(k+1) depend on the past history of the bivariate process
{(U@i),s%(i)); i=1, ..., k), only through U(k) and s2(k). Using techniques similar to
those used in Section 4.2, boundary values {cg;k2>1} can be computed so that the

repeated confidence sets
Iy = {6: S(k,0) < ¢}

have exact overall confidence level 1—a, as required. Since the distribution of the

sequence {S(k,6p); k=1} does not depend on o2, these values can be calculated using any
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convenient value, 02=1, say.

7.3 Extensions to other multivariate models

If, in Section 7.2, the covariance matrix £ were completely unknown it could be
estimated by the sample covariance matrix £. The natural statistic on which to base
repeated confidence sets would then be Hotelling"s T? statistic. If the initial group sizes
are large, a procedure with approximate level 1—a might be constructed using the methods
of Sections 7.1 and 7.2. Nominal significance levels {ay; k>1) corresponding to critical
values calculated using the methods of Section 7.1 or 7.2 could be converted to critical
values {cg; k>1) for the T2 statistic using percentage points of the Hotelling distribution
with the appropriate degrees of freedom. Exact methods would involve joint distributions
of repeated Wishart variables !

The univariate normal known variance case of Section 2.2 served as a basis for the
survival data and contingency table data methods of Sections 5 and 6. The methods of
Section 7 could analogously be developed to handle survival data from trials with three or
more treatments, or discrete data that can be expressed as 2xk contingency tables, stratified

Or not.
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APPENDIX

Here we show that the joint distribution of the {S (k,0); k=1} given by (6.7) and
based on successive values of the Mantel-Haenszel estimate for a common odds ratio has

the desired approximate multivariate normal distribution. The two asymptotic situations
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discussed by Robins et al. (1986) are of interest: in the first "large stratum” model the
number of tables remains fixed and individual cell sizes increase; in the second "sparse
data” model there is an increasing number of tables with bounded cell sizes. The limiting
multivariate normality of {S(k,0); k21} follows directly from the multivariate central limit

theorem and it only remains to prove that the limiting covariance structure is

Cov (S(k;,0),S(k;,0)} = \/sz(e)/vkl(a) for ky < ky or, equivalently,
Cov (8, , 8,) = Var(6},). Without loss of generality we can take k; = 1 and k, = 2 and,
since Var(ék) = yf“z Var(t;k), we need to show that

Cov (y1, ¥) = Var(yp) . (A1)

As in  Section 6.3 we define Ri(k) = Xj(k) {mj(k)-Yj(k)}/Nj(k) and
Uj(k) = {nj(k)-X;(k)} Y;(k)/N;(k). Then

J
¥ Ri(k)
ve = 5 (A2)
X Uik
j=1
Note that
J
Z {R;(k)—yU;(k)}
iy = S—

Uik
j=1

and E{Rj(k)—y/Uj(k)} = 0 for each j=1,...,J; the argument of Breslow and Liang

(1986, p. 312) implies that, in either asymptotic setting,

J
2 Var (R;(k)-yU;(k)}
Var g = £ — : (A3)
[ X E{U(k)}]?

j=1

Similarly, since each y?k is asymptotically unbiased,

Cov (¥1,¥2) = Cov (y; -V, Ya—v)
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7 J
{R(D-yU;(D} X (RD)-yU;D)}
= Cov | & =1
> UM ’ > U2
J j
= L Y Cov { R;(1)-yU;(1), R;D)-yU;(2) } . (A4)

Y E(U(1)) T E(U;Q) %
J J

To prove (A1), we begin by examining a typical term in the numerator of the right

hand side of (A4). Suppose that the table frequencies at analyses 1 and 2 in stratum j are

given by
Analysis 1 Analysis 2
a bl a + a bl + b2
Cy dl 1 + 0y dl + d2
ny my Nl n +ny my + my Nl + N2

In our previous notation Xj(l) = ay, Xj(2) = a; +a,, Yj(l) = by, Yj(?.) = by +b,,
ni(1) = ny, n(2) =ny+ny, mQ)=my, mi@2)=m+my, N(1)=N; and
N;(2) = Ny +N,. Writing p, for p,; and pp for pg;,

Cov { Ri(1) - yUi(D), R - yU;2) )

aldl"',lfblcl (al +02)(d1 +d2)“!//(b1 +b2)(C1 +C2)
N, ’ N, + N,

1

= m [Var(aldl-—u/blcl) + Cov (a1d1 ,a2d1) + COV(a1d1 ’aldz)

+ Cov (yb,c;,wbycy) + Cov(yb;cy,y¥bycy) — Cov(aydy,ybicy)

— Cov (a;d; ,ybyc;) — Cov (wb;c;,ayd;y) — Cov(ybic;,a1dy)]
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-1 2 )
"~ N,(N;+N,) [myny (w=1)°pa(1-pa)pp(1-pp)

+ minpa(1-pa)(A+pg(y—1))? + minfpp(1-pp)(y—pa(y—1))>
+ nymynypipp(1-pg) + nymymyp,(1-ps)(1-pp)?

+ w2nymyny(1-pa)*pp(1-pp) + w2nymymypp,(1-p,)

+ ynymynops(1-py)pg(1—pp) + ynymymy ps(1-p4)p(1-pp)

+ ynymynypa(1-p4)pp(1-pp) + wnymymy py(1-pa)pp(1-pp)] (AS)

where we have used the expression for Var (a,d; —wb,c;) given in the proof of Lemma 1
in Robins er al. (1986) and the fact that Cov(b,cy,a;d,;) = —E(d,) E(b;) Var(a,) etc.
(Here a;,b, and d, are independent and a; +c; =n;). The last eight terms can be

simplified to:
nymyng pg(L=pp){(y=pa(W=1))? + nymymy pa(1-p){1+pp(y-1)>.
Hence, collecting terms, (AS5) reduces to

myn
Nl(Nll +1N2) [(W‘l)sz(l‘PA)PB(l‘Pw + (my+m)pa(1-pp){1+pg(y-1))2

+ (ny+n)pp(1-pp){ w—ps(y— 1)}2]

myny A
T ON{(N{+Ny) 97 sy

Returning to (A4) and our previous notation we have

m(1)n;(1)

A [{B(L))BQ2 A
NN i/ (B(HB(2)} (A6)

COV('I/;l,'l;z) = E
J

where

B() =X E(Ui)} =3 myn (i 1-pappg;  (i=1,2)
J

1
& NG
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and (A6) can be rewritten as

(D, (HN;2
[m,( ), ,()} L @ 4
J

miQn AN (D) | N;2)? (A7)
m;(Dn;(1)N;(2)
L [m;o)n;(zﬂ\/;(l) N,-l(z) OO =Papaj| BC)
Now Var () is given by
1 2
7

Thus we see that the conditions given in Section 6.3 following (6.10) are sufficient to
ensure equality of Cov (¥ ,¥,) given by (A7) and Var (y,) given by (A8). If J = 1 then
(A7) equals (A8) trivially. This validates the development of Section 6.2. The sufficiency
of the second condition of Section (6.3) is also easily checked. In the third situation,
where new strata are added between analyses, the ratfo mj(l)nj(l)/Nj(l) in (A7) must be
interpreted as 0 when Nj(i)=0 and mj(l)nj(l)l\/)(Z)/mj(Z)nj(2)Nj(1) interpreted as 0 when
Nj(1)=Nj(2)=0, thus, summation over j in (A8) is effectively over a larger range than in
(A7); the approximate equality of (A7) and (A8), as J — oo, follows by the Law of Large
Numbers.
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TABLE 1

Constants Zp(K,a) and Zg(K,a) for monitoring a normal mean using a group sequential
procedure with, respectively, a Pocock (1977) type or O’Brien and Fleming (1979) type
boundary.

Zp(K, ) Zy(K,a)
K & 0005 0025 0050 0.005 0025 0.050
1 2576  1.960  1.645 2.576 1960  1.645
2 2772 2178 1875 2.580 1978 1.678
3 2.873 2289 1992 2.595 2004 1710
4 2939 2361 2067 2.609 2024 1.733
5 2986 2413 2122 2.621 2040 1.751
6 3023 2453 2164 2.632 2053 1.765
7 3053 2485 2197 2.640 2063 1.776
8 3.078 2512 2225 2.648 2072 1786
9 3.099 2535 2249 2.654 2080 1.794
10 3.117 2555 2270 2.660 2.086 1.801

Key: (1-2a) repeated confidence intervals in a study with K interim analyses are given by
(29) with ¢, =Zp(K,@) (1<k<K) for the Pocock type boundary or
¢y =Zg(K,a) VK/k (1 Sk <K) for the O’Brien and Fleming type boundary.

All entries were found by numerical integration and are correct to 3 decimal places.
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TABLE 2

Comparison of widths of repeated confidence intervals with unadjusted intervals

=5 K=10
k Pocock OB&F FH&OB - Pocock OB&F F H&OB
¢ 212 3.93Nk * 227 5.73Nk *
1 1.29 2.39 1.63 1.38 3.48 1.78
2 1.29 1.69 1.58 1.38 2.46 1.75
3 1.29 1.38 1.53 1.38 2.01 1.71
4 1.29 1.19 1.49 1.38 1.74 1.68
5 1.29 1.07 1.03 1.38 1.56 1.65
6 1.38 1.42 1.62
7 1.38 1.32 1.60
8 1.38 1.23 1.57
9 1.38 1.16 1.55
10 1.38 1.10 1.03

Entries give values of c¢,/1.645, the ratios of the widths of 90% repeated confidence
intervals to those of corresponding unadjusted intervals for X = 5 and 10 looks. The
{cy; k=1, ..., K} are computed using the methods of Pocock (1977), O’Brien and Fleming
(1979) and Fleming, Harrington and O’Brien (1984), with parameter 4 = 0.3.

* Values of ¢, were obtained by numerical integration and differ slightly from the Monte
Carlo estimates in Table 1a of Fleming er al. (1984).
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TABLE 3

Properties of one-sided group sequential tests derived from RCI's. Tests are for
a = 0.05, 6§ = 0.1645 and ¢% = 1, for which the necessary fixed sample size is 100; for
general & and o2 maximum and expected sample sizes should be multiplied by
0'2(0.1645/5 2. Minimum expected sample sizes are amongst all group sequential tests

with the same number of equal sized groups, the same maximum sample size and the same
error rates at @ = *§ as the derived tests. :

Type of Number Maximum E(N) P(error| =%5)
RCI of groups  sample size =0 6=t§ Average*
Pocock 2 130 921 772 78.4 0.0450
min: 92.1 77.2 78.4
3 147 88.8 69.3 70.3 0.0449
min: 88.7 689 70.2
5 166 86.1 63.0 63.9 0.0443
min: 85.2 62.5 63.8
10 190 84.6  58.3 59.5 0.0442
min: 817  57.7 59.3
O’Brien 2 102 93.3  80.1 78.2 0.0494
and Fleming min: 933 80.1 78.2
3 108 88.6 74.1 73.0 0.0476
min: 88.0 709 69.8
5 113 86.1 70.0 69.6 0.0460
min: 849  65.6 65.1
10 120 849 67.6 67.2 0.0441
min: 82.8 61.7 61.7

* Average expected sample size =
-;—{E(Nl8=0)+E(N|9=6/2)+E(N|9=5)+E(N|9=35/2)+E(N|9==26)}.
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TABLE 4

Properties of one-sided group sequential tests derived from RCI’s. - Those RCI's defined by
a value of p have "error spending function" f(t) = at?. Tests are for «=0.05, §=0.1645
and o*=1, for which the necessary fixed sample size is 100. Average expected sample size
is E(N) averaged over =0, §/2, §, 36/2 and 25. Minimum average expected sample
sizes are amongst all group sequential tests with the same number of equal sized groups,

the same maximum sample size and the same error rates at 6=%6 as the derived tests.

Number of Type of RCI Maximum Average  Min. possible  P(Error | 9=%5)
groups sample size E(N) average E(N)

K=2 Pocock 130 78.4 78.4 0.0460
O’Brien & Fleming 104 76.3 76.3 0.0489

p=1 121 76.2 76.2 0.0465

p=1.5 112 75.0 75.0 0.0476

p=2 107 753 75.3 0.0484

p=2.5 104 76.3 76.3 0.0489

p=3 102 71.7 71.7 0.0493

p=4 101 80.8 80.8 0.0497

K=3 Pocock 147 70.3 70.2 0.0449
O’Brien & Fleming 108 73.0 69.8 0.0476

p=1 131 68.6 68.4 0.0454

p=1.5 119 68.6 68.0 0.0462

p=2 112 69.6 68.6 0.0470

p=2.5 108 71.0 69.7 0.0478

p=3 105 72.5 71.0 0.0483

p=4 103 75.4 73.6 0.0491

=5 Pocock 166 63.9 63.8 0.0443
O’Brien & Fleming 113 69.6 65.1 0.0460

p=1 141 63.3 62.9 0.0444

p=1.5 127 64.2 63.2 0.0448

p=2 118 65.5 63.9 0.0456

p=2.5 113 66.8 64.8 0.0463

p=3 110 68.1 65.8 0.0469

p=4 105 70.6 67.9 0.0480

K=10 Pocock 190 59.5 59.3 0.0442
O’Brien & Fleming 120 67.2 61.7 0.0441

p=1 153 59.9 59.3 0.0433

p=1.5 136 61.1 59.8 0.0434

p=2 126 62.5 60.5 0.0438

p=2.5 120 63.9 61.3 0.0445

p=3 115 65.2 62.1 0.0451

p=4 110 67.5 63.7 0.0463
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TABLE §

Constants Zp(K,n,0.05) for Pocock type repeated t-tests with constant nominal
significance level and overall error rate 0.10. At each analysis the null hypothesis is
rejected if the two-sided significance level of the Student's t-statistic, without adjustment
for repeated looks, is less than 2{1-®(Zp(K,n,0.05))}.

Number of obs. Number of groups, K
per group, n 2 3 4 5 6 7 8 9 10
3 1.908 2.033 2111 2166 2208 2242 2269 2293 2313
5 1.894 2017 2.094 2149 2191 2225 2253 2276 2.297
10 1.884 2.004 2080 2135 2177 2211 2239 2263 2283
limit as n—eo 1.875 1992 2067 2122 2164 2197 2225 2249 2270
TABLE 6
Constants Zg(K,n,0.05) for O’Brien & Fleming type repeated t-tests with overall error
rate 0.10. At the kth analysis the null hypothesis is rejected if the two-sided significance
level of the Student's t-statistic, without adjustment for repeated looks, is less than
2{1-D(Zz(K,n,0.05) (K /k))}.
Number of obs. Number of groups, K
per group, n 2 3 4 5 6 7 8 9 10
3 1.702 1736 1760 1.777 1790 1.800 1.808 1816 1.822
5 1.694 1.727 1750 1.767 1.781 1791 1.800 1.807 1.814
10 1.687 1719 1742 1.759 1773 1784 1.793 1801 1.807
limit as n—ee 1.678 1.710 1.733 1.751 1765 1776 1.786 1794 1.801
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TABLE 7

Estimated probabilities that at least one out of a sequence of RCI's constructed to have
confidence level 90% should fail to include the true hazard ratio, A. Errors are reported
separately for RCI's above the true hazard ratio, A>A, and RCI's below the true hazard
ratio, A<A. Details of the experimental design, including accrual process, competing risk
censoring and times of interim analyses, are given in the text. The logrank statistic is used
with the simple approximation (5.9); the score’ statistic has mean zero and variance
estimated by (5.6). Critical values appropriate to equal increments in information between

analyses are used throughout.

Failure time  Hazard Type of No. interim  Using logrank Using score
distribution ratio RCI analyses statistic statistic
A>A A<A A>A A<A
Exponential 1 Pocock 5 0.051 0.051 0.053 0.053
10 0.047 0.047 0.050 0.050
O’Brien 5 0.048 0.048 0.050 0.050
& Fleming 10 0.047  0.047 0.049 0.049
Exponential 1.5 Pocock 5 0.042 0.052 0.050 0.055
10 0.038 0.051 0.045 0.057
O’Brien 5 0.039  0.050 0.048 0.050
& Fleming 10 0.039  0.048 0.046 0.048
Exponential 2 Pocock 5 0.032 0.056 0.047  0.059
10 0.027  0.055 0.042 0.063
O’Brien 5 0.030 0.056 0.048 0.053
& Fleming 10 0.030 0.055 0.045 0.052
Exponential 3 Pocock 5 0.012  0.069 0.040 0.063
10 0.010 0.072 0.036 0.072
O’Brien 5 0.012 0.074 0.046 0.051
& Fleming 10 0.012 0.072 0.045 0.050

All results are based on 10000 replications. Where the true hazard ratio is 1, errors in the
upper and lower tails have been averaged (by symmetry) and the standard error of
estimates is 0.0015; standard errors in other cases are 0.002.
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TABLE 8

Estimated probabilities that at least one out of a sequence of RCI's constructed to have
confidence level 90% should fail to include the true hazard ratio, A. Errors are reported
separately for RCI's above the true hazard ratio, A>A, and RCI's below the true hazard
ratio, A<A. Details of the experimental design, including accrual process, competing risk
censoring and times of interim analyses, are given in the text. The score statistic has mean
zero and variance estimated by (5.6); unadjusted critical values are those appropriate to
equal increments in information between analyses, whereas the Slud and Wei critical
values are dependent on the observed information at each analysis.

Failure time Hazard Type of No. interim  Score statistic, Score statistic,
distribution ratio RCI analyses unadjusted Slud and Wei
critical values critical values

A>A  A<A A>A  A<A

Weibull 1 Pocock 5 0.042 0.042 0.051 0.051
p =0.33 10 0.043 0.043 0.051 0.051
O’Brien 5 0.043  0.043 0.051 0.051

& Fleming 10 0.040 0.040 0.050 0.050

Weibull 2 Pocock 5 0.038 0.047 0.046  0.055
p =0.33 10 0.038 0.047 0.047 0.054
O’Brien 5 0.041 0.045 0.049 0.051

& Fleming 10 0.039 0.042 0.050 0.052

Weibull 1 Pocock 5 0.052 0.052 0.051 0.051
p=3.0 10 0.047 0.047 0.052 0.052
O’Brien 5 0.048  0.048 0.052 0.052

& Fleming 10 0.041 0.041 0.052 0.052

Weibull 2 Pocock 5 0.048 0.056 0.048 0.054
p=3.0 10 0.039 0.054 0.048 0.056
O’Brien 5 0.051  0.048 0.056 0.051

& Fleming 10 0.045 0.041 0.057 0.051

All results are based on 10000 replications. Where the true hazard ratio is 1, errors in the
upper and lower tails have been averaged (by symmetry) and the standard error of
estimates is 0.0015; standard errors in other cases are 0.002.
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TABLE 9

Repeated confidence intervals with overall confidence level 90% for the hazard ratio, A,
between treatments (B), high dose Adriamycin, and (A), low dose Adriamycin, in ECOG
study EST 1573. Intervals are based on survival data available at interim analyses 1, 2, 3
and 4 years after the start of the study. The type of interval to be used in making
decisions to drop a treatment arm etc. should be selected before a study is commenced.

Analysis  Time of  Observed number  Pocock RCI's  O’Brien & Fleming RCI’s

number  analysis of failures for A for A
1 1 year 69 (0.56, 1.52) (041, 2.09)
2 2 years 249 (075, 1.30) (0.73, 1.35)
3 3 years 343 (0.82, 1.29) (0.83, 1.28)
4 4 years 367 (0.83,1.24) (0.85,1.20)
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TABLE 10

Estimated probabilities that at least one out of a sequence of RCI's constructed to have
confidence level 90% should fail to include the true odds ratio, A. Errors are reported
separately for RCI's above the true hazard ratio, A>A, and RCI's below the true hazard

ratio, A<A. Critical values appropriate to equal increments in information between
analyses are used throughout.

Type of No. interim Odds ratio
RCI analyses v=1 y=2 y=3

5 strata of increasing size A>A A<i A>A A< A>A
An=Am=5 Pocock 5 0.046 0.046 0.042 0.047 0.037
10 0.048 0.043 0.043 0.049 0.038

O’Brien 5 0052 0.053 0.050 0.053 0.050

& Fleming 10 0.052 0.048 0.048 0.052 0.048

An=Am=10  Pocock 5 0051 0.048 0.049 0.048 0.046
10 0.045 0.048 0.043 0.048 0.038

O’Brien 5 0.053 0.051 0.052 0.052 0.049

& Fleming 10 0.049 0.051 0.046 0.049 0.046

Matched pairs ASA A<A ADA A<A A>A
AJ=20 Pocock 5 0034 0.034 0021 0.045 0.010
10 0.037 0.037 0.027 0.045 0.018

O’Brien 5 0046 0.046 0.041 0.050 0.034

& Fleming 10 0.048 0.048 0.049 0.051 0.040

AJ=50 Pocock 5 0.044 0044 0.036 0.050 0.028
per analysis 10 0.043 0.043 0.038 0.053 0.031

O’Brien 5 0.048 0.048 0.048 0.050 0.042

& Fleming 10 0049 0.049 0.046 0.051 0.046

AJ=100 Pocock 5 0.047 0.047 0.042 0.046 0.036
10 0.047 0.047 0.045 0.056 0.036

O’Brien 5 0.048 0.048 0.048 0.047 0.044

& Fleming 10 0.051 0.051 0.051 0.052 0.047

5

0.051
0.048
0.052
0.049

0.051
0.053
0.052
0.051

A<

0.056
0.056
0.052
0.055

0.056
0.060
0.053
0.056

0.058
0.056
0.055
0.051

For the case of 5 strata of increasing size, p,; =0.05+0. 16j (j=1,...,5) and increments
in column totals between analyses, An and Am, were constant across strata and analyses.
For matched pair designs, values for p,; were generated from a uniform distribution on
(0.2, 0.8) and a fixed number of new pairs, AJ, were added between analyses.

All results are based on 10000 replications. For matched pair designs with a true odds

ratio of 1, errors in the upper and lower tails have been averaged (by symmetry) and the
standard error of estimates is 0.0015; standard errors in other cases are 0.002.
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TABLE 11

Hypothetical interim data for the "Ille-et-Vilaine" study (Breslow and Day, 1980, p. 137).

Entries are cumulative counts of exposed and unexposed cases and controls in each
stratum at three interim analyses.

Cumulative frequencies
Analysis Stratum Cases Controls
Exposed  Unexposed Exposed  Unexposed
1 1 0 0 4 31
2 2 2 8 60
3 6 5 9 40
4 20 19 5 30
5 8 14 7 31
6 2 3 0 9
2 1 1 0 6 66
2 2 4 18 111
3 18 14 19 89
4 30 27 20 100
5 11 22 12 57
6 3 7 0 21
3 1 1 0 9 106
2 4 5 26 164
3 25 21 29 138
4 42 34 27 139
5 19 36 18 88
6 5 8 0 31
TABLE 12

Interim results for the data of Table 11. The odds ratio, v, is assumed to be constant
across strata.

Analysis v/; Vs Pocock type O’Brien & Fleming type

90% RCI’s for v 90% RCTI’s for v
1 493 0.336 (2.5,96) (18,134)
2 4.85 0.227 (3.1,7.6) (3.0, 7.8)

3 5.16 0.189 (35,7.5) (37, 7.1)
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TABLE 13

Hypothetical interim data for the "Leisure World" study (Breslow and Day, 1980, p. 174).
Entries are cumulative counts of each type of matched set, as specified by the exposure or
non-exposure of the case and the number of exposed controls, at three interim analyses.

Cumulative frequencies

Analysis Case Number of controls exposed
0 1 2 3 4

1 Exposed 0 5 1
Unexposed 0 1 0 1 0
2 Exposed 2 14 10 9 2
Unexposed 0 3 0 1 1
3 Exposed 3 17 16 15
Unexposed 0 4 1 1 1
TABLE 14

Interim results for the data of Table 13. The odds ratio, y, is assumed to be constant for
all matched sets.

Analysis y’; VVys Pocock type O’Brien & Fleming type

90% RCTI’s for v 90% RCTI’s for w
1 9.74 0.831 (19,51.1) (0.8,114.3)
2 7.90 0.538 (27,231) (2.6, 244)

3 846 0.436 (34,213) (3.8, 18.7)
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Constants Cp(p,K,) for monitoring a p-variate normal mean via a xg statistic using a

group sequential procedure with a Pocock (1977) type boundary.

a = 0.01 a=0.05 a=0.10
14 14 14

K 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 6.63 921 11.34 1328 15.09 384 599 7.81 949 11.07 271 461 625 7.78 9.24
2 768 1040 1264 1466 1655 474 7.08 9.04 1082 1249 352 563 742 9.07 1063
3 825 11.05 1334 1541 17.33 524 1767 9.69 1153 1325 397 6.18 8.05 9.76  11.37
4 864 1148 1381 1590 17.86 557 806 1013 1200 1375 427 655 847 1022 1186
5 892 11.79 1415 1627 1824 582 835 1044 1235 14.12 450 6.83 877 1055 1222
6 9.14 12.04 1441 1655 1854 602 858 1069 1262 14.41 468 7.04 9.01 1081 1250
7 932 1224 1463 1678 1878 6.18 877 1090 1284 1465 483 722 921 11.03 1273
8 947 1241 1481 1698 1899 631 892 11.07 13.02 1434 495 737 937 1121 1292
9 9.60 1256 1497 17.14 19.16 643 9.06 1121 1318 15.01 506 750 951 1136 13.09
10 972 1269 1510 1729 1931 653 917 11.34 1332 15.16 515 761 9.63 1149 1323

Key: (1-a) repeated confidence sets are given by {8: S(k,0) < ¢;} where ¢, = Cp(p,K,)

for 1 <k <K, and S(%,6) is given by (7.1). Here K is the maximum number of analyses.

Note that when p=1, Cp(1,K,) =Z,§(K,a/2) of Table 1.

All entries were found by numerical integration and are accurate to two decimal places.
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TABLE 16

Constants Cg(p,K,a) for monitoring a p-variate normal mean via a sz statistic using a

group sequential procedure with an O’Brien and Fleming (1979) type boundary.

p P 14
K 1 2 3 4 5 1 2 3 4 S 1 2 3 4 5

1 663 921 1135 1328 1509 384 599 7.81 949 1107 271 461 625 778 924
2 665 922 1135 1328 1509 391 602 7.83 950 11.08 2.82 467 629 7.80 925
3 674 927 1139 1331 1511 402 612 792 957 1114 292 478 639 790 933
4 681 934 1145 1336 15.16 410 620 799 964 1121 3.00 486 648 798 942
5 687 940 1151 1342 1521 416 627 806 971 1127 3.07 493 654 805 949
6 693 945 1156 1347 1526 421 633 811 977 1133 312 499 660 811 654
7 697 950 1160 1352 1531 426 637 816 9.82 1138 3.16 503 665 816 960
8 701 955 1164 1356 1535 429 641 820 986 1142 319 507 669 820 964
9 704 958 1167 1360 1539 433 645 823 990 1146 322 510 672 824 968
10 7.07 961 1170 1363 1542 435 648 826 993 1150 324 513 675 827 971

Key: (1—a) repeated confidence sets are given by (6:S5(k,0)<c,} where
¢, = (K/k) Cp(p,K,a) for 1 £k <K, and S(k,0) is given by (7.1). Here K is the maximum
number of analyses. Note that when p=1, Cp(1,K,a) =Z§(K,a/2) of Table 1.

All entries were found by numerical integration and are accurate to two decimal places.
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Fig. 1a. Boundary of group sequential test of 8 = —0.1645 vs 6 = 0.1645 derived from
Pocock type repeated confidence intervals. A fixed sample size test with error rates 0.05
requires a sample size of 100.



- 80 -

nic

88 -

20 -

v

nic

-28 h

-
-
~o
~a
S~

.
RS
iy
-
-
-
.

~~
~
Ry
had
.
-
~—.
-
-
-

-~
~
-
-
-
-
-
-
-
-
-
-~
-

-~83

Fig. 1b. Boundaries of Pocock repeated significance tests of 6 = 0.1645 (—) and
6 = —-0.1645 (---) against two-sided alternatives. The boundaries of the one-sided group
sequential test in Fig. la are the lower boundary of the first of these tests and the upper
boundary of the second.
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Fig. 2a. Boundary of group sequential test of 8 = —0.1645 vs 6 = 0.1645 derived from
O’Brien and Fleming type repeated confidence intervals. A fixed sample size test with
error rates 0.05 requires a sample size of 100.
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Fig. 2b. Boundaries of O’Brien and Fleming tests of 6 = 0.1645 (—) and 6 = —0.1645
(---) against two-sided alternatives. The boundaries of the one-sided group sequential test
in Fig. 2a are the lower boundary of the first of these tests and the upper boundary of the
second.
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