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1. INTRODUCTION.

Canny (1988b) has recently shown that the existential theory of the reals is decidable
in PSPACE. However, Canny's algorithm requires exponential time even when the number
of variables is fixed, unlike the double exponential space algorithm of Collins (1975) and the
single exponential space algorithms of Ben—Or, Kozen and Reif (1986), Grigor'ev and
Vorobjov (1987) and others. The time required is exponential in the number of constraints
as well as in the number of variables. The purpose of this paper is to present a PSPACE
algorithm similar to Canny's, but which requires only polynomial time when the number of
variables is fixed. Moreover, the algorithm can be implemented to run in time polynomial in

n, logm and logd using (md)O n) processors, where m is the number of atomic
predicates, d is their maximal degree, and n is the number of variables. In particular, it
provides an NC algorithm when the number of variables is fixed, as does the algorithm of
Ben—Or, Kozen and Reif.

The algorithm is purely symbolic, as is Canny's algorithm. It is an algebraic
procedure that works over the reals.

The approach presented has potential applications in areas such as robotics, where
the number of degrees of freedom is typically small compared to the number of constraints.

2. PRELIMINARIES.

In the analysis, we will assume that the reader is somewhat familiar with the notion
of the "u-resultant” of a system of n + 1 homogeneous polynomials in n unknowns. The
facts about the u—resultant that are pertinent to our approach are stated, for example, in
section 2 of Renegar (1987).

The decision problem for the existential theory of the reals is the problem of deciding

if the set {x € R"; P(x)} is non—empty, where P(x) is a predicate which is a monotone
boolean function of atomic predicates either of the form f.(x) 20 or fj(x) > 0, the f's

being real polynomials. Assuming the atomic predicates are

f1 20,...,f >0, fk+1 >0, ..., fm > 0, a sign assignment is a vector v € {—1, 0, 1}m and
a consistent sign assignment is a sign assignment v for which there exists x € R™ such that
v, and fi(x) have the same sign for all i (considering 0 itself as a sign). Given a

consistent sign assignment, then it can be determined in polylog time using polynomial
many processors if the points x with that sign assignment satisfy the predicate P(x).



As shown in Lemma 1 of Grigor'ev (1986), if we have an algorithm for determining if
any sign vector is consistent, then the consistent sign vectors can be determined by

(md)o(n) calls to that algorithm, where d is the maximum degree of the atomic
predicates. The algorithm used to prove this is recursive. Once the consistent sign vectors
for fl’ e s fj are known, the values 0, 1, —1 are alternately appended to these vectors
and then consistency with respect to fl’ fj 41 is checked. The (md)o(n) bound on calls
and hence on the number of consistent sign vectors) is proven via Milnor (1964) and Heintz
1983). Alternatively, with an eye on NC, we can proceed recursively, splitting the set of
atomic predicates into two disjoint subsets of approximately equal size (then splitting these
subsets, etc.), determining the consistent sign assignments for the two subsets, catenating

these, and from the resulting sign assignments determining the consistent sign assignments
of the initial set of atomic predicates. The arguments of Lemma 1 of Grigor'ev (1986) easily

show that at any step during this procedure, only (md)o(n) sign vectors will be considered
as potentially consistent sign vectors.

Henceforth, we only concern ourselves witht the problem of determining if a given
sign vector is consistent; that is, we are concerned with the problem of determining if a
system of polynomial inequalities

£, 5 20 f

k+1""’f >0

m
is feasible.

The other preliminary remark we need to make concerns the algorithm of Ben—Or,
Kozen and Reif (1986). We will call on the BKR algorithm, as does Canny. We rely on
the following.

THEOREM (Ben—Or, Kozen and Reif): The BKR algorithm can be used to decide the theory
of real closed fields in exponential space or exponential time. In fixed dimension, it is an
NC algorithm. u]

We will rely on the BKR algorithm only for n = 2. Hence, for our application, it is
an NC algorithm.

3. AN OPTIMIZATION PROBLEM.

In this section we present a proposition whose proof motivates the algorithm through
consideration of a certain optimization problem. Canny's approach also involves an
optimization problem, but requires that a new variable be added for each of the constraints.
The new variables are used to "regularize" the problem. By focusing on a different
optimization problem that requires only a few "regularizing" variables, we reduce the
required time.

Assume that we wish to determine if the following system is feasible:

fl,...,f >0 fk+1""’fm>0'



For notational convenience we restrict attention only to systems with > . This can be
achieved by replacing the strict inequalities with

where y is an additional variable. Henceforth, assume we wish to determine if

£y £ 20 (1)

is feasible.
To simplify arguments, we assume that x = 0 is not a feasible point for (I).

Let n denote the number of variables and assume that the degree of fi is d, .

In the analysis we will require the set of solutions to be bounded. To achieve this, we
simply note that (I) is feasible if and only if there exists é > 0 such that

£, f 5—2}x?20 (11)
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is feasible. For §é fixed, the boundedness requirement certainly holds. The parameter 6
will be a variable in the algorithm.

Let d be the least even integer at least as great as 2 + X di . For ¢, 6> 0, we will
1

be focusing on the function

d

g(x,6,¢) = ((5—2){? + ) T(f;(x) + €) — 2 2_3XJ

J 1 J

The following proposition was motivated by arguments on page 280 of Milnor (1964).
Thanks to Mike Shub who suggested Milnor's arguments might be relevant.

ProrosITION 1: If (II) has a solution, then some solution of (II) is the limit point of zeros
x(¢) of V. g(—6,¢) as ¢ | 0. (Here, V_ denotes the vector of derivatives with respect

to the x—coordinates.)

ProoF: In the proof we implicitly assume that fm+2(5d/ 2 < em+1 )

Since any solution to (II) satisfies Ex()1 < 6d/ 2, it must also satisfy g(—,d,¢) > 0.

So the solutions of (II) are contained in the connected components of solutions of
g(—,6,¢) > 0. Also note that if x satisfies fi(x) = —¢ for some i,or 6—X% x? = —¢, then

g(x,6,¢) < 0. (Here we are using the assumed infeasibility of 0.) Since any solution of (II)
is a solution of



£, f 5—-2% > —¢ (111)
j

1

it follows that any solution component of g(—,6,¢) > 0 that contains a solution of (II? is
itself contained in a solution component of (III). Since any solution component of (III) is
bounded, it follows that any solution component of g(—,d,e) > 0 that contains a solution
of (II) is bounded, and hence contains a local maximum of g(—,d,¢). Moreover, since the
solution components of (ITI) tend to the solution components of (II) as € | 0, it now
follows that if (II) has a solution, then some solution of (II) will be the limit point of a
sequence x( ei), & } 0, where X(Ei) is a local maximum of g(—,&,ei). The proposition

follows. 0

As we shall see, there are only finitely many values of ¢ for which VXg(———, d,¢) has

infinitely many zeros. Unfortunately, the construction of g makes it likely that ¢ =0 is
one of these values. Hence, the analysis as ¢ | 0 is a little tricky.

4. ANALYSIS VIA THE U-RESULTANT.

Let G(—,6,¢): RAFL S RY denote the homogenization of ng(_-—,é,e). The zero set

of G(—,6,¢) is a union of lines through the origin. Moreover, x € R" is the limit of zeros
of V. g(—b,¢) as ¢ |0 if and only if the line {(x,t); t € R} is the limit of zeros of

G(—,6,¢) as € | 0. This observation and the previous proposition give the following.

ProrositioN 2: If (II) has a solution, then some solution x of (II) is such that the line
{(x,t); t € R} is the limit of zeros of G(—,d,¢) as €] 0. o

For ue {Rn+1, let R(u,6,6) bethe u—resultant of G(—,d,¢). This is a real
polynomial in the variables u, 4, and e. Hence, assuming ¢ fixed, R(u,é,¢) is identically
zero for all values of ¢ or for only finitely many values of ¢. However, in our application it
is not identically zero for all values of € because (i) for e > 1, R(u,d,¢) is a greater than

unity multiple of the u-resultant of G(—,6,¢); (ii) the u—resultant of

1
Em+2
1

W G(—,6,¢) tends to the u—resultant of the system

d—1 d—1
(Xl’ s Xn+2) - (dx1 ) e an-H’
system is not identically zero because the zero set of the latter system, considered as a
1
€n+

0) as €¢-ow;and (iii) the u—resultant of the latter

system over , i8 the union of finitely many complex lines.

Consider R(u,é,¢) in powers of e, that is,

R(u,é,¢) = Ck(u,é)ek + X Ci(u,é)fi
i>k



where Ck(u,é) £ 0. The next proposition is very similar to results of Canny (1988a) and is
proven by the same techniques.

ProrosiTioN 3: If § is fixed so that Ck(u,é) does not vanish identically in u, then
Ck(u,ﬁ) factors linearly

D5) - w

Ck(u’é) = =1

1

=g

where the §(i)(6 are complex vectors, D = (d —1)" and we define

5(1)((5) cu=3% ggi)(é) uj - The subset of ¢+
J

0 {w (e we )

then consists precisely of the limits of zeros of G(—,d,¢) (considered as a system over

€n+1) as ¢ | 0. Moreover, if

xe {weD@); we )

and x is a real vector, then it may be assumed that 5(1)(5) is a real vector.

SKETCH OF PrOOF: The proof of the proposition rests primarily on the fact that if the

coefficients of a homogeneous polynomial over ¢n+2 vary continuously, then so do its zeros
as long as the polynomial does not vanish identically. (This can be proven by reduction to

the single variable non—homogeneous case.) By this fact, the zeros of _n-f——lé? R(—,d,¢) vary
€

continuously in ¢ for ¢ in an open neighborhood of 0 if we define

O—m—_% R(—,6,0) = Ck(———,(S). Since R(—,d,¢) factors linearly

1(5(”(6,@ )

=0

R(u,é,€) =
i

for all sufficiently small ¢ # 0, the first statement of the proposition follows. The second
statement then follows from the fact that the zero set of G(—,é,¢) is precisely the set

U{w §<i)((5,e); we C}.

The third statement is now easily proven using the fact that the coefficients of Ck(——, 0)
are real. o



5. THE ALGORITHM.

The algorithm is motivated through the following observations.

Let Fy, ...\ Fo 41 be the homogenizations with respect to x of fl’ s fm’
6—Yx i We write F +1(x,(5) to indicate that F ., isa polynomial in ¢ as well as in
x. Then the original system (I) is feasible if and only if the system in x and ¢
Fpo oo Fpygs Xpyq >0, 6> 0 Iv)

is feasible. Moreover, defining 5(1)(5) = 0 for the finitely many values of ¢ for which
Ck(u,(S) vanishes identically in u, from propositions 2 and 3 we see that if (I) is feasible,

then there is some ¢ and some i such that either x = f(i)(é) and 6, or x = —-5(1)(5) and
4, is a solution to (IV).

Let

Sl = {(1717 i29 ---:in)§ 1<i¢ (H+ 1)D+ 1}

Sy ={(1,i,i% .., ;1 <i < (m+ DD —1)/2 + 1)
LemMA: Assume 6 is fixed so that C,(u,6) does not vanish identically in u. Then for
some a €Sy, f€S,, both of the following are true for each real §(i>(6).

(i) The line {ta + f;t € R} intersects {u € [Rn+1, 5(1)(6) - u =0} in exactly one
point t’.

(i) If ¢’ (asin (i)) satisfies t’a+ B€ {ue [Rn+1, §(j)((5) -+ u= 0}, then §(j)((5) is a
real multiple of f(l)( 6).
Proor: Each subset of n + 1 vectors from S1 is linearly independent. Hence, at least one
Q€ S1 does not liein U {u € [Rn+1, g(j)(é) - u=0}. Then for any j’, property (i) is
] :
satisfied by o and #’, and if f(J)((S) is complex, {ta + §’;t € R} intersects {u € [Rn+1,
5(3)(5) - u =0} in at most one point.

Let HC [Rn+1 denote the set of points contained in at least two distinct hyperplanes
{ue ¢n+1’ f(J)(é) u=0}. Then H; is contained in the union of at most D(D —1)/2
linear subspaces of dimension n — 1. Hence



Hy = {p’ € [Rn+1, ot + el for some t € R}
is contained in the union of at most D(D — 1)/2 linear subspaces of dimension n. Since

every subset of n + 1 vectors from 82 is linearly independent, at least one f € 82 is not
in Sz. o

Using
0 ()
C(w,6) = T (£(6) - u)
k i=1
it follows from the lemma and the product rule for differentiation that for each ¢ there

exists a €3Sy, f€5, such that for each real f(i)(é) there exists 1 <p<D and t' €R
satisfying

i P
i) = | Culat e+ 8D
t=t’

th

where e. is the j~ unit vector. The value t’ is the value at which ot + 8 intersects

{ue IRn+1; 5(1)(6) - u=0},and p is the multiplicity of t’ as a zero of Ck(aft + 0, 0).

For each a, f €8S, and each 1< p <D, defining xj(t,ﬁ) to be the polynomial

P
P 1t [s=0

xj(t,é) = Cylta+ se; + B, 6),

the algorithm is simply to apply the BKR algorithm to the two variable system
Fl(x(taé))a s Fm+1(X(t,5), 5) Z 0

xn_H(t,(S) >0, 6>0

and to the same system with x(t,6) replaced by —x(t,6).

Combining the observations of this section, one of these two systems is feasible for
some « € Sl’ B€ 82 and 1 <p <D if and only if the original system (I) is feasible.

All that remains to be discussed is the computation of the polynomials xj(t,(S). An
essentially identical computation is required by Canny.



For this we rely, as does Canny, on the result of Macaulay (1902) that states that the
u—resultant for systems of homogeneous polynomials is a polynomial equal to a quotient
det A(u)/det M of determinants, where A is a particular matrix whose coefficients are
polynomials in u and the coefficients of the homogeneous systems, and M is a particular
matrix whose coefficients are polynomials in the coefficients of the systems. For a discussion
of the particular matrices, see, for example, section 2 of Renegar (1987).

Since we are concerned with R(u,¢,6), the coefficients of A(u) = A(u,¢,6) depend on
those of (I) along with ¢ and é. By simply relying on the definition of A(u,¢,6) it can be
easily shown that 1im A(u,e,6) # 0. Hence, since R(u,e,6)M(¢€,6) = A(u,¢€,6), M = M(¢,6)

€+
cannot vanish identically. Expanding in powers of ¢

det A(u,e¢,0) = Bh(u,é)fJ + X Bi(u,é)ei )
i>h

det M(c,8) = N(8)et + ngi(ﬁ)é ,
i>

where B, (u,6), N 1{(‘5) # 0, it follows that C, (u,6) = By (u,6)/N (( 6). Thus, we can replace

Ck(ta + se; + B3, 6) by Bh(ta + se. + f, 6) in the algorithm. The four variable
polynomial det A(ta + se; + B, ¢, 53 can be computed in PSPACE using Csanky (1976).

The computations required for the algorithm are very similar to those required by
Canny —in fact, they are less involved. The major difference is that because Canny
introduces a variable for each constraint, his A(u) matrix has size exponential in m as
well asin n. For n fixed, the size of our A(u) matrix grows polynomially in m and d.

In closing we remark that although the algorithm does not construct an
(approximate) solution for the problem, it apparently can be altered to do so, but at the cost
of requiring exponential (in n) space over the rationals. Roughly, the procedure is this. For
some € 5y, B e Sy, 1<p<D, §>0 and somezero t’ of Ck(m + B, 6), x(t/,6) as

defined above is a solution to (IV), assuming a solution exists. Using Vorobjov (1984), &

(dL)O(n)
can be taken to be 2 where L is the bit length of the problem. One first
approximates the zeros t’ of Ck(ta + f, 6), then easily obtains approximations to the

vectors x(t’,6). Checking these approximations for an appropriate relaxation of (IV) (the

. —(a)O0®)
> 0 will be replaced by > —2 ) one chooses any of these approximations
satisfying the relaxation — if none of the approximations satisfy the relaxation, the original
problem is infeasible. The chosen approximation is then easily converted into an
approximation of a solution for the original system (I). Some of the details that would be
required in attempting to make this argument rigorous can be found in Grigor'ev and
Vorobjov (1986).
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