EXTREMAL BEHAVIOUR OF SOLUTIONS TO
A STOCHASTIC DIFFERENCE EQUATION WITH
APPLICATIONS TO ARCH–PROCESSES

by

Laurens de Haan1), Sidney I. Resnick2),
Holger Rootzen3), and Casper de Vries1)

1)Econometric Institute, Erasmus Universiteit Rotterdam, Postbus 1738, 3000 Rotterdam.
2)School of Operations Research and Industrial Engineering, Upson Hall,
Cornell University, Ithaca, New York 14853.
3)Department of Mathematical Statistics, University of Lund, S–22100 Lund, Sweden.

Research of the 1st, 2nd, and 3rd author supported in part by NSF grant MCS 01763 at
Colorado State University. H. Rootzen was also partially supported by the Air Force
Office of Scientific Research contract AFOSR 85 CR144 at the Center for Stochastic
Processes, Chapel Hill, North Carolina, and at the end S. Resnick was partially supported
by the Mathematical Sciences Institute of Cornell University.
ABSTRACT

We consider limit distributions of extremes of a process \(\{ Y_n \} \) satisfying the stochastic difference equation

\[
Y_n = A_n Y_{n-1} + B_n, \quad n \geq 1, \quad Y_0 \geq 0,
\]

where \(\{ A_n, B_n \} \) are i.i.d. \(\mathbb{R}_+^2 \)-valued random pairs. A special case of interest is when \(\{ Y_n \} \) is derived from a first order ARCH-process. Parameters of the limit law are exhibited; some are hard to calculate explicitly but easy to simulate.

Key words and phrases: Extreme values, ARCH-process, stochastic difference equation with random coefficients.

AMS 1980 subject classification: primary 60F05, secondary 60G10, 60G17.
Extremal Behaviour of Solutions to a Stochastic Difference Equation with Applications to ARCH Processes

1. Introduction

Consider a process \(\{Y_n, n \geq 1\} \) which satisfies the stochastic difference equation

\[
Y_n = A_n Y_{n-1} + B_n, \quad n \geq 1, \quad Y_0 = 0, \tag{1.1}
\]

where \(\{(A_n, B_n), n \geq 1\} \) are i.i.d. \(\mathbb{R}^2_+ \)-valued random pairs (cf Vervaat, 1979). We study the extremal behaviour of \(\{Y_n\} \) under rather mild assumptions. Our interest in this problem was stimulated by the desire to understand extremal characteristics of the autoregressive conditional heteroscedastic (ARCH) processes introduced by Engle (1982). The first order ARCH process is defined by

\[
\xi_n = X_n (\beta + \lambda \xi_{n-1}^2)^{1/2}, \quad n \geq 1, \tag{1.2}
\]

where \(\{X_n\} \) are i.i.d. \(\mathcal{N}(0, 1) \) random variables, \(\beta > 0, \lambda < 1 \). Thus \(\{\xi_n^2\} \) satisfies (1.1) with \(A_n = \lambda X_n^2, B_n = \beta X_n^2 \). (Higher order ARCH processes, considered for example by Engle (1982) and Millhøj (1987) would satisfy the higher order version of (1.1).) ARCH processes were introduced in econometric modelling because the usual linear time series models, with their constant conditional variances and Gaussian tails, are inadequate for modelling many types of financial data such as security yields (Engle et al. (1987)) and foreign exchange rate yields (Bollerslev et al. (1986)) which exhibit heavy tails and clusters of high and low volatility.

Extreme behaviour is of obvious interest in economics. For example, extreme yields may characterize the occurrence of bankruptcy or foreign exchange rate realignments. Because of the importance of extremes, it is natural to inquire into the statistical properties of extremes of the ARCH process (and more generally of solutions of (1.1)). In particular we want to find limiting distributions and to resolve whether or not there is clustering associated with such
extremes. These issues are taken up in Section 2. Section 3 is concerned with the numerical computation of some constants appearing in the limiting distributions.

It is rather striking that the building blocks of the ARCH process in (1.2) are normal variates but yet ξ_n has Pareto–like tails. The reason for this is the following result of Kesten (1973) given as (iv) of the next theorem which collects some needed information as given in Vervaat (1979).

THEOREM 1.1: Suppose (1.1) holds and that there is a $\kappa > 0$ with

\begin{equation}
(1.3) \quad E A_1^K = 1, \ E A_1^K \log^+ A_1 < \infty, \ 0 < E B_1^K < \infty,
\end{equation}

that $B_1/(1-A_1)$ is non–degenerate and that the conditional distribution of $\log A_1$ given $A_1 \neq 0$ is non–lattice.

(i) The equation

$$Y_\infty = A_1 Y_\infty + B_1,$$

Y_∞ and (A_1, B_1) independent, has a solution unique in distribution.

(ii) If in (1.1) we take $Y_0 = Y_\infty$, then the process $\{Y_n\}$ is stationary.

(iii) No matter how the process $\{Y_n\}$ is initialized

$$Y_n \Rightarrow Y_\infty,$$

where "\Rightarrow" denotes convergence in distribution.

(iv) There exists a constant $c > 0$ such that as $t \to \infty$

\begin{equation}
(1.4) \quad P(Y_\infty > t) \sim ct^{-K}.
\end{equation}

REMARK: Unfortunately it is difficult to get hold of the constant c in (1.4) explicitly, but as we shall argue later, this is of small practical consequence.
In the case of the ARCH process \{\xi_n^2\}, where \(A_1 = \lambda X_1^2 \), \(B_1 = \beta X_1^2 \), the conditions (1.3) are readily seen to hold and \(\kappa \) is the solution of

\[(1.5) \quad E(\lambda X_1^2)^\kappa = 1,\]

where \(X_1 \sim N(0,1) \). For a specific value of \(\lambda \), the value \(\kappa \) is readily found by solving for \(\kappa \) in the equation

\[(1.6) \quad \Gamma(\kappa + 1/2) = \pi^{1/2} (2\lambda)^{-\kappa}.\]

For instance, when \(\lambda = 1/2 \), the non-zero root of (1.6) is approximately 1.864.

The occurrence of the Pareto type tail in (1.4) is more understandable after an outline of Kesten's (1973) argument: By iterating (1.1) we find for \(n \geq 1 \)

\[
Y_n = \sum_{k=1}^{n} \left[\prod_{j=k+1}^{n} A_j \right] B_k + \left[\prod_{j=1}^{n} A_j \right] Y_0
\]

(where \(\prod_{j=n+1}^{n+1} = 1 \)). Assumptions (1.3) imply \(E \log A_1 < 0 \). Kesten shows \(\sum_{k=0}^{\infty} (\prod_{j=1}^{k} A_j) B_{k+1} \) has a tail comparable to \(\sum_{k=0}^{\infty} (\prod_{j=1}^{k} A_j) B_{k+1} \), and the tail of this variable is determined by \(\sum_{k=0}^{\infty} \sum_{j=1}^{k} \log A_j \). Now results for the distribution of the maximum of a random walk with negative drift by means of defective renewal theory (cf Feller (1971, Section XII.5, Example c)) give 1.4.

2. Extremal behaviour

Assume the conditions (1.3) of Theorem 1.1 hold. We show below that \(M_n = \max_{1 \leq i \leq n} Y_i \) has a type II extreme value limit law. This is the same type of limit as would occur if the \(Y_i \)'s were i.i.d. with marginal distribution satisfying (1.4). However, the norming constants are different in the present dependent case. We will express this by means of the extremal index \(\theta \) of the \(Y \)-process. Loosely speaking, large values of the \(Y \)-process have a tendency to come in small clusters, which makes \(M_n \) have the same limit distribution as the maximum
of \(n \theta \), rather than of \(n \), i.i.d. variables with the same marginal distribution (cf. Leadbetter et al (1983, Section 3.7) and Rootzén (1985)). To describe the clustering of extremes in more detail, we also show that the time–normalized point–process \(N_n \) of exceedances of a suitably chosen high level \(u_n \), defined by

\[
N_n(A) = \#\{k/n \in A; X_k > u_n\}
\]

converges to a compound Poisson process \(N \). Specifically, in the limiting compound Poisson process events occur as an (ordinary) Poisson process with intensity \(\eta = c\theta^{-K} \) and the multiplicities of the events are independent and with compounding probabilities \(\{\pi_k\} \) given in the theorem below, \(\pi_k \) being the probability that an event has multiplicity \(k \). Further, convergence in distribution of point processes (denoted \(\overset{d}{\to} \)) is as defined e.g. in the appendix of Leadbetter et al (1983).

Without loss of generality, we suppose throughout this section that \(Y_0 = Y_\infty \) so that \(\{Y_n, n \geq 1\} \) is stationary. (If \(Y_n(Y_0) \) is the solution of (1.1) initialized by some \(Y_0 \) other than \(Y_\infty \), we have as in Vervaat (1979) that

\[
(2.1) \quad Y_n(Y_0) - Y_n(Y_\infty) = (\Pi_{j=1}^{n} A_j)(Y_0 - Y_\infty).
\]

Since \(\Pi_{j=1}^{n} A_j \to 0 \) a.s., we have for any \(a_n \to 0 \) that

\[
a_n \left(\sum_{j=1}^{n} Y_j(Y_0) \right) = a_n \left(\sum_{j=1}^{n} Y_j(Y_\infty) + (\Pi_{i=1}^{j} A_i)(Y_0 - Y_\infty) \right)
\]

\[
\leq a_n \left(\sum_{j=1}^{n} Y_j(Y_\infty) \right) + a_n \left(\sum_{j=1}^{n} \left(\Pi_{i=1}^{j} A_i \right)(Y_0 - Y_\infty) \right)
\]

\[
= a_n \left(\sum_{j=1}^{n} Y_j(Y_\infty) \right) + o(1)
\]

with a similar inequality in the reverse direction, showing that \(a_n \sum_{j=1}^{n} Y_j(Y_0) \) and

\(a_n \sum_{j=1}^{n} Y_j(Y_\infty) \) have identical limit laws if one of them has a limit law. The same comment
Theorem 2.1 If (1.3) holds, then \(\{ Y_n \} \) has an extremal index \(\theta \) given by

\[
\theta = \int_0^\infty \prod_{j=1}^\infty \mathbb{P}(\prod_{i=1}^j A_i \leq y^{-1}) \kappa y^{-\kappa-1} \, dy
\]

and with \(a_n = n^{-1/\kappa} \) we have for \(x > 0 \)

\[
\lim_{n \to \infty} \mathbb{P}(a_n M_n \leq x) = \exp\{-c \theta^{-\kappa}\}.
\]

Further, let \(N_n \) be the time-normalized point process of exceedances of the level \(u_n = x/a_n = x n^{1/\kappa} \), \(x > 0 \), as defined above, and let \(N \) be a compound Poisson process with intensity \(c \theta^{-\kappa} \) and compounding probabilities \(\pi_k = (\theta_k - \theta_{k+1}) / \theta \), for

\[
\theta_k = \int_0^\infty \mathbb{P}(\#\{j: \prod_{i=1}^j A_i > y^{-1}\} = k-1) \kappa y^{-\kappa-1} \, dy
\]

Then \(N_n \overset{d}{\to} N \) as \(n \to \infty \).

Remark: Hence the distribution function of \(M_n / a_n = M_n / (n^\kappa \theta) \) is approximately \(\exp\{-1/x^\kappa\} \). However, we do not know \(c \). The main result of the theorem is therefore the existence and representation of the extremal index \(\theta \) and of the limits. Since we know \(\theta \) and the shape parameter \(\kappa \) of the limiting extreme value distribution, all that remains is estimating the unknown scale parameter. This can be done by adapting known results for i.i.d. variables.

Proof: The proof is an application of Theorem 4.1 of Rootzén (1985). For the first part, concerning the extremal index \(\theta \), we are required to show that \(D(u_n) \) holds for \(u_n = x/a_n = x n^{1/\kappa} \), \(x > 0 \), (cf Leadbetter e.a. (1983, p.53) and Rootzén, (1985)) and that
\[(2.4) \quad \lim_{\epsilon \to 0} \lim_{n \to \infty} \sup |P(M_{[1/\epsilon]} \leq a_n^{-1} | Y_0 > a_n^{-1}) - \theta| = 0.\]

The mixing condition \(D(u_n)\) is obtained similarly as Lemma 3.1 of Rootzén (1986), so we only briefly indicate the changes needed. For \(\nu > 0\), let

\[Y''_t = Y_t - A_{t-\nu} \cdots A_{t-n\nu+1} Y_{t-n\nu}.\]

so that \(Y_s\) and \(Y''_t\) are independent for \(t-s \geq n\nu\), and write \(Y_t = Y_t', a_n = n^{-1/K}, b_n = 0\), and \(G(x) = \exp \{-cx^{-K}\}\). Inserting this in the proof of the cited lemma, with \(X's\) replaced by \(Y's\), it is readily seen that \(D(u_n)\) holds provided

\[(2.5) \quad \lim_{n \to \infty} \sup |P(Y_0 Y''_0 > c n^{1/K})| = 0,\]

for any \(\nu, \epsilon > 0\). However, for \(\delta > 0\), the quantity in (2.5) can be bounded by

\[
\lim_{n \to \infty} \sup |P(Y_0 \cdot A_{1} \cdots A_{n\nu} > c n^{1/K})| \leq \lim_{n \to \infty} \sup |P(Y_0 > \delta^{-1} c n^{1/K})| + \lim_{n \to \infty} \sup |P(A_{1} \cdots A_{n\nu} > \delta)| \leq c(\delta/\epsilon)^K + \lim_{n \to \infty} \sup n(EA_0|^n) / \delta^n,
\]

for any \(t \geq 0\), by (1.4) and Markov's inequality. Now, (1.3) can be seen to imply (cf. Section 3 below) that there is a \(t > 0\) with \(EA_0^t < 1\), so that the last expression equals zero for this choice of \(t\), and since \(\delta > 0\) is arbitrary, this implies (2.5), and hence that \(D(u_n)\) is satisfied.

Now we concentrate on verifying (2.4). We need an auxiliary process

\[Y_n^\# = \prod_{j=1}^{n} A_{j} Y_0, \quad Y_0^\# = Y_0,\]

which thus satisfies
(2.6) \[Y_n^\# = A_n Y_{n-1}^\#, \ n \geq 1 \]

and hence

(2.7) \[\Delta_n := Y_n - Y_n^\#, \ \Delta_0 = 0 \]

satisfies

\[\Delta_n = A_n \Delta_{n-1} + B_n, \ n \geq 1, \ \Delta_0 = 0 \]

i.e. \(\{ \Delta_n \} \) satisfies (1.1) with a different initial condition. Set \(M_n = \sum_{j=1}^{n} Y_j, M_\# = \sum_{j=1}^{n} Y_j^\#. \)

Since the \(A_n \) and \(B_n \) are non-negative, we have that

\[
P(M_{[\epsilon n]} > a_n^{-1} | Y_0 > a_n^{-1}) \geq P(M_{[\epsilon n]}^\# > a_n^{-1} | Y_0 > a_n^{-1})
= \int_{1}^{\infty} P(a_n Y_0 > y) P(a_n Y_0 > 1) dy \]

and since \(P(Y_0 > a_n^{-1} | y) / P(Y_0 > a_n^{-1}) \sim y^{-\kappa} \) uniformly for \(y \geq 1 \) we find

(2.8) \[\lim_{n \to \infty} \inf_{[\epsilon n]} P(M_{[\epsilon n]} > a_n^{-1} | Y_0 > a_n^{-1}) \geq \int_{1}^{\infty} \prod_{j=1}^{\kappa} (1 - A_i > y^{-1}) k y^{-\kappa-1} dy = \theta. \]

For an inequality in the reverse direction, write \(Y_j = Y_j^\# + \Delta_j \) so that

\[
P(M_{[\epsilon n]} > a_n^{-1} | Y_0 > a_n^{-1}) = P(M_{[\epsilon n]}^\# > a_n^{-1} | Y_0 > a_n^{-1})
\leq P(M_{[\epsilon n]}^\# + \sum_{j=1}^{\epsilon n} \Delta_j > a_n^{-1} | Y_0 > a_n^{-1})
\]

and for any \(\delta > 0 \) we find the above bounded by
\[P(M_{[n\epsilon]} > -a_n^{-1}(1-\delta) | Y_0 > a_n^{-1}) + P(\bigvee_{j=1}^{[n\epsilon]} \Delta_j > \delta a_n^{-1} | Y_0 > a_n^{-1}) = (A) + (B), \]

say. Now

\[(B) \leq \sum_{j=1}^{[n\epsilon]} P(\Delta_j > \delta a_n^{-1}). \]

Examining (2.1) we realize that the solutions of (1.1) are monotone with respect to the initial value. Since \(\Delta_0 = 0 \leq Y_0 = Y_\infty \), we find \(\Delta_j \leq Y_j(Y_\infty) = Y_\infty \) and thus

\[(B) \leq \sum_{j=1}^{[n\epsilon]} P(Y_\infty > \delta a_n^{-1}) = [n\epsilon]P(Y_\infty > \delta a_n^{-1}) = \epsilon \delta^{-\kappa}. \]

For (A) we find upon examining the logic which led to (2.8) that as \(n \to \infty \),

\[(A) \to \int_1^\infty P(\bigvee_{j=1}^{[n\epsilon]} (\bigcup_{i=1}^{j} A_i) > y^{-1}(1-\delta))\kappa y^{-\kappa-1} dy \]

and thus

\[\limsup_{n \to \infty} \limsup_{\epsilon \downarrow 0} P(M_{[n\epsilon]} > a_n^{-1} | Y_0 > a_n^{-1}) \leq \int_1^\infty P(\bigvee_{j=1}^{[n\epsilon]} (\bigcup_{i=1}^{j} A_i) > y^{-1}(1-\delta))\kappa y^{-\kappa-1} dy \]

\[= (1-\delta)^{-\kappa} \int_1^\infty P(\bigvee_{j=1}^{[n\epsilon]} (\bigcup_{i=1}^{j} A_i) > z^{-1})\kappa z^{-\kappa-1} dz \]

\[= \int_1^\infty \left(\int_{z=1}^{\infty} P(\bigvee_{j=1}^{[n\epsilon]} (\bigcup_{i=1}^{j} A_i) > z^{-1})\kappa z^{-\kappa-1} dz \right) dz \]

as \(\delta \to 0 \). We now get (2.4) by combining (2.8) and (2.9).

The second part of the theorem is obtained similarly, with only straightforward changes of the arguments, now using (ii) of Theorem 4.1 of Rootzén (1987) instead of (i).
3. Computing the extremal index

The extremal index \(\theta \) given by

\[
1 - \theta = \int_1^\infty \left(\prod_{j=1}^{\infty} \left(\prod_{i=1}^{j} A_i \right) > y^{-1} \right) \kappa y^{-\kappa-1} \, dy
\]

will in general be difficult to compute analytically in closed form. However, it is easy to simulate this quantity. Let

\[
S_j = \sum_{i=1}^{j} \log A_i
\]

and suppose \(E_\kappa \) is a random variable with exponential density and parameter \(\kappa \), which is independent of \(\{ S_j \} \). Then we may write

\[
1 - \theta = E 1_{\left\{ \bigvee_{j=1}^{\infty} S_j > -E_\kappa \right\}}.
\]

which suggests running replications of the random walk and counting the number of replications where the random walk exceeds the level \(-E_\kappa\). A mechanism is needed to determine how many steps the random walk is allowed to run on each replication, so consider the following: For any \(t > 0 \)

\[
P(S_j > -E_\kappa) = P(\exp\{t(S_j + E_\kappa)\} > 1)
\]

\[
\leq E(\exp\{tS_j + E_\kappa\})
\]

\[
= E(\exp\{tS_1\})^jE(\exp\{tE_\kappa\})
\]

\[
\leq \varphi^j(t) \kappa / (\kappa - t), \quad 0 \leq t < \kappa,
\]

where \(\varphi(t) = E \exp\{tS_1\} = EA_1^t \). A convenient choice of \(t \) is the value \(t_0 \) which minimizes \(\varphi(t) \). Since \(\varphi'(0) = E \log A_1 < 0 \), this exists in \((0, \kappa)\) and can be found by solving \(\varphi'(t) = 0 \). Using the value of \(t_0 \) and summing (3.2) yields
\[P(\bigvee_{j=m+1}^{\infty} S_j > -E_\kappa) \leq \left[\varphi_{m+1}(t_0) \right]^{1/(1-\varphi(t_0))} =: b(t_0). \]

For \(m > 0 \) and large, set

\[1-\theta_\# = E1 \sum_{j=1}^{m} \{ \bigvee_{j=1}^{m} S_j > -E_\kappa \} \]

and for \(N \), a large number of replications, we set

\[1-\dot{\theta}_\# = N^{-1} \sum_{i=1}^{N} \{ \bigvee_{j=1}^{m} S_j^{(i)} > -E_\kappa^{(i)} \} \]

where the superscript \(i \) refers to the replication number. We know

\[\left(\frac{1-\dot{\theta}_\#}{\dot{\theta}_\# (1-\dot{\theta}_\#)^{1/2}} \right) \]

is approximately \(N(0,1) \) so an approximate \(100(1-\gamma)\% \) confidence interval for \(\dot{\theta}_\# \) is

\[\dot{\theta}_\# \pm z_{\gamma/2}(4N)^{-1/2}. \]

Furthermore

\[0 \leq (1-\theta) - (1-\theta_\#) = P(\bigvee_{j=1}^{\infty} S_j > -E_\kappa) - P(\bigvee_{j=1}^{m} S_j > -E_\kappa) \leq P(\bigvee_{j=m+1}^{\infty} S_j > -E_\kappa). \]

which from (3.3) is bounded by the geometric bound \(b(t_0) \) and so the approximate \(100(1-\gamma)\% \) confidence interval for \(\theta \) is

\[(\dot{\theta}_\# - z_{\gamma/2}(4N)^{-1/2} - b(t_0), \dot{\theta}_\# + z_{\gamma/2}(4N)^{-1/2}). \]
Since
\[\theta_k = P(\sum_{j=1}^{\infty} 1\{S_j > -E_k\} = k-1) \]
we can estimate \(\theta_k \) in a similar way from the same simulations by counting the number of replications where the number of exceedances of \(-E_k \) is \(k-1 \). Now the obvious estimator of \(\theta_k \) is
\[\hat{\theta}_{#k} = N^{-1} \sum_{i=1}^{N} 1\{m_{i+1} \sum_{j=1}^m 1\{S_j > -E_k\} = k-1\}. \]
so that a 100(1-\(\gamma \))% confidence interval for
\[\hat{\theta}_{#k} = P(\sum_{j=1}^{m} 1\{S_j > -E_k\} = k-1) \]
is \(\hat{\theta}_{#k} \pm z_{\gamma/2} (4N)^{-1/2} \). As before,
\[0 < \hat{\theta}_k - \hat{\theta}_{#k} = (\sum_{j=1}^{\infty} 1\{S_j > -E_k\} = k-1) - P(\sum_{j=1}^{m} 1\{S_j > -E_k\} = k-1) \]
\[\leq P(\sum_{j=m+1}^{\infty} 1\{S_j > -E_k\} > 0) \]
\[\leq \sum_{j=m+1}^{\infty} P(S_j + E_k > 0), \]
and as before this has the bound \(b(t_0) \). Hence the approximate 100(1-\(\gamma \))% confidence interval for \(\theta_k \) is
\[(\hat{\theta}_{#k} - z_{\gamma/2} (4N)^{-1/2}, \hat{\theta}_{#k} + z_{\gamma/2} (4N)^{-1/2} + b(t_0)). \]

Finally we return to the ARCH-process (1.2). Clearly \(\{\xi_n^2; \ n \geq 1\} \) satisfies (1.1) and the conditions (1.3). Hence the extremal index and compounding probabilities for \(\xi_n^2 \) are given
by Theorem 2.1 and can be computed from (3.4) and (3.5). Since an exceedance of u^2 by ξ_t^2 is the same as an exceedance of u by $|\xi_t|$, the process $\{|\xi_t|\}$ has the same extremal index and compounding probabilities. Table 3.1 gives values of the extremal index θ and the compounding probabilities $\pi_k = (\theta_k - \theta_{k+1})/\theta$ for these processes, based on the described simulation. The length m of the random walk and the number N of replications are $m=100$, $N=1000$. Different rows of the table are based on separate simulations. The values obtained for $\varphi(t_0)$ in the table clearly render $b(t_0)$ negligible for the given value of m.

<table>
<thead>
<tr>
<th>λ</th>
<th>κ</th>
<th>$\tilde{\theta}$</th>
<th>$\tilde{\pi}_1$</th>
<th>$\tilde{\pi}_2$</th>
<th>$\tilde{\pi}_3$</th>
<th>$\tilde{\pi}_4$</th>
<th>$\tilde{\pi}_5$</th>
<th>t_0</th>
<th>$\varphi(t_0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>13.24</td>
<td>.997</td>
<td>.997</td>
<td>.003</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>4.99</td>
<td>.009</td>
</tr>
<tr>
<td>.3</td>
<td>4.180</td>
<td>.887</td>
<td>.892</td>
<td>.094</td>
<td>.011</td>
<td>.003</td>
<td>.003</td>
<td>1.64</td>
<td>.261</td>
</tr>
<tr>
<td>.5</td>
<td>2.365</td>
<td>.727</td>
<td>.751</td>
<td>.168</td>
<td>.055</td>
<td>.014</td>
<td>.008</td>
<td>.962</td>
<td>.500</td>
</tr>
<tr>
<td>.7</td>
<td>1.586</td>
<td>.579</td>
<td>.623</td>
<td>.208</td>
<td>.081</td>
<td>.046</td>
<td>.022</td>
<td>.663</td>
<td>.655</td>
</tr>
<tr>
<td>.9</td>
<td>1.152</td>
<td>.460</td>
<td>.527</td>
<td>.209</td>
<td>.119</td>
<td>.046</td>
<td>.042</td>
<td>.494</td>
<td>.757</td>
</tr>
<tr>
<td>.95</td>
<td>1.072</td>
<td>.438</td>
<td>.524</td>
<td>.184</td>
<td>.118</td>
<td>.063</td>
<td>.037</td>
<td>.462</td>
<td>.777</td>
</tr>
<tr>
<td>.99</td>
<td>1.014</td>
<td>.422</td>
<td>.51</td>
<td>.20</td>
<td>.11</td>
<td>.06</td>
<td>.04</td>
<td>.439</td>
<td>.791</td>
</tr>
</tbody>
</table>

Table 3.1. Extremal index $\tilde{\theta}$ and compounding probabilities π_k for the absolute value $|\xi_k|$ of the ARCH-process, based on $N=1000$ simulations of length $m=1000$

The table describes the occurrence of large, positive or negative values of the ARCH-process. However the behaviour of large (positive) values, i.e. the extremal index and compounding probabilities for the ARCH-process $\{\xi_n\}$ itself, can also be deduced from the same simulations. Clearly $\{\xi_n\} \overset{d}{=} \{C_n\sqrt{\xi_n^2}\}$, where the $\{C_n\}$ are i.i.d., independent of $\{\xi_n\}$ and $P(C_1=1) = P(C_1=-1) = 1/2$. Hence the point process of exceedances by ξ_n is
obtained from the corresponding process for $|\xi_n|$ by independent thinning, and this easily gives the extremal index and compound Poisson limit of the ξ-process itself. For $x > 0$, let $u_n = x n^{1/(2\kappa)}$. Then

$$P(\xi_1 > u_n) = \frac{1}{2} P(\xi_1 > u_n^2) - \frac{1}{2} c u_n^{2-\kappa} = \frac{1}{2} c x^{-2\kappa n} - 1,$$

where c and κ are the constants appearing in (1.4) for the ξ_2^n-process. Hence the probability that the maximum of n independent variables with this distribution is less than u_n is given by

$$P(\xi_1 \leq u_n)^n = \exp\left(-\frac{1}{2} c x^{-2\kappa}\right),$$

as $n \to \infty$.

Next, let N_n be the time-normalized point process of exceedances of u_n^2 by $\{\xi_t^2\}$, and let $1 \leq \tau_1 < \tau_2 < \ldots$ be the times of occurrence of these exceedances. Then

$$P(\max\{\xi_1, \ldots, \xi_n\} \leq u_n) = \sum_{k=0}^{\infty} P(N_n((0, 1]) = k) C_{\tau_1} = \ldots = C_{\tau_k} = -1$$

$$= \sum_{k=0}^{\infty} P(N_n((0, 1]) = k) 2^{-k}$$

$$- \sum_{k=0}^{\infty} P(N((0, 1]) = k) 2^{-k}, \quad \text{as } n \to \infty,$$

where N is the limiting compound Poisson process for $\{\xi_t^2\}$ given in Theorem 2.1. Let N' be the Poisson process with intensity $\eta = c \theta x^{-2\kappa}$ which governs the occurrence of points in N, let $\{\pi_k\}$ be the compounding probabilities and introduce their probability generating function $\Pi(u) = \sum_{k=1}^{\infty} \pi_k u^k$. Further, let $\{\pi^\ell(j)\}_{j=\ell}^{\infty}$ be the ℓ-fold convolution of $\{\pi_k\}$, i.e. $\pi^\ell(j)$ is the probability that the sum of ℓ independent variables with point probabilities π_k assumes the value j. It then follows that
\[\sum_{k=0}^{\infty} \mathbb{P}(N((0, 1])=k)2^{-k} = \sum_{k=0}^{\infty} \sum_{\ell=0}^{k} \mathbb{P}(N((0, 1])=\ell)2^{-k} \]

\[\mathbb{P}(N((0, 1])=k | N((0, 1])=\ell)2^{-k} = \sum_{k=0}^{\infty} \sum_{\ell=0}^{k} \pi_{(k)\ell} e^{-\eta} \sum_{k=0}^{\infty} \pi_{(k)\ell} 2^{-k} \]

\[\sum_{\ell=0}^{\infty} \sum_{k=0}^{\infty} \pi_{(k)\ell} 2^{-k} \]

Inserting \(\eta = c \theta x^{-2\kappa} \) it follows that

\[\mathbb{P}(\max\{\xi_1, \ldots, \xi_n\} \leq u_n) = \exp\{ -c \theta x^{-2\kappa}(1-\Pi(1/2)) \} \]

and comparing with (3.6) it is seen that the extremal index \(\theta' \), say, for the ARCH-process \(\{\xi_n\} \) itself is

\[\theta' = 2(1-\Pi(1/2)), \tag{3.8} \]

where \(\theta \) is the extremal index for \(\{\xi_n^2\} \). Since \(\Pi(1/2) < 1/2 \) we have \(\theta < \theta' < 1 \).

It is now readily seen that also the compounding probabilities \(\pi'_{\ell} \) for the ARCH-process can be obtained from the \(\pi_{\ell} \)'s for \(\{\xi_n^2\} \) as

\[\pi'_{\ell} = (1-\Pi(1/2))^{-1} \sum_{\ell=\ell}^{\infty} \pi_{(k)\ell} 2^{-\ell}. \tag{3.9} \]

Table 3.2 below contains the extremal index and compounding probabilities for the ARCH-process, computed from the simulations in Table 3.1 by means of (3.8), (3.9) (in this we of course have used \(\pi'_{\ell} \)'s also for larger values of \(k \) than those listed in Table 3.1).
<table>
<thead>
<tr>
<th>λ</th>
<th>κ</th>
<th>$\hat{\theta}'$</th>
<th>$\hat{\pi}_1'$</th>
<th>$\hat{\pi}_2'$</th>
<th>$\hat{\pi}_3'$</th>
<th>$\hat{\pi}_4'$</th>
<th>$\hat{\pi}_5'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>13.24</td>
<td>.999</td>
<td>.998</td>
<td>.002</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>.3</td>
<td>4.180</td>
<td>.939</td>
<td>.941</td>
<td>.054</td>
<td>.004</td>
<td>.001</td>
<td>.000</td>
</tr>
<tr>
<td>.5</td>
<td>2.365</td>
<td>.835</td>
<td>.844</td>
<td>.124</td>
<td>.025</td>
<td>.006</td>
<td>.001</td>
</tr>
<tr>
<td>.7</td>
<td>1.586</td>
<td>.721</td>
<td>.742</td>
<td>.176</td>
<td>.054</td>
<td>.018</td>
<td>.007</td>
</tr>
<tr>
<td>.9</td>
<td>1.152</td>
<td>.612</td>
<td>.651</td>
<td>.203</td>
<td>.079</td>
<td>.034</td>
<td>.016</td>
</tr>
<tr>
<td>.95</td>
<td>1.072</td>
<td>.589</td>
<td>.631</td>
<td>.203</td>
<td>.088</td>
<td>.040</td>
<td>.019</td>
</tr>
<tr>
<td>.99</td>
<td>1.014</td>
<td>.571</td>
<td>.621</td>
<td>.202</td>
<td>.088</td>
<td>.042</td>
<td>.021</td>
</tr>
</tbody>
</table>

Table 3.2. Extremal index $\hat{\theta}'$ and compounding probabilities $\hat{\pi}_k'$ for the ARCH-process, computed from the simulations in Table 3.1

Acknowledgement: We want to thank Charles Goldie for making us aware of Kesten's paper. L. de Haan and H. Rootzén acknowledge with thanks the hospitality of the statistics department of Colorado state University during the summer of 1987.

REFERENCES

