SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK

TECHNICAL REPORT NO. 588

June 1983

GRAPHS WITH K-BALANCED CLOSED
NEIGHBORHOOD MATRICES

by

Gerard J. Chang and
George L. Nemhauser

†This research was supported by National Science Foundation Grant ECS-8003650
to Cornell University.
Abstract

An n-cycle matrix is an $n \times n$ matrix (a_{ij}) with $a_{ii} = a_{i,i+1} = 1$ for $i = 1, \ldots, n-1$, $a_{nn} = a_{nl} = 1$ and $a_{ij} = 0$ otherwise, or any matrix obtained by applying row and column permutations to it. Let K be a set of positive integers all of which are at least 3. A 0-1 matrix is K-balanced if it does not contain an n-cycle submatrix for all $n \in K$. This paper gives a characterization of K-balanced matrices in terms of closed neighborhood matrices of graphs.
1. **Introduction**

An n-cycle matrix is an \(n \times n \) matrix \((a_{ij})\) with \(a_{ii} = a_{i,i+1} = 1 \) for \(i = 1, \ldots, n-1 \), \(a_{nn} = a_{n1} = 1 \) and \(a_{ij} = 0 \) otherwise, or any matrix obtained by applying row and column permutations to it. A 0-1 matrix is balanced if it does not contain an n-cycle submatrix for all odd \(n \geq 3 \). Balanced matrices are important in combinatorial optimization because of the following theorem.

Theorem (Berge [1] and Fulkerson et al. [8]). If \(M \) is a balanced matrix then all of the extreme points of the polyhedra \(P_1 = \{x: xM \geq 1, x \geq 0\} \) and \(P_2 = \{y: My \leq 1, y \geq 0\} \) are integral.

Consequently, the integer programs \(\text{min}\{xc: x \in P_1 \text{ and } x \text{ is integral}\} \) and \(\text{max}\{wy: y \in P_2 \text{ and } y \text{ is integral}\} \) can be solved as linear programs. In fact, they can be solved in polynomial time by an ellipsoid algorithm [10]. However, the problems of recognizing a balanced matrix in polynomial time and of solving the integer programs by a polynomial time combinatorial algorithm are unsolved.

A 0-1 matrix is totally balanced if it does not contain an n-cycle submatrix for all \(n \geq 3 \). Totally balanced matrices are balanced. For totally balanced matrices, the recognition problem and integer programming problems have been solved by polynomial-time combinatorial algorithms, see Farber [6], Hoffman et al. [9], Kolen [11] and Lubiw [12]. These problems also have been solved for another special case of balanced matrices, see Chang and Nemhauser [5].
Given a simple graph $G = (V,E)$, the **closed neighborhood** of $x \in V$ is the set $N(x) = \{ y \in V : y = x \text{ or } (x,y) \in E \}$. To indicate $y \in N(x)$, we use the abbreviated notation $x \sim y$. The **closed neighborhood matrix** $N(G)$ of G is the $|V| \times |V|$ matrix (b_{ij}) with $b_{ij} = 1$ if $x_i \sim x_j$ and $b_{ij} = 0$ otherwise.

In this paper, we generalize the notion of balanced matrices and characterize this class of matrices in terms of closed neighborhood matrices of graphs. Our main result covers Farber's theorem [7] on totally balanced matrices and gives a new characterization of balanced matrices.

In particular, let K be any set of integers such that each integer in the set is at least 3. A 0-1 matrix is K-balanced if it does not contain an n-cycle submatrix for all $n \in K$. Our main theorem characterizes K-balanced matrices in terms of closed neighborhood matrices of graphs.

Denote by \mathcal{Z}_n (resp. \mathcal{O}_n) the set of all integers $\geq n$ (all odd integers $\geq n$). Then a matrix is balanced (resp. totally balanced) if it is \mathcal{O}_3-balanced (resp. \mathcal{Z}_3-balanced).

2. **K-sun-free chordal graphs and K-balanced matrices**

In a graph G, an **n-hole** is a cycle of n edges without chords. A graph is **chordal** if it does not contain an n-hole for all $n \geq 4$.

An n-sun is a chordal graph $G = (V,E)$ whose vertex set V can be partitioned into $Y = \{y_1, \ldots, y_n\}$ and $Z = \{z_1, \ldots, z_n\}$ such that

(S1) Y is a stable set (no two vertices in Y are joined by an edge),
(S2) (z_1, \ldots, z_n, z_1) is a cycle,
(S3) $(y_i, z_j) \in E$ if and only if $i \in \{j, j+1\}$.*$

* It is to be understood in the sequel that for all vertices of an n-cycle or an n-sun addition of indices is assumed to be modulo n.
In the above definition, the z's are called inner vertices of the n-sun and the y's outer vertices. A 4-sun is shown in Figure 1.

[Figure 1 here]

A graph is K-sun-free chordal (K-SF-chordal) if it does not contain an n-sun as an induced subgraph for all n ∈ K. Z₃-SF-chordal and O₃-SF-chordal graphs are known as SF-chordal and OSF-chordal graphs respectively, see Chang and Nemhauser [4,5]. Farber [7] called Z₃-SF-chordal graphs strongly chordal and proved that G is Z₃-SF-chordal if and only if N(G) is Z₃-balanced. In this section, we will give a more general theorem on K-SF-chordal graphs and K-balanced matrices.

Proposition 1. Suppose C is a cycle of a chordal graph, then for every edge (u,v) of the cycle there exists a vertex w of the cycle that is adjacent to both u and v.

Lemma 2. The following two statements are equivalent.

1. G = (V,E) is an n-sun.

2. G = (V,E) is a chordal graph where V = W ∪ X, W = \{w₁, \ldots, wₙ\}, X = \{x₁, \ldots, xₙ\} and wᵢ ∨ xⱼ if and only if i ∈ \{j, j+1\}.

Proof. (1 ⇒ 2). Set wᵢ = yᵢ and xᵢ = zᵢ, i = 1, \ldots, n.

(2 ⇒ 1). First we claim that W ∩ X = ∅. Suppose there is an r and an s such that wᵣ = xₛ. Then r = s or r = s+1. Without loss of generality, assume that r = s, so wᵣ = xₛ = xᵣ.

Consider the sequence of vertices C = (w₁, x₁, w₂, x₂, \ldots, wₙ, xₙ, w₁). Delete all wᵦ identical to xᵦ or xᵦ₋₁ from C. Then the resulting sequence is a cycle C'. In C', by Proposition 1, there is a vertex adjacent to
x_r and $w_r = x_r$, which implies that C' has a w-x chord. Hence $w_i \sim x_j$ for some i and j such that $i \neq \{j, j+1\}$, which is a contradiction.

In the cycle $C = (w_1, x_1, w_2, x_2, \ldots, w_n, x_n, w_1)$, by Proposition 1, there is a vertex v adjacent to x_1 and w_2. Since C has no w-x chord, either $v = x_2$ or $v = w_1$. If $v = x_2$, let $y_i = w_1$ and $z_i = x_i$ for $i = 1, \ldots, n$; if $v = w_1$, let $y_i = x_i-1$ and $z_i = w_i$ for $i = 1, \ldots, n$. In either case $(z_1, z_2) \in E$. We will prove that $Y = \{y_1, \ldots, y_n\}$ and $Z = \{z_1, \ldots, z_n\}$ satisfy (S1), (S2) and (S3). (S3) is an immediate consequence of $w_i \sim x_j \iff i \in \{j, j+1\}$.

Next we prove by induction that $(z_1, z_2, \ldots, z_n, z_1)$ is a cycle. (z_1, z_2) is a path. The induction hypothesis is that (z_1, z_2, \ldots, z_i) is a path, where $i > 2$. Consider the cycle $C_i = (z_1, z_2, \ldots, z_i, y_{i+1}, z_{i+1}, \ldots, y_n, z_n, y_1, z_1)$. By Proposition 1, there is a vertex of C_i that is adjacent to both z_i and y_{i+1}. Since C has no y-z chord, the only possible vertex is z_{i+1} and hence $(z_1, z_2, \ldots, z_i, z_{i+1})$ is a path. Continuing this process shows that $(z_1, z_2, \ldots, z_n, z_1)$ is a cycle. This proves (S2).

Finally, we prove that y_i is not adjacent to y_j for all $i \neq j$.

Suppose y_i is adjacent to y_j for some $i \neq j$. Without loss of generality, we can assume that $i \neq j-1$. Consider the cycle $\hat{C} = (y_i, z_i, z_{i+1}, \ldots, z_{j-1}, y_j, y_i)$ which contains exactly two y's and at least two z's. In \hat{C}, by Proposition 1, there is a vertex z_k adjacent to both y_i and y_j. Thus \hat{C} contains a y-z chord, which is a contradiction. This proves (S1).

Chang [3] gives several other equivalent definitions of an n-sun.
Theorem 3. The following two statements are equivalent.

1. G is K-SF-chordal.
2. G is chordal and \(N(G) \) is K-balanced.

Proof. For each \(n \in K \), it suffices to prove that the chordal graph G contains an \(n \)-sun as an induced subgraph if and only if \(N(G) \) contains an \(n \)-cycle submatrix.

\((\forall 1 \Rightarrow \forall 2)\). Suppose G has an \(n \)-sun \(H \). Then the submatrix of \(N(G) \) whose rows correspond to inner vertices of \(H \) and whose columns correspond to outer vertices of \(H \) is an \(n \)-cycle submatrix.

\((\forall 2 \Rightarrow \forall 1)\). Suppose \(N(G) \) has an \(n \)-cycle submatrix whose rows and columns correspond to \(X = \{x_1, \ldots, x_n\} \) and \(W = \{w_1, \ldots, w_n\} \) respectively. Note that \(w_i \sim x_j \) if and only if \(i \in \{j, j+1\} \). Hence, Lemma 2 implies that G contains an \(n \)-sun.

Without the assumption of chordality, \(2 \Rightarrow 1 \) of Theorem 3 is false. For example, a 4-hole has a K-balanced closed neighborhood matrix where \(K = \{4\} \), but is not chordal. We now consider conditions on \(K \) so that \(N(G) \) is K-balanced implies that G is chordal.

Lemma 4. Suppose \(H = (x_1, \ldots, x_n, x_1) \) is an \(n \)-hole with \(n \geq 4 \). \(N(H) \) contains an \(m \)-cycle submatrix if and only if \(m \geq 3 \) and \(\frac{1}{2} n \leq m \leq \frac{3}{4} n \).

Proof. (\(\Rightarrow \)) Suppose \(N(H) \) contains an \(m \)-cycle submatrix \(M \) whose rows and columns correspond to \(X \) and \(W \) respectively.

For any set \(S \) of vertices of \(H \), a run of length \(k \) is a subset \(T = \{x_j, x_{j+1}, \ldots, x_{j+k-1}\} \) of \(S \) such that \(x_{j-1}, x_{j+k} \notin S \), where indices are assumed to be modulo \(n \).
First we prove that each run of X is of length not greater than three. If not, then X contains $x_j x_{j+1} x_{j+2} x_{j+3}$ for some j. Since W contains x_p and x_s such that $x_p \sim x_{j+1}$ and $x_s \sim x_{j+1}$ at least one of these vertices, say x_p, is x_{j+1} or x_{j+2}. So the column corresponding to x_p in M contains at least three ones, which is impossible.

Next we show that each run of $V(H)-X$ is of length one. If not, then $x_{j-1} x_j x_{j+k} \in X$, $x_j x_{j+1}, \ldots, x_{j+k-1} \notin X$ for some $k \geq 2$. Then $x_j x_{j+1}, \ldots, x_{j+k-1} \notin W$, otherwise M has a column with at most one 1. Since M is an m-cycle submatrix, there is some x_p with $x_p \sim x_{j-1}$ and $x_p \sim x_{j+k}$, which is impossible since $k \geq 2$.

Let a_i denote the number of runs of length i in X for $i = 1, 2, 3$. Then X has exactly $a_1 + a_2 + a_3$ runs. Since $V(H) \setminus X$ has as many runs as X, $|V(H) - X| = a_1 + a_2 + a_3$. Consequently, $m = |X| = a_1 + 2a_2 + 3a_3$ and $n = |X| + |V(H) - X| = 2a_1 + 3a_2 + 4a_3$. So

$$\frac{1}{2} n = a_1 + \frac{3}{2} a_2 + 2a_3 \leq m \leq \frac{3}{2} a_1 + \frac{9}{4} a_2 + 3a_3 = \frac{3}{4} n.$$

(\Leftarrow) Conversely, suppose $m \geq 3$ and $\frac{1}{2} n \leq m \leq \frac{3}{4} n$. It is possible to find a subset X of $V(H)$ and (a_1, a_2, a_3) such that X has exactly a_i runs of length i for $i = 1, 2, 3$ with $m = a_1 + 2a_2 + 3a_3$, and $V(H) - X$ has exactly $n-m = a_1 + a_2 + a_3$ runs of length one. In particular, first let $X_1 = \{x_i : i \text{ is odd and } 1 \leq i \leq n\}$. Next let $X_2 = \{x_{4i} : i = 1, \ldots, p\}$ where $p = m - |X_1|$. Since $|X_1| \geq \left\lceil \frac{n}{2} \right\rceil$ and $\frac{n}{2} \leq m \leq \frac{3}{4} n$, we have $0 \leq p \leq \frac{3}{4} n - \left\lceil \frac{n}{2} \right\rceil \leq \frac{1}{4} n$.

Then $X = X_1 \cup X_2$ satisfies the above requirements. Let $W = (V(H) - X) \cup \{x_i : (x_i, x_{i+1}) \text{ is a run of } X\} \cup \{x_i, x_{i+2} : (x_i, x_{i+1}, x_{i+2}) \text{ is a run of } X\}$. It is straightforward to check that the submatrix of $N(H)$ whose rows and columns correspond to X and W respectively is an m-cycle submatrix. \(\square\)
Consider the following condition on K.

(*) $K \cap \{ m \in \mathbb{Z}_3 : \frac{1}{2} n \leq m \leq \frac{3}{4} n \} \neq \emptyset$ for all $n \in \mathbb{Z}_4$.

Theorem 5. Suppose K satisfies (*). G is K-SF-chordal if and only if $N(G)$ is K-balanced.

Proof. If G is K-SF-chordal, then $N(G)$ is K-balanced by Theorem 3. If $N(G)$ is K-balanced, then G is chordal by Lemma 4. So again, by Theorem 3, G is K-SF-chordal. \qed

Corollary 6 (Farber [7]). G is SF-chordal if and only if $N(G)$ is totally balanced.

Proof. Apply Theorem 5 with $K = \mathbb{Z}_3$. \qed

Corollary 7. G is OSF-chordal if and only if $N(G)$ is balanced.

Proof. Apply Theorem 5 with $K = \emptyset$. \qed

Corollary 7 is used in [5] to prove that G is OSF-chordal implies that G^2 is perfect.

For any K, if a matrix M is K-balanced then so are its transpose M^t, (I,M), (M,M) and any submatrix of M.

Theorem 8. Suppose M is an $r \times s$ 0-1 matrix. M has an n-cycle submatrix if and only if $M^* = \begin{pmatrix} I & M^t \\ M & J \end{pmatrix}$ has an n-cycle submatrix, where I is an $s \times s$ identity matrix and J is an $r \times r$ matrix of all ones.
Proof: \((\Rightarrow)\). \(M\) is a submatrix of \(M^\#\).

\((\Leftarrow)\). Suppose \(M^\#\) has an \(n\)-cycle submatrix \(A\). Suppose \(A\) has \(r^\#\) rows from \((M J)\), \(n-r^\#\) rows from \((I M^\top)\), \(s^\#\) columns from \((M^\top J)\), and \(n-s^\#\) columns from \((I M)\).

If \(r^\# = 0\), then \(A\) is a submatrix of \((I M^\top)\) and hence \((I M^\top)\) has an \(n\)-cycle submatrix which implies \(M\) also has one. Similarly, the result follows if \(s^\# = 0\).

So assume that both \(r^\#\) and \(s^\#\) are positive. If \(s^\# \geq 3\) or \(r^\# \geq 3\), then \(A\) has the submatrix \((1 1 1)\) or its transpose, which is impossible.

So \(1 \leq s^\# \leq 2\) and \(1 \leq r^\# \leq 2\). Suppose \(r^\# = s^\# = 2\), then \((1 1 1)\) is a submatrix of \(A\), which is a contradiction. Suppose \(1 = r^\# \leq s^\# \leq 2\). Then \(A\) has at most \(n-s^\#\) ones in \(I\), exactly \(2-s^\#\) ones in \(M\), exactly \(s^\#\) ones in \(M^\top\), and exactly \(s^\#\) ones in \(J\). Hence \(A\) has at most \(n+2\) ones, which contradicts the assumption that \(A\) is an \(n\)-cycle matrix and \(n \geq 3\). A similar argument applies to the case \(s^\# = 1\) and \(r^\# = 2\). \(\square\)

Corollary 9. Suppose \(K\) satisfies (*)\). \(M\) is \(K\)-balanced if and only if \(M^\#\) is the closed neighborhood matrix of a \(K\)-SF-chordal graph.
References

Figure 1. A 4-sun.