Helping to keep agriculture, New York's largest industry, competitive in today's ever changing foreign and domestic market is the goal of the New York State Agricultural Experiment Station.

Whether it be in the form of a major breakthrough or the continuing accumulation of results, Geneva Station researchers continue to be a key ingredient in meeting the market and production challenges of agriculture. The Geneva Station has been a part of Cornell University's College of Agriculture and Life Sciences since 1923 and is a vital part of its research and extension efforts in agriculture.

With its 66 faculty members plus a full-time support staff of some 270 people, the Geneva Station is charged with conducting research on the production and processing of fruits and vegetables. While a large part of the 120 research projects conducted at the Station is done in laboratories, the some 750 acres also serve as a laboratory for demonstration and experiments on new and improved crops and production techniques. There are also two outlying laboratories operated by the Station. One of these is located at Fredonia, south of Buffalo, and the other laboratory is in the Hudson Valley at Highland.

Although the Station is a horticultural research institute, many of its faculty have extension-type responsibilities. Working closely with growers and processors is critical to the success of the Station's research program.

As it enters its second century of serving the $2 billion processing fruit and vegetable industry, the Geneva Station continues to be recognized worldwide, as a leader in agricultural research. By blending applied and basic research and combining new and old techniques, the Station is successful in meeting its objective of developing and delivering useful information to growers and processors.
How to Obtain Publications

The publications listed here are mainly of a technical nature. Search: Agriculture, the series that replaced the former Cornell Memoirs and the Geneva Station's Technical Bulletins, comprises reports of basic research and is available to persons and institutions engaged in research and to libraries.

New York's Food and Life Sciences Bulletin replaces the former Cornell Experiment Station Bulletins and the Geneva Research Circulars.

The Special Report Series is published only at the Geneva Agricultural Experiment Station and is unique to research conducted at Geneva. This series is of interest to researchers and the general public alike.

All former Geneva bulletins will be listed here until they are out of print.

Single copies of publications are available free of charge to residents of New York State, to nonresident agribusiness people, and to non-residents engaged in research. The charge per bulletin for multiple copies is listed. Exceptions are all publications marked with a star (*); those have no free distribution.

Geneva's Bulletin Room keeps supplies of only the Geneva Station's publications. Use the form at the back of this list to order publications. Postage stamps are acceptable for payment of sums less than $1.00. Checks and money orders should be made payable in U.S. dollars to the New York State Agricultural Experiment Station (NYSAES).

Explanation of Symbols

Publications of the New York State Agricultural Experiment Station
Geneva

C - Circular
G - Geneva General Bulletin
T - Technical Bulletin
Misc (Geneva) - Miscellaneous Publication
RC - Research Circular
SRC - Seed Research Circular
SpR - Special Report
FLS - New York's Food and Life Sciences Bulletin
Sch - Search: Agriculture
AGRICULTURAL ENGINEERING

G 660 Use of graphite to prevent clogging of drills when sowing dusted pea seed Armond and Horsfall, 1936 (.20)

AGRONOMY

G 775 Soils and methods used in irrigation experiments at Geneva, New York Vittum and Peck, 1956 (.25)
T 193 Lysimeter investigations. II. Composition of rainwater at Geneva, New York, for a 10-year period Collison and Mersching, 1932 (.20)
T 237 Lysimeter investigations. IV. Water movement, soil temperatures, and root activity under apple trees Collison, 1935 (.25)
T 279 Physical land condition of the fruit breeding farm at Geneva, New York Secor, Carleton, and Lamb, 1947 (.20)
Sch 5 Soil and Air Temperature at Geneva, NY Gibbs, Barnard, Peck, and Vittum, 1980 (.50)
SpR 39 What are the odds on maximum and minimum temperatures in New York State? Vittum, Barnard, and Gibbs, 1981 (1.25)
SpR 42 Organic toxicants and pathogens in sewage sludge and their environmental effects Babish, Lisk, Stoewsand, and Wilkinson, 1981 (.50)

DAIRY SCIENCE

C155 Straining milk on the farm Dahlberg, 1935 (.20)
C197 Whipping light cream Dahlberg, 1943 (.20)
G 639 Temperature of milk immediately after milking, and strainer capacity Dahlberg and Durham, 1934 (.20)
T 117 Effect of lactic acid producing streptococci on flavor of cheddar cheese Hucker and Marquardt, 1926 (.20)
T 184 Rate of chemical change in milk brought about by certain lactic acid streptococci Kelly, 1931 (.20)
T 191 Thermophilic bacteria in milk pasteurized by the holder process Breed, 1932 (.20)
T 200 The influence of certain lactic acid streptococci on the chemical changes in cheddar cheese during ripening Kelly, 1932 (.20)
T 201 Lactic acid streptococci associated with the early stages of cheddar cheese ripening Kelly, 1932 (.20)
T 242 Methods of making cheddar cheese from milk with low curd tension Marquardt and Hucker, 1937 (.20)
T 253 Factors affecting the quality of limburger cheese made from milk heated to 145° F Yale, 1940 (.20)
T 257 Rate of rennet coagulation and curd tension of milk, with special reference to problems in cheese manufacture Marquardt and Needham, 1941 (.20)
T 259 Organisms causing rusty spot on cheddar cheese Pederson and Breed, 1941 (.20)
T 265 Ripening cheese in cans Dahlberg and Marquardt, 1942 (.20)
T 266 Gas production by cheddar and limburger cheese ripened in cans Dorn and Dahlberg, 1942 (.10)
T 268 The surface flora and the use of pure cultures in the manufacture of limburger cheese Yale, 1943 (.10)
T 269 Effect of pasteurization times and temperatures on certain properties and constituents of cream Hening and Dahlberg, 1943 (.10)
T 270 Coliform bacteria in cheddar cheese Yale and Marquardt, 1943 (.10)
T 271 Pasteurizing milk for cheese-making by direct steam Marquardt and Yale, 1943 (.10)

ENTOMOLOGY

G 702 Spraying and dusting experiments with bush lima beans on Long Island for control of the Mexican bean beetle Hucket, 1942 (.25)
G 715 Japanese beetle abundance and injury on sweet corn Carruth, Bartlett, and Adams, 1946 (.20)
G 732 Hooded booms for grape spraying Taschenberg, 1948 (.20)
G 823 Moth activity in Hudson Valley Orchards: Trapping records of seven pest species Dean, 1969 (.50)
G 828 Biology of the European chafer in northeastern United States Tashiro, Gyrisco, Gambrell, Fiori, and Breitfeld, 1969 (.75)

Misc Proceedings of symposium on potentials in crop protection (.50)
SpR 37 A bibliography of the seed maggots Hylemya spatura and H. florilega (Diptera: Anthomyiidae) Throne, 1980 (.65)
FLS 16 The European Chafer, a continuing lawn problem in New York Tashiro, 1972 (.45)
FLS 43 1973 sweet corn control report Straub, 1974 (.50)
FLS 44 1973 European red mite control evaluations Lienk and Minns, 1974 (.50)
FLS 49 Feasibility of fall armyworm, Spodoptera frugiperda (Smith), control on late-planted dent corn Straub and Hogan, 1974 (.50)
FLS 50 Green fruitworms Chapman and Lienk, 1974 (.90)
FLS 54 Protecting the tractor operator in the application of pesticidal chemicals Taschenberg, Minnick, and Bourke, 1975 (.50)
FLS 56 1974 Insecticide research report on cabbage maggot, seedcorn maggot, aphids on lettuce, and phytotoxicity in cucumbers Eckenrode, Robbins, and Webb, 1975 (.50)
Field research on control of vegetable insects in eastern New York - 1974 Straub and Huth, 1975 (.50)

Growth stages in fruit trees, from dormant to fruit set Chapman and Catlin, 1976 ($1.00) NO FREE DISTRIBUTION

Control of seedcorn maggot, cabbage maggot and cutworm (1975 insecticide research report) Eckenrode, Robbins, and Webb, 1976 (.50)

Using sticky traps to monitor fruit flies in apple and cherry orchards Leeper, 1978 (.75)

Evaluation of pesticides against the European red mite, apple rust mite, and two mite predators in 1976-1977 Lienk, Minns, and Labanowska, 1978 (.80)

Simplified rearing and bioassay for the seedcorn maggot, Hylemya platura (Meigen) Webb and Eckenrode, 1978 (.75)

The onion maggot and its control in New York Ellis and Eckenrode, 1979 (.50)

Extension-based tree-fruit insect pest management strategies for apple and pear Leeper, 1980 (.60)

Predicting cabbage maggot flights in New York using common wild plants Pedersen and Eckenrode, 1980 ($1.00)

Extension based tree and small fruit insect pest management strategies Leeper, 1980 (.85)

SCAMP - A computer-based information delivery system for cooperative extension Sarette, Tette, and Barnard, 1980 (.60)

Blister spot of apple Burr, 1982 (.40)

Cabbage growth stages Andaloro, Rose, Shelton, Hoy, and Becker, 1983 (.40)

Patterns of pesticide use on New York state produced sweet corn Straub and Heath, 1983 (.40)

Chem-News, an on-line pesticide information program Smith, Carruthers, and Barnard, 1983 (.75)

An improved screen cone trap for monitoring activity of flying insects Throne, Robbins, Eckenrode, 1984 (.70)

Diagnostic keys for identification of diseases on apple, peach, and cherry trees in the Northeastern United States Schwarz and Burr, 1984 (.70)

Preventing decomposition of agricultural chemicals by alkaline hydrolysis in the spray tank Seaman and Riedl, 1986 (.75)

Assessing the risk of Grape Berry Moth attack in New York vineyards Hoffman and Dennehy, 1987 (.75)
Effect of Winter Storage on Thrips Damage to Cabbage
Stoner and Shelton, 1988 (.75)

Laboratory rearing of the imported cabbageworm Webb
don and Shelton, 1988 (.75)

Basing European red mite control decisions on a census of
mites can save control costs Nyrup and Reissig, 1988
(.75)

The role of nutrition in alary polymorphism among the
Aphididae: An overview Schaefers, 1972 (.45)

A continuing search for effective cabbage maggot control in
New York Eckenrode, 1972 (.45)

Aspects of the biology of the gray garden slug (Derceras
reticulatum Muller) Judge, 1972 (.55)

Chlordane-resistant Japanese beetle in New York Tashiro
and Neuhauser, 1972 (.50)

Evaluation of soil applied systemic insecticides on insects of
white birch in nurseries Tashiro, 1972 (.55)

The white apple leafhopper in New York: Insecticide
resistance and current control status Trammel, 1974
(.55)

Status of chlordane resistance in the Japanese beetle in New
York - 1973-1974 Tashiro, Straub, and Gaines,
1975 (.55)

The importance of defining lepidopteran pheromone blends
Roelofs, 1976 (.50)

Effectiveness of various materials against the green house
whitefly at Geneva, New York Schaefers and Lienk,
1976 (.70)

Seasonal occurrence of the European corn borer, (Ostrinia
nubilalis) Hubner, in the Hudson Valley District of New
York Straub, 1976 (.70)

Integrated mite control in Hudson and Champlain Valley
apple orchards Weires, McNicholas, and Smith,
1976 (.50)

Reduced spray programs for apple pests in the Champlain
and Hudson Valleys Weires, McNicholas, Smith,
Schadt, and Waters, 1976 (.55)

Phytophagous and predacious mites on apple in New York
Lienk, Watve, and Weires, 1980 (.55)

Flight periods of adults of cutworms, armyworms, loopers,
and others injurious to vegetable and field crops
Chapman and Lienk, 1981 ($2.00)

Effects of soil-applied postplant insecticides and nematicides
on the pest complex and growth habits of young apple
trees Weires, Forshey, and Arneson, 1984 (.50)

Suppressing onion maggot in commercial fields and
research plots, and monitoring with air thermal unit
accumulations Andaloro, Rose, and Eckenrode,
1984 (.50)
FOOD SCIENCE AND TECHNOLOGY

C 196 The vitamin C content of New York State vegetables Tressler, 1942 (.20)
G 672 Relation of age and viability to popping of popcorn Stewart, 1936 (.20)
G 693 The relation between quality and chemical composition of canned sauerkraut Pederson, 1940 (.20)
G 718 Some factors causing dark-colored maple sirup Haywood and Pederson, 1946 (.20)
G 725 Relation of copper-containing fungicides to the ascorbic acid and copper content of tomato juice Robinson, Schroeder, Stotz, and Kertesz, 1947 (.20)
G 727 Concentration of fruit juices by freezing Pederson and Beattie, 1947 (.20)
G 728 Deterioration of processed fruit juices Pederson, Beattie, and Stotz, 1947 (.25)
G 729 Determination of maturity of frozen lima beans Lee, 1948 (.20)
G 742 Changes in the composition of maple sap during the tapping season Holgate, 1950 (.20)
G 743 Low temperature preservation of fruit juices and fruit juice concentrates Lee, Robinson, Hening, and Pederson, 1950 (.20)
G 744 Effect of temperature upon bacteriological and chemical changes in fermenting cucumbers Pederson and Albury, 1950 (.20)
G 745 The pectic substances of mature John Baer tomatoes Kertesz and McColloch, 1950 (.20)
G 758 Variety comparison of peas used for canning and freezing, 1952 Sayre, Tapley, and Barton, 1953 (.20)
G 759 The yield and quality of juice obtained from New York State tomatoes graded according to United States Department of Agriculture standards Hand et al., 1953 (.30)
G 761 Chemical composition and freezing adaptability of raspberries Lee and Slate, 1954 (.20)
G 768 Chemical composition and freezing adaptability of peach varieties grown in western New York Lee, Oberle, and Whitcombe, 1954 (.20)
G 774 Bitter flavor in carrots: II. Progress on field and storage experiments Atkins, 1956 (.25)
G 790 Symposium papers on "Food and Health", 1960 (.75)
T 136 Motility of certain cocci Hucker and Thatcher, 1928 (.20)
T 144 Relations of acid-proteolytic cocci Hucker, 1928 (.20)
T 150	Organisms in spoiled tomato products	Pederson, 1929 (.20)
T 179	Factors affecting the pectin content of stored apple pomace	Kertesz and Green, 1931 (.25)
T 213	Temperature variations in bacteriological incubators	Pederson, Yale, and Eglinton, 1933 (.25)
T 248	Bacteriological quality of ice cream supply for a small city	Yale and Hickey, 1937 (.20)
T 252	Use of calcium in the commercial canning of whole tomatoes	Kertesz, Tolman, Loconti, and Ruyle, 1940 (.20)
T 256	Objective methods for determining the maturity of peas, with special reference to the frozen product	Lee, 1941 (.20)
T 258	Relative sweetness of sugars as affected by concentration	Dahlberg and Penczek, 1941 (.20)
T 260	Use of the contact plate method to determine the microbiol contamination on flat surfaces	Walter and Hucker, 1941 (.20)
T 272	Factors determining the consistency of commercial canned tomato juice	Kertesz and Loconti, 1944 (.20)
T 273	The bactericidal action of cabbage and other vegetable juices	Pederson and Fisher, 1944 (.25)
T 274	The chemical composition of maturing New York State grapes	Kertesz, 1944 (.20)
T 275	Studies on the Coccaceae, XVIII. The enterotoxin-producing micrococci	Haymes and Hucker, 1945 (.20)
T 276	The action of copper and antioxidants in linoleic acid autoxidation	Smith and Stotz, 1946 (.20)
T 278	Factors affecting the acid and total solids content of tomatoes	Lee and Sayre, 1946 (.25)
T 280	The rate of germicidal action of the quaternary ammonium compounds	Hucker, Metcalf, and Cook, 1948 (.25)
T 281	Effect of H-ion concentration and temperature on the activity of the quaternary ammonium compounds	Hucker, Stone, and Watkins, 1948 (.25)
T 282	The effect of organic matter on the germicidal action of the quaternary ammonium compounds	Hucker and Van Eseltine, 1948 (.20)
T 287	Flat sour spoilage of tomato juice	Pederson and Becker, 1949 (.20)
T 288	The effects of salt upon the bacteriological and chemical changes in fermenting cucumbers	Pederson and Ward, 1949 (.20)
Misc	Measurement of non-volatile acids in grape juice	Mattick and Moyer (.20)
RC 11	New York State dried prunes	LaBelle, Lamb, and Hicks, 1968 (.20)
RC 17	Analysis of effluents from fruit and vegetable processing factories	Splittstoesser and Downing, 1969 (.30)
Bysschlamys seminar abstracts Misc., 1969 (.50)

Stripping of high-boiling aroma compounds from aqueous solutions Saravacos, Moyer, and Wooster, 1969 (.20)

Vineyard and cellar notes 1968-69 Robinson, Bertino, Einset, and Kimball, 1970 (.45)

Nutrition in the '70s - Fifth annual symposium, Western New York State Institute of Food Technologists, 1970 (.55)

Homemade fruit juice press Downing, 1972 (.40)

Environmental contaminants in foods - sixth annual symposium, Western New York State Institute of Food Technologists, 1972 (.45)

1972 Sauerkraut seminar - National Kraut Packers Assoc., 1973 (.45)

Fungi and foods - seventh annual symposium, Western New York State Institute of Food Technologists, 1973 (.50)

Fermented foods: current science and technology - eighth annual symposium, Western New York State Institute of Food Technologists, 1974 (.50)

1974 Sauerkraut seminar - National Kraut Packers Association, 1974 (.60)

Trends in packaging - ninth annual symposium, Western New York State Institute of Food Technologists, 1975 (.60)

A wine meeting for amateurs, 1976 (1.50)

The role of fiber in the diet - tenth annual symposium, Western New York State Institute of Food Technologists, 1976 (1.40)

1958-1973 vineyard and cellar notes Pool, Einset, Kimball, Watson, Robinson, and Bertino, 1976 (1.20)

1976 Sauerkraut seminar - National Kraut Packers Association, 1977 (.75)

Working with government regulations, eleventh annual symposium, Western New York Institute of Food Technologists, 1976 (.80)

1977 Nutrition Council seminar, 1977 (1.00)

1977 Apple seminar, 1977 (.50)

Proceedings - apple and pear scab workshop, 1978 (1.00)

Energy conservation and economics - twelfth annual symposium, 1978 (1.00)

1978 Sauerkraut seminar Downing, ed., 1978 (.60)

Controlling microorganisms in food processing Downing, ed., 1979 (.80)

Hard cider workshop Downing, ed., 1979 (.75)

Farm winery workshop Downing, ed., 1980 (.75)

Update on antimicrobial agents, fourteenth annual symposium Downing, ed., 1980 (.75)

1980 sauerkraut seminar - National Kraut Packers Association Downing, ed., 1981 (1.00)

The retort pouch - 1980's - fifteenth annual symposium, 1981 (.75)
Basic statistics, sixteenth annual symposium, Western New York Section - IFT, 1982

1982 Sauerkraut seminar Downing, ed., 1982

New technology for the food industry, 1983

Processed apples - research report for 1983 Downing, ed., 1983

Computer use in the food industry - a symposium Downing, ed., 1983

Gum and starch technology - Eighteenth annual symposium Downing, ed., 1984

Apple juice workshop Downing, ed., 1984

1984 Sauerkraut seminar Downing, ed., 1985

1985 Processed apple products workshop Downing, ed., 1985

Trends in packaging Downing and Hotchkiss, 1985

Rapid microbiological methods, twenty-first annual symposium Downing, ed., 1987

1987 Sauerkraut Seminar, Becker and Downing, ed., 1987

New horizons in the food industry Downing, ed., 1989

Free sugars in fruits and vegetables Lee, Shafterberger, and Vittum, 1970

Concentration of liquid foods in a pilot-scale falling film evaporator Saravacos, Moyer, and Wooster, 1970

Pesticide register Mack, 1971

Handling of red tart cherries for processing - A review Downing, Huehn, and LaBella, 1971

Physical treatments of food processing wastewaters Saravacos and Iredale, 1971

Experimental wine production Nelson, Acree, Robinson, Pool, and Bertino, 1977

Dietary vegetable and environmental health Stoewsand and Babish, 1979

Experimental distillation of New York State wines Saravacos and Iredale, 1972

A comparison of the amino acid and nitrogen content of pods and seeds of beans (Phaseolus vulgaris L.) Hackler and Dickson, 1973

Methodology for estimating heat losses in food processing plants Rao, 1976

Energy consumption for processing and packaging of apple products Anantheswaran, Rao, and Cooley, 1984
HORTICULTURAL SCIENCES

FRUIT:

Apples:

G 809 Irrigation of apples in the Hudson Valley Forshey and Dominick, 1965 (.35)
RC 4 Factors affecting chemical thinning of apples Forshey and Hoffman, 1967 (.20)
RC 12 Jonagold and Spijon: two new apples from Geneva Way, LaBelle, and Einset, 1968 (.20)
SpR 3 Pollination arrangements in new apple plantings Way, 1970 (.25)
SpR 7 Early apple varieties Way, 1972 (.25)
FLS 9 Predicting harvest size of McIntosh apples Forshey, 1971 (.40)
FLS 15 Slotting saw pruning of hedgerow apples improves production and quality Cain, 1972 (.40)
G 817 Propagating fruit trees in New York Way, Dennis, and Gilmer, 1967 (.35)
RC 15 Tree spacing in relation to orchard production efficiency Cain, 1969 (.25)
FLS 9 Predicting harvest size of McIntosh apples Forshey, 1971 (.40)
FLS 15 Slotting saw pruning of hedgerow apples improves production and quality Cain, 1972 (.40)
FLS 47 Burgundy: an early fall, dark red apple Way and Lamb, 1974 (.50)
FLS 53 Empire: a high quality dessert apple Way, 1975 (.50)
FLS 64 Factors affecting chemical thinning of apples Forshey, 1976 (.70)
FLS 65 McIntosh apple crop prediction - grower sampling instructions Forshey, 1977 (.55)
FLS 73 Liberty - a new disease-resistant apple Lamb, Aldwinckle, Way, and Terry, 1978 (.60)
FLS 78 Apple varieties grown in New York State Way, 1979 (.55)
FLS 99 Early Cortland and Geneva early apples Way, Livermore, and Aldwinckle, 1982 (.40)
FLS 103 'Freedom' a new disease-resistant apple Lamb, Aldwinckle, Terry, 1983 (.50)
FLS 116 Chemical thinning of apples Forshey, 1986 (.75)
Sch-Vol 2, #7 Hedgerow orchard design for most efficient interception of solar radiation. Effects of tree size, shape, spacing, and row direction Cain, 1972 (.45)

Apricots:

FLS 100 Apricots for New York State Lamb, Stiles, 1983 (.40)
Cherries:

FLS 37 Cherry varieties in New York State Way, 1974 (.50)
FLS 98 Kristin sweet cherry Way, Ystaas, Livermore, Lamb, 1982 (.40)

Elderberries:

FLS 91 Elderberry culture in New York State Way, 1981 (.35)

Grapes:

SpR 22 Converting mature vineyards to other varieties Kimball, 1976 (1.00) NO FREE DISTRIBUTION
SpR 22a 1958-1973 vineyard and cellar notes Pool et al., 1976 (1.20)
FLS 21 Lakemont and Suffolk red seedless grapes named Einset, 1972 (.45)
FLS 22 Cayuga White, the first of a Finger Lakes series of wine grapes for New York Einset and Robinson, 1972 (.45)
FLS 45 Resistant rootstocks for New York vineyards Lider and Shaulis, 1974 (.50)
FLS 68 Canadice and Glenora seedless grapes named Pool, Kimball, Watson, and Einset, 1977 (.55)
FLS 80 Grape varieties for New York State Pool, Kimball, Watson, and Einset, 1979 (.50)
FLS 89 Remaily seedless grape Pool, Ramaily, Reisch, Watson, and Kimball, 1981 (.30)
FLS 96 Horizon grape Reisch, Robinson, Kimball, Pool, Watson, 1982 (.50)
FLS 109 A method for large scale in vitro propagation of vitis Chee, Pool, Bucher, 1984 (.75)
FLS 112 'Melody' Grape Reisch, Pool, Watson, Robinson, and Cottrell, 1985 (.75)
FLS 113 'Einset Seedless' Grape Reisch, Ramaily, Pool, and Watson, 1985 (.75)
Sch 3 Damage to grapevines by fossil fuel wastes and pollutants Musselman, Shaulis, and Kender, 1980 (.60)

Peaches:

FLS 23 Brighton and Eden: two new peach varieties Lamb, 1972 (.45)
FLS 34 Peach and nectarine varieties for New York State Lamb and Terry, 1973 (.50)
FLS 117 Peach and nectarine varieties in New York State Brown, Lamb, Terry, 1986 (.75)
Pears:
FLS 48 Highland: a new winter pear Lamb, 1974 (.50)

Plums:
FLS 26 Seneca plum named Watson, 1972 (.45)

Raspberries:
RC 19 Heritage, a new fall-bearing red raspberry Ourecky and Slate, 1969 (.25)
FLS 35 Jewel black raspberry Ourecky and Slate, 1973 (.45)
FLS 61 Brandywine purple raspberry Ourecky, 1976 (.55)
FLS 97 Royalty - a purple-red raspberry Sanford, Ourecky, 1982 (.50)
FLS 111 'Titan' Red Raspberry Sanford, Ourecky, and Reich, 1985 (.75)

Strawberries:
FLS 24 Holiday strawberry Ourecky, 1972 (.45)
FLS 83 Honeoye and Canoga strawberry cultivars Ourecky, 1979 (.60)
FLS 107 Strawberry cultivars for New York Sanford, 1984 (.50)
FLS 114 'Jewel' Strawberry Sanford, Ourecky, and Reich, 1985 (.75)

Misc.:
FLS 39 Fruit varieties in New York State: Berries Ourecky, 1974 (.50)
FLS 76 Pollination and fruit set of fruit crops Way, 1978 (.80)

VEGETABLES:

Beets:
SRC 2 Predicting field stands of table beets Clark, Peck, Becker, and Kline, 1967 (.40)
Sch-Vol 4, #6 Table beet and nitrogen Peck, Cantliffe, Shallenberger, and Bourke, 1974 (.75)

Cabbage:
G 750 Relation of Marion market cabbage yield and bursting to rates of application and sources of fertilizer nutrients and insect control Vittum and Hervey, 1952 (.40)
G 777 Response of cabbage to irrigation, fertility level, and spacing Vittum and Peck, 1956 (.40)
G 830 Plant response to concentrated superphosphate and potassium chloride fertilizers: III. Cabbage Peck and Stamer, 1970 (.40)

Carrots:
G 774 Bitter flavor in carrots: II. Progress on field and storage experiments Atkins, 1956 (.40)

Peas
G 660 Use of graphite to prevent clogging of drills when sowing dusted pea seed Armond and Horsfall, 1936 (.40)
G 758 Variety comparisons of peas used for canning and freezing, 1952 Sayre, Tapley, and Barton, 1953 (.40)
G 787 Experiments with an improved drill for fertilizing and planting processing peas Vittum, Sayre, and Clark, 1959 (.40)
G 825 Plant response to concentrated superphosphate and potassium chloride fertilizers: I. Pea Peck and MacDonald, 1969 (.40)
RC 1 Improved germ plasm for pea breeders Marx, Mishanec, Barton, Schroeder, Provvidenti, 1963 (.40)
Sch-Vol 9, #5 Purple blight - a physiological disorder of pea Schroeder, Peck, and Vittum, 1979 (.50)

Snap Beans:
G 819 Relationship between the size and performance of snap bean seeds Clark and Peck, 1968 (.40)
Sch-Vol 2, #9 Nature of the stringy pod rogue of snap bean, and nature of the flat pod rogue of snap beans Atkin and Robinson, 1972 (.45)
Sch-Vol 5, #2 Plant response to concentrated superphosphate and potassium chloride fertilizers: V. Snap Bean Peck and Van Buren, 1975 (.90)

Sweet Corn:
G 765 Quality, maturity, and yield measurements of 12 sweet corn varieties, 1951-1953 Barton, 1954 (.40)
G 786 Response of sweet corn to irrigation, fertility level, and spacing Vittum, Peck, and Carruth, 1959 (.30)
Sch-Vol 5, #3 Plant response to concentrated superphosphate and potassium chloride fertilizers: VI. Sweet Corn Peck and MacDonald, 1975 (.90)

Tomatoes:
G 782 Response of tomato varieties to irrigation and fertility level Vittum, Tapley, and Peck, 1958 (.40)
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 797</td>
<td>Fertilizer placement and rates for tomatoes</td>
<td>Vittum and Hulbert, 1963</td>
<td>(.40)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OTHER (HORTICULTURAL SCIENCES)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G 800</td>
<td>Crop response to irrigation in the Northeast</td>
<td>Vittum et al., 1962</td>
<td>(1.00)</td>
<td></td>
</tr>
<tr>
<td>G 801</td>
<td>Growing degree days</td>
<td>Dethier and Vittum, 1962</td>
<td>(1.00)</td>
<td></td>
</tr>
<tr>
<td>G 807</td>
<td>Principles and methods of testing alfalfa seed for varietal purity</td>
<td>Nittler, McGee, and Newcomer, 1964</td>
<td>(.40)</td>
<td></td>
</tr>
<tr>
<td>SpR 23</td>
<td>Ornamental introductions of the past - all still used (II)</td>
<td>Dolan, 1976</td>
<td>(.50)</td>
<td></td>
</tr>
<tr>
<td>SpR 35</td>
<td>Characteristics and forage yield of red clover accessions</td>
<td>Dolan, Oughterson, and Tolley, 1980</td>
<td>(.40)</td>
<td></td>
</tr>
<tr>
<td>SpR 36</td>
<td>Characteristics and forage yield of white clover accessions</td>
<td>Dolan, Oughterson, and Tolley, 1980</td>
<td>(.40)</td>
<td></td>
</tr>
<tr>
<td>SpR 39</td>
<td>What are the odds on maximum and minimum temperatures in New York State?</td>
<td>Vittum, Barnard, and Gibbs, 1981</td>
<td>(1.00)</td>
<td></td>
</tr>
<tr>
<td>SpR 41</td>
<td>Progress in the evaluation of use of plant germplasm in the Northeast 1965-1973</td>
<td>Dolan and Sherring, 1981</td>
<td>(.75)</td>
<td></td>
</tr>
<tr>
<td>SpR 43</td>
<td>Progress in the evaluation of use of plant germplasm in the Northeast 1974-1979</td>
<td>Dolan and Sherring, 1982</td>
<td>(.50)</td>
<td></td>
</tr>
<tr>
<td>SpR 47</td>
<td>Minimum and maximum temperatures and record periods of warm and cold, wet and dry weather at Geneva, NY</td>
<td>Vittum, Gibbs, and Barnard, 1983</td>
<td>(1.00)</td>
<td></td>
</tr>
<tr>
<td>FLS 3</td>
<td>The potentiometric determination of nitrate and chloride in plant tissue</td>
<td>Cantliffe, MacDonald, and Peck, 1970</td>
<td>(.40)</td>
<td></td>
</tr>
<tr>
<td>FLS 52</td>
<td>Vegetable crop fertilization</td>
<td>Peck, 1975</td>
<td>(.50)</td>
<td></td>
</tr>
<tr>
<td>Sch-Vol 1, #9</td>
<td>Discovery of a new role for cytokinins in seed dormancy and germination</td>
<td>Khan, Heit, Waters, Anojulu, and Anderson, 1971</td>
<td>(.40)</td>
<td></td>
</tr>
<tr>
<td>Sch-Vol 2, #2</td>
<td>Understanding plant physiology and other branches of mathematics</td>
<td>Drury, 1972</td>
<td>(.40)</td>
<td></td>
</tr>
</tbody>
</table>

Sch 5 Soil and air temperature at Geneva, New York **Gibbs, Barnard, Peck, and Vittum, 1980** (.50)

Sch 17 Use of seedling characteristics in testing trefoil seed for varietal purity **Nittler, 1981** (.80)

INTEGRATED PEST MANAGEMENT

FLS 119 IPM in New York apple orchards - development, demonstration and adoption **Tette, Kovach, Schwarz, Bruno, 1987** (.50)

PLANT PATHOLOGY

G 709 Current leaf spot control **Suit, 1945** (.40)

G 710 Control of spur blight of red raspberries **Suit, 1945** (.40)

G 752 Seed treatment for control of seed-corn maggot and seed decay organisms **Howe, Schroeder, and Swenson, 1952** (.40)

G 756 Rust diseases of apples and their control in the Hudson Valley **Palmiter, 1952** (.40)

G 766 Influence of certain nitrogen and fungicide applications on yield and quality of apples **Palmiter and Hamilton, 1954** (.40)

G 787 Effect of fungicides on McIntosh apple yield and quality: A five-year study under Hudson Valley conditions, 1949-1953 **Palmiter and Smock, 1954** (.40)

G 771 Protectant seed treatment for vegetable processing crops **Natti and Schroeder, 1955** (.40)

G 779 Control of virus diseases of stone fruit nursery trees in New York **Gilmer, Brace, and Parker, 1957** (.40)

G 806 Evaluating *Pisum sativum* for resistance to pea mosaic **Schroeder and Provvidenti, 1963** (.40)

G 813 Insect transmission of X-disease virus of stone fruit in New York **Gilmer, Palmiter, Schaefers, and McEwen, 1966** (.40)

T 264 Distribution and relative importance of virus fungi associated with pea root-rot in commercial pea growing areas in New York **Reinking, 1942** (.40)

RC 8 Research with aircraft for orchard disease control **Szkolnik, 1967** (.40)

FLS 77 White mold of beans in New York **Abawi and Hunter, 1979** (.85)

FLS 92 Biology and control of Cytospora fungi in peach plantings **Rosenberger, 1982** (.40)
'Freedom' a disease-resistant apple *Lamb, Aldwinckle, and Terry, 1983* (.50)

Root rot of snap beans in New York *Abawi, Crosier, and Cobb, 1985* (3.00) NO FREE DISTRIBUTION

Root Rot of Table Beets in New York State *Abawi, Crosier, Cobb, Becker* (2.00) NO FREE DISTRIBUTION

Control of halo blight of bean by foliage sprays *Natti, 1971* (.50)

Brown rot of stone fruits: Progress in control with fungicides *Szkolnick, 1973* (.50)

Pest problems associated with the decline of peach trees in the Hudson Valley of New York *Pearson and Weires, 1976* (.50)

Two computer programs used in the analysis of rectangular and circular charts from continuously recording weather instruments *Blume, Seem, and Barnard, 1979* (.55)

Proceedings, brown rot of stone fruit workshop, 1985 (1.25)

SOCIIOLOGY

Symposium papers on "The Role of Agriculture in Future Society", 1957 (.75)
Bulletin Room
Jordan Hall
New York State Agricultural Experiment Station
Geneva, New York 14456

Please send me the following publications

<table>
<thead>
<tr>
<th>Letter and Number</th>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enclosed is my check/money order in the amount of $______ payable to "New York State Agricultural Experiment Station".

Name__

Street___

City________________________ State_________ Zip_________