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ABSTRACT 

 

Home lawns are a dominant cover type in urban and suburban ecosystems and 

there is concern about their impacts on water quality.  However, recent watershed-

level studies suggest that these pervious areas might be net sinks, rather than 

sources, for nitrogen in the urban environment.  A 15N pulse-labeling experiment 

was performed on lawn and forest plots in the Baltimore metropolitan area to test 

the hypothesis that lawns are a net sink for nitrogen and to compare and contrast 

mechanisms of N retention in these vegetation types.  A pulse of 15N-NO3
-, 

simulating a precipitation event, was followed through soils, roots, Oi-layer/thatch, 

aboveground biomass, microbial biomass, inorganic nitrogen and evolved N2 gas 

over a one-year period.  Gross rates of production and consumption of NO3
- and 

NH4
+ were measured to assess differences in internal nitrogen cycling under the 

two vegetation types.  Rates of nitrogen retention in forests and lawns were similar 

during the first 5 days of the experiment, with lawns showing higher nitrogen 

retention than forests after 10, 70, and 365 days.  Lawns had larger pools of 

available NO3
- and NH4

+; however, gross rates of mineralization and nitrification 

were also higher, leading to no net differences in NO3
- and NH4

+ turnover times 

between the two systems.  Levels of 15N remained steady in forest soils from days 

70 to 365 (at 23% of applied 15N), but continued to accumulate in lawn soil 

organic matter (SOM) over this same time period, increasing from 20% to 33% of 

applied 15N.  The dominant sink for nitrogen in lawn plots changed over time; 

abiotic immobilization in soils dominated immediately (1 day) after tracer 

application (42% of recovered 15N), plant biomass dominated the short (10 days) 

term (51%), thatch and SOM pools together dominated the medium (70 days) term 

(28% and 36% respectively), while the SOM pool alone dominated long (1 year) 

 



 

term retention (70% of recovered 15N).  These findings illustrate the mechanisms 

whereby urban and suburban lawns under low to moderate management intensities 

are an important sink for nitrogen.  
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INTRODUCTION 

Residential land use is expanding rapidly in the United States.  For example, in the 

Chesapeake Bay region the percentage of land used for residential and commercial 

purposes increased nearly 180% between 1950 and 1980 while population increased 

by only 50% (US EPA, 2006).  If current trends continue, the region will see an 

estimated 80% increase in developed land area by 2030 (Goetz et al. 2004).  This 

increase is predicted to consume 14% of forest land in the region, primarily through 

exurban sprawl (Goetz et al. 2004).  Given this high rate of expansion, residential 

areas are likely to be an important contributor to ecosystem dynamics in the region; 

however, little is known about the basic functional properties of these systems.   

Forest conversion brings with it two major changes in landcover, namely increased 

impervious surface area and the replacement of natural vegetation with lawns.  The 

area that is covered by lawns in the US is estimated at 163,800 km2 (Milesi et al. 

2005), and it continues to grow rapidly.  In the state of Maryland, more than 10% of 

the terrestrial surface area is covered by turfgrass (based on estimates from Milesi et 

al. 2005).  Clearly, if we are to predict the implications of urbanization it is critical that 

we understand the role of lawns in ecosystem processes.  Unfortunately, most 

turfgrass studies have been done on controlled research plots and little is known about 

real residential lawns and how they function in the context of urban and suburban 

ecosystems.   

The increase in the area of lawns has raised concern about water pollution associated 

with inputs of fertilizer and pesticides for lawn establishment and maintenance 

(Morton et al. 1988, Gold et al. 1988, 1990, Petrovic 1990, Milesi et al. 2005).  

However, several recent studies have suggested that urban and suburban watersheds 
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have a high capacity for nitrogen retention (Baker et al. 2001, Groffman et al. 2004, 

Wollheim et al. 2005), indicating that there are strong sinks for nitrogen within the 

pervious surface areas of these watersheds.  Other recent research has found that lawns 

have dynamic soil carbon fluxes, with potential for organic matter accumulation and 

nitrogen retention (Qian and Follett 2002, Kaye et al. 2005, Golubiewski 2006, Pouyat 

et al. 2006).  Understanding the capacity of lawns to function as nitrogen sinks could 

be important for predicting and minimizing the impact of residential land use change 

on water quality.   

In this study, we tested the hypothesis that lawns are a significant sink for nitrogen 

inputs to urban and suburban watersheds by adding a pulse of 15N and tracing its fate 

in lawn and forest plots in Baltimore, MD.  We hoped to quantify and contrast the 

movement and conversions of N in urban lawn and forest ecosystems to evaluate the 

potential impacts of forest conversion on the nitrogen dynamics of developing 

watersheds.  Our approach was to add a small pulse of 15N-labeled NO3
-, comparable 

to what would be added by atmospheric deposition from a small rain event, and then 

track tracer movement into surface organic matter, soil, root, aboveground biomass, 

microbial biomass, inorganic nitrogen and evolved N2 gas pools over a one-year 

period.  This approach allowed for evaluation of the fate of nitrogen without the 

dramatic alteration of existing nutrient dynamics that would be caused by a larger 

addition (fertilizer simulation) and fostered comparison of the inherent nitrogen 

retention capacities of lawns and forests.  
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METHODS 

Site Description 

The lawn and forest plots in this study were located in the Baltimore metropolitan area 

in association with the Baltimore Ecosystem Study (BES, http://beslter.org), a 

component of the U.S. National Science Foundation Long Term Ecological Research 

(LTER) network.   

The four lawn plots were located on the grounds of University of Maryland Baltimore 

County, but were not turfgrass research plots.  Campus lawns were chosen because of 

their uniform management regime, similarities in landuse history (former agriculture) 

and plant species and their representativeness of typical urban lawns.  Each lawn area 

contained a mixture of tall fescue (Festuca arundinacea spp.L.), fine fescue (Festuca 

spp), and white clover (Trifolium repens).  These lawns have been fertilized each 

spring at a rate of 96 kg N ha  applied in two applications approximately two weeks 

apart and treated with the herbicide 2,4-D once each spring at a rate of 2.4 kg/ha.  

Mowing has been done at 2-3 week intervals (dependent on rainfall and subsequent 

growth) during the spring, summer, and fall seasons at a height of approximately 10 

cm.  The lawns have received no irrigation and clippings have been left in place.  

These lawns have been managed in this manner for at least the past 15 years. 

-1

Forest plots were located in Gwynns Falls/Leakin Park (Baltimore City) and Oregon 

Ridge Park (Baltimore County).  These parks are notable for their size (greater than 

400 ha) and large tracts of mixed hardwood forest.  Plots were dominated by oak 

(Quercus spp) and yellow poplar (Liriodendron tulipifera L.) and are described in 

detail by Groffman et al. (2006a).   
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Atmospheric nitrogen deposition in the Baltimore metropolitan area is estimated at 

11.2 kg ha-1 yr-1 (Groffman et al., 2004).  A lawn management survey by Law et al. 

(2004) found that lawn fertilizer inputs in the area range from zero to more than 300 

kg ha-1 yr-1 with a mean (of the lawns that were fertilized) of 97.6 kg ha-1 yr-1, which is 

close to the fertilization rate used on lawns in this study. 

 

15N Pulse-labeling Experiment 

In July of 2004, labeled nitrate (99% 15N-NO3 as KNO3) was added at a rate of 0.3 kg 

N ha-1 to a 3 x 3 m section of each experimental plot (4 lawn, 4 forest).  A backpack 

sprayer was used to apply the nitrate in a 0.5 cm simulated rainfall event.  Nitrate 

applications were performed the day after a significant rainfall (when soil moisture 

would be relatively high) to minimize the quantity of water needed to wet the upper 

soil horizons and to promote even distribution of the nitrate tracer.   

 

Sample Collection  

Samples were taken just prior to labeled nitrate addition to establish baseline isotope 

ratios and then 1, 5, 10, 70 and 365 days after the addition to evaluate the short, 

medium and long term fate of the tracer.  On each sampling date, two intact cores 

were taken from the inner 2.5 m of each subplot to measure tracer recovery in non-

gaseous nitrogen pools.  Cores were collected to a depth of 10 cm using a 5 cm 

diameter slide-hammer corer (AMS Equipment Corp.).  All cores were put into 

coolers and taken back to the laboratory for immediate processing.  Six additional soil 

cores were taken from each plot (outside of the 3 x 3 m subplots) to quantify bulk 

density. 
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In lawn subplots, gaseous losses of 15N tracer were measured using 29 cm (inner 

diameter) polyvinyl chloride (PVC) cylinder chambers with gas sampling ports 

(Bowden et al. 1990, Groffman et al. 200b6).  Just before sampling, these chambers 

were mounted on PVC base rings installed to 5 cm depth and flush with the soil 

surface.  These low-profile base rings allowed mowing to take place as usual between 

sampling intervals.  Gaseous fluxes from the forested subplots were sampled in the 

same manner, but with a different style of chamber.  Forest chambers consisted of 15 

cm diameter PVC cylinders standing 15 cm above the soil surface.  These cylinders 

were capped at the top when sampling.   

On each sampling date, two 9 mL gas samples were taken from the sealed chambers at 

zero minutes, and again at 60 minutes, using fine-needle polypropylene syringes.  

These gas samples were transferred to evacuated vials and stored upside-down and 

underwater in 50 ml centrifuge tubes to minimize gaseous diffusion between the 

samples and the atmosphere.  Gas sampling was stopped after the first 10 days of the 

experiment as preliminary analysis suggested that we were not able to detect 

movement of the tracer into the atmosphere. 

 

Sample Processing 

The two intact core samples taken from each subplot were processed for fine roots, Oi-

layer/thatch, aboveground biomass, soil organic matter (SOM), microbial biomass 

(MB), and exchangeable NO3 and NH4, usually within 24 hours of collection, but 

occasionally 36 to 48 hours were needed to finish a block of samples.  Oi-layer/thatch 

and aboveground biomass (lawns only) were first removed and set aside.  Next, soil 

cores were broken apart and sieved with all live fine roots (< 2mm) set aside.  Rocks, 
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coarse roots, earthworms, macroscopic arthropods, and large pieces of particulate 

organic matter were discarded.  The remaining soil from the two cores was mixed to 

homogenize the sample.   Finally, great care was taken to separate 125 grams of root-

free soil for further analysis (see below).   

Aboveground biomass (lawns only) and Oi-layer/thatch were dried at 65 to 70 C for 

48 hours and weighed.  Living fine roots were vigorously rinsed with DI water over a 

fine mesh screen to remove adhering soil before drying and weighing.  Lastly, the 125 

g sample of root-free soil was partitioned into four 30 gram subsamples for analysis of 

1) total soil C and N, 2) exchangeable inorganic nitrogen, 3) microbial biomass 

nitrogen, and 4) gravimetric moisture, by methods described below.   

Soil, fine root, Oi-layer/thatch and aboveground biomass samples were analyzed for C 

and N concentrations and isotope ratios at the Cornell University Stable Isotope 

Laboratory in Ithaca, NY.  Prior to analysis, dried soil and tissue samples were ground 

to a fine powder in liquid nitrogen using a mortar and pestle.  After thorough 

homogenization, a small subsample of each (10 mg for soils, 6 mg for roots and Oi-

layer/thatch, and 3 mg for aboveground biomass) was weighed into a 9 x 5 mm tin 

capsule, placed in a microtiter plate with individually sealable wells, and stored in a 

desiccator until analysis.  

 

Exchangeable inorganic nitrogen (NO3
-, NH4

+) was extracted from 30 grams (wet 

weight) of soil with 120 ml of 0.5 M K2SO4.  Samples were agitated for 60 minutes at 

200 rpm on an orbital shaker table and then left undisturbed for 6 hours.  The 

supernatant liquid from each sample was then collected and filtered through Whatman 

No. 42 filter paper (pre-rinsed with 0.05 M K2SO4 and dried for 24 hours at 100 oC) 
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into clean Nalgene bottles.  Liquid samples were frozen until portions could be 

analyzed colorimetrically for NO3
-and NH4

+ concentration or diffused onto acidified 

filter disks in preparation for 15N determination (see below). 

Microbial biomass (MB) nitrogen was determined using a chloroform direct-extraction 

technique (Brookes et al. 1985, Davidson et al. 1989).  The resulting extracts were 

frozen until they could be digested via the alkaline persulfate oxidation method 

described by Cabrera and Beare (1993).  Following digestion, portions of the sample 

were analyzed colorimetrically for inorganic nitrogen concentration or diffused onto 

acidified filter discs for nitrogen isotope ratio determination via mass spectrometry.    

Soil moisture was determined gravimetrically by comparing the wet weight of a root-

free soil subsample (approximately 30 g) with its dry weight after 72 hours at 100 C in 

a drying oven. 

 

Gross Rates of Production and Consumption of NO3
- and NH4

+

Gross rates of nitrate and ammonium production and consumption were measured by 
15N isotope dilution on paired, untreated plots using the procedure described by Hart et 

al. (1994).  Gross production was measured by adding a small amount of 15N labeled 

nitrogen to the product pool (NO3
- or NH4

+) and measuring the isotopic dilution of this 

pool over the course of a short incubation (30 hours in this experiment).  Gross 

consumption was measured by a decrease in the size of the product pool over the 

course of the incubation.  Overestimation of consumption rates may occur if tracer 

addition stimulates consumption of the substrate pool - a fertilization effect (Hart et al. 

1994).  Production rates do not suffer from this same bias since the product of the 
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process, rather than the substrate, is labeled (Hart et al. 1994).   

In early October of 2004, six pairs of intact soil cores were taken from each lawn and 

forest plot (but not from the pulse-labeling subplots) for determination of gross rates 

of microbial nitrogen cycling.   Intact cores were taken to a depth of 10 cm using a 5 

cm diameter slide hammer.  Coring took place when soils were relatively moist to 

avoid soil wetting effects upon addition of 15N-labeled NO3
- or NH4

+.  All cores were 

immediately put into coolers and transported to the laboratory.   

Six cores from each plot (one each from the six pairs) were injected with 10 ml of 

dilute 15N-labeled NO3
- or NH4

+ (30 mg N L-1) with care taken to evenly distribute the 

tracer throughout each core.  After 30 minutes (to account for initial abiotic 

immobilization of nitrogen), one of each pair of cores was mixed and extracted with 

0.5 M K2SO4.  After 30 hours the second core of each pair was mixed and extracted 

with 0.5 M K2SO4.  This yielded three replicate measurements of gross production and 

consumption of NO3
- and NH4

+ from each plot (for calculations, see Hart et al. 1994).  

A small subsample of extractant from each core was collected and analyzed 

colorimetrically for NO3
- and NH4

+ concentration.  Inorganic nitrogen in the 

remaining extractant was diffused onto acidified filter discs in preparation for nitrogen 

isotope analysis (see below). 

 

Analytical Methods 

Soil and microbial biomass nitrogen extracts were prepared for 15N analysis using the 

8-day polytetrafluoroethylene (PTFE) tape diffusion method described by Stark and 

Hart (1996).  With this method, aqueous NO3
- and NH4

+ were converted to ammonia 
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gas, which was then diffused onto acidified filter paper discs enclosed in PTFE tape.  

The PTFE tape prevents the filter paper disks from coming into contact with the 

solution, but allows ammonia gas to diffuse onto the filters.   Aqueous ammonium was 

converted to ammonia gas by increasing the pH of the solution to 13 or higher.  Nitrate 

was first  converted to ammonium and then converted to ammonia gas, a process that 

was catalyzed by adding Devardas alloy to the diffusion container.  Following 

diffusion, filter samples were dried in a desiccator and wrapped in tin capsules for 

isotope analysis. 

Nitrogen isotope composition and percent element (carbon and nitrogen) were 

determined by the Cornell University Stable Isotope Laboratory using a Finnegan 

Delta Plus isotope ratio mass spectrometer plumbed to a Carlo Erba NC2500 

elemental analyzer.  Nitrogen from liquid extractions was diffused onto filter discs, 

dried, and put into tin capsules.  Solid samples (soils, fine roots, Oi-layer/thatch, and 

aboveground biomass) were dried, ground and weighed into 9 x 5 mm tin capsules.  

All tin-wrapped samples were put into microtiter plates with individually sealable 

wells and stored in a desiccator until analysis.  The samples were then combusted and 

analyzed for isotopic composition and percent element of nitrogen and carbon.  The 

isotopic composition of N2, from field collected gas samples, was analyzed on a 

Europa Geo 20-20 dual-inlet isotope ratio mass spectrometer retrofitted with a helium-

purged autosampling chamber to minimize sample contamination during injection.  

Nitrogen concentrations (14N and 15N) in liquid extracts were determined 

independently of isotope ratios to ensure accurate measurement of nitrogen pool sizes 

in case of incomplete recovery of nitrogen from diffused samples.  While incomplete 

recovery has the potential to alter the isotopic composition of a sample (via physical 

fractionation processes), these changes are predicted to be small relative to the highly 
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enriched samples analyzed in this study.  Incomplete recoveries, however, would have 

a large impact on nitrogen concentration measurements.  To more accurately measure 

nitrogen concentrations, a small subsample of each extract was collected and run on an 

OI Analytical FS 3000 continuous flow analyzer.  Ammonium was analyzed by 

reaction with phenol and hypochlorite.  Nitrate was analyzed by reduction to nitrite 

and subsequent reaction with sulfanilamide.  Concentrations were determined by 

continuous flow spectrophotometric detection of the derivatized analyte as compared 

to a calibration curve of known concentrations. 

 

Calculations 

The percent recovery of nitrogen tracer in each pool was measured by multiplying the 

atom fraction excess of 15N in samples by the size of the nitrogen pool on the subplot 

and dividing by the total mass of 15N tracer added to the subplot.  Average pool sizes 

from each subplot (across all time intervals) were used for calculating recovery in soil 

and plant pools as there were no systematic variations in pool sizes over time.  For 

microbial biomass (MB) and exchangeable inorganic nitrogen, pool sizes were 

calculated using the mean measured pool size on a given subplot and day (g N/g dry 

soil) and the mass of 0-10 cm soil on each subplot as calculated from bulk density 

cores.  Soil organic matter (SOM) nitrogen was calculated as total soil nitrogen minus 

microbial biomass nitrogen.   

Recovery rates for a given pool, measured as a percentage of total 15N tracer added to 

each subplot, were calculated as follows (where AF is the atom fraction of 15N over 

total N in each sample): 
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subplot  toadded 15N Total   

100 *AF) Background - AF (Sample * Size Pool Recovery  15NPercent  =
 

 Turnover of exchangeable NO3
- and NH4

+ was calculated using mean pool 

sizes for a given subplot and mean rates of production as measured by 15N pool 

dilution.  Gross rates of production (rather than consumption) were used for 

calculating turnover rates because the pool dilution method has the potential to 

overestimate consumption (Hart et al. 1994).   

tionMineralizaGross  

            Size Pool -NO3 leExchangeab  Turnover  Pool -NO3 leExchangeab =
 

ionNitrificatGross  

                 Size Pool NH4 leExchangeab  Turnover  Pool NH4 leExchangeab +=+

 

The 3 x 3 m subplot size used in this study (chosen for reasons of logistics and cost), 

precluded accurate determination of aboveground uptake in the forested plots.  We 

therefore estimated this sink for added 15N for the 70 day and 1 year time points based 

on published results from a larger-scale 15N addition (30 x 30 m plots) done at the 

Harvard Forest, MA LTER site (Nadlehoffer et al., 2004).  That study found 

recoveries of 4.69% in foliage, 2.12% in bark, and 0.46% in the most recent two years 

of wood (i.e. total = 7.27%) on an oak-dominated hardwood plot, which received trace 

amounts of 15NO3
- in multiple additions (Nadelhoffer et al., 2004).  A study by 

Providoli et al. (2006), which more closely resembled the format of the present 

experiment in that 15N was added as a single addition rather than as multiple additions, 

found approximately 3% to 7% tracer recovery in aboveground tree biomass after 8 

months.  That study was done in a 15-year-old plantation of Picea abies with dense 

understory vegetation, but supports the assumption that the fraction of tracer 

accumulation in aboveground tree biomass is less than 10% over these time-scales. 
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Statistical Analysis 

Variables measured at a single time point (gross production, gross consumption, and 

inorganic N pool turnover time) were analyzed with one-way analysis of variance 

(ANOVA) using appropriate transformations to meet assumptions of normality.  In 

cases where there were unequal sample sizes (due to loss of samples), a General 

Linear Model (GLM) was used.  Time series data were analyzed using repeated 

measures ANOVA to test for the effects of plot type (lawn or forest), time, and the 

interaction of plot type and time on whole-plot 15N recovery.  Repeated measures 

ANOVA was also used to test for these effects on the recoveries within each nitrogen 

pool, and to test for changes in the size of nitrogen pools (14N plus 15N) over time.  

Significant differences in recovery rates for nitrogen pools between plot types and 

days were analyzed using Tukey’s honestly significant difference post-hoc tests.  All 

statistical analyses were performed using MiniTab for Windows version 14.1 

(MiniTab Inc. 2003).  
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RESULTS 

Whole plot nitrogen retention 

Whole-plot recovery of 15N tracer declined over time in lawns and forests (Figure 1).  

Recovery in lawns declined from a high of 99% ± 9 (mean ± SD) one day following 

tracer addition to a low of 47% (± 5) after one year.  Recovery in forested plots 

declined from 83% (± 5) to 38% (± 5) over this same time period.  During the first 5 

days of the experiment there were no statistically significant differences in total plot 

recovery between lawns and forests (p = 0.18 and p = 0.40 for days 1 and 5).  After 10 

days, lawns showed higher recoveries than forests (p = 0.01); however, with no 

estimate of aboveground biomass 15N in forests for this time period it is likely that 

forest recovery was underestimated by several percent.  The higher N retention in 

lawns was particularly pronounced after 70 days, even when estimated forest 

aboveground biomass was included (p = 0.01), and this pattern continued through day 

365 (p = 0.02).  Hence, even though sample sizes were necessarily small in the present 

study, consistent patterns and significant main effects on 15N recovery were observed. 

 

Nitrogen recovery in ecosystem pools 

Significant interactions were observed between plot type and time for 15N recovery in 

fine roots, Oi-layer/thatch, and soil organic matter, indicating that nitrogen recovery 

differed significantly between lawns and forests over time (Table 1).  Plot type alone 

was a significant predictor for these same pools.  In contrast, no significant effects of 

plot type, or the interaction of plot type and time, were observed for the exchangeable 

inorganic nitrogen (EIN) and microbial biomass nitrogen (MBN) pools.  Not 
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surprisingly, time was a significant factor in 15N recovery rates for all nitrogen pools, 

with most pools declining over time. 

 

Table 1.  Results of repeated measures ANOVA (RMANOVA) for the effects of 
vegetation type (lawn vs forest), time, and the interaction of vegetation type and time 
on recovery of 15N tracer in five nitrogen pools.  * = p < 0.05;  ** = p <0.01; *** = 
p<0.001. 

 

 

 

 

 

% Recovery Vegetation Type Time Plot Type*Time
Leaf Litter 0.046* <0.001*** <0.001***
DIN 0.269 <0.001*** 0.686
MBN 0.497 0.002** 0.635
Fine Roots <0.001*** <0.001*** <0.001***
SOM <0.001*** <0.001*** <0.001***
Total Recovery <0.001*** <0.001*** 0.069

-------------- p-value-------------- 

Soil organic matter--  Lawns and forests showed high retention of 15N in SOM just one 

day after tracer addition with 42% (± 7) and 47% (± 4) recoveries, respectively (Figure 

2a).  Following this high initial (presumably abiotic) immobilization, there were sharp 

drops in SOM recovery by day five in both lawns and forests.  These drops in SOM 

recovery were coincident with increases in fine root and microbial biomass recoveries 

over the same time period.  In forests, levels of 15N recovery in SOM declined to 23% 

by day 70 and remained at that level after one year.  In lawns, levels of recovery in 

SOM continued to rise after the initial drop, up to 16% (± 4), 20% (± 3), and then 33% 

(± 4) after 10, 70, and 365 days. 
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Figure 1.  Mean 15N recovery, as a percent of applied tracer, over time for forests 
and lawns (n = 4).  Full bars represent total plot recovery, which includes recovery 
in six ecosystem pools: microbial biomass (MBN), exchangeable inorganic 
nitrogen (EIN), forest Oi-layer or lawn thatch (Oi/Th), fine roots (Root), 
aboveground biomass (AGB), and soil organic matter (SOM).  Error bars are one 
standard deviation from the mean.   

 

Fine roots--  Lawns and forests showed similar temporal patterns of 15N recovery in 

fine roots, but with generally higher values for the lawns (Figure 2b).  Significant 

amounts of 15N were recovered in fine roots just 1 day after tracer application, with 

8% (± 2.5) and 4% (± 1.0) of applied 15N recovered in lawn and forest roots, 

respectively.  Both plot types showed increases in fine-root recoveries between days 1 

and 5, with 15% (± 3) of applied 15N recovered in lawns and 7% (± 2.4) recovered in 

forests on day 5.  After day 5, recoveries of 15N in fine roots declined over time for 

both lawns and forests with a mean fine root recovery of 2% after one year.     

Oi-layer/thatch--  The pattern of 15N recovery in the Oi-layer of forests and the thatch  

layer of lawns differed markedly (Figure 2c).  In forest plots 15N recovery in the Oi-

layer declined steadily, from 23% (± 1.5) after one day, down to 20% (± 1.6), 12%(± 
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2.3), and eventually 1.3% (±  0.4) after 10, 70, and 365 days.  In lawns, 15N recovery 

in thatch increased from 12% (± 2) to 26% (± 3) over the first 70 days of the 

experiment, presumably due to influxes of new biomass from plant growth and regular 

mowing.  However, after one year only 4% (± 1.6%) of applied 15N was found in the 

lawn thatch pool. 

Aboveground biomass --  The 15N-labelled nitrate was rapidly incorporated into 

aboveground biomass in lawns, accounting for 27% (± 3) of applied 15N after just 24 

hours (Figure 2d).  Recovery stayed relatively constant for the first 10 days of the 

experiment with means of 27% (± 3) and 33% (± 3) for days 5 and 10.  Recoveries 

decreased thereafter, with means of 11% (± 2) and 2.5% (± 0.4) after 70 and 365 days.  

As noted earlier, 15N recovery in aboveground forest biomass was estimated to be 

about 7% after one year based upon published values from other tracer studies that 

treated larger plots (see Methods). 

Microbial biomass --  There were no significant differences in microbial biomass 

(MB) recovery between lawn and forest plots over time (Figures 2e).  Mean 15N 

recoveries in MB fluctuated between 5% and 10% with the highest values occurring 5 

days after tracer addition (Figure 1).  Aside from that brief spike on day 5, 15N 

recoveries remained relatively constant in the microbial pool throughout the 

experiment. 

 Exchangeable inorganic nitrogen --  Only small amounts of 15N were recovered in the 

exchangeable inorganic nitrogen (EIN) pool, which includes both NO3
- and NH4

+ 

(Figure 2f).  Peak recoveries occurred during the first 5 days following tracer 

application (3% to 4%).  The level of 15N in EIN pools declined thereafter with 

recoveries of 0.8% (± 0.2) and 0.7% (± 0.3) for lawns and forests after one year. 
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Gaseous Losses --  Soil gas samples collected on days 1, 5, and 10 were not 

significantly enriched in 15N above background samples.  The high temporal 

heterogeneity of denitrification coupled with the need for rates high enough to enrich a 

large background N2 pool likely played a role in this lack of detection.   
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Figures 2a to 2f.  Recoveries of 15N in forest and lawn nitrogen pools over time for 
soil organic matter, aboveground biomass, fine roots, microbial biomass, forest Oi-
layer or lawn thatch, and exchangeable inorganic nitrogen.  Error bars equal one 
standard deviation from the mean (n = 4). 
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Ecosystem Pool Sizes of Organic Matter and Nitrogen 

Soil bulk densities (measured in the top 10 cm) were higher in lawns than forests (p = 

0.01).  Mean  bulk densities were 1.01 (± 0.07) and 0.77 (± 0.07) for lawns and 

forests, respectively.  SOM pools were 2,339 g/m2 (± 89) in lawns and 2,786 g/m2 (± 

184) in forests (p = 0.01, Table 2a).  Differences in fine root biomass between lawns 

and forests were large, with lawns having 243 g/m2 (± 43) and forests 134 g/m2 (± 21) 

of fine roots in 0 - 10 cm cores (p = 0.01).  While forest Oi-layers were significantly 

larger than lawn thatch, the differences (380 g/m2 versus 312 g/m2) were not as large 

as expected.  This can be attributed to the sampling dates, which fell in the summer or 

early fall (before tree leaf fall) of each year and to the earthworm activity in forested 

plots; in all cases the Oi layer was thin and consisted mostly of the previous year’s leaf 

fall.  Mean aboveground biomass in lawn plots was 160 g/m2 (± 55).  Time was not a 

significant predictor of gross pool sizes (based on repeated measures ANOVA) for 

forests or lawns for the sampling intervals used in this study.   

Nitrogen pools in soil organic matter, aboveground biomass, roots, thatch/Oi-layer, 

microbial biomass, and exchangeable inorganic nitrogen, did not change significantly 

over time in either lawn or forest plots (based on RMANOVA for the effects of time 

on pool size, Table 1).  Sampling took place in mid-summer and early fall (before leaf 

fall) of the first year and mid-summer of the following year so some seasonal changes 

in pool sizes are not represented in this time series data which may account for a lack 

of significant trends over time.  Lawns had significantly larger pools of SOM N (172 v 

155 g/m2, p = 0.03), fine-root N (2.41 v 1.75 g/m2, p = 0.01), and exchangeable 

inorganic nitrogen (1.07 v 0.48 g/m2, p = 0.02) than forest plots (Table 2b).  Lawn and 

forest pools of thatch/Oi-layer N (4.96 v 4.64 g/m2, p = 0.49) and microbial-biomass N 

(3.12 v 2.62 g/m2, p = 0.42) were not significantly different. 
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The nitrogen concentrations in soil, root, and thatch/Oi-layer differed between lawn 

and forest sites (p < 0.01 for all, Figure 3a).  Forest soils had 0.20% (± 0.02) nitrogen 

compared to 0.17% (± 0.01) in lawn soils.  The nitrogen concentration in fine roots 

was higher in forest plots (1.33% ± 0.15) than lawn plots (0.99% ± 0.09).  Oi-layer 

nitrogen concentration was lower in forests than thatch nitrogen concentration in 

lawns (1.11% ±  0.15 v 1.58% ±  0.16).  Lawn aboveground biomass contained 2.23% 

(± 0.23) nitrogen. 

Forests and lawns differed in the C:N ratio of the thatch/Oi-layer and soil (p = 0.004 

and p = 0.001, Figure 3c).  The mean C:N of Oi-layer in forested plots was 34.6 (± 

4.8), compared to 21.5 (± 2.7) for thatch in lawns.  Soil C:N ratios were also higher in 

forest plots (16.3 ± 0.8  v 12.4 ± 0.9).  Mean C:N in fine roots was 28.9 (± 4.5) in 

forested plots compared to 33.6 (± 2.7) in lawns, though this difference was not 

statistically significant (p = 0.157).  The C:N of aboveground biomass in lawns was 

19.07 (± 1.76).       

Tables 2a and 2b.  Ecosystem pool sizes of organic matter and nitrogen for soil (0 to 
10 cm), fine roots (0 to 10 cm), forest Oi-layer or lawn thatch, aboveground biomass, 
microbial biomass, and dissolved inorganic nitrogen (n = 4).  * = p < 0.05;  ** = p 
<0.01; *** = p<0.001.  

Plot Type
Soil Organic 

Matter Root Oi/Thatch
Microbial 
Biomass

Dissolved 
Inorganic 
Nitrogen

Aboveground 
Biomass

Forest (SD) 155.2 (10.3) 1.75 (0.12) 4.64 (0.10) 2.62 (1.47) 0.48 (0.16) NA 

Lawn (SD) 172.1 (6.5) 2.41 (0.28) 4.96 (0.36) 3.12 (0.89) 1.07 (0.2) 3.85 (1.33)

Forest vs Lawn (p-value) 0.032 * 0.014 * 0.489 0.418 0.019 * NA

Nitrogen Pool Sizes (g N/m2)

Ecosystem Pool Sizes of Organic Matter (g/m2)

Plot Type
Soil Organic 

Matter Root Oi/Thatch
Aboveground 

Biomass
Forest (SD) 2,786 (184) 133.5 (9.2) 380.6 (8.6) NM

Lawn (SD) 2,339 (89) 243.1 (28.7) 311.8 (22.8) 160.4 (55.3)

Forest vs Lawn (p-va 0.014 * 0.012 * 0.036 *  
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Figures 3a to 3b.  Nitrogen concentration and C:N ratio of aboveground biomass 

(AGB), forest Oi-layer or lawn thatch (Oi/Th), fine roots (Root), and soil in lawns and 

forests.  Error bars represent one standard deviation (n = 4).  ** = p < 0.01; *** = p < 

0.001; 
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Internal Nitrogen Cycling and Pool Turnover 

Gross N mineralization and nitrification were over twice as high in lawns as forests (p 

< 0.05, Table 3).  Gross nitrification rates were 3.80 (± 1.52) ug N g soil-1 d-1 in lawns 

compared to 1.44 (± 0.77) ug N g soil-1 d-1 in forests.  N mineralization rates were 7.59 

(± 2.13) and 2.88 (± 0.78) ug N g soil-1 d-1, respectively.  Gross consumption of nitrate 

and ammonium were also much higher in lawns.  Nitrate consumption rates were 3.68 

(± 0.55) and 1.22 (± 0.18) ug N g soil-1 d-1 in lawns and forests, respectively.  

Ammonium consumption was 6.61 (± 1.42) and 1.77 (± 0.51) ug N g soil-1 d-1.   

Despite higher rates of gross mineralization and nitrification in lawns, turnover times 

for exchangeable NO3
- and NH4

+ pools were not significantly different from forests (p 

= 0.259 and p = 0.214, respectively, Table 3).  Mean NO3
-  turnover was 0.16 (± 0.04) 

d for lawns and 0.23 (± 0.18) d for forests.  Mean turnover of exchangeable NH4
+ was 

3.74 (± 3.59) d for lawns and 5.47 (± 3.58) d for forests.  The variability of gross rate 

measurements, combined with the larger NO3
- and NH4

+ pool sizes in the faster 

cycling lawn plots (Table 2b), played a role in this outcome.   
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DISCUSSION 

The results of this study suggest that lawns have the potential to sequester atmospheric 

N deposition in vegetation and surface soils at similar or higher rates as nearby 

forested systems.  Lawns and forests showed similarly high rates of nitrogen retention 

during the first 5 days, but after 70 days to one year lawns retained a significantly 

higher proportion of a 15NO3
- pulse than forests.  The major short term fates of 

nitrogen in lawns were initial (presumably abiotic) immobilization in SOM followed 

by rapid uptake and incorporation into plant and microbial biomass.  Over the medium 

term, lawn thatch became an increasingly important sink for nitrogen due to regular 

mowing.  However, at the end of one year the SOM pool was the dominant sink, 

accounting for the majority of recovered tracer.  These results suggest that the 

relatively rapid movement of clipping-based nitrogen into SOM may be an important 

mechanism for long term retention of nitrogen in residential ecosystems.  High 

internal rates of nitrogen cycling coupled with rapid turnover of available nitrate 

suggest that nitrogen is tightly cycled in lawn and forest systems, which may 

contribute to high rates of retention.   

Retention rates were high in both systems one day after the simulated atmospheric 

deposition event (83% and 99% for forests and lawns, respectively) with the largest 

fraction of recovered 15N in the SOM pool.   Several previous studies have shown that 

some of this high initial immobilization in SOM may be abiotic (Berntsten and Aber  

2000, Zogg et al. 2000, Dail et al. 2001, Perakis and Hedin 2001, Providoli et al. 

2006).  Tracer recovery in SOM declined considerably by the next sampling interval 

(day 5), indicating the transient nature of this initial retention.  After SOM, the Oi-

layer was the most important initial sink for nitrogen in forests with 27% of recovered 
15N found in this pool after one day.  This high initial retention in the Oi-layer may 
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reflect active uptake (by microbes, fungi, and plant roots) or may be attributable in 

part to abiotic processes.  In lawns, the thatch pool was not as large an initial sink for 
15N (13% recovery) as the forest Oi-layer.  Instead, rapid uptake into roots and 

aboveground biomass accounted for the majority of non-SOM 15N recovered initially 

(36% combined).  Over the following 10 days in the lawns the N tracer was 

redistributed among fine roots, microbial biomass and aboveground vegetation, and 

total N retention was roughly constant (Fig. 2).  Although similar tracer behavior was 

observed in the forest, the quantity of N moving into aboveground biomass likely was 

much lower.  The high N retention in lawn biomass probably reflected in part high 

grass vegetation growth during this period associated with above normal rainfall 

(USGS 2007).  

 After 70 days we saw further redistribution of 15N in lawns, including significant 

movement of tracer from aboveground biomass into the thatch pool, reflecting regular 

mowing.   While thatch accounted for more than a third of total recovery after 70 days, 

by the end of one year only a small fraction (9%) of recovered tracer was held in this 

pool.  The loss of 15N from the thatch pool can be explained by the rapid 

decomposition of lawn biomass (Shi et al. 2006, Kopp and Guillard 2004).  In 

contrast, The decline in 15N recovered from the forest Oi-layer over 70 days cannot be 

attributed primarily to decomposition or earthworm activity because there was no 

significant change in the mass of the Oi-layer over this time period.  The results of our 

experiment suggest that thatch may serve as a medium-term sink for atmospheric N 

deposition before it is decomposed and incorporated into SOM or lost from the 

system.  This notion is supported by past N mass-balance studies in turfgrass systems 

(Engelsjord et al. 2004, Horgan et al. 2002, Miltner et al. 1996), which have shown 

thatch to be a significant sink for fertilizer N.     
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In both lawn and forest systems, the SOM pool was the dominant long term sink for 

added nitrogen, accounting for 58% of recovered tracer in forests and 70% of 

recovered tracer in lawns after one year.  Interestingly, while the mass of tracer held in 

forest SOM was unchanged between 70 days and one year (averaging 23% and 22% 

of applied 15N respectively) the mass of 15N in lawn SOM continued to increase 

through the experiment.  There are several possible reasons for this difference between 

lawns and forests:  1) The lawn soils were more recently disturbed and may be 

aggrading nitrogen and carbon; 2) The high rates of microbial immobilization and 

turnover of nitrogen in lawns may support more rapid incorporation of nitrogen into 

SOM; 3) The greater lability (Figure 3b) of plant tissue in lawns, combined with the 

regular addition of clippings, may promote the rapid movement of plant biomass into 

SOM; 4) Relatively high rates of nitrogen fertilization combined with labile 

atmospheric inputs may decrease the need for plants and microbes to mine nitrogen 

from the more recalcitrant SOM pool.  Each of these possibilities is further explored 

below.  

A number of studies have shown that nitrogen and carbon concentrations in soils tend 

to recover following losses from soil disturbance, such as agricultural activity (see for 

example Knops and Tilman 2000, Golubieski 2005); a similar legacy of disturbance 

may be contributing to the accumulation of nitrogen tracer in SOM under lawns.  

While it is impossible to know the exact disturbance history of these sites, they were 

in agriculture before the 1960’s and thereafter became lawns on the University of 

Maryland Baltimore County campus.  For at least the past 15 years these lawns have 

received management similar to the present (see Site Description).  These two factors 

are probably of greatest importance with respect to nitrogen cycling and suggest that 

these lawn soils may still be aggrading N and C in response to past disturbance.  
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High rates of microbial immobilization and transformation of nitrogen may also play a 

role in the accumulation of SOM nitrogen in lawns.  Gross rates of production and 

consumption of NO3
- and NH4

+ were more than double the rates seen in forest sites.  

High rates of microbial uptake, followed by normal cell death, may cause less labile 

cellular constituents to accumulate in the soil.  Alternatively, a portion of the N 

mineralized by microbial activity may be bound to SOM via abiotic processes similar 

to those seen upon initial application of the 15N tracer. 

Recent experiments lend some support to the third possibility, as well, that frequent 

addition of lawn clippings to the soil surface may promote incorporation of N into 

SOM.  A litter bag experiment by Kopp and Guillard (2004) showed that clippings 

lost 86% to 94% of their N after 16 weeks.  Other studies have also shown clippings to 

be a major source of nitrogen in lawns (see for example Heckman et al. 2000).  A 

clipping addition experiment by Shi and colleagues (2006) suggests that the flush of 

mineralized N that follows clipping addition is derived predominantly from the 

clippings, rather than from stimulated decomposition of SOM.  Biotic and abiotic 

consumption of this clippings-based N may drive the observed 15N accumulation in 

SOM, contribute to the high gross rates of nitrification and mineralization, and explain 

the observed redistribution of 15N tracer from predominantly plant-biomass pools into 

SOM in lawns.  This is in contrast to forest leaf litter, which decomposes more slowly 

than lawn clippings and tends to increase in N over time before nutrients are 

eventually released during later stages of decomposition (see for example Gosz et al. 

1973, Aber and Melillo 1982).   

While SOM was the dominant long term sink, a small fraction of 15N was recovered in 

leaf litter, plant biomass, and microbial biomass after one year, which suggests that 

some nitrogen continues to be cycled between the soil and plant pools.  It is possible 
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that the slow turnover of the relatively large SOM nitrogen pool limits the amount of 
15N cycled back into the labile pools.  It is also possible that relatively large inputs of 

labile N to these lawns (96 kg N ha-1 as fertilizer, 11.2 kg ha-1 yr-1 as atmospheric 

deposition, plus N released from lawn clippings) may decrease the need for plants and 

microbes to access more recalcitrant forms of N from SOM. 

 

Nitrate and ammonium availability, turnover, and leaching potential 

Nitrogen appears to be tightly cycled in lawns and forests, with small pools of 

available NO3
- and NH4

+ and rapid turnover times, which suggests low leaching 

potential in both systems.  Though the pools of available NO3
- (the form of nitrogen 

with the greatest potential for leaching) were larger in lawns than forests (Table 3), 

rapid turnover of this small pool suggests that nitrogen is tightly held by the system.  

The average turnover time for the NO3
- pool in lawns was less than 4 hours and not 

significantly different from the approximately 5.5 hour turnover time in forests (Table 

3).  These results, paired with the high retention of 15N tracer when compared to 

forests, suggest that fertilized lawns can be as retentive of nitrogen deposition as 

forested systems.  A major question is how long lawns can continue to sequester high 

inputs of N.  Previous research suggests that lawns may decrease in their capacity to 

retain N as they age thereby increasing the potential for over-fertilization (see for 

example Porter et al. 1980, Frank et al. 2006). 
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Accounting for nitrogen losses 

Both lawns and forests saw declines in 15N recovery over the course of one year 

(Figure 1), but the precise mechanism for these losses was not clear.  Gaseous losses 

(via denitrification) are likely; however, our attempts to quantify the magnitude of 

denitrification losses were unsuccessful.  Horgan et al. (2002a and 2002b) were able to 

measure direct gaseous losses of N (as N2 and N2O) from turfgrass using much larger 

amendments of 15N-NO3
-nitrate (49 kg N ha-1 compared to the 0.3 kg N ha-1 used in 

this study).  They found temporally variable fluxes of N2 and N2O, with an 

exceptionally large pulse of denitrification after a major rainfall event, suggesting the 

possibility for large gaseous losses.  It is also possible that a significant portion of the 

labeled N was incorporated into soil pools below 10 cm depth however, the results of 

other forest and lawn tracer studies suggest that recovery in soil and roots below 10 

cm may be small (Horgan et al. 2002a, Engelsjord et al. 2004, Nadelhoffer et al. 

2004).  Soil leaching is another potential avenue for N loss, though numerous studies 

of N leaching in turfgrass systems suggest that these losses are usually small, though 

they can be significant in some cases (Petrovic 1990, Engelsjord et al. 2004).  Other 

Baltimore LTER research is addressing this flux.  

 

The results of this study suggest potentially high N retention in residential lawns, 

which are a dominant cover type in residential areas.  They lend insight into recent 

watershed-level research that reveals unexplained and unexpectedly high N retention 

in urban and suburban catchments (for example Groffman et al. 2004, Wollheim et al. 

2005).  The principal mechanisms responsible for N retention in lawns appear to 

change over time, from (largely transient) initial adsorption onto SOM, to short-term 
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biotic uptake by plants and microbes, to eventual incorporation into soil organic matter 

pools.  However, much remains unknown about N cycling in urban and suburban 

watersheds, including the long term (decadal-scale) fate of N that is currently being 

retained and the capacity for continued N retention in the future.  The influence on N 

retention of factors such as lawn age, lawn management practices, soil disturbance 

history, soil compaction, soil type, and seasonal timing of deposition, also require 

further exploration. 
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