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The time horizon of decision-making is an essential dimension of economic problems 

but is difficult to explicitly define.  In this thesis, we use time series analysis 

augmented by wavelet transform methods to precisely identify distinct time horizons 

in economic data and measure their explanatory power.  This enables us to address 

three timely and persistent questions in the literature on commodity derivatives 

markets are addressed.  First, are findings of long memory (fractional integration) in 

commodity futures price volatility spurious, following Granger’s conjecture?  Yes, 

only two out of eleven commodities are characterized by true long memory and certain 

stochastic break models (e.g. Markov-switching) are found to be more plausible.  

Second, do large Index Traders such as commodity pools and pension funds increase 

futures price volatility through a large volume of trading activity?  This appears to be 

true only for non-storable commodity contracts.  Third, can we improve the accuracy 

of term structure models of futures prices by (i) including more state variables to 

better capture maturity and inventory effects, and (ii) filtering out what appears to be 

noise at the shortest time horizons?  The results suggest that (i) three state variables is 

an optimal choice and (ii) estimates using filtered data are not improved and the noise 

may be economically meaningful.   
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CHAPTER 1 

INTRODUCTION 

 

This thesis addresses three timely problems in the literature on commodity derivatives 

markets.  Novel insights with practical implications are provided on the causes and 

consequences of long memory, the impact of large Index Traders on market volatility, 

and the shape of the futures price term structure (forward curve).  The empirical 

strategy consists in a combination of established time series analysis with statistical 

tools derived from wavelet transforms, a recently developed concept that has found 

widespread use in the physical sciences and in engineering.  The following example 

illustrates what is a wavelet.   

 

Consider the problem of a commodity producer who participates in the futures market 

because she wishes to hedge her position against price risk.  She examines historical 

data available on futures prices for different maturities.  Each time series may be 

considered individually as a univariate signal contaminated by measurement noise.  

Theory, however, does not suggest a unique model to explain what the true data 

generating process might be. 

 

In the absence of a well-motivated structural model, one approach to better understand 

the data is to find an approximation of the time series using elaborate but deterministic 

functions.  Two well-established methods are sinusoids (functions of sines and 

cosines) and splines (polynomial knots).  In both cases, the idea is that any signal can 

be approximated by an arbitrarily large sum of deterministic terms.  The difficulty is 

that this sum tends to be prohibitively large, especially in the case of asset prices 

where singularities are the norm and not the exception.  Instead of sinusoids and 
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splines, a better building block would be a deterministic function that is itself shaped 

somewhat like the data: short, asymmetrical waves containing spikes and cusps.  In 

other words, the ideal building block may be the wavelet.   

 

A second approach to learn from the observed data is to consider the problem of 

filtering out noise to see the true signal more clearly.  This is a special case of the vast 

class of signal extraction problems that spans several fields of research.  In the case of 

futures prices, the principal difficulty is how to distinguish measurement noise from 

short-lived but economically meaningful variability.  There is clearly a trade-off to be 

considered, but in general the application of filters has led to results where either the 

signal is “over-smoothed” or the noise is insufficiently reduced.  Here too, research in 

the natural and experimental sciences suggests that using wavelets to define a filtering 

criterion may be useful.  In those fields, striking advances have been made, but the 

nature of the data (deterministic, experimental, with controlled measurement error) is 

different enough from economic and financial data (stochastic, observational, with 

significant measurement error).   

 

Risk management increasingly relies on the use of sophisticated instruments that 

provide diverse types of insurance.  Market participants face various forms of risk, 

including price, yield, credit, weather, and income/revenue.  Accurate modeling of 

volatility is vital to the success of commodity markets and by implication, to a light 

and more efficient regulatory presence.  Correct pricing of options, optimal storage 

and inventory decisions and hedging risk  in general all depend on the ability to track 

and forecast volatility well enough.  Although the volume of research on futures 

markets is large, too much emphasis appears to have been placed on narrow, technical 

questions, and too little on fundamental, unsolved economic problems.  In his Editor’s 
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note, Powers (1994) writes: “Deeper insights are needed into the structure, conduct 

and performance of the industry; the purpose, relevance, costs and benefits of the 

regulatory structures; the implications of legal decisions and tax and accounting rules 

on market efficiency; market usage and risk management.” 

 

This dissertation presents three essays on some persistent and timely questions on 

commodity derivatives with practical implications for market participants. New 

insights and results are obtained from the empirical analysis of commodity futures and 

options time series supported by statistical methods based on wavelet transforms.  The 

emerging field of wavelet analysis is well suited to help with the empirical 

identification of effects and causes specific to particular time horizons of decision-

making.   

 

Wavelets are a class of mathematical functions that satisfy specific regularity 

conditions that make them ideally suited for three broad types of problems: (1) 

approximating complicated functions by a finite sum of simpler functions (i.e. 

wavelets), (2) decomposing an empirical time series dataset into asymptotically 

independent components, and (3) creating an ideal filter that is specific to the data 

under scrutiny and where the wavelets are tailored to match the data’s characteristics.  

Wavelet analysis is much more flexible than Fourier analysis and is more 

economically intuitive.  For instance, a timescale decomposition can be interpreted as 

isolating the different time horizons across which is distributed the variable of interest 

(e.g. futures prices).   

 

Following the introductory chapter is a short chapter written to cover the essential 

results from wavelet theory as it provides insights into the statistical methods used.  
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Chapters 3, 4 and 5 consist of three independent essays on persistent problems on 

commodity derivatives markets.  Few applications of wavelet methods have been 

made to economics so far.  Yet many problems are better understood when the time 

horizon of decision-makers is explicitly considered.    
 

The essays are connected by their emphasis on the identification of time horizon-

specific influences.  It is well understood in economics and finance that, for instance, 

individuals make decisions not only on the basis of immediate costs and benefits but 

also based on long-run consequences.  It is, however, difficult to precisely characterize 

the different time horizons, ranging from short term to long term.   

 

A helpful, qualitative interpretation of the importance of economic time horizons is 

provided by Peters (1994) and suggests many testable hypotheses if a precise 

definition of different time horizons can be given: 

• “Markets are stable when they contain investors with large numbers of 

different time horizons, thus ensuring ample liquidity.” 

• “If the validity of fundamental information changes, long-term investors either 

stop trading or trade on technical factors.  However, the market becomes less 

stable without the long-term horizon investors.” 

• “Prices reflect a combination of short-term and long-term valuations, where 

short-term valuations are more volatile.” 

• “If [an asset] has no tie to the economic cycle (e.g. currency), there is no long-

term trend, so trading, liquidity, and short-term information dominate.” 

 

Wavelets provide an intuitive, theoretically sound, and computationally tractable 

framework in which to define and empirically identify different economic time 
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horizons.  Time horizons in economics are generally empirically identified as sub-

samples or moving windows of a dataset.  For example, data may be aggregated as 

yearly, quarterly, or monthly.  In contrast, wavelets enable a simultaneous analysis of 

how much variation in the data occurs in large number of time horizons or timescales.  

A simple image is that of a novel made up of several chapters.  Suppose someone 

reads only the introduction and the conclusion.  The reader knows how the story 

begins and ends, but not how events unfold during the intermediate chapters, their 

occurrence over time and the speed at which events unfold.  

 

Our explicit identification of time horizons is to our knowledge the first such use of 

the methodology in the literature.  It is made possible by decomposing the original 

data using wavelet transforms (Mallat 1992; Meyer 1992; Daubechies 1993).  This 

thesis provides new, empirically-supported answers to three timely and persistent 

problems in the literature on commodity futures markets.  The methodological 

contribution of the thesis is the application of wavelet transform-based time series 

analysis adapted for economics from their original engineering and applied 

mathematics purposes.   

 

The principal motivation for adapting wavelet methods for economic time series 

analysis is to enable the identification of the impact of distinct time horizons as 

explanatory factors driving the unknown stochastic process that underlies observed 

economic time series such as daily commodity futures prices.  In Chapter 2, numerical 

examples and an intuitive step-by-step construction approach are used to explain the 

concept of wavelet functions and resulting wavelet transforms.  This approach has the 

advantage of avoiding a discussion of Fourier analysis with no loss of accuracy.  After 

defining the key concepts, it is argued on the basis of clear criteria that a specific class 
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of wavelet functions is best suited for empirical time series analysis.  Much of the 

analysis in the thesis depends on the accuracy of the computational wavelet transform 

when applied to real data.  Therefore, a numerical simulation is presented, where two 

time series are generated from pre-specified processes (a stationary ARMA process 

and a non-stationary, long memory process) and decomposed through wavelet 

transform analysis.  It is then shown that the loss of statistical information from the 

transformation is limited by the software machine precision (double precision in 

Matlab or R).  Lastly, this chapter considers the time series properties of the wavelet-

obtained components of the includes an analysis of the properties of a typical 

commodity futures price time series   

 

Chapters 3, 4 and 5 consist of three essays on timely problems in the literature on 

commodity derivatives markets.  The main research questions asked and answers 

obtained in this thesis are the following: 

• In Chapter 3, we ask whether the literature’s findings of long memory 

(persistence) in futures price volatility are spurious.  True long memory may 

allow arbitrage, undermine the efficiency of futures markets, and induce a 

substantial bias in the price of options on futures.  If they are spurious, is the 

illusion of persistence caused by short memory, fragile estimators, or the 

presence of random breaks in the data process?  Using a robust estimator in a 

joint model of both short and long memory effects, we find that long memory 

estimates are significant and are explained neither by short memory bias nor by 

the choice of estimator.  However, an application of recently-developed tests 

based on the properties of true long memory shows that for nine out of eleven 

commodities studied, long memory is spurious.  A more plausible model that is 

fitted to the data is a Markov-switching model. 
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• In Chapter 4, we test the hypothesis that Index Traders, a class of large 

investment funds (e.g. pension funds) that has increasingly invested in 

commodities, have increased price volatility.  This widely-held claim has 

motivated the Commodity Futures Trading Commission (CFTC) in 2007 to 

begin reporting separately the positions of Index Traders from the positions of 

large Commercial and Non-Commercial traders in its weekly Commitment of 

Traders report separately.  In the absence of confidential data on trader-level 

positions, this chapter adopts a “revealed” methodology to evaluate the impact 

of Index Traders on market volatility.  The CFTC’s research shows that Index 

Traders do not engage in short-run trading.  We therefore filter out from a 

dataset on daily futures trading volume all variation occurring at time horizons 

shorter than one month and use this filtered data in a joint model of trade 

volume and price volatility.  Filtering is enabled by wavelet transform analysis 

(see Chapter 2).  A Hausman-Wu test confirms that volume and volatility are 

endogenous, so we estimate the joint model by 2SLS using both the original 

data and the wavelet-filtered data.  Comparing the two sets of estimates, the 

evidence suggests that Index Traders have increased price volatility for non-

storable commodities (meats), but not for storable commodities (grains).  The 

chapter’s second contribution is to estimate, for all major agricultural 

commodities and over the time period 1981-2006, the explanatory power of all 

distinct time horizons on futures trade volume.  We find that non-storable 

commodities generally trade at shorter time horizons than do storable 

commodities, and also that, perhaps as a result of Index Traders, intermediate 

and long run time horizons have gained importance in the last five to ten years.  

Two tests of structural breaks and change-points are used: one wavelet-based 

Monte Carlo and the other in the Andrews-Ploberger-Hansen sup-Wald class.   
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• Chapter 5 looks at the problem of forecasting the constellation of futures prices 

and volatility.  To make this problem tractable, we estimate a state space 

dynamic term structure model using the Kalman filter.  This model is 

explained by a small number of latent factors or state variables and provides 

computed parameter values for drift, diffusion, mean-reverting speed, risk 

premia, convenience yield, cost of carry, and seasonality.  This chapter 

considers the ability of two alternative approaches to improve efficiency.  The 

first is to increase the number of state variables (and parameters).  The second 

is to apply, before estimating a parsimonious state space model, the statistical 

method of wavelet thresholding to pre-filter the data and remove mean zero 

noise below a threshold that is not arbitrary but rather endogenously 

determined.  If this noise is indeed of no economic significance, the resulting 

estimates must be both more accurate and more efficient.  However, the 

evidence suggests that what appears to be short-run noise in fact contains 

information that helps obtain good parameter estimates.  The results also 

suggest that including more than three state variables model does not improve 

estimation accuracy enough to warrant the greater computational burden.   
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CHAPTER 2 

WAVELETS AND TIME SERIES 

 

2.1 Introduction 

This chapter provides a selective review of wavelet theory as it applies to time series 

analysis.  A thorough treatment of wavelet methods in statistics is contained in Ogden 

(1996), Percival and Walden (2001) and Vidakovic (1998).  Seminal contributions 

include Daubechies (1988, 1992, 1993), Mallat (1998), Meyer (1985, 1993), Strang 

and Nguyen (1996) and Stromberg (1985). 

 

Two detailed surveys of wavelet methods for economic time series analysis are 

Crowley (2007) and Gencay, Selcuk and Whitcher (2001).  Yet these sources as well 

as all economics papers introduce wavelets through Fourier analysis and vector spaces 

(e.g. Luenberger 1969).  While these concepts are familiar to economists, they are not 

commonly used and therefore do not provide a suitably clear introduction to wavelets, 

particularly since wavelets have been designed in part as an alternative to Fourier 

analysis.  Therefore, wavelets are instead introduced in this chapter based on the 

lifting scheme method developed by Sweldens (1994).  Essential results from the 

theory of wavelets applied to time series analysis are presented to provide a unifying 

framework for the three essays in this dissertation.  

 

A simple example illustrates the construction of basic wavelets, following which the 

main technical conditions are defined and described in the context of empirical time 

series research.  A first empirical application using a variant of the Variance Ratio test 

is made in this chapter to determine differences across timescales (or time horizons) in 

the persistence of daily innovations to futures prices.  For the interested reader, an 
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outline of wavelet theory results for time series analysis presented using Fourier 

analysis concepts is included in the Appendix. 

 

Also included is a section of results of simulation-based wavelet analysis done using 

pre-determined Data Generating Processes (DGP) fully known to the researcher.  

These simulations consider the analysis of a few stylized, canonical time series models 

frequently used in economics and finance.  The aim of this section is to provide a 

baseline or benchmark against which to evaluate the results obtained from the analysis 

of actual data. 

 

Applications of wavelets to economics and finance have been limited so far.  In his 

survey of wavelet methods for economics, Crowley (2007) cites eleven journal articles 

and ten working papers.  Pioneering contributions include Ramsey and Lampart 

(1998a,b) who investigate the macroeconomic causal relationship between money and 

income as well as Davidson, Labys and Lesourd (1998), who apply a nonparametric 

wavelet regression to study volatility at different time horizons in international 

aggregate monthly commodity prices.  A recent example of an economic application 

of wavelets is Lien and Shrestha (2006), who use wavelet-based methods to compute 

the optimal hedge ratio by time horizon for several commodity futures markets.   

 

2.2 The Lifting Scheme Approach to Wavelets} 

Wavelets are functions that satisfy specific regularity conditions and form a basis (to 

be precise, a frame) in a vector space (see e.g. Luenberger 1969).  Any function in a 

general class “can be written as a linear combination of the wavelets” (Sweldens 

1994).  Wavelets have been widely and successfully used in mathematics, engineering 

and in the natural and physical sciences.  The first generation of wavelets (Daubechies 
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1988, 1992, Mallat 1992, Meyer 1992, Strömberg 1981) relies on a Fourier analysis 

framework.  The mathematical motivation for using the Fourier framework is that 

wavelet operations become simple algebra in the Fourier domain.  Since Fourier 

analysis is used less frequently by economists than by physicists and engineers, our 

presentation draws from Sweldens’s (1996, 1997) “second generation” wavelet 

framework which makes no reference to Fourier analysis and is more general and 

flexible than the earlier approach.  To our knowledge, all economics and finance 

papers have introduced wavelets in the Fourier language.   

 

In addition to making the concepts and their construction more intuitive, the lifting 

scheme framework provides a more general method of working with wavelets.  This 

means it can be applied to situations where the traditional wavelet approach cannot.  

Some relevant examples include the construction of wavelet transforms ideally suited 

to bounded domains, such as intervals (e.g. finite-length time series data) or for 

application to irregularly sampled data such as ultra-high-frequency tick data.  Jensen 

and la Cour-Harbo (2001) provide a textbook introduction to wavelets based on the 

lifting scheme.   

 

One particularly useful application of wavelets is to allow us to decompose a signal or 

time series dataset into explanatory shares attributed to each time horizon.  The time 

horizons are arbitrarily determined but can be interpreted as approximate economic 

time horizons. 

 

The following example is inspired by Jensen and la Cour-Harbo (2001).  Consider a 

sequence of daily futures settlement prices Ft  in U.S. dollars per unit contract: 

{60, 66, 72, 64, 68, 70, 74, 70} 
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Suppose to get closer to the true data generating process, we would like to represent 

the data in a more efficient form.  This is not unlike the engineering problem of 

optimal data compression.  Consider representing the data as a correctly time-localized 

sequence of means and deviations from means.  If done correctly, there will be no 

statistical loss of information, and the original data sequence can be reconstructed as 

perfectly as the software level of precision permits. 

 

We believe the time series data are correlated, and correlation should be higher among 

nearby observations than among distant ones.  The goal is to compute a new vector of 

the same length (that is, eight observations) consisting of four pairwise means and four 

pairwise deviations from means.  We group the observations into four pairs: 

{60, 66}, {72, 64}, {68, 70}, {74, 70} 

Then we compute the four pairwise means: 

{63, 68, 69, 72} 

Lastly we compute the pairwise differences (for each pair, this is the odd observation 

minus the pairwise average): 

{-3, 4, -1, 2} 

The data are now represented as both a long run mean and time-localized deviations 

from this mean.  If we use a large dataset, we can obtain a large number of levels of 

deviations-from-means.  Each level is associated with a different timescale or time 

horizon, for example deviations at the daily timescale or at the annual timescale.   

 

This simple example is a trivial wavelet transform, and we would like to find an 

optimal wavelet transform.  Optimality in this case means the wavelet class possesses 

a number of desirable properties that are determined by whether the wavelet function 

satisfies specific regularity conditions.  A large mathematics literature on wavelets 
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shows how different regularity conditions are derived to ensure a number of properties 

that are ideal for applications ranging from statistics to physics and engineering.  

Optimal wavelet properties are described in a later section of this chapter, and it is 

concluded that the Daubechies (1992, 1993) family of wavelets is best suited overall 

for typical economic time series data.  An important exception is irregularly sampled 

data such as ultra high frequency tick-by-tick financial data, for which is well suited 

Sweldens’s lifting scheme method for custom-designed wavelets. 

 

Sweldens’s lifting scheme begins with a “trivial” wavelet such as the mean and 

deviations operations, and then “lifting” is applied to produce a better wavelet 

transform.  Stages of lifting allow the transform to be tailor-made for the application 

and data used.  The lifting scheme also nests all traditional wavelet transforms. 

 

It is also possible to set a threshold below which deviations are considered minor and 

therefore safely deleted.  Such a thresholding rule allows us to reconstruct the data 

using only a subset of the computed differences, and it may be easier to approximate 

the underlying Data Generating Process (DGP).  This procedure is discussed further 

and applied in Chapter 5. 

 

Lifting involves (a) splitting, (b) predicting, and (c) updating.  Consider some data 

λ0,k.  The first step is to split the data into smaller subsets λ(−1,k) and γ(−1,k).  The 

convention is that index order reflects the size of the dataset.  No restriction is 

imposed except that some method must exist to reconstruct the original data from the 

two subsets.  The second step, prediction, involves finding a prediction operator P that 

is independent of the data such that we can predict the subset γ(−1,k) using the other 

subset λ(−1,k): 
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γ(−1,k) = P[λ(−1,k)] 

In the third step, we consider repeating the procedure, and end up with a sequence:  

{ λ(−n,k), γ(−1,k), γ(−2,k),…, γ(−n,k)} 

where the first vector λ(−n,k) represents the long-run trend of the data, and where the 

vectors {γ(−1,k), γ(−2,k),…, γ(−n,k)} each represent variation occurring at a distinct 

timescale, which in economics is interpreted as a time horizon of decision-making.   

 

Suppose a researcher is working with a time series dataset of a single random variable.  

The random variable is continuous but recorded at discrete intervals (let’s assume for 

now that intervals are equally spaced).  This vector of data could be for example the 

end-of-the-day settlement price, in dollars per unit contract, of a traded commodity. 

 

The researcher wishes to model the underlying (unknowable) Data Generating Process 

(DGP) in order to analyze, interpret and forecast.  Economic and financial theory 

suggests candidate structural models for the DGP which usually require obtaining 

other data as proxies for the explanatory variables.  Alternatively, assuming the data 

are well-behaved (e.g. covariance-stationary), statistical inference is valid and a 

reduced-form Box-Cox framework can be used instead.  This ARIMA model provides 

estimates of parameters and explains or forecasts the random variable using only 

information about itself. 

 

Trying to model the unknown DGP is a closely related problem to the challenge of 

data compression in the engineering literature.  If our data are completely random, no 

data compression is possible because there does not exist a correlation structure to 

exploit.  In economic time series, we would say there is no meaningful DGP, and the 

data are at least white noise, perhaps IID.   
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Consider a vector of data f(t).  Let’s denote by k a specific sample point, e.g. k={1, 2, 

3, 4, ...}.  We can define our original vector of data as λ(0,k) where 0 means it is the 

original.  A very simple, naive approximation is to sub-sample only the even 

observations, so let’s define λ(−1,k) = λ(0,2k).  What have we lost?  This vector of errors 

from the naive approximation is defined as γ(−1,k) and these are precisely the wavelet 

coefficients.  The simplest possible wavelet is indeed to let the wavelet coefficients be 

precisely the odd observations from the original data: γ(−1,k) = λ(0,2k+1).  This means to 

reach the most efficient representation we want the highest correlation between the 

initial subsets λ(−1,k) and γ(−1,k). 

 

Can we predict the odd observations using only the even observations?  We can use 

the fact that in a typical economic or financial time series, correlation is stronger 

among nearby observations than between distant observations.  Consider taking the 

average of neighboring observations to create a predictor:  

λ(−1,2k+1) = 0.5(λ(−1,k)+ λ(−1,k+1)) 

As a result, our wavelet coefficients become:  

γ(−1,k) = λ(0,2k+1) – 0.5(λ(−1,k) + λ(−1,k+1)) 

An iterative procedure is obtained by applying the method first to λ(−1,k) which yields 

λ(−2,k), then to the newly obtained λ(−2,k) and so on.  This approach however leads to a 

problem called aliasing.  Intuitively, this means some variation in the data may be 

“double-counted.”  We would like the λ terms to capture low frequencies and the γ(−1,k) 

terms to capture frequency.  To avoid aliasing, we impose the condition that the 

average of the coefficients λ(j,k) must be the same equal for each level j.  It is beyond 

the scope of this section to provide the mathematical results behind the optimality of 
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specific wavelet functions.  Much of the mathematical literature on wavelets concerns 

this problem, and a seminal collection of papers is found in Daubechies (1993).   

 

2.3 Desirable Wavelet Properties  

In this section, we describe the properties that make particular wavelets optimal for a 

given application as well as trade-offs involved in the selection of an ideal wavelet.  In 

time series analysis, desirable wavelet properties include symmetry, moment 

preservation, orthogonality between levels of decomposition, perfect reconstruction, 

correct time alignment (linear/zero phase), minimization of spurious artifacts and 

boundary effects, and compact support.   

 

To illustrate the usefulness of these properties, we focus on the Daubechies (1988) 

wavelet class, which the literature has found to be the best for empirical time series 

work using economic and financial data.  We also discuss properties of the original 

wavelet, discovered by Haar (1910), which is the simplest to construct and also a 

nested special case of the Daubechies wavelet.  A large number of wavelets have been 

defined but only those of Daubechies and Haar appear to be consistently useful to 

economists.  A thorough treatment of wavelet properties is found in Daubechies 

(1992, 1993), Ogden (1996) and Vidakovic (1998). 

 

The four key properties for wavelets in time series analysis are: 

1. A nonzero number of vanishing moments 

2. Compact support 

3. Orthogonality and orthonormality 

4. Linear phase 
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To explain the importance of a nonzero number of vanishing moments, we introduce 

the two principal conditions of a wavelet.  First, a wavelet is a function ψ(·) defined on 

the extended Real line such that the admissibility condition is satisfied: 

 ( ) 0t dtψ =∫ℝ�  (2.1) 

Second, a wavelet is generally required to satisfy the unit energy (variance) condition: 

 2( ) 1t dtψ =∫ℝ  (2.2) 

Then, a greater requirement is for the wavelet to have a number N of vanishing 

moments such that, for k = {0, …, N-1} the wavelet satisfies: 

 0( ) 0kt t dtψ ≡∫ℝ  (2.3) 

A greater number of vanishing moments is particularly important for the wavelet-

based analysis of long-range dependence (see Chapter 3), because it provides the long-

range parameter estimator with robustness against contamination by nonlinear and 

potentially non-stationary trends (Teyssiere and Abry 2006).  The literature also refers 

to filters associated with wavelet transforms and the length of a filter is precisely twice 

its number of vanishing moments.  A large number of vanishing moments increases 

however the size of the wavelet and may generate spurious artifacts in the transformed 

data.  The Daubechies regular and least asymmetrical wavelets among others have an 

arbitrary number of vanishing moments such that the researcher can select the most 

appropriate number.  In contrast, the simple Haar wavelet has zero vanishing moments 

as it is piecewise linear.   

 

Compact or finite support captures local variation more accurately.  The wavelet 

oscillates locally and quickly fades away on the left and on the right.  In contrast, sines 

and cosines oscillate indefinitely.  The Haar and Daubechies (regular and least 

asymmetrical) are three of the only four wavelets that are both compactly supported 

and orthogonal wavelets. 
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Orthogonality means that for a wavelet timescale representation of the data, the 

different levels are uncorrelated which implies the perfect reconstruction property 

holds.  Suppose we want to know how much of a time series variance is explained by 

variation at the short run, medium run, and long run.  Orthogonality implies that the 

perfect reconstruction property holds and therefore enables an accurate deconstruction 

of a time series into different levels or time horizons.  Orthonormality further ensures 

unit energy (variance), which means the decomposed data remains accurate to scale.  

Both the Daubechies and Haar wavelets are orthonormal. 

 

Linear phase ensures correct time localization.  For example, we may wish to 

determine the precise date of a mean or variance change-point in a time series.  Linear 

phase is also a necessary and sufficient condition for perfect symmetry, a property that 

only the Haar wavelet possesses.  Since excessive asymmetry is undesirable, 

Daubechies developed a Least Asymmetrical wavelet that has essentially correct time 

localization and is therefore often used in economic applications.   

 

As with nonparametric regression and frequency domain analysis, wavelet analysis 

involves dealing with the problem of boundary effects.  The theory behind wavelets 

has been developed under the assumption of an infinite number of observations, but 

sampled data in economics and other non-experimental sciences are necessarily finite.  

If no correction is made, the computed wavelet coefficients will be overstated at the 

beginning and end of the sample.  Two general solution methods are, first, to discard 

those biased observations by truncating the sample a few observations after the 

beginning and before the end and, second, to artificially extend the time series for 

purposes of wavelet analysis but only include the true observations in the economic 
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analysis and interpretation of results.  The time series can be extend by padding with 

zeros, reflecting (symmetrically) the observations at the sample’s endpoints, or 

assuming the sample repeats periodically.  Cohen et al. (1993) have found that zero-

padding creates large artifacts in the data and reflecting the data causes the 

orthonormality property to be lost.  Periodization is therefore the least harmful method 

unless the researcher can afford to discard some observations at both endpoints. 

 

2.4 Standard and Translation-Invariant Discrete Wavelet Transforms 

To obtain a frequency domain representation of time series data suitable for spectral 

analysis, the Fourier transform is applied to the data (see e.g. Hamilton 1994).  The 

workhorse of wavelet-based time series analysis is the Discrete Wavelet Transform 

(DWT).  Unlike the Fourier transform, which is unique, wavelet transforms are 

numerous because each one is constructed from a specific wavelet function and filter 

length.  For all wavelets, the resulting Discrete Wavelet Transform is the inner product 

(convolution) of the data with translations and dilations of the wavelet function.  The 

outcome is a wavelet coefficient vector of the same length as the original data.  The 

wavelet coefficients contain information in both the time and scale domain, where the 

scale corresponds to different length time periods.  For example, if the original data 

are daily observations, then the scales would include daily, weekly, monthly and so 

forth.  Assuming the property of orthonormality holds,  

 

In this thesis, data are sampled daily over a period of two decades.  This means the 

wavelet transform requirement of a sample of dyadic length (base two) is not overly 

restrictive.  Many economic datasets, however, consist of much shorter time series 

where each observation matters.  This is the case, for example, with many 

macroeconomic time series.  This transform, also called the maximum overlap discrete 
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wavelet transform, may be applied to data of any length.  The downside is that it loses 

the orthonormality property, which implies a loss of efficiency and a more 

conservative interpretation of the results. 

 

The second reason to use the translation-invariant wavelet transform is that, as implied 

by its name, its localization in time remains accurate, whereas the basic discrete 

wavelet transform has a small bias.  For instance, after it is found that there exist in the 

data one or more change-points or structural breaks, the translation-invariant transform 

should be used to actually date the change-point or break.  

 

2.5 Wavelets and Long Memory  

In this section, wavelets are discussed in the context of the most frequently used time 

series models.  The conventional framework for time series analysis in economics is 

the autoregressive moving average (ARMA) representation of the data.  Using this 

model, the time series data under scrutiny is described as a function of its own 

weighted lags as well as weighted lags of the innovation (error) term, which is 

assumed to be at least mean zero white noise (uncorrelated) and possibly identically 

and independently distributed (IID).  The autoregressive and moving average terms 

are considered “short memory” because their effect on innovations is short-lived and 

the autocorrelation function and impulse response function decay geometrically 

(exponentially).  Likewise, plain and generalized autoregressive conditional 

heteroskedasticity (ARCH and GARCH) models are designed to capture simple 

nonlinear dynamics in the volatility of the time series data and describe well the 

volatility clustering stylized fact observed in a large number of economic and financial 

time series data.   
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In contrast, “long memory” (usually called long-range dependence in the statistics 

literature) implies a slow, hyperbolic decay in the autocorrelation function and in the 

impulse response function, which means the effect of shocks or innovations on the 

data is long-lived.  This concept originates with Hurst’s (1951) seminal Rescaled 

Range analysis (R/S) and the mathematics literature on fractals applied to time series 

data by Mandelbrot (1963) and Mandelbrot and van Ness (1968).  A well known and 

extensively studied special case of long memory in economics is permanent memory, 

equivalently the unit root (Phillips 1987; Perron and Phillips 1988).  In the ARMA 

framework, a unit root in the autoregressive lag polynomial implies that innovations 

have a permanent effect on the data process and results in non-stationarity.  Generally, 

by non-stationarity is meant covariance-non-stationarity, such that the 

variance/covariance is time-dependent.  A stronger definition of non-stationarity that 

is however not testable considers all existing moments of the data generating process 

to be time-homogeneous.  A non-stationary time series process is said to be integrated 

of order one, or I(1), and can be modeled as Autoregressive Integrated Moving 

Average (ARIMA), while the stationary case is defined as I(0).  Greater orders of 

integration are possible but rarely found in economics.   

 

Fractional orders of integration, defined as d∈(-1, 1), have been suggested by Granger 

(1980) and Granger and Joyeux (1981) to provide a link between the Hurst coefficient 

of long memory and the conventional time series ARMA and GARCH models.  For 

d∈(-1, 1), H=0.5+d/2.  The general extensions are called Autoregressive Fractionally 

Integrated Moving Average (ARFIMA) and Fractionally Integrated General 

Autoregressive Conditional Heteroskedasticity (FIGARCH, e.g. Bollerslev and 

Mikkelsen 1996).  Hosking (1981, 1984) provides formal results on the fractional 

difference operator d and conditions for stationarity and invertibility.  Tanaka (1999) 
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contributes important refinements on the fractional unit root and several of his results 

are used in this thesis.  Baillie (1996) provides an early survey of results on long 

memory models in economics, but this is an active area of both theoretical and applied 

research. 

 

Wavelets can be used to represent the original data in the timescale domain based on 

some objective criterion.  The wavelet property of orthogonality between timescales 

implies that a self-similar pattern such as a fractal signature (Mandelbrot 1963) should 

be evident across timescales if the data are characterized by true long-range 

dependence (long memory).  In addition to enabling a graphical or visual test of long-

range dependence, wavelets are ideally suited to construct a variety of estimators and 

tests.  Examples include parametric estimators (Jensen 2000), semi-parametric 

estimators (Teyssiere and Abry 2006), tests for intractable serial correlation (Hong and 

Lee 2005) and tests for multivariate higher order moment dependence (Duchesne 

2006).   

 

2.6 A Simulation Study of Wavelet Transform Reconstruction  

Wavelets make it possible to decompose a data signal, stochastic process or function 

into additively orthogonal levels (or timescales in the wavelet time series literature).  

When applied to economic time series data, an intuitive interpretation can be made.  

Each level is a time horizon to which is associated a proportion of the variation in the 

data.  In a rural economic setting, time horizons may have a more immediate 

geographic interpretation: long-run horizons imply national, macroeconomic causal 

forces, medium-run horizons regional forces and short-run horizons local forces.  This 

method makes it possible to explicitly identify distinct time horizons and investigate 
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economic hypotheses that concern the incidence of effects across time horizons of 

decision-making or across different depths of underlying economic forces. 

 

To verify the accuracy of the numerical wavelet transforms used to decompose the 

data, we simulate some time series data consistent with two plausible futures prices 

data generating processes, namely a stationary ARMA(2,2) and a non-stationary, long 

memory fractional Brownian Motion with Hurst parameter of 0.75.  Application of a 

discrete wavelet transform produces wavelet coefficients, which is a representation of 

the data in the wavelet time-scale domain.  Applying an inverse wavelet transform to 

subsets of the wavelet coefficients results in a perfect decomposition of the original 

data into several orthogonal time series, each of which has the same length as the 

original time series and which can be simply added to yield the original time series.  

These artificial time series vectors cannot be used as regressors to explain the original 

time series data because the perfect reconstruction property implies by definition that 

all explanatory variable coefficients must equal one.   

 

The original data is compared to the reconstructed data and we compute the 

approximation error caused by transforming the data back and forth.  The loss function 

used are is the root mean squared (approximation) error and we also consider as 

criterion the first four sample moments of the distribution of approximation errors.   

 

2.7 Accuracy of Wavelet Time Series Reconstruction 

This section presents the results of a simulation study on the accuracy of the wavelet 

transform to decompose and reconstruct time series data with no loss of information.  

Two samples of data are generated from a pre-determined process, decomposed into 

timescale wavelet coefficients using a discrete wavelet transform, and finally the 
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original data is recovered using the inverse of the discrete wavelet transform 

previously used.  To guarantee the existence of an inverse, an orthonormal wavelet 

must be selected to construct the transform, therefore we use the Daubechies wavelet.  

As explained earlier, we may choose an arbitrary number of vanishing moments for 

this wavelet, which results in a specific filter length.  We experiment with filter 

lengths ranging from 2 to 20 and find that the length 8 or 10 appears best. 

 

The first simulated data generating process is a linear Autoregressive Moving Average 

model with two lags of each type, i.e. ARMA (2,2), with an intercept of 100 and no 

deterministic or stochastic trend (no unit root).  In this model, the dependent variable 

“today” is explained by its own two most recent lags as well as an innovation term and 

the innovation’s two most recent lags.  The serial correlation has a “short memory” 

and the persistence of shocks is short-lived.  The number of observations used is 

T=512 observations, with 712 observations generated and the first 200 dropped, which 

is called the “burn in” stage.  The Auto-Regressive and Moving Average parameters 

are φ = (0.6, -0.3) and θ = (0.4, 0.2).  

 

Using simulated data with IID Normal innovations and a Daubechies wavelet, which 

has the orthonormality property, we expect to find that the first four moments of the 

distribution of approximation errors are Gaussian Normal.  The loss function selected 

is the root mean squared error.  It is the square root of the average, over all T 

observations, of all squared approximation errors, defined as the reconstructed data 

point minus the true data point, for all T observations.   
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The results, summarized in Table 2.1, suggest that all wavelet reconstructions are 

unbiased and the approximation errors are close to Gaussian Normal as desired 

(skewness=0, kurtosis=3).   

 
Table 2.1: Numerical accuracy of wavelet reconstruction for ARMA(2,2) process 
using Daubechies wavelet with filter length 2 to 16 

Wavelet Root mean 
squared 

error 

Approximation 
error mean 

Error SD Error 
skewness 

Error 
kurtosis 

dau2 2.048e-07 -3.095e-13 3.153e-14 0.0219 2.4881 
dau4 1.9233e-07 -2.054e-13 3.937e-14 0.3850 2.8761 
dau6 2.2280e-07 -3.234e-13 5.25e-14 0.1242 2.7510 
dau8 2.0728e-07 7.234e-13 6.921e-14 0.6317 2.509 
dau10 3.551e-13 3.799e-13 6.383e-14 0.4599 2.8303 
dau12 2.0567e-07 4.428e-13 7.225e-14 0.0841 2.5783 
dau16 1.9750e-07 3.404-13 7.098e-14 -0.2651 2.8467 

      

 

The second simulated process consists of fractional Brownian motion with a Hurst 

long memory coefficient of 0.75.  It is a non-stationary, persistent (long memory) 

process with innovations that are distributed not IID Normal or as white noise but 

rather as fractional white noise.  Fractional white noise increments over time are 

stationary but not independent of each other.  

 

A total of 712 time series observations are generated from a fractional Brownian 

motion process with a starting value of 100.  The first 200 observations are discarded 

as a “burn-in” stage.  Observations 201 to 712 inclusive are saved for a total of 512 

data points.  Again, the Daubechies wavelet is used with different filter lengths.  

 

The results shown in Table 2.2 suggest that the Daubechies-based wavelet transform 

for any filter length will provide outstanding reconstruction with only a trivial loss of 
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statistical information, even for a challenging process such as non-stationary fractional 

Brownian motion. 

 
Table 2.2: Numerical accuracy of wavelet reconstruction for fractional Brownian 
motion process using Daubechies wavelet with filter length 2 to 16 

Wavelet Root mean 
squared 

error 

Approximation 
error mean 

Error SD Error 
skewness 

Error 
kurtosis 

dau2 1.4149e-14 -2.002e-14 4.063e-15 -0.2694 3.1030 
dau4 9.1089e-15 -8.269e-15 4.608e-15 -0.3150 3.0254 
dau6 1.2539e-14 -3.122e-14 7.112e-15 -0.2656 3.1984 
dau8 4.0599e-14 7.596e-14 1.377e-14 -0.4040 2.8241 
dau10 1.8447e-14 -4.182e-14 7.940e-15 -0.3954 2.7796 
dau12 2.5605e-14 -3.915e-14 9.823e-15 -0.4953 2.4945 
dau 16 2.0923e-14 -4.185e-14 1.655e-14 -0.0489 2.3809 

      

 

2.8 Time Series Properties of Wavelet-Decomposed Data 

In the previous section it was found that applying a wavelet transform to time series 

data does not cause a loss of statistical information beyond machine precision.  

However, to conduct meaningful hypothesis testing of economic models using 

wavelet-transformed data, we need to verify whether the stationarity of data is 

preserved.  For example, suppose we extract from a stationary time series dataset 

several timescale levels.  Will any of these levels be non-stationary and therefore at 

risk of leading to spurious regressions in the Granger-Newbold (1974) sense?  Also, if 

the original data are non-stationary, do the wavelet-computed levels inherit this 

property?  To answer these questions, we analyze in this section a typical futures 

contract price time series dataset before and after wavelet decomposition. 

 

Consider the price of the CBOT corn futures contract expiring in March 2005.  This 

contract begins trading on 26 June 2003 and stops trading on 14 March 2005, for a 

total of 440 business daily observations.  Figure 2.1 shows the daily price of this 
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contract over the entire time period.  It is customary in the research literature to 

exclude observations from the contract’s own expiry month (here the last ten 

observations).  To focus on the period of most active trading, 256 observations are 

used, dated from 23 February 2004 to 28 February 2005.  An Augmented Dickey-

Fuller test (computed using one to eight lags) suggests the null hypothesis of a unit 

root cannot be rejected, whether or not a deterministic time trend is included.  The test 

procedure and optimal lag length selection follow Ng and Perron (2001) and Elliott, 

Rothemberg and Stock (1996). 

 

Applying a discrete wavelet transform to the data produces wavelet coefficients that 

allow us to construct several orthogonal, nearly independent time series, each of which 

corresponds to a distinct time horizon, from daily variation occurring in the data to 

long-term (here semestrial).  Figure 2.2 illustrates each of the artificial time series.  

Adding together the artificial time series results in the original time series data. 

 

Augmented Dickey-Fuller test results suggest that the price components associated 

with the daily time horizon and with time horizons of one month and longer are 

stationary, but that the price components of time horizons greater than a day and less 

than a month are non-stationary.  Therefore, non-stationarity in the original data 

translates into non-stationarity in some but not all wavelet-computed artificial time 

series.  Stationarity in the original data implies stationarity in the wavelet-computed 

series. 
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Figure 2.1: Chicago Board of Trade March 2005 corn futures settlement price, 6/26/03 
to 03/14/05 
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Figure 2.2: Wavelet transformation of corn futures price data into orthogonal, additive, 
time horizon-specific time series, $price/contract 
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While testing for serial correlation is relatively simple, evaluating serial dependence in 

higher order moments is difficult and an area of active research.  A number of 

nonparametric tests exist, but these tend to have low power (Hong 2004).  

 

Consider a economic time series process and suppose there exist opposing economic 

influences at different time horizons that result in the appearance of a constant 

variance ratio.  This result suggests a random walk.  For example, Turvey (2007) finds 

that for medium- to long-run samples, the null of a random walk in prices cannot be 

rejected for all but two agricultural commodities. 

 

To further illustrate the meaning of wavelet-estimated timescales (time horizons in an 

economic setting), a test of the random walk hypothesis is performed on each 

timescale data series to answer the question: is the random walk result explained by 

opposing persistent/antipersistent forces at different horizons? 

 

The data used consist of the daily settlement price for the Chicago Mercantile 

Exchange live cattle futures contract over the time period 2/1989 to 12/2004 inclusive.  

A total of 4096 observations are used.  The Variance Ratio test used is Kim’s (2006) 

wild bootstrap test which has been shown to possess generally superior size and power 

properties, and the holding periods used are {2, 4, 6, 8, 10, 12, 16, 32, 64} days.  The 

holding period is the subsample used to compute a variance estimate and which is 

compared to the variance as computed normally.  The results suggest the following 

interpretation.  Daily and semiweekly time horizon variation are strongly mean-

reverting (antipersistent).  Weekly and biweekly variation are persistent for holding 

periods of up to two weeks, but mean-reverting for longer holding periods.  Longer 

time horizons are persistent for any holding period.  
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2.10 Conclusion 

In this chapter we presented a introduction to wavelets in a time series context using 

the lifting scheme framework developed by Sweldens (1994), which, unlike other 

approaches to wavelets, does not require using concepts from Fourier analysis.  A 

number of important wavelet properties were defined and illustrated using the two 

most commonly used wavelet functions in time series analysis, the Haar and 

Daubechies.  We also provided simulation-based empirical evidence that wavelet-

based data transformations of typical economic and financial time series do not cause 

loss of information and do not induce non-stationarity.   
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CHAPTER 3 

IS LONG MEMORY IN COMMODITY FUTURES DATA SPURIOUS? 

 

3.1 Introduction  

In this chapter, we consider the large research literature that claims to have identified 

significant estimates of long memory in commodity futures prices and price volatility.  

The implication is that the modeling assumption of geometric Brownian motion 

should be abandoned in favor of substantially more complicated fractional Brownian 

motion models.  It also implies that options on commodity futures are likely to be 

severely mispriced.  This chapter asks whether findings of long memory are spurious 

and can be explained by inconsistent and inefficient estimation procedures and by the 

presence of structural breaks or level shifts.  Several steps are taken to make the 

results more robust.  A less noisy measure of volatility is computed from the log-range 

of prices instead of the traditional price log-returns.  The wavelet-based likelihood 

estimator is preferable to previously used GPH and FIGARCH methods on the basis 

of consistency, efficiency and coefficient interpretation.  The wavelet MLE is also 

capable of distinguishing short memory effects from long memory, which otherwise 

would bias the results.  It is argued based on this new evidence that in the case of 

agricultural commodities, long memory is most likely an artifact of the data.  

Implications for option pricing are that the Black-Scholes solution, adjusted for 

seasonality and major structural breaks, remains applicable. Semiparametric wavelet 

estimators of long memory are also presented and applied, but it is argued that these 

are of limited usefulness to economists because neither analytical nor bootstrap 

standard errors/confidence intervals are reliable.   
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The price of a financial option is frequently quoted in terms of its implied volatility.  

This is an unobserved parameter that solves, for a going price and a set of observable 

characteristics, the famous and widely-used Black-Scholes-Merton formula (Black and 

Scholes 1973; Merton 1973).  The measurement of volatility remains an active and 

diverse area of research in both academia and industry.  A central concern is whether 

volatility rapidly or slowly recovers from shocks that affect its magnitude.  The main 

contribution of this chapter is to provide, to the best of the author’s knowledge, the 

first systematic and informative test of spurious long memory in commodity futures 

price volatility data.  The results presented in this chapter contribute to an active and 

growing literature in agricultural economics on the relationship between commodity 

futures and options through improved models of price volatility and measures of serial 

dependence.   

 

In commodity markets, options are written on futures contracts.  A number of papers 

found futures prices to be persistent, a finding that appeared to challenge the 

efficiency of commodity futures markets (e.g. Corazza, Malliaris, and Nardelli 1997).  

More recent work suggests however that persistence (long memory) in commodity 

prices is better explained by a combination of level shifts (a one-time increase or 

decrease in the mean of the process) in the data and long memory in the volatility of 

futures (Tomek 1994; Wei and Leuthold 2000; Smith 2005).  As a result, the question 

of long memory in prices has been settled and the literature now focuses on whether 

price volatility is characterized by long memory.  How does long memory in volatility 

affect the underlying asset price?  Modern asset pricing models in the tradition of 

Black and Scholes (1973) consider that price is a function of a deterministic drift term 

(trend), a stochastic or random diffusion term (volatility) and possibly a stochastic 

jump process that may help explain level shifts and structural breaks.  Long memory 
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in volatility implies dependence between increments of the diffusion term and 

therefore has an impact on the price path over time.   

 

A large estimate of long memory in futures price volatility also implies a potentially 

large bias in the classic Black-Scholes option pricing method.  Option pricing based 

on the Black-Scholes model assumes that the underlying asset (here, the commodity 

futures contract) is reasonably well described as Geometric Brownian Motion (GBM), 

which means the natural logarithm of the asset price behaves in the continuous-time 

limit as an IID Normal random walk with drift.  Long memory in volatility implies 

that the correct option pricing solution is based on fractional rather than geometric 

Brownian motion (Rogers 1997; Sottinen 2001).  Such an option pricing model is 

substantially more difficult to use, which may further discourage the adoption and use 

of options in the agribusiness sector. 

 

This chapter therefore addresses one set of causes and consequences of option pricing 

bias in commodity markets, namely long memory in futures price volatility.  The 

principal aim of this work is to determine whether empirical findings of long memory 

in commodity futures prices and volatility are spurious.  Alternative explanations are 

considered including the effect of correlated short memory dynamics (generally 

measured as ARMA parameters) and the presence of structural breaks or level shifts in 

the data (Smith, 2005; Banerjee and Urga, 2005; Perron, 2006). 

 

The main finding of this chapter is that apparent long memory in commodity futures 

price volatility is only true for two out of eleven commodities, but is not caused by the 

effect of short memory dynamics.  Rather, the data would be better described by a 



 

35 

Markov-switching or stochastic break model, either of which could generate spurious 

long memory. 

 

The chapter takes the following steps to answer the question.  A measure of volatility 

is constructed using the daily price range following Alizadeh, Brandt and Diebold 

(2002).  While less accurate than the realized volatility computed from intra-day high-

frequency tick data, this measure has been found to be asymptotically superior to the 

traditionally used volatility measures, absolute or squared logreturns.  This volatility 

proxy is justified by the use of more than 4000 observations for each commodity and 

the difficulty and cost of obtaining reliable tick data for most agricultural commodity 

futures.  To estimate the long memory parameter d in the canonical fractionally 

integrated time series model (ARFIMA), a wavelet-based estimator is used (McCoy 

and Walden 1996; Jensen 2000).   

 

Wavelets are ideally suited to distinguish short from long memory and also to detect 

the fractal signature of long memory because, as explained in Chapter 2, they are self-

similar across time-scales or time horizons and their orthonormality property ensures 

zero correlation between time-scales.  As a result, the wavelet-based estimator is 

consistent, efficient in its class, and unbiased by the presence of short memory 

dynamics, unlike for example the frequently-used Geweke-Porter-Hudak (GPH, 1983) 

estimator.  The GPH estimator conveniently requires only an OLS linear regression in 

the frequency domain, but has been found to be inconsistent, inefficient and biased 

(Agiakloglou, Newbold and Wohar 1992; Robinson 1995; Smith 2005).  The wavelet-

based estimate of long memory can be directly interpreted and tested in the standard 

ARFIMA framework.  For d<0.5, the process is stationary and the most natural null 

hypothesis, tested using e.g. Tanaka’s (1999) Wald statistic, is then d=0 or 



 

36 

equivalently white noise innovations (increments) against fractional white noise 

innovations and d>0.  Standard errors are computed from Tanaka’s (1999) analytical 

covariance formula that incorporates both the short memory and long memory 

Information Matrices as well as cross-dependencies.  Previous results in the literature 

appear to generally not account for these cross-dependencies and as a result the 

standard errors are understated.   

 

Model robustness checks include a separate estimation using only Wednesday 

observations (i.e. weekly sampling) to account for “day of the week effects” as well as 

estimates from different wavelet-based long memory estimators.  Simple Likelihood 

Ratio tests are computed to evaluate whether the long memory parameter is significant 

and the results are contrasted with the evidence from Wald and modified KPSS and 

Phillips-Perron tests that are designed to consider the presence of spurious long 

memory.  Semi-parametric wavelet-based long memory estimators in the tradition of 

the Hurst-Mandelbrot R/S analysis are considered, but recent work suggests that for 

the Hurst long memory parameter neither bootstrap nor Monte Carlo standard errors 

and confidence intervals are reliable.  Weak evidence of long memory is found but it 

is not possible to confidently test the null hypothesis in this case. 

 

3.2 Long Memory in Commodity Futures Prices and Volatility  

Understanding the behavior of futures prices is central to commodity risk management 

(Tomek 1997; Tomek and Peterson 2001).  Futures prices influence hedging and 

inventory decisions, spot price discovery, and the use of commodity options written on 

futures.  An important question, which motivated the unit root literature in 

econometrics and particularly in empirical macroeconomics is whether the influence 

of economic shocks or innovations is short-lived or permanent (Nelson and Plosser 
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1982; Phillips 1987; Phillips and Perron 1988).  It is now well-established that 

agricultural commodity price time series are unlikely to contain a unit root (Wang and 

Tomek 2007).  This conclusion is supported both by theoretical work (Deaton and 

Larocque 1992; Tomek, 1994) and by the econometric literature on the low power of 

unit root tests in the presence of either structural breaks or long memory (e.g. 

Cochrane 1987).   

 

The concept of long memory, originally given an economic definition by Granger 

(1980) and Granger and Joyeux (1981), considers that shocks may be so persistent that 

they are in short time series observationally equivalent with shocks from a unit root 

process.  Moreover, the spurious regression result of Newbold and Granger (1974) is 

likely to hold for stationary processes with long memory (Tsay and Chung 2000).  

This means it is not sufficient to verify only stationarity of two time series for which a 

dynamic economic relationship is being considered.  Long memory in time series is 

characterized by a hyperbolic (slow) rate of decay in the autocorrelation and impulse 

response functions, instead of the usual geometric (faster) rate of decay.  In the 

standard ARFIMA time series framework, a long memory process is defined as I(d), 

or fractionally integrated of order d ∈ (-1,1).  The case d=1 is the well-known case of 

a unit root and permanent memory.   

 

A large and active literature suggests that long memory or persistence in commodity 

futures price volatility is significant and of practical consequence (Baillie et al. 2007; 

Corazza, Malliaris and Nardelli 1998; Crato and Ray 2000; Cromwell, Labys and 

Kouassi 2000; Elder and Jin 2007; Helms, Kaen and Rosenman 1984; Jin and 

Frechette 2004; Peterson, Ma and Ritchey 1992; Wei and Leuthold, 2000).  In 

contrast, although she does not test for spurious long memory, Lordkipandize (2004, 
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p. 82) finds that soybean and corn futures price volatility is primarily caused by 

seasonality and maturity effects rather than by long memory.   

 

The main contribution of this chapter is to determine whether findings of long memory 

in agricultural commodity futures price volatility are spurious and to suggest an 

alternative explanation based on evaluating different causes of spurious long memory.  

This chapter provides robust estimates of the long memory parameter for eleven 

commodity futures contract time series in a joint model with short memory and 

seasonal model parameters.  The long memory estimator is unbiased by the presence 

of short memory effects.  Correct standard errors are computed using the complete 

Information Matrix accounting for cross-dependencies with short memory.  To 

evaluate whether findings of long memory are significant, asymptotic tests (Wald, 

Likelihood Ratio) are applied, but since these tests have incorrect size, we also use 

recently developed tests for spurious long memory.   

 

3.3 Commodity Futures Price Data 

The data consist of business daily observations of agricultural commodity futures 

prices for contracts on coffee, cotton, cocoa, sugar no.11, frozen concentrated orange 

juice, hard red winter wheat, soybeans, corn, canola, live cattle, and lean hogs 

(formerly live hogs).  Commodity futures contracts are traded until the 15th of the 

contract month (or the last business day before the 15th).  To avoid near-maturity 

effects and delivery risk bias, observations for contracts in their own expiry month are 

discarded.  Contracts are therefore rolled-over (spliced) approximately 15 days before 

they expire.   
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The observations cover the years 1988-2007, varying slightly across commodities.  

Data for the years 2005, 2006 and 2007 are reserved for out-of-sample forecasting, 

which implies at least 500 observations for each commodity, and leaves more than 

4000 observations for each commodity for the estimation of long and short memory 

parameters.  Precisely 4096 observations are used for estimation purposes.   

 

The contracts include both storable and non-storable commodities.  Storable 

commodities have inventory stocks while by definition non-storable commodities do 

not.  This suggests a testable hypothesis that price and volatility dynamics will differ 

between storable and non-storable commodities (Williams and Wright 1984, 1989).   

 

3.4 The Option Pricing Bias from Long Memory 

One typical violation of the Black-Scholes model in futures price sample data is 

volatility clustering (Myers and Hanson 1993), generally addressed by using ARCH 

and GARCH models (Engle 1982; Bollerslev 1986).  This short-range dependence 

however does not appear to substantially affect option pricing solutions (Roberts 

2002). 

 

Long-range dependence, or long memory, implies the Black-Scholes option pricing 

solution is fundamentally biased (Rogers 1997; Sottinen 1998), as the underlying asset 

is better described by fractional Brownian motion, a more general stochastic process 

that nests geometric Brownian motion as a special case (Cox and Miller 1965).  How 

important is the bias caused by long memory on option pricing?  Ohanissian, Russell 

and Tsay (2004) find that it can cause options to be mispriced by as much as 67%. 
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3.5 A Log-Range Measure of Volatility 

The two traditional measures of daily or weekly volatility in the commodity spot and 

futures prices literature are absolute and squared logreturns, computed as deviations 

from the long-run mean.  If the underlying asset price at time t is Ft then the logreturn 

is defined as: rt = ln(Ft) – ln(Ft-1) and volatility is defined as either |rt| or as (rt)
2.  

Improved efficiency and no significant bias follow from assuming the long-run mean 

is zero.   

 

Though both measures are frequently used, Granger (2000) argues on the basis of 

Nyquist’s (1983) Lp norm argument that squared logreturns should only be used if the 

data are approximately Gaussian Normal, which is seldom true in economic and 

financial logreturn data.  Since these data display excess kurtosis, absolute logreturns 

are more appropriate.   

 

In this chapter, the log-range of daily futures prices is used as a measure of volatility 

instead of absolute price logreturns.  There are several reasons why this is warranted.  

Alizadeh, Brandt and Diebold (2002) and Yang and Zhang (2002) provide theoretical 

and empirical evidence for the asymptotic optimality of the log-range as an estimator 

of volatility in economic and financial time series data.  Regarding the asymptotic 

validity of the result, all of our commodity time series consist of more than 4000 

observations.  Absolute logreturns are a particularly noisy proxy for price variation 

and are more heavily contaminated by measurement error (Parkinson, 1980; Garman 

and Klass 1980; Rogers and Satchell 1991).  As a result, the log-range based volatility 

measure is more efficient than are absolute logreturns.  Anderson and Bollerslev 

(1998) show that the range-based volatility measure is nearly as accurate as computing 

realized volatility from ultra high-frequency tick data, the latter which is the ideal 
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measure of daily integrated volatility (Andersen, Bollerslev, Diebold et al. 2001a, 

2001b, 2003; Barndorff-Nielsen and Sheppard 2002).  The lower volume of trade in 

commodity markets indeed makes the realized volatility approach difficult to 

implement.   

 

The log-range is very well approximated by the Gaussian Normal distribution, which 

improves both efficiency and accuracy in maximum likelihood estimation (Alizadeh, 

Brandt and Diebold 2002; Brandt and Jones 2006).  In particular, quasi-MLE 

estimation using a logreturn-based volatility is highly inefficient (Andersen and 

Sorensen 1997; Kim, Shephard and Chib 1998).  Lastly, absolute or squared logreturns 

are not well supported by choice theory as proxies for risk (Machina, 1987; Levy, 

1992).   

 

The log-range, for a time increment t that can be a day or an intra-daily time period, is 

defined as: 

 th ln(sup inf )t tF F= −  (3.1) 

 

Parkinson (1977, 1980) shows that the log-range is closely related to the diffusion 

term σ in the geometric Brownian motion (Black-Scholes) asset price model and 

option price solution.  This result is based on Feller’s (1951) definition of the Moment 

Generating Function of a random variable that behaves as a daily range of prices.  

Open and close prices are not incorporated as they do not improve accuracy of results 

and they introduce undesirable market microstructure effects (Brown, 1990; Alizadeh, 

1998). 
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Descriptive statistics for the log range volatility measure are presented in Table 3.1.  

International commodities traded at the New York Board of Trade, such as cocoa, 

coffee and cotton, are more volatile, skewed and leptokurtic (heavy-tailed) than are 

principally domestic commodities such as Chicago Board of Trade grains and Chicago 

Mercantile Exchange meats.  Kim and White’s (2001) measures of skewness and 

kurtosis are used, which are more robust to the presence of outliers and therefore 

provide a better description of the data’s first four sample moments.   

 
Table 3.1: Descriptive statistics of log-range price volatility in commodity futures 
contract time series data, T=4266, daily observations from 2/1988 to 1/2005 
 

Futures contract Mean Std dev. Skewness 

(Normal=0) 

Kurtosis 

(Normal=3) 

CBOT corn 0.015 0.008 2.070 8.417 

CBOT soybeans 0.015 0.008 1.932 6.719 

CME lean hogs 0.017 0.009 2.315 14.013 

CME live cattle 0.011 0.005 1.494 3.077 

KCBOT wheat 0.015 0.009 1.690 4.776 

WCE canola 0.012 0.007 1.544 4.368 

NYBOT cocoa 0.022 0.013 1.723 5.149 

NYBOT coffee 0.028 0.018 2.175 9.204 

NYBOT FCOJ 0.020 0.014 3.071 19.649 

NYBOT cotton 0.018 0.011 2.295 12.069 

NYBOT sugar#11 0.026 0.016 2.562 16.308 

 

A number of robustness checks are performed.  To control for calendar effects such as 

the “weekend” anomaly (French 1980; Thaler 1987; Gibbons and Hess 1981; Kamara 

1997), we repeat estimation for a small number of commodities using only the 

Wednesday observation (i.e. weekly sampling).  Two reasons suggest however that 

calendar effects need not be a problem.  Empirical work has found that these 
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anomalies have essentially disappeared since 1975 (Connolly 1989) or since 1987 

(Fortune 1998), and the earliest data used in this chapter begins in 1988.  Also, once 

unintentional data snooping is accounted for, calendar effects have been found to be in 

general not statistically significant (Sullivan, Timmermann and White 2001). 

  

Standard time series diagnostic tests are performed on the data (Augmented Dickey-

Fuller, Phillips-Perron, KPSS, Variance Ratio) to evaluate its sample properties and 

ensure that our data are comparable with data used in previous research.  Test results 

suggest that in levels we cannot reject the null of a unit root (ADF test) but in 

differences we cannot reject the null of no unit root (KPSS test).  Such findings are 

standard in the literature, but Wang and Tomek (2007) warn that commodity prices in 

levels should not in theory be characterized by a unit root.  Rather, such test results are 

the consequence of low test power caused by mis-specification of the test, omission of 

level shifts in the data or both.  The data in log-return or log-range form are stationary 

but ARCH effects (volatility clustering) are present.  Test details are provided in the 

Appendix.  The data are not deflated by the Prices Paid Farmers Index (Tomek 1997) 

because this Index has an annual frequency while the data are daily, therefore spurious 

effects risk being introduced.  Figures 3.1 to 3.11 present time series plots of the 

nearby futures contract volatility data for the eleven commodities studied in this 

chapter.  

 

3.6 Wavelets Distinguish Short from Long Memory 

A substantial difficulty associated with estimating the long memory parameter (H or 

d) is that it is, even asymptotically, correlated with short memory dynamics such as 

AR and MA parameters (Tanaka 1999).  As a result, both the point estimate of the 

long memory parameter and its standard errors are biased.   
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Log-range volatility of nearby futures prices, Chicago Mercantile 
Exchange Live Hogs/Lean Hogs Contract, 2/1988-1/2005
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Figure 3.1: Time series plot of daily log-range price volatility, CME lean hogs futures  
 

Log-range price volatility of nearby futures prices, 
Chicago Mercantile Exchange Live Cattle Contract, 2/1988-1/2005
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Figure 3.2: Time series plot of daily log-range price volatility, CME live cattle futures 
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Log-range price volatility of nearby futures prices, 
Chicago Board of Trade Soybeans Contract, 2/1988-1/2005
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Figure 3.3: Time series plot of daily log-range price volatility, CBOT soybeans futures 
 

Log-range volatility of nearby futures prices, 
Chicago Board of Trade corn contract, 2/1988-1/2005
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Figure 3.4: Time series plot of daily log-range price volatility, CBOT corn futures 
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Log-range volatility of nearby futures prices, 
Kansas City Board of Trade wheat futures, 2/1988-1/2005
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Figure 3.5: Time series plot of daily log-range price volatility, KCBOT wheat futures 
 

Log-range volatility of nearby futures prices, 
Winnipeg Commodity Exchange canola contract, 2/1988-1/2005
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Figure 3.6: Time series plot of daily log-range price volatility, WCE canola futures 
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Log-range volatility of nearby futures prices, 
New York Board of Trade cocoa contract, 2/1988-1/2005

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

2/
2/

19
88

2/
2/

19
89

2/
2/

19
90

2/
2/

19
91

2/
2/

19
92

2/
2/

19
93

2/
2/

19
94

2/
2/

19
95

2/
2/

19
96

2/
2/

19
97

2/
2/

19
98

2/
2/

19
99

2/
2/

20
00

2/
2/

20
01

2/
2/

20
02

2/
2/

20
03

2/
2/

20
04

lo
g

(H
ig

h
)-

lo
g

(L
o

w
)

 
Figure 3.7: Time series plot of daily log-range price volatility, NYBoT cocoa futures 
 

Log-range volatility of nearby futures prices, 
New York Board of Trade coffee contract, 2/1988-1/2005
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Figure 3.8: Time series plot of daily log-range price volatility, NYBoT coffee futures 
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Log-range volatility of nearby futures prices, 
New York Board of Trade cotton contract, 2/1988-1/2005
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Figure 3.9: Time series plot of daily log-range price volatility, NYBoT cotton futures 
 

Log-range volatility of nearby futures prices, 
New York Board of Trade sugar#11 contract, 2/1988-1/2005
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Figure 3.10: Time series plot of daily log-range price volatility, NYBoT sugar#11 
futures 
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Log-range volatility of nearby futures prices, New York Board of 
Trade frozen concentrated orange juice contract, 2/1988-1/2005
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Figure 3.11: Time series plot of daily log-range price volatility, NYBoT frozen 
concentrated orange juice futures 

 

Many papers in the literature do not appear to account for the impact of short memory 

dynamics on their estimates of long memory.  One solution to this problem is to use an 

estimation method based on wavelet functions (Gencay, Selcuk, and Whitcher 2001).  

This is because wavelets are by design able to separate long memory from short 

memory dependence, or more generally, variation in a signal or time series that occurs 

at different timescales (Percival and Walden 2001). 

 

This implies a wavelet-based estimate of long memory will be unbiased when the time 

series data short memory parameters are either ignored or inaccurately estimated.  

Moreover, long memory and short memory parameters can be independently and 

accurately estimated.  To the best of our knowledge, the only work that has considered 

wavelet-based estimators to examine long memory in agricultural commodity price 
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data is Elder and Jin (2007).  But, where they focus on comparing results of long 

memory estimation using wavelet and non-wavelet based methods, this chapter tests 

for spurious long memory and determines both the cause of spurious long memory and 

what alternative model better describes the data.  To establish the significance of the 

long memory parameter d, other papers in the literature such as Jin and Frechette 

(2004) only use, for example, non-robust Likelihood Ratio tests.  Lastly, Elder and Jin 

(2007) use a logreturn-based volatility variable while the daily log-range is used in this 

chapter. 

 

3.7 Identifying Spurious Long Memory 

A persistent problem in the literature is the accurate identification of long memory in 

futures data.  Early evidence of long memory in cash and futures prices has been 

reconsidered and recent advances have focused on long memory in the volatility of 

futures prices (e.g. Baillie et al. 2007; Jin and Frechette 2004). 

 

In time series econometrics, long memory is generally defined as fractional 

integration, or I(d), which is only one type of long memory process (Granger 2000).  It 

is well understood that the aggregation of short memory (e.g. ARMA) time series data 

may result in the appearance of long memory (Granger 1980, 1990).  Indeed, 

Chambers (1998) proves that true long memory processes have a long memory 

parameter that is invariant under time aggregation, a useful fact for hypothesis testing.  

The illusion of long memory can also be the consequence of structural breaks and 

level shifts, two phenomena that are better supported than is long memory by 

economic theory (Diebold and Inoue 2001; Granger 2005). 
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Disentangling stochastic, singular shocks such as structural breaks from long memory 

in time series data is a difficult task and in many cases the two classes of models are 

observationally equivalent (see e.g. Banerjee and Urga, ed., 2005, Journal of  

Econometrics symposium; Perron 2006).  Spurious findings of long memory may be 

caused by a biased or inconsistent estimation procedure, by level shifts, structural 

breaks and regime switches, or by inefficient standard errors and confidence intervals 

(Chambers 1998; Diebold and Inoue 2001; Shimotsu 2006; Zivot and Andrews 1992).  

Level shifts can occur for example when the first moment (mean) of the data 

generating process suddenly changes while the rest of the distribution is unaffected 

(Smith 2005).  Structural breaks occur when the values of some or all coefficients in 

the model change at some point in the time series.  Regime switching is generally 

described by a time series process whose distribution is stationary for a given state of 

nature, and for which the state in each time period is determined by a probabilistic, 

e.g. Markov, transition matrix. 

 

Daily volatility of stock logreturns is characterized by autocorrelograms that are 

significant beyond 3000 (day) lags, even after removing outlier observations (Granger 

1999).  Estimates of the fractional difference parameter d using large data samples 

generally fall below but near 0.5, but for sub-samples of shorter length the estimates 

vary between 0.3 and 0.7, which suggests it is not true long memory.  Another reason 

to doubt that economic or financial time series are generated by a true fractional 

integration process is that it is difficult to reconcile estimates of d with the data’s 

sample moments.  For example, for daily absolute logreturns of financial data, it 

would be necessary to assume the innovations (errors) are distributed as fractional 

Chi-Squared. 
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The estimators generally used in the literature are not necessarily robust.  The popular 

Geweke-Porter-Hudak semi-parametric estimator is both inconsistent and inefficient 

(Robinson 1995a,b).  Smith (2005) moreover shows that the GPH estimator is heavily 

biased in the presence of level shifts in the data and suggests a new, nearly unbiased 

GPH-type estimator.  This bias explains for example an apparently large (d=0.79) 

estimate of long memory in relative soybean prices.  As a result, once level shifts have 

been accounted for, estimates of long memory are not statistically different from zero. 

  

A second widely used long memory estimator designed for volatility data is the 

Fractionally Integrated GARCH model (Bollerslev 1986);Bollerslev and Mikkelsen 

1996).  The FIGARCH estimator is however both fragile in the presence of mis-

specified short memory parameters and also unreliable as a measure of long memory 

(Davidson 2004).  A third case of a problematic long memory estimator is the Quasi-

MLE estimator for stochastic volatility with long memory (e.g. Breidt, Crato and de 

Lima 1998), which is generally non-robust (Alizadeh, Brandt and Diebold 2002; 

Andersen and Sorensen 1997).   

 

As for the large class of semi-parametric Hurst long memory parameter H estimators 

(e.g. Lo 1991), Riedi (2003) shows that confidence intervals around H are only 

reliable under overly restrictive conditions, and Franco and Reisen (2007) use 

simulation to show that bootstrapped standard errors of the long memory parameter 

are not accurate.  Turvey (2007) shows that for all but two agricultural commodities, 

the data generating process is consistent with white noise innovations rather than 

fractional Gaussian noise (as would be the case under long memory). 

 

These results suggest the need for a more robust investigation of long memory. 
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3.8 Semi-parametric Wavelet Estimation of Long Memory 

Research has found that semi-parametric estimators, frequently used in the natural 

sciences, are superior to parametric (maximum likelihood) estimators when the model 

is likely to be mis-specified (Boes et al. 1989), but that MLE is preferable when the 

model is correctly specified (Cheung 1993).  The classic Rescaled-Range analysis 

(R/S) of Mandelbrot and Van Ness (1968) obtains an estimate of Hurst’s H long 

memory parameter.  Lo (1991) improved upon Hurst’s and Mandelbrot’s R/S 

estimator by making it robust to heteroskedasticity in the data, but interpretation and 

hypothesis testing appear unreliable (Teverovsky, Taqqu and Willinger 1999).   

 

The properties of wavelets, in particular scale-invariance, make them ideally suited to 

detect the self-similar fractal signature of several types of long memory, including 

fractional Brownian motion.  A wavelet-based semi-parametric estimator of the Hurst 

parameter can be implemented and provides results that are superior to traditional R/S 

analysis (Teyssiere and Abry 2006).  This semi-parametric estimator can be applied to 

all timescales without adjustment and is has been found to be unbiased and efficient in 

its class.  The wavelet orthogonality property makes this estimator robust to the 

presence of a trend and to non-stationary singularities. 

 

The Hurst coefficient can be easily obtained from an application of a wavelet 

transform to time series data (see e.g. Taqqu 2003).  The method consists of first 

applying a Discrete Wavelet Transform to the time series data, which produces a 

vector of wavelet coefficients.  Then the wavelet coefficients, each of which is 

associated with a timescale, are squared and regressed over the base-2 (dyadic) 

logarithm of the timescales.  The slope coefficient is directly proportional to H.  A 



 

54 

similar method by Jensen (1999) can be used to obtain an OLS estimator of the 

fractional difference parameter d, which is directly related to the Hurst coefficient H. 

 

Improved, unbiased semi-parametric estimators of long range dependence H have 

been developed by Abry, Veitch and Flandrin (1998), Veitch and Abry (1999), and 

Teyssiere and Abry (2006).  These jointly estimate the long-range dependence 

parameters α and C and also compute a tailored goodness-of-fit statistic.  Their 

approach has the advantage of using a pre-filtering algorithm to correct the bias caused 

by the discrete sampling of the data (Veitch, Taqqu, and Abry 2000).  In addition, 

Veitch and Abry (1999) propose a test for true long-range dependence that relies on 

the self-similar properties of wavelets.  This is a test of the stationarity of the long 

memory parameter computed over a number of sub-samples.  In this chapter, we 

consider 16 sub-samples of 256 observations each.  This corresponds to estimating H 

approximately once per year for every year in the sample and finding out if this 

parameter changed over time.  Results are presented for the three commodities for 

which the stationarity of H is rejected graphically in Figures 3.12 to 3.14.   

 

The results, presented in Table 3.2, show that for all commodities, the null hypothesis 

of H=0.5 cannot be rejected at the standard 5% level of significance.  This evidence 

supports the recent findings of Turvey (2007), that increments of the data are 

consistent with a white noise process (not necessarily Gaussian) rather than long range 

dependence such as fractional Brownian motion..  For all but three commodities, we 

cannot reject the null hypothesis that the long memory parameter H has been constant 

over the entire sample (1988-2004).  The stationarity of H is however clearly rejected 

(at the 1% level) for CME lean hogs, KCBOT wheat and NYBOT sugar #11.   
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Although straightforward to compute and frequently used in the natural sciences, the 

semi-parametric wavelet approach is of limited usefulness in economics because it has 

been shown that both analytical and bootstrap standard errors and confidence intervals 

are unreliable for this estimator (Riedi 2003; Franco and Reisen 2007).  

 

3.9 Parametric Wavelet Estimation of Long Memory 

Following Granger’s (1980) and Hosking’s (1981) formal definitions of long memory 

in the ARMA time series framework, Sowell (1992) obtained an exact maximum 

likelihood estimator for fractionally integrated processes.  Its computation requires, 

however, inverting a dense covariance matrix at every step of the procedure, which is 

unrealistic for large datasets.  For this reason, approximate frequency domain 

estimators such as those by Geweke and Porter-Hudak (GPH, 1983) or Fox and Taqqu 

(1986) are frequently used.  However, the GPH estimator is both inconsistent and 

inefficient (Agiagoglou, Newbold and Wohar 1992; Robinson 1995) while the Fox-

Taqqu estimator is systematically biased.  Feasible exact ML estimators suffer from a 

large bias as the sample size grows because they are not robust to a mis-specified 

mean or trend (Cheung and Diebold, 1994).  Indeed, the sample mean is an inaccurate 

estimator of the population mean in the presence of long memory (Beran 1994).  

Robinson (1995) suggests instead a semi-parametric local Whittle estimator based on 

Kunsch (1987).   

 

Hosking (1984) derives a Cumulative Sum of Squares (CuSum) estimator that is 

asymptotically equivalent to Sowell’s (1992) exact MLE, but the CuSum estimator is 

severely biased in small to moderate-sized samples (Chung and Baillie 1993).  Chung 

(1996a,b) derives asymptotic results for the CuSum estimator of a generalized 
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ARFIMA(p,d,q) process including an analytical formula for standard errors which is 

used in this chapter.   

 
Table 3.2: Semi-parametric wavelet-based estimation of Hurst long memory parameter H  
Commodity H estimate 

(wavelet) 
Std. 
error 

Reject 
Ho: 

H=0.5? 

p-value 
for Ho: 

stationary 
H 

Reject Ho: 
stationary 

H? 

H estimate 
(Turvey) 

Reject Ho: 
H=0.5? 

Coffee 
(NYBOT) 

0.483 0.015 No 0.088 No 0.402  

Cocoa 
(NYBOT) 

0.492 0.015 No 0.496 No 0.465  

Corn 
(CBOT) 

0.519 0.015 No 0.747 No 0.348 ** 

Cotton 
(NYBOT) 

0.523 0.016 No 0.186 No N/A  

Lean hogs 
(CME) 

0.483 0.015 No 0.0066 *** 0.438  

Live cattle 
(CME) 

0.516 0.015 No 0.115 No 0.272 *** 

FCOJ 
(NYBOT) 

0.507 0.015 No 0.054 No 0.458  

Canola 
(WCE) 

0.496 0.015 No 0.053 No 0.396  

Soybeans 
(CBOT) 

0.482 0.024 No 0.296 No 0.332 ** 

Sugar#11 
(NYBOT) 

0.506 0.015 No 0.0015 *** 0.543  

Wheat 
(KCBOT) 

0.493 0.015 No 0.0017 *** N/A  

        
** reject 5%, *** reject 1% 
Notes: The estimator is based on Abry and Veitch (1998, 1999, 2002) with a pre-filtering correction for 
discretely sampled data and using the Daubechies(10) wavelet function. Test is for Ho: H=0.5 
(independent increments) and test for stationarity of H over time. Comparison of estimates with results 
from Turvey (2007) Table 5 (Sample=940 days). 
 

 

The ability of wavelet functions to decorrelate time series data across timescales helps 

distinguish long memory from short memory (ARMA) components as well as from 

change-points or structural breaks (Percival and Walden 2001).  Wavelet-based 

estimators of long memory are not affected by the presence of an unknown or mis-

specified mean unlike exact ML estimators (Jensen 2000).   
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Recall that exact ML estimation of long memory involves inverting a dense 

covariance matrix at every step of the convergence procedure.  Wavelets provide a 

sparse representation of the covariance matrix, which greatly simplifies this 

computational burden and introduces only a trivial bias.  A large number of wavelet-

based estimators of long memory have been developed.  McCoy and Walden’s (1996) 

presented an early wavelet-based exact MLE, which was improved upon by Percival 

and Bruce (1998) to include robustness to polynomial trends, by Jensen (2000) for 

robustness to contaminated (e.g., non-experimental) data and by Craigmile, Guttorp 

and Percival (2005) for robustness to trend contamination.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.12: Stationarity test results for wavelet-based estimate of Hurst H parameter, 
KCBOT wheat futures contract 
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Whitcher (2004) introduces a seasonal component, and Jensen (1998, 1999) suggests a 

method to jointly estimate long memory and short memory parameters.   

  

The general long memory process to be estimated is: 

 

 2(L) (1-2 +L ) ( ) ( )d
t tY Lφ η µ θ ε− =  (3.2) 

 

which includes both autoregressive φ(L) and moving average θ(L) polynomials, a 

fractional order of integration d (Hosking 1981) as well as a seasonal persistence 

process η (Gray, Zhang and Woodward 1989) which is equivalently a power series 

known as Gegenbauer polynomials (Rainville 1960).   

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.13: Stationarity test results for wavelet-based estimate of Hurst H parameter, 
NYBOT sugar no.11 futures contract 
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Figure 3.14: Stationarity test for wavelet-based estimate of Hurst H parameter, CME 
live hogs/lean hogs futures contract 

 

Gegenbauer polynomials enable the long memory parameter to be associated with 

seasonality, an advantageous option to study certain economic time series.  In this 

chapter, however, time series are sampled daily and we impose the restriction that long 

memory is not seasonally-dependent. 

 

The exact wavelet ML estimator used in this chapter is based on the Haar(4) wavelet 

transform (Daubechies 1992), as described in Chapter 2.  It has the smallest (Root) 

Mean Squared Error in its class, is computationally efficient, only slightly affected by 

the wavelet boundary effects caused by the finiteness of the data sample, and is robust 

to misspecification of trend and short memory (ARMA) parameters (Jensen 2000).  
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The estimator jointly provides values for the long memory and short memory 

parameters including seasonality coefficients that are useful for grain futures contracts. 

 

For a general ARFIMA(p,d,q) process with white noise innovations, the concentrated 

log-likelihood (Jensen 2000) is: 
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= − +  
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∑ ∑ℓ  (3.3) 

 

where θ=(d, σ2 , ση
2) is the vector of parameters (long memory, ARFIMA variance, 

and white noise variance) and 〈Y, ψ2〉 is the vector of wavelet coefficients resulting 

from the convolution of wavelet functions with the original data.  Standard errors for 

the long memory parameter are  computed following analytical solutions from Chung 

(1996a,b) and Tanaka (1999).  It is necessary to first estimate d, then estimate the 

ARMA parameters (φ(L), θ(L)) and finally obtain the information matrix for the 

ARMA parameters (see e.g. Hamilton 1994, pp. 142-144).  Only then can accurate 

standard errors for d be computed.  If the short memory parameters are all zero, such 

that the process is ARFIMA(0,d,0) then the standard errors for d are computed as 

follows:  

 1/ 2 2ˆ( ) 6 /se d T π−=  (3.4) 

 

For the case of seasonal persistence, standard errors are computed as follows: 

 

 

1/ 2
2

1/ 2 2ˆ( ) 2 arccos(0.5) arccos
3

se d T
π π

−

−   
= − +  

  
 (3.5) 

 

A Wald test can be applied to evaluate the null that the fractional difference parameter 

d is zero, equivalently that there is no long memory (Tanaka 1999).  Even though the 
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wavelet-based estimator is robust to the presence of mis-specified short memory 

parameters, the test is only accurate if these ARMA (or GARCH) terms are included 

in the Information Matrix: 

 

 0

1 2

d̂ d

T ω− −

−
 (3.6) 

 

where the complete Information matrix for both long and short memory parameter 

estimators is:  

 
2

2 1' ( , )
6

πω κ φ θ κ− 
= − ℑ 
 

 (3.7) 
 

ℑ(φ,θ) is the Information matrix for only the ARMA terms and where κ has length 

(p+q+1) and is computed from the expansion of the ARMA(p,q) lag polynomials, 

assuming invertibility holds (see Tanaka 1999 for details).  We compute the 

expansions using a simple tailor-made program in Matlab.   

 

We compute the ARMA information matrix using the BHHH Hessian estimator 

(Berndt, Hall, Hall and Hausman 1974):  

 ˆ ˆ ˆ ˆˆ ( , ) = G'Gφ θℑ  (3.8) 

where G is the true asymptotic matrix of scores and the BHHH estimator uses 

numerically estimated scores.   

 

The Wald test, however, has a size problem and tends to over-reject the null of d=0.  

Similarly, Likelihood Ratio tests are not effective against spurious long memory. They 

may be computed, however, to compare the restricted ARFIMA(0,d,0) to the 

unrestricted ARFIMA (p,d,q) model to evaluate the significance of the short memory 

parameters. 
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The wavelet-based estimates of the long memory fractional difference parameter are 

unaffected by short memory dynamics.  This has the advantage of enabling a two-step 

estimation procedure, which improves the convergence of the likelihood by reducing 

computational burden.  As a consequence, rather than estimate simultaneously all 

model parameters as does Jensen (1998), we first estimate the long memory parameter 

d and then estimate the short memory ARMA parameters (φ,θ) using the correctly 

fractionally differenced data.  Once the short memory parameters are estimated, their 

Information matrix can be used to obtain the correct standard errors for the long 

memory parameter d and these are presented in Table 3.3 and 3.4. 

 

Fractional differencing is similar to taking differences of a dataset that is originally in 

levels, as is frequently done with non-stationary time series to enable hypothesis 

testing.  The main difference is that fractional differencing must be computed 

numerically.  To fractionally difference the time series data, the following binomial 

formula due to Hosking (1981, 1984) is used:  

 

 
1

( )

( 1) ( )

k
d

t t j
j

j d
Y Y

j d −
=

Γ −∆ =
Γ + Γ −∑  (3.9) 

 

Since working with Gamma functions is unwieldy, Stirling’s approximation is used to 

simplify computations (Abramowitz and Stegun 1972, p. 257): 

 

 1( )
lim (1 ( ))

( ) k

k
k O k

k
α βα

β
− −

→∞

Γ + = +
Γ +

 (3.10) 
 

A fast numerical solution to this approximation is to use the Gauss hypergeometric 

function, which can be implemented in the statistical analysis language R (Reisen 

1999; Fraley et al. 2006): 
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1
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1
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 (3.11) 

 

Once the properly fractionally differenced data are obtained, a standard ARMA model 

is fitted by exact maximum likelihood (e.g. Hamilton 1994, pp. 132-133) in a state-

space framework using the Kalman filter and assuming Gaussian innovations.  Though 

it is not explored in this chapter, it would be straightforward to fit instead a GARCH 

model to the fractionally differenced data which may be more appropriate to describe 

a volatility variable.  For data that are integrated of order d<0.5, the underlying 

process is stationary while it is non-stationary when the data are integrated of order 

d≥0.5.  The differenced data is found to be stationary based on an appropriate ADF-

GLS test at the 1% level of significance (Elliott, Rothemberg and Stock 1996). 

 

Model selection of ARMA parameters is based on pairwise Likelihood Ratio tests 

between a larger unrestricted model and a smaller restricted model, always using the 

1% level of significance.  The idea is to begin with a very large number of AR and 

MA lags and using LR tests reduce the number of lags until the tests suggest we have 

reached a parsimonious representation of the data.  For most commodities, the 

resulting model contains three or four lags for both the AR and MA terms.  Akaike 

and Schwartz Information Criteria are computed but these are generally less reliable 

because they have been found to over-parameterize the model. 

 

3.10 Exact Wavelet Maximum Likelihood Estimates of Long and Short Memory 

Results of the wavelet ML long memory estimation are presented in Tables 3.3 and 

3.4.  For each commodity futures time series are included the long memory parameter 

estimate with both naïve and correct standard errors, the AR and MA short memory 
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parameter coefficient estimates with their White covariance robust standard errors, as 

well as five test results and the interpretation whether long memory is true or spurious. 

 

The estimated long memory parameter d is 0.309 for live cattle, 0.320 for lean hogs, 

0.321 for soybeans, 0.304 for corn, 0.431 for wheat, 0.436 for canola, 0.258 for coffee, 

0.271 for cocoa, 0.290 for cotton, 0.194 for orange juice, and 0.279 for sugar #11.  

Since H=0.5 + d/2 this implies the Hurst coefficient for these commodities varies 

between 0.597 and 0.718, all of which suggest significant persistence.  To control for 

the “day of the week effect”, the analysis is repeated for corn futures using only 

Wednesday observations.  Estimation results do not differ substantially.  

 

Two sets of standard errors are presented in Tables 3.3 and 3.4.  The naïve standard 

errors assume are computed under the (usually mistaken) assumption that short 

memory parameters are either zero or have no effect on long memory.  They are 

identical for all commodities because they depend only on the number of observations, 

which is 4096 in all cases.  The correct standard errors are computed from the 

complete Information matrix which accounts for the bias caused by short memory 

parameters (Tanaka 1999).  The correct standard errors for the fractional difference 

parameter d are hardly affected by the presence short memory (ARMA) terms.  For 

example, the correct standard error for the long memory parameter in soybean futures 

price volatility is 0.0187, while the naïve standard error is 0.0155. 

 

Five test results are presented for each commodity futures time series.  The theory and 

intuition behind each test is presented in the following section.  As expected, the Wald 

test rejects the null of d=0 for all commodities but cannot distinguish between true and 

spurious long memory.  The second test is also Wald but accounts for the bias caused 
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by short memory.  Again, the test rejects the null of d=0 for all commodities which 

suggests the appearance of long memory is not caused by the bias due to short 

memory.  The third and fourth tests are standard KPSS and Phillips-Perron tests 

applied to the fractionally differenced data and as suggested by Shimotsu (2006) are 

very useful taken together.  As explained in the previous section, for long memory to 

be true, we must fail to reject the KPSS null hypothesis (d=0) and reject the Phillips-

Perron null hypothesis (d=1).  The fifth test is a Hausman specification-type test 

suggested by Ohanission, Russell and Tsay (2005) with a null of true long memory.   

 

3.11 Testing for Spurious Long Memory 

The literature on testing between unit roots (or long memory) and structural breaks or 

level shifts is vast (Banerjee and Urga 2005; Perron 2006).  We consider two simple 

but effective tests by Shimotsu (2006) and by Ohanissian, Russell and Tsay (2004).   

 

Shimotsu (2006) suggests three useful tests based on the time aggregation invariance 

property of true long memory processes shown by Chambers (1998).  The test selected 

for this chapter consists of fractionally differencing the data (using a robust estimate of 

d) and then subjecting these tests to the well-known KPSS test for a null of stationarity 

and Phillips-Perron test for a null of non-stationarity (unit root).   

 

Three alternative data generating processes that are known to generate spurious long 

memory are considered: (i) a mean plus noise process, (ii) Engle and Smith’s (1999) 

stochastic permanent break model, and (iii) a Markov-switching model.   
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Table 3.3: Log-range volatility ARFIMA (p,d,q) model estimates, standard errors and 
hypothesis test results, for CME, CBOT, KCBOT and WCE commodities 

Commodity 
futures 
contract 

CBOT  
corn 

CBOT 
soybeans 

CME  
lean 
hogs 

CME  
live 

cattle 

KCBOT 
wheat 

WCE 
canola 

Long 
memory d 

0.304 0.321 0.320 0.309 0.431 0.436 

Correct 
standard 
error for d 

0.0187 0.0187 0.0187 0.0187 0.0188 0.0186 

Naïve 
standard 
error for d 

0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 

Intercept <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
AR1 -0.002 

(0.202) 
0.409  

(0.111) 
0.148 

 (0.176) 
0.767 

 (0.073) 
0.564 

 (0.036) 
-0.630  
(0.062) 

AR2 0.634 
 (0.153) 

-0.014  
(0.126) 

-0.455  
(0.219) 

0.918 
 (0.087) 

0.083 
 (0.021) 

0.336 
 (0.056) 

AR3 0.190  
(0.151) 

0.649  
(0.125) 

-0.236  
(0.104) 

-0.65 
 (0.059) 

  

AR4 0.093  
(0.028) 

-0.125  
(0.065) 

0.536  
(0.13) 

-0.063  
(0.024) 

  

AR5   0.042  
(0.228) 

   

AR6   0.615 
 (0.126) 

   

AR7   0.140 
 (0.018) 

   

MA1 -0.146  
(0.203) 

-0.631  
(0.109) 

-0.265  
(0.176) 

-0.931 
 (0.07) 

-0.834  
(0.032) 

0.392 
 (0.056) 

MA2 -0.661  
(0.169) 

0.09 
 (0.136) 

0.463 
 (0.239) 

-0.805  
(0.094) 

 -0.539  
(0.048) 

MA3 -0.073  
(0.015) 

-0.682  
(0.130) 

0.204 
 (0.120) 

0.774 
 (0.067) 

  

MA4  0.341 
 (0.07) 

-0.531  
(0.134) 

   

MA5   0.044 
 (0.244) 

   

MA6   -0.598  
(0.148) 

   

Seasonal (sinusoidal) coefficients are very small and not significantly different from zero, they 
are therefore omitted. 

One approach that holds much promise but is not considered here follows the literature 

on continuous-time asset pricing models, which suggests that jump-diffusion models 

(Merton 1980) are more plausible on theoretical grounds than are long memory 

models (e.g. Granger 2003, 2005).  Jump-diffusion models are increasingly used and 

particularly useful to link futures with options-on-futures (see e.g. Koekebakker and 

Lien 2004; Saphores, Khalaf and Pelletier 2002).   
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Table 3.3 (continued). 
Commodity futures 
contract 

CBOT  
corn 

CBOT 
soybeans 

CME  
lean 
hogs 

CME  
live 

cattle 

KCBOT 
wheat 

WCE 
canola 

       
Log-likelihood 14906.4 15144.8 14979.1 16885.3 8112.46 15035.5 
Wald test Ho:d=0, 
model I(d) 

24.95 26.35 26.27 25.36 23.15 35.79 

Wald test Ho: d=0, 
model ARFIMA 
(p,d,q) 

24.86 26.25 26.17 25.27 23.06 35.66 

Shimotsu's adjusted 
KPSS test, Ho: d=0 

0.14* 0.61*** 0.46*** 1.04*** 0.04 0.02 

Shimotsu's Phillips-
Perron Z test, Ho: 
d=1 

-1.46 -0.30 -0.60 0.52 -3.63** -
4.20*** 

Ohanissian-Russell-
Tsay test, Ho: true 
long memory 

4.42** 4.55** 4.06** 3.92** 2.82* 3.10* 

Long memory 
true? 

No(#)
 No No No Yes Yes 

       
       
       
Notes: Critical test values (exact values were computed and used in the analysis but 
approximate values are included here for convenience, source: Shimotsu 2006 Table 2): 
adjusted KPSS test 0.135 (10%), 0.17 (5%), 0.26 (1%) and adjusted Phillips-Perron Z test -
3.09 (10%), -3.36 (5%), -3.90 (1%); and Chi-Square(1) for Ohanissian-Russell-Tsay Wald-
type test 2.706 (10%), 3.841 (5%) and 6.635 (1%). 
(#): Test results for corn futures are weaker: Shimotsu’s test null can only be rejected at the 
10% level of significance.   

 

However, these models are substantially more difficult to work with and hypothesis 

testing is complicated by the presence of nuisance parameters that must be dealt with 

through simulation methods (e.g. Khalaf, Saphores and Bilodeau 2003).  
 

If the true long memory (fractional integration) model and the alternative (e.g. 

Markov-switching) model are nested, with or without ARMA or GARCH short 

memory parameters, Likelihood Ratio tests could be used to evaluate claims of 

spurious long memory.  In the absence of a clear alternative model specification, or if 

the two models are non-nested as is the case here, Shimotsu’s test is appropriate and is 

therefore used.  
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Table 3.4:  Log-range volatility ARFIMA (p,d,q) model estimates, standard errors and 
hypothesis test results, for NYBOT commodities 

Commodity futures 
contract 

NYBOT 
cocoa 

NYBOT 
coffee 

NYBOT 
 FCOJ 

NYBOT 
cotton 

NYBOT 
sugar#11 

Long memory d 0.271 0.258 0.194 0.29 0.279 
Correct standard error 
for d 0.0190 0.0191 0.0192 0.0190 0.0191 
Naïve standard error 
for d 0.0155 0.0155 0.0155 0.0155 0.0155 
Intercept <0.001 <0.001 <0.001 <0.001 <0.001 
AR1 0.624  

(0.145) 
0.001  

(0.110) 
0.308  

(0.541) 
0.337  

(0.033) 
0.529  

(0.073) 
AR2 0.649  

(0.383) 
0.067  

(0.059) 
0.677  

(0.539) 
0.429  

(0.037) 
-0.109  
(0.031) 

AR3 -0.058  
(0.236) 

0.141  
(0.031) 

-0.848 
(0.045) 

0.967  
(0.032) 

 

AR4 -0.367  
(0.172) 

0.365  
(0.032) 

-0.105 
(0.017) 

-0.425  
(0.076) 

 

AR5 
 

0.634  
(0.062)   

 

AR6 
 

-0.526  
(0.113)   

 

AR7      
MA1 -0.717  

(0.158) 
-0.065  
(0.104) 

-0.309  
(0.541) 

-0.442  
(0.031) 

-0.649  
(0.067) 

MA2 -0.611  
(0.400) 

-0.065  
(0.057) 

-0.672  
(0.526) 

-0.412  
(0.037) 

0.104  
(0.031) 

MA3 0.136  
(0.256) 

-0.122  
(0.036) 

0.013  
(0.018) 

0.887  
(0.050) 

-0.970  
(0.032) 

MA4 0.352  
(0.184) 

-0.344  
(0.033)  

0.564  
(0.069) 

 

MA5 
 

-0.572  
(0.058)   

 

MA6 
 

0.592  
(0.104)   

 

Seasonal (sinusoidal) coefficients are very small and not significantly different from zero, they 
are therefore omitted. 

To evaluate the hypothesis of true long memory against unknown forms of spurious 

long memory, adjusted KPSS and Phillips-Perron tests are applied to the fractionally 

differenced and appropriately demeaned data.  Critical test values are provided by 

Shimotsu (2006, Table 2).  Suppose the data generating process appears to be 

fractionally integrated I(d) but is in fact I(1), e.g. a unit root, mean plus noise or 

stochastic break process.  Then taking the dth
 difference will result in a new process 

that is I(1-d) where (1-d)≠0 while we believe it is I(0).   
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Table 3.4 (continued). 
 

Commodity futures 
contract 

NYBOT 
cocoa 

NYBOT 
coffee 

NYBOT 
 FCOJ 

NYBOT 
cotton 

NYBOT 
sugar#11 

      
Log-likelihood 12902.4 11677.9 12427.04 13733.3 11791.5 
Wald test Ho:d=0, 
model I(d) 22.24 21.18 15.92 23.80 22.90 
Wald test Ho: d=0, 
model ARFIMA 
(p,d,q) 22.16 21.10 15.87 23.72 22.82 
Shimotsu's adjusted 
KPSS test, Ho: d=0 0.48*** 0.75*** 0.76*** 0.40*** 0.28*** 
Shimotsu's Phillips-
Perron Z test, Ho: d=1 -0.61 -0.58 -0.61 -0.80 -0.95 
Ohanissian-Russell-
Tsay test, Ho: true 
long memory 3.80* 5.21** 3.91** 4.50** 4.27** 
Long memory true? No No No No No 
      
      
Notes: Critical test values (approximate, source: Shimotsu 2006 Table 2): adjusted KPSS test 
0.135 (10%), 0.17 (5%), 0.26 (1%) and adjusted Phillips-Perron Z test -3.09 (10%), -3.36 (5%), -
3.9 (1%); and Chi-Square(1) for Ohanissian-Russell-Tsay Wald-type test 2.706 (10%), 3.841 
(5%) and 6.635 (1%). 

 

The KPSS test will correctly reject the null that this new, fractionally differenced 

process is I(0) but the Phillips-Perron test, which has low power, will fail to reject the 

null that the new process is I(1).  We therefore learn that the process is not true long 

memory.  If the process is true long memory I(d), then the fractionally differenced 

process will be I(0), the KPSS test will correctly fail to reject its null of I(0) and the 

Phillips-Perron will also correctly reject its null of I(1).  We then confirm the process 

is true long memory.   

 

The results, presented in Table 3.3 and 3.4, are summarized as follows.  There is 

strong evidence that long memory is only true for two out of eleven commodities, 

namely wheat and canola futures.  There is strong evidence of spurious long memory 

for eight commodities and weaker but reasonable evidence for corn futures.  For most 

commodities, therefore, the results suggest the data are better explained by a short 
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memory but nearly non-stationary model such as Engle and Smith’s (1999) stochastic 

break process or a Markov-switching process.   

 

Ohanissian, Russell and Tsay (2005) suggest a simple test of spurious long memory 

that is based on Hausman’s (1978) result that an efficient estimator must have zero 

asymptotic covariance with any other consistent, asymptotically normal estimator.  

Under the null of true long memory, the covariance of two estimates of long memory 

for the same data but aggregated two different ways will asymptotically equal the 

variance of the long memory estimator for the less-aggregated data.   

 

The test is however limited because it relies on the GPH long memory estimator, 

which as explained earlier, is markedly inferior to wavelet and Whittle-type 

estimators.  Moreover, the Ohanissian et al. test is best suited for large datasets such as 

ultra high-frequency financial data (“tick” observations), and for optimal size and 

power requires a large number of aggregation levels is high.  This test has a Chi-

Squared(M) asymptotic distribution where M is the number of aggregation levels.  

 

In this case, the less aggregated data are the daily observations, and each aggregation 

level m results in a number of ordinates l(m) generally chosen to be (n/m)1/2 then the 

test asymptotically converges to: 

 

 ( )( )( ) ( ) ( )ˆ ˆ ˆlim 4 ( , ) ( ) (1)ji i i
mm m m

n
l Cov d d Var d o

→∞
− =  (3.12) 

 

For our data, n=4096, m=8, l(m)=22.627.  Computation of the test statistic is detailed 

in Ohanissian et al. (2005).   
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The results in Table 3.3 and 3.4 imply rejection of the null of true long memory for all 

commodities at the 5% level of significance except for wheat and canola as well as 

rejection of the null at the 10% level for cocoa.  These test results agree with the 

Shimotsu test approach and provide strong evidence that Kansas City wheat and 

Winnipeg canola futures volatility are characterized by true long memory, while for all 

other commodities the long memory is spurious. 

 

In conclusion, since the wavelet-based estimator is robust to the presence of short 

memory dynamics, findings of spurious memory for most of the commodities suggests 

other dynamics must be responsible for the illusion of persistence in volatility.  One 

leading candidate addressed in the next section is a Markov-switching model that 

generates spurious long memory. 

 

3.12 An Alternative Model of Futures Price Volatility 

The evidence only weakly supports rejecting the true long memory model for the 

CBOT corn futures contract.  We consider estimating for these data an alternative 

model, a Markov-switching process that has been found to generate spurious long 

memory (see e.g. Hamilton 1994; Shimotsu 2006).  The idea is to obtain state-

dependent means, e.g. “low” and “high” volatility states, along with the probabilities 

associated with each state.  To determine whether the true long memory or Markov-

switching model better describes the data, a non-nested test can be constructed 

following Pesaran and Ulloa (2006) and Gourieroux and Monfort (1994).  

 

The model is a simple two-state Markov-switching process augmented by AR and MA 

terms (Hamilton 1990, 1994), defined as follows: φ(L)(Y t –µ) ∼ Ν(ξ0,σ2) under state 0 

and φ(L)(Y t –µ) ∼ Ν(ξ1,σ2) under state 1.  The Markov transition probability matrix 
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determines from one time period to the next what states occur.  Given state 0 at time t, 

the probability of staying in state 0 the next period is defined by p00 which necessarily 

lies between 0 and 1.  It follows that the probability of going from state 0 to state 1 is 

p01 and so forth.  Estimating a two-state Markov-switching model therefore produces 

values for the four transition matrix probabilities as well as the two state means, which 

may be interpreted as “low” and “high” volatility states in our case.   

 

As suggested by Hamilton (1990, 1994), the EM algorithm is used to help the 

likelihood converge (Dempster 1977).  This algorithm will improve the likelihood 

with every step but is not guaranteed to converge to the best estimates (Wornell and 

Oppenheim 1992).  The resulting estimates are state dependent means ξ0=0.0133 and 

ξ1 =0.0355 and a Markovian transition matrix: {p00=0.955, p01=0.045, p10=0.608 and 

p11=0.392}.   

 

This means the daily price volatility process, if in a low volatility state, is more than 

95% likely to remain in this low volatility state, but if in a high volatility state, is 

about 60% likely to switch to the low volatility state.  The ARMA parameters are 

statistically significant and are: φ=(0.676, 0.701, -0.394) and θ=(-0.587, -0.652, 0.327) 

with White covariance robust standard errors: se(φ)=(0.0320, 0.0133, 0.0236) and 

se(θ)=(0.0314, 0.0134, 0.0177).   

 

The difficulty of implementing a non-nested hypothesis test in this context concerns 

how to apply the encompassing principle (Deaton 1982).  That is, since neither model 

can be written as a special case of the other, the test relies on defining a third model 

that will serve as the alternative for two tests, each of which involves only one of the 

two estimated models.  The test is said to be non-informative because if we reject both 



 

73 

nulls or fail to reject both nulls, we still cannot decide which of the two estimated 

models is more plausible.  Construction of this test is left for an extension of this 

work.   

 

3.13 Conclusion 

This chapter investigates one important cause and consequence of bias in commodity 

futures option pricing and contributes to the active literature on the robust estimation 

of long memory in commodity futures price volatility using a novel empirical strategy 

that also enables the computation of efficient standard errors for the long memory 

parameter jointly with the unbiased estimation of short memory parameters.  

 

There is evidence of long memory for all commodity futures contracts in the log-range 

volatility of prices.  The estimates are, however, smaller in magnitude than those 

found in previous research and, based on the evidence from carefully designed tests, 

the results appear to be spurious for all commodity futures except for Kansas City 

Board of Trade wheat and Winnipeg Commodity Exchange canola.  Further support 

for this interpretation comes from results from a wavelet-based semi-parametric 

estimation of long memory.  We find that for all commodities the Hurst parameter H is 

not significantly different from 0.5, which implies that increments of the data 

generating process are consistent with white noise and not long memory (fractional 

white noise).  Although the time series model used is relatively simple, Lordkipandize 

(2004) estimated a much larger, stochastic volatility model of commodity derivative 

prices and concluded that once breaks and seasonality are properly accounted for, the 

effect of long memory is inconsequential. 
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The results are weaker for Chicago Board of Trade corn futures, so a Markov-

switching process that generates spurious long memory is estimated and found to fit 

the data well.  Although standard asymptotic nests cannot be applied, it is suggested a 

non-nested hypothesis test could be constructed to evaluate the null of true long 

memory against regime-switching.   

 

The implication of this chapter’s research is that true long memory is unlikely to be a 

good description of the data generating process underlying agricultural commodity 

futures prices and volatility.  Since spurious long memory is often found, however, 

models of commodity futures should be selected to reproduce the illusion of long 

memory that is observed in the data.  Many such candidate models exist, including 

stochastic break, regime-switching, and stochastic unit root.   

 

Option pricing in agribusiness is therefore unlikely to gain much by using fractional 

Brownian motion and fractional noise as building blocks instead of relying on the 

classic Black-Scholes-Merton model.  The results in this chapter do, however, provide 

support for the jump-diffusion models of option pricing and related econometric 

procedures, for which the volume of research has greatly expanded in recent years. 
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CHAPTER 4 

REVEALING THE IMPACT OF INDEX TRADERS  

ON COMMODITY FUTURES MARKETS  

 

4.1 Introduction  

This chapter presents original results on two timely questions on the relationship 

between trader type heterogeneity and futures price volatility.  First, should the 

Commodity Futures Trading Commission make permanent its pilot project whereby 

positions of Index Traders (defined later in this section) are reported separately from 

other large traders?  Second, has the time horizon of trading (short run or long run) 

changed over the last two decades across commodity markets?  An approximate 

measure of the impact of Index Traders on commodity futures price volatility is 

revealed by estimating the long-run trade volume process using an application of 

wavelet transforms.  Similarly, using wavelet transforms allows us to obtain, for a 

given commodity and time period, the approximate distribution of trade volume across 

time horizons, from which an interpretation of trader types can be made. 

 

The Commodity Futures Trading Commission in Washington D.C. is a federally-

mandated regulatory agency responsible for helping commodity derivatives markets 

run smoothly, free of market cornering attempts and insider trading.  It also produces, 

since 1924, widely read reports on the Commitment of Traders (CoT).  These CoT 

reports, published weekly for a number of years, provide information on the futures 

and options positions of large traders in all markets regulated by the CFTC.   

 

In recent years, the demand for commodity derivatives has substantially increased, as 

commodities are now considered a vital class of assets to help diversity a financial 
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investment portfolio (Gorton and Rouwenhorst 2006).  The recent and growing 

participation by a non-traditional class of large traders, defined by the CFTC as Index 

Traders, explains much of the expansion in commodity derivatives.  Index Traders 

consist of large investment funds such as commodity pools, pension funds and swaps 

dealers that are involved neither in production, delivery or ownership of the 

underlying asset.  The CFTC evaluates that: “On the Chicago exchanges, for example, 

the [Index] funds make up 47 percent of long-term contracts for live hog futures, 40 

percent in wheat, 36 percent in live cattle and 21 percent in corn” (The New York 

Times, January 19, 2007). 

 

In 2006, the CFTC conducted a large-scale survey to learn about the perceptions of 

commodity futures market participants regarding Index Traders.  The outcome was the 

largest number of responses ever for a CFTC survey.  Most respondents were 

concerned that Index Traders (also called index funds) are responsible for increasing 

market volatility, with consequences for price volatility along the distribution chain.  

As of January 2007 and on a two-year pilot basis, the CFTC will publish a 

Supplemental Commitment of Traders report for twelve selected major agricultural 

commodities.  This supplementary report defines and analyzes Index Traders 

separately from Commercials and Non-Commercials.   

 

Two main questions on the relationship between futures trade volume and price 

volatility are asked and answered in this chapter.  First, have Index Traders caused 

greater price volatility through an increased volume of trade?  Second, how has the 

time horizon of commodity futures trading (e.g. short run, long run) changed in the 

last two decades?  The results are made possible by a wavelet transform 

decomposition of the time series data into mutually orthogonal “artificial” time series.  
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Each artificial time series corresponds to the fraction of the original price series that is 

explained by a specific time horizon, for example, weekly variation.  As a 

consequence, we remove variation associated with time horizons smaller than two 

weeks.  The selection of a two-week threshold beneath which all trade volume 

fluctuations are filtered out is arbitrary to some extent but is supported by the available 

empirical evidence (Haigh, Hranaiova and Overdahl 2005).  Indeed, confidential 

CFTC position-level data show that Index Funds seldom engage in short-term trading. 

 

In summary, there are two findings in this chapter.  (1) Index Traders may have caused 

greater price volatility in the only two non-storable commodity futures markets 

considered (live/lean hogs and live cattle contracts), but not in the storable commodity 

markets (grains).  The empirical results may prove timely and of directly relevance to 

the CFTC’s pilot project on Index Traders.  In addition, the methodology may prove 

useful to evaluate the impact of specific trader types in futures markets for which no 

position-level reports are produced or available.  (2) The distribution across time 

horizons of trade volume reveals that storable commodity market participants trade at 

a more distant horizon than do non-storable commodity market participants, and also 

that in recent years intermediate time horizons have gained in importance, which may 

be well explained by the rising participation of Index Traders. 

 

4.2 Index Funds and the Commitment of Traders Report 

Participation in futures markets is traditionally explained in terms of hedging (largely 

commercial) and speculation (largely non-commercial) motives.  It is well understood, 

however, that large commercial institutions are sometimes involved in speculation 

while non-commercials may hedge.  Commitment of Traders reports classify the 

positions of large traders into commercials and non-commercials and are used, for 
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example, by hedgers to evaluate future demand and by speculators to design technical 

trading rules (Park and Irwin 2006, 2007; Roberts 2005).  A technical trader may try to 

assess how long a bullish uptrend will last by looking at how the large noncommercial 

traders bid futures prices forward such that there is a premium over normal carrying 

charges. 

 

The rising importance of Index Traders in commodity markets can be explained by the 

business cycle behavior of commodity prices as an asset class over holding periods of 

one month to five years (Erb and Harvey 2006; Gorton and Rouwenhorst 2006).  

Commodity futures are seen as highly desirable because they are positively correlated 

with inflation (actual and unexpected) and negatively correlated with stock and bond 

returns.  A report by Ibbotson Associates (2006), for example, finds that “commodities 

have low correlations to traditional stocks and bonds, produce high returns, hedge 

against inflation, and provide diversification through superior returns when they are 

needed most” (p.iii).  

 

Index Traders are not allowed to physically own the underlying commodities (CFTC 

2007).  The Index Traders category contains swap dealers, who hold long futures 

positions to hedge short OTC commodity index risk against long positions taken by 

institutional traders such as pension funds.  Metals and energy commodities are not 

included because there exist for these many alternative exchanges that are not 

regulated by the CFTC, such as Over-the-Counter markets and derivative instruments.  

It would be difficult to get meaningful results from their inclusion in the pilot project.   

 

Before carrying out its pilot project, the CFTC collected thousands of survey 

responses on questions about the usefulness of its weekly reports and perceptions 
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about the impact of Index Traders.  To explain why most market participants are 

concerned by the impact of Index Traders, consider the following example.  A farmer 

wants to lock in a crop price using a futures hedge.  He uses the CoT reports to assess 

expected consumer demand based on commercial positions.  If commercials increase 

their long futures positions, the farmer believes it reflects sales of cash commodities 

and suggests a strong demand for cash grain.  In that case the farmer postpones the 

short hedge in anticipation of a bullish market.  But suppose instead the increased long 

open interest reflects swap and pension fund institutional trader positions.  Then the 

farmer waits but finds that demand does not increase, so he must form a hedge with a 

less favorable basis.  Index Traders may therefore lead market participants to wrongly 

infer greater export activity and end use buys.   

 

A second concern is the risk of a sudden and large exit of the (mainly long) index fund 

positions in commodity futures if one day in the future commodities cease to be as 

desirable as asset class as they are today.  Such a risk is, however, unlikely (Gorton 

and Rouwenhorst 2006). 

 

In contrast, the International Swaps and Derivatives Association opposed the plan to 

create a new reportable class for Index Traders.  It argued that Index Trader long 

positions do not increase volatility because they are passive, predictable and instead 

contribute to increased liquidity.  On the contrary, it claimed, disclosing Index Trader 

positions would encourage speculation and increase volatility, because rolling index 

positions are recurring and can be anticipated.   

 

The empirical evidence tends to support the Swaps and Derivatives Association’s 

claims that Index Traders do not increase market volatility.  For example, Chatrath and 
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Song (1999) find that both the number and the commitment of speculators are 

negatively correlated with the underlying cash market volatility.  On the contrary, it is 

hedger positions that are found to be positively correlated with market volatility.  

Irwin and Yoshimaru (1999) find that managed commodity pools do not appear to 

contribute to market volatility. 

 

Most studies, of necessity, use aggregated data from the CFTC’s weekly Commitment 

of Traders reports.  Recent work by Haigh, Hranaiova and Overdahl (2005, 2007) and 

by Haigh, Harris, Overdahl and Robe (2007), however, use confidential position data 

at the level of the participants and examine the direction of causal relationships to 

evaluate the hypothesis that price changes are caused by large trader speculation (i.e. 

changes in futures positions).  Their results for oil and natural gas futures show that, 

on the contrary, large traders provide liquidity for the markets and change positions 

less often than do other traders.   

 

4.3 Futures Market Volatility and the Long-Run Volume of Trade 

The distribution of trader type heterogeneity and whether trading causes volatility has 

attracted a large volume of research (French and Roll 1986).  At least since Friedman 

(1953), it has been suggested that while informed traders should reduce volatility, 

uninformed traders are likely to increase volatility.  Avramov, Chordia and Goyal 

(2006) show, for example, that a model with both informed (contrarian) traders and 

uninformed (herding) traders explains well observed empirical patterns of volatility, 

including asymmetry, at daily and lower frequencies and is far more robust to model 

specification issues than are alternative explanations such as the leverage effect (Black 

1976) or time-varying expected returns.   
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A useful approach is to consider how trade volume affects volatility, because a 

trader’s level of information is proportional to the size of his or her trades (Easley and 

O’Hara 1987).  Copeland (1976) suggested the role of volume as an information 

arrival process and proposed a model of sequential information.  Blume, Easley and 

O’Hara (1994) develop a model of the informational role of volume based on differing 

qualities of signals.   

 

It has long been a known stylized fact that “a small (large) volume is usually 

accompanied by a price fall (increase)” (Ying 1966).  At least since Godfrey, Granger 

and Morgenstern (1964), researchers have examined how trade volume contains 

information on the unknown process that drives asset (e.g. futures) prices.  The 

relationship of volume with different functions of price has been studied, including 

price changes, absolute or squared price changes, or the direction of price changes.  

Relatively little work has been done, however, to better understand the trade volume 

process itself (Lo and Wang 2001).  Yet the relationship between trade volume and 

price volatility remains an active area of research, as for example, Pan and Poteshman 

(2006) show that option pricing volume contains useful information about future stock 

prices.   

 

In an early survey of the literature, Karpoff (1987) gives four reasons for the 

importance of the price-volume relation.  These are: to learn about the information 

structure of financial markets, to improve the quality of event studies that use both 

price and volume data, to better estimate the empirical joint distribution of asset 

prices, and lastly to examine implications for futures prices.  Most of the early studies 

characterized volume as an exogenous variable.  Lamoureux and Lastrapes (1990), for 

example, find that a volume variable is significant when included in a GARCH model 
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of price volatility.  Much subsequent work has gone into modeling the endogenous, 

joint determination of volume and price changes (Cornell 1981; Foster and 

Visnawathan 1995; Grammatikos and Saunders 1986; Lamoureux and Lastrapes 

1994).  

 

The mixture of distributions hypothesis has been proposed for price returns and 

volume and has led to a large literature on the joint process estimation (Clark 1973; 

Epps and Epps 1976; Tauchen and Pitts 1983).  Andersen (1996) finds that volatility 

persistence is substantially reduced in a model where volume and returns are jointly 

estimated.  Bollerslev and Jubinski (1999) find that the volume-volatility relationship 

associated with a “news arrival” process is characterized by long memory and in 

particular, that the hyperbolic rate of decay described by long memory is the same for 

both variables.  Wang and Yau (2000) examine the two most actively traded financial 

and metals futures contracts and estimate a three-equation structural model of volume, 

price volatility and bid-ask spread (computed from CFTC intraday data adjusted for 

microstructure effects). 

 

4.4 Data, Estimation and Identification Strategies 

This chapter makes two contributions to the literature on trader heterogeneity, price 

volatility and the volume of trade.  First, the relationship between trader type and time 

horizon is used to help answer the question whether the increasing participation of 

large Index Traders in commodity futures markets has increased the volatility of 

futures prices through increased long-run trade volume.  A joint model of trade 

volume and price volatility is considered, with contemporaneous and lagged volume 

and volatility variables as the regressors.  To remove short-run futures trade volume 

variation from the data, a Discrete Wavelet Transform is applied to the data, which 
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produces wavelet coefficients defined over time and timescale (time horizon), as 

described in Chapter 2 (e.g. section 2.7-2.8).  All wavelet coefficients associated with 

time horizons of two weeks and less are set to 0, then the appropriate Inverse Discrete 

Wavelet Transform is applied to the wavelet coefficients.  This results in a new trade 

volume time series of the same length as the original data, but which excludes all 

variation caused by the short run (i.e., time horizons of two weeks or less).   

 

Second, to determine whether commodity futures trading has focused on the short-run 

or the long-run over the years, a wavelet transform-based method is applied to trade 

volume data for a dozen leading agricultural commodities.  This approach provides a 

revealed measure of the time horizon of trading and, indirectly, an aggregate measure 

of trader heterogeneity and proportions of trader types in different markets over time.  

Lastly, to evaluate whether the volatility of trade volume has experienced structural 

breaks, two tests are used.  First, a wavelet-based Monte Carlo is conducted to detect 

change-points over the entire time period and recover both the precise date of the 

break and the time horizon at which it occurred.  This test has the advantage of being 

robust to the presence of long memory, which appears to characterize trade volume 

time series data (Lobato and Velasco 2000).  Second, a sup-Wald type test in the 

Andrews-Ploberger-Hansen class is applied to a wavelet-based linear regression of 

daily volume differences over variations due to different time horizons.  This test 

provides direct evidence of changes in the influence of specific time horizons.   

 

The data consist of business daily observations on settlement price and trade volume 

(total from all maturities) from the Chicago Board of Trade soybeans and corn futures 

contracts, Kansas City Board of Trade wheat futures contracts, Winnipeg Commodity 

Exchange canola futures contracts, and Chicago Mercantile Exchange live cattle and 
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lean hogs futures contracts.  This allows us to consider differences between storable 

(grain) and non-storable (meat) commodities.  Volume data for contracts traded at the 

Chicago and Kansas City Boards of Trade (corn, soybeans, wheat) are adjusted for 

consistency because on January 1st 1998, the reported measurement unit changed 

from 1000 bushels to one contract (5000 bushels).  

 

Commodities may be categorized as non-storable, storable with large inventories 

(“overhangs”) and storable with small inventories.  These categories also lead to 

testable predictions of futures forecasting accuracy.  Futures provide an unbiased 

forecasting measure for non-storable commodities (as well as other instruments such 

as Federal Funds).  For storable commodities with large inventories, futures prices 

incorporate a cost of carry (storage plus interest), and perhaps a convenience yield 

(this need not be the case, however, see e.g., Brennan, Williams and Wright 1997).  

Storable commodities with small inventories can be described by two cases.  If futures 

prices are higher than spot prices (“contango”) then the analysis follows the large-

inventory case.  But if futures prices are lower than spot prices (“backwardation”), we 

can use apply the analysis as if it were non-storable. 

 

Figure 4.1 shows the evolution of soybean futures trade volume over the time period 

1988-2004.  A recurring pattern can be identified, where volume rises and falls over 

the lifetime of a single maturity.  Figure 4.2 compares actual with wavelet-filtered 

trade volume over a short time period, 3/23/1988 to 5/12/1988, also for the soybeans 

futures contract.  The wavelet-filtered trade volume removes all variation that is 

explained by time horizons of less than two weeks.  There is a visible difference 

between the actual and wavelet-filtered data. 
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Figure 4.1: Daily trade volume, Chicago Board of Trade soybean futures 2/1988-

1/2005.   

 



 

86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Actual and wavelet-filtered (i.e., no short run variation) daily trade 

volume, Chicago Board of Trade soybean futures, 3/23/1988 to 5/12/1988. 
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Instead of the commonly-used but noisy logreturn volatility measure, a daily log-range 

volatility measure is computed following Alizadeh, Brandt and Diebold (2002) and 

Yang and Zhang (2002): 

 

 th ln(sup ( , ) inf ( , ))F t T F t T= −  (4.1) 
 

The daily log-range measure of volatility is asymptotically superior to absolute or 

squared logreturns and appropriate given the large number of observations used.  The 

measure of volume used is the natural logarithm of daily total volume for all 

maturities traded on a given day, expressed in thousands of contracts (each contract 

equals 5000 bushels).  

 

4.5 Endogenously Biased Model and Hausman-Wu Test 

Three estimation procedures are applied to data for all commodities under scrutiny to 

determine whether trade volume explains price volatility, and specifically whether 

Index Traders have an adverse influence.  The first approach is endogenously biased 

and used to provide benchmark estimates.  The second and third are unbiased, and the 

third moreover uses wavelet filtering to focus only on the likely impact of Index 

Traders.   

 

To present the different approaches, we begin with Chicago Board of Trade corn 

futures data, and provide the results for the other commodities in the following 

section.  The first model specification is an autoregressive moving average with 

exogenous term (ARMAX) estimated by maximum likelihood: 

 

 ( ) ( ) lnt t tL h L Vφ θ ε= +  (4.2) 
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where the price volatility is defined as the daily log range ht , φ(L) and θ(L) are the AR 

and MA lag polynomials, and ln(Vt) is the natural logarithm of the daily trade volume 

time series.  ARMA lag length is selected on the basis of Likelihood Ratio tests, 

comparing pairwise a larger unrestricted model with a smaller restricted model and 

considering one to twenty-one lags (i.e., one month in business days).  Akaike and 

Schwarz Information Criteria are also computed for consistency.   

 

Similarly, we can estimate an ARMAX model of the effect of volatility on volume: 

 

 ( ) ln ( )t t tL V L hφ θ ε= +  (4.3) 
 

To improve the computational convergence of the likelihood function, volatility ht is 

expressed as one hundred times the log-range and volume Vt is expressed in thousands 

of contracts, where each contract is, e.g., 5000 bushels of corn.  Taking natural 

logarithms of all variables, in addition to making variances more symmetrical, also 

conveniently allows the estimated coefficients to be interpreted as elasticities.  For 

both the price and volume data, the first and last ten observations are deleted to avoid 

possible boundary effects caused by the data transformation. 

 

Before estimating the ARMAX model, diagnostic tests are computed to establish the 

stationarity of the sample data.  Since unit root tests are well-known to have low 

power (Cochrane 1987) and as the existence of both a time trend (deterministic) and a 

unit root (stochastic) is unlikely in economic time series (Perron 1988), a two-step test 

procedure is used.  First is computed a unit root test assuming no time trend 

(Augmented Dickey-Fuller and Phillips-Perron).  If we fail to reject the null of a unit 

root, we compute a t-test of the regression of the differenced series on an intercept.  
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This evaluates the presence of a time trend (drift term).  If we reject the null of a unit 

root, we are confident the data are stationary.  We can evaluate the presence of a 

deterministic trend by computing a t-test of the data in levels on a time trend vector 

t=(1, 2, 3, 4, …, T}.  The ADF test on the trade volume data a value of -3.11, which 

falls between the 1% and 5% critical values of -3.46 and -2.87.  We reject the null 

hypothesis of a unit root at the 5% level of significance. 

 

Estimates using CBOT corn futures data for the baseline equations and obtained 

independently are: 

 

 t 1 1h 0.79 0.74ln 0.376ln 0.422  t t tV V h− −= − + − +  (4.4) 

 t 1 2lnV 1.167 0.298 0.385ln 0.243ln  t t th V V− −= + + +  (4.5) 
 

The results suggest that daily price volatility is serially correlated and affected 

positively by contemporaneous volume but negatively by lagged volume.  All 

coefficient estimates are individually statistically significant at the 1% level.  Standard 

errors are provided in Table 4.1.  The adjusted R2 are 0.428 for the volatility equation 

and 0.606 for the volume equation.  The ARMAX values are presented as naïve 

baseline estimates against which are compared the unbiased Two Stage Least Squares 

estimates in the next section.  Standard errors are computed using a Newey-West 

heteroskedasticity and autocorrelation consistent (HAC) covariance. 

 

Volatility dynamics are better captured by the ARCH-GARCH family of models 

(Engle 1982; Bollerslev 1986).  A large number of studies use GARCH models to 

describe the volume-price volatility relationship, based on the mixture of distributions 

hypothesis that provides an explanation why price returns are heteroskedastic 
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(Tauchen and Pitts 1983; Lamoureux and Lastrapes 1990).  Nelson (1992) shows that 

even if significantly mis-specified, GARCH models may provide an acceptable fit to 

the data and to short-term forecasts.  Both GARCH and ARMAX estimates are, 

however, biased in this model because theory suggests the volatility and volume 

variables are jointly determined and therefore endogenous to each other.  Moreover, 

including volume as an exogenous variable in a GARCH model is likely to introduce a 

simultaneity bias.  

 

To verify empirically the endogeneity bias between contemporaneous volume and 

price volatility, a Hausman-Wu test is computed for both the volume and the volatility 

equations.  The test statistic has a null hypothesis of no correlation between the 

potentially endogenous regressor and the error term and is distributed as F with 

degrees of freedom being the number of restrictions and the adjusted number of 

observations.  For trade volume, the statistic of 188.28 is much larger than the value of 

the F test statistic which is 6.63.  Likewise, for price volatility, the statistic of 27.89 is 

larger than 6.63.  Therefore, the null hypothesis of no endogeneity bias is rejected for 

both equations and we may conclude that joint estimation is preferable. 

 

4.6 Full Sample Unbiased Structural Model Estimates 

To solve the problem of simultaneity bias and the endogeneity of volume and 

volatility we use once-lagged volume instead of contemporaneous volume.  This 

model better describes information arrival flows in the Copeland (1976) sense rather 

than the actual price-volume relationship.  A Generalized Method of Moments 

framework such as the one used by Foster (1995) for oil futures contracts is better 

suited for this problem to recover the structural model parameters. 
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The structural model is the following: 

 

 t 0 1 2 1 3 2 1,lnV  = ln lnt t t th V Vα α α α ν− −+ + + +  (4.6) 

 0 1 2 1 3 1 2,ln lnt t t t th V V hγ γ γ γ ν− −= + + + +  (4.7) 

 

where lnVt is the natural logarithm of trade volume (normalized as thousands of 

contracts), ht is price volatility measured as the natural logarithm of the daily price 

range, and ν1,t and ν2,t are assumed to be mean zero white noise innovations.  In this 

structural model volume and volatility are endogenous and OLS estimates are 

inconsistent.  The instruments needed for GMM estimation are lags of both variables.  

As there is one excluded variable in each equation, one lag may be used in each 

equation and then the model is exactly identified such that unique, consistent estimates 

of all parameters can be recovered.   

 

The moment conditions reduce to a 2SLS problem (see Hamilton 1994, pp. 233-247 

for time series 2SLS estimation) where we solve the reduced form equations and 

recover the structural parameters, which are then compared to the biased, benchmark 

OLS estimates.  A greater number of instruments (GMM moment conditions) could be 

used to provide over-identifying restrictions.  The simulation results of Tauchen 

(1986) and Kocherlakota (1990) show, however, that a parsimonious selection of 

instruments is often preferable, particularly in a time series context where lagged 

variables provide a very large number of potential instruments that are likely to be 

weak.  The potential weakness of instruments is evaluated using the Hausman-Wu 

specification test.  
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By adding two instruments, the twice-lagged volatility in the volume structural 

equation and the twice-lagged volume in the volatility structural equation, the reduced 

form model has a total of ten equations in ten coefficients, equivalently, just 

identification.  In this case, the 2SLS estimator is simply the Instrumental Variables 

(IV) estimator, which is consistent but does not provide heteroskedasticity and 

autocorrelation consistent (HAC) standard errors.  The GMM literature suggests 

various HAC standard errors, including the Newey-West (1987, 1991) correction 

which we use.  The simple decision rule for lag truncation is to choose a number of 

lags equal to 0.45 T1/3 where T is the number of time series observations.  

Alternatively, full-information estimation methods such as 3SLS, GMM-3SLS or 

simultaneous equations FIML may be considered to estimate the joint system of 

equations (see Hamilton 1994, pp. 247-253).  Such methods are asymptotically 

superior but there is, in limited size samples, a risk of a specification error propagating 

to the entire system of equations.  Monte Carlo evidence suggests it is not clear 

whether one approach is preferable to the other (Judge et al. 1985, pp. 646-53).   

 

Structural model coefficients can be estimated using the IV estimator as follows.  Let y 

be the dependent variable, let X be the matrix of original regressors including the 

endogenous variable and let Z be the matrix of instruments, excluding the pre-

determined variables but including other original regressors as well as additional lags 

as necessary to attain exact identification.  

 

 1 1 1
2SLS ( ' ( ' ) ' ) ' ( ' ) 'X Z Z Z Z X X Z Z Z Z yθ − − −=  (4.8) 

 

The 2SLS estimation procedure yields the following results for the original structural 

equation (not including instruments) for the CBOT corn futures data: 
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 1 11.06 0.97 ln 0.55 0.447t t t th V V h− −= − + − +  (4.9) 

 t 1 2lnV 0.879 0.163 0.487 ln 0.347 lnt t th V V− −= − + +  (4.10) 

 

For the volatility equation, the results are qualitatively the same as for the biased 

model.  All variables are individually statistically significant on the basis of t-tests.  

Standard errors are provided in Table 4.1.  The adjusted R2 is 0.406 for the volatility 

equation and 0.376 for the volume equation.  Price volatility is positively associated 

with contemporaneous volume, but negatively with lagged volume, and also that 

volatility is positively serially correlated as expected.  Trade volume is positively 

serially correlated, but negatively associated with contemporaneous volatility. 

 

4.7 Wavelet-Filtered Sample Unbiased Structural Model Estimates 

In this section, the approximate impact of Index Traders on price volatility is 

estimated using an indirect, revealed methodology.  2SLS estimates are obtained for 

the structural model using wavelet-filtered data that excludes variation associated with 

time horizons of less than one month.  As explained earlier, research by the CFTC has 

found that Index Traders do not engage in short-run trading and selecting a one-month 

time horizon as threshold is most likely conservative.   

 

As it is not meaningful to compare the statistical significance of two coefficient 

estimates (e.g. Gelman 2006), a qualitative interpretation is provided in this section 

and appropriate hypothesis tests are presented in a later section. 

  

Estimation results using the 2SLS method and wavelet-filtered data Chicago Board of 

Trade corn futures are then: 
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 1 10.756 0.136ln 0.525ln 0.308t t t th V V h− −= − − − +  (4.11) 

 t 1 2lnV 0.0559 0.0061 1.926ln 0.941lnt t th V V− −= − + −  (4.12) 

 

Using wavelet-filtered data, price volatility is negatively associated with both 

contemporaneous and lagged volume (long-term horizon).  All coefficients are 

individually statistically significant except for Vt in the ht equation (3.23).  Standard 

errors are provided in Table 4.1. 

 
Table 4.1: Volume-Price Volatility Model for Chicago Board of Trade corn futures 
contract: biased (individual) model estimates, full-sample 2SLS estimates and 
wavelet-filtered (no short run variation in volume) estimates 

Corn futures    
Volatility equation Biased individual 

estimates 
2SLS, full sample 2SLS, wavelet-

filtered data 
Intercept -0.79 -1.06 -0.756 
Std error (0.089) (0.069) (0.074) 
volume(t) 0.74 0.97 -0.136 
Std error (0.024) (0.0994) (0.17) 

volume(t-1) -0.376 -0.55 -0.525 
Std error (0.0287) (0.0548) (0.171) 

volatility(t-1) 0.422 0.447 0.308 
Std error (0.0328) (0.0164) (0.015) 

    
Volume equation Biased individual 

estimates 
2SLS, full sample 2SLS, wavelet-

filtered data 
Intercept 1.167 0.879 0.0559 
Std error (0.07) (0.0374) (0.0032) 

volatility(t) 0.298 -0.163 0.0061 
Std error (0.0166) (0.0593) (0.0017) 

volume(t-1) 0.385 0.487 1.926 
Std error (0.014) (0.02) (0.0055) 

volume(t-2) 0.243 0.347 -0.941 
Std error (0.014) (0.02) (0.0056) 

    
Notes: All coefficients are statistically significant except volume(t) in the wavelet-
filtered 2SLS volatility equation. Standard errors are computed using the Newey-West 
HAC covariance.  
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4.8 Estimation Results for Other Commodities 

A similar three-part analysis, the results of which are presented in Tables 4.2 through 

4.6, is conducted for four other commodities: soybeans, canola, lean hogs and live 

cattle.  The estimation procedures are the biased, independent ARMAX model, the 

2SLS joint model and the 2SLS joint model using wavelet-filtered data.  The data used 

for the analysis consists of daily observations from 2/1988 to 1/2005 with the 

exception of Chicago Board of Trade soybean futures, for which the data used run 

from 4/19/1990 to 7/21/2006.   

 

Results for soybeans, presented in Table 4.2, are generally similar to the results from 

corn futures data.  Indeed, while correcting for the endogeneity bias does not change 

the sign of the volume-volatility relationship, wavelet-filtering does.  The 2SLS 

estimates using wavelet-filtered data suggest long-run trade volume reduces price 

volatility, although the estimate for contemporaneous volume is not significantly 

different from zero.   

 

To consider a major commodity that is not under the CFTC’s jurisdiction, and for 

which there is less position-level data available, we include canola futures traded at 

the Winnipeg Commodity Exchange in Canada.  The results are presented in Table 4.3 

and both ARMAX and full sample 2SLS estimates are qualitatively similar to the 

results for corn and soybeans futures, namely that contemporaneous volume has a 

positive effect on volatility but lagged volume has a negative effect and moreover that 

correcting for the endogeneity bias does not change the signs in the structural 

equation.  However, 2SLS results from using wavelet-filtered data suggest both the 

present and lagged volume variables have no effect on volatility.  Indeed, neither point 

estimate is significantly different from zero on the basis of a t-test.   
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The Chicago Mercantile Exchange hogs contract changed on January 1st 1998 from a 

“live” (animal) specification to a “lean” (carcass) one.  To avoid spurious effects from 

this structural change, only data beginning in 1998 are used for this analysis.  Indeed, 

Carter and Mohapatra (2006) find that the new hogs contract has led to a substantial 

increase in trade volume that is plausibly independent of the role played by Index 

Traders.  Results for Chicago Mercantile Exchange lean hogs are presented in Table 

4.4 and show that the effect of present and lagged volume on volatility is qualitatively 

the same and always significant at the 1% level whether we use biased, correct, or 

wavelet-filtered correct estimates.  In all cases, contemporaneous volume has a 

positive effect and lagged volume has a negative effect. 

 

Results for Chicago Mercantile Exchange live cattle futures are presented in Table 4.5.  

Once again, correcting for the endogeneity bias does not change the sign of the current 

and lagged volume coefficients, respectively positive and negative.  Estimates using 

only wavelet-filtered data suggest, however, that both current and lagged volume have 

a positive effect on price volatility, though the coefficient for lagged volume is not 

significantly different from zero.   

 

4.8 Do Index Traders Increase Futures Price Volatility? 

To summarize the results obtained in the first part of this chapter: we first provide 

benchmark estimates for a simple futures volume-price volatility model without 

accounting for the endogeneity bias, using an ARMAX maximum likelihood approach 

with Newey-West HAC covariance.  We note that using a GARCH approach would 

also be biased because theoretical research suggests volume and volatility are jointly 

determined.   
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Table 4.2: Volume-Price Volatility relationship for Chicago Board of Trade soybean 
futures contract: biased (individual) model estimates, full-sample 2SLS estimates and 
wavelet-filtered (no short run variation in volume) estimates 

Soybean futures    
Volatility equation Biased individual 

estimates 
2SLS, full sample 2SLS, wavelet-

filtered data 
Intercept -0.449 -0.947 -0.651 

se (0.07) (0.10) (0.083) 
volume(t) 1.035 1.456 -0.0219 

se (0.023) (0.067) (0.198) 
volume(t-1) -0.643 -0.952 -0.564 

se (0.027) (0.053) (0.199) 
volatility(t-1) 0.489 0.519 0.307 

se (0.021) (0.015) (0.015) 
    

Volume equation Biased individual 
estimates 

2SLS, full sample 2SLS, wavelet-
filtered data 

Intercept 0.937 0.882 0.0495 
se (0.058) (0.05) (0.0027) 

volatility(t) 0.328 -0.06 0.0018 
se (0.0117) (0.026) (0.0013) 

volume(t-1) 0.393 0.485 1.925 
se (0.0127) (0.017) (0.0054) 

volume(t-2) 0.189 0.321 -0.938 
se (0.013) (0.018) (0.0054) 

Notes: All coefficients are statistically significant except volume(t) in the wavelet-
filtered 2SLS volatility equation. Standard errors are computed using the Newey-West 
HAC covariance.  

The endogeneity of volume and volatility is clearly supported by Hausman-Wu test 

results.  For the five major agricultural commodity futures examined in this chapter, 

ARMAX estimates suggest that volatility is positively correlated with 

contemporaneous volume but negatively with lagged volume, in addition to being 

autocorrelated.  Adjusting for the endogeneity bias by using a Two Stage Least 

Squares estimator does not qualitatively change the results as the regressor signs 

remain the same.  To evaluate the impact of large Index Traders on market volatility, 

2SLS estimates are obtained from filtered volume data where wavelet transform 

analysis is used to remove all variation associated with time horizons shorter than one 

month.  This threshold is supported by the CFTC’s research on Index Trader activity. 
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Table 4.3: Volume-Price Volatility Relationship for Winnipeg Commodity Exchange 
canola futures contract: biased (individual) model estimates, full-sample 2SLS 
estimates and wavelet-filtered (no short run variation in volume) estimates 

Canola futures    
Volatility equation Biased individual 

estimates 
2SLS estimates, 

full sample 
2SLS estimates, 
wavelet-filtered 

data 
Intercept 0.137 0.115 0.142 

se (0.045) (0.065) (0.044) 
volume(t) 0.462 0.496 0.207 

se (0.037) (0.085) (0.227) 
volume(t-1) -0.336 -0.357 -0.069 

se (0.033) (0.055) (0.227) 
volatility(t-1) 0.681 0.682 0.659 

se (0.036) (0.0115) (0.012) 
    

Volume equation Biased individual 
estimates 

2SLS, full sample 2SLS, wavelet-
filtered data 

Intercept 0.414 0.491 0.022 
se (0.03) (0.025) (0.001) 

volatility(t) 0.094 -0.0255 -0.00052 
se (0.012) (0.0118) (0.0005) 

volume(t-1) 0.428 0.447 1.924 
se (0.017) (0.015) (0.0055) 

volume(t-2) 0.265 0.278 -0.937 
se (0.015) (0.015) (0.0055) 

Notes: All coefficients are statistically significant except volume(t) and volume(t-1) in 
the wavelet-filtered 2SLS volatility equation. Standard errors are computed using the 
Newey-West HAC covariance.  

The results using wavelet-filtered data suggest that for Chicago corn and soybean 

futures, volatility falls when current and lagged long-run volume rises.  For Winnipeg 

canola, volatility is not affected by current or lagged volume as the estimates are not 

significantly different from zero.  Results for the two non-storable commodities are 

qualitatively different.  Volatility in live cattle futures is positively affected by both 

current and lagged volume, while volatility in lean hogs futures is positively affected 

by current volume but negatively by lagged volume.  The results suggest that the 

impact of Index Traders, approximated using the long-run volume of trade, is 

beneficial to futures markets for storable commodities because it reduces price 

volatility.   
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Table 4.4: Volume-Price Volatility Relationship for Chicago Mercantile Exchange 
lean hogs futures contract: biased (individual) model estimates, full-sample 2SLS 
estimates and wavelet-filtered (no short run variation in volume) estimates 

Lean hogs futures    
Volatility equation Biased individual 

estimates 
2SLS, full sample 2SLS, wavelet-

filtered data 
Intercept 2.747 2.8 2.91 

se (0.105) (0.14) (0.10) 
volume(t) 0.553 0.47 0.80 

se (0.033) (0.176) (0.136) 
volume(t-1) -0.495 -0.427 -0.716 

se (0.0355) (0.145) (0.127) 
volatility(t-1) 0.368 0.364 0.319 

se (0.024) (0.02) (0.021) 
    

Volume equation Biased individual 
estimates 

2SLS, full sample 2SLS, wavelet-
filtered data 

Intercept -0.508 0.75 0.748 
se (0.07) (0.31) (0.20) 

volatility(t) 0.19 -0.0088 -0.113 
se (0.014) (0.069) (0.044) 

volume(t-1) 0.639 0.657 1.354 
se (0.02) (0.023) (0.032) 

volume(t-2) 0.205 0.191 -0.456 
se (0.02) (0.023) (0.031) 
    

Notes: All coefficients are statistically significant except volatility(t) in the 2SLS full 
sample volume equation. Standard errors are computed using the Newey-West HAC 
covariance.  

However, the evidence also lends support to the claim that Index Traders increase 

volatility for non-storable commodity futures markets such as live cattle and lean 

hogs.   

 

4.10 The Distribution of Trader Time Horizons 

The second contribution of this chapter is to provide a measure of the distribution of 

trader types across time horizons over the past two decades across all major 

agricultural commodities.   
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Table 4.5: Volume-Price Volatility Relationship for Chicago Mercantile Exchange 
live cattle futures contract: biased (individual) model estimates, full-sample 2SLS 
estimates and wavelet-filtered (no short run variation in volume) estimates 

Live cattle futures    
Volatility equation Biased individual 

estimates 
2SLS, full sample 2SLS, wavelet-

filtered data 
Intercept -1.626 0.409 1.807 

se (0.074) (0.254) (0.078) 
volume(t) 0.86 1.836 0.383 

se (0.022) (0.197) (0.16) 
volume(t-1) -0.489 -1.05 0.10 

se (0.0256) (0.116) (0.16) 
volatility(t-1) 0.381 0.404 0.267 

se (0.023) (0.019) (0.015) 
    

Volume equation Biased individual 
estimates 

2SLS, full sample 2SLS, wavelet-
filtered data 

Intercept -0.181 1.264 0.0539 
se (0.067) (0.123) (0.0057) 

volatility(t) 0.367 -0.065 0.0079 
se (0.144) (0.035) (0.002) 

volume(t-1) 0.419 0.501 1.902 
se (0.016) (0.0177) (0.006) 

volume(t-2) 0.07 0.133 -0.935 
se (0.14) (0.0172) (0.0056) 
    

Notes: All coefficients are statistically significant except volume(t-1) in the wavelet-
filtered 2SLS volatility equation. Standard errors are computed using the Newey-West 
HAC covariance.  

 

The principal questions asked in this part of the chapter are: Can we identify the 

influence of Index Traders in recent years on the aggregate shape of trading time 

horizons?  Has the time horizon of trading become longer as futures markets have 

matured and deepened?  Do we find that markets for storable commodities have longer 

time horizons because inventories provide inter-temporal smoothing?   

 

The heterogeneity of traders has been advanced as an explanation for several stylized 

facts observed in financial and commodity markets (Bessembinder and Seguin 1993; 

Daigler and Wiley 1999).  Trader types have been characterized in terms of their 
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access to information (e.g. herd or well-informed), motivation (e.g. hedger or 

speculator), risk aversion and prudence, or time horizon (e.g. short-run or long-run).   

 

Trader type is defined in this chapter by the decision-making time horizon of trading, 

which is itself estimated by attributing to each time horizon (i.e. wavelet timescale) a 

proportion of the variation in trade volume.  The variable used is daily trade volume 

aggregated for all maturities.  Volume, a flow variable, is better suited to this problem 

than open interest, a stock variable.  The goal is to measure the contribution of each 

distinct time horizon to variation in trade volume.  The approximate distribution of 

trader heterogeneity as it has evolved over time is inferred, separately for each 

commodity, from an estimate of the distribution of trade volume across time horizons. 

 

To determine whether differences exist among commodities in the time horizon of 

trading, we consider a simple linear model of daily trade volume regressed on a matrix 

consisting of vectors each of which is defined as variation associated with different 

time horizons, from daily to greater than annual.  To provide correct estimates and 

hypothesis test results, the data is differenced because Augmented Dickey-Fuller tests 

suggest the data may be non-stationary.  The model may written as follows: 

 

 
0 1 , 2 , 3 , 4 , 5 ,

6 , 7 , 8 , 9 , 10 ,

t t daily t semiweekly t weekly t biweekly t monthly

t bimonthly t trimestrial t semestrial t annual t annual t

V x x x x x

x x x x x

β β β β β β
β β β β β ε>

∆ = + + + + +

+ + + + + +
 (4.13) 

 

where each xt is associated with a specific time horizon and is orthogonal to the other 

time horizon vectors as described in Chapter 2.  Estimation results together with White 

robust standard errors and individual coefficient t-tests are presented in Tables 4.6 and 

4.7.  The results suggest that the time horizon of trading is, with a few exceptions, 

similar across commodities: the three shortest time horizons are highly significant 
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while all others are not at all significant.  Moreover, the shorter is the time horizon, the 

more important the effect on daily volume in differences.  The fourth time horizon 

(two weeks) is significant for live cattle, lean hogs, wheat and sugar #11.  This is 

unexpected because it is often assumed non-storable markets have shorter time 

horizons than do storable markets.  For cocoa and coffee, time horizons have 

essentially no explanatory power, which suggests trade volume is mostly driven by the 

long-run trend, which is not included in the matrix of regressors.   

 

Since we know that the CME hogs contract specification changed from 1997 to 1998, 

we can test for a change in the parameter values associated with different time 

horizons. For example, the biweekly time horizon coefficient is not significant for 

either the 1988-1997 or 1998-2004 time periods but is qualitatively higher in the later 

period.  A simple t-test computed to evaluate the hypothesis that β5 (the biweekly 

horizon coefficient) is the same before and after the contract specification change 

suggests we cannot reject the null and therefore the coefficient difference is not 

statistically significant. 

 

4.11 Testing for Changes over Time in Trader Heterogeneity 

The evidence presented in the last section suggests that, cocoa and coffee aside, the 

time horizon of trading does not differ much between commodities.  As these results 

are point estimates computed from a sixteen year sample, we would like to determine 

individually for each commodity whether the distribution of trading across time 

horizons 1988 and 2005.  For example, is trading increasingly focused on the short 

run, on the long run, or has it not changed?   
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Table 4.6: Regression of daily trade volume (in differences) on wavelet-computed 
time horizon factors using White’s robust covariance, Chicago Board of Trade, 
Chicago Mercantile Exchange, Kansas City Board of Trade and Winnipeg Commodity 
Exchange commodities 

Commodity 
futures 
contract 

WCE canola  
R2=0.662 

CBOT corn  
R2=0.639 

CBOT soybean  
R2=0.663 

CME live cattle  
R2=0.592 

Time horizon 
factor 

Coef. 
value 

Std. error Coef. 
value 

Std. 
error 

Coef. 
value 

Std. error Coef. 
value 

Std. 
error 

daily 1.59*** 0.031 1.58*** 0.033 1.59*** 0.024 1.50*** 0.027 

semiweekly 0.64*** 0.029 0.61*** 0.029 0.64*** 0.025 0.60*** 0.024 

weekly 0.19*** 0.035 0.20*** 0.032 0.19*** 0.03 0.21*** 0.031 

biweekly 0.034 0.037 0.01 0.034 0.022 0.031 0.064*** 0.032 

monthly 0.018 0.039 0.005 0.028 0.018 0.03 -0.002 0.031 

bimonthly 0.004 0.046 0.009 0.036 0.003 0.028 0.011 0.055 

trimestrial 0.019 0.046 0.005 0.036 0.009 0.034 0.001 0.042 

semestrial -0.008 0.057 0.002 0.037 -0.003 0.034 -0.004 0.049 

annual 0.002 0.053 -0.004 0.034 0.001 0.04 -0.005 0.066 

greater than 
annual 

-0.004 0.083 0 0.031 -0.001 0.025 -0.004 0.069 

         

Notes: statistical levels of significance are *** (1%), ** (5%) and * (10%). Intercept term is not significantly 
different from zero (p>0.9). 

 
Table 4.6 (continued). 

Commodity 
futures 
contract 

CME lean hogs 
R2=0.587 

CME lean hogs 
(1989-1997) 

CME lean hogs 
(1998-2004) 

KCBOT wheat 
R2=0.628 

Time horizon 
factor 

Coef. 
value 

Std. error Coef. 
value 

Std. 
error 

Coef. 
value 

Std. error Coef. 
value 

Std. 
error 

daily 1.498*** 0.030 1.49*** 0.042 1.50*** 0.042 1.535*** 0.052 
semiweekly 0.604*** 0.026 0.63*** 0.034 0.57*** 0.039 0.651*** 0.050 
weekly 0.178*** 0.031 0.18*** 0.042 0.18*** 0.045 0.159*** 0.053 
biweekly 0.046* 0.028 0.038 0.047 0.051 0.035 0.078* 0.047 
monthly 0.011 0.034 0.005 0.053 0.014 0.043 0.005 0.042 
bimonthly 0.004 0.041 -0.001 0.063 0.006 0.053 0.006 0.039 
trimestrial -0.002 0.040 -0.003 0.050 -0.003 0.066 0.000 0.036 
semestrial 0.003 0.058 0.001 0.087 0.004 0.077 -0.006 0.015 
annual 0.004 0.038 0.002 0.061 0.007 0.049 0.011 0.022 
greater than 
annual 0.007 0.031 0.007 0.045 0.006 0.040 -0.002 0.022 
         

Notes: statistical levels of significance are *** (1%), ** (5%) and * (10%). Intercept term is not significantly 
different from zero (p>0.9). 

 

Two test approaches are used and contrasted.  First, a wavelet-based Monte Carlo test 

for the presence and date of change-points in the variance process.  Second, a sup-

Wald test of endogenous structural breaks in the Andrews-Ploberger-Hansen class. 
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Table 4.7: Regression of daily trade volume (in differences) on wavelet-computed 
time horizon factors using White’s robust covariance, New York Board of Trade 
commodities 

Commodity 
futures contract 

NYBOT cocoa 
R2<0.01 

NYBOT coffee 
R2<0.01 

NYBOT sugar#11 
R2=0.627 

Time horizon 
factor 

Coef. 
value 

Std. 
error 

Coef. 
value 

Std. 
error 

Coef. 
value 

Std. 
error 

daily 0.107*** 0.034 0.012 0.061 1.541*** 0.031 
semiweekly -0.006 0.035 0.057 0.061 0.627*** 0.029 
weekly -0.08*** 0.036 0.026 0.067 0.149*** 0.038 
biweekly -0.068** 0.040 0.028 0.099 0.064** 0.035 
monthly -0.020 0.040 0.059 0.077 0.001 0.029 
bimonthly -0.018 0.078 -0.008 0.047 0.014 0.048 
trimestrial 0.009 0.060 -0.001 0.043 0.005 0.048 
semestrial 0.001 0.083 0.000 0.034 0.001 0.049 
annual 0.001 0.057 0.000 0.023 -0.006 0.068 
greater than annual -0.002 0.039 0.001 0.017 0.000 0.045 
       

 
Commodity futures 
contract 

NYBOT cotton 
R2=0.588 

NYBOT orange 
juice  
R2=0.606 

Time horizon factor Coef. 
value 

Std. 
error 

Coef. 
value 

Std. 
error 

daily 1.528*** 0.067 1.525*** 0.042 
semiweekly 0.609*** 0.040 0.653*** 0.033 
weekly 0.221*** 0.042 0.229*** 0.043 
biweekly 0.045 0.036 0.020 0.039 
monthly -0.006 0.022 0.014 0.030 
bimonthly 0.011 0.011 0.015 0.087 
trimestrial -0.004 0.007 0.001 0.070 
semestrial 0.006 0.011 -0.002 0.072 
annual -0.001 0.006 0.000 0.053 
greater than annual -0.002 0.006 0.002 0.042 
     
Notes: statistical levels of significance are *** (1%), ** (5%) and 
* (10%). Intercept term is not significantly different from zero 
(p>0.9). 

 

The Monte Carlo wavelet-based test is related to the cumulative sum of squares 

(CuSum) test of Brown, Durbin and Evans (1975).  The null hypothesis is that the 

variance of wavelet coefficients is homogeneous, against a null of one or several 

change-points at specific time horizons (timescales).  Because change-points in the 

wavelet coefficients imply breaks in the actual time series data, rejecting the null 
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means we can identify not only the date of the breaks but also the time horizon at 

which they occur.  For example, we may expect that trade volume would be smooth in 

the long run but not in the short run.   

 

This test has more power than the Quandt-LR (sup-Wald) class of tests in the presence 

of long memory (Banerjee and Urga 2005).  This is helpful in light of Lobato and 

Velasco’s (2000) findings that trade volume exhibits long memory.  The wavelet 

transform’s orthogonality property provides robustness against long-range dependence 

(Teyssiere and Abry 2006).  Another advantage of the wavelet-based test is that it 

identifies precisely the time horizons at which the change-points occur.  For instance, 

trade volume for a commodity could have increased at the daily horizon, decreased at 

the annual horizon, and remained approximately the same for all other horizons.  The 

null hypothesis is that the wavelet variance is homogeneous over time, which implies 

no change-points.  If we reject the null, we can precisely identify the date of the 

change-point (structural break). 

 

An approximate test statistic is constructed by Monte Carlo simulation (Dufour and 

Khalaf 2004).  The statistic relies on uniformly-distributed pseudo-random numbers 

that are consistent with the sample moments of the wavelet coefficients.  These 

wavelet coefficients are obtained from an application of the Discrete Wavelet 

Transform using the Daubechies(10) wavelet as described in Chapter 2 (Daubechies 

1992). 

 

The test statistic is specific to the data sample and must be computed separately for 

each dataset.  10,000 simulated sequences are used and the standard 1% and 5% levels 
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of significance are saved.  To minimize the computational burden, ten sets of a 

thousand simulations are iteratively saved, put aside and deleted. 

 

The test results, presented in Table 4.8, show that for all commodities studied and 

across all time horizons, we fail to reject the null of a homogeneous wavelet variance.  

Equivalently, this implies there is no change-point found in the time series and 

therefore the volatility of futures trade volume has not changed across time horizons.  

This says nothing however about the mean trend in futures trade volume, which 

evidently has gone up in most commodity markets over the years and in particular 

with the increased participation of Index Traders. 

 

An important class of hypothesis tests considers the possibility of sudden parameter 

changes in a time series model.  Since the pioneering work of Chow (1960) and 

Quandt (1960) for single structural breaks at pre-determined points in time, the 

literature has considered the presence of multiple breaks at unknown points in time 

(Andrews 1993; Andrews and Ploberger 1994; Hansen 1990, 1992, 1997, 2000). 

 

In this section are presented the results from an application of a test from the sup-Wald 

(sup-LM) class (Andrews 1993).  The traditional Chow-Quandt F test has been 

criticized by Hansen (1990) and Zivot and Andrews (1992) because the researcher’s 

selection of potential break points is likely to be a source of data mining.  A large 

family of asymptotic tests for endogenous structural break points was developed 

among others by Andrews (1993), Andrews and Ploberger (1994), and Hansen (1991, 

1992, 2000). The tests use sup, exp and ave functionals for LM, LR and Wald tests.  

Evidence suggests the ave has the most power against standard alternatives while the 

exp functional has most power against distant alternatives.  Diebold and Chen (1996) 



 

107 

show using bootstrapped critical test values instead of asymptotic values reduce the 

test size distortion substantially.  In effect, structural breaks reject too often the null 

(e.g. Alston and Chalfant 1988, 1991).  The tests are computed in R based on code by 

Zeileis (2006) and in Matlab based on code by Hansen (2006). 

 

The null hypothesis is that the coefficients associated with the wavelet explanatory 

variables (equation 3.25) are constant over the entire sample.  The results (see 

Appendix) show that for the sup, exp and ave functional tests, we cannot reject the null 

of no structural change in the wavelet factor model for any commodity.  Consider for 

example Figure 4.3, which plots the empirical process and critical value for the exp-

LM test using Chicago Board of Trade corn futures data.  This shows the empirical 

process does not come close to the critical value at any point in the time series.  

Results for the other commodities are qualitatively the same.   

 

A reality check is provided by applying the test to data for the Chicago Mercantile 

Exchange lean hogs contract, where conventional wisdom suggests a structural break 

occurred on January 1st 1998 when the contract specification changed from live 

animals to carcasses.  Yet all three tests fail to reject the null of no structural change, 

which forces us to reconsider the true size and power of the test in this context.  It is 

however plausible that a smooth transition occurred due to the Chicago Mercantile 

Exchange’s efforts.   

 

More generally, as Alston and Chalfant (1988, 1991) argue, apparent structural breaks 

reported in the economics literature are often explained by a model specification error, 

which suggests this chapter’s findings of no breaks or change-points are sensible.   
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Table 4.8: Monte Carlo Wavelet-Based Test for Breaks in the Variance of Daily Total 
Futures Volume. The null hypothesis is a homogeneous variance, or equivalently no 
structural break or change-point in the variance. The test results imply that for all 
commodities and for all time horizons, we cannot reject the null (either at the 1% or 
5% level of significance).  
 
Winnipeg Commodity Exchange Canola Futures Contract, T=6534 

Time horizon Daily Semiweekly Weekly Biweekly Monthly Bimonthly 
Test value 0.3384 0.3249 0.3068 0.3714 0.3592 0.309 
Critical value, 5% level 1.1755 1.1291 1.0237 1.0147 1.0684 1.01 
Critical value, 1% level 1.3852 1.2534 1.0635 1.0849 1.0811 1.0375 

 
Chicago Board of Trade Corn Futures Contract, T=7080 

Time horizon Daily Semiweekly Weekly Biweekly Monthly Bimonthly 
Test value 0.4331 0.432 0.4554 0.5002 0.5096 0.3984 
Critical value, 5% level 1.0653 1.0425 1.0101 1.0151 1.0159 1.1122 
Critical value, 1% level 1.1599 1.1197 1.0465 1.0284 1.1601 1.2669 

 
Chicago Board of Trade Soybeans Futures Contract, T=8192 

Time horizon Daily Semiweekly Weekly Biweekly Monthly Bimonthly 
Test value 0.3139 0.3206 0.3368 0.3403 0.3593 0.3773 
Critical value, 5% level 1.1146 1.0875 1.0714 1.0217 1.0443 1.0043 
Critical value, 1% level 1.337 1.258 1.1305 1.0487 1.2081 1.1368 

 
Kansas City Board of Trade Wheat Futures Contract, T=8192 

Time horizon Daily Semiweekly Weekly Biweekly Monthly Bimonthly 
Test value 0.5185 0.5324 0.5393 0.5489 0.5448 0.5481 
Critical value, 5% level 1.0672 1.0989 1.0354 1.0313 1.0575 1.0734 
Critical value, 1% level 1.1942 1.2344 1.0566 1.072 1.146 1.1995 

 
Chicago Mercantile Exchange Lean Hogs Futures Contract, T=5944 

Time horizon Daily Semiweekly Weekly Biweekly Monthly Bimonthly 
Test value 0.1263 0.1302 0.3013 0.5033 0.4575 0.5464 
Critical value, 5% level 1.1757 1.0799 1.0325 0.9947 1.0813 1.0392 
Critical value, 1% level 1.2469 1.4817 1.0953 1.0383 1.2292 1.0855 

 
Chicago Mercantile Exchange Live Cattle Futures Contract, T=4550 

Time horizon Daily Semiweekly Weekly Biweekly Monthly Bimonthly 
Test value 0.097 0.0731 0.1707 0.1586 0.2593 NA 
Critical value, 5% level 1.0274 1.0246 1.0035 1.0369 1.0333 NA 
Critical value, 1% level 1.1616 1.0423 1.0525 1.1414 1.0908 NA 
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4.12 The Distribution of Trade Volume Volatility 

Lastly, we estimate, for all eleven major commodities examined in this thesis, the 

changing distribution of a measure of trade volume volatility (here, variance) over the 

time period 2/1988-1/2005.  This provides an aggregated measure of the distribution 

of traders where trader type is defined by the time horizon of decision-making. 
 

The variance of daily futures trade volume is decomposed across wavelet-estimated 

time horizons, to attribute to each time horizon its explanatory power.  We examine 

data using sub-samples of 1024 observations each, which corresponds approximately 

to four years given 252 business days in one year.  This method allows us to identify 

the contribution of each time horizon, as a factor, to the volatility of futures trade 

volume.  The results, normalized to sum to one, are summarized in Table 4.10.  The 

table presents, for all commodities studied in this work, the proportions of variance 

explained by each time horizon for each four-year time period. 

 

Figures 4.4 to 4.9 display, for five major commodities and over sub-sample periods of 

four years, the variance of trade volume decomposed across distinct time horizons 

from daily to greater than annual.  Two questions are answered by these plots.  First, 

for a given time period, say 1989-1992, is trade volume concentrated in only one or 

two time horizons or rather is it uniformly, or normally, distributed?  Second, has this 

distribution changed over the years or has it remained approximately the same? 

 

Our empirical strategy consists of applying a wavelet transform to the volume data for 

a four-year period to compute wavelet coefficients and then applying an inverse 

wavelet transform to subsets of the wavelet coefficients. 
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Figure 4.3: Plot of exp-LM F-test process for Chicago Board of Trade corn futures 

trade volume 2/1988 to 1/2005, using wavelet time horizon model 

 

This produces a number of artificial, orthogonal time series, each of which represents 

a proportion of trade volume associated with a distinct time horizon.  The sum of all 

these artificial time series yields precisely the original volume data.  
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An interpretation of the results on the distribution of trade volume across time 

horizons and over time follows.  All commodities are discussed except those traded at 

the New York Board of Trade, for which the results and descriptive statistics are 

broadly consistent.  Chicago hogs futures (Figure 4.4) have been, until recently, traded 

mostly over short time horizons, but the evidence shows that longer time horizons 

appear to have gained importance since the contract specification changed from “live” 

to “lean”.   

 

The distribution for Kansas City wheat futures (Figure 4.6) has changed back and 

forth over the years but has been generally more uniform than for the two non-storable 

commodities, which implies there is more explanatory power found in the longer time 

horizons.  Exceptions are the years 1993-1996, during which the longest run explained 

most of the variance, and 1997-2000, during which the shortest run contained most 

explanatory power.  In contrast, the distribution for Winnipeg canola futures (Figure 

4.7) has been nearly constant over the years 1981-2006, with a downward-sloping 

shape that implies the shortest time horizons explain more than do longer time 

horizons.   

 

For Chicago live cattle futures (Figure 4.5), however, the distribution did not change 

over time and has been downward-sloping.  This implies the shorter a time horizon, 

the more explanatory power it has.  The exception is the sub-sample time period 1989-

1992, when all time horizons contributed roughly the same to the variance of trade 

volume.   

 

For Chicago corn futures (Figure 4.8), three phases are visible.  From 1979 to 1986, 

variance was explained by the very long run, that is, time horizons greater than one 
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year.  But from 1991 to 2003, a downward-sloping shape characterized the 

distribution; implying shorter time horizons contributed most of the variance.  Since 

2003, it appears intermediate and longer-term horizons have gained in importance.   

 

Lastly, the distribution over time for Chicago soybean futures (4.9) is generally similar 

to that of corn futures.  From 1979 to 1990 the longest time horizons explained most 

of the variance, but from 1990 to 2002 the familiar downward-sloping shape was 

visible.  Since 2003, the intermediate and long run has become more important such 

that all time horizons appear to contribute significantly.   

 

Table 4.9: Variance of futures trade volume: proportion explained by time horizon 

Chicago Mercantile Exchange Live Hogs Futures Contract  

  1983-86 1987-90 1991-94 1995-98 1999-2002 2003-06 
daily  0.18 0.21 0.26 0.25 0.19 0.06 
semiweekly 0.18 0.21 0.23 0.19 0.17 0.06 
weekly  0.12 0.14 0.17 0.15 0.14 0.07 
biweekly  0.06 0.10 0.12 0.11 0.16 0.17 
monthly  0.06 0.08 0.07 0.07 0.10 0.08 
bimonthly  0.06 0.05 0.04 0.07 0.08 0.05 
quarterly  0.05 0.13 0.01 0.07 0.07 0.08 
semestrial  0.03 0.04 0.08 0.06 0.02 0.12 
annual  0.10 0.04 0.01 0.02 0.03 0.09 
longer than annual 0.16 0.00 0.01 0.01 0.05 0.22 

Chicago Mercantile Exchange Live Cattle Futures Contract  

   1989-92 1993-96 1997-2000 2001-04 2003-06 
daily   0.18 0.25 0.25 0.21 0.18 
semiweekly  0.17 0.20 0.21 0.19 0.16 
weekly   0.12 0.15 0.19 0.14 0.16 
biweekly   0.08 0.10 0.15 0.10 0.14 
monthly   0.11 0.11 0.10 0.14 0.16 
bimonthly   0.07 0.04 0.04 0.07 0.06 
quarterly   0.07 0.08 0.04 0.08 0.04 
semestrial   0.15 0.05 0.01 0.02 0.03 
annual   0.04 0.01 0.01 0.05 0.02 
longer than annual  0.00 0.02 0.00 0.00 0.05 
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Table 4.9 (continued). 
Kansas City Board of Trade Wheat  Futures Contract   

 1979-82 1983-86 1987-90 1991-94 1995-98 1999-2002 2003-06 
daily 0.20 0.23 0.21 0.26 0.07 0.23 0.18 
semiweekly 0.14 0.15 0.13 0.14 0.05 0.17 0.13 
weekly 0.10 0.09 0.11 0.07 0.03 0.15 0.16 
biweekly 0.07 0.09 0.06 0.13 0.04 0.14 0.06 
monthly 0.11 0.12 0.10 0.09 0.05 0.15 0.10 
bimonthly 0.07 0.03 0.07 0.11 0.05 0.06 0.15 
quarterly 0.06 0.15 0.06 0.08 0.06 0.06 0.04 
semestrial 0.09 0.06 0.01 0.09 0.05 0.01 0.09 
annual 0.03 0.06 0.02 0.03 0.58 0.01 0.06 
longer than annual 0.13 0.01 0.23 0.00 0.02 0.02 0.02 

Chicago Board of Trade Corn Futures Contract    

 1979-82 1983-86 1987-90 1991-94 1995-98 1999-2002 2003-06 
daily 0.07 0.13 0.16 0.20 0.22 0.16 0.14 
semiweekly 0.05 0.12 0.11 0.11 0.14 0.14 0.08 
weekly 0.03 0.09 0.09 0.11 0.11 0.14 0.09 
biweekly 0.03 0.06 0.05 0.10 0.09 0.12 0.09 
monthly 0.09 0.09 0.10 0.12 0.14 0.17 0.10 
bimonthly 0.05 0.07 0.11 0.14 0.10 0.07 0.08 
quarterly 0.02 0.06 0.17 0.06 0.03 0.07 0.03 
semestrial 0.06 0.04 0.03 0.07 0.10 0.04 0.17 
annual 0.60 0.03 0.15 0.03 0.06 0.06 0.05 
longer than annual 0.00 0.32 0.03 0.06 0.00 0.03 0.17 

Chicago Board of Trade Soybeans Futures Contract   

 1979-82 1983-86 1987-90 1991-94 1995-98 1999-2002 2003-06 
daily 0.12 0.10 0.15 0.19 0.19 0.21 0.15 
semiweekly 0.07 0.07 0.09 0.12 0.12 0.13 0.10 
weekly 0.05 0.07 0.06 0.08 0.11 0.13 0.07 
biweekly 0.08 0.05 0.05 0.06 0.07 0.09 0.07 
monthly 0.12 0.06 0.04 0.10 0.13 0.13 0.14 
bimonthly 0.09 0.06 0.08 0.18 0.12 0.09 0.18 
quarterly 0.07 0.07 0.05 0.06 0.07 0.10 0.02 
semestrial 0.29 0.21 0.02 0.09 0.08 0.08 0.19 
annual 0.01 0.28 0.12 0.07 0.02 0.03 0.02 
longer than annual 0.10 0.03 0.33 0.05 0.09 0.00 0.05 

The evidence presented in this section suggests two stylized facts and testable 

hypotheses: (1) The time horizon of trading for non-storable commodities is shorter 

than it is for storable commodities, and (2) In the last five to ten years, intermediate 

time horizons have gained in importance for nearly all commodities, which may 

reflect the increased role played by Index Traders.   
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Table 4.9 (continued). 
Winnipeg Commodity Exchange Canola Futures Contract  

 1981-84 1985-88 1989-92 1993-96 1997-2000 2001-2004 2003-06 
daily 0.32 0.22 0.25 0.27 0.27 0.25 0.25 
semiweekly 0.23 0.16 0.18 0.19 0.19 0.16 0.14 
weekly 0.12 0.12 0.14 0.14 0.13 0.10 0.12 
biweekly 0.07 0.07 0.08 0.12 0.11 0.13 0.09 
monthly 0.06 0.09 0.13 0.09 0.08 0.08 0.11 
bimonthly 0.06 0.10 0.10 0.06 0.07 0.05 0.06 
quarterly 0.07 0.05 0.04 0.02 0.09 0.07 0.09 
semestrial 0.03 0.06 0.06 0.04 0.01 0.07 0.01 
annual 0.00 0.04 0.01 0.06 0.01 0.05 0.07 
longer than annual 0.03 0.09 0.01 0.01 0.04 0.04 0.06 

 
New York Board of Trade Sugar #11 Futures Contract   

 1979-82 1983-86 1987-90 1991-94 1995-98 1999-2002 2003-06 
daily 0.09 0.20 0.25 0.28 0.30 0.22 0.13 
semiweekly 0.10 0.16 0.15 0.18 0.19 0.20 0.11 
weekly 0.04 0.10 0.11 0.12 0.15 0.16 0.12 
biweekly 0.05 0.09 0.05 0.10 0.13 0.13 0.06 
monthly 0.05 0.11 0.06 0.08 0.09 0.14 0.15 
bimonthly 0.03 0.12 0.07 0.05 0.05 0.08 0.09 
quarterly 0.02 0.02 0.08 0.05 0.04 0.03 0.09 
semestrial 0.10 0.07 0.07 0.10 0.02 0.03 0.03 
annual 0.22 0.13 0.00 0.03 0.02 0.00 0.06 
longer than annual 0.29 0.00 0.16 0.02 0.00 0.00 0.17 

New York Board of Trade Cotton Futures Contract   

 1979-82 1983-86 1987-90 1991-94 1995-98 1999-2002 2003-06 
daily 0.13 0.17 0.22 0.27 0.30 0.01 0.00 
semiweekly 0.14 0.15 0.23 0.25 0.23 0.01 0.00 
weekly 0.07 0.13 0.15 0.17 0.16 0.01 0.01 
biweekly 0.06 0.06 0.09 0.09 0.07 0.01 0.02 
monthly 0.05 0.03 0.08 0.10 0.09 0.03 0.06 
bimonthly 0.04 0.04 0.06 0.05 0.06 0.04 0.17 
quarterly 0.14 0.03 0.01 0.03 0.03 0.06 0.23 
semestrial 0.02 0.06 0.07 0.04 0.04 0.05 0.09 
annual 0.31 0.12 0.06 0.00 0.02 0.51 0.23 
longer than annual 0.05 0.20 0.04 0.00 0.00 0.26 0.19 

 
4.12 Conclusion 

This chapter asks two main questions about the diversity of traders in commodity 

futures markets.  First, has the increased participation by large Index Traders led to 

higher futures price volatility?  Should the Commodity Futures Trading Commission’s 

pilot project where Index Trader positions are reported separately from those of other
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Table 4.9 (continued). 

New York Board of Trade Coffee Futures Contract   

   1989-92 1993-96 1997-2000 2001-2004 2003-06 
daily   0.22 0.23 0.20 0.15 0.15 
semiweekly  0.14 0.15 0.19 0.14 0.15 
weekly   0.14 0.13 0.17 0.13 0.11 
biweekly   0.12 0.09 0.12 0.11 0.14 
monthly   0.10 0.13 0.20 0.23 0.34 
bimonthly   0.06 0.11 0.03 0.06 0.04 
quarterly   0.09 0.06 0.03 0.03 0.01 
semestrial   0.04 0.04 0.04 0.00 0.02 
annual   0.04 0.00 0.01 0.03 0.03 
longer than annual  0.04 0.05 0.01 0.11 0.01 

 
New York Board of Trade Cocoa Futures Contract   

   1989-92 1993-96 1997-2000 2001-
04 

2003-06 

daily   0.22 0.32 0.22 0.04 0.19 
semiweekly  0.22 0.22 0.21 0.04 0.17 
weekly   0.14 0.17 0.17 0.04 0.14 
biweekly   0.11 0.09 0.14 0.06 0.15 
monthly   0.12 0.07 0.14 0.05 0.19 
bimonthly   0.04 0.02 0.05 0.24 0.08 
quarterly   0.03 0.03 0.01 0.25 0.01 
semestrial   0.08 0.03 0.02 0.16 0.00 
annual   0.03 0.02 0.04 0.11 0.05 
longer than annual  0.01 0.01 0.00 0.01 0.02 

New York Board of Trade FCOJ Futures Contract   

 1979-82 1983-86 1987-90 1991-94 1995-98 1999-
2002 

2003-06 

daily 0.16 0.15 0.18 0.18 0.22 0.29 0.23 
semiweekly 0.17 0.14 0.18 0.16 0.19 0.19 0.11 
weekly 0.13 0.07 0.15 0.15 0.18 0.12 0.12 
biweekly 0.10 0.05 0.06 0.09 0.12 0.11 0.14 
monthly 0.06 0.11 0.05 0.06 0.12 0.19 0.23 
bimonthly 0.03 0.07 0.04 0.04 0.02 0.02 0.02 
quarterly 0.06 0.15 0.21 0.03 0.04 0.03 0.03 
semestrial 0.08 0.13 0.05 0.01 0.03 0.01 0.04 
annual 0.19 0.09 0.00 0.16 0.06 0.01 0.00 
longer than annual 0.03 0.03 0.07 0.12 0.01 0.03 0.07 
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Figure 4.4: Distribution of futures trade volume variance, Chicago Mercantile 
Exchange live/lean hogs contract, 1983-2006 
 

large traders become permanent?  The empirical evidence presented in this chapter 

suggests that the impact of Index Traders may be adverse for non-storable commodity 

markets but is neutral or beneficial to storable commodity markets.  Second, how has 

the time horizon of trading changed over the past two decades?  Do traders 

increasingly trade with a shorter or longer time horizon?  Are there systematic 

differences between storable and non-storable commodities?   
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Figure 4.5: Distribution of futures trade volume variance, Chicago Mercantile 
Exchange live cattle contract, 1983-2006 
 

The evidence from a wavelet transform-based decomposition of the data shows that, in 

the last five to ten years, intermediate and long-run time horizons have gained in 

importance, which may coincide with the greater role played by Index Traders.  There 

is also some evidence to support the claim that storable commodity markets have 

longer time horizons.   
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Figure 4.6: Distribution of futures trade volume variance, Kansas City Board of Trade 
wheat contract, 1978-2006 
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Figure 4.7: Distribution of futures trade volume variance, Winnipeg Commodity 
Exchange canola contract, 1981-2006 
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Figure 4.8: Distribution of futures trade volume variance, Chicago Board of Trade 
corn contract, 1979-2006 
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Figure 4.9: Distribution of futures trade volume variance, Chicago Board of Trade 
soybeans contract, 1979-2006 
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Lastly, by regressing differenced trade volume over wavelet-estimated time horizon 

factors, we find that only the shortest three or four time horizons have coefficients that 

are statistically different from zero.  Two exceptions among the eleven commodities 

are cocoa and coffee traded at the New York Board of Trade, for which the time 

horizons have no explanatory power in this simple regression.  This suggests cocoa 

and coffee are mostly driven by very long-run factors.   

 

The theoretical structure assumed in this chapter is simple and robustness of the results 

should be evaluated using other plausible model specifications.  In particular, it should 

be possible to derive model testable implications based on differences between 

storable and non-storable commodities that are supported by theory.  Furthermore, the 

estimates on the distribution of trader time horizons would benefit from substantial 

refinements to better explain why changes appear to have occurred over time.  It is 

encouraging, however, to find that wavelet-based methods contribute new insights into 

persistent economic problems.   
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CHAPTER 5 

ESTIMATING THE TERM STRUCTURE OF COMMODITY  

FUTURES PRICES USING WAVELET THRESHOLDING 

 

5.1 Introduction  

The term structure of futures prices approach considers how to use information from 

an unbalanced panel dataset, namely the constellation of futures prices traded at every 

business day, to extract estimates of latent (stochastic) variables such as convenience 

yield, cost of carry and risk premium.  The literature has found that in many cases, 

only two or three latent factors is sufficient to track and forecast futures prices and one 

additional factor allows good volatility forecasting (e.g. Korn 2005; Lautier 2005; 

Schwartz 1997; Sorensen 2002).  Motivated by theoretical advances such as Dai and 

Singleton (2000), recent work has considered the usefulness of models with an 

arbitrarily large number of latent variables (e.g. Cortazar and Naranjo 2006).  For 

example, while a three-factor model explains 97% of the interest rate forward curve, 

ten factors are needed to explain 95% of the Nordic electricity term structure 

(Koekkebakker and Ollmar 2005).   

 

In this chapter, a new approach is suggested for the estimation of the term structure of 

commodity futures prices, with an application to data on one of the most traded 

agricultural commodities.  This work follows in the literature on the stochastic 

behavior of commodity prices, where the Kalman filter is used to solve a multi-variate 

state-space time series model of observed and unobserved variables (Schwartz 1997; 

Schwartz and Smith 2000).  The model is tractable because, following Cox, Ingersoll, 

Ross (1981), the futures log prices are solved as affine functions of the state variables.  

This chapter makes two contributions to the literature.  It is, to our knowledge, the first 
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time seasonal state variables have been combined with a large number of latent state 

variables to study agricultural commodity futures prices.  It is also the first work to use 

the statistical method of wavelet thresholding (Donoho and Johnstone 1994, 1995) to 

improve estimation efficiency by pre-filtering the data using a data-tailored loss 

function.  The economic interpretation of wavelet thresholding is that beneath some 

threshold that is unknown but can be estimated, any mean zero variation is only 

measurement noise of no economic significance.  Filtering out this noise must 

necessarily reduce the process variance and therefore improve the efficiency of 

estimation.  The purpose of the chapter is therefore, more generally, to compare the 

improvement in forward curve fit accuracy from using much larger models with the 

improvement from filtering out what appears to be noise of no economic significance.   

 

5.2 The Term Structure of Commodity Futures Prices 

Before presenting the state-space model and estimation procedure, we examine 

historical data on daily settlement prices for two major agricultural commodity futures 

contracts, Chicago Board of Trade corn and soybeans.  The first nearby to sixth nearby 

maturities are examined.  For corn futures, the forward curve since 1997 has been 

generally in contango, which means distant futures contracts are priced higher.  The 

conventional explanation is that there is a positive net convenience yield which is a 

benefit from holding stocks into the future.  From 1993 to 1997 and during a few brief 

additional periods of time, the forward curve was generally in backwardation, which 

means distant futures prices are lower.  In this case, the net convenience yield is 

negative, which may be explained by a relatively large cost of carry, which is 

interpreted as the price of storing inventories.  It is well understood that for 

agricultural commodities much of the shape is explained by seasonality (Tomek 1994; 

Fackler and Roberts 1999).  An example of an actual commodity futures price term 
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structure is presented in Figure 5.1 for Chicago Board of Trade corn futures on 

6/17/2004.  This figure shows how futures prices increased as the time to maturity 

increased, a pattern that is called contango.   

 

Two general approaches to model the term structure of contingent claim prices have 

been used in the literature.  The first, pioneered by Brennan and Schwartz (1985) and 

by Gibson and Schwartz (1990), estimates the unobservable convenience yield of a 

real or financial asset.  The second, developed among others by Schwartz and Smith 

(2000), is based on the results of Duffie, Pan and Singleton (2000) and Dai and 

Singleton (2000) and models the asset price as an affine function of state variables, 

which are usually unobservable.  This second approach nests the first and is more 

general.  Therefore convenience yield can generally be recovered from the affine 

model. 

 
Figure 5.1: An example of the term structure of futures prices: daily settlement prices 
for six nearest maturities, Chicago Board of Trade corn futures on 6/17/2004 
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The fundamental approach (Black 1976; Harrison and Kreps 1979; Cox, Ingersoll and 

Ross 1981; Cox, Ross and Rubinstein 1979) considers that the futures price Ft for a 

given date t and maturity T equals the risk-adjusted expectation of the spot price ST at 

maturity under the risk-neutral probability measure Q: 

 

 ( , , ) ( )Q
t t TF x t T E S=  (5.1) 

 

and it is assumed that the log of the spot price is an affine function of N different state 

variables as well as a deterministic seasonal function and parameters that characterize 

the state variable dynamics.  The dynamics of each state variable is described by a 

stochastic differential equation (see e.g. Shreve 2004) that is solved the traditional 

Feynman-Kac partial differential equation approach following Black and Scholes 

(1973), Merton (1973), Black (1976) and Cox, Ingersoll and Ross (1981).  The general 

multi-variate stochastic differential equation may be written as follows, where xt is the 

state variable, K is a matrix of drift terms (such as mean-reverting parameters), Σ is a 

matrix of diffusion terms and wt is a Brownian motion (Wiener process).   

 

 tdx t tKx dt dw= − + Σ  (5.2) 
 

The canonical seasonal function is time-varying but deterministic and is identical 

every year for any given day.   

 

 
1

cos(2 ) sin(2 )
K

t k k
k

s kt ktγ π γ π
=

= +∑ ɶ  (5.3) 

 

Sorensen (2002) has found that K=2 appears to provide a good and parsimonious fit.   
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The model to be estimated by Quasi-MLE using the Kalman filter is similar to the 

ones used by Roberts and Fackler (1999), Sorensen (2002) and Tien and Fackler 

(2003), where the logarithm of the spot price, possibly unobserved, is: 

 

 t t tln(P ) = s(t) + x  + z (5.4) 

 

and where s(t) is the seasonal function and xt and zt  are two state variables the 

dynamics of which are governed by a stochastic differential equation for each.  

Solving the spot-futures price relationship by no-arbitrage (Black 1976; Cox, Ingersoll 

and Ross 1981) provides the solution to the futures price as an affine function of the 

seasonal variable, the state variables and the time to maturity.  

 

We follow Cortazar and Naranjo’s (2006) generalization of Schwartz and Smith 

(2000) because it is flexible and is designed to accommodate small changes in the 

model’s assumptions.  This N-factor Gaussian model nests most term structure models 

with the notable exception of models that assume non-Gaussian Normal innovations, 

for example to allow a heavy-tailed error distribution.  The affine transformation 

results of Dai and Singleton (2000) enable any model in this literature that satisfies 

some basic assumptions to be written in this canonical Gaussian form. 

 

Before presenting formally the different models to be estimated, we explain briefly the 

economic meaning associated with each parameter.  Although agricultural commodity 

price data are mean-reverting over long periods of time, we are also interested in 

testing the hypothesis of slow, gradual permanent changes caused by commodity 

demand or technological improvement.  Therefore, the first state variable is defined as 
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geometric Brownian motion, which is non-stationary and represents permanent 

changes caused for example by economic shocks in technology and preferences.   

 

 1 1 1 1 1( ) ( ) ( ) ( )dx t x t dt x t dw tµ σ= +  (5.5) 
 

The geometric Brownian motion state variable is associated with a long run drift term 

µ, a risk premium λ1 and a diffusion σ1 the latter which determines the degree of 

randomness by multiplying a Brownian motion process.  The effect of time-to-

maturity is captured by a risk-adjusted drift defined as: 

 

 
2

1 2

σα µ λ= − +  (5.6) 

 

Additional state variables x2 through xN are defined as Ornstein-Uhlenbeck, i.e. mean-

reverting, processes where the speed of mean-reversion is captured by κ and the long-

run mean to which the process is drawn is C (Cox and Miller 1965): 

 

 ( ) ( ( ) ) ( )n n n n ndx t x t C dt dw tκ σ= − − +  (5.7) 
 

One-factor models universally do poorly, whether the state variable is geometric 

Brownian motion or Ornstein-Uhlenbeck.  Multiple factor models have also 

considered stochastic interest rates or convenience yields as additional state variables 

and we return later to the definition of our factors.  The Brownian motions are 

assumed to be pairwise correlated through a coefficient ρij.  The term structure of 

futures price volatility is obtained from the estimated diffusion and correlation 

parameters: 

 

 ( )( )2

1 1

( ) exp i j

N N
T t

F i j ij
i j

T t κ κσ σ σ ρ − + −

= =

− =∑∑  (5.8) 
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For the simple one-factor model, the term structure of volatility reduces to σ2
 and is 

the same constant regardless of time to maturity, a characteristic that is generally seen 

as a poor description of observed data.  But for two or more state variables, volatility 

has a term structure that is dependent on time to maturity.  The literature finds that 

three factors usually provide an acceptable fit, and we investigate in this chapter the 

gains from considering larger models. 

 

The second approach considered to help improve estimation is a statistical filtering 

method called wavelet thresholding.  Filters have been widely used in some areas of 

economics, for example, two popular macroeconomic filters are the Hodrick-Prescott 

filter (1980, 1997) and the Baxter-King (1999) bandpass filter.  Guay and St-Amant 

(1997) find, however, that both filters perform poorly in recovering the business cycle 

component from macroeconomic time series because these data are characterized by 

the typical Granger spectral shape and as a result, low frequencies (long run cycles) 

dominate and create bias. 

 

Wavelet thresholding is used to filter out variation beneath a precise threshold, under 

the assumption that it is noise of no economic significance.  To evaluate the claim that 

this noise is of no consequence, we fit several term structure models to the data and 

compare both the in-sample tracking ability and out-of-sample forecasting ability of 

models with and without the noise.  In theory, as wavelets provide an orthogonal 

decomposition of variance, filtering out mean zero unbiased variation must result in 

better (more efficient) model fitting, unless the noise is economically meaningful.  
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To account for backwardation and contango, that is the shape of the term structure, 

convenience yield is best modeled as asymmetric, because inventories cannot be 

negative, and time-varying, also because inventories fluctuate significantly over time.  

An additional source of data, commodity inventory stocks, is therefore necessary to 

model the asymmetry of convenience yields.  Routledge, Seppi and Spatt (2000) 

develop such a term structure model and apply it to crude oil futures data.  Casassus 

and Collin-Dufresne (2005) further enrich this model by incorporating stochastic 

interest rates and time-varying risk premia.  This chapter does not adopt their model 

because previous research has found that, at least for agricultural commodity futures, 

interest rate risk is of little consequence and risk premia are small and often not 

significantly different from zero. 

 

An entirely different approach which is not pursued in this chapter is to use the 

information contained in options to model the term structure of futures prices and 

volatility.  For example, Egelkraut, Garcia and Sherrick (2007) use the implied 

volatility from commodity options on futures to estimate the term structure of 

volatility.  They find that, at least for the nearby interval, implied volatility leads to 

better forecasts than do methods that use historical volatility, but the forecasting power 

of option implied volatility is limited when the derivative has a small trading volume. 

 

5.3 Recovering the Net Convenience Yield 

A long standing question in the literature on commodity markets, fiercely debated 

since the days of Keynes, Kaldor and Hicks, concerns the existence of a convenience 

yield.  Simply stated, the convenience yield is a value to holding commodity stocks, 

explained for example by the benefits of positive inventories to maintain a smooth 
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running commercial operation.  This concept motivates much analysis on the shape of 

commodity prices at different maturities (contango and backwardation).  

 

The net convenience yield is the difference between the convenience yield (a positive 

return) and the cost of carry (a negative return) the latter which is incurred through 

inventory expenses for bulky commodities.  Williams (1989, 2001) provides a detailed 

treatment and critique of these concepts.  Brennan, Williams and Wright (1997) argue 

that convenience yield is an artifact of data aggregation. 

 

In the simplest model of the forward price curve for commodities, the following 

relationship holds at all times: 

 

 ( )( )( , ) ( , )expr c T tF t T T t t δ+ − −=  (5.9) 
 

where F(t,t) is the futures price for a contract expiring “today” (i.e. the spot price 

notwithstanding basis risk), r is the risk-free rate of interest (e.g. 3-month U.S. 

Treasury bill), c is the cost of carry and δ is the convenience yield.  In this simple 

model, the shape of the forward curve (futures prices over time to maturity) depends 

only on the net convenience yield: r+c-δ.  If r+c>δ, contango results, and if 

r+c<δ, backwardation results.  

 

The existence of a convenience yield is not a question addressed in this chapter but, to 

provide a link to the vast literature on the topic, a simple identity is presented to 

recover the convenience yield from the model parameters estimated in this chapter.  

As explained by, e.g., Fackler and Roberts (1999), under the risk-neutral measure, 
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asset price dynamics imply the following relationship using the same parameters as 

found in the stochastic differential equation model: 

 

 rµ δ σλ+ = +  (5.10) 

 

where µ is the actual drift term, δ is the convenience yield, r is the risk-free rate of 

interest, σ is the diffusion term, and λ is the market price of risk for the state variable 

in question.  The equation may be rearranged to give: 

 

 rµ σλ δ− = −  (5.11) 
 

which implies the risk-adjusted drift in the process equals the risk-free rate minus the 

convenience yield.  Convenience yield can be recovered because the left-hand side 

parameters are estimated from the data using the above model and the 3-month US 

Treasury bill provides a good proxy for the risk-free rate of interest.  For multi-factor 

models, additional parameters must be incorporated in the equation but the approach is 

the same.  If reliable inventory data are available, better estimates of the cost of carry 

and convenience yield can be obtained, in particular accounting for asymmetry in the 

yield. 

 

5.4 Wavelet Thresholding 

Wavelet thresholding or shrinkage (Donoho and Johnstone 1994, 1995, 1998) has 

proven to be in engineering and physical sciences applications a remarkably efficient 

and accurate method to remove noise from data and recover the true signal.  It consists 

of applying a filtering rule not to the actual data but rather to the wavelet coefficients 

computed from the data.  After applying the thresholding rule, the filtered time series 
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data are recovered from the thresholded wavelet coefficients.  While the algorithm is 

most powerful against IID white noise, properly adjusted it provides excellent results 

when the noise is a dependent and non-IID stochastic process.  The hypothesis is that 

wavelet thresholding, by filtering out short-run noise, will enable us to obtain better 

out-of-sample forecasts when combined with traditional time series methods.   

 

There exist a wide variety of filtering methods other than wavelet-based.  Two 

important class of filters are sinusoidal (Fourier) and polynomial knot (spline) 

smoothers.  These methods, however, have been found to systematically either remove 

too little or too much noise.  The outcome is a recovered signal that is either over-

smoothed or still too noisy to be informed on the true data generating process.  In 

contrast, wavelet thresholding has been found to provide a powerful signal recovery 

without oversmoothing.  In particular, features of the data that are sharp remain so 

after wavelet thresholding, while previously existing methods tend to dull such sharp 

features.  This is because wavelets have been designed to provide optimal information 

compression and efficient transformation.  Formal proofs of these results are found in 

Donoho and Johnstone (1994, 1995, 1998).   

 

The objective of wavelet thresholding is to determine an optimal value (threshold) 

using a clear criterion, such as a loss function or minimum risk value (Stein 1981).  

Both a threshold choice and a thresholding rule must be carefully selected.  Before 

using the threshold, a Discrete Wavelet Transform is applied to the data to produce a 

vector or matrix of wavelet coefficients.  The threshold is then used with the wavelet 

coefficients.  Applying an Inverse Discrete Wavelet Transform to the filtered wavelet 

coefficients yields a filtered version of the original time series with no loss of 

information other than from filtering.  Donoho and Johnstone show that a so-called 



 

134 

universal threshold, together with a soft thresholding rule, are both asymptotically 

optimal and also remarkably robust when used in empirical applications.  The 

universal threshold, assuming a variance of innovations (errors) σ2
ε and a number of 

observations T is given by: 

 

 22 ln( )e Tδ σ=  (5.12) 
 

and the soft thresholding rule applied to wavelet coefficients w is: 

 

 ( )soft 1
w sgn( ) | | | (| | ) |

2
w w wδ δ = − + − 
 

 (5.13) 
 

Since the true variance of the innovations is unknown, a mean absolute deviation 

estimate can be computed as the ratio of the median of wavelet coefficients at the 

finest timescale over a normalization factor that has been found to be optimal: 

 

 
1( )

ˆ
0.6745

j

MAD

median wσ
=

=  (5.14) 
 

5.5 State-Space Estimation with Wavelet Thresholding  

Hidden component models are increasingly used and particularly well suited to 

estimation by the state-space approach (Durbin and Koopman 2001).  In this class of 

models, potentially unobservable (latent) state variables are estimated together with 

the model parameters using available data.  The standard method is to first derive a 

reduced form of the theoretical relationship that is to be estimated in a state-space 

framework.  This reduced form is estimated using the Kalman filter that relates the 

measurement equation, for which the dependent variable is observable, to the 

transition equation, for which the dependent variable is typically unobservable. 
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Use of the Kalman filter follows previous work in this area by Schwartz 1997, 

Schwartz and Smith 2000, Fackler and Roberts 1999, Sorensen 2002, Korn 2005, and 

Fackler and Tian 2003.  Although the state space approach using the Kalman filter is 

powerful and enlightening, it is computationally difficult to ensure that global rather 

than local optima are attained.  In fact, the developers of the R programming language 

explain that: “Optimization of structural models is a lot harder than many of the 

references admit.  For example, the Air Passengers data are considered in Brockwell 

and Davis (1996): their solution appears to be a local maximum, but nowhere near as 

good as that produced by [R procedure] StructTS.  It is quite common to find fits with 

one or more variances zero…” (R Development Team 2006, pp. 1220). 

 

We follow most closely Sorensen’s (2002) estimation structure but with two 

significant differences.  First, we consider not just a two-state variable model but 

several models with a number of state variables ranging from one to four.  Second, we 

pre-filter the price data using wavelet thresholding to remove very short term noise 

that may obscure meaningful economic parameters.  Where Sorensen lets the number 

of traded maturities on any given day vary within the sample, we use only the five 

nearby contracts.  Our justification is that trade volume for more distant maturities is 

very low and these data points may not be entirely reliable.  We have considered 

imposing parametric identifying restrictions based on previous findings in the 

literature.  However, as this literature is still young and previous results are not always 

in agreement, it was decided to only use model restrictions such as cross-term 

covariance restrictions to ensure identification.  For example, although empirical 

evidence suggests the market prices of risk λ are small and sometimes not 

significantly different from zero, we nonetheless include these parameters because 

theory suggests they are economically meaningful.  We also allow correlation between 
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state variables rather than impose a zero correlation restriction.  Sorensen (2002) finds 

that for his two-state variable model, correlation is small but significant.  Lastly, 

identifying restrictions may be obtained by using exogenous (more accurately, pre-

determined) variables such as using the daily log-range of prices to estimate the 

diffusion terms σ or using the 3-month US Treasury bill to provide a measure of the 

risk-free rate of interest for the drift term.  For the objectives of this chapter, however, 

these do not appear necessary.   

 

The Kalman filter is used to estimate the maximum likelihood parameters of the state-

space model of futures prices.  The two most important issues in this estimation 

problem are solving the reduced form identification problem and providing the 

Kalman filter with sensible starting values.  For the latter, we initialize the procedure 

using the estimates found by Sorensen (2002).  The identification problem in this case 

is the recovery of structural model parameters from the estimated reduced form model.  

As explained by Roberts and Fackler (1999), the complete model of the term structure 

of futures prices for agricultural commodities is over-parameterized, equivalently, 

under-identified.  This implies there is not a unique solution to the estimation problem.   

 

The state-space model is based on a measurement equation and a transition (state) 

equation.  For each time series date t={1,2,3,…,T}, the transition equation is: 

 

 1 1t t tX a AX η+ += + +  (5.15) 
 

where, for the case of three state variables we have: 

 

a=(µ − 0.5σ2,0,0,0)Τ 
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and the covariance matrix of the state variable innovations, from which are derived 

parameter identifying restrictions, is: 
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 (5.17) 
 

 

where ∆ is an increment in the unit of time, here 0.04 which is the ratio of one 

business day over one year (250 business days).  The covariance matrix for the case of 

four state variables follows naturally from the above three-variable matrix. 

 

The measurement equation for five maturities, such that Yt is a vector of length five at 

each point in time, is: 

 

 t t t t tY c C X ε= + +  (5.18) 

 

where: 
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and εt is distributed IID Normal with mean zero and covariance σε
2 ΙΙΙΙt .  The Kalman 

filter is initialized with starting values for the state variables and covariance, then 

computes one-step ahead forecast errors between forecast and actual observations.   

The exact diffuse prior of Durbin and Koopman (2001) is used to improve the 

behavior of the transition covariance matrix. 

 

5.6 Estimation Results for One-Factor to Four-Factor Models 

Table 5.1 presents estimated parameter values for the one, two, three and four-factor 

models using both the original (full sample) data and the wavelet filtered data using 

Donoho and Johnstone’s threshold criterion.  For one to four factors, the number of 

estimated parameters is, respectively, 3, 7, 12 and 18.  This implies the computational 

burden grows substantially as the number of factors increases.  The simplest model 

nested in the Gaussian N-factor framework considers the log of futures prices to be an 

affine function of one non-stationary state variable in addition to parametric terms: 

 

 ( )21
log F(t,T)= t+ - + ( )

2 t tT t s t xµ µ λ σ ε  − + + + 
 

 (5.21) 
 

 2
t 1

1
x

2 t txµ σ η−
 = − + + 
 

 (5.22) 

 

where s(t) is the seasonal, deterministic function described earlier and (T-t) is the time 

to maturity expressed as a fraction of one year. 

 

The parameter estimates suggest that both the non-stationary long-run drift and the 

risk premium are small, as expected from theory, although all are significant at the 1% 

level assuming sensible convergence of the numerical derivatives.  The diffusion term 
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is consistent with previous estimates found in the literature.  Looking at wavelet-

filtered one-factor model estimates, the main difference is that the risk premium 

parameter is now nearly zero.  This may be interpreted as evidence that very short-run 

variation consists of a non-zero risk premium rather than noise.  As expected, 

estimation convergence also improves because the filtered data variance is smaller.   

 
Table 5.1: Estimation results from one- to four-factor models of the term structure of 
futures prices, Chicago Board of Trade corn futures five nearby maturities, from 
2/1988 to 1/2005. Results provided for both full sample and wavelet-filtered sample 
data. 
 

 One factor Two factor Three factor Four factor 

    original filtered original Filtered original filtered original filtered 

µ 0.0058 0.0051 0.0049 0.00405 0.00947 0.003478 0.00509 0.000469 
κ2 . . 0.162 0.00034 1.1361 0.0144 1.31392 2.2581 
κ3 . . . . 1.1357 2.9974 0.49811 2.257 
κ4 . . . . . . 0.45184 2.2701 
σ1 0.1077 0.101 0.1995 0.0891 0.1378 0.1668 0.096 0.1934 
σ2 . . 0.0297 0.0488 0.0242 0.0707 0.1242 0.2964 
σ3 . . . . 0.0686 0.0294 0.0782 0.2055 
σ4 . . . . . . 0.0186 0.198 
λ1 0.011 -0.0046 -0.119 -0.1775 -0.2661 -0.2225 -0.077 0.0261 
λ2 . . 0.0872 0.1821 0.15996 0.2049 0.0803 0.0103 
λ3 . . . . 0.15363 0.1637 0.0506 0.0234 
λ4 . . . . . . 0.1033 -0.0631 
ρ12 . . -0.2128 0.270 -0.0232 -0.0103 0.680 0.99 
ρ13 . . . . -0.8559 -0.5335 0.324 0.99 
ρ14 . . . . 0.1454 0.99 0.199 -0.99 
ρ23 . . . . . . -0.99 0.99 
ρ24 . . . . . . -0.7488 0.99 
ρ34 . . . . . . 0.458 0.99 

Note: all parameter estimates are individually significant at least at the 5% level. 
 

The second and additional factors are mean-reverting state variables.  Although a clear 

economic meaning is elusive, these factors help explain the shape of the forward curve 

(e.g. contango or backwardation) through their interaction with the remaining time to 

maturity, and can be used to recover estimates of convenience yield and cost of carry.  

Note that if two or more mean-reverting state variables are used, mixed shapes can be 
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captured, for example if the curve is in contango for the three nearest maturities but in 

backwardation for the most distant three maturities.   

 

The two-factor model is: 
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 2
1( 0.5 ,0)Tt t tx Axµ σ η−= − + +  (5.24) 

 
where the matrix A is: 
 

 
2

1 0

0
A

e κ− ∆

 
=  
 

 (5.25) 
 

Recall that the first state variable is non-stationary geometric Brownian motion so 

implicitly we have imposed the restriction κ1=0.  For both the full sample data and the 

wavelet-filtered data, parameters are statistically significant at least at the 5% level.  

The wavelet-filtered sample estimates are less plausible than those obtained from the 

full sample, in particular the small value of the mean-reversion parameter κ.  

 

The three-factor model incorporates a second mean-reverting state variable and 

provides a superior fit to the data on days when the curve is not smooth but rather 

kinked.  The results suggest once more that the non-stationary variable has a 

negligible but nonzero drift and significant diffusion, while the mean-reverting speed 

for the other two state variables is fast and consistent with previous findings—larger 

than Sorensen’s (2002) but smaller than Fackler and Roberts’s (1999).  The mean-

reverting state variables have diffusion parameters that are smaller than those found in 

the literature but not unreasonable.  The three risk premium parameters are sizable but, 

crucially, add up to only 0.048, which confirms the literature’s findings that the 
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overall impact of risk premia for agricultural commodities is small.  The non-

stationary state variable is essentially uncorrelated with the first mean-reverting state 

variable but strongly negatively correlated with the second.  The two stationary state 

variables are only weakly correlated.  It appears pre-filtering the data using wavelet 

thresholding fails to improve estimation and some of the resulting parameter estimates 

are less plausible.  In particular, the estimates for the two mean-reverting parameters 

are poor.  It seems that wavelet filtering makes it difficult to separate the influence of 

the two stationary state variables as their correlation coefficient nearly equals 1. 

 

Lastly, we consider the results from estimating a four factor model, which is 

characterized by one non-stationary state variable, three stationary state variables and 

17 constant parameters to be estimated.  The wavelet-filtered estimates are better 

overall.  In particular, the mean-reverting speed parameters κ and the diffusions σ take 

far more sensible values and the market prices of risk are smaller and more consistent 

with the literature’s previous findings.  However, the correlation coefficients are 

unreasonable.   

 

5.7 Interpretation of the Results and In-Sample Tracking  

To evaluate the tracking ability of each model, the dates 3/17/2004 and 6/17/2004 are 

selected.  On the first date a clear backwardation pattern is visible, and on the second 

date it is contango.  It is assumed no economic structural change has taken place 

between the two dates as they are only three months apart and seasonality is controlled 

by the deterministic sinusoidal term.  Parameter estimates and the Kalman filter 

estimated state variable (latent) time series are used to compute in-sample predictions 

of futures prices for all maturities on the given dates.  Futures prices predicted from all 



 

142 

four models, with and without wavelet thresholding, are compared with the actual 

prices on those days.   

 

Figures 5.2 to 5.5 provide examples of how well each model tracks the data, with and 

without wavelet thresholding.  Figure 5.2 shows that for a typical contango pattern of 

futures prices the one factor model performs poorly and, with or without wavelet 

thresholding, substantially under-estimates the prices.  In Figure 5.3, which also 

displays a contango pattern, the two factor model greatly over-estimates the prices 

again whether or not a wavelet threshold is used.  In Figures 5.4 and 5.5 

(backwardation and contango, respectively), three- and four-factor models using 

wavelet thresholding perform well, but these need not be representative.   

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2: One factor model estimation with and without wavelet thresholding, in-
sample tracking for Chicago Board of Trade corn futures on 3/17/2004 (contango).    
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Figure 5.3: Two factor model estimation with and without wavelet thresholding, in-
sample tracking for Chicago Board of Trade corn futures on 3/17/2004 (contango) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4: Three factor model estimation with and without wavelet thresholding, in-
sample tracking for Chicago Board of Trade corn futures on 6/17/2004 
(backwardation) 
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Figure 5.5: Four factor model estimation with and without wavelet thresholding, in-
sample tracking for Chicago Board of Trade corn futures on 3/17/2004 (contango) 

 

The fit of the different models ranges from good to very poor and varies substantially.  

One unexpected result is that filtering using the wavelet threshold does not improve 

estimation.  It may imply that short-run variation that appears to be noise is in reality 

economically meaningful.  Alternatively, it may be that wavelet-based filtering only 

improves the estimation of models that are already robust and stable, which is not the 

case here.   

 

To explain the difficulty of obtaining sensible estimates, a likely cause is the 

combination of a non-stationary variable and one or more stationary variables, which 

creates instability in the Kalman filter estimation.  To improve convergence, we used 

Durbin and Koopmans’s (1997) exact diffuse prior (initial condition) for the Kalman 

transition variance and we excluded the first few observations from the variance 
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calculation.  These steps appear insufficient.  One interpretation of the results is that, 

given the very small value taken by the long-run drift term µ, it may be better to 

impose the restriction that there is no non-stationary component in agricultural 

commodity futures prices (see more generally e.g. Korn 2005). 

 

Another explanation for the poor convergence of the models is that daily observations 

were used rather than the more traditional weekly sampling.  Alternatively, it may be 

beneficial to conduct the analysis on two or more sub-samples of the entire dataset, as 

Cortazar and Naranjo (2006) have done.  The strategy has the added benefit of 

providing evidence on whether any of the parameters have changed over time.   

 

Previous research suggests the market prices of risk associated with state variables are 

negligible, and inclusion of these parameters substantially complicates the estimation 

procedure.  Crucially, it appears that incorrect estimation of the market prices of risk 

contaminates the accuracy of mean reversion parameters, which are essential to 

capturing the shape of the forward curve.  Yet the market prices of risk contain 

information on whether the shape is in contango or in backwardation.  A potential 

extension of this work is to test the hypothesis that wavelet-filtered noise is a good 

estimator of the time-varying market price of risk.   

 

5.8 Conclusion 

Risk management in commodity markets depends on an understanding the 

constellation of futures prices.  A powerful framework to model the relationship 

between futures maturities is the term structure of futures prices, also called the 

forward curve.  Recent theoretical advances show that the term structure can be 

described by a convenient, affine model specification that lends itself well to state 
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space econometric estimation using the Kalman filter.  This chapter asks: Can we 

better track and forecast the term structure of commodity futures prices with the help 

of carefully designed filters?  Is variation at the very short run only measurement noise 

or is it economically meaningful?  And, given improvements in computing power, 

how much accuracy is gained by modeling substantially larger, more complicated 

models?   

 

The evidence presented in this chapter suggests that wavelet thresholding, a class of 

filtering methods that has been found to be optimal and highly successful in the 

natural sciences, does not help us understand futures prices.  A plausible interpretation 

is that what appears to be noise in economic data, unlike experimental data, is likely to 

be meaningful.  As a result, larger models may, despite the loss of parsimony, a better 

approach than filtering to obtain accurate estimates of the term structure of futures 

prices. 

 

The results also show that while three-factor models are superior to one and two-factor 

models, it is not clear including a fourth factor improves the results.  This finding has 

practical implications because the number of parameters to be estimated increases 

faster than does the number of factors in the model.  The results also confirm that a 

non-stationary state variable does not appear warranted, and elimination of this 

variable is likely to improve convergence of the model.  It is difficult to evaluate the 

significance of market prices of risk.  Individually, each parameter is found to be 

significant, but the sum of all market prices of risk is only weakly different from zero.  

An potential extension of this work concerns the hypothesis that noise filtered out 

using wavelet thresholding provides good estimates of the time-varying market prices 

of risk.  
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CHAPTER 6 

CONCLUSION 

 

This thesis addresses three problems in the literature on commodity futures markets 

and provides new insights by combining empirical time series analysis with statistical 

methods derived from wavelet transforms.  The common theme to all three essays is 

the identification of effects that are specifically explained by distinct time horizons of 

decision-making, from the short-run to the long-run.  Although this thesis adopts a 

particular hierarchy of time horizons (i.e. daily, semiweekly, weekly,…), wavelets 

allow the researcher to define any hierarchy of time horizons, subject to some 

conditions, to provide the best analysis for the economic problem under scrutiny.   

 

An introduction to wavelets is presented in Chapter 2 using the lifting scheme 

approach of Sweldens (1994).  After providing an intuitive demonstration of wavelets 

as building blocks for transformations of the data, we define and explain the most 

important wavelet properties for time series analysis.  Illustrations are provided using 

the Haar and Daubechies wavelets, which are the two most widely used in this area of 

research.  We show, using results of a simulation study on two typical economic time 

series, that applying wavelet transforms to the data does not cause loss of statistical 

information beyond a trivial level of machine precision and moreover does not alter 

the stationarity of the data.   

 

In Chapter 3, we ask whether findings of long memory in commodity futures prices 

and price volatility are spurious, and, more generally, test Granger’s conjecture that 

economic and financial time series are not characterized by true long memory.  Using 

a robust wavelet-based estimator, we find that long memory appears to be significant 
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for all commodities and is not overly sensitive to either choice of estimator or to the 

bias caused by the presence of short memory (e.g. ARMA, GARCH effects).  Because 

standard asymptotic tests have been found to over-reject the null of long memory, we 

use three recently developed tests of spurious long memory and find that only two out 

of eleven commodities (wheat and canola) are characterized by true long memory.  

Certain stochastic break models are known to generate spurious long memory, so we 

fit the data to a Markov-switching model and show that it provides a good fit.   

 

Several extensions to the chapter appear promising.  The long memory models 

estimated in this work are fractionally integrated ARMA (ARFIMA), but a wavelet-

based fractionally integrated GARCH model could be estimated instead and may 

better capture short memory volatility dynamics.  Also, a large number of models can 

in theory generate spurious long memory.  The difficulty of finding out which model 

provides the best fit is that the different alternatives are generally non-nested, so that 

traditional Likelihood Ratio, Wald and Score tests are not appropriate.  A systematic 

study of competing models of true and spurious long memory appears warranted.   

 

Chapter 4 asks: Have large Index Traders increased volatility in commodity markets?  

Should the Commodity Futures Trading Commission consider making permanent its 

pilot project whereby the positions of Index Traders are reported separately from the 

positions of other large traders?  Without access to confidential CFTC data, we adopt a 

“revealed” methodology and infer the effect of Index Traders in a joint model of 

volume-price volatility.  Wavelets allow us to filter out all variation in trade volume 

that is associated with shorter time horizons at which it is known Index Traders are not 

active.  The evidence suggests large Index Traders may have increased price volatility 

for non-storable commodities (live cattle and lean hogs contracts), but not for storable 
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commodities (grains).  In contrast, most of the previous literature has only examined 

the effect of speculators and found that there is no evidence their trading increases 

market volatility.  The results should be particularly useful in light of the CFTC’s 

current actions and may provide a suitable methodology to examine markets for which 

confidential trader-level data are not available.  A worthwhile extension may be to test 

structural hypotheses on the theory-motivated differences in production dynamics 

between storable and non-storable commodities.  Production dynamics may well 

explain why non-storable commodities are influenced by Index Traders.   

 

Chapter 5 considers the problem of modeling the dynamics that explain, each day, the 

pattern or constellation of futures prices expiring at different maturities.  Adopting a 

recently developed affine term structure model, we ask: Can we better track and 

forecast the term structure of commodity futures prices and volatility by carefully 

designing filters to remove from the data what ought to be noise?  Are substantially 

larger and more complex state-space models warranted to obtain a superior fit to the 

data?  The evidence found in this chapter suggests that even wavelet thresholding 

filters, found to be optimal and highly successful in the natural sciences, do not appear 

to help in the case of futures data.  As a result, using a greater number of factors or 

state variables appears to be still the best way to improve the results, despite the loss 

of parsimony and identification difficulties associated with having a very large number 

of unobservable parameters.  Yet it is not clear that including four or more state 

variables pays off its higher computational cost.   

 

This chapter provides several possible extensions.  If noise removed by wavelet 

thresholding is economically meaningful, it may provide a method to estimate a time-

varying market price of risk.  Indeed, constant estimates of the market prices of risk 
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are often not significantly different from zero.  Difficulties encountered with model 

convergence suggest that the non-stationary state variable, included to capture 

permanent economic shocks, should be excluded, particularly since the long-run drift 

parameter is consistently found to be of negligible size.   

 

In conclusion, this thesis contributes several new findings on timely and persistent 

questions in commodity derivatives markets, and combines well-established time 

series analysis with statistical methods based on wavelet transforms to better identify 

and measure the economic importance of various distinct time horizons in different 

problems.  The thesis shows that using wavelets allows new economic hypotheses to 

be formally tested and contributes to a better understanding of existing results in the 

literature.   
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APPENDIX  

 

A.1 Data Cleaning 

Observations for 19 October 1987 (“Black Monday”) and 11 September 2001 are 

considered outliers and removed from the sample. 

 

Soybean prices were allegedly manipulated by the agribusiness giant Feruzzi over the 

time period May-July 1989 (e.g. Kolb and Overdahl, 2006, p.83-84; Pirrong 2004). 

For most of the analyses, the data used begin with August 1989. 

 

The measurement unit of corn and soybeans futures contract positions at the Chicago 

Board of Trade and wheat futures at the Kansas City Board of Trade changed on 

January 1st 1998 from thousands of bushels to number of contracts, each of which 

equals five thousand bushels. To ensure consistency in the time series, observations 

before January 1st 1998 are divided by five, so the unit of measurement throughout is 

the number of contracts. 

 

The Chicago Mercantile Exchange replaced in 1997 the live hog futures contract  

(live animal weight-based) with a lean hogs futures contract (carcass weight-based), as 

a result of which trade volume has increased substantially (Ditsch and Leuthold 1996; 

Carter and Mohapatra 2006). The new contract is cash settled using a  daily price 

index (weighted average) provided by the USDA and excludes prices from terminal 

markets. Ditsch and Leuthold (1996) predicted the new contract would provide a 

better hedge and Carter and Mohapatra (2006) found empirical evidence that the 

futures contract during its first six years (1998-2004) indeed provided good forecast 

power 



 

 152 

 

New York Board of Trade cocoa data contained a mistake: the volume and open 

interest columns were inverted for all observations in 9/2002 and 10/2002. This was 

corrected before estimation. 

 

Chicago Mercantile Exchange live hogs futures total volume data records data entry 

errors all for the year 2001: 2/9/2001, 6/22/2001, 7/13/2001, 7/25/2001,  7/25/2001, 

8/17/2001, 9/25/2001, 10/16/2001, 10/25/2001, 11/1/2001, 11/5/2001, 11/13/2001, 

12/5/2001, 12/14/2001. 

 

KCBOT wheat futures prices are reported in dollars and fractions of a dollar, not 

cents. Before using these data in any way, they were adjusted into dollars and decimal 

values (cents). 

 

 

A.2 Additional Estimation and Test Details 

In Chapter 2, the ADF test on the typical futures price time series (corn futures), with 

no time trend, returns values ranging from -0.76 to -0.93 (one to eight lags), all of 

which are far smaller (in absolute value) than the critical values (-2.57 to -3.45, 10% 

to 1% levels of significance).  The ADF test including a time trend returns test values 

ranging from -1.92 to -2.25, all of which are smaller (in absolute value) than the 

critical values (-3.13 to -3.99, 10% to 1% levels of significance).  This version of the 

test is nearly equivalent to computing the detrended price time series and applying a 

unit root test (no time trend) on the detrended time series (test values are instead -1.93 

to -2.27). 
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Alternatively, a Variance ratio test (Lo and MacKinlay, 1988, 1989) can be computed 

to evaluate the null hypothesis of no random walk. This specification test considers, 

for different levels of time aggregation, the ratio of sample variances, under the 

assumption that a random walk will display increasing variance as the level of 

aggregation increases. The test results suggest we cannot reject the null. 

 

The ADF test applied to each wavelet-computed time horizon data provides the 

following results. For daily variation D1, test results range from -40.31 to -30.82 

(preferred lag selection of six leads to a test value of -37.13), all of which exceed the 

critical values of -3.99 to -3.14 (10% to 1% levels of significance), and there is no 

doubt the null of a unit root is rejected. For semiweekly variation D2, the test results 

range from -6.48 to 12.76 (9.46 for preferred choice, six lags). The null can only be 

rejected if the number of lags specified is one or two. Therefore, for a plausible lag 

specification, we cannot reject the null hypothesis. For weekly variation D3, the test 

results range from -7.92 to 5.63 (1.06 for preferred choice, six lags). For biweekly 

variation D4, the test results range from -10.25 to 2.09 (-2.41 for preferred choice, six 

lags).  For monthly variation D5, the test results range from -12.05 to 1.17 (-6.18 for 

preferred choice, six lags). 

  

In chapter section 4.7, ADF tests show that canola futures trade volume is stationary 

(test value = -38.456, p<0.01).  

  

In Chapter 5, Augmented Dickey-Fuller tests on the log-price corn futures data return 

the values: -2.7373*, -2.9595** , -3.1235*** , -3.6002*** , -3.9984***  for each of the six 

closest maturities, from nearest to most distant. The levels of significance are 10% (*), 

5% (**) and 1% (***). The test was computed using an intercept, no time trend, and 
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one month of daily business day lags (20 lags). For the first nearby futures data, we 

consider the possibility of a time trend and regress the once-differenced log-prices on 

an intercept, but cannot reject the null hypothesis that this intercept (time trend in 

levels) is zero.   

 

Estimation of state-space models is done using different procedures in Matlab, R and 

RATS depending on the desired objective. Linear ARMA full-information estimation 

by state space is done in R.  Constrained optimization procedures are generally done in 

Matlab. Hidden component state space model estimation using the Kalman filter is 

done mainly in RATS using the DLM procedure with NONLIN parameter description 

and constraints and optimization criteria set by NLPAR. Optimization routines are 

SIMPLEX for the first approximation and BFGS for the actual solution in order to 

obtain standard errors for the parameters. 200 iterations and 100 sub-iterations are 

allowed for the BFGS, and up to 5000 trials for the SIMPLEX method. The EXACT 

diffuse initial conditions of Durbin and Koopmans (2001) are used to control the 

behavior of the non-stationary component of variance in the Kalman filter procedure. 

The Kalman gain matrix variance is assumed scaled proportional to the system 

variances. 

  

The wavelet threshold filtered data contain 16 unfiltered observations at the beginning 

and end of the sample because the initial and final filtered observations are likely to 

suffer from boundary effects caused by the wavelet transform. 
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