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The time horizon of decision-making is an esseulil@mension of economic problems
but is difficult to explicitly define. In this tes, we use time series analysis
augmented by wavelet transform methods to precidelytify distinct time horizons

in economic data and measure their explanatory poWweis enables us to address
three timely and persistent questions in the liteeaon commodity derivatives
markets are addressed. First, are findings of tnagory (fractional integration) in
commodity futures price volatility spurious, follavg Granger’s conjecture? Yes,
only two out of eleven commaodities are characterizg true long memory and certain
stochastic break models (e.g. Markov-switching)faumd to be more plausible.
Second, do large Index Traders such as commoddis @md pension funds increase
futures price volatility through a large volumetadding activity? This appears to be
true only for non-storable commodity contracts.irdhcan we improve the accuracy
of term structure models of futures prices byr{@luding more state variables to
better capture maturity and inventory effects, @ndiltering out what appears to be
noise at the shortest time horizons? The resugigest that (i) three state variables is
an optimal choice and (ii) estimates using filtedada are not improved and the noise

may be economically meaningful.
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CHAPTER 1
INTRODUCTION

This thesis addresses three timely problems ihit#rature on commodity derivatives
markets. Novel insights with practical implicatsoare provided on the causes and
consequences of long memory, the impact of lardexrTraders on market volatility,
and the shape of the futures price term strucforevérd curve). The empirical
strategy consists in a combination of establisited series analysis with statistical
tools derived from wavelet transforms, a recendyaloped concept that has found
widespread use in the physical sciences and imeagng. The following example

illustrates what is a wavelet.

Consider the problem of a commodity producer whtigpates in the futures market
because she wishes to hedge her position agaiostrmk. She examines historical
data available on futures prices for different méies. Each time series may be
considered individually as a univariate signal eomnated by measurement noise.
Theory, however, does not suggest a uniqgue modeiglain what the true data

generating process might be.

In the absence of a well-motivated structural mopdeé approach to better understand
the data is to find an approximation of the timeeseusing elaborate but deterministic
functions. Two well-established methods are simdss@unctions of sines and
cosines) and splines (polynomial knots). In b@hes, the idea is that any signal can
be approximated by an arbitrarily large sum of dateistic terms. The difficulty is
that this sum tends to be prohibitively large, esglly in the case of asset prices

where singularities are the norm and not the exmeptinstead of sinusoids and



splines, a better building block would be a detarstic function that is itself shaped
somewhat like the data: short, asymmetrical wawvesaining spikes and cusps. In

other words, the ideal building block may be the/elat.

A second approach to learn from the observed ddtagonsider the problem of
filtering out noise to see the true signal moradie This is a special case of the vast
class of signal extraction problems that spansraéfields of research. In the case of
futures prices, the principal difficulty is how dastinguish measurement noise from
short-lived but economically meaningful variabilitfhere is clearly a trade-off to be
considered, but in general the application offdteas led to results where either the
signal is “over-smoothed” or the noise is insu#idly reduced. Here too, research in
the natural and experimental sciences suggestsisiag wavelets to define a filtering
criterion may be useful. In those fields, strikendyvances have been made, but the
nature of the data (deterministic, experimentaihwontrolled measurement error) is
different enough from economic and financial datachastic, observational, with

significant measurement error).

Risk management increasingly relies on the usejlfisticated instruments that
provide diverse types of insurance. Market pgréints face various forms of risk,
including price, yield, credit, weather, and incdraeenue. Accurate modeling of
volatility is vital to the success of commodity rkets and by implication, to a light
and more efficient regulatory presence. Correicimg of options, optimal storage
and inventory decisions and hedging risk in gdralaepend on the ability to track
and forecast volatility well enough. Although th@ume of research on futures
markets is large, too much emphasis appears tolieese placed on narrow, technical

guestions, and too little on fundamental, unsokeahomic problems. In his Editor’s



note, Powers (1994) writes: “Deeper insights aeded into the structure, conduct
and performance of the industry; the purpose, egleg, costs and benefits of the
regulatory structures; the implications of legatid®ns and tax and accounting rules

on market efficiency; market usage and risk manayérn

This dissertation presents three essays on sorssstest and timely questions on
commodity derivatives with practical implicatiora imarket participants. New
insights and results are obtained from the empianalysis of commodity futures and
options time series supported by statistical methmaksed on wavelet transforms. The
emerging field of wavelet analysis is well suitechelp with the empirical
identification of effects and causes specific tdipalar time horizons of decision-

making.

Wavelets are a class of mathematical functionssh@sfy specific regularity
conditions that make them ideally suited for thve@ad types of problems: (1)
approximating complicated functions by a finite sofisimpler functions (i.e.
wavelets), (2) decomposing an empirical time sedaaset into asymptotically
independent components, and (3) creating an idesalthat is specific to the data
under scrutiny and where the wavelets are tailtmedatch the data’s characteristics.
Wavelet analysis is much more flexible than Foussealysis and is more
economically intuitive. For instance, a timesaddgeomposition can be interpreted as
isolating the different time horizons across whihistributed the variable of interest

(e.g. futures prices).

Following the introductory chapter is a short cleaptritten to cover the essential

results from wavelet theory as it provides insights the statistical methods used.



Chapters 3, 4 and 5 consist of three independsale®n persistent problems on
commodity derivatives markets. Few applicationsra¥elet methods have been
made to economics so far. Yet many problems atertenderstood when the time

horizon of decision-makers is explicitly considered

The essays are connected by their emphasis odehéfication of time horizon-
specific influences. It is well understood in esomcs and finance that, for instance,
individuals make decisions not only on the basigrwhediate costs and benefits but
also based on long-run consequences. It is, hawewkcult to precisely characterize

the different time horizons, ranging from shorntdo long term.

A helpful, qualitative interpretation of the impanice of economic time horizons is
provided by Peters (1994) and suggests many tedtgplotheses if a precise
definition of different time horizons can be given:
» “Markets are stable when they contain investor$ fatge numbers of
different time horizons, thus ensuring ample ligyid
» “If the validity of fundamental information changésng-term investors either
stop trading or trade on technical factors. Howetlee market becomes less
stable without the long-term horizon investors.”
» “Prices reflect a combination of short-term andgiiarm valuations, where
short-term valuations are more volatile.”
* “If [an asset] has no tie to the economic cyclg.(eurrency), there is no long-

term trend, so trading, liquidity, and short-temformation dominate.”

Wavelets provide an intuitive, theoretically souadd computationally tractable

framework in which to define and empirically iddptdifferent economic time



horizons. Time horizons in economics are genemrtipirically identified as sub-
samples or moving windows of a dataset. For exangata may be aggregated as
yearly, quarterly, or monthly. In contrast, waviglenable a simultaneous analysis of
how much variation in the data occurs in large neinds time horizons or timescales.
A simple image is that of a novel made up of sdwerapters. Suppose someone
reads only the introduction and the conclusione fidader knows how the story
begins and ends, but not how events unfold duhegritermediate chapters, their

occurrence over time and the speed at which eweritdd.

Our explicit identification of time horizons is tur knowledge the first such use of
the methodology in the literature. Itis made gasdy decomposing the original
data using wavelet transforms (Mallat 1992; Mey@92, Daubechies 1993). This
thesis provides new, empirically-supported answethree timely and persistent
problems in the literature on commaodity futures keés. The methodological
contribution of the thesis is the application ofweket transform-based time series
analysis adapted for economics from their origeraineering and applied

mathematics purposes.

The principal motivation for adapting wavelet methdor economic time series
analysis is to enable the identification of the aoipof distinct time horizons as
explanatory factors driving the unknown stochagtacess that underlies observed
economic time series such as daily commodity ftréces. In Chapter 2, numerical
examples and an intuitive step-by-step construcjmproach are used to explain the
concept of wavelet functions and resulting wavekatsforms. This approach has the
advantage of avoiding a discussion of Fourier aigiyith no loss of accuracy. After

defining the key concepts, it is argued on theshakclear criteria that a specific class



of wavelet functions is best suited for empiricale series analysis. Much of the
analysis in the thesis depends on the accuradyeafdmputational wavelet transform
when applied to real data. Therefore, a numesicallation is presented, where two
time series are generated from pre-specified psase@ stationary ARMA process
and a non-stationary, long memory process) andmposed through wavelet
transform analysis. It is then shown that the fsstatistical information from the
transformation is limited by the software machineggsion (double precision in
Matlab or R). Lastly, this chapter considers theetseries properties of the wavelet-
obtained components of the includes an analydiseoproperties of a typical

commodity futures price time series

Chapters 3, 4 and 5 consist of three essays offytpneblems in the literature on

commodity derivatives markets. The main reseausstions asked and answers

obtained in this thesis are the following:

* In Chapter 3, we ask whether the literature’s figgdi of long memory

(persistence) in futures price volatility are spus. True long memory may
allow arbitrage, undermine the efficiency of futsirearkets, and induce a
substantial bias in the price of options on futuréghey are spurious, is the
illusion of persistence caused by short memoryilieaestimators, or the
presence of random breaks in the data process?g ldsobust estimator in a
joint model of both short and long memory effeets, find that long memory
estimates are significant and are explained nelijpeshort memory bias nor by
the choice of estimator. However, an applicatibreoently-developed tests
based on the properties of true long memory shbhatsfor nine out of eleven
commodities studied, long memory is spurious. Aenaausible model that is

fitted to the data is a Markov-switching model.



In Chapter 4, we test the hypothesis that Indexi@ns, a class of large
investment funds (e.g. pension funds) that hasasingly invested in
commodities, have increased price volatility. Thwidely-held claim has
motivated the Commodity Futures Trading Commisg$@RTC) in 2007 to
begin reporting separately the positions of Indexd€rs from the positions of
large Commercial and Non-Commercial traders invegkly Commitment of
Traders report separately. In the absence of denfial data on trader-level
positions, this chapter adopts a “revealed” methmgloto evaluate the impact
of Index Traders on market volatility. The CFT@search shows that Index
Traders do not engage in short-run trading. Weetbee filter out from a
dataset on daily futures trading volume all vaoatoccurring at time horizons
shorter than one month and use this filtered dagajoint model of trade
volume and price volatility. Filtering is enablbg wavelet transform analysis
(see Chapter 2). A Hausman-Wu test confirms thatrae and volatility are
endogenous, so we estimate the joint model by 28iiri8) both the original
data and the wavelet-filtered data. Comparingwhesets of estimates, the
evidence suggests that Index Traders have increagmdvolatility for non-
storable commodities (meats), but not for storabl@modities (grains). The
chapter’s second contribution is to estimate, flomajor agricultural
commodities and over the time period 1981-2006ettanatory power of all
distinct time horizons on futures trade volume. fidd that non-storable
commodities generally trade at shorter time hoszihlan do storable
commodities, and also that, perhaps as a resuidek Traders, intermediate
and long run time horizons have gained importandée last five to ten years.
Two tests of structural breaks and change-poitsiaed: one wavelet-based

Monte Carlo and the other in the Andrews-Plobetdgansen sup-Wald class.



Chapter 5 looks at the problem of forecasting thestellation of futures prices
and volatility. To make this problem tractable, egtimate a state space
dynamic term structure model using the Kalmantrfilt€his model is
explained by a small number of latent factors atesvariables and provides
computed parameter values for drift, diffusion, meaverting speed, risk
premia, convenience yield, cost of carry, and sealgyg. This chapter
considers the ability of two alternative approadiesnprove efficiency. The
first is to increase the number of state variatdesl parameters). The second
is to apply, before estimating a parsimonious stptee model, the statistical
method of wavelet thresholding to pre-filter theadand remove mean zero
noise below a threshold that is not arbitrary latiher endogenously
determined. If this noise is indeed of no econasigaificance, the resulting
estimates must be both more accurate and moréeetficHowever, the
evidence suggests that what appears to be shorteiga in fact contains
information that helps obtain good parameter esgmaThe results also
suggest that including more than three state vi@sainodel does not improve

estimation accuracy enough to warrant the great@patational burden.



CHAPTER 2
WAVELETS AND TIME SERIES

21  Introduction

This chapter provides a selective review of wavitlebry as it applies to time series
analysis. A thorough treatment of wavelet methadgatistics is contained in Ogden
(1996), Percival and Walden (2001) and Vidakovg98). Seminal contributions
include Daubechies (1988, 1992, 1993), Mallat ()J9RRyer (1985, 1993), Strang
and Nguyen (1996) and Stromberg (1985).

Two detailed surveys of wavelet methods for ecoldinie series analysis are
Crowley (2007) and Gencay, Selcuk and Whitcher 20(¥et these sources as well
as all economics papers introduce wavelets thréiogiier analysis and vector spaces
(e.g. Luenberger 1969). While these conceptsaandifir to economists, they are not
commonly used and therefore do not provide a dyitabar introduction to wavelets,
particularly since wavelets have been designea@ihgs an alternative to Fourier
analysis. Therefore, wavelets are instead intreduie this chapter based on the
lifting scheme method developed by Sweldens (19%$sential results from the
theory of wavelets applied to time series analgsgspresented to provide a unifying

framework for the three essays in this dissertation

A simple example illustrates the construction adibavavelets, following which the
main technical conditions are defined and describelde context of empirical time
series research. A first empirical applicatiomgsa variant of the Variance Ratio test
is made in this chapter to determine differencessactimescales (or time horizons) in

the persistence of daily innovations to futuresgsi For the interested reader, an



outline of wavelet theory results for time seriealgsis presented using Fourier

analysis concepts is included in the Appendix.

Also included is a section of results of simulatlmsed wavelet analysis done using
pre-determined Data Generating Processes (DGR)Kntiwn to the researcher.
These simulations consider the analysis of a fglzst, canonical time series models
frequently used in economics and finance. Theddithis section is to provide a
baseline or benchmark against which to evaluategbalts obtained from the analysis

of actual data.

Applications of wavelets to economics and finanaeehbeen limited so far. In his
survey of wavelet methods for economics, Crowld0{ cites eleven journal articles
and ten working papers. Pioneering contributiocuide Ramsey and Lampart
(1998a,b) who investigate the macroeconomic caesationship between money and
income as well as Davidson, Labys and Lesourd (1988 apply a nonparametric
wavelet regression to study volatility at differéimbie horizons in international
aggregate monthly commodity prices. A recent exarapan economic application
of wavelets is Lien and Shrestha (2006), who useslettbased methods to compute

the optimal hedge ratio by time horizon for seve@hmodity futures markets.

2.2  ThelLifting Scheme Approach to Wavel ets}

Wavelets are functions that satisfy specific regiyl@onditions and form a basis (to
be precise, a frame) in a vector space (see eemdarger 1969). Any function in a
general class “can be written as a linear comhlonatf the wavelets” (Sweldens
1994). Wavelets have been widely and succesaiskyl in mathematics, engineering

and in the natural and physical sciences. Thedereration of wavelets (Daubechies

10



1988, 1992, Mallat 1992, Meyer 1992, Stromberg }98lles on a Fourier analysis
framework. The mathematical motivation for using Eourier framework is that
wavelet operations become simple algebra in thei€&odomain. Since Fourier
analysis is used less frequently by economists llygohysicists and engineers, our
presentation draws from Sweldens’s (1996, 1997dsd generation” wavelet
framework which makes no reference to Fourier aigalgnd is more general and
flexible than the earlier approach. To our knowledall economics and finance

papers have introduced wavelets in the Fourierdagg.

In addition to making the concepts and their cacston more intuitive, the lifting
scheme framework provides a more general methaddiing with wavelets. This
means it can be applied to situations where tlbtivaal wavelet approach cannot.
Some relevant examples include the constructiomenfelet transforms ideally suited
to bounded domains, such as intervals (e.g. fieigth time series data) or for
application to irregularly sampled data such astlligh-frequency tick data. Jensen
and la Cour-Harbo (2001) provide a textbook intidthn to wavelets based on the

lifting scheme.

One particularly useful application of waveletsasallow us to decompose a signal or
time series dataset into explanatory shares attiibio each time horizon. The time
horizons are arbitrarily determined but can berprieted as approximate economic

time horizons.

The following example is inspired by Jensen an@dar-Harbo (2001). Consider a

sequence of daily futures settlement prieeg U.S. dollars per unit contract:

{60, 66, 72, 64, 68, 70, 74, 70}

11



Suppose to get closer to the true data generatoweps, we would like to represent
the data in a more efficient form. This is notikelthe engineering problem of
optimal data compression. Consider representiegléta as a correctly time-localized
sequence of means and deviations from means.n# dorrectly, there will be no
statistical loss of information, and the originata@ sequence can be reconstructed as

perfectly as the software level of precision pesmit

We believe the time series data are correlatedcanélation should be higher among
nearby observations than among distant ones. dakigto compute a new vector of
the same length (that is, eight observations) stingi of four pairwise means and four
pairwise deviations from means. We group the alagems into four pairs:
{60, 66}, {72, 64}, {68, 70}, {74, 70}
Then we compute the four pairwise means:
{63, 68, 69, 72}
Lastly we compute the pairwise differences (forhepair, this is the odd observation
minus the pairwise average):
{-3,4,-1, 2}
The data are now represented as both a long run arehtime-localized deviations
from this mean. If we use a large dataset, weotdain a large number of levels of
deviations-from-means. Each level is associatéld svdifferent timescale or time

horizon, for example deviations at the daily tiredecr at the annual timescale.

This simple example is a trivial wavelet transfoand we would like to find an
optimal wavelet transform. Optimality in this caseans the wavelet class possesses
a number of desirable properties that are detenriiyenvhether the wavelet function

satisfies specific regularity conditions. A lamgathematics literature on wavelets

12



shows how different regularity conditions are dedvo ensure a number of properties
that are ideal for applications ranging from statssto physics and engineering.
Optimal wavelet properties are described in a Isg¢etion of this chapter, and it is
concluded that the Daubechies (1992, 1993) fanfilyavelets is best suited overall
for typical economic time series data. An impottxception is irregularly sampled
data such as ultra high frequency tick-by-tick fical data, for which is well suited

Sweldens’s lifting scheme method for custom-designavelets.

Sweldens’s lifting scheme begins with a “trivialawelet such as the mean and
deviations operations, and then “lifting” is appli® produce a better wavelet
transform. Stages of lifting allow the transforonbie tailor-made for the application

and data used. The lifting scheme also nestsaglitional wavelet transforms.

It is also possible to set a threshold below wiiekiations are considered minor and
therefore safely deleted. Such a thresholdingalléevs us to reconstruct the data
using only a subset of the computed differenced itamay be easier to approximate
the underlying Data Generating Process (DGP). ptusedure is discussed further

and applied in Chapter 5.

Lifting involves (a) splitting, (b) predicting, ar{d) updating. Consider some data
Aox. The first step is to split the data into smaflebsets\ 1) andy-1x. The
convention is that index order reflects the sizéhefdataset. No restriction is
imposed except that some method must exist to staart the original data from the
two subsets. The second step, prediction, invdineéng a prediction operatdt that
is independent of the data such that we can prawctubsey-1 ) using the other

Su bseﬂ\(_l,k):
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Y1k = P[A10]
In the third step, we consider repeating the promedand end up with a sequence:
{A i Yeezk Yzkpne-0 Yenko}
where the first vectok-nk) represents the long-run trend of the data, andevine
vectors -1k, Yi-2k),---» Yi=nk} €ach represent variation occurring at a distinct

timescale, which in economics is interpreted ama horizon of decision-making.

Suppose a researcher is working with a time sdaéasset of a single random variable.
The random variable is continuous but recordedsatete intervals (let's assume for
now that intervals are equally spaced). This wectalata could be for example the

end-of-the-day settlement price, in dollars pet nantract, of a traded commodity.

The researcher wishes to model the underlying (owkable) Data Generating Process
(DGP) in order to analyze, interpret and forec&stonomic and financial theory
suggests candidate structural models for the DGhatisually require obtaining

other data as proxies for the explanatory variabgernatively, assuming the data
are well-behaved (e.g. covariance-stationary)issied! inference is valid and a
reduced-form Box-Cox framework can be used instédds ARIMA model provides
estimates of parameters and explains or foredastsanhdom variable using only

information about itself.

Trying to model the unknown DGP is a closely redgteoblem to the challenge of
data compression in the engineering literatureuftfdata are completely random, no
data compression is possible because there doesisba correlation structure to
exploit. In economic time series, we would sayehs no meaningful DGP, and the

data are at least white noise, perhaps IID.
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Consider a vector of datét). Let’'s denote bk a specific sample point, ek={1, 2,

3, 4, ...}. We can define our original vector @ftal as\ o) where 0 means it is the
original. A very simple, naive approximation issiob-sample only the even
observations, so let's defidg-1x) = Ap21. What have we lost? This vector of errors
from the naive approximation is definedyasy and these are precisely the wavelet
coefficients. The simplest possible wavelet ik to let the wavelet coefficients be
precisely the odd observations from the origin@hog-1x) = A 2x+1). This means to
reach the most efficient representation we wanhtgkest correlation between the

initial su bset§\(_1,k) andy(_l,k).

Can we predict the odd observations using onlyettem observations? We can use
the fact that in a typical economic or financiahé series, correlation is stronger
among nearby observations than between distantwaigms. Consider taking the
average of neighboring observations to create @digice:

A12k+1) = 0.5Q 1)+ A-1k+1))
As a result, our wavelet coefficients become:

Y1k = Ao2k+1) — 0.5Q(-1k) + A(-1k+1)

An iterative procedure is obtained by applyingtiethod first to\(-1x) which yields
A-2x), then to the newly obtained.-» ) and so on. This approach however leads to a
problem called aliasing. Intuitively, this meamsr® variation in the data may be
“double-counted.” We would like theterms to capture low frequencies and yhgx
terms to capture frequency. To avoid aliasingjmgose the condition that the
average of the coefficiendg; k) must be the same equal for each lg¢vét is beyond

the scope of this section to provide the matheraktesults behind the optimality of
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specific wavelet functions. Much of the mathenwltliterature on wavelets concerns

this problem, and a seminal collection of papefsusid in Daubechies (1993).

2.3  Desrable Wavelet Properties

In this section, we describe the properties thdtengarticular wavelets optimal for a
given application as well as trade-offs involvedha selection of an ideal wavelet. In
time series analysis, desirable wavelet propentigsde symmetry, moment
preservation, orthogonality between levels of dgoosition, perfect reconstruction,
correct time alignment (linear/zero phase), minatian of spurious artifacts and

boundary effects, and compact support.

To illustrate the usefulness of these propertiesfagus on the Daubechies (1988)
wavelet class, which the literature has found téhieebest for empirical time series
work using economic and financial data. We alstuls properties of the original
wavelet, discovered by Haar (1910), which is timepdest to construct and also a
nested special case of the Daubechies waveletrgk Inumber of wavelets have been
defined but only those of Daubechies and Haar agpdae consistently useful to
economists. A thorough treatment of wavelet progeis found in Daubechies

(1992, 1993), Ogden (1996) and Vidakovic (1998).

The four key properties for wavelets in time se&agalysis are:
1. A nonzero number of vanishing moments
2. Compact support
3. Orthogonality and orthonormality
4

. Linear phase
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To explain the importance of a nonzero number ofsrang moments, we introduce
the two principal conditions of a wavelet. Fistvavelet is a functiog(-) defined on

the extended Real line such that the admissilgbtydition is satisfied:

[Lw®d=0 (2.1)
Second, a wavelet is generally required to satisyunit energy (variance) condition:
ijz(t)dt =1 (2.2)

Then, a greater requirement is for the wavelet t@lranumbeN of vanishing
moments such that, f&r= {0, ..., N-1} the wavelet satisfies:

IRtka(t)dt =0 (2.3)
A greater number of vanishing moments is particylamiportant for the wavelet-
based analysis of long-range dependence (see Cl&pbecause it provides the long-
range parameter estimator with robustness againsammination by nonlinear and
potentially non-stationary trends (Teyssiere andyA106). The literature also refers
to filters associated with wavelet transforms andehgth of a filter is precisely twice
its number of vanishing moments. A large numberasfishing moments increases
however the size of the wavelet and may generateogsuartifacts in the transformed
data. The Daubechies regular and least asymmetraceelets among others have an
arbitrary number of vanishing moments such thatélsearcher can select the most
appropriate number. In contrast, the simple Haarledwnas zero vanishing moments

as it is piecewise linear.

Compact or finite support captures local variatoore accurately. The wavelet
oscillates locally and quickly fades away on thé &efd on the right. In contrast, sines
and cosines oscillate indefinitely. The Haar andld2aties (regular and least
asymmetrical) are three of the only four waveletd t#re both compactly supported

and orthogonal wavelets.

17



Orthogonality means that for a wavelet timescaleasgmtation of the data, the
different levels are uncorrelated which implies pleefect reconstruction property
holds. Suppose we want to know how much of a timeseariance is explained by
variation at the short run, medium run, and long r@rthogonality implies that the
perfect reconstruction property holds and thereéor&bles an accurate deconstruction
of a time series into different levels or time lzons. Orthonormality further ensures
unit energy (variance), which means the decompda&iremains accurate to scale.

Both the Daubechies and Haar wavelets are orthonormal.

Linear phase ensures correct time localizatior. eikample, we may wish to
determine the precise date of a mean or varian@egelipoint in a time series. Linear
phase is also a necessary and sufficient condioperfect symmetry, a property that
only the Haar wavelet possesses. Since excessingradyy is undesirable,
Daubechies developed a Least Asymmetrical wavelehtdmessentially correct time

localization and is therefore often used in ecomoapiplications.

As with nonparametric regression and frequency domaatysis, wavelet analysis
involves dealing with the problem of boundary eféecThe theory behind wavelets
has been developed under the assumption of anténfinmber of observations, but
sampled data in economics and other non-experifnseitnces are necessarily finite.
If no correction is made, the computed wavelet coiefiits will be overstated at the
beginning and end of the sample. Two general swluhethods are, first, to discard
those biased observations by truncating the saafdes observations after the
beginning and before the end and, second, tocaliff extend the time series for

purposes of wavelet analysis but only include the ttbservations in the economic
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analysis and interpretation of results. The tie@es can be extend by padding with
zeros, reflecting (symmetrically) the observatiahthe sample’s endpoints, or
assuming the sample repeats periodically. Cohah €993) have found that zero-
padding creates large artifacts in the data ardateig the data causes the
orthonormality property to be lost. Periodizatistherefore the least harmful method

unless the researcher can afford to discard soseradtions at both endpoints.

24  Standard and Trandation-Invariant Discrete Wavelet Transforms

To obtain a frequency domain representation of 8erges data suitable for spectral
analysis, the Fourier transform is applied to theaqsee e.g. Hamilton 1994). The
workhorse of wavelet-based time series analysiei®ibcrete Wavelet Transform
(DWT). Unlike the Fourier transform, which is uniqueavelet transforms are
numerous because each one is constructed froncdispeavelet function and filter
length. For all wavelets, the resulting Discrete WeawTransform is the inner product
(convolution) of the data with translations and tiltias of the wavelet function. The
outcome is a wavelet coefficient vector of the séength as the original data. The
wavelet coefficients contain information in both thme and scale domain, where the
scale corresponds to different length time peridést example, if the original data
are daily observations, then the scales would irctiadly, weekly, monthly and so

forth. Assuming the property of orthonormality hsld

In this thesis, data are sampled daily over a desfdwo decades. This means the
wavelet transform requirement of a sample of dy&hgth (base two) is not overly
restrictive. Many economic datasets, however, spiedimuch shorter time series
where each observation matters. This is the casexmple, with many

macroeconomic time series. This transform, aled¢she maximum overlap discrete
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wavelet transform, may be applied to data of angtlen The downside is that it loses
the orthonormality property, which implies a lossficiency and a more

conservative interpretation of the results.

The second reason to use the translation-invanawmelet transform is that, as implied
by its name, its localization in time remains aetey whereas the basic discrete

wavelet transform has a small bias. For instarftey, &is found that there exist in the
data one or more change-points or structural breb&granslation-invariant transform

should be used to actually date the change-poibteak.

25 Waveletsand Long Memory

In this section, wavelets are discussed in the gbofehe most frequently used time
series models. The conventional framework for tsmees analysis in economics is
the autoregressive moving average (ARMA) represemiati the data. Using this
model, the time series data under scrutiny is desdras a function of its own
weighted lags as well as weighted lags of the innomggrror) term, which is
assumed to be at least mean zero white noise (@hatad) and possibly identically
and independently distributed (l1ID). The autoregngsand moving average terms
are considered “short memory” because their etiadhnovations is short-lived and
the autocorrelation function and impulse responsetion decay geometrically
(exponentially). Likewise, plain and generalizetbaggressive conditional
heteroskedasticity (ARCH and GARCH) models are desigmedpture simple
nonlinear dynamics in the volatility of the timeiss data and describe well the
volatility clustering stylized fact observed inaade number of economic and financial

time series data.
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In contrast, “long memory” (usually called long-gendependence in the statistics
literature) implies a slow, hyperbolic decay in ghaocorrelation function and in the
impulse response function, which means the effeshotks or innovations on the
data is long-lived. This concept originates with $tisr(1951) seminal Rescaled
Range analysis (R/S) and the mathematics literatuifeactals applied to time series
data by Mandelbrot (1963) and Mandelbrot and varsN£368). A well known and
extensively studied special case of long memomgcwnomics is permanent memory,
equivalently the unit root (Phillips 1987; PerroxdePhillips 1988). In the ARMA
framework, a unit root in the autoregressive lagypomial implies that innovations
have a permanent effect on the data process anllsresnon-stationarity. Generally,
by non-stationarity is meant covariance-non-staiiiy, such that the
variance/covariance is time-dependent. A strongénition of non-stationarity that
is however not testable considers all existing mdmehthe data generating process
to be time-homogeneous. A non-stationary time sgmecess is said to be integrated
of order one, or I(1), and can be modeled as Autessiyve Integrated Moving
Average (ARIMA), while the stationary case is defirmsd(0). Greater orders of

integration are possible but rarely found in ecolesm

Fractional orders of integration, definedda¥-1, 1), have been suggested by Granger
(1980) and Granger and Joyeux (1981) to providekadetween the Hurst coefficient
of long memory and the conventional time series ARM® GARCH models. For
di(-1, 1),H=0.5+d/2. The general extensions are called Autoregregsiactionally
Integrated Moving Average (ARFIMA) and Fractionallydgrated General
Autoregressive Conditional Heteroskedasticity (FIGAREH, Bollerslev and
Mikkelsen 1996). Hosking (1981, 1984) provides fafmesults on the fractional

difference operatad and conditions for stationarity and invertibilitftanaka (1999)
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contributes important refinements on the fractiamat root and several of his results
are used in this thesis. Balillie (1996) providesarly survey of results on long
memory models in economics, but this is an actrea af both theoretical and applied

research.

Wavelets can be used to represent the originaliddkee timescale domain based on
some objective criterion. The wavelet property hogonality between timescales
implies that a self-similar pattern such as a &bsignature (Mandelbrot 1963) should
be evident across timescales if the data are desized by true long-range
dependence (long memory). In addition to enakdimgaphical or visual test of long-
range dependence, wavelets are ideally suited tstreah a variety of estimators and
tests. Examples include parametric estimatorssglef000), semi-parametric
estimators (Teyssiere and Abry 2006), tests foaatéble serial correlation (Hong and
Lee 2005) and tests for multivariate higher ordenmant dependence (Duchesne

2006).

2.6 A Simulation Study of Wavelet Transform Reconstruction

Wavelets make it possible to decompose a datalsgoahastic process or function
into additively orthogonal levels (or timescaleghe wavelet time series literature).
When applied to economic time series data, antimtuinterpretation can be made.
Each level is a time horizon to which is associag@doportion of the variation in the
data. In a rural economic setting, time horizory fiave a more immediate
geographic interpretation: long-run horizons impétional, macroeconomic causal
forces, medium-run horizons regional forces andtstum horizons local forces. This

method makes it possible to explicitly identifytthst time horizons and investigate
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economic hypotheses that concern the incidenc#eifte across time horizons of

decision-making or across different depths of ulytley economic forces.

To verify the accuracy of the numerical wavelet $fanrms used to decompose the
data, we simulate some time series data consistémtwio plausible futures prices
data generating processes, namely a stationary ARMA&nd a non-stationary, long
memory fractional Brownian Motion with Hurst paramet€f.75. Application of a
discrete wavelet transform produces wavelet coefftsienvhich is a representation of
the data in the wavelet time-scale domain. Apply@ngnverse wavelet transform to
subsets of the wavelet coefficients results in &pedecomposition of the original
data into several orthogonal time series, each afiwiias the same length as the
original time series and which can be simply addegldéld the original time series.
These artificial time series vectors cannot be @seegressors to explain the original
time series data because the perfect reconstrystaperty implies by definition that

all explanatory variable coefficients must equag.on

The original data is compared to the reconstrudegd and we compute the
approximation error caused by transforming the Batk and forth. The loss function
used are is the root mean squared (approximatroo) &d we also consider as

criterion the first four sample moments of the mligttion of approximation errors.

2.7  Accuracy of Wavelet Time Series Reconstruction

This section presents the results of a simulatiodyson the accuracy of the wavelet
transform to decompose and reconstruct time sdatswith no loss of information.
Two samples of data are generated from a pre-detedhprocess, decomposed into

timescale wavelet coefficients using a discrete ‘eveansform, and finally the
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original data is recovered using the inverse ofdiserete wavelet transform
previously used. To guarantee the existence af\arse, an orthonormal wavelet
must be selected to construct the transform, thexefie use the Daubechies wavelet.
As explained earlier, we may choose an arbitrary rarmbvanishing moments for
this wavelet, which results in a specific filter Iémg We experiment with filter

lengths ranging from 2 to 20 and find that the taryor 10 appears best.

The first simulated data generating process iseal Autoregressive Moving Average
model with two lags of each type, i.e. ARMA (2,2), wath intercept of 100 and no
deterministic or stochastic trend (no unit rodt).this model, the dependent variable
“today” is explained by its own two most recent lagswell as an innovation term and
the innovation’s two most recent lags. The sewatedation has a “short memory”
and the persistence of shocks is short-lived. ritmaber of observations used is
T=512 observations, with 712 observations generatddtee first 200 dropped, which
is called the “burn in” stage. The Auto-Regressimd Moving Average parameters

are@= (0.6, -0.3) an® = (0.4, 0.2).

Using simulated data with 1ID Normal innovations ardabechies wavelet, which
has the orthonormality property, we expect to fimak the first four moments of the
distribution of approximation errors are Gaussianmidr The loss function selected
is the root mean squared error. It is the squaoeaf the average, over all T
observations, of all squared approximation errde$ined as the reconstructed data

point minus the true data point, for all T obseioas.
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The results, summarized in Table 2.1, suggestihatavelet reconstructions are

unbiased and the approximation errors are clo§atgssian Normal as desired

(skewness=0, kurtosis=3).

Table 2.1: Numerical accuracy of wavelet reconsioadior ARMA(2,2) process
using Daubechies wavelet with filter length 2 to 16

Wavelet Root mean  Approximation Error SD Error Error
squared error mean skewness kurtosis
error
dau2 2.048e-07 -3.095e-13 3.153e-14 0.0219 2.4881
daud 1.9233e-07 -2.054e-13 3.937e-14 0.3850 2.8761
dau6 2.2280e-07 -3.234e-13 5.25e-14 0.1242 2.7510
dau8 2.0728e-07 7.234e-13 6.921e-14 0.6317 2.509
dauloO 3.551e-13 3.799%e-13 6.383e-14 0.4599 2.8303
daul2 2.0567e-07 4.428e-13 7.225e-14 0.0841 2.5788
daul6 1.9750e-07 3.404-13 7.098e-14 -0.2651 2.8467

The second simulated process consists of fracti®r@ainian motion with a Hurst

long memory coefficient of 0.75. It is a non-statry, persistent (long memory)

process with innovations that are distributed nbtNlormal or as white noise but

rather as fractional white noise. Fractional whitésa increments over time are

stationary but not independent of each other.

A total of 712 time series observations are gendraten a fractional Brownian

motion process with a starting value of 100. Th&t 00 observations are discarded

as a “burn-in” stage. Observations 201 to 712isigke are saved for a total of 512

data points. Again, the Daubechies wavelet is usdddiffierent filter lengths.

The results shown in Table 2.2 suggest that the &zhies-based wavelet transform

for any filter length will provide outstanding reatruction with only a trivial loss of
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statistical information, even for a challenginggess such as non-stationary fractional

Brownian motion.

Table 2.2: Numerical accuracy of wavelet reconsioador fractional Brownian
motion process using Daubechies wavelet with filtegle 2 to 16

Wavelet Root mean  Approximation Error SD Error Error
squared error mean skewness kurtosis
error
dau2 1.4149e-14 -2.002e-14 4.063e-15 -0.2694 3.1030
dau4 9.1089e-15 -8.269e-15 4.608e-15 -0.3150 3.0254
dau6 1.2539e-14 -3.122e-14 7.112e-15 -0.2656 3.1984
dau8 4.0599%e-14 7.596e-14 1.377e-14 -0.4040 2.8241
daul0 1.8447e-14 -4.182e-14 7.940e-15 -0.3954 2.7796
daul2 2.5605e-14 -3.915e-14 9.823e-15 -0.4953 2.4945
dau 16 2.0923e-14 -4.185e-14 1.655e-14 -0.0489 2.380

2.8  Time Series Properties of Wavelet-Decomposed Data

In the previous section it was found that applyingeaelet transform to time series

data does not cause a loss of statistical infoomdieyond machine precision.

However, to conduct meaningful hypothesis testingooinomic models using

wavelet-transformed data, we need to verify whethesthtionarity of data is

preserved. For example, suppose we extract fra@tiarsary time series dataset

several timescale levels. Will any of these leb®son-stationary and therefore at

risk of leading to spurious regressions in the Gearidewbold (1974) sense? Also, if

the original data are non-stationary, do the wavadenputed levels inherit this

property? To answer these questions, we analyzasiséction a typical futures

contract price time series dataset before and ahigeelet decomposition.

Consider the price of the CBOT corn futures contexgiring in March 2005. This

contract begins trading on 26 June 2003 and stadst on 14 March 2005, for a

total of 440 business daily observations. Figuileshows the daily price of this
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contract over the entire time period. Itis cusaoynn the research literature to
exclude observations from the contract’s own expignth (here the last ten
observations). To focus on the period of mostwadiiading, 256 observations are
used, dated from 23 February 2004 to 28 Februadp.2@n Augmented Dickey-
Fuller test (computed using one to eight lags) satgthe null hypothesis of a unit
root cannot be rejected, whether or not a detertigrtine trend is included. The test
procedure and optimal lag length selection followaxg Perron (2001) and Elliott,

Rothemberg and Stock (1996).

Applying a discrete wavelet transform to the datalpoes wavelet coefficients that
allow us to construct several orthogonal, nearlegpehdent time series, each of which
corresponds to a distinct time horizon, from dagyiation occurring in the data to
long-term (here semestrial). Figure 2.2 illustsagach of the artificial time series.

Adding together the artificial time series resuttshe original time series data.

Augmented Dickey-Fuller test results suggest thaptiee components associated
with the daily time horizon and with time horizonsosfe month and longer are
stationary, but that the price components of timezons greater than a day and less
than a month are non-stationary. Therefore, natiestarity in the original data
translates into non-stationarity in some but nbivalvelet-computed artificial time
series. Stationarity in the original data impkségtionarity in the wavelet-computed

series.
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CBOT corn futures close price, March 2005 expiry contract, all trading days (6/26/2003 to
314/2005)
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Figure 2.1: Chicago Board of Trade March 2005 datares settlement price, 6/26/03
to 03/14/05
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Figure 2.2: Wavelet transformation of corn futupeise data into orthogonal, additive,
time horizon-specific time series, $price/contract
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While testing for serial correlation is relativedynple, evaluating serial dependence in
higher order moments is difficult and an area ¢ivaaesearch. A number of

nonparametric tests exist, but these tend to lavebwer (Hong 2004).

Consider a economic time series process and supipeseexist opposing economic
influences at different time horizons that resulthe appearance of a constant
variance ratio. This result suggests a random wiatk. example, Turvey (2007) finds
that for medium- to long-run samples, the null ehadom walk in prices cannot be

rejected for all but two agricultural commodities.

To further illustrate the meaning of wavelet-estiatbtimescales (time horizons in an
economic setting), a test of the random walk hypthis performed on each
timescale data series to answer the question: iatitom walk result explained by

opposing persistent/antipersistent forces at diffehorizons?

The data used consist of the daily settlement gocéhe Chicago Mercantile
Exchange live cattle futures contract over the fpagod 2/1989 to 12/2004 inclusive.
A total of 4096 observations are used. The Varidei#o test used is Kim’s (2006)
wild bootstrap test which has been shown to possessaly superior size and power
properties, and the holding periods used are {B, 8, 10, 12, 16, 32, 64} days. The
holding period is the subsample used to computiance estimate and which is
compared to the variance as computed normally. résgts suggest the following
interpretation. Daily and semiweekly time horizomiaton are strongly mean-
reverting (antipersistent). Weekly and biweeklyia@on are persistent for holding
periods of up to two weeks, but mean-reverting fagkr holding periods. Longer

time horizons are persistent for any holding period
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210 Conclusion

In this chapter we presented a introduction to wasetea time series context using
the lifting scheme framework developed by Swelde@94), which, unlike other
approaches to wavelets, does not require using ptstem Fourier analysis. A
number of important wavelet properties were definadlidustrated using the two
most commonly used wavelet functions in time searesysis, the Haar and
Daubechies. We also provided simulation-based erap&vidence that wavelet-
based data transformations of typical economicfarashcial time series do not cause

loss of information and do not induce non-statidgar
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CHAPTER 3
IS LONG MEMORY IN COMMODITY FUTURES DATA SPURIOUS?

3.1 Introduction

In this chapter, we consider the large researctatitee that claims to have identified
significant estimates of long memory in commoduufes prices and price volatility.
The implication is that the modeling assumptiog@bdmetric Brownian motion
should be abandoned in favor of substantially ncoraplicated fractional Brownian
motion models. It also implies that options on cowdlity futures are likely to be
severely mispriced. This chapter asks whetherrigglof long memory are spurious
and can be explained by inconsistent and inefftestimation procedures and by the
presence of structural breaks or level shifts. ega\steps are taken to make the
results more robust. A less noisy measure of \ijais computed from the log-range
of prices instead of the traditional price log-resi The wavelet-based likelihood
estimator is preferable to previously used GPH a@&NRCH methods on the basis
of consistency, efficiency and coefficient intetiateon. The wavelet MLE is also
capable of distinguishing short memory effects filomg memory, which otherwise
would bias the results. It is argued based onneng evidence that in the case of
agricultural commodities, long memory is most likah artifact of the data.
Implications for option pricing are that the BlaSkholes solution, adjusted for
seasonality and major structural breaks, remaipBcable. Semiparametric wavelet
estimators of long memory are also presented aplieap but it is argued that these
are of limited usefulness to economists becaughereanalytical nor bootstrap

standard errors/confidence intervals are reliable.
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The price of a financial option is frequently quibta terms of its implied volatility.
This is an unobserved parameter that solves, ¢mirgg price and a set of observable
characteristics, the famous and widely-used Bladieigs-Merton formula (Black and
Scholes 1973; Merton 1973). The measurement attiit} remains an active and
diverse area of research in both academia andtnydu& central concern is whether
volatility rapidly or slowly recovers from shocksathaffect its magnitude. The main
contribution of this chapter is to provide, to thesst of the author’s knowledge, the
first systematic and informative test of spuriomisg memory in commodity futures
price volatility data. The results presented is tthapter contribute to an active and
growing literature in agricultural economics on teationship between commaodity
futures and options through improved models ofeviglatility and measures of serial

dependence.

In commodity markets, options are written on futuwrestracts. A number of papers
found futures prices to be persistent, a findirag #ppeared to challenge the
efficiency of commodity futures markets (e.g. CaazMalliaris, and Nardelli 1997).
More recent work suggests however that persistenog (hemory) in commodity
prices is better explained by a combination of leshgts (a one-time increase or
decrease in the mean of the process) in the ddtidoag memory in the volatility of
futures (Tomek 1994; Wei and Leuthold 2000; Sm@B%Z). As a result, the question
of long memory in prices has been settled anditature now focuses on whether
price volatility is characterized by long memotjow does long memory in volatility
affect the underlying asset price? Modern asseihgrmodels in the tradition of
Black and Scholes (1973) consider that price isnation of a deterministic drift term
(trend), a stochastic or random diffusion term @dity) and possibly a stochastic

jump process that may help explain level shifts stndctural breaks. Long memory
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in volatility implies dependence between incremeaftthe diffusion term and

therefore has an impact on the price path over.time

A large estimate of long memory in futures priceaidity also implies a potentially
large bias in the classic Black-Scholes optionipgaenethod. Option pricing based
on the Black-Scholes model assumes that the undgrgset (here, the commodity
futures contract) is reasonably well described amt@éoc Brownian Motion (GBM),
which means the natural logarithm of the asset jirateves in the continuous-time
limit as an 11D Normal random walk with drift. Long mery in volatility implies

that the correct option pricing solution is basadractional rather than geometric
Brownian motion (Rogers 1997; Sottinen 2001). Sarcloption pricing model is
substantially more difficult to use, which may fuethdiscourage the adoption and use

of options in the agribusiness sector.

This chapter therefore addresses one set of cansesonsequences of option pricing
bias in commodity markets, namely long memory turfes price volatility. The
principal aim of this work is to determine whetherpameal findings of long memory
in commodity futures prices and volatility are gpus. Alternative explanations are
considered including the effect of correlated shoetmory dynamics (generally
measured as ARMA parameters) and the presence ofistalibreaks or level shifts in

the data (Smith, 2005; Banerjee and Urga, 2005pReR006).

The main finding of this chapter is that apparengl memory in commodity futures

price volatility is only true for two out of eleve@@mmodities, but is not caused by the

effect of short memory dynamics. Rather, the datald be better described by a
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Markov-switching or stochastic break model, eithfewbich could generate spurious

long memory.

The chapter takes the following steps to answer tlestepn. A measure of volatility
is constructed using the daily price range followkigadeh, Brandt and Diebold
(2002). While less accurate than the realizedtityacomputed from intra-day high-
frequency tick data, this measure has been foubeé tsymptotically superior to the
traditionally used volatility measures, absolutesguared logreturns. This volatility
proxy is justified by the use of more than 4000evtations for each commodity and
the difficulty and cost of obtaining reliable tidata for most agricultural commodity
futures. To estimate the long memory parameiarthe canonical fractionally
integrated time series model (ARFIMA), a wavelet-bassttnator is used (McCoy
and Walden 1996; Jensen 2000).

Wavelets are ideally suited to distinguish shartrfdlong memory and also to detect
the fractal signature of long memory because, plamed in Chapter 2, they are self-
similar across time-scales or time horizons anda tirehonormality property ensures
zero correlation between time-scales. As a residtwavelet-based estimator is
consistent, efficient in its class, and unbiasedhieypresence of short memory
dynamics, unlike for example the frequently-used G@aleorter-Hudak (GPH, 1983)
estimator. The GPH estimator conveniently requirdg an OLS linear regression in
the frequency domain, but has been found to bensistent, inefficient and biased
(Agiakloglou, Newbold and Wohar 1992; Robinson 199%jt6 2005). The wavelet-
based estimate of long memory can be directly pnéted and tested in the standard
ARFIMA framework. Ford<0.5, the process is stationary and the most natuthl

hypothesis, tested using e.g. Tanaka’s (1999) \Mailikstic, is them=0 or
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equivalently white noise innovations (incrementsjiagt fractional white noise
innovations and>0. Standard errors are computed from Tanaka’'sQj1&alytical
covariance formula that incorporates both the simernory and long memory
Information Matrices as well as cross-dependendiesvious results in the literature
appear to generally not account for these cross+iigncies and as a result the

standard errors are understated.

Model robustness checks include a separate estimasing only Wednesday
observations (i.e. weekly sampling) to account ftay’ of the week effects” as well as
estimates from different wavelet-based long memsetiyrmators. Simple Likelihood
Ratio tests are computed to evaluate whether tigeri@mory parameter is significant
and the results are contrasted with the evidenee Wald and modified KPSS and
Phillips-Perron tests that are designed to consiaepresence of spurious long
memory. Semi-parametric wavelet-based long memsiignators in the tradition of
the Hurst-Mandelbrot R/S analysis are consideredidment work suggests that for
the Hurst long memory parameter neither bootstragviamte Carlo standard errors
and confidence intervals are reliable. Weak ewdeasf long memory is found but it

is not possible to confidently test the null hypsis in this case.

3.2 Long Memoryin Commodity Futures Prices and Volatility

Understanding the behavior of futures prices isreétd commodity risk management
(Tomek 1997; Tomek and Peterson 2001). Futuresprnfluence hedging and
inventory decisions, spot price discovery, andube of commodity options written on
futures. An important question, which motivated tiné root literature in
econometrics and particularly in empirical macroexnuics is whether the influence

of economic shocks or innovations is short-livegpermanent (Nelson and Plosser
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1982; Phillips 1987; Phillips and Perron 1988)is Ilhow well-established that
agricultural commodity price time series are urjjki® contain a unit root (Wang and
Tomek 2007). This conclusion is supported bothhepretical work (Deaton and
Larocque 1992; Tomek, 1994) and by the economigrature on the low power of
unit root tests in the presence of either struttur@aks or long memory (e.g.

Cochrane 1987).

The concept of long memory, originally given anmmmic definition by Granger
(1980) and Granger and Joyeux (1981), considerskimaks may be so persistent that
they are in short time series observationally egjeint with shocks from a unit root
process. Moreover, the spurious regression restlewbold and Granger (1974) is
likely to hold for stationary processes with longmaey (Tsay and Chung 2000).
This means it is not sufficient to verify only statarity of two time series for which a
dynamic economic relationship is being considetdealhhg memory in time series is
characterized by a hyperbolic (slow) rate of decathe autocorrelation and impulse
response functions, instead of the usual geom@aster) rate of decay. In the
standard ARFIMA time series framework, a long memancess is defined as I(d),
or fractionally integrated of order(] (-1,1). The casd=1 is the well-known case of

a unit root and permanent memory.

A large and active literature suggests that long orgrar persistence in commodity
futures price volatility is significant and of ptaal consequence (Baillie et al. 2007;
Corazza, Malliaris and Nardelli 1998; Crato and R&@90; Cromwell, Labys and
Kouassi 2000; Elder and Jin 2007; Helms, Kaen aneéfoan 1984; Jin and
Frechette 2004; Peterson, Ma and Ritchey 1992;an@iLeuthold, 2000). In

contrast, although she does not test for spurimug memory, Lordkipandize (2004,
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p. 82) finds that soybean and corn futures pridatinby is primarily caused by

seasonality and maturity effects rather than by lor@mory.

The main contribution of this chapter is to deterewhether findings of long memory
in agricultural commodity futures price volatilire spurious and to suggest an
alternative explanation based on evaluating diffecauses of spurious long memory.
This chapter provides robust estimates of the lnegiory parameter for eleven
commodity futures contract time series in a joimd®l with short memory and
seasonal model parameters. The long memory estinsainbiased by the presence
of short memory effects. Correct standard errcescamputed using the complete
Information Matrix accounting for cross-dependeaaigth short memory. To
evaluate whether findings of long memory are sigatit, asymptotic tests (Wald,
Likelihood Ratio) are applied, but since thesestésive incorrect size, we also use

recently developed tests for spurious long memory.

3.3  Commodity Futures Price Data

The data consist of business daily observatiormgaotultural commodity futures
prices for contracts on coffee, cotton, cocoa, sngall, frozen concentrated orange
juice, hard red winter wheat, soybeans, corn, catigtacattle, and lean hogs
(formerly live hogs). Commodity futures contraate traded until the 15th of the
contract month (or the last business day beford Bitie). To avoid near-maturity
effects and delivery risk bias, observations fartcacts in their own expiry month are
discarded. Contracts are therefore rolled-ovdrcgh) approximately 15 days before

they expire.
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The observations cover the years 1988-2007, valigbtly across commodities.
Data for the years 2005, 2006 and 2007 are reséovexit-of-sample forecasting,
which implies at least 500 observations for eachrmodity, and leaves more than
4000 observations for each commodity for the egtonaof long and short memory

parameters. Precisely 4096 observations are osestimation purposes.

The contracts include both storable and non-sterabdmmodities. Storable
commodities have inventory stocks while by defimtimon-storable commodities do
not. This suggests a testable hypothesis thag pnd volatility dynamics will differ

between storable and non-storable commodities @wki and Wright 1984, 1989).

34  TheOption Pricing Biasfrom Long Memory

One typical violation of the Black-Scholes modefutures price sample data is
volatility clustering (Myers and Hanson 1993), gefigraddressed by using ARCH
and GARCH models (Engle 1982; Bollerslev 1986). Bhisrt-range dependence
however does not appear to substantially affecbapiricing solutions (Roberts

2002).

Long-range dependence, or long memory, implieBthek-Scholes option pricing
solution is fundamentally biased (Rogers 1997;igentt 1998), as the underlying asset
is better described by fractional Brownian motiomare general stochastic process
that nests geometric Brownian motion as a specsad (@ox and Miller 1965). How
important is the bias caused by long memory oroogtricing? Ohanissian, Russell

and Tsay (2004) find that it can cause optionsetonispriced by as much as 67%.
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3.5 ALog-Range Measure of Volatility

The two traditional measures of daily or weekly vbtgtin the commodity spot and
futures prices literature are absolute and squaggéturns, computed as deviations
from the long-run mean. If the underlying asséteat timet is F;then the logreturn
is defined ast; = In(F;) — In(F.1) and volatility is defined as eithey or as )%
Improved efficiency and no significant bias follém assuming the long-run mean

is zero.

Though both measures are frequently used, Grangéf)argues on the basis of
Nyquist’s (1983),norm argument that squared logreturns should omlysed if the
data are approximately Gaussian Normal, which is selloe in economic and
financial logreturn data. Since these data displaess kurtosis, absolute logreturns

are more appropriate.

In this chapter, the log-range of daily futurexps is used as a measure of volatility
instead of absolute price logreturns. There avers¢reasons why this is warranted.
Alizadeh, Brandt and Diebold (2002) and Yang and ZH&@0§2) provide theoretical
and empirical evidence for the asymptotic optingadit the log-range as an estimator
of volatility in economic and financial time serigata. Regarding the asymptotic
validity of the result, all of our commodity timerges consist of more than 4000
observations. Absolute logreturns are a particulaoisy proxy for price variation
and are more heavily contaminated by measuremsort (@arkinson, 1980; Garman
and Klass 1980; Rogers and Satchell 1991). Asudtréise log-range based volatility
measure is more efficient than are absolute lognstuAnderson and Bollerslev
(1998) show that the range-based volatility measunearly as accurate as computing

realized volatility from ultra high-frequency ticdata, the latter which is the ideal
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measure of daily integrated volatility (Andersen)l&slev, Diebold et al. 20014,
2001b, 2003; Barndorff-Nielsen and Sheppard 2002 lower volume of trade in
commodity markets indeed makes the realized vitlasipproach difficult to

implement.

The log-range is very well approximated by the Gemsilormal distribution, which
improves both efficiency and accuracy in maximukelihood estimation (Alizadeh,
Brandt and Diebold 2002; Brandt and Jones 2006patticular, quasi-MLE

estimation using a logreturn-based volatility ighty inefficient (Andersen and
Sorensen 1997; Kim, Shephard and Chib 1998). Laailsolute or squared logreturns
are not well supported by choice theory as proxesisk (Machina, 1987; Levy,

1992).

The log-range, for a time incremdrthat can be a day or an intra-daily time peried, i
defined as:

h, = In(supF, — infF, ) (3.1)

Parkinson (1977, 1980) shows that the log-rang®gety related to the diffusion
term oin the geometric Brownian motion (Black-Scholeseagsice model and
option price solution. This result is based orldfid (1951) definition of the Moment
Generating Function of a random variable that behagea daily range of prices.
Open and close prices are not incorporated as theptimprove accuracy of results
and they introduce undesirable market microstrecgdffects (Brown, 1990; Alizadeh,

1998).
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Descriptive statistics for the log range volatiliheasure are presented in Table 3.1.
International commodities traded at the New York Bazrdirade, such as cocoa,
coffee and cotton, are more volatile, skewed antbleptic (heavy-tailed) than are
principally domestic commodities such as Chicagamf Trade grains and Chicago
Mercantile Exchange meats. Kim and White’s (200&asures of skewness and
kurtosis are used, which are more robust to theepresof outliers and therefore

provide a better description of the data’s firastrfeample moments.

Table 3.1: Descriptive statistics of log-range prie volatility in commodity futures
contract time series data, T=4266, daily observaties from 2/1988 to 1/2005

Futures contract Mean Std dev. SkewnessKurtosis
(Normal=0) (Normal=3)
CBOT corn 0.015 0.008 2.070 8.417
CBOT soybeans 0.015 0.008 1.932 6.719
CME lean hogs 0.017 0.009 2.315 14.013
CME live cattle 0.011 0.005 1.494 3.077
KCBOT wheat 0.015 0.009 1.690 4.776
WCE canola 0.012 0.007 1.544 4.368
NYBOT cocoa 0.022 0.013 1.723 5.149
NYBOT coffee 0.028 0.018 2.175 9.204
NYBOT FCOJ 0.020 0.014 3.071 19.649
NYBOT cotton 0.018 0.011 2.295 12.069
NYBOT sugar#11 0.026 0.016 2.562 16.308

A number of robustness checks are performed. Ttraldor calendar effects such as
the “weekend” anomaly (French 1980; Thaler 1987; Giitsband Hess 1981; Kamara
1997), we repeat estimation for a small number airoodities using only the
Wednesday observation (i.e. weekly sampling). Tvesoas suggest however that

calendar effects need not be a problem. Empiweeak has found that these

42



anomalies have essentially disappeared since 1831nElly 1989) or since 1987
(Fortune 1998), and the earliest data used inctiapter begins in 1988. Also, once
unintentional data snooping is accounted for, cderffects have been found to be in

general not statistically significant (Sullivaniyimermann and White 2001).

Standard time series diagnostic tests are perfoondbe data (Augmented Dickey-
Fuller, Phillips-Perron, KPSS, Variance Ratio) talerate its sample properties and
ensure that our data are comparable with data nggevious research. Test results
suggest that in levels we cannot reject the nudl ohit root (ADF test) but in
differences we cannot reject the null of no unit PSS test). Such findings are
standard in the literature, but Wang and Tomek [20arn that commodity prices in
levels should not in theory be characterized byiaroot. Rather, such test results are
the consequence of low test power caused by misfajaicin of the test, omission of
level shifts in the data or both. The data integsn or log-range form are stationary
but ARCH effects (volatility clustering) are preseifiiest details are provided in the
Appendix. The data are not deflated by the Prigad Parmers Index (Tomek 1997)
because this Index has an annual frequency whildateeare daily, therefore spurious
effects risk being introduced. Figures 3.1 to Jfdsent time series plots of the
nearby futures contract volatility data for thevele commodities studied in this

chapter.

3.6  Wavelets Distinguish Short from Long Memory

A substantial difficulty associated with estimatihg fong memory parametet Er
d) is that it is, even asymptotically, correlatedhngshort memory dynamics such as
AR and MA parameters (Tanaka 1999). As a resulh thet point estimate of the

long memory parameter and its standard errorsiased.
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Log-range volatility of nearby futures prices, Chicago Mercantile
Exchange Live Hogs/Lean Hogs Contract, 2/1988-1/2005
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Figure 3.1: Time series plot of daily log-rangecprvolatility, CME lean hogs futures

Log-range price volatility of nearby futures prices,
Chicago Mercantile Exchange Live Cattle Contract, 2/1988-1/2005
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Figure 3.2: Time series plot of daily log-rangecprvolatility, CME live cattle futures
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Log-range price volatility of nearby futures prices,
Chicago Board of Trade Soybeans Contract, 2/1988-1/2005
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Figure 3.3: Time series plot of daily log-rangecprvvolatility, CBOT soybeans futures

Log-range volatility of nearby futures prices,
Chicago Board of Trade corn contract, 2/1988-1/2005
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Figure 3.4: Time series plot of daily log-rangecprvolatility, CBOT corn futures
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Log-range volatility of nearby futures prices,
Kansas City Board of Trade wheat futures, 2/1988-1/2005
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Figure 3.5: Time series plot of daily log-rangecprvolatility, KCBOT wheat futures

Log-range volatility of nearby futures prices,
Winnipeg Commodity Exchange canola contract, 2/1988-1/2005
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Figure 3.6: Time series plot of daily log-rangecprvolatility, WCE canola futures
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Log-range volatility of nearby futures prices,
New York Board of Trade cocoa contract, 2/1988-1/2005
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Figure 3.7: Time series plot of daily log-rangecprvolatility, NYBoT cocoa futures

Log-range volatility of nearby futures prices,
New York Board of Trade coffee contract, 2/1988-1/2005
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Figure 3.8: Time series plot of daily log-rangecprivolatility, NYBoT coffee futures
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Log-range volatility of nearby futures prices,
New York Board of Trade cotton contract, 2/1988-1/2005
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Figure 3.9: Time series plot of daily log-rangecprvolatility, NYBoT cotton futures

Log-range volatility of nearby futures prices,
New York Board of Trade sugar#11 contract, 2/1988-1/2005
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Figure 3.10: Time series plot of daily log-rang&evolatility, NYBoT sugar#11
futures
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Log-range volatility of nearby futures prices, New York Board of
Trade frozen concentrated orange juice contract, 2/1988-1/2005
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Figure 3.11: Time series plot of daily log-rangeervolatility, NYBoT frozen
concentrated orange juice futures

Many papers in the literature do not appear to aactor the impact of short memory
dynamics on their estimates of long memory. Onetiem to this problem is to use an
estimation method based on wavelet functions (Ger®alguk, and Whitcher 2001).
This is because wavelets are by design able toaepang memory from short
memory dependence, or more generally, variatiansignal or time series that occurs

at different timescales (Percival and Walden 2001).

This implies a wavelet-based estimate of long memaliybe unbiased when the time
series data short memory parameters are eitheradray inaccurately estimated.
Moreover, long memory and short memory parametensbe independently and
accurately estimated. To the best of our knowlettgepnly work that has considered

wavelet-based estimators to examine long memorygiiicw@tural commaodity price
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data is Elder and Jin (2007). But, where they faousomparing results of long
memory estimation using wavelet and non-wavelet basstiods, this chapter tests
for spurious long memory and determines both thiseaf spurious long memory and
what alternative model better describes the dataestablish the significance of the
long memory parametek other papers in the literature such as Jin ardHétte

(2004) only use, for example, non-robust Likelihdatio tests. Lastly, Elder and Jin
(2007) use a logreturn-based volatility variablelevitine daily log-range is used in this

chapter.

3.7  ldentifying Spurious Long Memory

A persistent problem in the literature is the acurdentification of long memory in
futures data. Early evidence of long memory irhcasd futures prices has been
reconsidered and recent advances have focuseshgmiemory in the volatility of

futures prices (e.g. Baillie et al. 2007; Jin amedRette 2004).

In time series econometrics, long memory is gehedafined as fractional

integration, or I(d), which is only one type of lomgemory process (Granger 2000). It
is well understood that the aggregation of short orgnte.g. ARMA) time series data
may result in the appearance of long memory (Gnah§80, 1990). Indeed,
Chambers (1998) proves that true long memory peaselsave a long memory
parameter that is invariant under time aggregaaamseful fact for hypothesis testing.
The illusion of long memory can also be the conseqa of structural breaks and
level shifts, two phenomena that are better supgdhi@n is long memory by

economic theory (Diebold and Inoue 2001; Granger 2005
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Disentangling stochastic, singular shocks suchraststal breaks from long memory
in time series data is a difficult task and in maages the two classes of models are
observationally equivalent (see e.g. Banerjee amga,Urd., 2005]ournal of
Econometrics symposium; Perron 2006). Spurious findings ofjlomemory may be
caused by a biased or inconsistent estimation duoeeby level shifts, structural
breaks and regime switches, or by inefficient stash@arors and confidence intervals
(Chambers 1998; Diebold and Inoue 2001; Shimot€62Rivot and Andrews 1992).
Level shifts can occur for example when the firstrmeat (mean) of the data
generating process suddenly changes while the frés dlistribution is unaffected
(Smith 2005). Structural breaks occur when theeshf some or all coefficients in
the model change at some point in the time sefEggime switching is generally
described by a time series process whose distribbigistationary for a given state of
nature, and for which the state in each time pdagatetermined by a probabilistic,

e.g. Markov, transition matrix.

Daily volatility of stock logreturns is charactenizby autocorrelograms that are
significant beyond 3000 (day) lags, even after ramgoutlier observations (Granger
1999). Estimates of the fractional difference paterd using large data samples
generally fall below but near 0.5, but for sub-sagspf shorter length the estimates
vary between 0.3 and 0.7, which suggests it is netlbng memory. Another reason
to doubt that economic or financial time seriesgarerated by a true fractional
integration process is that it is difficult to remie estimates ad with the data’s
sample moments. For example, for daily absolugectnirns of financial data, it
would be necessary to assume the innovations (gaeglistributed as fractional

Chi-Squared.
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The estimators generally used in the literaturenatenecessarily robust. The popular
Geweke-Porter-Hudak semi-parametric estimator is incthnsistent and inefficient
(Robinson 1995a,b). Smith (2005) moreover showstlieaGPH estimator is heavily
biased in the presence of level shifts in the dathsuggests a new, nearly unbiased
GPH-type estimator. This bias explains for exanapl@pparently largel£0.79)
estimate of long memory in relative soybean pricgs.a result, once level shifts have

been accounted for, estimates of long memory arstatstically different from zero.

A second widely used long memory estimator desigoesdlatility data is the
Fractionally Integrated GARCH model (Bollerslev 198g)lerslev and Mikkelsen
1996). The FIGARCH estimator is however both fragiléhie presence of mis-
specified short memory parameters and also untelea measure of long memory
(Davidson 2004). A third case of a problematic lamgmory estimator is the Quasi-
MLE estimator for stochastic volatility with long mery (e.g. Breidt, Crato and de
Lima 1998), which is generally non-robust (AlizadBhandt and Diebold 2002;

Andersen and Sorensen 1997).

As for the large class of semi-parametric Hurst loregmory parametdf estimators
(e.g. Lo 1991), Riedi (2003) shows that confidemterivals aroundH are only
reliable under overly restrictive conditions, amdrtco and Reisen (2007) use
simulation to show that bootstrapped standard eafotfse long memory parameter
are not accurate. Turvey (2007) shows that faoalltwo agricultural commodities,
the data generating process is consistent with wloitee innovations rather than

fractional Gaussian noise (as would be the case uowngmemory).

These results suggest the need for a more robeestigation of long memory.
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3.8  Semi-parametric Wavelet Estimation of Long Memory

Research has found that semi-parametric estimdtetgjently used in the natural
sciences, are superior to parametric (maximumihkeld) estimators when the model
is likely to be mis-specified (Boes et al. 1989)t that MLE is preferable when the
model is correctly specified (Cheung 1993). Tlessic Rescaled-Range analysis
(R/S) of Mandelbrot and Van Ness (1968) obtains éimate of Hurst’'sH long
memory parameter. Lo (1991) improved upon Hursis ldlandelbrot’'s R/S
estimator by making it robust to heteroskedasticitthe data, but interpretation and

hypothesis testing appear unreliable (Teverovskgdl and Willinger 1999).

The properties of wavelets, in particular scale-rarece, make them ideally suited to
detect the self-similar fractal signature of sel/gfaes of long memory, including
fractional Brownian motion. A wavelet-based semi-patiic estimator of the Hurst
parameter can be implemented and provides resalts@te superior to traditional R/S
analysis (Teyssiere and Abry 2006). This semi-patamestimator can be applied to
all timescales without adjustment and is has beenddo be unbiased and efficient in
its class. The wavelet orthogonality property makeésestimator robust to the

presence of a trend and to non-stationary sindidari

The Hurst coefficient can be easily obtained fronapplication of a wavelet
transform to time series data (see e.g. Taqqu 2008¢ method consists of first
applying a Discrete Wavelet Transform to the tingesedata, which produces a
vector of wavelet coefficients. Then the waveletfitoents, each of which is
associated with a timescale, are squared and ssgtrever the base-2 (dyadic)

logarithm of the timescales. The slope coefficierdirectly proportional té1. A
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similar method by Jensen (1999) can be used toroéataOLS estimator of the

fractional difference parametdywhich is directly related to the Hurst coefficiéht

Improved, unbiased semi-parametric estimatorsrgd lange dependenkthave
been developed by Abry, Veitch and Flandrin (1998)ic¥ieand Abry (1999), and
Teyssiere and Abry (2006). These jointly estimh&elbng-range dependence
parameterst andC and also compute a tailored goodness-of-fit statistheir
approach has the advantage of using a pre-filtexiggrithm to correct the bias caused
by the discrete sampling of the data (Veitch, Tagapal Abry 2000). In addition,
Veitch and Abry (1999) propose a test for true loagge dependence that relies on
the self-similar properties of wavelets. This igst of the stationarity of the long
memory parameter computed over a number of subisamin this chapter, we
consider 16 sub-samples of 256 observations e&lis. corresponds to estimatihl
approximately once per year for every year in tia@e and finding out if this
parameter changed over time. Results are presttéte three commaodities for

which the stationarity ofl is rejected graphically in Figures 3.12 to 3.14.

The results, presented in Table 3.2, show thatlf@oaamodities, the null hypothesis
of H=0.5 cannot be rejected at the standard 5% levabaificance. This evidence
supports the recent findings of Turvey (2007), thatements of the data are
consistent with a white noise process (not necdg<aaussian) rather than long range
dependence such as fractional Brownian motion..akdrut three commodities, we
cannot reject the null hypothesis that the long mmmparameteH has been constant
over the entire sample (1988-2004). The stationafiH is however clearly rejected

(at the 1% level) for CME lean hogs, KCBOT wheat and ®WMBsugar #11.
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Although straightforward to compute and frequentlgdig the natural sciences, the
semi-parametric wavelet approach is of limited usefss in economics because it has
been shown that both analytical and bootstrap stdreteors and confidence intervals

are unreliable for this estimator (Riedi 2003; fe@and Reisen 2007).

3.9  Parametric Wavelet Estimation of Long Memory

Following Granger’s (1980) and Hosking’s (1981) formefinitions of long memory
in the ARMA time series framework, Sowell (1992) obg&airan exact maximum
likelihood estimator for fractionally integratedogesses. Its computation requires,
however, inverting a dense covariance matrix atyestp of the procedure, which is
unrealistic for large datasets. For this reasppr@imate frequency domain
estimators such as those by Geweke and Porter-Hudak, I@83) or Fox and Taqqu
(1986) are frequently used. However, the GPH estimsataoth inconsistent and
inefficient (Agiagoglou, Newbold and Wohar 1992; Raan 1995) while the Fox-
Taqqu estimator is systematically biased. Feagikéet ML estimators suffer from a
large bias as the sample size grows because theptarebust to a mis-specified
mean or trend (Cheung and Diebold, 1994). Indémdsample mean is an inaccurate
estimator of the population mean in the presendengf memory (Beran 1994).
Robinson (1995) suggests instead a semi-parani@tat\Whittle estimator based on

Kunsch (1987).

Hosking (1984) derives a Cumulative Sum of SquatesS(m) estimator that is
asymptotically equivalent to Sowell’'s (1992) exadt®) but the CuSum estimator is
severely biased in small to moderate-sized sani@llesng and Baillie 1993). Chung

(1996a,b) derives asymptotic results for the Cugstimator of a generalized
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ARFIMA(p,d,q) process including an analytical forméda standard errors which is

used in this chapter.

Table 3.2: Semi-parametric wavelet-based estimatidurst long memory parametdr

Commodity H estimate Std. Reject p-value Reject Ho: H estimate Reject Ho:
(wavelet) error Ho: for Ho: stationary  (Turvey) H=0.5?
H=0.5? stationary H?
H
Coffee 0.483 0.015 No 0.088 No 0.402
(NYBOT)
Cocoa 0.492 0.015 No 0.496 No 0.465
(NYBOT)
Corn 0.519 0.015 No 0.747 No 0.348 **
(CBOT)
Cotton 0.523 0.016 No 0.186 No N/A
(NYBOT)
Lean hogs 0.483 0.015 No 0.0066 ok 0.438
(CME)
Live cattle 0.516 0.015 No 0.115 No 0.272 Hk
(CME)
FCOJ 0.507 0.015 No 0.054 No 0.458
(NYBOT)
Canola 0.496 0.015 No 0.053 No 0.396
(WCE)
Soybeans 0.482 0.024 No 0.296 No 0.332 *x
(CBOT)
Sugar#11l 0.506 0.015 No 0.0015 ok 0.543
(NYBOT)
Wheat 0.493 0.015 No 0.0017 i N/A
(KCBOT)

** reject 5%, *** reject 1%

Notes: The estimator is based on Abry and Veitch (19989,12002) with a pre-filtering correction for
discretely sampled data and using the Daubechies(10) wawedtioh. Test is for Ho: H=0.5
(independent increments) and test for stationarity of H tiwer. Comparison of estimates with results
from Turvey (2007) Table 5 (Sample=940 days).

The ability of wavelet functions to decorrelate tisezies data across timescales helps

distinguish long memory from short memory (ARMA) qooments as well as from
change-points or structural breaks (Percival antdéfa2001). Wavelet-based
estimators of long memory are not affected by tes@nce of an unknown or mis-

specified mean unlike exact ML estimators (Jen$£0p
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Recall that exact ML estimation of long memory ilwas inverting a dense
covariance matrix at every step of the converggmoeedure. Wavelets provide a
sparse representation of the covariance matrix,wipieatly simplifies this
computational burden and introduces only a trikiak. A large number of wavelet-
based estimators of long memory have been develode€oy and Walden’s (1996)
presented an early wavelet-based exact MLE, whichimyaoved upon by Percival
and Bruce (1998) to include robustness to polynbtreads, by Jensen (2000) for
robustness to contaminated (e.g., non-experimetddd) and by Craigmile, Guttorp

and Percival (2005) for robustness to trend comation.

Kansas City Board of Trade wheat futures contract, 2/1988-1/2005
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Figure 3.12: Stationarity test results for wavelasdd estimate of Hurkt parameter,
KCBOT wheat futures contract
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Whitcher (2004) introduces a seasonal componedtJansen (1998, 1999) suggests a

method to jointly estimate long memory and shorimogy parameters.

The general long memory process to be estimated is:

@L) (1-20+L) (Y, - 1) =6(L)e, (3.2)

which includes both autoregressip@.) and moving averagé(L) polynomials, a
fractional order of integratiod (Hosking 1981) as well as a seasonal persistence
process) (Gray, Zhang and Woodward 1989) which is equivéfeapower series

known as Gegenbauer polynomials (Rainville 1960).

Mew York Board of Trade Sugar #11 Futures Contract
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Elock nuimbsar

Figure 3.13: Stationarity test results for wavelasdd estimate of Hurkt parameter,
NYBOT sugar no.11 futures contract
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Chicago Mercantile Exchange live hogsilean hogs futures contract 2/1888-1/2005
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Figure 3.14: Stationarity test for wavelet-basedreste of HursH parameter, CME
live hogs/lean hogs futures contract

Gegenbauer polynomials enable the long memory paearteebe associated with
seasonality, an advantageous option to study oegtainomic time series. In this
chapter, however, time series are sampled dailyaninpose the restriction that long

memory is not seasonally-dependent.

The exact wavelet ML estimator used in this chajstbased on the Haar(4) wavelet
transform (Daubechies 1992), as described in Ch@ptét has the smallest (Root)
Mean Squared Error in its class, is computationettiicient, only slightly affected by
the wavelet boundary effects caused by the finiteonéthe data sample, and is robust

to misspecification of trend and short memory (ARM&rameters (Jensen 2000).
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The estimator jointly provides values for the langmory and short memory

parameters including seasonality coefficients #natuseful for grain futures contracts.

For a general ARFIMA(p,d,q) process with white noigewations, the concentrated

log-likelihood (Jensen 2000) is:

Iogﬁ(ﬁ):—%z > [Mﬂnmm’n] (3.3)

mM  N(m) Omn

wheref=(d, o°, onz) is the vector of parameters (long memory, ARFIMAiaace,
and white noise variance) atd ) is the vector of wavelet coefficients resulting
from the convolution of wavelet functions with thegimal data. Standard errors for
the long memory parameter are computed followirggydical solutions from Chung
(1996a,b) and Tanaka (1999). It is necessarygbdstimateal, then estimate the
ARMA parameters¢(L), 6(L)) and finally obtain the information matrix fte
ARMA parameters (see e.g. Hamilton 1994, pp. 142-1®%ly then can accurate
standard errors fat be computed. If the short memory parameterslaze®, such
that the process is ARFIMA(0,d,0) then the standamt e ford are computed as

follows:

se(d) =T Y6/ 7 (3.4)
For the case of seasonal persistence, standard areocomputed as follows:

se(d) =T {2(% — rrarccos(0.5¢ arccéﬂ (3.5)

A Wald test can be applied to evaluate the null thatractional difference parameter

dis zero, equivalently that there is no long mem@mnaka 1999). Even though the
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wavelet-based estimator is robust to the presenoesgpecified short memory
parameters, the test is only accurate if these ARMASARCH) terms are included

in the Information Matrix:

(3.6)

where the complete Information matrix for both l@rgl short memory parameter

estimators is:

W = [% -k'0 Y, 9)/(] (3.7)

((,0) is the Information matrix for only the ARMA ternasid wherex has length
(p+tg+1) and is computed from the expansion of tRMA(p,q) lag polynomials,
assuming invertibility holds (see Tanaka 1999 fetads). We compute the

expansions using a simple tailor-made program itid¥da

We compute the ARMA information matrix using the BH Hessian estimator
(Berndt, Hall, Hall and Hausman 1974):

(p6) = GG (3.8)
whereG is the true asymptotic matrix of scores and thédBlHestimator uses

numerically estimated scores.

The Wald test, however, has a size problem andtendver-reject the null a=0.
Similarly, Likelihood Ratio tests are not effecti@gainst spurious long memory. They
may be computed, however, to compare the restrsRIEIMA(0,d,0) to the
unrestricted ARFIMA (p,d,q) model to evaluate tigngicance of the short memory

parameters.
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The wavelet-based estimates of the long memoryidrzal difference parameter are
unaffected by short memory dynamics. This hasathantage of enabling a two-step
estimation procedure, which improves the convergaicthe likelihood by reducing
computational burden. As a consequence, rathardstimate simultaneously all
model parameters as does Jensen (1998), we fiirsiads the long memory parameter
d and then estimate the short memory ARMA paramé@d3 using the correctly
fractionally differenced data. Once the short mgnparameters are estimated, their
Information matrix can be used to obtain the cdrstandard errors for the long

memory parameteat and these are presented in Table 3.3 and 3.4.

Fractional differencing is similar to taking difearces of a dataset that is originally in
levels, as is frequently done with non-stationanetseries to enable hypothesis
testing. The main difference is that fractiondledencing must be computed
numerically. To fractionally difference the timeres data, the following binomial

formula due to Hosking (1981, 1984) is used:
S (j-d)
ZF(J +1)r (- d)Yt J 59
J

Since working with Gamma functions is unwieldy rI8tg’s approximation is used to

simplify computations (Abramowitz and Stegun 197.2257):
TK+a) _ i ks + 0k ) (3.10)
r(k+p)

A fast numerical solution to this approximationiasuse the Gauss hypergeometric

function, which can be implemented in the statidtanalysis language (Reisen

1999; Fraley et al. 2006):
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1 d
2F1(d,L1L )= (ﬁ) (3.11)
Once the properly fractionally differenced data @b&ained, a standard ARMA model
is fitted by exact maximum likelihood (e.g. Hamiit@994, pp. 132-133) in a state-
space framework using the Kalman filter and assgr@aussian innovations. Though
it is not explored in this chapter, it would beagghtforward to fit instead a GARCH
model to the fractionally differenced data whichynb@ more appropriate to describe
a volatility variable. For data that are integdatd orderd<0.5, the underlying

process is stationary while it is non-stationaryewlthe data are integrated of order
0>0.5. The differenced data is found to be statiphased on an appropriate ADF-
GLS test at the 1% level of significance (Ellidtothemberg and Stock 1996).

Model selection of ARMA parameters is based onvpa# Likelihood Ratio tests
between a larger unrestricted model and a smastricted model, always using the
1% level of significance. The idea is to beginhnatvery large number of AR and
MA lags and using LR tests reduce the number of lagil the tests suggest we have
reached a parsimonious representation of the dadamost commodities, the
resulting model contains three or four lags fohttbe AR and MA terms. Akaike
and Schwartz Information Criteria are computedtbease are generally less reliable

because they have been found to over-parametéezadodel.

3.10 Exact Wavelet Maximum Likelihood Estimates of Long and Short Memory
Results of the wavelet ML long memory estimatioa presented in Tables 3.3 and
3.4. For each commodity futures time series ackided the long memory parameter

estimate with both naive and correct standard €rtbe AR and MA short memory
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parameter coefficient estimates with their Whitgartance robust standard errors, as

well as five test results and the interpretatioretlier long memory is true or spurious.

The estimated long memory parametes 0.309 for live cattle, 0.320 for lean hogs,
0.321 for soybeans, 0.304 for corn, 0.431 for whed36 for canola, 0.258 for coffee,
0.271 for cocoa, 0.290 for cotton, 0.194 for orajuyee, and 0.279 for sugar #11.
SinceH=0.5 +d/2 this implies the Hurst coefficient for these coodities varies
between 0.597 and 0.718, all of which suggest Sagmit persistence. To control for
the “day of the week effect”, the analysis is raépddor corn futures using only

Wednesday observations. Estimation results daliffet substantially.

Two sets of standard errors are presented in T&Beand 3.4. The naive standard
errors assume are computed under the (usually kaist@ssumption that short
memory parameters are either zero or have no affelding memory. They are
identical for all commodities because they depemg on the number of observations,
which is 4096 in all cases. The correct standenat® are computed from the
complete Information matrix which accounts for thas caused by short memory
parameters (Tanaka 1999). The correct standandsdor the fractional difference
parameted are hardly affected by the presence short men&RMA) terms. For
example, the correct standard error for the longhorg parameter in soybean futures

price volatility is 0.0187, while the naive stardlarror is 0.0155.

Five test results are presented for each commadityes time series. The theory and
intuition behind each test is presented in theofalhg section. As expected, the Wald
test rejects the null @=0 for all commodities but cannot distinguish begwérue and

spurious long memory. The second test is also \Maldccounts for the bias caused
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by short memory. Again, the test rejects the otitl=0 for all commodities which
suggests the appearance of long memory is not dduysthe bias due to short
memory. The third and fourth tests are standar8&XBnd Phillips-Perron tests
applied to the fractionally differenced data andaggested by Shimotsu (2006) are
very useful taken together. As explained in trevjmus section, for long memory to
be true, we must fail to reject the KPSS null hyyesis (d=0) and reject the Phillips-
Perron null hypothesis (d=1). The fifth test id@isman specification-type test

suggested by Ohanission, Russell and Tsay (20@&)anull of true long memory.

3.11 Testing for Spurious Long Memory
The literature on testing between unit roots (aglonemory) and structural breaks or
level shifts is vast (Banerjee and Urga 2005; Re2@06). We consider two simple

but effective tests by Shimotsu (2006) and by Odsan, Russell and Tsay (2004).

Shimotsu (2006) suggests three useful tests bas#dtedime aggregation invariance
property of true long memory processes shown byr@®eas (1998). The test selected
for this chapter consists of fractionally differemgthe data (using a robust estimate of
d) and then subjecting these tests to the well-knkRBS test for a null of stationarity

and Phillips-Perron test for a null of non-statiotya(unit root).

Three alternative data generating processes thanawn to generate spurious long

memory are considered: (i) a mean plus noise psp¢EsEngle and Smith’'s (1999)

stochastic permanent break model, and (iii) a Maswitching model.
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Table 3.3: Log-range volatility ARFIMA (p,d,q) mddestimates, standard errors and

hypothesis test results, for CME, CBOT, KCBOT an@E\Vcommodities

Commodity  CBOT CBOT CME CME KCBOT WCE
futures corn soybeans lean live wheat canola
contract hogs cattle
Long 0.304 0.321 0.320 0.309 0.431 0.436
memoryd
Correct 0.0187 0.0187 0.0187 0.0187 0.0188 0.0186
standard
error ford
Naive 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155
standard
error ford
Intercept <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
AR1 -0.002 0.409 0.148 0.767 0.564 -0.630
(0.202) (0.111) (0.176) (0.073) (0.036) (0.062)
AR2 0.634 -0.014 -0.455 0.918 0.083 0.336
(0.153) (0.126) (0.219) (0.087) (0.021) (0.056)
AR3 0.190 0.649 -0.236 -0.65
(0.151) (0.125) (0.104) (0.059)
AR4 0.093 -0.125 0.536 -0.063
(0.028) (0.065) (0.13) (0.024)
AR5 0.042
(0.228)
ARG 0.615
(0.126)
AR7 0.140
(0.018)
MA1 -0.146 -0.631 -0.265 -0.931 -0.834 0.392
(0.203) (0.109) (0.176) (0.07) (0.032) (0.056)
MA2 -0.661 0.09 0.463 -0.805 -0.539
(0.169) (0.136) (0.239)  (0.094) (0.048)
MA3 -0.073 -0.682 0.204 0.774
(0.015) (0.130) (0.120) (0.067)
MA4 0.341 -0.531
(0.07) (0.134)
MA5 0.044
(0.244)
MA6 -0.598
(0.148)
Seasonal (sinusoidal) coefficients are very small@ot significantly different from zero, they
are therefore omitted.

One approach that holds much promise but is nadidered here follows the literature
on continuous-time asset pricing models, which sstgthat jump-diffusion models
(Merton 1980) are more plausible on theoreticaligds than are long memory
models (e.g. Granger 2003, 2005). Jump-diffusiodels are increasingly used and
particularly useful to link futures with options-dutures (see e.g. Koekebakker and

Lien 2004; Saphores, Khalaf and Pelletier 2002).
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Table 3.3 (continued).
Commodity futures CBOT ~ CBOT  CME CME  KCBOT WCE

contract corn soybeans lean live wheat canola
hogs cattle

Log-likelihood 14906.4 15144.8 14979.1 16885.3 8462. 15035.5

Wald test Ho:d=0, 24.95 26.35 26.27 25.36 23.15 35.79

model 1(d)

Wald test Ho: d=0, 24.86 26.25 26.17 25.27 23.06 35.66
model ARFIMA

(p.d,q)

Shimotsu's adjusted  0.14* 0.61***  0.46**  1.04*** 0.04 0.02
KPSS test, Ho: d=0

Shimotsu's Phillips-  -1.46 -0.30 -0.60 0.52 -3.63** -
Perron Z test, Ho: 4.20***
d=1

Ohanissian-Russell- 4.42** 4.55*  4,06%* = 3.92** 2.82* 3.10*
Tsay test, Ho: true

long memory

Long memory No® No No No Yes Yes
true?

Notes: Critical test values (exact values were computed andruetlanalysis but

approximate values are included here for convenience, soutio®tSh 2006 Table 2):
adjusted KPSS test 0.135 (10%), 0.17 (5%), 0.26 @rfd)adjusted Phillips-Perron Z test
3.09 (10%), -3.36 (5%), -3.90 (1%); and Chi-Squgré&fi Ohanissian-Russell-Tsay Walg
type test 2.706 (10%), 3.841 (5%) and 6.635 (1%).
(#): Test results for corn futures are weaker: Shimotsstsnull can only be rejected at the
10% level of significance.

However, these models are substantially more diffto work with and hypothesis
testing is complicated by the presence of nuisgacameters that must be dealt with

through simulation methods (e.g. Khalaf, SaphonesEilodeau 2003).

If the true long memory (fractional integration) deb and the alternative (e.g.
Markov-switching) model are nested, with or withélRMA or GARCH short

memory parameters, Likelihood Ratio tests couldded to evaluate claims of
spurious long memory. In the absence of a clearradtive model specification, or if
the two models are non-nested as is the case$lgiraptsu’s test is appropriate and is

therefore used.
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Table 3.4: Log-range volatility ARFIMA (p,d,q) meldestimates, standard errors and
hypothesis test results, for NYBOT commodities

Commodity futures NYBOT NYBOT NYBOT NYBOT NYBOT
contract cocoa coffee FCOJ cotton sugar#1l
Long memoryd 0.271 0.258 0.194 0.29 0.279
Correct standard error
ford 0.0190 0.0191 0.0192 0.0190 0.0191
Naive standard error
ford 0.0155 0.0155 0.0155 0.0155 0.0155
Intercept <0.001 <0.001 <0.001 <0.001 <0.001
AR1 0.624 0.001 0.308 0.337 0.529
(0.145) (0.110) (0.541) (0.033) (0.073)
AR2 0.649 0.067 0.677 0.429 -0.109
(0.383) (0.059) (0.539) (0.037) (0.031)
AR3 -0.058 0.141 -0.848 0.967
(0.236) (0.031) (0.045) (0.032)
AR4 -0.367 0.365 -0.105 -0.425
(0.172) (0.032) (0.017) (0.076)
AR5 0.634
(0.062)
AR6 -0.526
(0.113)
AR7
MA1 -0.717 -0.065 -0.309 -0.442 -0.649
(0.158) (0.104) (0.541) (0.031) (0.067)
MA2 -0.611 -0.065 -0.672 -0.412 0.104
(0.400) (0.057) (0.526) (0.037) (0.031)
MA3 0.136 -0.122 0.013 0.887 -0.970
(0.256) (0.036) (0.018) (0.050) (0.032)
MA4 0.352 -0.344 0.564
(0.184) (0.033) (0.069)
MA5 -0.572
(0.058)
MAG6 0.592
(0.104)
Seasonal (sinusoidal) coefficients are very small and nofisantly different from zero, they
are therefore omitted.

To evaluate the hypothesis of true long memoryreggainknown forms of spurious
long memory, adjusted KPSS and Phillips-Perrorstast applied to the fractionally
differenced and appropriately demeaned data. cafitest values are provided by
Shimotsu (2006, Table 2). Suppose the data gengratocess appears to be
fractionally integrated I(d) but is in fact I(1).ge a unit root, mean plus noise or
stochastic break process. Then takingdhdifference will result in a new process

that is I(1-d) where (1-&0 while we believe it is I(0).
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Table 3.4 (continued).

Commodity futures NYBOT NYBOT NYBOT NYBOT NYBOT

contract cocoa coffee FCOJ cotton sugar#1l
Log-likelihood 12902.4 11677.9 12427.04 13733.3 1159
Wald test Ho:d=0,

model 1(d) 22.24 21.18 15.92 23.80 22.90
Wald test Ho: d=0,

model ARFIMA

(p,d,q) 22.16 21.10 15.87 23.72 22.82
Shimotsu's adjusted

KPSS test, Ho: d=0 0.48**+* 0.75%** 0.76*** 0.40*** @ 8***
Shimotsu's Phillips-

Perron Z test, Ho: d=1 -0.61 -0.58 -0.61 -0.80 -0.95

Ohanissian-Russell-

Tsay test, Ho: true

long memory 3.80* 5.21* 3.91* 4.50%* 4.27**
Long memory true? No No No No No

Notes: Critical test values (approximate, source: Shimd66 Zable 2): adjusted KPSS test
0.135 (10%), 0.17 (5%), 0.26 (1%) and adjusted ipbilPerron Z test -3.09 (10%), -3.36 (5%, -
3.9 (1%); and Chi-Square(1) for Ohanissian-Russell-Tgaid-type test 2.706 (10%), 3.841
(5%) and 6.635 (1%).

The KPSS test will correctly reject the null thaistnew, fractionally differenced
process is 1(0) but the Phillips-Perron test, whiels low power, will fail to reject the
null that the new process is I(1). We therefoegrnehat the process is not true long
memory. If the process is true long memory I(dgnt the fractionally differenced
process will be 1(0), the KPSS test will corredayl to reject its null of I(0) and the
Phillips-Perron will also correctly reject its noff I(1). We then confirm the process

is true long memory.

The results, presented in Table 3.3 and 3.4, amerguized as follows. There is
strong evidence that long memory is only true ¥ao but of eleven commaodities,
namely wheat and canola futures. There is stromgace of spurious long memory
for eight commodities and weaker but reasonabléemdge for corn futures. For most

commodities, therefore, the results suggest the alat better explained by a short
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memory but nearly non-stationary model such asdécagtl Smith’s (1999) stochastic

break process or a Markov-switching process.

Ohanissian, Russell and Tsay (2005) suggest aeitagl of spurious long memory
that is based on Hausman’s (1978) result that fasiegft estimator must have zero
asymptotic covariance with any other consistengsotically normal estimator.
Under the null of true long memory, the covarianteévo estimates of long memory
for the same data but aggregated two different walysisymptotically equal the

variance of the long memory estimator for the leggregated data.

The test is however limited because it relies @Gi?H long memory estimator,

which as explained earlier, is markedly inferiomtavelet and Whittle-type

estimators. Moreover, the Ohanissian et al. tesest suited for large datasets such as
ultra high-frequency financial data (“tick” obsetims), and for optimal size and

power requires a large number of aggregation lasdiggh. This test has a Chi-

Squaredyl) asymptotic distribution whed is the number of aggregation levels.

In this case, the less aggregated data are theatskrvations, and each aggregation
levelm results in a number of ordinatém) generally chosen to be (n/Hfthen the

test asymptotically converges to:

lim 4™ (00v(a<m> ,d™)y-Var (&‘”U)) =o(1) (3.12)

n-oo

For our datap=4096,m=8, |(m)=22.627. Computation of the test statistic is itkda

in Ohanissian et al. (2005).
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The results in Table 3.3 and 3.4 imply rejectionthaf null of true long memory for all
commodities at the 5% level of significance exdeptvheat and canola as well as
rejection of the null at the 10% level for cocoghese test results agree with the
Shimotsu test approach and provide strong eviddrateKansas City wheat and
Winnipeg canola futures volatility are charactediby true long memory, while for all

other commodities the long memory is spurious.

In conclusion, since the wavelet-based estimatayhbsst to the presence of short
memory dynamics, findings of spurious memory forstmaf the commaodities suggests
other dynamics must be responsible for the illusibpersistence in volatility. One
leading candidate addressed in the next sectiaMarkov-switching model that

generates spurious long memory.

3.12 An Alternative Model of Futures Price Volatility

The evidence only weakly supports rejecting the taimg memory model for the
CBOT corn futures contract. We consider estimatorghese data an alternative
model, a Markov-switching process that has beendda generate spurious long
memory (see e.g. Hamilton 1994; Shimotsu 2006) iflka is to obtain state-
dependent means, e.g. “low” and “high” volatilitates, along with the probabilities
associated with each state. To determine whelleetrie long memory or Markov-
switching model better describes the data, a nesteddest can be constructed

following Pesaran and Ulloa (2006) and Gourieronct Blonfort (1994).
The model is a simple two-state Markov-switchinggass augmented by AR and MA

terms (Hamilton 1990, 1994), defined as follog&:)(Y 1) ON(0,0°) under state 0
and@(L)(Y 1) ON(E1,0%) under state 1. The Markov transition probabilitstrix
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determines from one time period to the next whetestoccur. Given state O at tite
the probability of staying in state 0 the next pdris defined by which necessarily
lies between 0 and 1. It follows that the prokbabdf going from state O to state 1 is
po1 and so forth. Estimating a two-state Markov-switghmodel therefore produces
values for the four transition matrix probabiliti@s well as the two state means, which

may be interpreted as “low” and “high” volatilityades in our case.

As suggested by Hamilton (1990, 1994), the EM aillgor is used to help the
likelihood converge (Dempster 1977). This algantwill improve the likelihood
with every step but is not guaranteed to convergbé best estimates (Wornell and
Oppenheim 1992). The resulting estimates are dggiendent meargg=0.0133 and
&1=0.0355 and a Markovian transition matrixpydp0.955, p;=0.045, po=0.608 and
p11=0.392}.

This means the daily price volatility processhifa low volatility state, is more than
95% likely to remain in this low volatility statbut if in a high volatility state, is
about 60% likely to switch to the low volatilityate. The ARMA parameters are
statistically significant and ar@=(0.676, 0.701, -0.394) arti¥(-0.587, -0.652, 0.327)
with White covariance robust standard errorsps€(0.0320, 0.0133, 0.0236) and
se@)=(0.0314, 0.0134, 0.0177).

The difficulty of implementing a non-nested hypdiisetest in this context concerns
how to apply the encompassing principle (Deator2)98 hat is, since neither model
can be written as a special case of the othetesitgelies on defining a third model
that will serve as the alternative for two testg;reof which involves only one of the

two estimated models. The test is said to be ntormative because if we reject both
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nulls or fail to reject both nulls, we still canratgcide which of the two estimated
models is more plausible. Construction of this ie$eft for an extension of this

work.

3.13 Conclusion

This chapter investigates one important cause angegjuence of bias in commodity
futures option pricing and contributes to the aetiterature on the robust estimation
of long memory in commodity futures price volatilitsing a novel empirical strategy
that also enables the computation of efficientddaa errors for the long memory

parameter jointly with the unbiased estimationtadrs memory parameters.

There is evidence of long memory for all commoditiures contracts in the log-range
volatility of prices. The estimates are, howewanaller in magnitude than those
found in previous research and, based on the essdizam carefully designed tests,
the results appear to be spurious for all commddityres except for Kansas City
Board of Trade wheat and Winnipeg Commodity Excleacenola. Further support
for this interpretation comes from results from aelet-based semi-parametric
estimation of long memory. We find that for alhemodities the Hurst parametdris
not significantly different from 0.5, which impli¢sat increments of the data
generating process are consistent with white remskenot long memory (fractional
white noise). Although the time series model usaelatively simple, Lordkipandize
(2004) estimated a much larger, stochastic vaiatiiodel of commodity derivative
prices and concluded that once breaks and seasoaraiproperly accounted for, the

effect of long memory is inconsequential.
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The results are weaker for Chicago Board of Tramta tutures, so a Markov-
switching process that generates spurious long memm@stimated and found to fit
the data well. Although standard asymptotic neatsot be applied, it is suggested a
non-nested hypothesis test could be constructedalate the null of true long

memory against regime-switching.

The implication of this chapter’s research is tina¢ long memory is unlikely to be a
good description of the data generating processnlyidg agricultural commodity
futures prices and volatility. Since spurious langmory is often found, however,
models of commodity futures should be selecte@poaduce the illusion of long
memory that is observed in the data. Many suckidate models exist, including

stochastic break, regime-switching, and stochasticroot.

Option pricing in agribusiness is therefore unikid gain much by using fractional
Brownian motion and fractional noise as buildingdids instead of relying on the
classic Black-Scholes-Merton model. The resulthis chapter do, however, provide
support for the jump-diffusion models of optiongang and related econometric

procedures, for which the volume of research heattyr expanded in recent years.
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CHAPTER 4
REVEALING THE IMPACT OF INDEX TRADERS
ON COMMODITY FUTURES MARKETS

4.1  Introduction

This chapter presents original results on two tynaglestions on the relationship
between trader type heterogeneity and futures potility. First, should the
Commodity Futures Trading Commission make permaiepilot project whereby
positions of Index Traders (defined later in thesteon) are reported separately from
other large traders? Second, has the time hoaktmading (short run or long run)
changed over the last two decades across commudityets? An approximate
measure of the impact of Index Traders on commddityres price volatility is
revealed by estimating the long-run trade volunee@ss using an application of
wavelet transforms. Similarly, using wavelet tfansis allows us to obtain, for a
given commodity and time period, the approximasgridiution of trade volume across

time horizons, from which an interpretation of gatlypes can be made.

The Commodity Futures Trading Commission in Wastand.C. is a federally-
mandated regulatory agency responsible for helpomymodity derivatives markets
run smoothly, free of market cornering attempts iasdler trading. It also produces,
since 1924, widely read reports on the Commitméitraders (CoT). These CoT
reports, published weekly for a number of yearsyigle information on the futures

and options positions of large traders in all megkegulated by the CFTC.

In recent years, the demand for commodity deriesgtivas substantially increased, as

commodities are now considered a vital class aftagse help diversity a financial
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investment portfolio (Gorton and Rouwenhorst 200Ble recent and growing
participation by a non-traditional class of largeders, defined by the CFTC as Index
Traders, explains much of the expansion in commatitivatives. Index Traders
consist of large investment funds such as commautitls, pension funds and swaps
dealers that are involved neither in productiotivdey or ownership of the

underlying asset. The CFTC evaluates that: “OrCthieago exchanges, for example,
the [Index] funds make up 47 percent of long-teantcacts for live hog futures, 40
percent in wheat, 36 percent in live cattle angh@ient in corn” (The New York

Times, January 19, 2007).

In 2006, the CFTC conducted a large-scale survésatm about the perceptions of
commodity futures market participants regardingebadraders. The outcome was the
largest number of responses ever for a CFTC surirst respondents were
concerned that Index Traders (also called indedd$uare responsible for increasing
market volatility, with consequences for price ity along the distribution chain.

As of January 2007 and on a two-year pilot babes GFTC will publish a
Supplemental Commitment of Traders report for twedelected major agricultural
commodities. This supplementary report definesamalyzes Index Traders

separately from Commercials and Non-Commercials.

Two main questions on the relationship betweenrésttrade volume and price
volatility are asked and answered in this chapkerst, have Index Traders caused
greater price volatility through an increased vatuof trade? Second, how has the
time horizon of commodity futures trading (e.g. ghian, long run) changed in the
last two decades? The results are made possildenayelet transform

decomposition of the time series data into mutuattihogonal “artificial” time series.
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Each artificial time series corresponds to thetioacof the original price series that is
explained by a specific time horizon, for examplegkly variation. As a
consequence, we remove variation associated with tiorizons smaller than two
weeks. The selection of a two-week threshold bénehich all trade volume
fluctuations are filtered out is arbitrary to soeent but is supported by the available
empirical evidence (Haigh, Hranaiova and Overd@d3). Indeed, confidential

CFTC position-level data show that Index Funds@mléngage in short-term trading.

In summary, there are two findings in this chaptds). Index Traders may have caused
greater price volatility in the only two non-stol@alsommaodity futures markets
considered (live/lean hogs and live cattle consadiut not in the storable commodity
markets (grains). The empirical results may priowely and of directly relevance to
the CFTC's pilot project on Index Traders. In didai, the methodology may prove
useful to evaluate the impact of specific tradgetyin futures markets for which no
position-level reports are produced or availalfl®. The distribution across time
horizons of trade volume reveals that storable codity market participants trade at

a more distant horizon than do non-storable comiyadarket participants, and also
that in recent years intermediate time horizonslgained in importance, which may

be well explained by the rising participation ofiax Traders.

4.2 Index Funds and the Commitment of Traders Report

Participation in futures markets is traditionalkp&ined in terms of hedging (largely
commercial) and speculation (largely non-commeyceraitives. It is well understood,
however, that large commercial institutions are stimes involved in speculation
while non-commercials may hedge. Commitment ofi€ra reports classify the

positions of large traders into commercials and-c@mmercials and are used, for
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example, by hedgers to evaluate future demand ysgdxulators to design technical
trading rules (Park and Irwin 2006, 2007; Robe@i83). A technical trader may try to
assess how long a bullish uptrend will last by logkat how the large noncommercial
traders bid futures prices forward such that theesepremium over normal carrying

charges.

The rising importance of Index Traders in commodigrkets can be explained by the
business cycle behavior of commodity prices assartaclass over holding periods of
one month to five years (Erb and Harvey 2006; Goand Rouwenhorst 2006).
Commodity futures are seen as highly desirableusecthey are positively correlated
with inflation (actual and unexpected) and neg#ieerrelated with stock and bond
returns. A report by Ibbotson Associates (200&) eikample, finds that “commodities
have low correlations to traditional stocks anddsymproduce high returns, hedge
against inflation, and provide diversification thgh superior returns when they are

needed most” (p.iii).

Index Traders are not allowed to physically owndhderlying commodities (CFTC
2007). The Index Traders category contains swajede who hold long futures
positions to hedge short OTC commodity index rigaiast long positions taken by
institutional traders such as pension funds. Medald energy commodities are not
included because there exist for these many atigenexchanges that are not
regulated by the CFTC, such as Over-the-Counteketsand derivative instruments.

It would be difficult to get meaningful results fnatheir inclusion in the pilot project.

Before carrying out its pilot project, the CFTClected thousands of survey

responses on questions about the usefulnesswéékly reports and perceptions
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about the impact of Index Traders. To explain wigst market participants are
concerned by the impact of Index Traders, congliefollowing example. A farmer
wants to lock in a crop price using a futures hedge uses the CoT reports to assess
expected consumer demand based on commercialgrssitlf commercials increase
their long futures positions, the farmer believegilects sales of cash commodities
and suggests a strong demand for cash grain.atrcéise the farmer postpones the
short hedge in anticipation of a bullish markeut Buppose instead the increased long
open interest reflects swap and pension fund utsiral trader positions. Then the
farmer waits but finds that demand does not in&ess he must form a hedge with a
less favorable basis. Index Traders may therdéa@ market participants to wrongly

infer greater export activity and end use buys.

A second concern is the risk of a sudden and lexgeof the (mainly long) index fund
positions in commodity futures if one day in théuhe commodities cease to be as
desirable as asset class as they are today. Susthis, however, unlikely (Gorton

and Rouwenhorst 2006).

In contrast, the International Swaps and Derivatikesociation opposed the plan to
create a new reportable class for Index Traddrargued that Index Trader long
positions do not increase volatility because theypassive, predictable and instead
contribute to increased liquidity. On the contrarglaimed, disclosing Index Trader
positions would encourage speculation and increaksdility, because rolling index

positions are recurring and can be anticipated.

The empirical evidence tends to support the Swag<eerivatives Association’s

claims that Index Traders do not increase markkttiity. For example, Chatrath and

79



Song (1999) find that both the number and the cament of speculators are
negatively correlated with the underlying cash masolatility. On the contrary, it is
hedger positions that are found to be positivelyedated with market volatility.

Irwin and Yoshimaru (1999) find that managed comityogglools do not appear to

contribute to market volatility.

Most studies, of necessity, use aggregated datatiie CFTC’s weekly Commitment
of Traders reports. Recent work by Haigh, Hranaiamd Overdahl (2005, 2007) and
by Haigh, Harris, Overdahl and Robe (2007), howewuse confidential position data
at the level of the participants and examine tineation of causal relationships to
evaluate the hypothesis that price changes areddiyslarge trader speculation (i.e.
changes in futures positions). Their results fband natural gas futures show that,
on the contrary, large traders provide liquidity fiee markets and change positions

less often than do other traders.

4.3  Futures Market Volatility and the Long-Run Volume of Trade

The distribution of trader type heterogeneity argkther trading causes volatility has
attracted a large volume of research (French atidlB86). At least since Friedman
(1953), it has been suggested that while informadietrs should reduce volatility,
uninformed traders are likely to increase volatilidvramov, Chordia and Goyal
(2006) show, for example, that a model with boforimed (contrarian) traders and
uninformed (herding) traders explains well obsergewpirical patterns of volatility,
including asymmetry, at daily and lower frequen@asd is far more robust to model
specification issues than are alternative explanatsuch as the leverage effect (Black

1976) or time-varying expected returns.
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A useful approach is to consider how trade voluffects volatility, because a

trader’s level of information is proportional tcetkize of his or her trades (Easley and
O’Hara 1987). Copeland (1976) suggested the rfol®lome as an information

arrival process and proposed a model of sequent@aimation. Blume, Easley and
O’Hara (1994) develop a model of the informatioredé of volume based on differing

qualities of signals.

It has long been a known stylized fact that “a $if@atge) volume is usually
accompanied by a price fall (increase)” (Ying 1968} least since Godfrey, Granger
and Morgenstern (1964), researchers have examm&drade volume contains
information on the unknown process that drivestagsg. futures) prices. The
relationship of volume with different functions jpfice has been studied, including
price changes, absolute or squared price changdse direction of price changes.
Relatively little work has been done, however, éttdr understand the trade volume
process itself (Lo and Wang 2001). Yet the retetiop between trade volume and
price volatility remains an active area of reseaashfor example, Pan and Poteshman
(2006) show that option pricing volume containsfulseformation about future stock

prices.

In an early survey of the literature, Karpoff (198es four reasons for the
importance of the price-volume relation. These erdéearn about the information
structure of financial markets, to improve the gyalf event studies that use both
price and volume data, to better estimate the ecapjoint distribution of asset
prices, and lastly to examine implications for feprices. Most of the early studies
characterized volume as an exogenous variable.oussux and Lastrapes (1990), for

example, find that a volume variable is significauiien included in a GARCH model
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of price volatility. Much subsequent work has game modeling the endogenous,
joint determination of volume and price changesr(@t 1981; Foster and
Visnawathan 1995; Grammatikos and Saunders 1986pueeux and Lastrapes

1994).

The mixture of distributions hypothesis has beappsed for price returns and
volume and has led to a large literature on tha joiocess estimation (Clark 1973;
Epps and Epps 1976; Tauchen and Pitts 1983). Aadd996) finds that volatility
persistence is substantially reduced in a modelevhielume and returns are jointly
estimated. Bollerslev and Jubinski (1999) find th@ volume-volatility relationship
associated with a “news arrival” process is charaatd by long memory and in
particular, that the hyperbolic rate of decay diésct by long memory is the same for
both variables. Wang and Yau (2000) examine tleerhwst actively traded financial
and metals futures contracts and estimate a tlyeatien structural model of volume,
price volatility and bid-ask spread (computed fréfTC intraday data adjusted for

microstructure effects).

4.4  Data, Estimation and | dentification Strategies

This chapter makes two contributions to the literaton trader heterogeneity, price
volatility and the volume of trade. First, theatebnship between trader type and time
horizon is used to help answer the question wheh®eincreasing participation of
large Index Traders in commodity futures marketsihareased the volatility of
futures prices through increased long-run trademel. A joint model of trade

volume and price volatility is considered, with temporaneous and lagged volume
and volatility variables as the regressors. Toawsshort-run futures trade volume

variation from the data, a Discrete Wavelet Tramsafes applied to the data, which
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produces wavelet coefficients defined over time @amescale (time horizon), as
described in Chapter 2 (e.g. section 2.7-2.8).walVelet coefficients associated with
time horizons of two weeks and less are set thd)) the appropriate Inverse Discrete
Wavelet Transform is applied to the wavelet coedfics. This results in a new trade
volume time series of the same length as the aiglata, but which excludes all

variation caused by the short run (i.e., time hemgof two weeks or less).

Second, to determine whether commodity futuresngadas focused on the short-run
or the long-run over the years, a wavelet transfoased method is applied to trade
volume data for a dozen leading agricultural comitnesl This approach provides a
revealed measure of the time horizon of trading amdirectly, an aggregate measure
of trader heterogeneity and proportions of tragipes in different markets over time.
Lastly, to evaluate whether the volatility of traddume has experienced structural
breaks, two tests are used. First, a wavelet-bleede Carlo is conducted to detect
change-points over the entire time period and recbwoth the precise date of the
break and the time horizon at which it occurrethisTest has the advantage of being
robust to the presence of long memory, which ap@acharacterize trade volume
time series data (Lobato and Velasco 2000). Se@adp-Wald type test in the
Andrews-Ploberger-Hansen class is applied to a abased linear regression of
daily volume differences over variations due tdediént time horizons. This test

provides direct evidence of changes in the infl@enicspecific time horizons.

The data consist of business daily observationsettement price and trade volume
(total from all maturities) from the Chicago BoadTrade soybeans and corn futures
contracts, Kansas City Board of Trade wheat futaoegracts, Winnipeg Commaodity

Exchange canola futures contracts, and Chicagoanéte Exchange live cattle and

83



lean hogs futures contracts. This allows us teican differences between storable
(grain) and non-storable (meat) commodities. Vaudata for contracts traded at the
Chicago and Kansas City Boards of Trade (corn, sagb, wheat) are adjusted for
consistency because on January 1st 1998, the egpoasurement unit changed

from 1000 bushels to one contract (5000 bushels).

Commodities may be categorized as non-storablgldowith large inventories
(“overhangs”) and storable with small inventori@$hese categories also lead to
testable predictions of futures forecasting acqurdeutures provide an unbiased
forecasting measure for non-storable commoditissu@l as other instruments such
as Federal Funds). For storable commodities \aitlpe inventories, futures prices
incorporate a cost of carry (storage plus inteyest)l perhaps a convenience vyield
(this need not be the case, however, see e.g.nBneVilliams and Wright 1997).
Storable commodities with small inventories cardbscribed by two cases. If futures
prices are higher than spot prices (“contango”httiee analysis follows the large-
inventory case. But if futures prices are lowanrtlspot prices (“backwardation”), we

can use apply the analysis as if it were non-sterab

Figure 4.1 shows the evolution of soybean futuradet volume over the time period
1988-2004. A recurring pattern can be identifigdere volume rises and falls over
the lifetime of a single maturity. Figure 4.2 caangs actual with wavelet-filtered
trade volume over a short time period, 3/23/1988/12/1988, also for the soybeans
futures contract. The wavelet-filtered trade voduramoves all variation that is
explained by time horizons of less than two we€Ksere is a visible difference

between the actual and wavelet-filtered data.
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CBOT soybean futures daily trade volume, 1988-2004
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Figure 4.1: Daily trade volume, Chicago Board cide soybean futures 2/1988-
1/2005.
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Actual vs. wavelet-filtered (long-run) daily tracle volume, nearby contract,
CBOT soybeans futures 3/23/1988 to 5/12/1988
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Figure 4.2: Actual and wavelet-filtered (i.e., & run variation) daily trade

volume, Chicago Board of Trade soybean futures3/2888 to 5/12/1988.
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Instead of the commonly-used but noisy logreturatlity measure, a daily log-range
volatility measure is computed following Alizadérandt and Diebold (2002) and
Yang and Zhang (2002):

h, = In(supF ¢ T ) infF ¢ T)) (4.1)

The daily log-range measure of volatility is asyatjgially superior to absolute or
squared logreturns and appropriate given the langeber of observations used. The
measure of volume used is the natural logarithiiadi, total volume for all

maturities traded on a given day, expressed insdnods of contracts (each contract

equals 5000 bushels).

45  Endogenously Biased Model and Hausman-Wu Test

Three estimation procedures are applied to datalf@ommodities under scrutiny to
determine whether trade volume explains price ulitlatand specifically whether
Index Traders have an adverse influence. Thedpptoach is endogenously biased
and used to provide benchmark estimates. The demxwhthird are unbiased, and the
third moreover uses wavelet filtering to focus oalythe likely impact of Index

Traders.

To present the different approaches, we begin @Gititago Board of Trade corn
futures data, and provide the results for the otbemmodities in the following
section. The first model specification is an aegwessive moving average with

exogenous term (ARMAX) estimated by maximum likebkl:

AL =6(L)g, +InV, 4.2)
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where the price volatility is defined as the daddg rangeh;, (L) andB(L) are the AR
and MA lag polynomials, and In{M/is the natural logarithm of the daily trade volim
time series. ARMA lag length is selected on theidaf Likelihood Ratio tests,
comparing pairwise a larger unrestricted model \&imaller restricted model and
considering one to twenty-one lags (i.e., one mamthusiness days). Akaike and

Schwarz Information Criteria are also computedcfmmsistency.

Similarly, we can estimate an ARMAX model of théeet of volatility on volume:

L) InV, =8(L)e, +h (4.3)

To improve the computational convergence of thelilood function, volatility his
expressed as one hundred times the log-range dmech@d/; is expressed in thousands
of contracts, where each contract is, e.g., 50@80dls of corn. Taking natural
logarithms of all variables, in addition to makinariances more symmetrical, also
conveniently allows the estimated coefficients edrterpreted as elasticities. For
both the price and volume data, the first andtEstobservations are deleted to avoid

possible boundary effects caused by the data tramation.

Before estimating the ARMAX model, diagnostic temts computed to establish the
stationarity of the sample data. Since unit restg are well-known to have low
power (Cochrane 1987) and as the existence ofdtithe trend (deterministic) and a
unit root (stochastic) is unlikely in economic tireeries (Perron 1988), a two-step test
procedure is used. Firstis computed a unit regttassuming no time trend
(Augmented Dickey-Fuller and Phillips-Perron).wié fail to reject the null of a unit

root, we compute a t-test of the regression offifferenced series on an intercept.
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This evaluates the presence of a time trend (ewifh). If we reject the null of a unit
root, we are confident the data are stationary. cCéreevaluate the presence of a
deterministic trend by computing a t-test of théada levels on a time trend vector
t=(1, 2, 3, 4, ..., T}. The ADF test on the trade vokidata a value of -3.11, which
falls between the 1% and 5% critical values of63a4d -2.87. We reject the null

hypothesis of a unit root at the 5% level of sigaihce.

Estimates using CBOT corn futures data for the Ibesequations and obtained

independently are:

h, =-0.79+ 0.74IV, - 0.376M_ + 0.422, (4.4)
InV, =1.167+ 0.298, + 0.385M_, + 0.243\h, (4.5)

The results suggest that daily price volatilitgésially correlated and affected
positively by contemporaneous volume but negatibglyagged volume. All
coefficient estimates are individually statistigadignificant at the 1% level. Standard
errors are provided in Table 4.1. The adjustédr@ 0.428 for the volatility equation
and 0.606 for the volume equation. The ARMAX valaee presented as naive
baseline estimates against which are comparedithiesed Two Stage Least Squares
estimates in the next section. Standard errors@rguted using a Newey-West

heteroskedasticity and autocorrelation consistdA() covariance.

Volatility dynamics are better captured by the ARGARCH family of models
(Engle 1982; Bollerslev 1986). A large numbertofdses use GARCH models to
describe the volume-price volatility relationshiygsed on the mixture of distributions

hypothesis that provides an explanation why préterns are heteroskedastic
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(Tauchen and Pitts 1983; Lamoureux and Lastrap@8)1Nelson (1992) shows that
even if significantly mis-specified, GARCH modelaymprovide an acceptable fit to
the data and to short-term forecasts. Both GARGHARMAX estimates are,
however, biased in this model because theory stgtfes volatility and volume
variables are jointly determined and therefore gedous to each other. Moreover,
including volume as an exogenous variable in a GAR@del is likely to introduce a

simultaneity bias.

To verify empirically the endogeneity bias betweentemporaneous volume and
price volatility, a Hausman-Wu test is computedioth the volume and the volatility
equations. The test statistic has a null hyposhefsno correlation between the
potentially endogenous regressor and the error &geins distributed as with

degrees of freedom being the number of restricteomsthe adjusted number of
observations. For trade volume, the statistic8#.28 is much larger than the value of
theF test statistic which is 6.63. Likewise, for pri@atility, the statistic of 27.89 is
larger than 6.63. Therefore, the null hypothesiscoendogeneity bias is rejected for

both equations and we may conclude that joint egton is preferable.

4.6  Full Sample Unbiased Structural Model Estimates

To solve the problem of simultaneity bias and theéogeneity of volume and
volatility we use once-lagged volume instead oftecrporaneous volume. This
model better describes information arrival flowshe Copeland (1976) sense rather
than the actual price-volume relationship. A Gaheed Method of Moments
framework such as the one used by Foster (199%)ilféutures contracts is better

suited for this problem to recover the structuradel parameters.
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The structural model is the following:

InV, = a,+ah +a,InV_ +a,nV_,+v, (4.6)

h=V,+yInV, +y,InV_ +yh +v, 4.7)

where In/;is the natural logarithm of trade volume (normalizes thousands of
contracts)h is price volatility measured as the natural lotpeni of the daily price
range, andsand 1, are assumed to be mean zero white noise innovatiorthis
structural model volume and volatility are endogenand OLS estimates are
inconsistent. The instruments needed for GMM edtiion are lags of both variables.
As there is one excluded variable in each equatioa,lag may be used in each
equation and then the model is exactly identifiechsthat unique, consistent estimates

of all parameters can be recovered.

The moment conditions reduce to a 2SLS problemKserilton 1994, pp. 233-247
for time series 2SLS estimation) where we solveréaeiced form equations and
recover the structural parameters, which are toempared to the biased, benchmark
OLS estimates. A greater number of instruments KGikoment conditions) could be
used to provide over-identifying restrictions. T&umulation results of Tauchen
(1986) and Kocherlakota (1990) show, however, éhaarsimonious selection of
instruments is often preferable, particularly itinae series context where lagged
variables provide a very large number of potemtisiruments that are likely to be
weak. The potential weakness of instruments ituet@d using the Hausman-Wu

specification test.
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By adding two instruments, the twice-lagged volgtin the volume structural
equation and the twice-lagged volume in the vatatdtructural equation, the reduced
form model has a total of ten equations in tenfamehts, equivalently, just
identification. In this case, the 2SLS estimasosimply the Instrumental Variables
(IV) estimator, which is consistent but does naivle heteroskedasticity and
autocorrelation consistent (HAC) standard errdiise GMM literature suggests
various HAC standard errors, including the Neweys¥(&987, 1991) correction
which we use. The simple decision rule for lagntation is to choose a number of
lags equal to 0.45*F where T is the number of time series observations.
Alternatively, full-information estimation methodsch as 3SLS, GMM-3SLS or
simultaneous equations FIML may be consideredtimase the joint system of
equations (see Hamilton 1994, pp. 247-253). Suethaas are asymptotically
superior but there is, in limited size samplessla of a specification error propagating
to the entire system of equations. Monte Carld@vwte suggests it is not clear

whether one approach is preferable to the othelg@et al. 1985, pp. 646-53).

Structural model coefficients can be estimatedguidie IV estimator as follows. Lgt
be the dependent variable, ¥ebe the matrix of original regressors including the
endogenous variable and Ebe the matrix of instruments, excluding the pre-
determined variables but including other origiregnessors as well as additional lags

as necessary to attain exact identification.

O, s=(X'Z(2'2)Z' X)X '2(Z2'2)*2"y (4.8)

The 2SLS estimation procedure yields the followiegults for the original structural

equation (not including instruments) for the CBQf¥rcfutures data:
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h =-1.06+ 0.97IvV, - 0.58_, + 0.44Y, (4.9)
InV, =0.879- 0.168 + 0.487M_ + 0.347\h, (4.10)

For the volatility equation, the results are qadiNtely the same as for the biased
model. All variables are individually statisticaBignificant on the basis of t-tests.
Standard errors are provided in Table 4.1. Thesad§l R is 0.406 for the volatility
equation and 0.376 for the volume equation. Rratatility is positively associated
with contemporaneous volume, but negatively witigked volume, and also that
volatility is positively serially correlated as eeqgied. Trade volume is positively

serially correlated, but negatively associated wihtemporaneous volatility.

4.7  Wavelet-Filtered Sample Unbiased Structural Model Estimates

In this section, the approximate impact of Indeaders on price volatility is

estimated using an indirect, revealed methodol&§§LS estimates are obtained for
the structural model using wavelet-filtered dat #xcludes variation associated with
time horizons of less than one month. As explamadier, research by the CFTC has
found that Index Traders do not engage in shortiraging and selecting a one-month

time horizon as threshold is most likely consemati
As it is not meaningful to compare the statistgighificance of two coefficient
estimates (e.g. Gelman 2006), a qualitative inetgpion is provided in this section

and appropriate hypothesis tests are presentethtarasection.

Estimation results using the 2SLS method and waddtlered data Chicago Board of

Trade corn futures are then:
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h =-0.756- 0.136IV, -~ 0.525M_ + 0.308, (4.11)

InV, =0.0559- 0.006/ + 1.926M_ - 0.94Nh, (4.12)
Using wavelet-filtered data, price volatility isgagively associated with both
contemporaneous and lagged volume (long-term hoyizAll coefficients are
individually statistically significant except for;\h the h equation (3.23). Standard

errors are provided in Table 4.1.

Table 4.1: Volume-Price Volatility Model for Chicaddoard of Trade corn futures
contract: biased (individual) model estimates -fainple 2SLS estimates and
wavelet-filtered (no short run variation in volunestimates

Corn futures

Volatility equation

Biased individual

2SLS, full sample

2SLS, wavelet;

estimates filtered data
Intercept -0.79 -1.06 -0.756
Std error (0.089) (0.069) (0.074)
volume(t) 0.74 0.97 -0.136
Std error (0.024) (0.0994) (0.17)
volume(t-1) -0.376 -0.55 -0.525
Std error (0.0287) (0.0548) (0.171)
volatility(t-1) 0.422 0.447 0.308
Std error (0.0328) (0.0164) (0.015)

Volume equation

Biased individual

2SLS, full sample

2SLS, wavelet/

estimates filtered data
Intercept 1.167 0.879 0.0559
Std error (0.07) (0.0374) (0.0032)
volatility(t) 0.298 -0.163 0.0061
Std error (0.0166) (0.0593) (0.0017)
volume(t-1) 0.385 0.487 1.926
Std error (0.014) (0.02) (0.0055)
volume(t-2) 0.243 0.347 -0.941
Std error (0.014) (0.02) (0.0056)

Notes: All coefficients are statistically signifiteexcept volume(t) in the wavelet-
filtered 2SLS volatility equation. Standard errare computed using the Newey-West

HAC covariance.
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4.8  Estimation Resultsfor Other Commodities

A similar three-part analysis, the results of which presented in Tables 4.2 through
4.6, is conducted for four other commodities: s@yis canola, lean hogs and live
cattle. The estimation procedures are the biasddpendent ARMAX model, the
2SLS joint model and the 2SLS joint model using &atfiltered data. The data used
for the analysis consists of daily observationenfi2/1988 to 1/2005 with the
exception of Chicago Board of Trade soybean futifogsvhich the data used run

from 4/19/1990 to 7/21/2006.

Results for soybeans, presented in Table 4.2,arerglly similar to the results from
corn futures data. Indeed, while correcting f@ émdogeneity bias does not change
the sign of the volume-volatility relationship, wet-filtering does. The 2SLS
estimates using wavelet-filtered data suggest fomgirade volume reduces price
volatility, although the estimate for contemporamegolume is not significantly

different from zero.

To consider a major commodity that is not under@R& C’s jurisdiction, and for
which there is less position-level data available,include canola futures traded at
the Winnipeg Commodity Exchange in Canada. Thelieare presented in Table 4.3
and both ARMAX and full sample 2SLS estimates aralitptively similar to the
results for corn and soybeans futures, namelydhatie mporaneous volume has a
positive effect on volatility but lagged volume hasegative effect and moreover that
correcting for the endogeneity bias does not chémgesigns in the structural
equation. However, 2SLS results from using wavilketred data suggest both the
present and lagged volume variables have no effegplatility. Indeed, neither point

estimate is significantly different from zero oretbasis of a t-test.
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The Chicago Mercantile Exchange hogs contract abduog January®11998 from a
“live” (animal) specification to a “lean” (carcassijie. To avoid spurious effects from
this structural change, only data beginning in 1888used for this analysis. Indeed,
Carter and Mohapatra (2006) find that the new lomgdract has led to a substantial
increase in trade volume that is plausibly indeenadf the role played by Index
Traders. Results for Chicago Mercantile Exchaege lhogs are presented in Table
4.4 and show that the effect of present and lagg&dne on volatility is qualitatively
the same and always significant at the 1% levelthdreve use biased, correct, or
wavelet-filtered correct estimates. In all casesitemporaneous volume has a

positive effect and lagged volume has a negatifexef

Results for Chicago Mercantile Exchange live cdtitares are presented in Table 4.5.
Once again, correcting for the endogeneity bias ea¢ change the sign of the current
and lagged volume coefficients, respectively pesiind negative. Estimates using
only wavelet-filtered data suggest, however, thlzurrent and lagged volume have
a positive effect on price volatility, though theefficient for lagged volume is not

significantly different from zero.

4.8 Do lndex Tradersincrease Futures Price Volatility?

To summarize the results obtained in the first pathis chapter: we first provide
benchmark estimates for a simple futures volumeeprolatility model without
accounting for the endogeneity bias, using an ARMAXximum likelihood approach
with Newey-West HAC covariance. We note that usifgARCH approach would
also be biased because theoretical research ssggdsine and volatility are jointly

determined.
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Table 4.2: Volume-Price Volatility relationship f@hicago Board of Trade soybean
futures contract: biased (individual) model estiesafull-sample 2SLS estimates and
wavelet-filtered (no short run variation in volunestimates

Soybean futures

Volatility equation

Biased individual

2SLS, full sample

2SLS, wavelet

estimates filtered data
Intercept -0.449 -0.947 -0.651
se (0.07) (0.10) (0.083)
volume(t) 1.035 1.456 -0.0219
se (0.023) (0.067) (0.198)
volume(t-1) -0.643 -0.952 -0.564
se (0.027) (0.053) (0.199)

volatility(t-1) 0.489 0.519 0.307

se (0.021) (0.015) (0.015)

Volume equation

Biased individual

2SLS, full sample

2SLS, wavelet

estimates filtered data

Intercept 0.937 0.882 0.0495

se (0.058) (0.05) (0.0027)
volatility(t) 0.328 -0.06 0.0018

se (0.0117) (0.026) (0.0013)
volume(t-1) 0.393 0.485 1.925

se (0.0127) (0.017) (0.0054)
volume(t-2) 0.189 0.321 -0.938

se (0.013) (0.018) (0.0054)

Notes: All coefficients are statistically signifitaexcept volume(t) in the wavelet-
filtered 2SLS volatility equation. Standard errare computed using the Newey-West
HAC covariance.

The endogeneity of volume and volatility is cleaslypported by Hausman-Wu test
results. For the five major agricultural commodityures examined in this chapter,
ARMAX estimates suggest that volatility is posiliveorrelated with
contemporaneous volume but negatively with lagg#dnae, in addition to being
autocorrelated. Adjusting for the endogeneity basising a Two Stage Least
Squares estimator does not qualitatively changeethdts as the regressor signs
remain the same. To evaluate the impact of langeX Traders on market volatility,
2SLS estimates are obtained from filtered volunte ednere wavelet transform
analysis is used to remove all variation associaféidtime horizons shorter than one

month. This threshold is supported by the CFT€&arch on Index Trader activity.
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Table 4.3: Volume-Price Volatility Relationship fdfinnipeg Commodity Exchange
canola futures contract: biased (individual) masktimates, full-sample 2SLS
estimates and wavelet-filtered (no short run vemmin volume) estimates

Canola futures
Volatility equation Biased individual 2SLS estimates, 2SLS estimates,
estimates full sample wavelet-filtered
data
Intercept 0.137 0.115 0.142
se (0.045) (0.065) (0.044)
volume(t) 0.462 0.496 0.207
se (0.037) (0.085) (0.227)
volume(t-1) -0.336 -0.357 -0.069
se (0.033) (0.055) (0.227)
volatility(t-1) 0.681 0.682 0.659
se (0.036) (0.0115) (0.012)
Volume equation Biased individual 2SLS, full sample 2SLS, wavelet-
estimates filtered data
Intercept 0.414 0.491 0.022
se (0.03) (0.025) (0.001)
volatility(t) 0.094 -0.0255 -0.00052
se (0.012) (0.0118) (0.0005)
volume(t-1) 0.428 0.447 1.924
se (0.017) (0.015) (0.0055)
volume(t-2) 0.265 0.278 -0.937
se (0.015) (0.015) (0.0055)
Notes: All coefficients are statistically signifiteexcept volume(t) and volume(t-1) in
the wavelet-filtered 2SLS volatility equation. Stand errors are computed using the
Newey-West HAC covariance.

The results using wavelet-filtered data suggestfthaChicago corn and soybean
futures, volatility falls when current and laggedd-run volume rises. For Winnipeg
canola, volatility is not affected by current ogdged volume as the estimates are not
significantly different from zero. Results for ttveo non-storable commodities are
qualitatively different. Volatility in live cattléutures is positively affected by both
current and lagged volume, while volatility in lelaogs futures is positively affected
by current volume but negatively by lagged voluriée results suggest that the
impact of Index Traders, approximated using thg{om volume of trade, is
beneficial to futures markets for storable commiedibecause it reduces price

volatility.
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Table 4.4: Volume-Price Volatility Relationship fG@hicago Mercantile Exchange
lean hogs futures contract: biased (individual) el@stimates, full-sample 2SLS
estimates and wavelet-filtered (no short run vemmin volume) estimates

Lean hogs futures

Volatility equation

Biased individual

2SLS, full sample

2SLS, wavelet

estimates filtered data
Intercept 2.747 2.8 2.91
se (0.105) (0.14) (0.10)
volume(t) 0.553 0.47 0.80
se (0.033) (0.176) (0.136)
volume(t-1) -0.495 -0.427 -0.716
se (0.0355) (0.145) (0.127)
volatility(t-1) 0.368 0.364 0.319
se (0.024) (0.02) (0.021)

Volume equation

Biased individual

2SLS, full sample

2SLS, wavelet

estimates filtered data
Intercept -0.508 0.75 0.748
se (0.07) (0.32) (0.20)
volatility(t) 0.19 -0.0088 -0.113
se (0.014) (0.069) (0.044)
volume(t-1) 0.639 0.657 1.354
se (0.02) (0.023) (0.032)
volume(t-2) 0.205 0.191 -0.456
se (0.02) (0.023) (0.031)

Notes: All coefficients are statistically signifiteexcept volatility(t) in the 2SLS full
sample volume equation. Standard errors are comusiag the Newey-West HAC

covariance.

However, the evidence also lends support to thendlaat Index Traders increase
volatility for non-storable commodity futures marksuch as live cattle and lean

hogs.

4.10 TheDistribution of Trader Time Horizons
The second contribution of this chapter is to pideva measure of the distribution of
trader types across time horizons over the pasti®eades across all major

agricultural commodities.
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Table 4.5: Volume-Price Volatility Relationship fG@hicago Mercantile Exchange
live cattle futures contract: biased (individuakpael estimates, full-sample 2SLS
estimates and wavelet-filtered (no short run vemmin volume) estimates

Live cattle futures

Volatility equation

Biased individual

2SLS, full sample

2SLS, wavelet

estimates filtered data
Intercept -1.626 0.409 1.807
se (0.074) (0.254) (0.078)
volume(t) 0.86 1.836 0.383
se (0.022) (0.197) (0.16)
volume(t-1) -0.489 -1.05 0.10
se (0.0256) (0.116) (0.16)
volatility(t-1) 0.381 0.404 0.267
se (0.023) (0.019) (0.015)
Volume equation Biased individual  2SLS, full sample 2SLS, wavelet-
estimates filtered data
Intercept -0.181 1.264 0.0539
se (0.067) (0.123) (0.0057)
volatility(t) 0.367 -0.065 0.0079
se (0.144) (0.035) (0.002)
volume(t-1) 0.419 0.501 1.902
se (0.016) (0.0177) (0.006)
volume(t-2) 0.07 0.133 -0.935
se (0.14) (0.0172) (0.0056)

Notes: All coefficients are statistically signifitaexcept volume(t-1) in the wavelet-
filtered 2SLS volatility equation. Standard errare computed using the Newey-West

HAC covariance.

The principal questions asked in this part of thapter are: Can we identify the
influence of Index Traders in recent years on tigregate shape of trading time
horizons? Has the time horizon of trading becoomgér as futures markets have
matured and deepened? Do we find that marketstdoable commodities have longer

time horizons because inventories provide interp@mal smoothing?
The heterogeneity of traders has been advanced eganation for several stylized

facts observed in financial and commodity markBesséembinder and Seguin 1993;

Daigler and Wiley 1999). Trader types have beenatterized in terms of their
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access to information (e.g. herd or well-informedptivation (e.g. hedger or

speculator), risk aversion and prudence, or tintebo (e.g. short-run or long-run).

Trader type is defined in this chapter by the denisnaking time horizon of trading,
which is itself estimated by attributing to eaaheihorizon (i.e. wavelet timescale) a
proportion of the variation in trade volume. Thaiable used is daily trade volume
aggregated for all maturities. Volume, a flow aéie, is better suited to this problem
than open interest, a stock variable. The go@ measure the contribution of each
distinct time horizon to variation in trade volumé&he approximate distribution of
trader heterogeneity as it has evolved over timefesred, separately for each

commodity, from an estimate of the distributiortrafde volume across time horizons.

To determine whether differences exist among conitiesdn the time horizon of
trading, we consider a simple linear model of d&idygle volume regressed on a matrix
consisting of vectors each of which is defined @sation associated with different
time horizons, from daily to greater than annukd. provide correct estimates and
hypothesis test results, the data is differencedlme Augmented Dickey-Fuller tests

suggest the data may be non-stationary. The nmdglwritten as follows:

AVt = IBO + ﬁlxl daily + IBZXI semiweekly + lBa‘xt weekly + ﬁ4xl biweekly + IBBXI monthly

(4.13)
+/86Xt,bimonthly + IBYXt frimestrial + IBS)(t semestrial + ﬂgxt annual + ﬁl&‘t >annual + gt

where eaclx is associated with a specific time horizon andrieagonal to the other
time horizon vectors as described in Chapter 2intasion results together with White
robust standard errors and individual coefficietgsts are presented in Tables 4.6 and
4.7. The results suggest that the time horizanagfing is, with a few exceptions,

similar across commodities: the three shortest hore&zons are highly significant
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while all others are not at all significant. Moveo, the shorter is the time horizon, the
more important the effect on daily volume in di#faces. The fourth time horizon
(two weeks) is significant for live cattle, leangsp wheat and sugar #11. This is
unexpected because it is often assumed non-stararkets have shorter time
horizons than do storable markets. For cocoa affde; time horizons have
essentially no explanatory power, which suggesaetivolume is mostly driven by the

long-run trend, which is not included in the matrixegressors.

Since we know that the CME hogs contract speciboathanged from 1997 to 1998,
we can test for a change in the parameter valises@ded with different time
horizons. For example, the biweekly time horizoef@ioient is not significant for
either the 1988-1997 or 1998-2004 time periodssqualitatively higher in the later
period. A simple t-test computed to evaluate tyeolthesis thas (the biweekly
horizon coefficient) is the same before and afterdontract specification change
suggests we cannot reject the null and theref@edkefficient difference is not

statistically significant.

411 Testing for Changes over Timein Trader Heterogeneity

The evidence presented in the last section sugtiegtscocoa and coffee aside, the
time horizon of trading does not differ much betweemmodities. As these results
are point estimates computed from a sixteen yaapksa we would like to determine
individually for each commodity whether the distriion of trading across time
horizons 1988 and 2005. For example, is tradioge@singly focused on the short

run, on the long run, or has it not changed?

102



Table 4.6: Regression of daily trade volume (ifiedldnces) on wavelet-computed
time horizon factors using White’s robust covarenChicago Board of Trade,
Chicago Mercantile Exchange, Kansas City Boardrafi€ and Winnipeg Commaodity

Exchange commodities

Commaodity WCE canola CBOT corn CBOT soybean CME live cattle
futures R?=0.662 R?=0.639 R?=0.663 R?=0.592

contract

Time horizon  Coef. Std. error Coef.  Std. Coef. Std. error  Coef. Std.
factor value value error value value error
daily 1.59**  0.031 1.58** 0.033 1.59%* 0.024 1@ 0.027
semiweekly 0.64**  0.029 0.61** 0.029 0.64* 0.® 0.60*** 0.024
weekly 0.19**  0.035 0.20*** 0.032 0.19*** 0.03 o** 0.031
biweekly 0.034 0.037 0.01 0.034 0.022 0.031 0.064** 0.032
monthly 0.018 0.039 0.005 0.028 0.018 0.03 -0.002 .03D
bimonthly 0.004 0.046 0.009 0.036 0.003 0.028 0.011 0.055
trimestrial 0.019 0.046 0.005 0.036 0.009 0.034 00.0 0.042
semestrial -0.008 0.057 0.002 0.037 -0.003 0.034 .004 0.049
annual 0.002 0.053 -0.004 0.034 0.001 0.04 -0.005 .0660
greater than  -0.004 0.083 0 0.031 -0.001 0.025 -0.004 0.06p
annual

Notes: statistical levels of significance are *¥%), ** (5%) and * (10%). Intercept term is not sificantly
different from zero (p>0.9).

Table 4.6 (continued).

Commaodity CME lean hogs CME lean hogs CME lean hogs KCBOT wheat
futures R2%=0.587 (1989-1997) (1998-2004) R%=0.628

contract

Time horizon  Coef. Std. error  Coef. Std. Coef. Std. error  Coef. Std.
factor value value error value value error
daily 1.498** 0.030 1.49** 0.042 1.50%* 0.042 1.535*** 0.052
semiweekly 0,604+ 0.026 0.63** 0.034  0.57**  0.039 0.651** 0.050
weekly 0.178*** 0.031 0.18** 0.042 0.18*** 0.045 0.159*** 0.053
biweekly 0.046* 0.028 0.038 0.047 0.051 0.035 0.078* 0.047
monthly 0.011 0.034 0.005 0.053 0.014 0.043 0.005 0.042
bimonthly 0.004 0.041 -0.001  0.063 0.006 0.053 0.006 0.039
trimestrial -0.002 0.040 -0.003  0.050  -0.003 0.066 0.000 0.036
semestrial 0.003 0.058 0.001 0.087 0.004 0.077 -0.006 0.015
annual 0.004 0.038 0.002 0.061 0.007 0.049 0.011 0.022
greater than

annual 0.007 0.031 0.007 0.045 0.006 0.040 -0.002 .0220
Notes: statistical levels of significance are *¥%), ** (5%) and * (10%). Intercept term is not sificantly
different from zero (p>0.9).

Two test approaches are used and contrasted, &irstvelet-based Monte Carlo test

for the presence and date of change-points indhearnce process. Second, a sup-

Wald test of endogenous structural breaks in théréws-Ploberger-Hansen class.
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Table 4.7: Regression of daily trade volume (ifedlénces) on wavelet-computed
time horizon factors using White’s robust covarigndew York Board of Trade

commodities
Commodity NYBOT cocoa NYBOT coffee NYBOT sugar#11
futures contract R?<0.01 R%<0.01 R?=0.627
Time horizon Coef. Std. Coef. Std. Coef. Std.
factor value error  value error  value error
daily 0.107** 0.034 0.012 0.061 1.541**  0.03]
semiweekly -0.006 0.035 0.057 0.061 0.627**  0.029
weekly -0.08*** 0.036 0.026 0.067 0.149**  0.03§
biweekly -0.068* 0.040 0.028 0.099 0.064*  0.036
monthly -0.020 0.040 0.059 0.077 0.001 0.029
bimonthly -0.018 0.078 -0.008 0.047 0.014 0.048
trimestrial 0.009 0.060 -0.001 0.043 0.005 0.048
semestrial 0.001 0.083 0.000 0.034 0.001 0.049
annual 0.001 0.057 0.000 0.023 -0.006 0.068
greater than annual -0.002 0.039 0.001 0.017 0.000 0.045
Commodity futures NYBOT cotton NYBOT orange
contract R?=0.588 juice
R?=0.606
Time horizon factor Coef. Std. Coef. Std.
value error value error
daily 1.528*** 0.067 1.525*** 0.042
semiweekly 0.609*** 0.040 0.653***  0.033
weekly 0.221*** 0.042 0.229*** 0.043
biweekly 0.045 0.036 0.020 0.039
monthly -0.006 0.022 0.014 0.030
bimonthly 0.011 0.011 0.015 0.087
trimestrial -0.004 0.007 0.001 0.070
semestrial 0.006 0.011 -0.002 0.072
annual -0.001 0.006 0.000 0.053
greater than annual  -0.002 0.006 0.002 0.042
Notes: statistical levels of significance are *** (1%), **%% and
* (10%). Intercept term is not significantly differéndbm zero
(p>0.9).

The Monte Carlo wavelet-based test is relatedeatimulative sum of squares
(CuSum) test of Brown, Durbin and Evans (1975)e htll hypothesis is that the
variance of wavelet coefficients is homogeneouaijres a null of one or several
change-points at specific time horizons (timesgal&ecause change-points in the

wavelet coefficients imply breaks in the actualdiseries data, rejecting the null
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means we can identify not only the date of the ksdmut also the time horizon at
which they occur. For example, we may expecttitaale volume would be smooth in

the long run but not in the short run.

This test has more power than the Quandt-LR (sufthMtass of tests in the presence
of long memory (Banerjee and Urga 2005). Thiseipful in light of Lobato and
Velasco’s (2000) findings that trade volume exlsilbing memory. The wavelet
transform’s orthogonality property provides robess against long-range dependence
(Teyssiere and Abry 2006). Another advantage ®fthvelet-based test is that it
identifies precisely the time horizons at which th@nge-points occur. For instance,
trade volume for a commodity could have increasebeadaily horizon, decreased at
the annual horizon, and remained approximatelysémee for all other horizons. The
null hypothesis is that the wavelet variance is bgemeous over time, which implies
no change-points. If we reject the null, we cagcmely identify the date of the

change-point (structural break).

An approximate test statistic is constructed by Mddarlo simulation (Dufour and
Khalaf 2004). The statistic relies on uniformhs@libuted pseudo-random numbers
that are consistent with the sample moments oivineelet coefficients. These
wavelet coefficients are obtained from an applarabf the Discrete Wavelet
Transform using the Daubechies(10) wavelet as textin Chapter 2 (Daubechies

1992).

The test statistic is specific to the data sampteraust be computed separately for

each dataset. 10,000 simulated sequences aranddde standard 1% and 5% levels
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of significance are saved. To minimize the companal burden, ten sets of a

thousand simulations are iteratively saved, puteaand deleted.

The test results, presented in Table 4.8, showfohatl commodities studied and
across all time horizons, we fail to reject thel wfila homogeneous wavelet variance.
Equivalently, this implies there is no change-pdmind in the time series and
therefore the volatility of futures trade volumeshret changed across time horizons.
This says nothing however about the mean trendturds trade volume, which
evidently has gone up in most commodity markets tdwe years and in particular

with the increased participation of Index Traders.

An important class of hypothesis tests considexgtissibility of sudden parameter
changes in a time series model. Since the piomgerork of Chow (1960) and
Quandt (1960) for single structural breaks at preanined points in time, the
literature has considered the presence of multipd@ks at unknown points in time

(Andrews 1993; Andrews and Ploberger 1994; Han8&0,11992, 1997, 2000).

In this section are presented the results frompgthcation of a test from the sup-Wald
(sup-LM) class (Andrews 1993). The traditional @hQuandtF test has been
criticized by Hansen (1990) and Zivot and Andret892) because the researcher’s
selection of potential break points is likely todsource of data mining. A large
family of asymptotic tests for endogenous strudthraak points was developed
among others by Andrews (1993), Andrews and PlabgiiP94), and Hansen (1991,
1992, 2000). The tests usdp, exp andave functionals for LM, LR and Wald tests.
Evidence suggests tlage has the most power against standard alternatihds e

exp functional has most power against distant altérast Diebold and Chen (1996)
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show using bootstrapped critical test values irstdaasymptotic values reduce the
test size distortion substantially. In effectustural breaks reject too often the null
(e.g. Alston and Chalfant 1988, 1991). The testsscamputed in R based on code by
Zeileis (2006) and in Matlab based on code by Hai(2606).

The null hypothesis is that the coefficients assec with the wavelet explanatory
variables (equation 3.25) are constant over thieeesample. The results (see
Appendix) show that for theup, exp andave functional tests, we cannot reject the null
of no structural change in the wavelet factor mddebny commodity. Consider for
example Figure 4.3, which plots the empirical pescand critical value for the exp-
LM test using Chicago Board of Trade corn futuratgad This shows the empirical
process does not come close to the critical vala@yapoint in the time series.

Results for the other commodities are qualitatithly same.

A reality check is provided by applying the testisda for the Chicago Mercantile
Exchange lean hogs contract, where conventionalomissuggests a structural break
occurred on January'11998 when the contract specification changed fiven
animals to carcasses. Yet all three tests fagject the null of no structural change,
which forces us to reconsider the true size andep@ivthe test in this context. Itis
however plausible that a smooth transition occudel to the Chicago Mercantile

Exchange’s efforts.
More generally, as Alston and Chalfant (1988, 198tue, apparent structural breaks

reported in the economics literature are oftenarpld by a model specification error,

which suggests this chapter’s findings of no breakshange-points are sensible.
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Table 4.8: Monte Carlo Wavelet-Based Test for Bsgakthe Variance of Daily Total
Futures Volume. The null hypothesis is a homoges@aniance, or equivalently no

structural break or change-point in the variande st results imply that for all
commodities and for all time horizons, we canngaethe null (either at the 1% or

5% level of significance).

Winnipeg Commodity Exchange Canola Futures Contiiaa$534

Time horizon Daily Semiweekly Weekly Biweekly Monthly Bimbiyt
Test value 0.3384 0.3249 0.3068 0.3714 0.3592 0.309
Critical value, 5% level 1.1755 1.1291 1.0237 1.0147 6840 1.01
Critical value, 1% level 1.3852 1.2534 1.0635 1.0849 810  1.0375
Chicago Board of Trade Corn Futures Contract, T6708
Time horizon Daily = Semiweekly Weekly Biweekly Monthly Bimbht
Test value 0.4331 0.432 0.4554 0.5002  0.5096 0.3984
Critical value, 5% level 1.0653 1.0425 1.0101 1.0151 1.0159 1.1122
Critical value, 1% level 1.1599 1.1197 1.0465 1.0284 1.1601 1.2669
Chicago Board of Trade Soybeans Futures Contra@&]92
Time horizon Daily = Semiweekly Weekly Biweekly Monthly Bimbiyt
Test value 0.3139 0.3206 0.3368 0.3403 0.3593 0.3773
Critical value, 5% level 1.1146 1.0875 1.0714 1.0217 1.0443 1.0043
Critical value, 1% level 1.337 1.258 1.1305 1.0487 1.2081 1.1368
Kansas City Board of Trade Wheat Futures Contilax8,192
Time horizon Daily = Semiweekly Weekly Biweekly Monthly Bimbiyt
Test value 0.5185 0.5324 0.5393 0.5489 0.5448 0.5481
Critical value, 5% level 1.0672 1.0989 1.0354 1.0313 1.0575 1.0734
Critical value, 1% level 1.1942 1.2344 1.0566 1.072 1.146 1.1995
Chicago Mercantile Exchange Lean Hogs Futures @onti=5944
Time horizon Daily  Semiweekly Weekly Biweekly Monthly Bimbt
Test value 0.1263 0.1302 0.3013 0.5033 0.4575 0.5464
Critical value, 5% level 1.1757 1.0799 1.0325 0.9947 1.0813 1.0892
Critical value, 1% level 1.2469 1.4817 1.0953 1.0383 1.2292 1.0855
Chicago Mercantile Exchange Live Cattle Futurest@umh, T=4550
Time horizon Daily Semiweekly Weekly Biweekly Monthly Bimbit
Test value 0.097 0.0731  0.1707 0.1586 0.2593 NA
Critical value, 5% level 1.0274 1.0246  1.0035 1.0369 1.0333 NA
Critical value, 1% level 1.1616 1.0423  1.0525 1.1414 1.0908 INA

108



412 TheDistribution of Trade Volume Volatility

Lastly, we estimate, for all eleven major commaditexamined in this thesis, the
changing distribution of a measure of trade volwolatility (here, variance) over the
time period 2/1988-1/2005. This provides an agated)measure of the distribution

of traders where trader type is defined by the tmezon of decision-making.

The variance of daily futures trade volume is degosed across wavelet-estimated
time horizons, to attribute to each time horiza@neixplanatory power. We examine
data using sub-samples of 1024 observations edtgbhworresponds approximately
to four years given 252 business days in one y€hais method allows us to identify
the contribution of each time horizon, as a fadimthe volatility of futures trade
volume. The results, normalized to sum to onesaremarized in Table 4.10. The
table presents, for all commodities studied in tinisk, the proportions of variance

explained by each time horizon for each four-yeaetperiod.

Figures 4.4 to 4.9 display, for five major commaaditand over sub-sample periods of
four years, the variance of trade volume decompaseasss distinct time horizons
from daily to greater than annual. Two questiaesamswered by these plots. First,
for a given time period, say 1989-1992, is tradeim@ concentrated in only one or
two time horizons or rather is it uniformly, or maally, distributed? Second, has this

distribution changed over the years or has it reeapproximately the same?

Our empirical strategy consists of applying a wavetansform to the volume data for

a four-year period to compute wavelet coefficiearid then applying an inverse

wavelet transform to subsets of the wavelet coefiits.
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exp-Lk F-test for structural breaks in the regression of CEoT comn futures daily
trade volume (919858-1/200%) in differences over wavelet time horizon factors

\ critical test value for exp-L test (2% level)

F statistics
15 20 25 an
| |

10

exp-F testvalue process

| | | | |
0 1000 2000 3000 4000

Business daily chservations

Figure 4.3: Plot of exp-LM F-test process for Clgedoard of Trade corn futures

trade volume 2/1988 to 1/2005, using wavelet timezon model
This produces a number of artificial, orthogonaidiseries, each of which represents

a proportion of trade volume associated with artistime horizon. The sum of all

these artificial time series yields precisely thigioal volume data.
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An interpretation of the results on the distribatmf trade volume across time
horizons and over time follows. All commoditieg aliscussed except those traded at
the New York Board of Trade, for which the resalt&l descriptive statistics are
broadly consistent. Chicago hogs futures (Figud¢ Have been, until recently, traded
mostly over short time horizons, but the evidertt@s that longer time horizons
appear to have gained importance since the corgpacification changed from “live”

to “lean”.

The distribution for Kansas City wheat futures (kg 4.6) has changed back and
forth over the years but has been generally moiferam than for the two non-storable
commodities, which implies there is more explanamower found in the longer time
horizons. Exceptions are the years 1993-1996ndwrhich the longest run explained
most of the variance, and 1997-2000, during whikehshortest run contained most
explanatory power. In contrast, the distributionWinnipeg canola futures (Figure
4.7) has been nearly constant over the years 108&;2vith a downward-sloping
shape that implies the shortest time horizons @xpiere than do longer time

horizons.

For Chicago live cattle futures (Figure 4.5), hoes\the distribution did not change
over time and has been downward-sloping. Thisigsghe shorter a time horizon,
the more explanatory power it has. The excepsdhe sub-sample time period 1989-
1992, when all time horizons contributed roughly #ame to the variance of trade

volume.

For Chicago corn futures (Figure 4.8), three phaseisible. From 1979 to 1986,

variance was explained by the very long run, thatime horizons greater than one

111



year. But from 1991 to 2003, a downward-slopingpghcharacterized the

distribution; implying shorter time horizons cobuited most of the variance. Since

2003, it appears intermediate and longer-term baghave gained in importance.

Lastly, the distribution over time for Chicago segn futures (4.9) is generally similar

to that of corn futures. From 1979 to 1990 thegkst time horizons explained most

of the variance, but from 1990 to 2002 the famitlawwnward-sloping shape was

visible. Since 2003, the intermediate and longhras become more important such

that all time horizons appear to contribute sigaifitly.

Table 4.9: Variance of futures trade volume: préiparexplained by time horizon

Chicago Mercantile Exchange Live Hogs Futures Contrct

1983-86 1987-90 1991-94 1995-98 1999-2002 2008-06
daily 0.18 0.21 0.26 0.25 0.19 0.06
semiweekly 0.18 0.21 0.23 0.19 0.17 0J06
weekly 0.12 0.14 0.17 0.15 0.14 0.07
biweekly 0.06 0.10 0.12 0.11 0.16 0.17
monthly 0.06 0.08 0.07 0.07 0.10 0.08
bimonthly 0.06 0.05 0.04 0.07 0.08 0.05
quarterly 0.05 0.13 0.01 0.07 0.07 0.08
semestrial 0.03 0.04 0.08 0.06 0.02 Oi12
annual 0.10 0.04 0.01 0.02 0.03 009
longer than annual 0.16 0.00 0.01 0.01 0.05 0.22
Chicago Mercantile Exchange Live Cattle Futures Cotnact

1989-92  1993-96  1997-2000 2001-04 2003+06

daily 0.18 0.25 0.25 0.21 0.18
semiweekly 0.17 0.20 0.21 0.19 0.16
weekly 0.12 0.15 0.19 0.14 0.16
biweekly 0.08 0.10 0.15 0.10 0.14
monthly 0.11 0.11 0.10 0.14 0.16
bimonthly 0.07 0.04 0.04 0.07 0.06
quarterly 0.07 0.08 0.04 0.08 0.04
semestrial 0.15 0.05 0.01 0.02 0,03
annual 0.04 0.01 0.01 0.05 0.02
longer than annual 0.00 0.02 0.00 0.00 0.05
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Table 4.9 (continued).

Kansas City Board of Trade Wheat Futures Contract

1979-82 1983-86 1987-90 1991-94 1995-98 1999-20Q0203-06
daily 0.20 0.23 0.21 0.26 0.07 0.23 018
semiweekly 0.14 0.15 0.13 0.14 0.05 0.17 0.13
weekly 0.10 0.09 0.11 0.07 0.03 0.15 0/16
biweekly 0.07 0.09 0.06 0.13 0.04 0.14 0/06
monthly 0.11 0.12 0.10 0.09 0.05 0.15 010
bimonthly 0.07 0.03 0.07 0.11 0.05 0.06 015
quarterly 0.06 0.15 0.06 0.08 0.06 0.06 0104
semestrial 0.09 0.06 0.01 0.09 0.05 0.01 Q.09
annual 0.03 0.06 0.02 0.03 0.58 0.01 0.06
longer than annual 0.13 0.01 0.23 0.00 0.02 0.02 0.02
Chicago Board of Trade Corn Futures Contract

1979-82 1983-86 1987-90 1991-94 1995-98 1999-20Q0203-06
daily 0.07 0.13 0.16 0.20 0.22 0.16 014
semiweekly 0.05 0.12 0.11 0.11 0.14 0.14 0.08
weekly 0.03 0.09 0.09 0.11 0.11 0.14 0/09
biweekly 0.03 0.06 0.05 0.10 0.09 0.12 0/09
monthly 0.09 0.09 0.10 0.12 0.14 0.17 010
bimonthly 0.05 0.07 0.11 0.14 0.10 0.07 0/08
quarterly 0.02 0.06 0.17 0.06 0.03 0.07 0l03
semestrial 0.06 0.04 0.03 0.07 0.10 0.04 Q.17
annual 0.60 0.03 0.15 0.03 0.06 0.06 0.05
longer than annual 0.00 0.32 0.03 0.06 0.00 0.03 0.17
Chicago Board of Trade Soybeans Futures Contract

1979-82 1983-86 1987-90 1991-94 1995-98 1999-20QR03-06
daily 0.12 0.10 0.15 0.19 0.19 0.21 0415
semiweekly 0.07 0.07 0.09 0.12 0.12 0.13 0.10
weekly 0.05 0.07 0.06 0.08 0.11 0.13 0/07
biweekly 0.08 0.05 0.05 0.06 0.07 0.09 0j07
monthly 0.12 0.06 0.04 0.10 0.13 0.13 014
bimonthly 0.09 0.06 0.08 0.18 0.12 0.09 0/18
quarterly 0.07 0.07 0.05 0.06 0.07 0.10 0(02
semestrial 0.29 0.21 0.02 0.09 0.08 0.08 Q.19
annual 0.01 0.28 0.12 0.07 0.02 0.03 0.02
longer than annual 0.10 0.03 0.33 0.05 0.09 0.00 0.05

The evidence presented in this section suggeststiined facts and testable
hypotheses: (1) The time horizon of trading for4sterable commodities is shorter
than it is for storable commodities, and (2) In &t five to ten years, intermediate
time horizons have gained in importance for nealllgommodities, which may

reflect the increased role played by Index Traders.
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Table 4.9 (continued).

daily

semiweekly
weekly

biweekly

monthly

bimonthly
quarterly
semestrial

annual

longer than annual

0.32
0.23
0.12
0.07
0.06
0.06
0.07
0.03
0.00
0.03

0.22
0.16
0.12
0.07
0.09
0.10
0.05
0.06
0.04
0.09

0.25
0.18
0.14
0.08
0.13
0.10
0.04
0.06
0.01
0.01

0.27
0.19
0.14
0.12
0.09
0.06
0.02
0.04
0.06
0.01

Winnipeg Commodity Exchange Canola Futures Contract
1981-84 1985-88 1989-92 1993-96 1997-2000 200%-202003-06

0.27
0.19
0.13
0.11
0.08
0.07
0.09
0.01
0.01

0.04

0.25
0.16
0.10
0.13
0.08
0.05
0.07
0.07
0.05

0.04

0.
0
0
0
0
0
0
@
0

daily

semiweekly
weekly

biweekly

monthly

bimonthly
quarterly
semestrial

annual

longer than annual

0.09
0.10
0.04
0.05
0.05
0.03
0.02
0.10
0.22
0.29

0.20
0.16
0.10
0.09
0.11
0.12
0.02
0.07
0.13

0.00

0.25
0.15
0.11
0.05
0.06
0.07
0.08
0.07
0.00

0.16

New York Board of Trade Sugar #11 Futures Contract
1979-82 1983-86 1987-90 1991-94

0.28
0.18
0.12
0.10
0.08
0.05
0.05
0.10
0.03
0.02

0.30
0.19
0.15
0.13
0.09
0.05
0.04
0.02
0.02
0.00

1995-98 1999-200R03-06

0.22
0.20
0.16
0.13
0.14
0.08
0.03
0.03
0.00
0.00

0.
0
0
0
0
0
0
d
0

25
.14
12
09
11
06
09
.01
.07
0.06

13
A1
12
06
15
09
09
.03
.06
0.17

daily

semiweekly
weekly

biweekly

monthly

bimonthly
quarterly
semestrial

annual

longer than annual

0.13
0.14
0.07
0.06
0.05
0.04
0.14
0.02
0.31
0.05

0.17
0.15
0.13
0.06
0.03
0.04
0.03
0.06
0.12

0.20

0.22
0.23
0.15
0.09
0.08
0.06
0.01
0.07
0.06

0.04

New York Board of Trade Cotton Futures Contract
1979-82 1983-86 1987-90 1991-94 1995-98 1999-200203-06

0.27
0.25
0.17
0.09
0.10
0.05
0.03
0.04
0.00
0.00

0.30
0.23
0.16
0.07
0.09
0.06
0.03
0.04
0.02
0.00

0.01
0.01
0.01
0.01
0.03
0.04
0.06
0.05
0.51
0.26

0.
0
0
0
0
0
0
d
0

00
.00
01
02
06
17
23
.09
.23

0.19

412 Conclusion

This chapter asks two main questions about thasltyeof traders in commodity

futures markets. First, has the increased padtiicip by large Index Traders led to

higher futures price volatility? Should the Comntpdrutures Trading Commission’s

pilot project where Index Trader positions are régubseparately from those of other
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Table 4.9 (continued).
New York Board of Trade Coffee Futures Contract

1989-92 1993-96 1997-2000 2001-2004  2003-06
daily 0.22 0.23 0.20 0.15 0.15
semiweekly 0.14 0.15 0.19 0.14 0.15
weekly 0.14 0.13 0.17 0.13 0.11
biweekly 0.12 0.09 0.12 0.11 0.14
monthly 0.10 0.13 0.20 0.23 0.34
bimonthly 0.06 0.11 0.03 0.06 0.04
quarterly 0.09 0.06 0.03 0.03 0.01
semestrial 0.04 0.04 0.04 0.00 0,02
annual 0.04 0.00 0.01 0.03 0.03
longer than annual 0.04 0.05 0.01 0.11 0.01

New York Board of Trade Cocoa Futures Contract
1989-92 1993-96 1997-2000 2001- 2003-06

04
daily 0.22 0.32 0.22 0.04 0.19
semiweekly 0.22 0.22 0.21 0.04 0.17
weekly 0.14 0.17 0.17 0.04 0.14
biweekly 0.11 0.09 0.14 0.06 0.15
monthly 0.12 0.07 0.14 0.05 0.19
bimonthly 0.04 0.02 0.05 0.24 0.08
quarterly 0.03 0.03 0.01 0.25 0.01
semestrial 0.08 0.03 0.02 0.16 0,00
annual 0.03 0.02 0.04 0.11 0.05
longer than annual 0.01 0.01 0.00 0.01 0.02

New York Board of Trade FCOJ Futures Contract
1979-82 1983-86 1987-90 1991-94 1995-98 1999-2003-06

2002
daily 0.16 0.15 0.18 0.18 0.22 0.29 0.p3
semiweekly 0.17 0.14 0.18 0.16 0.19 0.19 0.11
weekly 0.13 0.07 0.15 0.15 0.18 0.12 012
biweekly 0.10 0.05 0.06 0.09 0.12 0.11 014
monthly 0.06 0.11 0.05 0.06 0.12 0.19 023
bimonthly 0.03 0.07 0.04 0.04 0.02 0.02 0/o2
quarterly 0.06 0.15 0.21 0.03 0.04 0.03 0(03
semestrial 0.08 0.13 0.05 0.01 0.03 0.01 0.04
annual 0.19 0.09 0.00 0.16 0.06 0.01 0.00
longer than annual 0.03 0.03 0.07 0.12 0.01 0.03 0.07
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Figure 4.4: Distribution of futures trade volumeaiaace, Chicago Mercantile
Exchange live/lean hogs contract, 1983-2006

large traders become permanent? The empiricaéruapresented in this chapter
suggests that the impact of Index Traders may lserad for non-storable commodity
markets but is neutral or beneficial to storablemgwdity markets. Second, how has
the time horizon of trading changed over the pastdecades? Do traders
increasingly trade with a shorter or longer timeizun? Are there systematic

differences between storable and non-storable caiies?
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Figure 4.5: Distribution of futures trade volumeiaace, Chicago Mercantile
Exchange live cattle contract, 1983-2006

The evidence from a wavelet transform-based decsitipo of the data shows that, in
the last five to ten years, intermediate and lamgtme horizons have gained in
importance, which may coincide with the greatee ighyed by Index Traders. There
is also some evidence to support the claim thaakle commodity markets have

longer time horizons.
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Figure 4.6: Distribution of futures trade volumeiaace, Kansas City Board of Trade
wheat contract, 1978-2006
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Figure 4.7: Distribution of futures trade volumeiaace, Winnipeg Commaodity
Exchange canola contract, 1981-2006
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Figure 4.8: Distribution of futures trade volumeiaace, Chicago Board of Trade
corn contract, 1979-2006
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Figure 4.9: Distribution of futures trade volumeiaace, Chicago Board of Trade
soybeans contract, 1979-2006
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Lastly, by regressing differenced trade volume avavelet-estimated time horizon
factors, we find that only the shortest three arr fiime horizons have coefficients that
are statistically different from zero. Two exceps among the eleven commodities
are cocoa and coffee traded at the New York Bohildade, for which the time
horizons have no explanatory power in this simplgreéssion. This suggests cocoa

and coffee are mostly driven by very long-run fasto

The theoretical structure assumed in this chapteimple and robustness of the results
should be evaluated using other plausible modalisgations. In particular, it should
be possible to derive model testable implicatioamselol on differences between
storable and non-storable commodities that areatggb by theory. Furthermore, the
estimates on the distribution of trader time hanzavould benefit from substantial
refinements to better explain why changes appelave occurred over time. Itis
encouraging, however, to find that wavelet-basethous contribute new insights into

persistent economic problems.
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CHAPTER 5
ESTIMATING THE TERM STRUCTURE OF COMMODITY
FUTURES PRICES USING WAVELET THRESHOLDING

51 Introduction

The term structure of futures prices approach camsihow to use information from
an unbalanced panel dataset, namely the constellatifutures prices traded at every
business day, to extract estimates of latent (s&iad) variables such as convenience
yield, cost of carry and risk premium. The literat has found that in many cases,
only two or three latent factors is sufficient tadk and forecast futures prices and one
additional factor allows good volatility forecagife.g. Korn 2005; Lautier 2005;
Schwartz 1997; Sorensen 2002). Motivated by thealeadvances such as Dai and
Singleton (2000), recent work has considered tleéulrsess of models with an
arbitrarily large number of latent variables (&€grtazar and Naranjo 2006). For
example, while a three-factor model explains 97%hefinterest rate forward curve,
ten factors are needed to explain 95% of the Naelictricity term structure

(Koekkebakker and Ollmar 2005).

In this chapter, a new approach is suggested &oestimation of the term structure of
commodity futures prices, with an application téadan one of the most traded
agricultural commodities. This work follows in theerature on the stochastic
behavior of commodity prices, where the Kalmarefiis used to solve a multi-variate
state-space time series model of observed and enaasvariables (Schwartz 1997;
Schwartz and Smith 2000). The model is tractabtmbse, following Cox, Ingersoll,
Ross (1981), the futures log prices are solvedfasedunctions of the state variables.

This chapter makes two contributions to the literat It is, to our knowledge, the first
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time seasonal state variables have been combirtacaviarge number of latent state
variables to study agricultural commodity futureg@s. It is also the first work to use
the statistical method of wavelet thresholding (Blom and Johnstone 1994, 1995) to
improve estimation efficiency by pre-filtering tdata using a data-tailored loss
function. The economic interpretation of waveleesholding is that beneath some
threshold that is unknown but can be estimated naegn zero variation is only
measurement noise of no economic significanceerily out this noise must
necessarily reduce the process variance and therefiprove the efficiency of
estimation. The purpose of the chapter is theegimore generally, to compare the
improvement in forward curve fit accuracy from ugmuch larger models with the

improvement from filtering out what appears to lbéa of no economic significance.

5.2  TheTerm Structure of Commodity Futures Prices

Before presenting the state-space model and estm@atocedure, we examine
historical data on daily settlement prices for twajor agricultural commodity futures
contracts, Chicago Board of Trade corn and soybe@hs first nearby to sixth nearby
maturities are examined. For corn futures, thevéod curve since 1997 has been
generally in contango, which means distant futewegracts are priced higher. The
conventional explanation is that there is a positiet convenience yield which is a
benefit from holding stocks into the future. Fr@893 to 1997 and during a few brief
additional periods of time, the forward curve waserally in backwardation, which
means distant futures prices are lower. In thiecthe net convenience yield is
negative, which may be explained by a relativetgéacost of carry, which is
interpreted as the price of storing inventorigss vell understood that for
agricultural commodities much of the shape is a@rpld by seasonality (Tomek 1994;

Fackler and Roberts 1999). An example of an aciigmodity futures price term
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structure is presented in Figure 5.1 for ChicagarBmf Trade corn futures on
6/17/2004. This figure shows how futures price&seased as the time to maturity

increased, a pattern that is called contango.

Two general approaches to model the term structiucentingent claim prices have
been used in the literature. The first, pionedne@rennan and Schwartz (1985) and
by Gibson and Schwartz (1990), estimates the umedisie convenience yield of a
real or financial asset. The second, developechgmthers by Schwartz and Smith
(2000), is based on the results of Duffie, Pan%ingleton (2000) and Dai and
Singleton (2000) and models the asset price affiae &unction of state variables,
which are usually unobservable. This second agproasts the first and is more
general. Therefore convenience yield can genebpallsecovered from the affine

model.

Figure 5.1: An example of the term structure o@ifas prices: daily settlement prices

for six nearest maturities, Chicago Board of Treden futures on 6/17/2004
Term Structure of Corn Futures Prices, 6/17/2004
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The fundamental approach (Black 1976; Harrisonkargghs 1979; Cox, Ingersoll and
Ross 1981; Cox, Ross and Rubinstein 1979) consildatshe futures prick; for a
given datd and maturityT equals the risk-adjusted expectation of the spoe [ at

maturity under the risk-neutral probability measQre

F(x.tT)=EX(S) (5.1)

and it is assumed that the log of the spot pri@niaffine function oN different state
variables as well as a deterministic seasonal iomeind parameters that characterize
the state variable dynamics. The dynamics of statle variable is described by a
stochastic differential equation (see e.g. Shré&@4that is solved the traditional
Feynman-Kac partial differential equation approtmlowing Black and Scholes
(1973), Merton (1973), Black (1976) and Cox, Ing#rand Ross (1981). The general
multi-variate stochastic differential equation nmeywritten as follows, whergis the
state variableK is a matrix of drift terms (such as mean-reverpagametersy is a

matrix of diffusion terms andxis a Brownian motion (Wiener process).

dx, =—Kxdt + Zdw, (5.2)

The canonical seasonal function is time-varyingdmierministic and is identical

every year for any given day.

S = iyk cos(2kt »+ y, sin(Zikt (5.3)

Sorensen (2002) has found that K=2 appears togeavigood and parsimonious fit.
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The model to be estimated by Quasi-MLE using thkeri&a filter is similar to the
ones used by Roberts and Fackler (1999), Sore@6&2) and Tien and Fackler

(2003), where the logarithm of the spot price, ggsinobserved, is:

IN(R) =s(t) +x +2 (5.4)

and where s(t) is the seasonal function grahd z are two state variables the
dynamics of which are governed by a stochastiedfitial equation for each.
Solving the spot-futures price relationship by mbiaage (Black 1976; Cox, Ingersoll
and Ross 1981) provides the solution to the futpries as an affine function of the

seasonal variable, the state variables and thettmeturity.

We follow Cortazar and Naranjo’s (2006) general@abf Schwartz and Smith

(2000) because it is flexible and is designed tmatnodate small changes in the
model’'s assumptions. This N-factor Gaussian modsts most term structure models
with the notable exception of models that assunme@aussian Normal innovations,
for example to allow a heavy-tailed error distribat The affine transformation
results of Dai and Singleton (2000) enable any rhiodihis literature that satisfies

some basic assumptions to be written in this cab@aussian form.

Before presenting formally the different modeld®estimated, we explain briefly the
economic meaning associated with each parameténowgh agricultural commodity
price data are mean-reverting over long periodsrd, we are also interested in
testing the hypothesis of slow, gradual permankanhges caused by commodity

demand or technological improvement. Therefore fitist state variable is defined as
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geometric Brownian motion, which is non-stationang represents permanent

changes caused for example by economic shockshnaéogy and preferences.

(1) = (1)t + T, (t) (1) (5.5)

The geometric Brownian motion state variable i®asded with a long run drift term
M, a risk premiumi; and a diffusioro; the latter which determines the degree of
randomness by multiplying a Brownian motion proceEke effect of time-to-
maturity is captured by a risk-adjusted drift defimas:

2

a:,u—/]l+% (5.6)

Additional state variables;xhrough x; are defined as Ornstein-Uhlenbeck, i.e. mean-
reverting, processes where the speed of mean-renesscaptured by and the long-

run mean to which the process is draw@ (€ox and Miller 1965):

dx, (t) = =&, (X, (t) ~C)dt + o, dw, (t) (5.7)

One-factor models universally do poorly, whether skate variable is geometric
Brownian motion or Ornstein-Uhlenbeck. Multiplefar models have also
considered stochastic interest rates or convenigietds as additional state variables
and we return later to the definition of our fastoiThe Brownian motions are
assumed to be pairwise correlated through a cosftip;. The term structure of
futures price volatility is obtained from the esaited diffusion and correlation

parameters:

N N
gt(T-1)=>.> go,p, exp ™ (5.8)

i=1 j=1
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For the simple one-factor model, the term structdrneolatility reduces t@?and is

the same constant regardless of time to maturitiaaacteristic that is generally seen
as a poor description of observed data. But fardwmore state variables, volatility
has a term structure that is dependent on timeatoinity. The literature finds that
three factors usually provide an acceptable fid, @e investigate in this chapter the

gains from considering larger models.

The second approach considered to help improvenattin is a statistical filtering
method called wavelet thresholding. Filters hagerbwidely used in some areas of
economics, for example, two popular macroeconoitier$ are the Hodrick-Prescott
filter (1980, 1997) and the Baxter-King (1999) bpasis filter. Guay and St-Amant
(1997) find, however, that both filters perform plgan recovering the business cycle
component from macroeconomic time series becaese ttlata are characterized by
the typical Granger spectral shape and as a réswlfrequencies (long run cycles)

dominate and create bias.

Wavelet thresholding is used to filter out variatlieneath a precise threshold, under
the assumption that it is noise of no economici@gance. To evaluate the claim that
this noise is of no consequence, we fit severat &ructure models to the data and
compare both the in-sample tracking ability andaitsample forecasting ability of
models with and without the noise. In theory, av&ets provide an orthogonal
decomposition of variance, filtering out mean zenbiased variation must result in

better (more efficient) model fitting, unless thage is economically meaningful.
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To account for backwardation and contango, thdteshape of the term structure,
convenience yield is best modeled as asymmetraguse inventories cannot be
negative, and time-varying, also because invergdhigtuate significantly over time.
An additional source of data, commodity inventaigcks, is therefore necessary to
model the asymmetry of convenience yields. Rogie&eppi and Spatt (2000)
develop such a term structure model and applyatude oil futures data. Casassus
and Collin-Dufresne (2005) further enrich this midageincorporating stochastic
interest rates and time-varying risk premia. Tdhapter does not adopt their model
because previous research has found that, atfteaggricultural commodity futures,
interest rate risk is of little consequence ankl piemia are small and often not

significantly different from zero.

An entirely different approach which is not pursuedhis chapter is to use the
information contained in options to model the testnucture of futures prices and
volatility. For example, Egelkraut, Garcia and 8io& (2007) use the implied
volatility from commodity options on futures to iesate the term structure of
volatility. They find that, at least for the negribterval, implied volatility leads to
better forecasts than do methods that use histmatatility, but the forecasting power

of option implied volatility is limited when the deative has a small trading volume.

5.3  Recovering the Net Convenience Yield

A long standing question in the literature on cordityomarkets, fiercely debated
since the days of Keynes, Kaldor and Hicks, cors#dra existence of a convenience
yield. Simply stated, the convenience yield ishug to holding commodity stocks,

explained for example by the benefits of positiveeintories to maintain a smooth
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running commercial operation. This concept mo@sahuch analysis on the shape of

commodity prices at different maturities (conta@aa backwardation).

The net convenience yield is the difference betwherconvenience yield (a positive
return) and the cost of carry (a negative retume)latter which is incurred through
inventory expenses for bulky commodities. Willia(@889, 2001) provides a detailed
treatment and critique of these concepts. Brenvaliams and Wright (1997) argue

that convenience yield is an artifact of data aggtien.

In the simplest model of the forward price curvedommodities, the following

relationship holds at all times:

F(t,T)=T(t,t)exg 0™ (5.9)

where F(t,t) is the futures price for a contragqtigrg “today” (i.e. the spot price
notwithstanding basis risky,is the risk-free rate of interest (e.g. 3-monts.U.
Treasury bill),c is the cost of carry andis the convenience yield. In this simple
model, the shape of the forward curve (futuresgsriocver time to maturity) depends
only on the net convenience yield:c-d. If r+c> 9, contango results, and if

r+c< d, backwardation results.

The existence of a convenience yield is not a gquesiddressed in this chapter but, to
provide a link to the vast literature on the topigimple identity is presented to
recover the convenience yield from the model pataraestimated in this chapter.

As explained by, e.g., Fackler and Roberts (1999)er the risk-neutral measure,
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asset price dynamics imply the following relatioipsising the same parameters as

found in the stochastic differential equation model

HUtO=r1+0A (5.10)

wherep is the actual drift termd is the convenience yield,s the risk-free rate of
interest,o is the diffusion term, anil is the market price of risk for the state variable

in question. The equation may be rearranged te: giv

H—OA=1r-0 (5.11)

which implies the risk-adjusted drift in the prosesgjuals the risk-free rate minus the
convenience yield. Convenience yield can be resavbecause the left-hand side
parameters are estimated from the data using theeabodel and the 3-month US
Treasury bill provides a good proxy for the riskdrrate of interest. For multi-factor
models, additional parameters must be incorporat#te equation but the approach is
the same. If reliable inventory data are availabégter estimates of the cost of carry
and convenience yield can be obtained, in parti@daounting for asymmetry in the

yield.

54  Wavelet Thresholding

Wavelet thresholding or shrinkage (Donoho and Jomes1994, 1995, 1998) has
proven to be in engineering and physical scienppsaations a remarkably efficient
and accurate method to remove noise from dataeoaVer the true signal. It consists
of applying a filtering rule not to the actual data rather to the wavelet coefficients

computed from the data. After applying the thrdgimg rule, the filtered time series
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data are recovered from the thresholded waveldticeats. While the algorithm is
most powerful against 11D white noise, properlyledgd it provides excellent results
when the noise is a dependent and non-1ID stochpsicess. The hypothesis is that
wavelet thresholding, by filtering out short-runise will enable us to obtain better

out-of-sample forecasts when combined with traddldime series methods.

There exist a wide variety of filtering methodseatkhan wavelet-based. Two
important class of filters are sinusoidal (Fouregnd polynomial knot (spline)
smoothers. These methods, however, have been folgydtematically either remove
too little or too much noise. The outcome is aweced signal that is either over-
smoothed or still too noisy to be informed on theetdata generating process. In
contrast, wavelet thresholding has been founddwige a powerful signal recovery
without oversmoothing. In particular, featurested data that are sharp remain so
after wavelet thresholding, while previously exsgtimethods tend to dull such sharp
features. This is because wavelets have beennggitg provide optimal information
compression and efficient transformation. Formabgs of these results are found in

Donoho and Johnstone (1994, 1995, 1998).

The objective of wavelet thresholding is to deterenan optimal value (threshold)
using a clear criterion, such as a loss functiomimimum risk value (Stein 1981).
Both a threshold choice and a thresholding ruletinesarefully selected. Before
using the threshold, a Discrete Wavelet Transfarapiplied to the data to produce a
vector or matrix of wavelet coefficients. The tireld is then used with the wavelet
coefficients. Applying an Inverse Discrete Wavdleansform to the filtered wavelet
coefficients yields a filtered version of the ongi time series with no loss of

information other than from filtering. Donoho afhohnstone show that a so-called
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universal threshold, together with a soft thresimgdule, are both asymptotically
optimal and also remarkably robust when used iniecapapplications. The
universal threshold, assuming a variance of inriomat(errors)o% and a number of

observationd is given by:

5=1/202 In(T) (5.12)

and the soft thresholding rule applied to wavetetfficientsw is:

we" =Sgn@v)@( W o+ [(W +o ))0 (5.13)

Since the true variance of the innovations is umkma mean absolute deviation
estimate can be computed as the ratio of the mediaavelet coefficients at the

finest timescale over a normalization factor theg been found to be optimal:

. _ median(w'™)

Gone = 5.14
MAD 0.6745 (5.14)

55  State-Space Estimation with Wavelet Thresholding

Hidden component models are increasingly used arttcplarly well suited to
estimation by the state-space approach (Durbirkarmghman 2001). In this class of
models, potentially unobservable (latent) statéatdes are estimated together with
the model parameters using available data. Thmelatd method is to first derive a
reduced form of the theoretical relationship tlsabibe estimated in a state-space
framework. This reduced form is estimated usirggKlalman filter that relates the
measurement equation, for which the dependenthitaria observable, to the

transition equation, for which the dependent vdeiabtypically unobservable.
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Use of the Kalman filter follows previous work img area by Schwartz 1997,
Schwartz and Smith 2000, Fackler and Roberts 198&nsen 2002, Korn 2005, and
Fackler and Tian 2003. Although the state spapecagh using the Kalman filter is
powerful and enlightening, it is computationallyfidult to ensure that global rather
than local optima are attained. In fact, the depels of the R programming language
explain that: “Optimization of structural modelsaisot harder than many of the
references admit. For example, the Air Passerdgesare considered in Brockwell
and Davis (1996): their solution appears to becallmaximum, but nowhere near as
good as that produced by [R procedelictTS. It is quite common to find fits with

one or more variances zero...” (R Development Tea@®2pp. 1220).

We follow most closely Sorensen’s (2002) estimastincture but with two
significant differences. First, we consider naitja two-state variable model but
several models with a number of state variablegingnfrom one to four. Second, we
pre-filter the price data using wavelet threshajdio remove very short term noise
that may obscure meaningful economic parameterserg/Sorensen lets the number
of traded maturities on any given day vary witlie sample, we use only the five
nearby contracts. Our justification is that trad&ime for more distant maturities is
very low and these data points may not be entielgble. We have considered
imposing parametric identifying restrictions basedprevious findings in the
literature. However, as this literature is stilung and previous results are not always
in agreement, it was decided to only use modeticéisins such as cross-term
covariance restrictions to ensure identificatiéior example, although empirical
evidence suggests the market prices of xiske small and sometimes not
significantly different from zero, we nonethelesslude these parameters because

theory suggests they are economically meaningig. also allow correlation between
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state variables rather than impose a zero comelagistriction. Sorensen (2002) finds
that for his two-state variable model, correlati®small but significant. Lastly,
identifying restrictions may be obtained by usikg@enous (more accurately, pre-
determined) variables such as using the daily éogye of prices to estimate the
diffusion termso or using the 3-month US Treasury bill to provide@asure of the
risk-free rate of interest for the drift term. Rbe objectives of this chapter, however,

these do not appear necessary.

The Kalman filter is used to estimate the maximikalihood parameters of the state-
space model of futures prices. The two most ingmtrissues in this estimation
problem are solving the reduced form identificajgwoblem and providing the

Kalman filter with sensible starting values. Hoe tatter, we initialize the procedure
using the estimates found by Sorensen (2002). iddrification problem in this case
is the recovery of structural model parameters ftioenestimated reduced form model.
As explained by Roberts and Fackler (1999), thepteta model of the term structure
of futures prices for agricultural commodities \&o-parameterized, equivalently,

under-identified. This implies there is not a w&cpolution to the estimation problem.

The state-space model is based on a measuremettoegand a transition (state)

equation. For each time series datfl,2,3,...,T}, the transition equation is:

Xy =@+ AX +1],, (5.15)

where, for the case of three state variables we:hav

a=(u - 0.50%,0,0,0)
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1 O 0
A= |0 e 0 (5.16)
0O 0 e
and the covariance matrix of the state variablewations, from which are derived

parameter identifying restrictions, is:

0.12 A plzlzlaz (1_ e—KzA) 1013210-3 ( 1- e—/(3A )
2
£130.0, (1_ e—K3A ) %(1_ e—(/(2 +K3) A ) ;‘I.(_Z ( 1- e—2/(3A )

K3 K2 + K3
whereA is an increment in the unit of time, here 0.04 Whgthe ratio of one

business day over one year (250 business day® .cdvariance matrix for the case of

four state variables follows naturally from the ebahree-variable matrix.

The measurement equation for five maturities, sbahY;is a vector of length five at

each point in time, is:
Y =6 +CX +g (5.18)

where:

6 =s(t)+ (u+4 -0.507 )T 1),

. (5.19)
SO+ (U+ A, -0.502)T @ =t),..8 O} +4 - 0.5 Tt

1 e grkd?-

C =|: : : (5.20)

1 @@ gmT@-
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andg;is distributed 11D Normal with mean zero and comadec’l;. The Kalman
filter is initialized with starting values for tretate variables and covariance, then
computes one-step ahead forecast errors betwestakirand actual observations.
The exact diffuse prior of Durbin and Koopman (20@1lused to improve the

behavior of the transition covariance matrix.

5.6  Estimation Resultsfor One-Factor to Four-Factor Models

Table 5.1 presents estimated parameter valuebdarrte, two, three and four-factor
models using both the original (full sample) datd ¢he wavelet filtered data using
Donoho and Johnstone’s threshold criterion. Fertorfour factors, the number of
estimated parameters is, respectively, 3, 7, 1218ndThis implies the computational
burden grows substantially as the number of fagtam®eases. The simplest model
nested in the Gaussian N-factor framework consither$og of futures prices to be an

affine function of one non-stationary state vamgibl addition to parametric terms:

log F(t,T):,ut{,u% +%0’2j(-|- —t)+st)x +¢ (5.21)

xt=(,u—

wheres(t) is the seasonal, deterministic function descriedier and (T-t) is the time

N

az} X1+, (5.22)

to maturity expressed as a fraction of one year.
The parameter estimates suggest that both thetatiarary long-run drift and the

risk premium are small, as expected from theothoaigh all are significant at the 1%

level assuming sensible convergence of the nunmel&avatives. The diffusion term
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is consistent with previous estimates found inlitlegature. Looking at wavelet-
filtered one-factor model estimates, the main déffiee is that the risk premium
parameter is now nearly zero. This may be intéedras evidence that very short-run
variation consists of a non-zero risk premium rathan noise. As expected,

estimation convergence also improves becauselteeeti data variance is smaller.

Table 5.1: Estimation results from one- to fourtéaenodels of the term structure of
futures prices, Chicago Board of Trade corn futdiresnearby maturities, from
2/1988 to 1/2005. Results provided for both futhgée and wavelet-filtered sample
data.

One factor Two factor Three factor Four factor

original filtered original Filtered original filtexd original filtered
u 0.0058 0.0051 0.0049 0.00405 0.00947 0.003478  09050.000469
K2 . . 0.162 0.00034 1.1361 0.0144 1.31392 2.2581
K3 . . . . 1.1357 2.9974 0.49811 2.257
K4 . . . . . . 0.45184 2.2701
ol 0.1077 0.101 0.1995 0.0891 0.1378 0.1668 0.096 3@.19
a2 . . 0.0297 0.0488 0.0242 0.0707 0.1242 0.2964
03 . . . . 0.0686 0.0294 0.0782 0.205%
o4 . . . . . . 0.0186 0.198
Al 0.011 -0.0046 -0.119 -0.1775 -0.2661 -0.2225 -0.077 0.0261
A2 . . 0.0872 0.1821 0.15996 0.2049 0.0803 0.0103
A3 . . . . 0.15363 0.1637 0.0506 0.0234
pVi! . . . . . . 0.1033 -0.0631
pl12 . . -0.2128 0.270 -0.0232 -0.0103 0.680 0.99
p13 . . . . -0.8559 -0.5335 0.324 0.99
pl4 . . . . 0.1454 0.99 0.199 -0.99
p23 . . . . . . -0.99 0.99
p24 . . . . . . -0.7488 0.99
p34 . . 0.458 0.99

Note: all parameter estimates are individually gigant at least at the 5% level.

The second and additional factors are mean-regestate variables. Although a clear
economic meaning is elusive, these factors helpagxthe shape of the forward curve
(e.g. contango or backwardation) through theirraatéon with the remaining time to
maturity, and can be used to recover estimatesrmfanience yield and cost of carry.

Note that if two or more mean-reverting state Jaga are used, mixed shapes can be
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captured, for example if the curve is in contanguattie three nearest maturities but in

backwardation for the most distant three maturities

The two-factor model is:

logF (t,T)=s(t)+ ut+(u—A+0.50%) T -t)

—a (1) (5.23)
+x, + e_KZ(T_t)XZ,t _i(l_ e—/(z(T—t) ) + 0-57102,012[1 e ]+ e,
, X, —2
X =(u—0.50%,0) + Ax_, +1, (5.24)
where the matrix A is:
1 0
A:( e‘KZAJ (5.25)

Recall that the first state variable is hon-stadiyrgeometric Brownian motion so
implicitly we have imposed the restrictiag=0. For both the full sample data and the
wavelet-filtered data, parameters are statisticatipificant at least at the 5% level.
The wavelet-filtered sample estimates are lesssgduthan those obtained from the

full sample, in particular the small value of thean-reversion parameter

The three-factor model incorporates a second meegriing state variable and
provides a superior fit to the data on days wherctirve is not smooth but rather
kinked. The results suggest once more that thestationary variable has a

negligible but nonzero drift and significant diffos, while the mean-reverting speed
for the other two state variables is fast and &test with previous findings—Ilarger
than Sorensen’s (2002) but smaller than FackleRoizerts’s (1999). The mean-
reverting state variables have diffusion parametetsare smaller than those found in
the literature but not unreasonable. The thréemiemium parameters are sizable but,

crucially, add up to only 0.048, which confirms therature’s findings that the
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overall impact of risk premia for agricultural coradities is small. The non-
stationary state variable is essentially uncoreelatith the first mean-reverting state
variable but strongly negatively correlated wite gecond. The two stationary state
variables are only weakly correlated. It appeaesfiftering the data using wavelet
thresholding fails to improve estimation and sorh&he resulting parameter estimates
are less plausible. In particular, the estimadeshHe two mean-reverting parameters
are poor. It seems that wavelet filtering makelkfficult to separate the influence of

the two stationary state variables as their caiimlacoefficient nearly equals 1.

Lastly, we consider the results from estimatinga factor model, which is
characterized by one non-stationary state variditeg stationary state variables and
17 constant parameters to be estimated. The wefledeed estimates are better
overall. In particular, the mean-reverting speachmeters and the diffusiong take
far more sensible values and the market priceslkbfare smaller and more consistent
with the literature’s previous findings. Howevtre correlation coefficients are

unreasonable.

5.7 Interpretation of the Results and I n-Sample Tracking

To evaluate the tracking ability of each model,diages 3/17/2004 and 6/17/2004 are
selected. On the first date a clear backwardatadtern is visible, and on the second
date it is contango. It is assumed no economicktral change has taken place
between the two dates as they are only three maipitas and seasonality is controlled
by the deterministic sinusoidal term. Parametgémates and the Kalman filter
estimated state variable (latent) time series aeel to compute in-sample predictions

of futures prices for all maturities on the giveates. Futures prices predicted from all
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four models, with and without wavelet thresholdiagg compared with the actual

prices on those days.

Figures 5.2 to 5.5 provide examples of how welhemodel tracks the data, with and
without wavelet thresholding. Figure 5.2 shows ftbaa typical contango pattern of
futures prices the one factor model performs poanlg, with or without wavelet
thresholding, substantially under-estimates thegsti In Figure 5.3, which also
displays a contango pattern, the two factor modedily over-estimates the prices
again whether or not a wavelet threshold is usedtigures 5.4 and 5.5
(backwardation and contango, respectively), thaee- four-factor models using

wavelet thresholding perform well, but these neetdbe representative.

One-factor model term structure fit in contango: CBoT corn futures on 3117/2004
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Figure 5.2: One factor model estimation with anthaut wavelet thresholding, in-
sample tracking for Chicago Board of Trade cormifes on 3/17/2004 (contango).
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Two-factor model term structure fit in contango: CBoT corn futures on 3/17/2004
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Figure 5.3: Two factor model estimation with andheut wavelet thresholding, in-
sample tracking for Chicago Board of Trade cormifes on 3/17/2004 (contango)

Three-factor model term structure fit in backwardation CBoT corn futures on 6/17/2004
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Figure 5.4: Three factor model estimation with anthout wavelet thresholding, in-
sample tracking for Chicago Board of Trade cormries on 6/17/2004
(backwardation)
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Four-factor model term structure fit in contango: CBoT corn futures on 3/17/2004
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Figure 5.5: Four factor model estimation with anthaut wavelet thresholding, in-
sample tracking for Chicago Board of Trade cornifes on 3/17/2004 (contango)

The fit of the different models ranges from goodéoy poor and varies substantially.
One unexpected result is that filtering using tlav&let threshold does not improve
estimation. It may imply that short-run variatithvat appears to be noise is in reality
economically meaningful. Alternatively, it may theat wavelet-based filtering only
improves the estimation of models that are alreabyst and stable, which is not the

case here.

To explain the difficulty of obtaining sensible iesttes, a likely cause is the
combination of a non-stationary variable and onmore stationary variables, which
creates instability in the Kalman filter estimatioho improve convergence, we used
Durbin and Koopmans’s (1997) exact diffuse priarti@l condition) for the Kalman

transition variance and we excluded the first fdgaryvations from the variance
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calculation. These steps appear insufficient. @tegpretation of the results is that,
given the very small value taken by the long-ruft tgrm ., it may be better to
impose the restriction that there is no non-statiprtomponent in agricultural

commodity futures prices (see more generally eaqynK005).

Another explanation for the poor convergence ofitieglels is that daily observations
were used rather than the more traditional weeklgding. Alternatively, it may be
beneficial to conduct the analysis on two or mare-samples of the entire dataset, as
Cortazar and Naranjo (2006) have done. The strdtag the added benefit of

providing evidence on whether any of the paramétave changed over time.

Previous research suggests the market priceskodissociated with state variables are
negligible, and inclusion of these parameters suitistlly complicates the estimation
procedure. Crucially, it appears that incorretingstion of the market prices of risk
contaminates the accuracy of mean reversion paeasethich are essential to
capturing the shape of the forward curve. Yettiaeket prices of risk contain
information on whether the shape is in contangio ®ackwardation. A potential
extension of this work is to test the hypothesgt thavelet-filtered noise is a good

estimator of the time-varying market price of risk.

58  Conclusion

Risk management in commodity markets depends amderstanding the
constellation of futures prices. A powerful franw@wto model the relationship
between futures maturities is the term structurieitofres prices, also called the
forward curve. Recent theoretical advances shaittte term structure can be

described by a convenient, affine model specificathat lends itself well to state

145



space econometric estimation using the Kalmarr filféhis chapter asks: Can we
better track and forecast the term structure ofraority futures prices with the help

of carefully designed filters? Is variation at trexy short run only measurement noise
or is it economically meaningful? And, given impeoents in computing power,

how much accuracy is gained by modeling substéynteiger, more complicated

models?

The evidence presented in this chapter suggedtséheelet thresholding, a class of
filtering methods that has been found to be optiamal highly successful in the
natural sciences, does not help us understancefipurices. A plausible interpretation
is that what appears to be noise in economic datike experimental data, is likely to
be meaningful. As a result, larger models mayptieshe loss of parsimony, a better
approach than filtering to obtain accurate estisafehe term structure of futures

prices.

The results also show that while three-factor moded superior to one and two-factor
models, it is not clear including a fourth factomproves the results. This finding has
practical implications because the number of patara¢o be estimated increases
faster than does the number of factors in the modlbé results also confirm that a
non-stationary state variable does not appear wiataand elimination of this
variable is likely to improve convergence of thedab It is difficult to evaluate the
significance of market prices of risk. Individyaleach parameter is found to be
significant, but the sum of all market prices skris only weakly different from zero.
An potential extension of this work concerns thedthesis that noise filtered out
using wavelet thresholding provides good estimatéle time-varying market prices

of risk.
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CHAPTER 6
CONCLUSION

This thesis addresses three problems in the lilerain commodity futures markets
and provides new insights by combining empiricaidiseries analysis with statistical
methods derived from wavelet transforms. The comtheme to all three essays is
the identification of effects that are specificadlyplained by distinct time horizons of
decision-making, from the short-run to the long-ruxithough this thesis adopts a
particular hierarchy of time horizons (i.e. daggmiweekly, weekly,...), wavelets
allow the researcher to define any hierarchy oéthorizons, subject to some

conditions, to provide the best analysis for then@enic problem under scrutiny.

An introduction to wavelets is presented in Chaftesing the lifting scheme
approach of Sweldens (1994). After providing anitive demonstration of wavelets
as building blocks for transformations of the data,define and explain the most
important wavelet properties for time series analy#llustrations are provided using
the Haar and Daubechies wavelets, which are thertesi widely used in this area of
research. We show, using results of a simulatiogyson two typical economic time
series, that applying wavelet transforms to tha daes not cause loss of statistical
information beyond a trivial level of machine pgon and moreover does not alter

the stationarity of the data.

In Chapter 3, we ask whether findings of long mgmorcommodity futures prices
and price volatility are spurious, and, more gelhergest Granger’s conjecture that
economic and financial time series are not chariaet by true long memory. Using

a robust wavelet-based estimator, we find that lmegnory appears to be significant
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for all commodities and is not overly sensitiveetther choice of estimator or to the
bias caused by the presence of short memory (RY1A GARCH effects). Because
standard asymptotic tests have been found to @yectrthe null of long memory, we
use three recently developed tests of spuriouste@gory and find that only two out
of eleven commodities (wheat and canola) are cheniaed by true long memory.
Certain stochastic break models are known to gémsparious long memory, so we

fit the data to a Markov-switching model and shbattit provides a good fit.

Several extensions to the chapter appear promisihg.long memory models
estimated in this work are fractionally integratddMA (ARFIMA), but a wavelet-
based fractionally integrated GARCH model coulcebBmated instead and may
better capture short memory volatility dynamicdsdi a large number of models can
in theory generate spurious long memory. Thedliffy of finding out which model
provides the best fit is that the different alteies are generally non-nested, so that
traditional Likelihood Ratio, Wald and Score testse not appropriate. A systematic

study of competing models of true and spurious loegnory appears warranted.

Chapter 4 asks: Have large Index Traders increasiadility in commodity markets?
Should the Commodity Futures Trading Commissiorsm®r making permanent its
pilot project whereby the positions of Index Tradare reported separately from the
positions of other large traders? Without accesonhfidential CFTC data, we adopt a
“revealed” methodology and infer the effect of Ind@aders in a joint model of
volume-price volatility. Wavelets allow us to &ltout all variation in trade volume
that is associated with shorter time horizons atkit is known Index Traders are not
active. The evidence suggests large Index Tradayshave increased price volatility

for non-storable commodities (live cattle and leags contracts), but not for storable
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commodities (grains). In contrast, most of theves literature has only examined
the effect of speculators and found that ther@iswidence their trading increases
market volatility. The results should be particlylaiseful in light of the CFTC's
current actions and may provide a suitable mettogoto examine markets for which
confidential trader-level data are not availabdeworthwhile extension may be to test
structural hypotheses on the theory-motivated iifiees in production dynamics
between storable and non-storable commoditiesduetmn dynamics may well

explain why non-storable commodities are influenlbbgdndex Traders.

Chapter 5 considers the problem of modeling theadyos that explain, each day, the
pattern or constellation of futures prices expirat@lifferent maturities. Adopting a
recently developed affine term structure modelasle Can we better track and
forecast the term structure of commodity futuresqs and volatility by carefully
designing filters to remove from the data what duglbe noise? Are substantially
larger and more complex state-space models wadantebtain a superior fit to the
data? The evidence found in this chapter suggiest®ven wavelet thresholding
filters, found to be optimal and highly successfulhe natural sciences, do not appear
to help in the case of futures data. As a ressltig a greater number of factors or
state variables appears to be still the best waypoove the results, despite the loss
of parsimony and identification difficulties assated with having a very large number
of unobservable parameters. Yet it is not cleat ithcluding four or more state

variables pays off its higher computational cost.

This chapter provides several possible extensitnsoise removed by wavelet

thresholding is economically meaningful, it maypd® a method to estimate a time-

varying market price of risk. Indeed, constanineastes of the market prices of risk
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are often not significantly different from zero.iffizulties encountered with model
convergence suggest that the non-stationary staigble, included to capture
permanent economic shocks, should be excluded¢yplarly since the long-run drift

parameter is consistently found to be of negliggiie.

In conclusion, this thesis contributes several fiadings on timely and persistent
guestions in commodity derivatives markets, andliaes well-established time
series analysis with statistical methods basedavrelet transforms to better identify
and measure the economic importance of variousdistme horizons in different
problems. The thesis shows that using wavelaetsvalhnew economic hypotheses to
be formally tested and contributes to a better tstdading of existing results in the

literature.
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APPENDIX

A.1  DataCleaning
Observations for 19 October 1987 (“Black Mondayiyid1 September 2001 are

considered outliers and removed from the sample.

Soybean prices were allegedly manipulated by thdagjness giant Feruzzi over the
time period May-July 1989 (e.g. Kolb and Overd&0i06, p.83-84; Pirrong 2004).

For most of the analyses, the data used beginAuijust 1989.

The measurement unit of corn and soybeans futur@sact positions at the Chicago
Board of Trade and wheat futures at the KansasEigrd of Trade changed on
January 1st 1998 from thousands of bushels to nuoflmntracts, each of which
equals five thousand bushels. To ensure consistartbg time series, observations
before January 1st 1998 are divided by five, saitiieof measurement throughout is

the number of contracts.

The Chicago Mercantile Exchange replaced in 1967i#e hog futures contract

(live animal weight-based) with a lean hogs futwestract (carcass weight-based), as
a result of which trade volume has increased sobatly (Ditsch and Leuthold 1996;
Carter and Mohapatra 2006). The new contract is sattled using a daily price

index (weighted average) provided by the USDA axadugles prices from terminal
markets. Ditsch and Leuthold (1996) predicted #w nontract would provide a

better hedge and Carter and Mohapatra (2006) feormirical evidence that the
futures contract during its first six years (199#2) indeed provided good forecast

power

151



New York Board of Trade cocoa data contained aakéstthe volume and open
interest columns were inverted for all observatimngd/2002 and 10/2002. This was

corrected before estimation.

Chicago Mercantile Exchange live hogs futures tetdime data records data entry
errors all for the year 2001: 2/9/2001, 6/22/20013/2001, 7/25/2001, 7/25/2001,
8/17/2001, 9/25/2001, 10/16/2001, 10/25/2001, P0DA1, 11/5/2001, 11/13/2001,
12/5/2001, 12/14/2001.

KCBOT wheat futures prices are reported in dol&ard fractions of a dollar, not
cents. Before using these data in any way, theg adjusted into dollars and decimal

values (cents).

A.2  Additional Estimation and Test Details

In Chapter 2, the ADF test on the typical futurasetime series (corn futures), with
no time trend, returns values ranging from -0.7&t83 (one to eight lags), all of
which are far smaller (in absolute value) thandhical values (-2.57 to -3.45, 10%

to 1% levels of significance). The ADF test inchgla time trend returns test values
ranging from -1.92 to -2.25, all of which are sraallin absolute value) than the

critical values (-3.13 to -3.99, 10% to 1% levdisignificance). This version of the
test is nearly equivalent to computing the detreratéce time series and applying a
unit root test (no time trend) on the detrendecktsaries (test values are instead -1.93

to -2.27).
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Alternatively, a Variance ratio test (Lo and Mackay, 1988, 1989) can be computed
to evaluate the null hypothesis of no random walks specification test considers,
for different levels of time aggregation, the ratfcsample variances, under the
assumption that a random walk will display incragsrariance as the level of

aggregation increases. The test results suggesam®t reject the null.

The ADF test applied to each wavelet-computed tiorézon data provides the
following results. For daily variation Dtest results range from -40.31 to -30.82
(preferred lag selection of six leads to a testi@aif -37.13), all of which exceed the
critical values of -3.99 to -3.14 (10% to 1% levetsignificance), and there is no
doubt the null of a unit root is rejected. For segekly variation B, the test results
range from -6.48 to 12.76 (9.46 for preferred chpsgix lags). The null can only be
rejected if the number of lags specified is onenar. Therefore, for a plausible lag
specification, we cannot reject the null hypotheSe weekly variation B the test
results range from -7.92 to 5.63 (1.06 for pref@ichoice, six lags). For biweekly
variation 0Oy, the test results range from -10.25 to 2.09 (-2o4 preferred choice, six
lags). For monthly variation{)the test results range from -12.05 to 1.17 (-6018

preferred choice, six lags).

In chapter section 4.7, ADF tests show that cafutlaes trade volume is stationary

(test value = -38.456, p<0.01).

In Chapter 5, Augmented Dickey-Fuller tests onltigeprice corn futures data return
the values: -2.7373-2.9595 , -3.1235 ", -3.6002" , -3.9984" for each of the six
closest maturities, from nearest to most distané [Evels of significance are 10% (*),

5% (**) and 1% (***). The test was computed usingiatercept, no time trend, and
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one month of daily business day lags (20 lags) tik@first nearby futures data, we
consider the possibility of a time trend and regttée once-differenced log-prices on
an intercept, but cannot reject the null hypoth#sas this intercept (time trend in

levels) is zero.

Estimation of state-space models is done usingreifft procedures in Matlab, R and
RATS depending on the desired objective. Linear ARMII-information estimation
by state space is done in R. Constrained optimizgtrocedures are generally done in
Matlab. Hidden component state space model esbmasing the Kalman filter is
done mainly in RATS using the DLM procedure with NION parameter description
and constraints and optimization criteria set byPRR. Optimization routines are
SIMPLEX for the first approximation and BFGS foethctual solution in order to
obtain standard errors for the parameters. 208atiters and 100 sub-iterations are
allowed for the BFGS, and up to 5000 trials for 8iIMPLEX method. The EXACT
diffuse initial conditions of Durbin and Koopmar0(Q1) are used to control the
behavior of the non-stationary component of vamaincthe Kalman filter procedure.
The Kalman gain matrix variance is assumed scalepigptional to the system

variances.

The wavelet threshold filtered data contain 16Itered observations at the beginning

and end of the sample because the initial and filb@led observations are likely to

suffer from boundary effects caused by the wauedetsform.
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