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Preface

Exploratory data analysis techniques have added a new dimension to the way
that people approach data. Over the past ten years, we have continually been
impressed by how easily they have enabled us, our colleagues, and our students
to uncover features concealed among masses of numbers. Unfortunately, the
diversity of these techniques has at times discouraged students and data
analysts who may want to learn a few methods without studying the full
collection of exploratory tools. In addition, the lack of precisely specified
algorithms has meant that computer programs for these techniques have not
been widely available. This software gap has delayed the spread of exploratory
methods.

We have selected nine exploratory techniques that we have found most
often useful. Each of these forms the basis for a chapter, in which we

« Lay the foundations for understanding the technique,

¢ Describe useful variations,

» [llustrate applications to real data, and

* Provide computer programs in FORTRAN and BASIC.

The choice of languages makes it very likely that at least one of the programs
for each technique can be readily installed on whatever computer system is
available, from personal microcomputers to the largest mainframe.
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Most of this book requires no colleg. level mathematics and no more
than an introduction to statistical concepts. It can serve as a supplementary
text to introduce the ideas and techniques of exploratory data analysis into a
beginning course in statistics. (In draft form we have used portions of the book
in just this way.) Some chapters include advanced sections which assume some
knowledge of statistics and are intended to relate the exploratory techniques to
traditional statistical practice. These sections will be of greater interest to
researchers who wish to use the methods and programs in their own data
analysis. A reader who is primarily interested in computational aspects of
exploratory data analysis will find both the essential details and many
refinements in our programs. At the other extreme, a student who has no
background in programming and no access to a computer should have no
difficuity in learning the techniques and applying them by pencil and paper.
Between these two extremes, the reader who has access to the Minitab
statistical system can take immediate advantage of our programs because they
have been incorporated into Minitab (Releases 81.1 and later).
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Introduction

One recent thrust in statistics, primarily through the efforts of John Tukey,
has produced a wealth of novel and ingenious methods of data analysis. In his
1977 book, Exploratory Data Analysis, and elsewhere, Tukey has expounded
a practical philosophy of data analysis which minimizes prior assumptions and
thus aliows the data to guide the choice of appropriate models. Four major
ingredients of exploratory data analysis stand out:

» Displays visually reveal the behavior of the data and the structure of the
analyses;

* Residuals focus attention on what remains of the data after some analysis;

¢ Re-expressions, by means of simple mathematical functions such as the
logarithm and the square root, help to simplify behavior and clarify
analyses; and

¢ Resistance ensures that a few extraordinary data values do not unduly
influence the results of an analysis.

This book presents selected basic techniques of exploratory data analysis,
illustrates their application to real data, and provides a unified set of computer
programs for them.

The student learning exploratory data analysis (EDA) soon becomes
familiar with many pencil-and-paper techniques for data display and analysis.
But computers have become valuable aids to data analysis, and even in EDA
we may want to turn to them when:
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*  We have already acquired a feel for the working of a method and want to
concentrate on the results rather than the arithmetic;

*  We face a large amount of data;

« We want to eliminate tedious arithmetic and the errors that inevitably
creep in;

« We want to combine exploratory methods with other data analytic
techniques already programmed.

This book shows how we can use the computer for exploratory data analysis.
Exploratory methods, however, call for frequent application of the analyst’s
judgment, and this judgment cannot readily be cast in simple rules and
ptugged into computer programs. In developing the algorithms in this book, we
have often had to give precise rules for judgments such as determining which
scale makes a display *“look nice,” finding points “‘representative” of a part of
the data, or terminating an iterative procedure. In choosing these, we have
tried to preserve the underlying resistant features of EDA. For example, the
precept that an extraordinary data value should not unduly influence an
analysis has led to displays whose message cannot be ruined by such points.

At times the beauty of EDA can be marred by the limitations of the
computer. Choices other than our rules and heuristics are possible and may be
preferable in some situations. We have tried to offer opportunities to overrule
the programs’ default decisions. We have also presented the pencil-and-paper
versions of the techniques to encourage readers to work by hand when possible
and to be aware of the constraints of the computer envirorment otherwise.

After studying the examples and gaining experience with the EDA
techniques, readers who already know some statistics may want to learn more
about how an EDA technique compares with a similar traditional method. In
some chapters, a starred section (indicated by a * at the section heading)
provides brief background information. Generally, a full comparative discus-
sion would involve statistical theory.'

The variety of approaches, as well as the alternative analyses that we
present for some sets of data, serves to emphasize that practical applications of
data analysis generally do not lead to a single *“correct” answer. The analyst’s
judgment and the circumstances surrounding the data also play important
roles.

Each chapter also contains a short discussion of programming details
(indicated by a T at the section heading), including the algorithm used by the
program, alternative methods, and potential implementation difficulties. This
section of the chapter, intended primarily for readers interested in statistical

'Such discussions are the subject of The Statistician’s Guide to Exploraiory Data Analysis, now being
prepared under the editorship of David Hoaglin, Frederick Mosteller, and John Tukey.
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computing and for instructors, provides necessary background and aids in
installing the programs.

Readers of the programs and background discussions should have some
knowledge of computing, an acquaintance with EDA and, for some sections, a
knowledge of statistics. Readers intending to install the programs are advised
to follow a different path, or thread, through the book, and read chapters not
in the order natural for learning exploratory data analysis but in the order
easiest for understanding the programs.

This book, then, has two main audiences, and each will thread its way
through the chapters in a quite different order; so we think of this book as a
threaded text. Students of exploratory data analysis, researchers intending to
use EDA methods, and especially readers who already have the programs
available to them on a computer can use the thread that follows the chapters in
order, skip the (T) sections of program listings and technical discussions, and
select the statistically advanced (*) sections that suit them. For programmers,
the thread is best described by the following order of chapters:

Programming Conventions
Utility Programs
Letter-Value Displays
Coded Tables

Computer Graphics
Boxplots

Stem-and-Leaf Displays
x-y Plotting (condensed plots)
Resistant Line

Smoothing Data

Median Polish
Rootograms

Minitab Implementation

DO®WAULAE—WDINEEO

Programmers will find toward the end of most chapters a signpost like this

. Yes
Programming

?

Turn to Appendix C.

Proceed.

to heip them follow the thread. Indeed, they should follow this signpost now.
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MNote to the Student

If you have not used a computer before, we must warn you that despite our
efforts to write simple programs, the programs we give may not run without
change on your computing system. Unfortunately, all computing systems are
different, and few sophisticated programs can be run on many different
systems and remain readable. Therefore, you may need help from an expert on
your particular computing system, and he or she will find assistance in the
appendices of this book. If the programs already work on your computing
system, you will still need to learn the local conventions for using them. This
book tells you how to control an analysis procedure, but local conventions will
determine how you actually talk to the machine to teil it what to do.

In your first experience with a computer, you must remember that the
computer is not doing anything you do not already know how to do by hand (or
will know by the time you get to that chapter)—the computer just works more
quickly and more accurately. All the same, the machine is stupid, and
occasionally you will want to modify its programmed decisions so as to make a
display look different or make an analysis work in a different way. Many
chapters show you how the modification can be done. We hope that, by
relieving you of tedious hand computation and hand graphing, we will free you
to interpret the results of the analyses and understand how the methods work.

Note to the Instructor

Many of the chapters in this book can fit in nicely as supplements to an
introductory statistics course. In our teaching we have found stem-and-leaf
displays and letter-value displays very useful at the start of an introductory
course. Boxplots are a useful accompaniment to the comparison of groups.

The resistant line serves as an excellent introduction to simple regres-
sion. It provides an elementary yet well-defined method of fitting a line to x-y
data, and it offers the pedagogical advantage of a slope formula in the
standard form of “change in y divided by change in x.” The contrast between
resistant lines and least-squares lines helps students to understand the useful-
ness and limitations of each.

We commonly use boxplots again to introduce one-way analysis of
variance. Coded tables and median polish serve as an excellent introduction to
the additive structure of two-way analysis of variance. Here, as with regres-
sion, we find that teaching the exploratory method first makes the least-
squares methods easier to understand.
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We have also used EDA to introduce ideas less common in introduc-
tory courses. First, we think it is valuable to present more than one method for
important statistical models. This counteracts the impression that there is one
and only one correct way to analyze data, and it promotes understanding of
the strengths and weaknesses of different methods. We have consistently
found it valuable to teach data re-expression even in the most elementary
courses, and we encourage instructors to use those parts of Chapters 2, 5, and
8. We have also found that the identification and discussion of outliers
(Section 3.3) is a useful part of an introductory course.

Exhibits 1 and 2 present two outlines for merging EDA methods with
traditional introductory material. The first follows a traditional sequence,
while the second follows a topic sequence that puts less emphasis on probabil-
ity theory and more on data analysis.

The programs themselves are given in two programming languages,
FORTRAN and BASIC. While many students will not study the programs in
detail, they may find them handy for reference, and we have taken great care
to make them as readable and portable as language restrictions permit. As we
explain further in Appendix C, the FORTRAN programs satisfy the stan-
dards of the PFORT Verifier, which embodies a restricted and almost
universally portable subset of the FORTRAN language. They also generally
conform to the algorithm standards of ACM Transactions on Mathematical
Software and Applied Statistics. The BASIC programs have been designed
for maximum portability to small computers {(although BASIC has no
standard language definition comparable to PFORT).

Exhibit 1

Outline for Integrating EDA into a Traditional Sequence (EDA topics in italics)

Introductory Comments
(What is statistics, etc.)
{Notation)
Describing Distributions of Measurements
Stem-and-leaf displays
Histograms
Measures of central tendency
Measures of variability
Letter-value displays
Re-expressing data to improve symmetry (optional)
Probability
Random Variables and Probability Distributions
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Exhibit 1  (continued)

The Binomial Probability Disiribution
The Normal Probability Distribution
The central limit theorem
Comparing a sample to the normal distribution (Section *2.6, optional)
Large-Sample Statistical Inference
Point estimation of a population mean
Interval estimation of a population mean
Simple boxplots
Estimating the difference between two means
Comparing boxplots
Notched boxplots (optional)
Hypothesis testing
Inference from Small Samples
Student’s ¢
Linear Regression and Correlation
Resistant line
The method of least squares
Inferences for least-squares regression coeflicients
Re-expressing to straighten a relationship (Section 5.7, optional)
The correlation coefficient
Comparing resistant lines and regression lines
Analysis of Enumerative Data
Tables of data
Coded tables
Chi-squared test
The Analysis of Variance
A comparison of more than two means
Multiple boxplots
One-way ANOVA
Median polish and the additive two-way model
Two-way ANOVA
Time Series
Nonlinear data smoothing
Models for time-series data
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Exhibit 2

Qutline for Integrating EDA into a “Terminal” Course {EDA topics in italics)

Introductory Comments
(What is statistics, etc.)
(Notation)
Describing Distributions of Measurements
Stem-and-leaf displays
Measures of central tendency
Measures of variability
Letter-value displays
Re-expressing data to improve symmetry
Outliers in data (Sections 3.1 through 3.4)
Fitting Lines to x-y Relationships
Resistant line
The method of least squares
Re-expressing to straighten a relationship
Examining residuals from a linear fit
Elementary Probability
Inferenees for Large Samples
Interval estimation for the population mean
Hypothesis testing
Estimating the difference between two means
Inference for Small Samples
Student’s ¢
Inferences for Linear Regression
t-tests for regression coefficients
Correlation
Comparing resistant lines and least-squares regression
Analyzing Tables of Data
Coded 1ables
The chi-squared statistic
Additive Models for Tables of Data
Comparing more than two means
Multiple (notched) boxplots
One-way ANQOVA
Median polish
Two-way ANOVA
Time Series
Nonlinear data smoothing
Models for time-series data













Chagter 1

batch

display

stem-and-
leaf

Stem-and-Leaf Displays

Data can come in many forms. The simplest form is a collection, or barch, of
data values. While we probably know something about the data, we are
usually wise to assume little at first and just examine the data. Exploratory
data analysis provides tools and guidelines for getting acquainted with the
data.

The first step in any examination of data is drawing an appropriate
picture or display. Displays can show overall patterns or trends. They also can
reveal surprising, unexpected, or amusing features of the data that might
otherwise go unnoticed.

The stem-and-leaf display has all of these virtues and can be
constructed and read easily. With it we can readily see:

« How wide a range of values the data cover;

+« Where the values are concentrated;

+ How nearly symmetric the batch is;

¢  Whether there are gaps where no values were observed;
» Whether any values stray markedly from the rest.

These are features that might go unnoticed if we looked no deeper than the
data values.

1
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In a stem-and-leaf display, the data values are sorted into numerical
order and brought together graphically. When we work by hand, we can
combine these operations into a single process. When the data have been
entered into a computer, a stem-and-leaf display brings the individual values
back into view in a way that helps us to see important patterns.

1.1 Stems and Leaves

The basic idea of a stem-and-leaf display is to let the digits of the data values
themselves do most of the work of sorting the batch into numerical order and
displaying it. A certain number of the digits at the beginning of each data
value serve as the basis for sorting, and the next digit appears in the display.
According to rules to be explained shortly, we split each data value into its
leading digits and its trailing digits. For example, the rules might tell us to
split 44,360 as shown in the sketch.

leading digits | trailing digits

44 | 360
— | I
,' I AN ignore
use¢ n

sorting | show in display

The leading digits of 44,360 would then be 44, and the trailing digits would be
360. The leftmost trailing digit, 3, would appear in the display to represent this
data value. By treating a whole batch of data in this way, we form a
stem-and-leaf display.

Before turning to the procedure for constructing a stem-and-leaf
display, let us look at the overall appearance of a simple example. Exhibit 1--2
illustrates a simple stem-and-leaf display for the data in Exhibit 1-1. The
leading digits appear to the left of the vertical line, but are not repeated for
each data value. The leftmost trailing digit of each data value appears to the
right of the vertical line.

We construct a stem-and-leaf display in the following steps:
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Exhibit 1-1

Acid Levels in Precipitation

Date of Event pH

20 Dec. 1973 4.57
25-26 Dec. 1973 5.62
30 Dec. 1973-1 Jan. 1974 4.12

9 Jan. 1974 5.29
18-19 Jan. 1974 4.64
21 Jan. 1974 4.31
26-27 Jan. 1974 4.30
28 Jan, 1974 439
6-7 Feb. 1974 4.45
9-11 Feb. 1974 5.67
16-17 Feb. 1974 4.39
23-24 Feb. 1974 ' 4,52
24-25 TFeb. 1974 4.26
28 Feb. 1974—1 Mar. 1974 4.26

8 Mar. 1974 4.40

9 Mar. 1974 5.78
15-16 Mar. 1974 4,73
21 Mar. 1974 4.56
29-31 Mar. 1974 5.08
3-4 Apr. 1974 4.41
7-9 Apr. 1574 4.12
14 Apr. 1974 5.51
25-26 Apr. 1974 4.82
11-12 May 1974 4.63
17 May 1974 4,29
23 May 1974 4.60

Source: Reported by J.O. Frohliger and R. Kane, “Precipitation: 1ts Acidic Nature,” Science 139 (8 August
1975):455-457 from samples collecied at a location in Allegheny County, Pennsylvania. Copyright 1975 by
the American Association for the Advancement of Science. Reprinted by permission.

Note: pH is an alkalinity facidity measure. A pH of 7 is neutral; values below 7 are acidic.

1. Choose a suitable pair of adjacent digit positions in the data and split each
data value between these two positions. In going from Exhibit 1-1 to
Exhibit 1-2, we have split data values so that the first two digits of each
value are the leading digits.

2. Write down a column of all the possible sets of leading digits in order from
lowest to highest. These are the stems. (Note that we must include sets of
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Exhibit 1-2 Stem-and-Leaf Display for the Precipitation pH Data of Exhibit 1-1

41|22

42| 66T

43109

44|501

45726

Ho 430

HT1d

yglz Leaves
49
50|83
51
5219
53
54
5511
56|27
5718

Stems

leading digits that might have occurred, but don’t happen to be present in
this particuiar batch. Of course, we needn’t go beyond the lowest and
highest data values.)

3. For each data value, write down the first trailing digit on the line labeled
by its leading digits. These are the leaves, one leaf for each data value.

Let us now see how these steps produce the display in Exhibit 1-2

from the data in Exhibit 1-1.
The data in Exhibit 1-1 report the acidity of 26 samples of precipita-
tion collected at a location in Allegheny County, Pennsylvania, from Decem-
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ber 1973 to June 1974. The data are pH values—pH 7 is neutral; lower values
are more acidic. They could bear on the theory that air pollution causes
rainfall to be more acidic than it would naturally be.

Exhibit 1-2 shows the stem-and-leaf display of these values. To make
the display, we must split each number into a stem portion and a leaf portion.
For the stem-and-leaf display in Exhibit 1-2, the pH values were split between
the tenths digit and the hundredths digit. For example, the entry in Exhibit
1-1 for 20 Dec. 1973, which is 4.57, became 45[7, so that the stem is 45 and the

Exhibit 1-3  Full Stem-and-Leaf Display for the Precipitation pH Data of Exhibit 1-1

Unit=.01
1 2 represents 012
2 f22
5 H2{eb
9 43109
1244|501
3) H51726
11 46430
g8 H7(3
7T %2
49
6 50|38
51
5 5219
53
54
4 §5|1
3 56|20
1 578




unit

depths
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leaf is 7. Working from the data in Exhibit 1-1 and writing down the leaves as
we read through the data in order yield the display in Exhibit 1-2. In the
second line, we can easily verify that 42j669 stands for the three data values
4.26,4.26, and 4.29.

Choosing the pair of adjacent digit positions for the stem-leaf split is
basically a matter of straightforward judgment, and easily learned. However,
because the location of the decimal point is lost when we split the data values
into stems and leaves, the finished version of the display should include a
reminder of where the decimal point fails. This reminder is usually provided in
a heading above the display by declaring the anir as the decimal place of the
leaf, and by providing an example.

Exhibit 1-3 shows a more elaborate version of the basic stem-and-leaf
display of Exhibit 1-2. This version is the standard form of the stem-and-leaf
display. Here the heading specifies the unit (.01) and gives an example, “1 2
represents 0.12,” so that we can tell that 42669 represents 4.26, 4.26, and
4.29, rather than, say, 42.6, 42.6, and 42.9.

Exhibit 1-3 also includes a column of depths located to the left of the
stem column. In the depth column, the number on a line tells how many leaves
lie either on that line or on a line closer to the nearer end of the batch. Thus,
the 5 on the second line of Exhibit [-3 says that five data values fall either on
that line or closer to the low-pH end of the batch; actually, three values—4.26,
4.26, and 4.29—are on the second line, and two—4.12 and 4.12—are on the
first line. Naturally, the depths increase from each end toward the middle of
the batch.

The depth information is shown differently at the middle of the batch.
The line containing the middie value shows a count of izs leaves in the depth
column, enclosed in parentheses. When the batch has an even number of data
values, no single value will be exactly in the middle. Instead, a pair of data
values will surround the middle. If this happens, and each middle value falls on
a different line, the depths are shown as usual. Chapter 2 discusses depths and
shows how they help in finding values to summarize the data.

Exhibit 1-3 reveals several features of the precipitation pH data: Most
of the values form a broad group from 4.1 to 4.7; scattered values trail off
above that group to 5.29; and four values form a clump from 5.51 to 5.78. On
these four occasions the precipitation was noticeably less acidic than at other
times—a feature we would not have seen without a display.

As we have seen in Exhibit 1-3, a stem-and-leaf display helps to
highlight a variety of features in a batch of data. When we need to identify
individual data values, we can do so because the numbers themnselves form the
display. This can make it easier for the data analyst to decide which features
are important and what they mean in the context of the data.
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1.2 Multiple Lines per Stem

To produce an effective display for any batch we encounter, we must have
ways of stretching out a display that looks squeezed onto too few lines and of
squeezing together a display that looks stretched out over too many lines. We
can improve the appearance of a stem-and-feaf display by splitting stems into
either two equal parts or five equal parts and by using one line for each part.

In the simplest type of stem-and-ieaf display, such as Exhibit 1-3, all
ten digits, 0 through 9, can be used as leaves on each line. When stretching out
a display to use two lines per stem, we place leaf digits 0, 1, 2, 3, and 4 on the
first line (indicated by a * after the stem) and 5, 6, 7, 8, and 9 on the second
line (indicated by a .), and thus produce a variation of the original simple
display using twice as many lines. Exhibit 1-5 shows an example of 2-line
stems based on the data in Exhibit 1-4. The numbers in this display are the
relative air pollution potentials of hydrocarbons (HC) in 60 U.S. cities
(actually Standard Metropolitan Statistical Areas, SMSAs). For example, the
first line in Exhibit 1-5 represents the hydrocarbon pollution potentials for
Dalias, Fort Worth, Miami, New Haven, and Wichita. This display illustrates
an additional useful variation; listing apparently stray values on a separate
line, labeled “HI” for high strays. Section 1.4 discusses this variation further.

When we use five lines per stem, we find that it helps—both in making
a stem-and-leaf display by hand and in reading one already made—to have a
distinctive label on each line. We place leaves 0 and 1 on a line labeled *,
leaves 2 and 3 on the T (for Two and Three) line, leaves 4 and 5 on the F (Four
and Five) line, leaves 6 and 7 on the S line, and leaves 8 and 9 on the . line. We
can think of this display as using five times as many lines as the simple display.
More commonly, however, the 5-line display is a way of using half as many
lines: We first move the split between stem and leaf one digit position to the
left and then use five lines per stem. Exhibit 1-6 shows the precipitation pH
data in this way. The split between stem and leaf has been shifted left to the
decimal point so that the final digit of each value is omitted and the second
digit serves as the leaf. For example, the first line in Exhibit 1-6 represents the
same data values as the first line in Exhibit 1-3—that is, pH 4.12. In Exhibit
1-6 the tenths digit is the leaf; in Exhibit 1-3 the tenths digit is part of the
stem. The hundredths digit, 2, is not used in Exhibit 1-6. The shape of the
main body of numbers (lines 4* through 4S5) is now easier to see, but the 4 less
acidic precipitation samples are not as prominent. Qur choice of scale in
stem-and-leaf displays usually depends on what kinds of patterns are most
important to us as we examine the data.

When, as in Exhibit 1-6, the unit in the stem-and-leaf display is not
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Exhibit 1-4 Four Variables for 60 U.S. SMSAs

January Mean HC
Temperature  Pollution Median Age-Adjusted

SMSA °C Potential Education Mortality
Akron, OH —-2.18 21 11.4 921.87
Albany, NY —5.00 8 11.0 997.87
Allentown, PA —1.67 6 9.8 962.35
Atlanta, GA 7.22 18 11.1 982.29
Baltimore, MD 1.67 43 9.6 1071.29
Birmingham, AL 7.22 30 10.2 1030.38
Boston, MA -1.11 21 12.1 934,70
Bridgeport, CT -L11 6 10.6 899.53
Buffalo, NY —4.44 18 10.5 1001.90
Canton, OH -2.78 12 10.7 912.35
Chattanooga, TN 5.56 18 9.6 1017.61
Chicago, IL —-3.33 88 10.9 1024.89
Cincinnati, OH 1.11 26 10.2 970.47
Cleveland, OH —2.22 31 11.1 085.95
Columbus, OH —0.56 23 11.9 958.84
Dallas, TX 7.78 1 11.8 £860.10
Dayton, OH —1.11 6 11.4 936.23
Denver, CO -1.11 17 12.2 871.77
Detroit, M1 —2.78 52 10.8 959.22
Flint, Ml —4.44 11 10.8 941.18
Fort Worth, TX 7.22 1 11.4 891.71
Grand Rapids, M1 —4.44 5 10,9 §71.34
Greensboro, NC 4.44 8 10.4 971.12
Hartford, CT —2.78 7 11.5 887.47
Houston, TX 12,78 6 11.4 952.53
Indianapolis, IN —1.67 13 11.4 968.67
Kansas City, MO —0.56 7 12.0 919.73
Lancaster, PA 0.0 11 9.5 844.05
Los Angeles, CA 11.67 648 12.1 861.83
Louisville, KY 1.67 38 2.9 989.26
Memphis, TN 5.56 15 10.4 1006.49
Miami, FL 19.44 3 11.5 861.44
Milwaukee, WI —-6.67 33 11.1 929.15
Minneapolis, MN —11.11 20 12.1 857.62
Nashville, TN 4.44 17 10.1 961.01
New Haven, CT —1.1] 4 11.3 923.23

New Orleans, LA 12.22 20 9.7 i113.16
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Exhibit 1-4 (continued)

January Mean HC

Temperature  Pollution Median Age-Adjusted

SMSA C Potential  Education Mortality
New York, NY 0.56 41 10.7 994.65
Philadeiphia, PA 0.0 29 10.5 1015.02
Pittsburgh, PA —1.67 45 10.6 991.29
Portland, OR 3.33 36 12.0 893.99
Providence, RI —1.67 6 10.1 938.50
Reading, PA 0.56 11 9.6 946.19
Richmond, VA 3.89 12 11.0 1025.50
Rochester, NY —3.89 7 1.1 874.28
St. Louis, MO 0.0 3l 9.7 953.56
San Diego, CA 12.78 144 12.1 839.71
San Francisco, CA 8.89 31 12.2 911.70
San Jose, CA 9.44 105 12.2 790.73
Seattle, WA 4.44 20 12.2 899.26
Springficld, MA —-2.22 5 1.1 904.16
Syracuse, NY —-4.44 8 11.4 950.67
Taoledo, OH -3.33 11 10.7 972.46
Utica, NY -5.00 5 10.3 912.20
Washington, DC 2.78 65 12.3 967.80
Wichita, KS 0.0 4 12.1 823.76
Wilmington, DE 0.56 14 11.3 1003.50
Worcester, MA —4.44 7 it.1 895.70
York, PA 0.56 3 9.0 911.82
Youngstown, OH -2.22 14 10.7 954.44

Source: (.C. McDonald and J.A. Ayers, “Some Applications of the *Chernoff Faces™: A Technique for
Graphically Representing Multivariate Data,” in Peter C.C. Wang, ed., Graphical Representation of
Mudtivariate Data {(New York: Academic Press, 1978), pp. 183-197. Copyright ® 1978 by Academic Press,
Inc. All right of reproduction in any form reserved. Reprinted by permission.

Mote: The data in this exhibit are used in Exhibit 1-5 a2nd in later exhibits.

the last digit position provided in the data, the digits following the unit position
do not appear in the display. Even then, individual data items can still be
matched easily with leaves because the stems and leaves are the leftmost digits
of the numbers. To ensure this, we do not round values when digits are left off,
but rather we truncate the data values. That is, we drop trailing digits to
preserve the original digits on either side of the stem-leaf split.
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Exhibit 1-5 Relative Air Pollution Potential of Hydrocarbons in 60 U.S. SMSAs

Unit = |
1 2 represents 12,
5 0+|11344
21 0. 15556666677778888
30 1#1111122344
30 1.]577888
24 2%(000113
i8 2. (69
16 3»|0113
12 3.8
] 4+]13
9 4.5
8 5¢|2
7 5.16
G*
6 6-15

H1 |88,105.l44,3] 1,648

Note: Data from Exhibit -4,

Exhibit 1-6 A Stem-and-Leaf Display of the Precipitation pH Data in Exhibit 1-1, Using 5 Lines
per Stem

Unit = .1
1 2 represents 1.2

4%]|11
4T}3333222
4F 545454
456766
4.8
5#10
5T|2
3F|5
551667

— i~
Tt

L o h O s = DN DD
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1.3 Positive and Negative Values

When a batch includes both positive and negative values, the stems near zero
take a special form. Numbers slightly greater than zero appear on a stem
labeled +0. Numbers slightly less than zero appear on a stem labeled —0.
This labeling may seem strange at first; we might expect the stem —1 to be
next to + 0, but a simple example shows why it is necessary. Exhibit 1-7 shows
a stem-and-leaf display of the mean January temperatures in degrees Celsius
for the 60 U.S. SMSAs in Exhibit 1-4. (Recall that 0°C is the freezing point
of water.) In Exhibit 1-7, numbers like —1.1¢ and --1.6° are placed on the —1

Exhibit 1-7 Stem-and-Leaf Display of Mean Janvary Temperatures in °C at 60 U.S. SMSAs

Unit = .1
1 2 represents 1.2

LO|~111
2 ~6\6
4 —500
9 - 444444
12 ~3|383
19 -2|7727722
28 ~ 1611116166
(4) ~0]5500
28 +0[055055
22 1616
19 2|7
18 3|38
16 4|444
13 5|55

6

11 712272
7 8|8
6 9|4

HI|127,116,194,122,127

Note: Data from Exhibit 1-4.
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stem. The —0 stem is needed for numbers like —0.5°. The special value 0.0
could be placed on either of the two 0 stems. To preserve the outline of the
display, we split the 0.0 values equally between the +0 stem and the —0
stem.

In Exhibit 1-7, the major feature is the 41 cities that have mean
January temperatures between —6.6°C and +2.7°C. One clump of cities—
generally those in the Southwest—stands out from 7.2°C to 9.4°C. Five
citiess—Houston, Los Angeles, Miami, New Orleans, and San Diego-——appear
on the HI stem; and Miami, at 19.4°C, is the highest. Minneapolis, at
—11.1°C, appears on the LO stem.

1.4 Listing Apparent Strays

Data values that stray noticeably from the rest of the batch are a common
enough occurrence for us to give them special treatment in stem-and-leaf

Exhibit 1-8

Stem-and-Leaf Display of the Hydrocarbon Pollution Potentials in Exhibit 1-5
without the Use of a HI Stem

Unit = 10
1 2 represents |20,

(52) 0= |0000000000000000000001111111011111112222222233333444
8 0-|5568
4 1%104
1.
2%
2.
2 3=t
3.
4=
4.
5%
5.
1 6%14
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displays. We want to avoid a display in which most data values are squeezed
onto a few lines of the display, the strays occupy a line or two at one or both
extremes, and many lines lie blank in between. For example, Exhibit 1-8
shows what the display in Exhibit 1-5 would have looked like if we had not
isolated the stray high values.

Once we have decided which data values to treat as strays, we can
easily list them separately at the low or high end of the display where they
belong. We introduce these lists with the labels LO and HI in the stem
column, and we leave at least one blank line between each list and the body of
the display in order to emphasize the separation.

When we produce the display by hand, we can usually use our
judgment in differentiating strays from the rest of the data. A computer
program, however, must rely on a rule of thumb to make this decision in hopes
of producing reasonable displays for most batches. This rule is discussed in
detail in Chapter 3.

1.5 Histograms

histogram

symmetric
skewed

unimodal
bimodal
multimodal
tails

Data batches are often displayed in a histogram to exhibit their shape. A
histogram is made up of side-by-side bars. Each data value is represented by
an equal amount of area in its bar. We can see at a glance whether the batch is
generally symmetric—that is, approximately the same shape on either side of a
line down the center of the histogram—or whether it is skewed—that is,
stretched out to one side or the other of the center. We can also see whether a
histogram rises to a single main hump—a wnimodal pattern—or exhibits two
or more humps—a bimodal or multimodal pattern, respectively. The parts on
either end of a histogram are usually called the taifs. We can characterize a
histogram as showing short, medium, or long tails according to how stretched
out they are. Finally, we can spot straggling data values that seem to be
detached from the main body of the data.

Unimodal symmetric batches are usually the easiest to deal with.
Multiple humps may indicate identifiable subgroups—for example, male and
female—that might be more usefully examined separately. (One way to deal
with skewness, or asymmetry, is described in Chapter 2; extraordinary data
values are discussed more precisely in Chapter 3.)

The stem-and-leaf display resembles a histogram in that both of them
display the distribution of the data values in the batch by representing each
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value with an equal amount of area. In a stem-and-leaf display, each digit
occupies the same amount of space. In a histogram, each data value is
represented by an equal amount of area in a bar delincated by lines.
Occasionally a histogram is made up of printed symbols by using a single
character—typically = or X-—to represent each value. (This is done by many
computer programs.) For large batches, a single = can represent several data
values in a histogram in order to preserve a manageable size. Thus a histogram
can serve as an ‘“‘overflow™ alternative to a stem-and-leaf display when the
batch is large (several hundred values or so). With several hundred leaves we
would be less able to concentrate on detail anyway.

When we can look at the detail, however, the stem-and-leaf display can
reveal patterns not found in a histogram. Exhibit 1-9 compares a computer-
produced histogram with a stem-and-leaf display. The data are the pulse rates
of 39 Peruvian Indians. The outlines of the two are not identical because the
histogram is based on a different set of intervals, but this is not the interesting
feature of these data. What is interesting is that alf the leaves in the
stem-and-leaf display are even digits (0, 2, 4, 6, 8) and that all the data values
except one (74) are divisibie by 4. Although the pulse rates were reported in
beats per minute, they were probably measured by counting beats for 15
seconds and then multiplying by 4. Perhaps, in the exceptional case (74) the
observer overshot the 15-second mark, counted pulses for a further 15 seconds,
and multiplied by 2. Such wide spacing of values (in this case, by multiples of
4) creates a granularity that could make a difference in some analyses and
would certainly have remained hidden in a histogram.

Exhibit 1-9  Histogram and Stem-and-Leaf Display of the Pulse Rates of 39 Peruvian Indians

MIDDLE OF NUMBER DF STEM-AND-LEAF DISPLAY
INTERVAL OBSERVATIONS UNIT = 1.0
1 2 REPRESENTS 12,
50. 1 1 B2
55, 1 0+
60 I R T L 2 - b
’ 15 6+ 0000004444444
G5. 7 FrrTY YT
70 12 weasssEnmrns 19 - 8888
' @ v 2220000
75. [ LY 1 86
80 2 - - 6666
' 7 8~ 004
85. 1 o~
a0 4  eawe 4 - 886
) 1 9«2

Source: Ryan, T. A., B. L. Joiner, and B. F. Ryan. 1976. The Minitab Student Handbook (N. Sciluate,
Mass.: Duxbury Press) p. 277.
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A subtler granularity can be seen in the mean January temperatures in
Exhibit 1-7. Inspection of this exhibit reveals that no more than two different
leaf values occur on any stem and that the actual values are symmetric around
the zero stem. For example, stems 3 and — 3 have only leaves of 3 or 8; stems 1
and —1 have only leaves of 1 or 6. This granularity occurs because the
temperatures originally were recorded to the nearest degree in Fahrenheit and
then were converted to Celsius. Patterns of this kind are the ones most likely to
be overlooked when data are analyzed on a computer. They highlight an
important function of the stem-and-leaf display—keeping the individual data
values in view.

1.6 Stem-and-Leaf Displays from the Computer

It is easy to construct a stem-and-leaf display by hand. With a little practice
one quickly learns to choose the number of lines per stem that neither stretches
out the display too far nor cramps it into too few lines.

It is not nearly as easy to write a general computer program to produce
stem-and-leaf displays. Computers cannot follow instructions such as *“choose
a display format so that the display will be neither too stretched out nor too
cramped.” Instead, we must devise specific rules that the computer will apply
in making the necessary decisions. However, once the program is written, it is
easy to use because all the essential decisions can be left to the computer. We
need only tell the computer what data we wish it to display. How to do
this—and, indeed, how you tell your computer to do anything—will depend
on the way your computer is set up, If you don’t already know how to run the
programs in this book on your computer, ask for assistance from someone
expert in using it.

Computer-produced stem-and-leaf displays look very nearly the same
as hand-produced displays. Since computer output terminals type neatly, a
blank column can be used effectively in place of the vertical line to separate
stems from leaves, and thus keep the display less cluttered. The heading
always states the unit and provides an example because the place at which
numbers are split into stems and leaves has been chosen automatically. Exhibit
1-10 shows a computer-printed stem-and-leaf display of the precipitation pH
data of Exhibit 1-1. The program has selected the same 3-lines-per-stem scale
used in the stem-and-leaf display in Exhibit 1-6 and has identified for the HI
stem 3 of the 4 values that appeared to be suspect in Exhibits 1-2 and 1-6. We
also see that the leaves are now in numerical order on each stem, whereas they
had been in chronological order in the earlier displays.
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Exhibit 1-10 Computer-Printed Stem-and-Leaf Display of the

Precipitation pH Data of Exhibit -1

STEM-AND-LEAF DISPLAY
UNIT = 0.1000
1 2 REPRESENTS 1.2

4+ 11
T 2223333
F 444555
§ 6657

4 8

6+ 0

T 2

F &

- —
FT - QRS - T X

HI 56,56,67

program
options

Many of the programs in this book include eptions that will allow you to
tailor a display or computation to the specific needs of your analysis. One such
option is to forbid the use of the HI and LO stems and display a!l of the data
values from lowest to highest in the main body of the stem-and-leaf display.
While this is desirable in some situations, the result may look like Exhibit 1-8.
How you specify this option or any option for any of the programs will, of
course, depend on the way your computer is set up.

1.7 Algorithms 1

Although the stem-and-leaf display is one of the simplest exploratory data
analysis methods, the stem-and-leaf programs in this chapter are very sophisti-
cated and are among the longest programs in the book. Many decisions must
be made when a stem-and-leaf display is created. When we work by hand, we
make these decisions so easily that they almost go unnoticed. A program,
however, must be prepared for every situation it might face in producing a
stem-and-leaf display, and it must specify explicitly how each decision should
be made in every situation.

Several of the decision rules used in the programs at the end of this
chapter are subtle and were developed only after considerable trial and error.
Some depend upon aspects of data analysis discussed in later chapters. If you
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are planning to study the programs and the algorithm and have not yet
followed the “thread™ through Appendices A, B, and C and Chapters 2, 7, and
3, please stop and read them first. If you are reading the book in chapter order,
please skip the rest of this chapter. When you return to this section after
reading the other chapters, you will be able to see how the stem-and-leaf
algorithm combines ideas introduced in other chapters and adds new ideas
special to this technique.

Note: As discussed in the introduction to this book, programmers will
find toward the end of some chapters a direction signpost that will help them
thread their way through the book. Here is one:

Programmin No - Please turn to
& ” & Chapter 2.
Have you
g followeq the A No _ Please turn to
programmer’s thread  Appendix C.

to get here?

Proceed.

t 1.8 Algorithms II

Stem-and-leaf displays present two problems to the programmer: (1) finding a
heuristic algorithm to sefect the display format and (2) producing a display
that is a highly structured combination of numbers, character strings, and
numerals based upon numbers. Specifically, each line contains a depth count
(treated as a number), a stem (some combination of numbers and characters),
and a string of leaves (numerals, with no associated spaces or decimal points,
selected from a specific digit position in a number). The programs must be
sure to obtain the correct leaf digit (adjusting for the unavoidable rounding
error of digital computers). They must keep track of the sign of the data values
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and of the allocation of data values to lines of the display. Each line is a
half-open interval including the inside limit, which is closer to zero and
corresponds to a data value whose leaf is zero on that line. The interval extends
to, but does not include, the inner limit of the next line away from zero. The
zero stems are special because both the +0 and —0 stems label intervals that
include the value 0.0. The programs must thus pay special attention to zeros in
the data.

If the data baich is not already in order, it is first sorted (see Section
2.9 for a discussion of sorting methods). Next, the program must decide
whether any extreme data values should appear on the special LO and HI
stems. [f so, only the remaining numbers will be used in choosing the display
format. The details of this decision are discussed in Section 3.3.

The program then determines the unit and the display format by
estimating how many lines ought to be used in all to display the numbers.
Experience has shown that, if we have » numbers, 10 x log,.# is a good first
guess at the number of lines needed for a good display. (Here the number of
data values, n, excludes the stray values assigned to the LO and HI stems.)
The program first computes the range of values that would be covered by each
line if the maximum number of lines were used. This line width is the result of
dividing the range of the (non-straying) data values by the approximate
number of lines desired (10 x log,.#). Because each line must accommodate
either two, five, or ten possible leaf digit values, the line width is rounded up to
the next larger number representable as 2, 5, or 10 times an integer power of
10. Rounding up guarantees that no more than 10 x log,en lines will be used.
The power of 10 yields the unit, and the multiplier (2, 5, or 10) is the number
of leaf digits on each line. (Note that 10/(number of leaf digits) yields the
number of lines per stem.) The program then prints the display heading, which
includes the unit decided upon and an example. The example uses a stem of 1
and a leaf of 2 to illustrate where the decimal point should be placed.

Now the program can step through the ordered data and print out one
line of the display at a time. The program must print each stem according to
the format selected and must use the correct numeral for each leaf. If the
leaves to be printed on a line would extend beyond the right margin, the
program uses the available spaces and then inserts an asterisk in the rightmost
space to show that the overflow occurred. (The depth still provides a complete
count and thus indicates the number of values omitted.) These steps require
careful programming so that they work for all possible cases.

For each line of the display, the program first looks down the ordered
data batch to identify the data values to be displayed on that line. It counts
these values and computes the depth, which it places on the output line. It then
constructs the stem and places it on the output line. Finally, it scans through
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the data values and computes and prints leaves. This requires only one pass
through the data because one line begins, after allowing for lines that have no
leaves, where the previous line ends.

FORTRAN
The FORTRAN programs that produce a stem-and-leaf display consist of five
subroutines, STMNLF, SLTITL, OUTLYP, DEPTHP, and STEMP. To produce a stem-
and-leaf display for data in the vector Y, use the FORTRAN statement

CALL STMNLF(Y, N, SORTY, IW, XTREMS, ERR}

where the parameters have the following meanings:

Yi) is the N-long vector of data values;

N is the number of data values;

SORTY()  is an N-long workspace for real numbers;
Wi ) is an N-long workspace for integers;

XTREMS is a logical flag, set .TRUE. if the plot shouid include
all data values or set .FALSE. to permit Hl and LO

stems;
ERR is the error flag, whose values are
0 normal
11 N=l
12 internal error—see program
13 page has fewer than 5 spaces for leaves.

The subroutine STMNLF first determines the display format. It calls
SLTITL to print the headings. If necessary, it then calls OUTLYP to print the LO
stern. Then it steps through the sorted data, calling DEPTHP to compute and
print depths and STEMP to compute and print stems. STMNLF places the leaves
on each line itself. If necessary, it calls QUTLYP to print the HI stem.
Throughout, STMNLF uses the utility output routines (see Appendix C).

BASIC

The BASIC subroutine for stem-and-leaf display is entered with the N data
values t0 be displayed in the array Y. If the version number, V1, is 1, the plot is
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scaled to the extreme values, and no Hl and 1.O stems are printed. If V1 is 2 or
greater, extreme values are placed on the HI and LO stems and excluded in
determining the plot format. The array Y is returned unmodified. The program
uses the defined functions, the SORT subroutines, and the plot-scaling subrou-
tines (see Appendix A).
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BASIC Programs

5000 REM STEM & LEAF DISPLAY

5010 REM ENTER WITH Y() OF LENGTH N. MO,M% ARE LEFT AND RIGHT
5020 REM MARGINS DESIRED.

5030 REM VERSIONS: V1s=2 SCALES TO ADJACENT VALUES (NORMAL)
5040 REM V1i=1 SCALES TO EXTREMES

5050 REM CALLS SUBROUTINES (@ LINE):

5060 REM SORT (1000}, NPW(1900), YINFO(2500), COPYSORT{3000)
5070 REM

5080 REM SET UP PRINTING DETAILS: I8 IS POSITION OF STEM/LEAF BREAK
5090 LET I8 = MO + 11

5100 LET I9 = M9 - I8 -1

5110 IF 19 > 5 THEN 5140

5120 PRINT "ALLOWED WIDTH OF DISPLAY TOO NARROW®
5130 sTOP

5140 REM SORT Y(} TO W{() -- (GOSUB 3000 DOES S&L OF X{).)
5150 GOSUB 3300

5160 REM FIND ADJACENT VALUE LOCATIONS FROM PLSCALE

5170 GOSUB 2500

$180 REM IF ADJACENT VALUES EQUAL, TRY THE EXTREMES

5190 IF A3 = A4 THEN 5210
5200 IF V1 <> 1 THEN 5260

5210 REM SCALE TO EXTREMES--MAY MAKE A BAD DISPLAY.

5220 LET A2 = N
5230 LET Al =1
5240 LET A3 = W(l)
5250 LET A4 = W({N)

5260 REM FIND NICE LINE WIDTH

5270 LET A8 = 1

5280 LET P9 = FNI(10 * FNL{A2 - Al + 1))
5290 LET N5 = 2

5300 LET LO = A3

5310 LET Hl = Ad

5320 GoOSUB 1900

21



22

5330
5340
5350
5360
5370
5372
5374
5376
5380
5390
5400
5410
5420
5430
5440
5450
5460
5470

5480

54¢0
5500
5510
5520
5530
5540
5550
5560
5870
5580
5590
5600

5610

5620
5630
5640
5650
5660
5670

5680

5690
5700
5710
5720
5730
5740
5750
5760

ABCs of EDA

REM NICE WIDTH = N4*10°N3,

REM NOW U= LEAF UNIT. THINK OF ALL VALUES AS INTEGER*10"UNIT.
REM CONVERT TO INTEGERS OF THE FORM S...SL.

REM THE REMAINING WORK CAN BE INTEGER MATH FOR SPEED.

REM KEEP 0 LEAVES ON THE ZERO STEMS CORRECT, SPECIAL TREATMENT
LET W(N + 1) =

0

0

([

LET W(N + 2)
LET W(N + 3)
REM FOR NUMBERS SCALED TO 0 COUNT >0,=0,<0 IN W(N+l) TO W({N+3)
LET Z0 = N + 2
FOR I =1 TO N

LET X1 = FNI(W(I) / U)

IF X1 <> 0 THEN 5440

LET W(Z0 + SGN(W(I))} = W(Z0 + SGN(W(I))) + 1

LET W(I) = X1
NEXT 1
LET LO = W(Al}
LET H1 = W({(AZ2)

fl

REM SET L9 = LINE WIDTH = NICEWIDTH/UNIT = P7/10"N3 = MANTISSA.

LET L9 = N4

PRINT

PRINT TAB(MO + 2);"STEM & LEAF DISPLAY"
PRINT TAB(MO + 2);" UNIT = *;U
PRINT TAB(MO + 2);"1 2 REPRESENTS *;
IF U < 1 THEN 5570

PRINT FNI(12 * U)

GO TO S670

IF U <> .1 THEN 5600

PRINT "1,2"

GO TO 5670

PRINT "0.";

REM CHECK FOR NON-ANSI BASICS

IF ABS(N3) <= 2 THEN 5660

FOR I =1 TO ABE(N3) - 2
PRINT “0";

NEXT I

PRINT "12"

PRINT

REM PRINT VALUES BELOW ADJACENT VALUE. P6=RANK

LET P6 = Al - 1
IF P6 = 0 THEN 5760
PRINT TAB{I8 - 4);"LO: ";
FOR I = 1 TO P6

PRINT STRS(W(I));:", ":
NEXT 1
PRINT
PRINT



BASIC 23

5770
5780
5790
5800
5810

5820
5830
5840
5850
5860
5870

5880
5890
5900
5910
5920
5930
5940
5950
5960

3970
5980

5990
6000

6010
6020

6030
6040

6050
6060
6070
6080
6090

6100

REM INITIALIZE FOR LINE BEFORE THE FIRST LINE.
REM CO = LINE CUT. =FIRST NUMBER ON NEXT LINE OF +STEMS,
REM =LAST NUMBER ON CURRENT LINE OF -STEMS.
REM L4 IS STEM PTR = INNER (NEAR ZERO) EDGE OF CURRENT LINE.
REM N7 IS5 NEGATIVE FLAG = 1 WHILE STEMS < 0 ,= 0 ELSE.
REM DO IS MEDIAN FLAG, = 0 UNTIL MEDIAN IS PAST, =1 AFTER.
REM Kl1,K2,K3 ARE POINTERS INTC Y{) FOR DEPTHS, PRINTING, ZEROS.
REM Il COUNTS SPACES USED ON THE LINE.
REM P5 COUNTS LEAVES ON THIS LINE FOR DEPTH CALCULATIONS
REM L9 IS VALUE COVERED BY ONE LINE
REM P& COUNTS RANK, L2 WILL HOLD LEAF DIGIT BELOW
LET C0 = FNF((1 + EO) * LO / L9) * L9
LET N7 =1
LET L4 = CO
IF LO < 0 THEN 5940
LET N7 = 0
LET L4 = C0 - L9
LET DO = 0
LET K1 = Al
LET K2 = K1
REM PROGRAM CAN BREAK HERE FOR SMALL MACHINES
REM LOOP: FOR EACH LINE UP TC NUMBER OF LINES
FOR J1l = 1 TO P8
REM STEP TO NEXT LINE
LET CO = CD + L9
IF L4 <> 0 THEN 6080
REM IF THIS WAS THE "-0" STEM,
REM CHANGE THE NEGATIVE FLAG BUT DON'T STEP THE STEM VALUE,
IF N7 = 0 THEN 6080
LET N7 = 0
GO TO 6090
LET L4 = L4 + LY
REM INITIALIZE COUNT OF CHARACTER POSITION ON THE LINE
LET Il =0
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6110
6120

6130
€140
6150
6160
6170
6180
6190
6200
6210
6220
6230
6240
6250
6260
6270
6280
6290

6300
6310

6320
6330
6340
6350
6360
6370
6380
6390

6400
6410

ABCs of EDA

REM FIND AND PRINT DEPTH
REM NOTE THAT CUT (CO0) BEHAVES DIFFERENTLY FOR + AND - STEMS.

LET PS5 0
FOR X1 K1 TO A2
IF W(K1l) > CO THEN 6220
IF C0 < 0 THEN 6180
IF W(Kl) = CO THEN 6220
NEXT K1

REM LAST DATA VALUE TO BE DISPLAYED-—-PQINT PAST IT FOR
CONSISTENCY

LET K1 = A2 + 1

GO TO 6290

IF CO <> 0 THEN 6290

REM ZERO CUT: IF DATA ALL <=0, ALL ZERGOS GO ON "-0" STEM
IF H1 <= 0 THEN 6200

REM BOTH +0 AND -0 STEMS -- SHARE THE ZERO'S BETWEEN THEM
REM USE COUNTS PLACED IN W{N+l)} TO W(N+3}

REM TO ASSIGN 'SIGNED' ZEROS PROPERLY

LET K1 = K1 + W{Z0 -~ 1) + FNI(W{Z0) / 2)

REM COMPUTE DEPTH IN C$

LET P5
LET P6

Kl - K2
P6 + P5

REM CASE: WHERE IS THE MEDIAN?
IF DO = 0 THEN 6370

REM CASE 1: PAST THE MEDIAN

LET C% = STRS${N - (P6 - P5))

GO TO 6490

IF P6 <> N / 2 THEN 6410

REM CASE 2: MEDIAN BETWEEN STEMS
LET DO = 1

GO TO 6470
IF P6 < (N + 1) / 2 THEN 6470
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6420

6430
6440
6450
6460

6470

6480
6490

6500
6510

6520
6530
6540

6550
6560

6570
6580

6590

6600
6610
6620
6630
6640
6650
6660

6670

6680
6690
6700
6710
6720
6730
6740
6750
6760
6770
6780

6790
6800

€810
6820

REM CASE 3: MEDIAN ON THIS LINE

LET C$§ = STRS(P5)

PRINT TAB(I8 - 6 — LEN{CS$) - 1);"(";C5;™)"™;
LET DO = 1

GO TO 6500

REM CASE 4: NOT UP TO MEDIAN YET

LET C% = STR$({P6)
PRINT TAB(I8 - & - LEN{C$));C$;

REM FIND AND PRINT LINE LABEL. L2 IS8 LEAF DIGIT.
REM S2 IS STEM, C$ HOLDS LABEL.

LET S§2 = FNI(L4 / 10)
LET L2 = ABS(L4 - S2 * 10)
LET C% = STR%$(52)

REM CASE: HOW MANY POSSIBLE DIGITS/LINE.
REM CONSULT THE LINE WIDTH, L9,

IF L9
IF L9

10 THEN 68%0
5 THEN 6790

REM L9=2: 2 POSSIBLE DIGITS/LINE; 5 LINES/STEM

IF S2 <> 0 THEN 6670

IF L2 > 1 THEN 6670

IF N7 = 0 THEN €650
PRINT TAB(I8 - 4);"-0%* »;
GO TO 6950

PRINT TAB(I& - 4);"+0* ";
GO TO 6950

REM NOT A ZERO--FRINT LABEL

ON FNI(L2 / 2) + 1 GO TO 6690,6710,6730,6750,6770
PRINT TAB(I8 - LEN({C$) - 2);C§;"* ";

GO TO 6950
PRINT TAB{I&
GO TO 6950
PRINT TAB{IS8
GO TO 6950
PRINT TAB(IS
GO TO 6950
PRINT TAB(IB
GO TO 6950

2);"T *;

2);"F ";

2);"8 "

1

LEN(CS$) - 2);CS%:". ";

REM L9=5: 5 POSSIBLE DIGITS/LINE; 2 LINES/STEM

IF L2 >= 5 THEN 6870
IF 52 <> 0 THEN 6850
IF N7 <> 1 THEN 6850
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6830 REM "-0*" LINE -- PRINT THE "-"

6840 PRINT TAB(I8 - 3);"-";

6850 PRINT TAB(I8 — LEN(CS5) - 1);C$;"* ™;
6860 GO TO 6950

6870 PRINT TAB(I8 - 1):". ";

6880 GO TO 6950

6890 REM L9=10: 10 POSSIBLE DIGITS/LINE; 1 LINE/STEM

6900 IF 52 <> 0 THEN 6940

6910 IF N7 <> 1 THEN 6940

6920 PRINT TAB(I8 - 3);"-0 ";

6930 GO TO 6950

6940 PRINT TAB{1I8 - LEN(CS$) - 1)C$;" ";

6950 REM FROM K2 TO K1, FIND LEAVES AND PRINT THEM, D = LEAF.

6960 IF K2 K1 THEN 7070
6970 LET D ABS (W(K2) - FNI(W(K2} / 10) * 10)
6980 PRINT STRS(D);

6990 LET I1 = I1 + 1

7000 IF I1 < I9 — 1 THEN 7040
7010 PRINT "“*";

7020 LET K2 = K1

7030 GO TO 7050

7040 LET K2 = K2 + 1

7050 IF K2 > N THEN 7170

7060 IF K2 < K1 THEN 6970

7070 REM END LINE

7080 PRINT
7090 NEXT Jl1

7100 REM PRINT HIGH VALUES BEYOND ADJACENT VALUE

7110 IF K1 > N THEN 7170

7120 PRINT

7130 PRINT TAB(I8 - 4);"HI: *;
7140 FOR I = K1 TO N

7150 PRINT STRS(W{(I}):", ":
7160 NEXT I

7170 PRINT

7180 RETURN
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FORTRAN Programs

SUBROUTINE STMNLF{(Y, N, SORTY, TW, XTREMS, ERR}

INTEGER N, IWI(N), ERR
REAL YI(N), SORTYI(N)
LRGICAL XTREMS

PRODUCE A STEM-AND-LEAF DISPLAY CF THE DATA IN Y(}

TWi) IS AN INTEGER WORK ARRAY. SDORTY() IS5 A REAL WCRK ARRAY
XTREMS IS A LOGICAL FLAG, .TRUE. IF SCALING TO EXTREMES.
{CTHERWISE, SCALES TD FENCES).

COMMON BLOCKS AND VARIABLES FOR OUTPUT

COMMOM/CHRBUF /P, PMAX, PMIN, CUTPTR, MAXPTR, OUNIT
INTEGER P{1301}, PMAX, PMIN, DUTPTR, MAXPTR, OQUNIT
COMMON/NUMBRS/ZEPSTy MAXINT

REAL EPST. MAXINT

FUNCTIONS
INTEGER INTFN, FLCOR

CALLS SUBROUTINES DEPTHP, NPOSW, OUTLYP, PRINT, PUTCHR, PUTNUM,
SLTITLy STEMP, YINFO

LOCAL VARTABLES

REAL MED, HLs HH: ADJL+ ADJH, STEPy UNIT, FRACT, NICNOSC(4), NPW
INTEGER 1, SLBRK, PLTW!D,s RANK, 1ADJL, TADJH, NLINS

INTEGER NLMAX., LINWID

INTEGER LOW,s HI, CUT, STEM, PTls PT2, Js SPACNT, LEAFs NN, CHSTAR
LOGICAL NEGNOW, MEDYET

DATA DEFINITIONS: A USEFUL CHARACTER AND THE SCALING CPTIQMS

DATA CHSTAR/41/

DATA NICNOS(1), NICNDS(Z2), NICNOS(3)s NICNOS{4)/1.042.0¢5.0,10.0/
DATA NN/&/

IF{N .GE. 2) GO TG 5
ERR = 11
G0 TD 699

SETUP =~ FIND WIODTH OF PLOTTING PEL{ON, STEM-LEAF BREAK POSITION, ETC

5 SLBRK = PMIN + 11
PLTWID = PMAX - SLBRK - 2
IFIPLTWID .GT. 5) GD TO 10
ERR = 13
G0 7O 999

27
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FIND THE BEST SCALE FOR THE fLOT
SORT ¥ IN SORTY AND GET SUMMARY INFORMATION
10 DO 20 1 = 1y N
SCRTY(L) = ¥{I)

20 CONTINUE
CALL YINFO{SORTY¢NyMED,HL yHH, ADJL ;ADJH+TADJL +TADJH, STEP,ERR}
TF(ERR .NE. 0) GO TO %99

FIND NICE LINE WIDTH FDR PLOT

IF ADJACENT VALUES EQUAL OR USEPF DEMANDS IT, FAKE THE ADJACENT
VALUES TO BE THE EXTREMES

IF{{ADJH .GT. ADJL) AND. .NOT. XTREMS) GO TO 25

IADJL =1
T1ADJUH = N
ADJL Y{TADJL)

ADJH = Y(IADJH)
25 NLMAX = INTFN(10.0*ALOGLO(FLOAT{IADJH -~ TADJL + 1)), ERR)
IF(ADJH .GT. ADJL) GO TO 27

EVEN IF ALL VALUES AFE EQUAL WE CAN PRODUCE A DISPLAY

ADJH = ADJL + 1.0
NLMAX = 1
27 CALL NPDSHW(ADJH, ADJLs NICNOS, NNy NLMAX, +TRUE.» NLINS, FRACT,
1 UNIT, NPW, ERR)
IFCERR .NE. 0} GO TD 999

RESCALE EVERYTHING ACCORDING TO UNIT. HEREAFTER EVERYTHING IS
INTEGER, AND DATA ARE OF THE FORM S5.4.5L1.)

NOTE THAY INTFN PERFORMS EPSILON AD JUSTMENTS FOR CORRECT ROUNDING,
AND CHECKS THAT THE REAL NUMBER 1S MOT TOO LARGE FOR AN INTEGER
VARIABLE.

DO 30 1 = 1, N
IW(I) = INTFN(SORTY{E)/UNIT, ERR)
30 CONTINUE
IF(ERR .NE. 0) GO TOD 999

IF (FRACT .EQ. 10.0} GO TO 40
1F ALL LEAVES ARE ZEROy WE SHOULD BE IN ONE-LINE-PER~STEM FODRMAT
DO 35 1 = IADJL,y TADJH

IF (MOD{IW(I)s 10} NE. O} GO TO 40
35 CONTINUE
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FRACT = 10.0

NPW = FRALT * UNIT

NLINS = INTFN{ADJH/NPW, ERR} = INTFN(ADJL/NPW, ERR) + 1

IF(ADJH * ADJL .LT. 0.0 LOR. ADJH LEQ. 0.0) NLINS = NLINS+1
40 LOW = IW(IADJL)

HI = IW{IADJH}

LINEWIDTH NOW IS NICEWIDTH/UNIT = FRACT
LINWID = INTFN{FRACT, ERR)

CALL SLTITL{UNIT, ERR)
IFLERR .NE. 0) GO TQ 999

PRINT VALUES BELCW LOW ADJACENT VALUE ON “LO" STEM

RANK = TADJL - 1

IFCIADJL .EQ. 1) GO TO 50

CALL OQUTLYP{TIM, N,y 1, RANK,; .FALSE.s SLBRK, ERR)
IF{ERR .NE. 0) G2 TD 99¢

INITIALIZE FOR MAIN PART OF DISPLAY.
INITIAL SEYTINGS ARE TO LINE BEFDRE FIRST ONE PRINTED

50 CUT = FLOOR{{(1.0 + EPSI}*FLOAT(LOW)/FLOAT{LINWID)} * LINWID
MEGNOW = .TRUE.

STEM = CUT
IFILOW .LT. O) GO TO 60

FIRST STEM POSITIVE
STEM = CUT - LINWID
60 MEDYET = LFALSE.

TWO POINTERS ARE USED. PT1 COUNTS FIRST FCOR DEPTHS, PT2 FOLLOWS
FOR LEAF PRINTING. BOTH ARE INITIALIZED ONE POINT EARLY.

PT1 = LADJL
PT2 = PTL1

MAIN LOOP, FOR EACH LINE

DD 120 J = 1, NLINS
VARIABLE USES:

cut = FIRST NUMBER ON NEXT LINE OF POSITIVE STEMS, BUT
= LAST NUMBER ON CURRENT LINE OF NEGATIVE STEMS
STEM = INNER (NEAR ZERO) EDGE DF CURRENT LINE

SPACNT COUNTS SPACES USED GN THIS LINE
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STEP TC NEXT LINE
CUT = CUT + LINWID

YF(S5TEM

0 AND NEGNOW} NEGNOW = JF. ELSE STEM = STEM + LINWID

[« EnEw [a N e

IF(STE® .NE. O .OR. .NOT. NEGNCW!} GO TO 70
NEGNOW = .FALSE.

GO TO 80O
70 STEM = STEM + LIMWID

NEWLINE —-— INITIALIZE COUNT OF SPACES USED

OO0

B0 SPACNT = O

FIND AND PRINT DEPTH

[z R aXal

CALL DEPTHP(SORTY, IWs N, FT1l, PT2, CUT, IADJH, HI, RANK,
1 MEDYETs SLBRK, ERR}
IF(ERR .NE. 0) GO TO 999

PRINT STEM LABEL

[aNalin

CALL STEMP(STEM, LINWID, NEGNDW, SLBRK, ERR)
TFLERR .NE. 0) GO TO 999

FIND AND PRINT LEAVES

alaNe]

IF (PT1 .EQ. PT2) GO TO 110
90 LEAF = TABS(IW(PTZ2) - (STEM/10)*10)
CALL PUTNUM(O, LEAF, 1, ERF)
SPACNT = SPACNT + 1
IF{SPACNT .LT. PLTWID) GD TO 100

LINE OVERFLOWS PAST RIGHT EDGE. MARK WITH *

=Nl ol

CALL PUTCHR{O, CHSTAR, ERF}
IF{ERR .NE. 0) GO TO 999
PT2 = PTL
60 TO 110

100 PT2 = PT2 + 1
IF(PT2 .LT. PT1) GO TC 90

END LINE
110 CALL PRINT

CONTINUE LOOP UNTIL WE RUN OQUT OF NUMBERS TO PLOT

CEeO OAao

120 CONTINUE
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G
C PRINT VALUES ABOVE HI ADJACENT VALUE ON "HI"™ STEM
C
IF{PT] .GT. N} GO TO 990
CALL OUTLYPIIW, Ny PT1ls Ny .TRUE., SLBRK, ERR)
990 WRITEIOUNIT, 5990)
5990 FORMAT(1X)
999 RETURN
END

SUBROUTINE CUTLYP(IW, N, FROM, TD, HIEND, SLBRK, ERR)

C
LOGICAL HIEND
INTEGER N» IWIN), FROM, TO, SLBRK,s ERR
C
C PRINT THE LO OR HI STEM FOR A STEM-AND-LEAF DISPLAY.
C THE LOGICAL VARIABLE HIEND IS5 L.TRUE. 1IF WE ARE TO PRINT
C THE HI STEM, .FA{SE. 1IF THE LO STEM IS TO BE PRINTED.
C IW{} CONTAINS N SORTED AND SCALED DATA VALUES. EACH HAS THE
C FORM S5...5L, WHERE THE ONE'S DIGIT IS THE LEAF.
C FROM, TO ARE POINTER INTO 1Iw{) DELIMITING THE VALUES TO BE
C PLACED ON THE HI DR LO STEM.
C SLBRK IS THE CHARACTER POSITION ON THE PAGE OF THE BLANK COLUMN
E BETWEEN STEMS AND LEAVES.
C
E COMMON FOR OUTPUT

COMMON /CHRBUF/P, PMAX, PMIN, OUTPTR, MAXPTR, OUNIT
INTEGER P{130}, PMAX, PMIN, CUTPTR, MAXPTR, OUNIT

FUNCT IONS

INTEGER WDTHOF
LOCAL VARIABLES

INTEGER CHL, CHD, CHH,; CHI, CHCOMA,; CHBL, OPOS, NWID, LHMAX, I
NEEDED CHARACTERS

DATA CHHy CH1,s CHLy CHGy CHCOMA, CHBL/B8y 9y 12y 15, 45+ 37/

M0 oo a0t

OP0OS = SLBRK - 23
IF{HIEND) GO TO 10
CALL PUTCHR{QOPQS, CHL, ERR}
CALL PUTCHR(O, CHO, ERR)
G0 TO 20

10 CALL PRINT
CALL PUTCHR(OPDS, CHH, ERR)
CALL PUTCHR(QO, CHI, ERR)

20 CALL PUTCHR(SLBRK, CHBL, ERR)
IF(ERR .NE. 0) GO TO 999
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NWID = MAXO({ WDTHOF(IW{FROM)), WOTHOF(IW(TO}} )
LHMAX = PMAX - NWID - 2
D0 40 1 = FROM, TO
CALL PUTNUM{O, TW(I), NWID, ERR)
CALL PUTCHR{OQ, CHCOMA, ERR])
CALL PUTCHR{O, CHBL, ERK}
IF(OUTPTR .LT. LHMAX} GO TG 30
CALL PRINT
CALL PUTCHR{SLBRK, CHBL.+ EFR)
30 IF(ERR .NE. 0) GO TC 999
40 CONTINUE

BUT DONT PRINT THE FINAL COMMA

OPOS = MAXPTR - 1

CALL PUTCHR{GPOS, CHBL, ERR)

CALL PRINT

IF(.NCT. HIEND) CALL PRINT
999 RETURN

END

SUBROUTINE DEPTHP(W, IW, Ny PTl, PT2, CUT, IADJH, HI, RANK,
1 MEDYET, SLEBRK, ERR)

COMPUTE AND PRINT THE DEPTH FCR THE CURRENT LINE

LOGICAL MEDYET

INTEGER Ny PT1s PT2, CUT, TADJH, HI, RANK, SLBRK, ERR
INTEGER IW(N}

REAL W(N)

Wi() HOLDS THE N SORTED DATA VALTUES
W) HOLDS THE SCALED VERSION OF W()
PT1l,y PT2 ARE POINTERS INTO IW() AND W(). ON ENTRY,
PT1 = PTZ2 POINT TO THE FIRST DATA VALUE NOT YET PRINTED.
ON EXIT:s PT1 POINTS TO THE FIPST DATA VALUE ON THE NEXT LINE,
PT2 15 UNCHANGED.
cuT THE LARGEST VALUE ON THE CURRENT (PGSITIVE) LINE,s OR THE
SMALLEST VALUE ABOVE THE CURRENT (MEGATIVE) LINE.
IADJH POINTS TO THE HIGH ADJACENT VALUE IN W() AND IW{(}
HI IS THE GREATEST VALUE BEING DISPLAYED
RANK A RUNNING TOTAL OF THE RANK FROM THE LOW END. ON EXIT,
RANK IS UPDATED TO INCLUDE THE COUNT FOR THE CURRENT LINE.
MECYET 1S A LOGICAL FLAG, SET JTRUE. WHEN THE MEDIAN VALUE HAS
BEEN PROCESSED.
SLBRK 1S THE CHARACTER POSITION ON THE PAGE OF THE BLANK COLUMN
BETWEEN THE STEMS AND LEAVES.
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FUNCTIONS

INTEGER INTFN, WDTHOF
LOCAL VARIABLES

INTEGER CHLPAR, CHRPAR, LEFCNT, PTZ, DEPTH, NWID, OPDS,
OUTPUT CONTROL

90

COMMON/CHRBUF /P4 PMAX, PMIN, CQUTPTR, MAXPTR, QUNIT
INTEGER P(130), PMAX, PMIN, COUTPTR, MAXPTR, QUNIT
DATA CHLPAR, CHRPAR/43, %4/

PTX = PT1
DO 90 PT1 = PTX, TADJH

IFCIWIPT]) .GT. CUT) GO TO 110

IFLICUT JGE. O) LAND. (IW(PTL) .EQ. CUT)) GO TO 110
CONTINUE

PTX

33

LAST DATA VALUE IF WE FALL THRU HERE--POINT PAST IT FOR CONSISTENCY.

100

110

ZEROD CUT: 1F DATA ALL .LE. O, ALL ZERDES GO ON %-0% STEM

PTL = TADJH+1
GO TO 140
IF{CUT .NE. 0) GO TO 140

IF(HI .tE. 0) GO 7O 100

BOTH +0 AND -0 STEMS ~- SHARE THE ZEROES BETWEEN THEM

FIRST CHECK FOR NUMBERS ROUNDED TOQ ZIERD--TRUE ~-0S

115
117

120
130

DO 115 PTZ = PT1ly N .
IF{W{(PTZ).GE. 0.0) GO TO 117
CONTINUE
PTL = PTZ
DO 120 PTZ = PTl, N
IF(WIPTZ) .GT. 0.0) GO TO 130
CONTINUE
PT1l = PTl + INTFN(FLOAT({PTZ -~ PT1)/2.0, ERR)

COMPUTE AND PRINT DEPTH

140

LEFCNT = PT1 - PT2
RANK = RANK + LEFCNT
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CASE: WHERE 15 THE MEDJAN?

IFt.NOT. MEDYET) GO TO 150

CASE 1: PAST THE MEDIAN

et G,

DEPTH = N - (RANK - LEFCNT)
GO0 TO 180
150 IF{FLOAT(RANK)} .NE. FLOAT{(N}/2.0) GO TO 160

CASE 2: MEDIAN FALLS BETWEEN STEMS AT THIS POINT

[aEale

MEDYET = .TRUE.
G0 TO 170
160 TF{ FLDAT{RANK) .LT. FLOAT{N+1}/2.0) GO TC 170

c CASE 3: MEDIAN IS5 ON THE CURRENT LINE

NWID WDTHOF (LEFCNT)

opPas SLBRK - 7 - NWID

CALL PUTCHR{OPOS, CHLPAR, ERR)
CALL PUTNUM(O, LEFCNT, NWID, ERR)
CALL PUTCHR{Oy CHRPAR, ERR)
MEDYET = .TRUE.

GO TN 999

CASE 4: NOT UP TO MEDIAN YET
170 DEPTH = RANK

PRINT THE DEPTH, IF IT HASN*T BEEN DONE YET

OO laNelal

180 NWID = WOTHOF{DEPTH}

OPOS = SLBRK — 6 — NWID

CALL PUTNUM{OPOS, DEPTH, NWID, ERR)
999 RETURN

END
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SUBROUTINE STEMP{STEM, LINWID, NEGNOW. SLBPK, ERR}
COMPUTE AND "PRINT" THE STEM

LOGICAL NEGNOW
INTEGER STEM, LINWID, SLBRK, ERR

ON ENTRY:
STEM 1S THE INNER (NEAR ZERO) EDGE OF THE CURRENT LINE
LINWID IS5 THE NUMBER OF POSSIBLE DIFFERENT LEAF DIGITS
NEGNOW IS .TRUE. IF THE CURRENT LINE I3 NEGATIVE
SLBRK 15 VHE CHARACTER POSITION ON THE PAGE OF THE BLANK
COLUMN BETWEEN STEMS AND LEAVES

COMMONS FDR OUTPUT

COMMON /CHRBUF/P, PMAX, PMIN, QUTPTR, MAXPTR, OUNIT
INTEGER P({130}, PMAX, PMIN, QUTPTR, MAXPTR, QUNIT

FUNCTION
INTEGER WDTHOF
LOCAL VARIABLES
INTEGER CHOy CHBL. CHPLUS, CHMIN, CHSTAR, CHPT
INTEGER NSTEM, LEFDIGs+ NWID, OPOS, OCHR, I, CH5STM{5)
DATA CHO/27/
DATA CHBL, CHPLUS, CHMIN, CH5TAR, CHPT/37, 39, 40, 4l.+ 46/
DATA CHSSTMIL },CHS5STMEZ2)+CH5S5TMI3) ,CHSSTM(4)/4)420+46419/
DATA CH5STM(5)/46/
NSTEM = STEM/10

LEFDIG = JABS(STEM - NSTEM * 10)
NWID = WOTHOF (NSTEM)

CASE: HOW MANY POSSIBLE DIGITS/LINE ( = LINWID}

IFILINWID NE. 2) GO TO 260
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CASE 1: 2 POSSIBLE DIGITS/LINE; S LINES/STEM

[aNa R e

IF{NSTEM .NE. 0) GO TO 200
c PLUS OR MINUS ZERD

OPQOS = SLBRK = 4
TF{NEGNOW) CALL PUTCHR(DPCS, CHMIN, ERR)
IF({ .NOT. NEGNGW) CALL PUTCHR(OPOS, CHPLUS, ERF]
OPOS = OPOS + 1
60 TO 210

200 OPOS = SLBRK = NWID = 2

210 CALL PUTNUM{OPOS, NSTEM, NWID, ERR)
I = LEFDIG/Z2 + 1
OCHR = CHSSTM(I)
CALL PUTCHRIQ,y OCHR, ERR)
GO TO 990

260 IF(LINWID .NE. 5) GO TO 290

c
C CASE 2: 5 POSSIBLE DIGITS/LINE; 2 LINES/STEM
c
OPOS = SLBRK = NWID - 1
IF(NSTEM .NE. 0) GO TO 270
c
c =0* PRINT THE SIGN (IT APPEARS AUTOMATICALLY OTHERWISE}
C
OPOS = SLBRK =~ 3
IF{ NEGNOW) CALL PUTCHR{QPOCS, CHMIN, ERR])
TF({ .NOT. NEGNOW) CALL PUTCHR(OPOS, CHPLUS, ERR}
270 OPOS = SLBRK = NWID - 1]
CALL PUTNUM{OPDS,NSTEMs NWID ERR)
IF{LEFDIG .LT. 5} CALL PUTCHR(O,CHSTAR,ERR)
IF{LEFDIG .GE. 5) CALL PUTCHR(O+CHPT,ERR)
GO TO 990
c
c CASE 3t 10 POSSIBLE DIGITS/LEAF: 1 LINE/STEM
C
230 IF{LINWID .EQ. 10) GO TO 300
C
c TLLEGAL VALUE -~ NICE NUMBERS BAD?
c
ERR = 12
GO TO 999

200 IF{(NSTEM .NE. 0) .0, .NOT. NEGNOW) GO 7D 310
DPOS = SLBRK = 2
CALL PUTCHR(QPDS,CHMIN,ERR)
CALL PUTCHR{O,CHO,ERR}
GO TO 990
210 OPOS = SLBRK ~ NWID -1
CALL PUTHUM{OPDS,NSTEM,NWID,ERP }
960 CALL PUTCHR{SLBRK,CHBL,ERR)
999 RETURN
END
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SUBROUTINE SLTITL (UNIT, ERR}
C
€ PRINT THE TITLE FOR A STEM-AMND-LEAF DISPLAY
C
INTEGER ERR
REAL UNIT
C
C ON ENTRY:
C UNIT IS THE LEAF DIGIT UNIY
C
€ NOTE THAT THIS RCUTINE CAN BE MODIFIED TO PRINT THE MAME OF
C THE BATCH BEING DISPLAYED IF SUCH A NAME IS KNOWN.
C
C
C COMMON BLODEKS
C
COMMON FCHARIC/ CHARS, CMAX,
1 CHAy CHB, CHCy CHDy CHEs; CHF, CHG, GHH, CHI, CHJ, CHK,
2 CHLy CHM; CHN, CHO, CHP,y CHQ, CHR, CHS, CHT, CHU, CHYV,
3 CHW, CHX,s CHY, CHZ, CHOy CH1l, CHZ2, CH3y CH%y, CHS5, CH&,
4 CH7s CH8y CHY9y, CHBLs CHEQ, CHPLUS, CHMIN, CHSTAR, CHSLSH,
5 CHLPAR, CHRPAR, CHCOMA, CHPT
COMMON/CHRBUF /P, PMAX, PMIN, OUTPTR, MAXPTR, CUNIT
INTEGER P{130)y PMAX, PMIN, QUTPTR, MAXPTR, OUNIT
INTEGER CHARS(46) sy CMAX
INTEGER CHA, CHB, CHCy CHD, CHE, CHFy, CHGy CHHy CHI, CHJy CHK
INTEGER CHLy CHM, CHN,; CHO, CHP, CHQ, CHR,y CHS, CHTy CHUy CHV
INTEGER CHWy CHX, CHYy; CHZ, CHO, CHL, CH2, CH3, CH4y CH5s CHé&
INTEGER CH74s CH8, CH%+ CHBL, CHEQ, CHPLUS, CHMIN, CHSTAR,; CHSLSH
INTEGER CHLPAR, CHRPAR, CHCOMA, CHPT
C
C FUNCTIONS
C
INTEGER INTFN, WOTHOF
C
C LOCAL VARIABLES
C
INTEGER TEXPT+ OWID, NUM, 1
C
WRITEC(OUNIT, 5000} UNIT
5000 FORMAT{24H STEM—AND-LEAF DISPLAY/20H LEAF DIGIT UNIT =, F9.4)
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c

C PRINT "

c
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

c

C AND FINISH IT OFF

c

IEXPT
IFCIEXPT
TF{ IEXPT

C

1 2

PUTCHR{ O,
PUTCHR{O
PUTCHR{C
PUTCHR(O,
PUTCHR (0 4
PUTCHR (O
PUTCHRALC,
PUTCHR{O
PUTCHR IO,
PUTLHRI{OD,
PUTCHR (O,
PUTCHR(O,
PUTCHR (O,
PUTCHRLO,
PUTCHR(OD,
PUTCHR (O,
PUTCHRIO
PUTCHR (O«
PUTCHR {0,

= INTFN{ALOGIO(UNIT), ERR)
0) GO TO 200
(-11) GC

.GE.
+EQ.

C UNIT .LE. 0.01
C

TEXPT

IFCIEXPT

DO 20 1 =
CALL PUTCHR (O,

CONTINUE

CALL PUTCHR(O,

20
30

REPRESENTS *

CHBL
CHBL,
CH1,
CHBL, ERR)
CHBLy ERR)
CH2, ERR}
CHBLy ERR)
CH8L, ERR)
CHR, ERR)
CHE, ERR)
CHP, ERR)
CHR, ERK}
CHE, ERR}
CHS, ERR)
CHE: ERR)
CHN+ ERR)
CHT, ERR}
CHS5y ERR)
CHBL, ERR)

ERR)
ERR)
ERR)

= TABS(IEXPT) -~ 2
CALL PUTCHRIO,
CALL PUTCHRIOQ,

«EQ.
1y

CALL PUTCHR (O,
GO TO 900

C

C PRINT 1.2

L

100 CALL PUTCHR{OQ,

CALL PUTCHR{O,
GD TO 900

CHPT,
0) GO TOD 30
TEXPT

CHZ,

CH1 .,
CALL PUTCHR({O, CHPT,
CH2,

CHO, ERR)

ERR)}

CHO, ERR)

CHl, ERR]
ERR )

ERR)
ERR)
ERR)

T0 100
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C
C UNIT .GE. 1.0
C

200 NUM = 12 * INTFN(UNIT+ERR)
OWID = WOTHOF (NUM)
CALL PUTNUM{O, NUMy OWID, ERR)
CALL PUTCHRI{O+ CHPT, ERR)

C
C  WRAP UP
C
900 IF (ERR .ME. 0} GO TO 999

CALL PRINT
WRITE{QUNIT, 5010}
5010 FORMAT(/)
999 RETURN
END

39






Chagter 2

Letter-Value Displays

It is often convenient to summarize a data batch after we have taken an initial
look at it and have seen each individual data item. For example, we can use a
central value to summarize the size or general level of the numbers in the
batch. We also want to describe how spread out or variable the numbers in the
batch are, and we might look for ways to describe more precisely the shapes
and patterns we can see in the outline of a stem-and-leaf display. As always,
when we explore data, we must be alert for extraordinary values that might
require special attention. Letter values provide information for several of these

summaries, and the letter-value display presents the letter values in a conve-
nient form.

2.1 Median, Hinges, and Other Summary Values

Before we determine the letter vaiues, we must first order the data batch from
lowest value to highest. When we analyze data by hand, a stem-and-leaf
display provides a quick, crude ordering of the batch. Computers can order the

41
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depth

median

ABCs of EDA

data with special sorting programs (see Section 2.9). When a data batch is
ordered, a set of suitably selected data values and simple averages of these
values can convey many important features of the batch concisely. The letter
values are just such a set of values.

One of the most important characteristics of a data value in an ordered
batch is how far it is from the low or high end of the batch. We therefore
define the deprh of each data value. This is just the value’s position in an
enumeration of values that starts at the nearer end of the batch. (Recall from
Chapter 1 that depths appear in a column at the left of a finished stem-
and-leaf display.} Each extreme value is the first value in the enumeration and
therefore has a depth of 1; the second largest and second smallest values each
have a depth of 2; and so on. In general, in a batch of size n, two data values
have depth i: the ith and the (n + 1 — i)th. Conversely, the depth of the ith

data value in an ordered batch is the smaller of i and n + 1 — { because depth
is measured from the nearer end. We find letter values at certain selected
depths.

If n is odd, there is a “deepest” data value—one as far from either end
of the ordered batch as possible, and thus not part of a pair of equal-depth
numbers. This data value is the median, and it marks the middle of the
batch—in the sense that exactly half the remaining » — 1 numbers in the
batch are less than or equal to it, and exactly half are greater than or equal to
it.

It is easy to calculate the depth of the median. It is simply (n + 1}/2.
Because the depth of the ith data value in an ordered batch of n values is the
smaller of f and # + 1 — /, the maximum depth occurs wherei =n + 1 — i, or,
equivalentty, 2/ = n + 1. Thus

depth of median = (n + 1)/2,

which we abbreviate d(M) = (n + 1)/2. For example, if we have 3 data values
in order, the median is the second value because one value is less than the
median and one is greater. If we have a batch of 5 values, the median has 2
values below it and 2 values above it, so that it is the third largest value or the
third smallest value, depending on whether we count from the top or from the
bottom.

But, what if a batch has an even count? We then have two “middle”
values. If these two values are different—as they usually are—no one data
value divides the batch in half. Then, d{M) = (n + 1)/2 will have a fractional
part equal to 'A, and this depth points between the two middle data values.
Because half the data values lie below the median and half lie above it, we
adopt the usual convention of averaging the middle two data values, each of
which has depth (n + 1)/2 — 4. We label the median with the letter M.
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hinges

quartiles

eighths

The median splits an ordered batch in half, We might naturally ask
next about the middle of each of these halves. The hinges are the summary
values in the middle of each half of the data. They are denoted by the letter H
and are about a quarter of the way in from each end of the ordered batch. We
find hinges in much the same way as we found the median. We begin with
d(M), the depth of the median, drop off the fraction of 1 if there is one, add 1,
and find

d(H) = ([d(M)] + 1)/2,

where the [ ] symbols are read “integer part of ” and indicate the operation of
omitting the fraction. Each hinge is at depth d(H), and again a fraction of ‘4
tells us to average the two data values surrounding that depth.

The hinges are similar to the guartiles, which are defined so that one
quarter of the data lies below the lower quartile and one quarter of the data
lies above the upper quartile.* The main difference between hinges and
quartiles is that the depth of the hinges is calculated from the depth of the
median, with the result that the hinges often lie slightly closer to the median
than do the quartiles. This difference is quite small, and the arithmetic
required to calculate the depth of the hinges is simpler.

The next step is almost automatic. We find middle values for the outer
quarters of the data. These values are about an eighth of the way in from each
end of the ordered batch. They are called eighres and are denoted by the letter
E. Their depth is

d(E) = ([d(H)} + 1)/2,

where, again, the [ ] symbols tell us te drop any fraction in d(H), and a new
fraction of '4 tells us to average adjacent data values.

Example: New Jersey Counties

Exhibit 2-1 lists the area in square miles of the 21 counties of New Jersey.
Sorted into increasing order, the areas are 47, 103, 130, 192, 221, 228, 234,
267, 307, 312, 329, 362, 365, 423, 468, 476, 500, 527, 569, 642, 819. Here
n=21,and

(M) = ([2t] + 1)/2 = 11.

*Hinges are sometimes called guarters ot fourths. The latter term may well replace hinges in time, but this
book uses the term Ainges for compatibility with Exploratory Data Analysis.
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Exhibit 2-1

Area of New Jersey Counties (in square miles)

Atlantic 569 Middlesex 312
Bergen 234 Monmouth 476
Burlington 819 Motris 468
Camden 221 Ocean 642
Cape May 267 Passaic 192
Cumberland 500 Salem 365
Essex 130 Somerset 307
Gloucester 329 Sussex 527
Hudson 47 Union 103
Hunterdon 423 Warren 362
Mercer 228

Source: U.S. Bureau of the Census, County and City Data Book, 1977 (Washington, D.C.; Government
Printing Office, 1978).

The eleventh value, if we count from either end, is 329; this value is the
median.
Since d(M) = 11, the depth of the hinge is

d(H) = ([d(M)] + 1)/2=12/2 = 6.

Thus, the two hinges are 228, the sixth value from the bottom, and 476, the
sixth value from the top. Then, the depth of the eighths is

d(EY = ([d(H)] + )/2=(6+ 1)/2 =3

Thus the two eighths are found by averaging the third and fourth values from
each end: (130 + 192)/2 = 161 and (569 + 527)/2 = 548.

2.2 Letter Values

letter values

The summary values we have been examining—the median, the hinges, and
the eighths—are the start of the sequence of lerter values, so called because we
often label them with single letters—M, H, and E. The letter values beyond
the eighths are used less frequently. Generally, these values are not named and
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are referred to by their labels—D, C, B, A, Z, Y, X, W, and so on. The depths
corresponding to these labels are defined in just the same way that has taken
us from median to hinge to eighth. Each subsequent depth lies halfway
between the previous depth and 1, the depth of the extreme; thus, the next
letter values after the eighths are labeled D and are found at depth

4Dy ~ ([d(E)] + 1)/2.

We continue the process of identifying letter values until we obtain a
depth equal to 1. The extreme values of the batch have no letter label; they are
labeled with only their depth, 1.

As we approach the extremes, we may find letter values at depth 2.
When this happens, we omit the letter values at depth 1.5 ((2 + 1)/2 = 1.5)

Exhibit 2-2 Locating and Calculating the Letter Values for the New Jersey County Areas

Depths of
Letter Values Depth Data Value Letter Values
i 47 extreme = 47
dD)=(3+1)/2=2 2 103 D =103
3 130
diEy={6+1)/2=35 4 192 E = 161
5 221
diH)=(11 +1)/2=6 6 228 H =228
7 234
8 267
9 307
10 312
dMy=(21 +1)/2=11 11 2% M = 329
10 362
9 365
8 423
7 468
d(H) 6 476 H = 476
5 500
4 527
d(E) 3 569 E = 548
d(D) 2 642 D = 642
1 819 extreme = 819
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and report the extremes next. This is reasonable because the unreported letter
values would just be the averages of the letter values at depths 1 and 2, which
we are already reporting.

Exhibit 22 illustrates the connections among the data values, the
depths, and the letter values.

2.3 Displaying the Letter Values

After we have determined the letter values for a batch, we need to present
them in a format that helps us to see what is happening in the data. At each
depth (except at the median) we have found two letter values, one by counting
up toward the middle from the low end and one by counting down toward the
middle from the high end. A letter-value display takes advantage of this
pairing, as shown in Exhibit 2-3. In addition to the letter values and their
depths, the letter-value display includes two columns of descriptive numbers,
labeled “mid” and “spread.” These columns provide information about the
shape of the batch, as we shall soon discover.

The first two columns of Exhibit 2-3 contain the labels—M for
median, H for hinge, and so on—and the depths. The columns labeled “lower”
and “upper” give the lower letter values and the upper letter values respec-
tively, with the two letter values of a pair on each line. Because the median lies
at the middle of the batch and is unpaired, it straddles these two columns. The
columns labeled “mid” and “spread” contain the midsummaries and the

Exhibit 2-3

Letter-Value Display for the Area of New Jersey Counties (in square miles) Shown
in Exhibit 2-1

n=21
Lower Upper Mid Spread
M 11 329 329
H 6 228 476 352 248
E 5 161 548 3545 387
D 2 103 642 3725 539

! 47 819 433 772
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midsummary
midhinge
mideighth
midextreme
midrange

spread

H-spread

range

spreads, each of which is calculated from the corresponding letter values as
described in the following discussion.

In Exhibit 2-3, we readily see that the median county size is 329
square miles, that the counties range from 47 square miles to 819 square miles,
and that the middle half of the 21 counties runs from 228 to 476 square miles.

Since letter values come in pairs symmetrically placed at the same
depth, we might ask whether their values are also symmetric. We can find out
by calculating the average value for each pair of letter values. This value
midway between the two letter values is a midsummary. Specifically, the
average of the two hinges is called the midkinge (midH). We can also find the
mideighth (midE), the midD, and other midsummaries, including the midex-
treme, also called midrange. The median is, by being in the middle of the batch,
already a midsummary. Note that, in finding midsummaries, we do not
average depths, but rather we average the two letter values found at a
particular depth.

We can learn a lot about how nearly symmetric a batch of values is by
comparing the other midsummaries to the median or by looking for a trend in
the midsummaries. If all the midsummaries are approximately equal, then the
values of the hinges, eighths, and so on are nearly symmetric about the
median. If the midsummaries become progressively larger, the batch is skewed
toward the high side. If they decrease steadily, the batch is skewed toward the
low side. ’
Returning to the example of the county areas, we see in Exhibit 2-3
that the midsummaries increase gradually, indicating a slight skewness
toward the high side; the midextreme, 433, stands out because of the size of
Burlington County.

As we noted in Chapter 1, symmetric batches of data values are often
easier to summarize and analyze than batches that are asymmetric. When a
batch of values is not symmetric but has a main hump and a generally smooth
stem-and-leaf display, symmetry can often be attained by re-expressing the
numbers. Re-expression is discussed in Section 2.4, and its use to promote
symmetry is illustrated in Section 2.5.

We can learn in detail how variable the data are by examining the
column of spreads in a letter-value display. Each spread is the difference
between the two letter values in a pair, calculated by subtracting the lower
letter value from the upper letter value. It is named after the letter-value pair.
For example, the H-spread (H-spr for short) is the difference between the
hinges and thus tells the range covered by the middle half of the data. Other
spreads have similar interpretations; for example, the E-spread gives the range
of the middle three-quarters of the data. The difference between the extremes
is simply called the range. All these spreads respond to variability in data. The
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more variable the data, the larger the spreads will be. Taken together, the
spreads in a letter-value display provide information about how the tails of the
data behave. Section 2.6 discusses this further.

2.4 Re-expression and the Ladder of Powers

data
re-expression

One way to change the shape of a batch is to re-express each data value in the
batch. For example, we might raise each value to some power, p. When we
work by hand, we can use a calculator or a bock of tables to re-express values,
but for a large batch even using a calculator can be tedious. Re-expressions are
more practical when we work on a computer because the machine can do all
the work quickly. When we use powers, each value of p wiil have a slightly
different effect on the batch, but if we place these powers in order, their effects
on the batch will also be ordered. This order leads to the ladder of powers
listed in Exhibit 24,

The arrow in Exhibit 2—4 marks the power p = 1. This is “home base”
because the original data values can be thought of as being re-expressed to the
power 1, Raising each value in the batch to a power less than 1 will puli in a
stretched-out upper tail while stretching out a bunched-in lower tail. Raising
each data value to a power higher than 1 will have the reverse effect:
Asymmetry to the low side will be alleviated. Thus a trend in the midsumma-
ries indicates the direction we should move on the ladder of powers. The ladder
is useful because the further we move from p = 1 in either direction, the
greater the effect on the shape of the batch, We can thus hunt for an optimal
re-expression by trying a power and examining the midsummaries in the
letter-value display of the re-expressed batch. A trend in the new midsumma-
ries will point the direction in which we should now move from where we are
on the ladder for a better result. See Section 2.5 for an example.

Usually ° is defined to be 1. However, it would be useless to re-express
all the values in a batch to 1. It turns out that, when we order the powers
according to the strength of their effect on the data, the logarithm, or log, falls
naturally at the zero power. The mathematical reasons for this are beyond the
scope of this book, but the truth of the statement will become evident as we use
the ladder of powers to find re-expressions for data.

We can save much time when working by hand by noting that we need
not re-express the entire batch to construct a new letter-value display. Instead
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Exhibit 2-4 Re-expressions in the Ladder of Powers (v — 7}

P Re-expression Name Notes

Higher powers can be used.

3 3 Cube
2 y? Square The highest commonly used
power.
—_ ] »! “Raw” No re-expression at all.
14 vy Square root A commonly used power, espe-
cially for counts.
(0) log( y} Logarithm*  log(y)} holds the place of the zero
power in the ladder of powers.
A very common re-expression.
~ ~1/Vy Reciprocal The minus sign preserves order.
root
-1 -1/y Reciprocal
-2 —1/y? Reciprocal
square

Lower powers can be used.

*We ordinarily use logarithms to the base 10.

we can take a shortcut and just re-express the letter values themselves or, when
a depth involves 'A, the two data values on which the letier value is based. Then
we can compute new mids and spreads.

This shortcut is possible because every power in the ladder of powers
preserves order—that is, if a is greater than b (written a > b) and both are
positive, then a” = b” for any non-negative power p, and —a” > — &7 for any
negative p. (This is the reason for the minus signs associated with negative
powers in Exhibit 2-4.) If a or b is negative, powers will not preserve order
because even powers will make a” positive, and fractional powers and the log
may not even be possible. For example, /-2 and log(—3) cannot be found.
Letter values are determined entirely by their depth in the ordered batch.
Since the ordering of these values is not disturbed by re-expressions in the
ladder of powers, the depth of every data value and the identities of the points
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selected as letter values remain the same. Thus we nieed only re-express the
data values that are involved in letter values.

To streamline the process further, we could simply re-express the letter
values and thus save a little effort on letter values that are the average of two
data values. In general, the re-expression of an average of two data values is
not identical to the average of the re-expressed data values. The difference is
often slight, but not guaranteed so, especially for the more extreme letter
values. The examples in this chapter do not use this shortcut.

When the numbers in a data batch are not all positive, some of the
re-expressions in the ladder of powers may be impossible. For example, we
cannot re-express zero by logarithms or any negative power. One way to deal
with this particular problem is to add a small number, or srarr, to each value in
the batch before re-expressing. Thus, we might find log(y + '%). The value of
the start usually matters little, provided it is small compared to the typical size
of the data values. Starts of 1, )4, and 1 are commonly used.

However, we should not generally re-express negative numbers by
using bigger starts. Data that are entirely less than zero can be multiplied by
—1 and then re-expressed. When a batch has both positive and negative
values, sometimes the positive and negative portions can be re-expressed
separately. Other data batches may need special attention beyond the scope of
the discussion in this book.

The ladder of powers will prove valuable in a variety of situations
throughout this book. The best way to become comfortable with powers is to
experiment with the common re-expressions just to see what they do to
different data batches. If you can use a computer, it should make such
experimentation easy. If not, re-expression is a simple task with a calculator
and the letter-value display.

2.5 Re-expression for Symmetry: An Example

To see how re-expression by various powers can help to reshape a batch of
data, we now turn to a new set of data. Hinkley (1977) presents data on the
amount of precipitation measured during the month of March in 30 consecu-
tive years at Minneapolis/St. Paul. Exhibit 2-5 lists these data and shows a
stem-and-leaf display; Exhibit 2—6 gives the letter-value display.

Aside from the isolated value at 4.75, the stem-and-leaf display in
Exhibit 2-5 reveals a substantial amount of asymmetry in the batch; the clear
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Exhibit 2-5 Thirty Consecutive Values of March Precipitation at Minneapolis/St. Paul

0.717
0.47
1.51
0.59
4.75

The Data (read across)

1.74 0.81 1.20
1.43 13 2.20
2,10 0.52 1.62
0.81 2.81 1.87
2.48 0.96 1.89
Stem-and-Leaf Display

{Unit = .1 Inch of Precipitation in March)

L el
£ h WO LA LhO\D B

1

1.95
3.00
.31
1.18
0.90

1 2 represents 1.2

0=143

0. 17855899
1%7224313
1. 795688

2+12140
2:-(8
3x(300
3.
4%
4.17

1.20
3.09
0.32
1.35
2.05

Source: Data from D. Hinkley, “On Quick Choice of Power Transformnation,” Applied Statistics 26
(1977):67-69. Reprinted by permission.

e — S —— N —
Exhibit 2-6 Letter-Value Display for the March Precipitation in Minneapolis/St. Paul Shown in
Exhibit 2-3
n =30
Lower Upper Mid Spread

M 155 1.47 1.47
H 8 0.90 2.10 1.50 1.20
E 4.5 0.68 2.905 1.79 2.225
D 2.5 0.495 3.23 1.86 2.735
C 1.5 0.395 406 2.23 3.665

] 0.32 4.75 2.535 443
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upward trend of the midsummaries in Exhibit 2-6 indicates skewness to the
right. To move toward symmetry, we should try re-expressions lower on the
ladder of powers. Exhibit 2—7 shows the letter-value displays for the square-
root, log, and negative-reciprocal re-expressions. Note that the midsummaries
for square root, log, and reciprocal are not re-expressions of the raw midsum-
maries. Each midsummary column reports the averages of the letter values of
the re-expressed data. Exhibit 2-8 brings together the columns of midsum-
maries from Exhibits 2—-6 and 2-7. As we lock for trends down each column of
midsummaries in turn, from raw to root to log to reciprocal, we can see the
progressively stronger effect of the re-expressions. In the square-root column,
the mids still show some upward trend, but the trend is much weaker than in
the raw data. The mids in the log column have a stronger downward trend, and
the mids in the reciprocal column run quite clearly downward. We might try a

Exhibit 2-7

Letter-Value Displays for Minneapolis/St. Paul March Precipitation in Three
Expressions (Raw is in Exhibit 2-6.)

Root
Lower Upper Mid Spread
M 15.5 1.212 1.212
H 8 0.949 1.449 1.199 0.500
E 4.5 0.822 1.704 1.263 0.881
D 2.5 0.704 1.797 1.250 1.093
C 1.5 0.626 2.008 1.317 1.382
1 0.566 2,179 1.372 1.614
Log
Lower Upper Mid Spread
M 15.5 0.167 0.167
H 8 -0.046 0.322 0.138 0.368
E 4.5 -0.171 0.463 0.146 0.634
D 2.5 -0.306 0.509 0.101 0.815
C L5 ~0.411 0.602 0.095 1.014
1 ~0.495 0.677 0.091 1.172
Reciprocal
Lower Upper Mid Spread
M 15.5 —0.681 —0.681
H 8 -1L111 -0.476 —-0.794 0.635
E 4.5 —1.497 —0.345 -0.921 1.152
D 2.5 —2.025 -0.310 —1.168 1.715
C 1.5 -2.626 —-0.254 —1.440 2.373
1 —-3.125 -0.211 —1.668 2.914
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Exhibit 2-8 Midsummaries for Several Expressions of the Minneapolis/St. Paul March

Precipitation

Tag Raw Root Log Reciprocal
M 1.47 1.212 1672 —0.681
H 1.50 1.199 .1382 —-0.794
E 1.79 1.263 .i458 -0.921
D 1.86 1.250 1014 —-1.168
C 2.23 1.316 0954 - 1.440
1 2.535 1.372 .0909 —1.668

power between root and log, such as the Y power, but this batch has only 30
data values—too few for such fine discriminations. If we had to choose among
re-expressions listed in Exhibit 24, we might select the square root for its
simplicity. (Some meteorologists have found the 4 power quite desirable.)

* 2.6 Comparing Spreads to the Gaussian Distribution

Gaussian
distribution

normal
distribution

standard
Gaussian
distribution

We have seen how to use the midsummaries to investigate departures from
symmetry in a batch. When a batch is roughly symmetric, we can use the
spreads to learn still more about its shape. However, the technique we use
requires a little more technical detail than we have needed up to now. The
basic idea is to compare a symmetric batch to the Gaussian distribution, often
called the normal distribution, on which many iraditional statistical techniques
are based. Several ways of making this comparison are possible, but this
section discusses only one quick and simple method.

Because the Gaussian distribution is symmetric, we begin with a batch
of data that is reasonably close to being symmetric, either in its original form
or after a re-expression. We then compare the spreads of these data to the
corresponding spreads for samples of # values from a Gaussian distribution.
To keep the calculations simple, we work with the spreads for the standard
Gaussian distribution, which has mean 0 and standard deviation 1. These
spreads are shown in Exhibit 2-9. To obtain spreads for a Gaussian distribu-
tion with standard deviation ¢, we simply multiply the values in Exhibit 2-9 by
¢. Thus, the general value of the Gaussian H-spread is 1.349¢.

A simple way to compare the spreads of the data with the Gaussian
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Exhibit 2-9 Spreads (at the letter values} for the Standard Gaussian Distribution

Tag Spread
H 1.349
E 2.301
D 3.068
C 3.726
B 4.308
A 4.836
VA 5.320

spreads is to divide the spread values of the data by the Gaussian spread
values:

(data H-spread)/1.349,
(data E-spread)/2.301,
(data D-spread)/3.068,

and so on.

If the data resemble a sample from a Gaussian distribution, then all of these
quotients will be nearly the same. In viewing the results, of course, we must
remember that the more extreme leiter values can be more sensitive to the
presence of unusual values in the data.

We can think of each of these calculations as solving for ¢. For
example, if

H-spread = 1,349,

then ¢ = H-spread/1.349. This is quite different from using the sample
standard deviation,

s=\/ 1 Iz(xf—z)l,

bui the results will be much less affected by stray values. Of course, when the
data are not close to Gaussian, 1.349 will not be the correct divisor for the
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H-spread. Fortunately, the estimate of ¢ will not be terribly sensitive to the
population shape, at least for the H-spread. As we go to the E-spread or
D-spread, sensitivity increases.

A clear trend in the quotients derived from the spreads provides an
indication of how the data depart from the Gaussian shape. If the quotients
grow, the tails of the batch are heavier than the tails of the Gaussian shape. If
the quotients shrink, the tails of the data are lighter.

In Chapter 9 we will see another use of the Gaussian distribution as a
standard of comparison.

2.7 Letter Values from the Computer

A letter-value display is simply a table of numbers arranged in columns. The
first column contains labels. Columns 2 through 6 contain depths, lower letter
values, upper letter values, mids, and spreads, in that order. Computers have
little trouble printing such tables. A computer-generated letter-value display
usually looks exactly like a neatly typed letter-value display without the ruled
lines sometimes used to set off the letter values themselves.

The program must be told which data batch to display. How to tell this
to the program depends upon the particular implementation of the program.
All decisions are made automatically, so no further information is needed.

t 2.8 Algorithms

The FORTRAN and BASIC programs for letter values work in slightly
different ways, illustrating two alternative organizations of the tasks involved.
The FORTRAN program finds all the letter values first and places them and
their depths in arrays for subsequent printing. This has the advantage of
making the letter values available for other computations. The BASIC version
prints the letter values as it finds them and uses no additional storage. The
BASIC program also attempts to position the columns of the display in order
to make the best use of the available page area.

It is difficult for portable programs to control the number of decimal
places printed and to align the decimal points of the numbers in each column.
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Implementers of the FORTRAN version may want to use run-time formats to
avoid the possibility of a number’s overflowing the formatted size allowed
here. Implementers of the BASIC version who have a PRINT USING statement
available in their BASIC may wish to use it to format the columns.

FORTRAN
The FORTRAN programs for finding letter values and displaying them
consist of two subroutines: LVALS and LVPRNT. LVALS accepts the data in a vector
and returns a vector of depths and an array of pairs of letier values. It is used
through the statement

CALL LVALS{Y, N, D, YLV, NLV, SORTY, ERR)

where the arguments are as follows:

¥i) is the N-long vector of data values;
N 1s the number of data values;
D{15} is the vector of depths;

YLV{15,2} is the array of letter values [YLV(1,1) and YLV(1,2) both
contain the median, and the remaining pairs of
letter values are in order from the hinges out to the
extremes, with the lower letter value first];

NLV returns the number of pairs of letter values;
SORTY() is the N-long workspace for sorting Y{);
ERR is the error flag, whose values are

normal

21 N < 2 or N > 24576—too few or too many
data values

22 NLV < 3or NLV> 15

23 page width < 64 print positions—too narrow
for letter-value display.

The subroutine LVPRNT uses the information on depths and letter values to print
the letter-value display in essentially the format shown in Exhibits 2-3 and
2-6. The calling statement is

CALL LVPRNT{NLV, D, YLV, ERR}

where the arguments are as described above.
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BASIC

The BASIC program requires only the defined functions and the SORT from Y{}
to W( } subroutines. It leaves X{) and Y{} unchanged.

sorting

The process of putting a set of numbers or other elements, such as names, into
order is known as sorting. Because an ordered batch makes it easy to pick out
the letter values, as well as to detect potentially stray values at either end,
sorting is an important operation in exploratory data analysis. This section
discusses the reasons for including certain sorting programs in this book; it also
provides selected references so that interested readers can pursue the subject
of sorting further.

Computer scientists have devoted considerable imagination and energy
to designing and analyzing algorithms for sorting. Their analyses tell us,
among other things, how much time a given sorting algorithm requires to
process a batch of # numbers when # is large. For some algorithms this time is
proportional to »°. This is easy to understand if we imagine making n — 1
comparisons to pick out the smallest number, n — 2 comparisons to find the
next smallest, and so on. The total number of comparisons is (# — 1) +
(n—=2)+...+ 1=n(n— 1)/2, which resembles #*/2 when n is large.

However, it is possible to sort much more efficiently than in time
proportional to »°. Fast sorting algorithms require time proportional to
nlog(n), and the difference between n log(n) and n* becomes greater as n
increases. If we want only a few values at selected positions in the ordered
batch, we can even obtain these values without sorting the batch completely.
Such a “partial sorting” algorithm could, for example, deliver the median in
time proportional to n.

The sorting algorithms used in the programs in this book are not the
most elegant algorithms available, but they are among the simplest to
program. Their simplicity makes them easier to read and understand, and they
take up much less space than do the faster methods—both are an advantage on
small computers. Also, users of these programs will often be concerned only
with situations in which n is smali-—for example, n less than 50—and the
greater effort that the fast algorithms put into bookkeeping may not be
worthwhile. Sorting programs for a variety of applications are available in
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most computing environments; it may be easier to use one of these, provided
that it can be called in the same way, than to adopt the simple programs in this
book.

Two references provide useful additional information about sorting
algorithms. In a careful tutorial paper Martin {1971) discusses a considerable
variety of sorting techniques and the circumstances under which they are
appropriate. Aho, Hopcroft, and Ullman (1974) use several important and
interesting sorting techniques to illustrate the analysis of sorting algorithms
and include a careful discussion of partial sorting.
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5050
5060

5070
5080
5090
5loc
5110
5120

5130

5140
5150
5160

5170

3180
5190
5200
5210

5220

5230
5240
5250
5255

5260
5270
5280

5290
5300

BASIC Programs

REM LETTER-VALUE DISPLAY

REM PRINT A LETTER-VALUE DISPLAY FOR THE DATA IN Y() OF LENGTH N.
REM VERSION V1=1 PRINTS 7-NUMBER SUMMARY ONLY,
REM

REM SORT ¥() INTO W({)

GOSUB 3300

REM SET UP TABSTOPS FOR COLUMNS

LET T9 = FNI((M2 - MO - 1) / 5)

LET Tl = MO + 2

LET T2 = T1 + T%

LET T3 = T2 + T9

LET T4 = T3 + T9

LET T5 = T4 + T9

REM SET UP TRUNCATION DECIMAL PLACE

LET T8 = ABS( FNI{ FNL(W(1l)))) + 4

IF T8 < T9 THEN 5170

LET T8 = T9 - 1

REM PRINT HEADING

PRINT

PRINT TAB(T1);"DEPTH"; TAB(T2};"LOW"; TAB(T3 + 1);"HIGH";
PRINT TAB(T4 + 2);"MID"; TAB(TS);"SPREAD"
PRINT

REM

LET

MEDIAN LINE IS SPECIAL

K = FNI(N + 1) / 2

LET W1l = FNT{ FNM(K))
PRINT TAB(MO);"M"; TAB(T1);K;
PRINT TAB{ FNI((T2 + T3) / 2 + 2 — LEN{ STRS(W1}) / 2));Wl;

REM
REM
REM

LET
LET

TAB(T4) ;W1
INITIALIZE LABELS; L$ TO PRINT, L TO COUNT IN ASCII
NOTE THAT THIS CODE IS ASCII-DEPENDENT, ALTHOUGH MODIFICATION
TO OTHER CHARACTER CODES SHOULD BE SIMPLE.

LS - IIHO'
L = ASC("E")

59
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REM NOW LOOP TO PRINT LETTER VALUES. K COUNTS DEPTHS

LET K = FNI(K + 1) / 2

LET W1 = FNM({K)}

LET W2 = FNM(N - K + 1)

PRINT TAB(MO);L$; TAB(T1);K; TAB(T2); FNT(W1l); TAB(T3); FNT(W2);

PRINT TAB(T4); FNT{(Wl + W2) / 2); TAB(TS); FNT(W2 - Wl1)
LET LS = CHRS(L)

LET L =L -1

IF L >= ASC("A") THEN 5410

LET L = ASC("Z")

IF V1 > 1 TREN 5440

REM BRIEF VERSIOR STOPS AT 7-NUMBER SUMMARY--DID WE JUST DO E'S?
IF LS = "D" THEN 5460

REM LOOP IF THERES MORE TO DO

IF K > 2 THEN 5310

REM PRINT EXTREMES AND EXIT

PRINT TAB(T1);"1"; TAB(T2); FNT(W(1)); TAB(T3); FNT(W(N));

PRINT TAB(T4); FNT({W(1} + W(N)} / 2); TAB(TS); FNT(W(N} - W{l))

PRINT
RETURN
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FORTRAN Programs

SUBROUTINE LVALS(Ys Ny DO, YLV, NLV, 30RTY, ERR)

INTEGER N, HLV, ERR
REAL Y{(N), D(15}s YLV(15,2)s SORTY{N)

FOR THE BATCH OF VALUES IN Y, FIND THE SELECTED QUANTILES KNOWN
AS THE LETTER VALUES. UPON EXIT, YLV CONTAINS

THE LETTER VALUESy D CONTAINS THE CORRESPONDING
DEPTHS, AND NLVY IS THE NUMBER OF PAIRS OF

LETTER VALUES. SPECIFICALLY.s YLV{l1l,1} AND

YLV{},2) ARE BOTH SET EQUAL TC THE MECIAN, WHDSE DEPTH,
D(1)s IS (N+1)/2 . THE REST OF THE LETTER VALUES

COME IN PAIRS AND ARE STORED IN YLV IN CRDER FRGM THE
HINGES OUT TO THE EXTREMES. THUS YLvi241) AND

YLV(2+2) ARE THE LOWER HINGE AND THE UPPER HINGE,
RESPECTIVELY, AND VYLV(NLV,1) AND YLVINLV,2) ARE THE
LOWER EXTREME (MINIMUM) AND UPPER EXTREME (MAXI-

MUM) s RESPECTIVELY.

LOCAL VARIABLES
INTEGER 1,4 Js Ky PTl, PT2Z

IFC(N .GT. 3} LAND. (N .LE. 24576&)) GO YD 10
NLV = O
ERR = 2]
GO TO 999

SORT Y INTO SDRTY

10 DO 15 I = 14N
SORTY(1) = ¥Y(]1)
15 CONTINUE
CALL SORT{SORTY, N+ ERR}
IF{ERR .NE. O} GO TO 999

HANDLE MEDIAN SEPARATELY BECAUSE IT IS NOT A PAIR
COF LETTER VALUES.

D(1) = FLOAT(N + 1) / 2.0

J = (N/ 2)+ 1

PT2 = N+ 1 - J

YLV(1,1) = (SORTY{J) + SORTY(PT2)) / 2.0
YLVI{1,2) = YLV(1:1)

K =N
1 =2

20 K = (K + 1) / 2
J =K [/ 2)+1
D{I) = FLOAT(K + 1) / 2.0
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OO0 00O0

g Ralsl

PTZ2 = K + 1 - J

YLVY{I,1) = (SCRTY(J} + SCRTY(PTZMH) / 2.0

PTL = N~ K + J
PTZ = N+ 1 - 4

YLv(ls2) = (SORTY(PTL) + SORTY(PTZ2}) / 2.0

I =1 +1
IF(D(I-1) .GT. 2.0} GO TO 20

NLY = 1
D(I1) = 1.0
YLviIs1l) = SORTY{1l)
YLV{I.+2) = SORTY(N)
999 RETURN
END
SUBROUTINE LVPRNT(NLVs Dy YLV,

INTEGER NLV, ERR
REAL D(15), YLV(15,:2)

PRINT A LETTER-VALUE DISPLAY.

ERP)

THE

NLV

PAIRS OF LETTER VALUES ARE IN YLV

== YLV{I.l} 1S THE LOWER LEVTTER VALUE IN

THE PAIR AND YLV(I,2) IS THE UPP

ER LETTER

VALUEs WITH THE EXCEPTION THAT YLVI(l,1)
AND YLV(1,2) ARE BOTH EQUAL 70 THE MEDIAN.

THE VECTOR D CONTAINS THE CCRRES
DEPTHS.

CCMMON /CHRBUF/ Py PMAX, PMIN,
INTEGER P(130}y PMAX, PMIN, OUT

LOCAL VARIABLES

INTEGER Iy Ny TAGS{14)
REAL MID, SPF

PONDING

DUTPTR, MAXPTR,

PTR, MAXPTR,

OUNIT

DATA TAGS( 1)}, TAGS{ 2}, TAGS{ 3}y TAGS{ 4) /1lHM,

DATA TAGS( 5], TAGSL &)y TAGSI

T)y TAGSL 8)

F1HC,

DATA TAGS( 9)y TAGS(10), TAGS(11l}s TAGS(12]) /1HY,

DATA TAGS(13), TAGS(14)

IFCINLY .GE. 3) .AND. (NLV .LE.
ERP = 22
G0 TO 999
10 TF(PMAX .GE. 64) GO TO 20
ERR = 23
G0 YO 999
20 WRITELOUNIT, 1001}

1001 FORMAT{(5X,SHDEPTH, 7Xs SHLOWER s 8Xs SHUPPER 11X,

1 3HMID,8X,6HS! READ)

7 1HU,

15)) GO TO 10

OUNIT

1HHy 1HE,
1HB,y 1HA,
1HX s LHW,
1HT/

1RO/
1HZ/
1HY/
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C

C RECODVER N FROM Dt1l) » THE DEPTH OF THE MEDIAN.
C
N = INTIZ.0 * D{(1)) -}
WRITE(DUNIT, 1002] N
1002 FORMAT(LIX+2HN=,15)
C
C WRITE LINE CONTAINING MEDIAN (AND FIRST MID).
c
WRITE(OUNIT, 1003} D(1)s YLV(1ls1l}, YLV{(1,1)
10603 FORMATIELX ¢2HMy2XyFT.1¢8XsF10.3413%X,F10.3)
C
N = NLV - 1
DO 30 I = 24 N
MID = (YLvil,1) + YLVIY,2)) / 2.0
SPR = YLV(I42) = YLV(I,1)
WRITE(OUNIT, 1004) TAGS{I)y D{I}y YLV(I,1),
1 YLV(I.2)y MDD, SPR
1004 FORMATULX vALsIX e F7aly3X3F104393%,F10.3,5X,F10.343X4F10.3)
30 CONTINUE
MID = (YLVI(NLVsl} + YLVINLV,2)) / 2.0
SPR = YLV{NLV+2) — YLVINLVs1)
WRITE(QUNIT, 1005) YLVINLV,1}, YLVINLV.2), MID, SPR

1005 FORMAT{TIX +1H1 »5X+FLl0.343XyF10.3+5X+F10.343X,F10.3/)
C

999 RETURN
END






Chagter 3

Boxplots

In Chapter 1 we saw that stem-and-leaf displays provide a flexible and
effective way to view a batch of data as a whole. In Chapter 2 we considered a
numerical summary of a batch using a few values at selected depths.
Frequently, we can make good use of something between these two extremes in
the form of a picture or graphical summary. We want to represent the data
values graphically, but we do not want to see all the detail. This is just the task
for which boxplots were invented.

3.1 Basic Purposes

Most batches of data pile up in the middle and spread out toward the ends. To
summarize the behavior of a batch, we need a clear picture of where the
middie lies, roughly how spread out the middle is, and just how the tails relate
to it. Since the middle is generally better defined than the tails of the data, we
need (o see less detail at the middle—we want to focus more of our attention
on possible strays at the ends because these often give clues to unexpected

63
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behavior. To some extent, a letter-value display focuses numerically on the
ends because the depths of the letter values are selected to give increasing
detail toward the extremes. We could represent the letter-value display
graphically, but we would find ourselves paying too much attention to end
values that fit in well with the rest of the batch. What we need is a rule for
showing only values that are unusually extreme and hence are likely to be
strays. When we have several related batches, we can learn more about
symmetry and strays by comparing those batches. When we have only one
batch, we must depend on the middle to help us identify strays at the ends.

3.2 The Skeletal Boxplot

S-number
sumntary

If we wanted to turn a letter-value display into a graph, we could begin with
the simplest letter-value display, the S-number summary, which gives median,
hinges, and extremes. For the areas of New Jersey counties from Exhibits 2—1
and 2-3, the 5-number summary is Exhibit 3—1. Exhibit 3-2 presents these
letter values graphically. It is an example of a skeletal box-and-whiskers plot,
or skeletal boxplot for short. It shows the middle of the batch, from hinge to
hinge, as a box with a line through it at the median, and it runs a solid
“whisker” out from each hinge to the corresponding extreme. With one glance
the eye can easily form impressions of overall level, amount of spread, and
symmetry. Thus, in Exhibit 3-2 we see that the median is around 300, the
H-spread is around 250, and the range of the data is roughly 800. These data
depart somewhat from symmetry—the median lies below the middle of the
box, and the upper whisker is nearly twice as long as the lower one.

Exhibit 3-1

Five-Number Summary for Areas of New Jersey Counties Shown in
Exhibit 2-1

n =2

Lower Upper Mid Spread
M 1 329 329
H 6 228 476 152 248

1 47 819 433 772
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Exhibit 3-2 Box-and-Whiskers Plot for Areas of New Jersey Counties

1000

500+

Area in square miles

3.3  OQutliers

outliers

Some data batches include outliers, values so low or so high that they seem to
stand apart from the rest of the batch. Some outliers may be caused by
measuring, recording, or copying errors or by errors in entering the data into
the computer. When such errors occur, we will want to detect and correct
them, if possible. If we cannot correct them (but believe they are in error), we
will probably want to exclude the erroneous values from further analysis,

Not all outliers are erroneous. Some may merely reflect unusual
circumstances or outcomes; so having these outliers called to our attention can
help us to uncover valuable information. Whatever their source, outliers
demand and deserve special attention. Sometimes we will try to identify and
display them; other times we will try to insulate our analyses and plots from
their effects. In succeeding chapters we will continue to examine outliers in
one way or another.

To deal with outliers routinely, we need a rule of thumb that the
computer can use to identify them. For this we use the hinges and their
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inner fences

outer fences

outside
far outside

adjacent
value

difference, the H-spread. We define the inner feaces as

lower hinge — (1.5 x H-spread)
upper hinge + (1.5 x H-spread)

and the outer fences as

lower hinge — (3 x H-spread)
upper hinge + (3 x H-spread).

Any data value beyond either inner fence we term outside, and any data value
beyond either outer fence we call far ourside. The outermost data value on each
end that is still not beyond the corresponding inner fence is known as an
adjacent value.

For the New Jersey counties example, we have seen (in Exhibit 3—1)
that the hinges are at 228 and 476 square miles, so the H-spread is
476 — 228 = 248. Thus, the inner fences are at

228 — 1.5 x 248 =228 — 372 = — 144
476 + 1.5 x 248 = 476 + 372 = 848

and the outer fences are at

228 — 3 x 248 = 228 — 744 = 516
476 + 3 x 248 = 476 + 744 = 1220.

Because neither of the extreme values is “outside,” the adjacent values are the
extremes, 47 and 819.

By contrast, the precipitation pH data, which appear in Exhibit 1-1,
have three outside values. From the letter-value display in Exhibit 3-3, we see
that the hinges are 4.31 and 4.82. Thus, the inner fences are 3.545 and 5.585,
and the outer fences are 2.78 and 6.35. The three data values 5.62, 5.67, and
5.78 are outside, and thus, by this rule of thumb, outlying. The adjacent values
are 4.12 and 5.51.

We can also use this rule for identifying outliers in the stem-and-leaf
display. If outside values appear on the special LO and HI stems, the LO and
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Exhibit 3-3 Letter-Value Display for pH Values of Precipitation in Allegheny County,

Pennsylvania
n=26
Lower Upper Mid Spread
M 135 4,54 4.54
H 7 4.31 4.82 4.565 0.51
E 4 4.26 5.51 4.885 i.25
D 2.5 4.19 5.645 4,92 1.455
C 1.5 4.12 8.725 492 1.605
1 412 5.78 4.95 1.66

Mote: Data from Exhibit [-1.

HI stems serve the dual purpose of highlighting the outliers for special
attention and preserving a useful choice of scale. Otherwise, we might have
many empty stems between an outlier and the body of the data (see Appendix
A for more details). We can modify the skeletal boxplot to include information
about outliers, as we see in the next section.

3.4 Making a Boxplot

boxplot

We begin a boxplot in the same way as we begin a skeletal boxplot: We use
solid lines to mark off a box from hinge to hinge and show the median as a
solid line across it. Next, we run a dashed whisker out from each hinge to the
corresponding adjacent value instead of to the extreme, as in the skeletal
boxplot. Then we show each outside value individually and, if each data value
has an identity, as often happens, label it clearly. Finally, we show each far
cutside value individually and label it quite prominently—for example, with a
tag in capital letters. When it is informative and will not cause clutter, we may
also label the adjacent values. Because the fences are not necessarily data
values, we do not mark them; they simply serve to define outside and far
outside values. The original name for the boxplot is “schematic plot.” But, the
convenience of a short, suggestive name has led most people who use it to refer
to the display as a boxplot, and that term is used in this book.
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Exhibit 3-4 Boxplot for the Precipitation pH Data

pH
i
6 -
o 9 Mar. 194
9-11 Feb. 1974
3 25-26 Dec. 1973
——ya— 14 Apr. 194
T p
|
|
T i
]
— L
ar

For the precipitation pH data, we have done all the necessary calcula-
tions in the previous section, and Exhibit 3-4 shows the boxplot. The three
outside values are clearly evident, so we look more closely at them. A careful
look at the data—see, for example, Exhibit 1-3—indicates that although the
fourth largest value (5.51) has not been identified as an outlier by the rule of
thumb, it resembles the three outside values more than it does the rest of the
batch. {We might have suspected this from the long upper whisker.) This
example highlights the important lesson that the rule of thumb for outliers is
no more than a convenient guideline and is no substitute for good judgment.
We would probably choose to treat all four of these values as potential
outliers.

In the precipitation pH data, there is little reason to suspect errors in
the data, so we look up the dates of the precipitation samples in Exhibit 1~}
and use them as labeis on the boxplot. Three of the four dates are holidays: 14
Apr. 1974 was Easter, 25-26 Dec. 1973 was Christmas, and 12 Feb. 1974 was
Lincoln’s birthday and fell on a Monday. Is there something unusual about
holiday weekends? Recall that the original study was motivated by the
suspicion that air pollution contributes to making rain more acidic. The
outliers are the least acidic observations. The other outside value, 9 Mar. 1974,
does not correspond to a holiday; but if more data were available, we would
now want to try separating holiday and non-holiday periods.
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3.5 Boxplots from the Computer

The most obvious difference between boxplots produced by the programs in
this chapter and boxplots drawn by hand is that the computer-produced plots
are drawn across the page. The horizontal format is quicker to print than is a
vertical plot on most computer terminals and makes it easy to produce a
number of boxplots side by side for comparing batches.

Because most computer terminals cannot draw pictures, we must
construct boxes out of the normal printing characters. BASIC and
FORTRAN, the two computer languages used here, have different character
sets. BASIC uses the standard ASCII character set found on most terminals;
the standard FORTR AN character set is much more limited (see Appendix C
for details). Thus, what a computer-produced boxplot looks like on your
computer may depend on which set of programs—that is, which language—is
used and on decisions made when the programs are implemented.

The BASIC version of a computer-produced boxplot locks like this:

——————— 1 + ]—--—-—--—--—-*---------——-‘— L T )

The box is formed with two square brackets and two lines of minus signs. The
location of the median is marked with a +. The whiskers are dashed lines as in
handmade boxplots, and outliers are marked with an asterisk (outside) or a
capital O (far outside). A simpler form, the 1-line boxplot, omits the dashed
lines that complete the box:

------- [ + ]—-—~----—-—-----------——~--— LR 3

The only difference between the two versions is the use of the letter 1 in place
of the square brackets.

3.6 Comparing Batches

Often we may want to place several boxplots side by side to compare several
batches. For example, Exhibit 3-5 gives the percentages of individual tax
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Exhibit 3-5

Percentages of Individual Tax Returns Audited by the IRS in the States of the
United States in Fiscal Year 1974

North Atlantic Percentage Midwest Percemtage
New York 3o South Dakota 1.5
Maine 2.1 North Dakota 1.8
Massachusetts 1.6 Illinois 2.0
Vermont 2.1 TIowa 1.3
Connecticut 1.8 Wisconsin 1.7
New Hampshire 22 Nebraska 2.3
Rhode Island 1.8 Missouri 2.1

Mid-Atlantic Minnesota 1.4
Maryland & D.C. 2.1 Southwest
New Jersey 2.1 New Mexico 2.1
Pennsylvania 1.6 Wyoming 1.8
Virginia 1.9 Colorado 1.9
Delaware 2.2 Texas 31

Southeast Arkansas 2.2
Georgia 2.3 Louisiana 2.6
Alabama 2.3 Oklahoma 2.3
South Carolina 23 Kansas 2.5
North Carolina 2.7 West
Mississippi 2.8 Alaska 2.7
Florida 2.7 1daho 2.0
Tennessee 1.7 Montana 2.7

Central Hawaii 1.9
Ohio 1.4 California 2.5
Michigan 2.0 Arizona 1.9
Indiana 1.2 Oregon 1.5
Kentucky 1.4 Nevada 34
West Yirginia 1.3 Utah 22

Washington 2.0

Source: Data from 1976 Tax Guide for College Teachers (Washington, D.C.: Academic Information
Service, Inc., 1975) pp. 195-197. Reprinted by permission.

returns audited by the Internal Revenue Service (IRS) in the states of the
United States in fiscal year 1974, To look into possible regional differences in
the auditing rate, we can begin with the boxplots shown in Exhibit 3-6. We
note that auditing rates seem comparatively low for the Central states, except
for one far outside state, which, we can see from Exhibit 3-5, is Michigan.
Conversely, the Southeast seems to have relatively high audit rates for the
castern United States, except for the low outside value for Tennessee. Western
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Exhibit 3-6¢ Side-by-Side Boxplots of the IRS Audit Rates of Exhibit 3-5

_______ I *]-- . N.ATL,

__________ \ e MIDATL.

.................. + J--- SE.

el 4 o CENTRAL

_____ 1 +  PE—— MIDWEST

______ | + PO S

states include the highest auditing rate, Nevada at 3.4%, but are quite spread
out. We note also that three batches have medians that coincide with a hinge,
so that the + marking the median overprints the hinge marker. This is due in
part to the small number of states in some regions and in part to several states
having the same audit rate.

* 3.7 More Refined Comparisons: Notched Boxplots

When we use boxplots to compare batches, we are tempted to note batches
that are “significantly” different from each other or from some standard
batch. Qur eyes tend to look for non-overlapping central boxes; but unfortu-
nately the hinges, which determine the extent of the box, are inappropriate
guides to significance. McGill, Tukey, and Larsen (1978) have shown one way
to use regions of overlap or non-overlap of special intervals around each
notch median of a boxplot. They mark the ends of these intervals by putting a notck
in the side of the central box. Two groups whose notched intervals do not
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overlap can be said to be significantly different at roughly the 5% level. (This
is an individual 5% level-—that is, no allowance is made for the number of
comparisons considered.)

The notches in these plots are placed symmetrically around the
median, falling at

median + 1.58 x (H-spr)/ /n.

The multiplying factor, 1.58, combines contributions from three different
sources: the relationship between the H-spread and the (population) standard
deviation, the variability of the sample median, and the factor used in setting
confidence limits. The details underlying the choice of 1.58 are given in
Section 3.12 at the end of this chapter.

Computer-produced boxplots indicate notches on the main line of the
display. A notched boxplot in BASIC looks like this:

———————— l I ]——--—-—— * - * O 0

Exhibit 3-7 shows the audit data of Exhibit 3-5 with notches added.
We note that in some regions, and especially when the median is near a hinge,
one of the notches actually falls outside the box. Now we can see, for example,
hat, although we might have been tempted to declare the median audit rates
for the Mid-Atlantic and Southeast regions significantly different, we cannot
be confident of this difference at the 5% level.

3.8 Using the Programs

The boxplot programs are quite automatic. They produce a display for
whatever data batch is specified. (Again, how you specify a data batch to your
computer depends upon how the programs have been implemented.) The
options offered by the boxplot programs are the choice of a 1-line or 3-line
display and the inclusion or exclusion of notches. The 3-line version looks more
like the hand-drawn boxplot and may be preferred for single batches.
However, because multiple 3-line boxplots can become cluttered and may take
up too many lines on a CRT screen,* we often use the }-line display to
compare more than 3 or 4 groups. One-line notched boxplots can be particu-
larly useful for comparing batches.

*A Cathode Ray Tube {(CRT) is like a television screen and is used in many computer terminals 1o display
output. Mten it can display only 20 lines or so at a time.
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;:hibit 3-7 Multiple Notched Boxplots to Compare IRS Audit Rates of Exhibit 3-5 )
el {41 ) . NATL
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Multiple boxplots require additional information—namely, the iden-
tity of the group to which each data value belongs. The programs distinguish
groups by using consecutive identifying integers, starting with 1. Because data
values are not always arranged according to groups, we must provide this
information by telling the computer which group the first data value belongs
to, and so on. One possible source of group identity is the column number or

the row number of data values in a table. We examine tables of data in
Chapter 7.

¥ 3.9 Algorithms

The boxplot programs must place the pieces of the boxplot display in the
correct printing positions (see Appendix A for a discussion of computer
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nice position
width

graphics). In addition, the programs must take care that if two characters
making up the display fall at the same printing position, the one actually
printed will convey as much information about the plot as possible. The
programs accomplish this by first constructing each line of the boxplot display
in an array and then printing the contents of the array.

Characters are positioned on the output line according to the plot scale.
The logical width of one character position, called the pice position width,
NPW, is found by using the utility plot-scaling routines (see Appendix A). The
number of the printing position that corresponds to the data value, y, can then
be found as

[(y — min(y))/NFPW] + 1

where min( y) is the minimum data value and [ ] indicates the integer part.

The programs ensure correct priority of plot symbols by placing them
in the output array in a specified order, allowing later entries to replace earlier
ones if they fall at the same character position. The correct placement
order—and, hence, the order from least important to most important—is:
whisker hyphens (-); outside values (#); far outside values (0); hinges ([ ] or
I); notches, if any (> < or ( )); and median (+). It is usually easy to read even
severely distorted boxplots generated in this order. Thus,

___[_|.____

is a boxplot in which the H-spread is small and the median is offset to the high
end and thus occupies the same position as the upper hinge. In a very extreme
case,

L] 00

is a display in which most of the data clusters very near the median and there
are a few very extreme outliers. Exhibit 3-7 includes several boxes in which
overprinting is evident. In each of these, the careful choice of symbol hierarchy
has preserved the full information in the plot. Multiple boxplots require a
single scale that is usually chosen to cover the range of the entire combined
data set.

FORTRAN

The FORTRAN programs for creating and displaying boxplots consist of
three subroutines, BOXES, BOXP, and BOXTOP, and the function PLTPOS. The
display of one or several boxplots is initiated by the statement
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CALL BOXES(Y, N, GSUB, NG, LINE3, NOTCH, SORTY, ERR)

where the parameters have the following meanings:

¥} is an array of N data values;

N is the number of data values;

GSUB( ) holds the N group identifiers, integers from 1 to NG,
if more than one boxplot is to be produced;

NG is the number of groups and thus the number of
boxplots to be displayed;

LINE3 is a logical flag, set .TRUE. for a 3-line plot, or set

.FALSE. for a 1-line plot;
NOTCH is a logical flag, set .TRUE. for notched boxplots;

SORTY(} is an N-ljong work array in which to sort Y() or
gZroups;
ERR is the error flag, whose values are
0 normal
k]| N < 2—too few data values to make a
boxplot.

BOXES determines the plot scaling {see Appendix A) and calls BOXP for each
boxplot. BOXP, in turn, calls BOXTOP to produce the top and bottom of any 3-line
boxplot and uses the function PLTPOS in placing symbols in the output array.

BASIC

The BASIC programs for boxplots accept N data values in Y{). The style of
boxplot is determined by the version number, V1, where

vl =1 1-line boxplot,
Vi=2 1-line notched boxplot,
Vi=3 3-line boxplot,
V1i=4 3-line notched boxplot.

If V1 < 0, the program asks for data bounds and uses only the data values
falling between these bounds, and the plot style corresponding to} V1|,

The program also checks a secondary version flag, v2. If v2 # 0, the
program looks in the subscript array C{) for group identifiers and prints a
boxplot for each group. Group identifiers may be any unique numbers;
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sequential integers are simplest. Multiple boxplots use a single global scale
and are printed in group-number order. Each group is labeled with its group
number, if that label is less than 5 characters long. Boxplots are scaled to fit
between the margins, MO and M3.

The BASIC program does not change X() or R{ }.

T 3.10 Implementation Details

The boxplot programs depend on the available character set more heavily than
do any of the other computer programs in this book. FORTRAN program-
mers are likely to have available a larger set of characters than are in the
FORTRAN standard. They may wish to substitute non-FORTRAN charac-
ters when these are available.

The variable that identifies the groups for a multiple boxplot should be
implemented as a data vector if at all possible. Note that we have also used
data vectors to hold row and column subscripts for tables in Section 7.3.

+ 3.11 Further Refinements in Display

Many readers may have available a device that enables their computer to draw
displays made up of lines. Boxplots are very well suited to many of these
computer graphics devices because boxplots consist almost entirely of vertical
and horizontal lines. The same principles used to determine the scale of the
plots in the programs provided in this chapter can be used for such displays.

In the paper mentioned in Section 3.7, McGill, Tukey, and Larsen
suggest making the width of a boxplot (the fatness of the box) proportional to
¥n, the square root of the batch count. While we could approximate a
variable-width boxplot with a “variable-line” boxplot, printer plotting does not
provide sufficient precision to justify the trouble. Readers with access to more
sophisticated graphics devices that are capable of drawing lines may wish to
experiment with this idea.
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* 3,12 Details of the Notched Boxplot

The notches in a notched boxplot define a confidence interval around the
median that has been adjusted to make it appropriate for comparisons of two
boxes. If the intervals of two boxes do not overlap, we can be confident at
about the 95% level that the two population medians are different. The
notches are placed at

median = 1.58 x (H-spr)/ Ja.

The factor 1.58 combines contributions from three different sources as
described in Section 3.7. We now consider the details of these contributions.

First, from the discussion in Section 2.6, we recall that H-spr/1.349
provides a rough estimate of the standard deviation, ¢, especially in large
samples from a Gaussian distribution.

Another large-sample result from the Gaussian distribution is that the
variance of the sample median is #/2 times the variance of the sample mean.
Although this result is strictly true only for large samples from the Gaussian
distribution, it turns out to be a surprisingly good estimate for a wide variety of
distributions.

Finally, we recall that the usual 95% confidence interval for the mean
of a Gaussian distribution with known variance is X = 1.96 o5, where oy =
a/vn. In comparing batches we must face the separate variability of each
batch.

If we compare two equally variable batches, we look at

X, — X _X - X
vvar(x,) + var(x,) V2 o5

(D

which is a z-score and should thus be compared to +1.96. Equivalently, we
could compare

-] 1% — %) — 1.96vV2 o5
20; ' \IEG’; (2)

to zero or simply compare the numerator,

1% — %1 — 1.96V2 o5 (3

to zero; that is, if (3) is greater than zero, we declare the means to be
significantly different. To represent this calculation as a comparison between
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two possibly overlapping confidence intervals for the two means, we split the
constant equally between the two intervals and (assuming that X, < X,)
compare the upper bound of the lower interval,

2, 196V20; 196 @
! ) -l ﬁ X

to the lower bound of the upper interval,

_ 1.96
X2 =~ 5 ox (3)

This comparison is equivalent to just rewriting (3) as

_ 1.96 - 1.96
(xl'“_\/_TUE)_(xl +“7—2'0;)» (6)

which we again compare to zero. Thus, the appropriate constant for construct-
ing confidence intervals for the special case of comparing two equally variable
means is not 1.96, but 1.96/v2 = 1.39.

By contrast, if the variances of the two batches were very different—
{or example, if o% were tiny and 0% enormous—we would still compare the
means by using

X = X

Yvar(x;) + var(x)) ' @

But now var(x,) dominates the denominator; so this expression is almost equal
to

X; ~ X,

. 8)

0';3

As in equation (1), we compare this to 1.96. The expression corresponding to
(3)is

X, — X, — 19605, 9)

which we would compare to zero as we did for (3).
In setting intervals to represent this situation, we are led to allocate the
variability in o3, to X, and to put back in the negligible variability of X,
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measured by oz, We thus use
X; + 1.960%,

and
X, + 19605,

The two extreme situations just described lead to using 1.39 and 1.96
as approximate multiplying constants for these intervals. A reasonable
compromise for the general case is the average of the two constants:

(1.96 + 1.39)/2 = 1.7.

Assembling the three factors—the estimate of ¢ from the H-spread,
the standard deviation of the median relative to the mean, and the compromise
multiplier for corstructing comparison intervals—now gives us

(H-spr/1.349) x v(x/2) x (1.7/+n) = 1.58 x H-spr/ ya.

For further discussion of multiplicity and the statistical problem of multiple
comparisons, the interested reader may consult the book by Miller (1966).
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REM ONE OR THREE LINE BOXPLOT

REM ENTRY CONDITIONS:MO0,M9=MARGIN BOUNDS;

REM V1 = VERSIOM:

REM Vl=l: 1-LINE BOXPLOT, V1=2 1-LINE NOTCHED BOXPLOT,
REM V1=3: 3-LINE BOXPLOT, V1=4 3-LINE NOTCHED BOXPLOT
REM V1<0 ASKS FOR DATA BOUNDS THEN USES ABS(V1) STYLE.

REM C9 = # OF BOXES TO BE PRODUCED ON SAME SCALE

REM IF C9 > 1, C() HOLDS GROUP ID'S.

REM BE ANY DISTINCT NUMBERS, BUT INTEGERS ARE BEST.

THESE CAN

REM BOXES WILL BE PRINTED IN GROUFP ID ORDER.

REM IF MULTIPLE BOXES PRINTED, Y() AND C() ARE SORTED ON C()
REM IF DATA WERE NOT ORIGINALLY IN COLUMN-MAJOR ORDER,

REM THIS CAN DESTROY CORRESPONDENCE WITH R(} AND X().

REM P9={# DESIRED POSITIONS;P ()=CHR ARRAY;Y (}=DATA ARRAY

REM NICE #S SET AT 1,1.5%,2,2.5,3,4,5,7,10

REM OVERPRINTS WITH DECREASING PRECEDENCE:+=MEDIAN,

REM ]1=HI HINGE, [=LO HINGE, O0O=0UTSIDE OUTER FENCE,
REM *=0UTSIDE INNER FENCE, |=EXTREMES,-=WHISKER
REM POSITION FN =4 CHRS TO RIGHT OF LEFT MARGIN

REM
REM SORT Y({) INTO W{)

GOSUB 3300

IF V1 >= 0 GO TO 5290

PRINT “MIN,MAX FOR BOXFPLOT";

INPUT LO,H1

IF L0 < H1 THEN 5270

PRINT LO;" IS NOT < ";H1l;" RE-ENTER "
GO TO 5220

LET V1 = ABS(V]}

GO TO 5330

REM

REM FIND NICE WIDTH

W(N}

w{l)

3

M9 - MO + 1
0

|

m

=3

-4

un
nanmen

REM RETURNS P7=NPW
GOSUB 1900

REM MULTIPLE BOXES?
IF C9 <= 1 THEN 5750

82
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5400
5410
5420
5430
5440
5450

5460

5470
5480
5490
5500

5510
5520
5530

5540
5550
5560
5570
5580

5590

5600
5610
5620

5630

5640
5650

5660

5670
5680
3690
5700

5710
5715
5720

5730
5740

5750
5760
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REM YES, SORT INTO GROUP ID ORDER
FORI =1 TO N

LET W{I} = X(I)
LET X(I) = C{I}
NEXT I
GOSUB 1200

REM X(), ¥Y(), NOW SORTED BY GROUP ID

FOR I =1 TON
LET C(I) = X(I)
LET X{I) = W(I)

NEXT I

REM SAVE REAL N (COPYSORT WILL RESET IT)
LET N7 = N
REM LEAVE ROOM TO LABEL BOXES. INTIGER ID #'S WORK BEST,

LET M2 = LEN{ STRS(C{N))) + 1

IF M2 >= LEN( STRS(C{1))) THEN 5570
LET M2 = LEN{ STRS(C{1))) + 1

LET MO = MO + M2

LET J2 = 0

REM SET UP FOR THE NEXT ONE OF THE BOXES

LET J1l = J2 + 1
LET C7 = C{J1)
LET C$ = STRS$(CT7)

REM PRINT BOX LABEL ONLY IF THERE'S ROOM

IF LEN{C$) > M2 THEN 5670
PRINT TAB(MO ~ M2);C§;

REM FIND THE VALUES IN CURRENT BOX

FOR J2 = J1 TO N7

IF C{(J2) <> C7 THEN 5710
NEXT J2
LET J2 = N7 + 1

REM COPY Y() FROM Jl1 TO J2 TO W() AND SORT
LET J2 = J2 ~ 1
GOSUB 3340

REM FIND MEDIAN(L1),HINGES{L2,L3),ADJACENT VALUE POINTERS(Al,A2)
REM FENCES (F1,F2), STEP(S1) OR DATA IN W({)

GOSUB 2500
LET P2 = FNP{L2)
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5770 LET P3 = FNP(L3)
5780 REM WHICH STYLE BOX?

5790 IF V1
5800 IF V1

1 THEN 5930
3 THEN 5850

5810 REM NOTCHED STYLE -- SET NOTCH BOUNDS AROQUND MEDIAN

5820 LET X = 1,7 * (1,25 * (L3 - L2} / (1.35 * SOR(N))})
5830 LET N6 = FNP(L1 - X)
5840 LET NB = FNP(L1 + X}
5850 IF V1 <= 2 THEN 5930

5860 REM FRINT TOP OF BOX

5870 PRINT TAB(MO + P2 - 1);
5880 IF P2 > P3 THEN 5920
5890 FOR I = P2 TO P3

5900 PRINT *-%;

5910 NEXT I

5920 PRINT

5930 REM CONSTRUCT LINE OF BOX IN PRINT ARRAY, P()
5940 REM INITIALIZE P() TO BLANKS

5950 FOR I =1 TO P9 + 1
5960 LET P(I) = ASC{(™ ")
5970 NEXT 1

5980 REM MARK LO WHISKERS, IF ANY

5990 IF FNP({W(Al)) > P2 - 1 THEN 6030
6000 FOR I = FNP{W{(Al)) TO P2 - 1
6010 LET B(I) = ASC("-")

6020 NEXT I

6030 REM MARK HI WHISKERS
6040 REM PROTECT US FROM UN-ANSI BASICS

6050 IF P3 + 1 > FNP(W(A2)) THEN 6090
6060 FOR I = P3 + 1 TO FNP(W(A2))
6070 LET P{I}) = ASC("-")

6080 NEXT I

6090 REM MARK EXTREMES
6100 LET P(1) = ASC{"|"™)

6110 LET P9 = M9 - MO + 1
6120 LET P(P9) = ASC("I|™)
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6130

6140
€150
6160
6170
6180
6190
6200
62190

6220

6230
6240
8250
6260
6270
6280
6290
6300

6310

6320
6330
6340
6350

6360

6370
6380

6390
6400

6410
6420

6430
6440
6450
6460
6470
6480

6490

6500
6510

REM MARK LO OUTLIERS, IF ANY

IF Al 1l THEN 6220
FOR I 1 TO Al -1
IF W(I) <= F1 - 51 THEN 6200
IF W(I} > F1 THEN 6210
LET P{ FNP{W(I)}) = ASC{"*")
GO TO 6210
LET P({ FNP(W(I)}) = ASC("O")
NEXT I

REM MARK HI OUTLIERS, IF ANY

IF A2 = N THEN 6310
FOR I = A2 4+ 1 TON
IFP W(I) >= F2 + 51 THEN 6290
IF W(XI) < F2 THEN 6300
LET P( FNP(W(I))) = ASC("*")
GO TO 6300
LET P{ FNP(W(I))}) = ASC("O")
NEXT 1

REM MARK HINGES
LET P(P2)} = 91

LET P(P3) = ASC(*]1*)
IF V1 = 1 THEN 6390
IF V1 = 3 THEN 6390
REM MARK NOTCHES

LET P{N6) = ASC(">")
LET P(N8) = ASC("<™)

REM MARK MEDIAN
LET P{ FNP(L1)) = ASC("+")

REM NOW PRINT BOXPLOT

85

REM THERE MAY BE MORE EFFICIENT WAYS TO DO THIS ON SOME BASICS.

PRINT TAB(MO);

FOR I =1 TO P9 + 1
PRINT CHRS(P(I});

NEXT 1

PRINT

IF V1 <= 2 THEN 6560

REM PRINT THE BOTTOM OF THE BOX

PRINT TAB{MO + P2 - 1);
IF P2 > P3 THEN 6560
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6520 FOR I = P2 TO P3
6530 PRINT "-";

6540 NEXT 1

6550 PRINT

6560 IF C9 <= 1 THEN 6620

6570 REM MORE BOXES TO PRINT?

6580 IF J2 < N7 THEN 5600

6590 REM NO, RESTORE N AND LEFT MARGIN
6600 LET N = N7

6610 LET MO = MO - M2

6620 RETURN
6630 END
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FORTRAN Programs

SUBROUTINE BOXES{Y. N, GS5UB., NG, LINE3, NCTCH, SCRTY, ERR)
PRINT ADJACENT BCXPLCTS ON A SINGLE SCALE FOR ALL VARIABLES IN Y(}.

INTEGER N, NG, ERR
INTEGER GSUB{(N)

REAL Y(N}, SORTY(N]
LOGICAL LINE3, NOTCH

¥Y() CONTAINS DATA. GS5UB{} CONTAINS INTEGERS BETWEEN 1 AND NG
IDENTIFYING THE CATA SET EACH ELEMENT OF Y{(} BELONGS TO.

THIS DATA STRUCTURE IS CONSISTENT WITH THE SPARSE MATRIX FORMAT

USED FOR STORING MATRICES IN OTHER PROGRAMS. THE USE OF

THE VECTOR GSUB() IS MEANT TO SUGGEST BOXPLOTS OF EITHER THE
ROWS OR THE COLUMNS A MATRIX STQORED IN THIS MANNER.

IF LINE3 1S .TRUE. ALL BOXPLOTS WILL BE FULL 3=-LINE BOXPLOTS.
IF LINE3 IS JFALSE., ONE-LINE BCXPLOTS WILL BE PRINTED.
SCALING OF THESE PLOTS IS TO THE EXTREMES OF THE ENTIRE COMBINED
DATA BATCH, THE DETAILS OF EACH BOX, INCLUDING OUTLIER
IDENTIFICATION, ARE DETERMINED FOR EACH BATCH INDIVIDUALLY.

COMMON/CHPBUF /P, PMAXy PMIN, OUTPTF, MAXPTR, DUNIT

INTEGER P(1l30)s PMAX, PMIN, OUTPTR, MAXPTR, CUNIT
LOCAL VARIABLES

INTEGER NN, NPMAX, NPOS, LPMIN, SPMIN

INTEGER CHRPAR, LBLW, OPDS, I, J, K
REAL NICNOS(9), FRACT, UNIT, NPW, LOy HI

FUNCTIONS
INTEGER WOTHOF

CALLS SUBROUTINES BOXPy NPOSW, PUTCHR, PUTNUM
DATA NNsNICNOS{1),NICNOS{2) 4NICNOS(3})/9+41.0+1.5+2.0/
DATA NICMOS{4)sNICNOSCS)4NICNOS(6}/245+3.044.0/

DATA NICNOS{T7),.NICNOS(8),NICNOS(9}/5.0+7.0+10.0/
DATA CHRPAR/44/

87
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C CHECK FOR AT LEAST 2 DATA VALUES. OFHERWISE HIGHEST AND LOWEST
C WILL BE EQUAL AND PLOT SCALING WILL FAIL ANYWAY.
C
IF(N .GT. 1) €O TO 5
ERR = 3]
GO TO 999
5 LPMIN = PMIN + 7
LO = ¥(1)
HT1 = Y{N)
DO 10 1 = 14 &
IF(LD .GT. Y(1)) LO = Y(I)
TF(HT LY. Y(I)) HI = Y(1)
10 CONTINUE

SCALE TO THE EXTREMES

OoOnn

NPMAX = PMAX = LPMIN+1

CALL NPOSW{HI. LO, NICNOS, NN, NPMAX, .FALSE., NPOS, FRACT,
1 UNIT, NPWe ERR)

IF (ERR .NE. Q} GO TO 999

NOW PRINT ALL THE BOXES.
DATA SETS ARE IDENTIFIED BY THEIR CODES IN GSUB()

o000

TF (NG .GT. 1) GO TO 17
DO 15 K = 14 M
SORTY(K) = Y(K)
15 CONTINUE
CALL BOXP{SORTY, N, LINE3, NOTCH, LO, HI, NPW, ERR)
GO TO 999
17T SPMIN = PMIN
DO 30 1 = 1+ NG
K = 0
DO 20 J = 1, N
IFIGSUBLJ) .NE. I} GO TO 20
K = K+l
SORTY{(K} = ¥Y(J)
20 CONTINVE
PMIN = SPMIN
LBLW = WOTHOF{I)
OPOS = PMIN + 5 ~ LBLW
CALL PUTNUM{QOPOS, 1, LBLW: ERR}
DPOS = PMIN + 6
CALL PUTCHR{OPOS, CHRPAR, ERR)
IF(ERR .ME. Q) GO TD 999
PMIN = LPMIN
CALL BOXP{SCRTY, Ky LINEZ, NOTCHs LDy, MIl, NPW, ERR]}
TF{ERR .NE. 0} GO TO 999
30 CONTINUE
PMIN = SPMIN
399 RETURN
END
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SUBROUTINE BOXP(SORTY, N, LINE3, NOTCH, LDs Hl+ NPWs ERR}

PRINT A BOXPLOT CF THE DATA IN SORTY(]

INTEGER Ny EFR
REAL SORTY{N), LO, HI, NPW
LOGICAL LINE3, NOTCH

PLOT SCALING HAS BEEN DONE BY THE CALLING PROGRAM WITH NEEDED
INFORMATION PASSED IN AS {0 {THE LOW EXTREME), HI (THE HIGH
EXTREME} AND NPW (THE NICE POSITION WIDTH FOR PLOTTING).
TYSICALLY THIS WILL BE ONE OF SEVERAL BOXPLOTS SCALED AND PR INTED
TOGETHER .

IF LINE3 IS .TRUE. A 3-LINE BOXPLOT (FULL BOXES) IS PRINTED.
IF NOT, THE STMPLE ONE-LINE BOXPLOT 15 PRINTED. BOTH CONVEY THE
SAME INFORMATION, 8UT THE 32-LINE VERSION MAY LOOK NICER.

IF NOTCH 15 .TRUE. A CONFIDENCE INTERVAL ARQUND THE MEDIAN IS
INDICATED WITH PARENTHESES .

COMMON/CHRBUF F/P, PMAX, PMIN, QUTPTR, MAXPTR, OUNIT
INTEGER P {130}, PMAX, PMIN, CUTPTR, MAXPTR, DUNIT

FUNCTIONS

INTEGER PLTPOS
CALL SUBROUTINES BOXTOP, PRINT, PUTCHR, YINFD
LOCAL VARIABLES

INTEGER 1, IADJL, TADJH, IFROM, 1TOs LPMAX, LPMIN

INTEGER OPQOSy CHIy CHO, (HSTAR, CHMIN, CHPLUS, CHRPAR,; CHLPAR
REAL MEDs HL, HHy ADJL, ADJH, STEP

REAL FLOATN, NSTEPy LNOTCH, HNOTCH, DOFENCL, OFENCH

DATA CHI, CHO, CHPLUS,y CHMIN, CHSTAR/9, 15, 329, 404 41/
DATA CHLPAR, CHRPAR/43, 44/

LPMAX PMAX

LPMIN PMIN

CALL YINFO(SORTYs Ny MED, HL, HH, ADJL., ADJH, IADJL,s JADJH,
1 STEP, ERRI)

IF (ERR .NE. 0) GO TO 999

FLOATN = FLOAT(N)

NSTEP = 1.7 * {1.25%(HH — HL}/{1.35% SQRT(FLOATN})}
LNOTCH = MED - NSTEP

HNOTCH = MED + NSTYEP

PRINT TOP OF 80X, IF 3-LINE VERSION

IFCLINE3} CALL BOXTOP{LO, HIs HL, HHs NPW, ERR)
IFIERR .NE. D) GD TO 999

(L]
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C
€ FILL CENTER LINE GF DISPLAY -- NOTE CAREFUL HIERARCHY
C OF OVERPRINTING. LAST PLACED CHARACTER IS ONLY ONE TO APPEAR.
C
C MARK WHISKERS
C
IFROM = PLTPOS{ADJL, LO. HI, NPW, ERR)
170 = PLTPOS(HL, LGy HI, NPW, ERR) =1
IF (IFROM .GT. ITO) GO TO 21
D0 20 1 = IFROM, ITO
CALL PUTCHR (Y, CHMIN, ERR)
20 CONTINUE
21 CONTINUE
IFROM = PLTPOS(HH, LO, HI, NPW, EFR)
ITO = PLTPOS{ADJH, LOy HI, NPW, ERR)
1fF (IFROM .GT. ITC) GO TO 31
D0 30 I = IFRCM, ITC
CALL PUTCHR{l, CHMIN, EPR}
30 CONTINUE
31 CONTINUE
c
€ MARK LOW OUTLIERS, IF ANY
c
ITF{IADJL .EQ. 1) GO TO 41
OFENCL = HL = 2.0%STEP
ITO = JTADJL - 1
D0 40 1 = 1, ITO
CPOS = PLTPOS(SQRTY{(1), LD, HI, NPW, ERR])
IF(SORTY{1) .LT. OFENCL) CALL PUTCHR{OPOS, ({HOy ERR)
IF(SORTY({1) .GE. OFENCL) CALL PUTCHR{QPOS, CHSTAR, ERR)
40 CONTINUE
41 CONTINUE
c
€ MARK HIGH OUTLIERS, IF ANY
c

IF{TADJH .EQ. N) GD TO 51
OFENCH = HH + 2.,0%5TEP
IFROM = TADJH + 1
DO 50 1 = IFROMy N
OPDS = PLTPOS(SORTY{(!}, LD, HI, NPW, ERR)
IF{(SORTY(1} .GT. GFENCH) CALL PUTCHR(OPOS, CHOs ERR}
IF(SORTY{1) .LE. OFENCH) CALL PUTCHR(OPOS. CHSTAR, ERR)
50 CONTINUE
51 CONTINUE
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c

C MARK HINGES, NOTCHES, AND MEDIAN

C

[aNaXel

o000

o

OO OO0 OO0 ON000

NP W

oPoS = PLTPOS{HL, LOy HI, NPW, ERR)

CALL PUTCHR{OPOSy CHI, ERF)

0POS = PLTPOS{HH, LO, HI, NPW, ERF)

CALL PUTCHR{OPDS, CHI, ERP)

OPDS = PLTPOS(LNOTCH, LO, HI, NPW, ERR]J
IF{NDOTCH) CALL PUTCHR{DPDS, CHLPAR, ERR)
OPOS = PLTPDS(HNOTCHy LOy HI, NPW, ERR)
IF(NOTCH) CALL PUTCHR{OPOS, CHRPAR, ERR)
OPOS = PLTPOS(MED, LOy HI, NPW, ERR)
CALL PUTCHR {(OPOSs CHPLUS, ERR}

AND PRINT THE BOXPLOT

IF(ERR .NE. 0) GO TO 999
CALL PRINT

PRINT THE BOTTOM OF THE 80X

IFCLINE3) CALL BOXTOP(LOy HI, HL. HHs NPW, ERR}

399 RETURN

END

SUBROUTINE BOXTOP(LO, Hl, HLs HH, NPW, ERR}

REAL LO, HI, HLy HHy NPW
INTEGER ERR

PRINT THE TOP OR BOTTOM OF A BOXPLOT DISPLAY

AND 1O ARE EDGES OF THE PLOTTING REGION USED BY THE PLTPDS
FUNCTION.

AND HH ARE THE LOW AND HIGH HINGES

IS5 FTHE NICE PDSITION WIDTH SET 8Y THE PLOT SCALING RDUTINES

LOCAL VARIABLES

INTEGER I, IFROM, ITO, CHMIN

FUNCTION

INTEGER PLTPOS

DATA

DATA CHMIN/4O/

91
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TFROM = PLTPOS{HLy LOy HI: NPW, ERR)
ITO = PLTPOS{HH, LDy HI+ NPW, ERR)
IF {IFROM .GT, I1TO) GO TO 11
DN 10 I = IFROM, ITOC

CALL PUTCHR{I, CHMIN, ERPR)
CONTINUE
CONTINUE
IF {ERR ,EQ. O0) CALL PRINT
RETURN
END

INTEGER FUNCTION PLTPOS(X, LO, HI, NPW, ERR}

FIND THE POSITION CORRESPONDING TO X ON PLOT BOUNDED
BETWEEN LO AND HI AMD SCALED ACCORDING TO NPW.

REAL Xy LDy HI: NPHW
INTEGER ERR

FUNCTIONS

INTEGER INTFN

COMMON

COMMON /CHRBUF/Py PMAX, PMIN, DUTPTR, MAXPTRy OUNIT
INTEGER P(130)s PMAX, PMIN, OUTPTR, MAXPTR, OUNIT

PLTPOS = INTFNUIX~LO)/NPW: ERR) + PMIN
IF (PLTPOS .LT. PMIN} PLTPOS = PMIN

IF (PLTPOS .GT. PMAX) PLTPDS = PMAX
RETURN

END
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ordered pair

array
subscript

x — y Plotting

Data that come as paired observations are usually displayed by drawing an x-y
plot. This is a very common procedure and a powerful exploratory data-
analysis tool. Plots of y versus x show at a glance how x and y are related to
each other. For example, if larger y-values are often paired with larger
x-values and smaller y-values with smaller x-values, that association will be
evident in the plot. If the x-y points fall on or near a straight line, that will be
clear from the plot—and we may be able to say more about the relationship
between x and y, as we will see in Chapter 5. If the pattern of the plot shows a
smooth change in y-values as we move from each x-value to the next larger
one, we may want to look for a smooth pattern with techniques discussed in
Chapter 6. And, as always, we will check the plot for any extraordinary points
that do not seem to fit whatever pattern is present, for these points may
deserve special attention.

x-y data are often presented as ordered pairs, (x, y)—one ordered pair
for each observation. Alternatively, such data can come as a pair of columns of
numbers—one column for the x-values and one for the corresponding y-values,
Such columns, whose values are in an established order (in this case, paired
with each other), are examples of arrays. To refer to the ith valve in an array,
we attach the subscript i to the name of the array; for example, x,. The ith x—y
observation is (x;, y;).

93
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Exhibit 4-1 Births per 10,000 23-Year-Old Women in the United States from 1917 to 1975

Year Birthrate Year Birthrate
1917 183.1 1946 189.7
1918 1839 1947 212.0
1919 163.1 1948 200.4
1920 179.5 1949 201.8
1921 181.4 1950 200.7
1922 1734 1951 215.6
1923 167.6 1952 2225
1924 177.4 1953 231.5
1925 171.7 1954 237.9
1926 170.1 1953 244.0
1927 163.7 1856 2594
1928 151.9 1957 268.8
1929 145.4 1958 264.3
1930 145.0 1959 264.5
1931 138.9 1960 268.1
1932 131.5 1961 264.0
1933 125.7 1962 252.8
1934 126.5 1963 240.0
1935 129.6 1964 229.1
1936 129.5 1965 204.8
1937 132.2 1966 193.3
1938 134.1 1967 179.0
1939 132.1 1968 178.1
1940 1374 1969 181.1
1941 148.1 1970 165.6
1942 174.1 1971 159.8
1943 174.7 1972 136.1
1944 156.7 1973 126.3
1945 143.3 1974 123.3
1975 118.5

Suurce: P.K. Whelpton and A.A. Campbell, “Fertility Tables for Bisth Charts of American Women,” Vital
Statistics—Special Reports 51, no. 1 (Washinglon, D.C.: Government Printing Office, 1960) years
1917-1957. National Center for Health Statistics, Vital Statistics of the United States Vol. I, Narality
{Washington, D.C.: Government Printing Office, yearly, 1958-1975),
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4.1 x-yPlots

R —————

x-y plots are common in books and magazines, so we consider them only
briefly. We recall that each point on the plot is located simultaneously by its
position on the horizonta! x-axis (corresponding te its value on the x-variable)
and by its position on the vertical y-axis {corresponding to its value on the
y-variable).

For example, Exhibit 4-1 lists the number of live births per 10,000
23-year-old women in the United States between 1917 and 1975, To examine
patterns in the birthrate over time, we plot birthrate {y) on the vertical axis
against year {(x) on the horizontal axis. The hand-drawn result is shown in
Exhibit 4-2. Each point on the plot can be easily matched with its pair of data
values by finding the numbers associated with its position on each axis. The
global pattern in the plot shows that the birthrate fell sharply during the
1920s, bottomed out during the Depression, rose rapidly to a peak around
1960, and has fallen rapidly since then.

Although there is little to say about hand-drawn exploratory x-y plots,
there is much to consider when the computer prints the plot. The remainder of
this chapter is devoted to computer-produced x-y plots—and primarily to a

Exhibit 4-2  An x-p Plot of the Birthrate Data of Exhibit 4-1
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particular type of plot designed for exploratory data analysis and for interac-
tive computing on a standard typewriter-style computer terminal. If you do
not intend to use a computer in your exploratory analyses, you can skip the rest
of this chapter without any loss of continuity. If your computer system is
already equipped with some other version of x-y plotting (as it will almost
certainly be if you are using a statistical package), you may prefer to
substitute that version for the method presented here. Nevertheless, you
should read the rest of this chapter because it includes fundamental ideas
about computer-printed plots and provides a useful background for anyone
using the computer to print x-y plots.

4.2 Computer Plots

Most computer programs for x-p plots concentrate on making them nice in
some chosen way. The programs presented here concentrate on making the
plot concise, so that it can be generated quickly on a computer terminal, and
on making the scaling and labeling of the plot natural and close to what we
might choose if we were drawing it by hand.

In drawing a plot by hand, we can place points exactly where they
belong, guided by the ruled grid lines of the graph paper. A point can fallon a
grid line or anywhere between the sets of lines. However, computer terminals
are usvally limited to choosing a character position across the line to represent
the x-coordinate, choosing a print line on the page to represent the y-
coordinate, and printing a character at that location. We may think of such a
computer plot as being drawn on graph paper on which each box of the grid
must either be entirely colored in or left blank., To make matters worse, the
boxes are not even square, since printing characters are usually about twice as
tall as they are wide. Nevertheless, such plots can be made easy to read and
are valuable ways to display data. Exhibit 4-3 shows a fairly typical computer-
terminal plot of the birthrate in Exhibit 4-1 with the character 0 as the
plotting symbol.

4,3 Condensed Plots

Since computer plots must use either all of a “*character box™ or none of it, we
are tempted to make the plots large so that each character box will have a
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Exhibit 4-3 A Computer-Produced Plot of the Birthrate Data of Exhibit 4-1

+ 268 00

+ 264 ao 0

+ 260

+ 266 i

+ 252 0
+ 248

+ 244 0

+ 240 0
+ 236 0

+ 232

228 0 0
224

220 0

000

EEuRNS
mcgmmm
=

192 0
188 0

184

180 00 0 0
176 0 0 00
172 0 Lt}

168 bo

160 0 0

156 0 a
152

148 0 a

144 0o

140 0

136 0 0 0
132 000

128 0 000

124 ] 0
120 0
116 ]

A T T T T R T S T R T T N S




08  ABCsof EDA

more precise meaning and thus give the plot greater resolution. Unfortunately,
large plots are very slow to print on most interactive computer terminals. This
slowness can be a major handicap in exploratory data analysis because we
might want to look at several plots or at slightly different versions of the same
plot. Therefore, we seek a way to condense an x-y plot so that it will take less
space and print faster without sacrificing precision. The simple choice avail-
able is the selection of the character used to mark a box as filled.

We can condense the plot vertically by squeezing as many as 10 lines of
plot into a single line and using the printed character—say, a numeral from 0
to 9—to indicate the original line occupied by the point. This device
reproduces the plot in Yo the original number of lines (typically down from 50
or 60 lines to 5 or 6 lines) with surprisingly little loss of precision. The
improvement is so great that we can afford to be a bit greedy and use 10 lines
or so and obtain a plot that contains, though unobtrusively, even more
information than we displayed originally.

4.4 Coded Plot Symbols

In implementing condensed plots, we choose to number the subdivisions of
each line according to their distance from zero, with 0 labeling the subdivision
nearest zero and 9 the subdivision farthest from zero. Thus, for positive
y-values on the same print line, 9 indicates a point higher than a point labeled
8, while for negative y-values a point labeled 9 will be lower than a point on the
same line labeled 8. Exhibit 4-4 illustrates the condensation in plotting the
birthrate data.

Comparing the two plots in Exhibits 4-3 and 4-4 shows how condens-
ing the plot uses digits to convey information about the data points. As an
example of the details, let us see what happens to the first point, (1917, 183.1),
and the fifth point, (1921, 181.4), in these plots. In Exhibit 4-2 we could
indicate the values of these two points fairly closely. However, the computer-
produced plot in Exhibit 4-3 tells us only that their y-values fall in the interval
180 = y « 184. In Exhibit 4-4, even though it uses only about one-fifth as
many lines, these two points are represented by the symbols 1 and 0,
respectively, on the line labeled + 180. Because we are using 10 characters (0
through 9) per line, we know that the y-value of the first point falls in the
second tenth of the interval 180 < y < 200—that is, between 182 and 184.
Similarly, the y-value of the fifth point is in the first tenth, between 180 and
182.
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Exhibit 4-4 A Condensed Plot of the Birthrate Data of Exhibit 4-1

9 LINE, 10 CHARACTER PLOT
Y FROM 10000 TO 280.00 STEP  20.00
X FROM 1917.0 TO 19750 STEP 1.00

+ 260 42241

+ 240 19 60

+ 220 158 4

+ 200 50007 2

180 1 0 4 5 0

160 19 638551 7 99 2

140 522 4 81 8
120 9524446768 831
100 9

+

+ + + +

Of course, in condensing the y-axis, we sacrifice some things to gain
speed and conciseness. First, patterns immediately visible in a full-page plot
may be a little harder to see in the 10-line version, although experience has
shown that most patterns are still clear even without reading the digits for fine
details. Second, we simuitaneously make overprints—that is, two or more
points falling in the same box—more likely and harder to indicate. {Some
plotting programs indicate overprints with different characters, often numer-
als!) This second sacrifice is usually acceptable for exploratory analyses.
Third, the use of 10 characters may add too much confusion to an already
complex plot. We can remedy this confusion by allowing the choice of fewer
subdivisions of each line; the programs allow any choice between 1 and 10
numeric codes.

Since the problems of condensed plotting increase as we condense to
fewer lines while the benefits of speed and smaller size increase, the choice of
numbers of lines and characters is best left to the user’s discretion, so that the
correct balance can be struck for any particular data set or any particular
computer terminal. Condensed plots begin with a legend:

9 LINE, 10 CHARACTER PLOT

Y FROM 100.0 T0 280.0 STEP 200
X FROM 1817 TO 1975 STEP 1.0
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Exhibit 4-8 A 6-Line, 4-Character Plot of the Birthrate Data of Exhibit 4-1

6 LINE, 4 CHARACTER PLOT
Y FROM 90.00 T0 27000 STEP  30.00
X FROM 191700 TO 19750 STEP 1.000

+ 240 023333310

+ 210 0 0123 2

+180 00 O 1222 N0

+ 150 13 3232210 330 i3 n

+ 120 3321011111123 3 200
+ 90 3

The legend tells how many lines the plot actually requires and how finely the
lines are subdivided—that is, the number of characters. It then reports the
extent of the data values accommodated by the entire plot and the range of
data values accommodated by each line (y STEP) and by each horizontal
character position (x STEP). Together, these make it easy to determine the
magnitude of the data values (the y-axis labels do not include decimal points)
and to translate any particular plotted point into its numeric value. Because
the y-axis labels report the value of the inner (near zero) edge of each line, the
y-bounds reported in the legend will typically extend beyond the outer axis
labels. Note that a 40-line, 1-character plot is essentiaily the standard x-y plot
made on a computer terminal. Indeed, that is how Exhibit 4-3 was generated.
Exhibit 4-5 shows a 6-line, 4-character plot of the birthrate data. This form of
the display was originally proposed by Andrews and Tukey (1973).

4.5 Condensed Plots and Stem-and-Leaf Displays

Astute readers may have noticed a resemblance between condensed plots and
stem-and-leaf displays. The y-axis labels are similar to stems, and the
characters chosen to provide additional information about the y-values are
much like leaves. All we have done is stretch the leaves across the page
according to the value of some other variable represented on the x-axis.
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Indeed, the algorithms to generate these displays are quite similar. Of course,
the numerals used in plotting are often not exactly like leaves because they
may not represent a specific digit of the y-value but rather a subdivision of the
line.

For example, Exhibit 4-6 shows the precipitation pH data that we
have analyzed in previous chapters and the date of the precipitation recorded
as day number in 1974, where dates in 1973 are negative and multiple-day

Exhibit 4-6

Precipitation pH and Day Number of Event (Jan. 1 = day 1. Multiple-day
precipitation events are plotted at the average day number.)

Day No. pH
-11 4.57
—35.5 5.62
-1 4.12
9 5.29
18.5 4.64
21 4.31
26.5 4.30
28 4.39
Y 445
41 5.67
47.5 4.39
54.5 4.52
55.5 4.26
60 4.26
68 4.40
69 5.78
75.5 4.73
Rl 4.56
90 5.08
94.5 4.41
98.5 4,12
105 5.51
116.5 4.82
132.5 4.63
138 4.29
144 4.60

Note: Data from Exhibit 1-1.
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Exhibit -7 Condensed Plot of Precipitation pH versus Day of 1974

i0 LINE, 10 CHARACTER PLOT
405 < Y < 555 STEP = .15
=125 < X < 145, STEP = 25

+ 540 P P P 7

+ 525 2

+ 510

+ 495 8

+ 480 1

+ 465 5

+ 450 4 9 i 4 8 6
+ 435 2 6 2 3 4

+ 420 768 44 B

+ 405 4 4

precipitation events are plotted at the middle day of the event. Exhibit 4-7
shows the condensed plot. Compare this plot with the stem-and-leaf display of
these data in Exhibit 1-10. The three outlying values identified by the
stem-and-leaf program are represented by P’s. There doesn’t appear to be any
strong pattern in this plot, although some increase in pH may have occurred
after day 60 (1 Mar.).

The close similarity of stem-and-leaf displays and condensed plots
provides insight into the plotting of negative y-values. Condensed plots use
larger numbers to indicate points farther from zero on the same print line. As
a result, increasing the numeric code moves points up on a positive line but
down (away from zero) on a negative line. This is consistent with practiceina
stem-and-leaf display, where larger leaves on negative stems indicate more
negative (farther from zero) values.

Condensed plots may also have a line labeled —00 for the same reason
that stem-and-leaf displays can have a —0 stem. Small negative values just
below zero will naturally be plotted on the —00 line. (Review Section 1.3 fora
discussion of this.)

Because the plotting symbols increase away from the level y = 0, it is
important to know where this level is on the plot. W,hen' necessary (the
algorithm in Section 4.8 specifies exactly when), this level is marked on the
plot. The exact point where y equals O really falis between the two 00 lines, so
it is indicated with symmetrically placed marks on both of these lines. The
BASIC program begins the +00 and —00 lines with a “herringbone” that
graphically points to the invisible x-axis running between these lines. It looks
like this:
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H00) VA
-0}/ 7047

FORTRAN lacks the backslash character (\), so its marker consists of
parallel minus signs:

Any data value that should be plotted in one of the marked positions replaces
the axis mark. Exhibit 4-8 shows an example, plotting the January tempera-
ture against the air pollution potential of hydrocarbons in 60 SMSAs. (See
Exhibits 1-7 and 1-5 for the stem-and-leaf displays of the temperature and
HC data.)

Finally we note that, as in the stem-and-leaf display, y-values exactly
equal to zero do not clearly belong on either the +00 or the —00 line. (Or,
more properly, they belong on both.) In the stem-and-leaf display, we split
zeros between the two middle lines, but splitting in this way could disturb
patterns in an x-y plot. Here the usual rule is to assign zeros to the +00 line.
However, if the data contain no positive values, we place the zero values on the
—00 line. Handling this special case in this way saves a plot line and avoids
separating zero values from small negative values.

Exhibit 4-8

January Temperature (°C) versus Air Pollution Potential of Hydrocarbons in 60
SMSAs

9 LINE, 10 CHARACTER PLOT
Y FROM -12.0 TO 150 STEP 3.0
X FROM 10 TO 660 STEP 1.0

120 P 2 0 R

m >

4 § 4

30 4 2 8484 1

00) -—<0 1 0 1 300 5 15 9
00) ---3759 957 3 91 7 5 g

- 30 645 4 s R
- 80 2

- 9 7

R
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4.6 Bounds for Plots

data bounds

Whenever we display data graphically, we must decide whether to plot every
number or exclude possible cutliers so they do not dominate the display. The
condensed plotting programs antomatically exclude values beyond the fences,
just as the stem-and-leaf programs do. Now, of course, we need to know the
data bounds in both the x and y directions. (See Appendix A for the technical
details of these decisions.)

Because the plot is adjusted to be easy to read and to include all the
points within the data bounds, it is likely that the actual edges of the plot will
be slightly beyond the data bounds. These bounds are printed above the plot in
the legend.

Numbers that fall outside the plot bounds are indicated with special
characters along the edges of the plot, as described by the following diagram:

- P *
L PLOT R
» M -

That is, points whose y-values are too high appear as a P (for “plus™) on the
top line of the plot at the horizontal position appropriate for their x-value.
Similarly, points with extremely low py-values appear on the bottom line of the
plot as an M (for “minus’’). Points outside the horizontal plot bounds appear,
on the line corresponding 1o their y-value, in the leftmost or rightmost position
as an L (left) or R (right). Points that are extreme in two directions appear in
a corner position of the plot as an asterisk (*).

Exhibit 4-7 shows such data bounding in the y-axis dimension, and
Exhibit 4-8 shows bounding in both dimensions. In the second case especially,
the exclusion of cities with extraordinarily large hydrocarbon air pollution
potentials has preserved the patterns in the display. To see this, recall from
Exhibit 1-8 how extreme the high hydrocarbon values are. If we had tried to
include Los Angeles (at 648) on the plot, most of the other points would have
been hopelessly crowded to the left.

Whenever fewer than 10 characters are being used for plotting, the
unused “improper” characters are used on the highest and lowest lines to
indicate points just beyond the piot bounds. For example, on a 6-line,
8-character (0 through 7) plot, a point just barely too high for the top line will
appear on that line as the “improper” digit 8. Had this been an 8-line plot with
the same scaling, this point would have appeared on the next higher line as a 0.
Similarly, a point just far enough above this last one to require a new
digit—that is, a point that would have appeared as a 1 on the next higher line
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had there been one—will appear as a 9. Points too far away from the plot
center to be represented with improper digits are plotted with M and P. This
coding provides precise information about the location of points printed for
such “near outliers” will indicate how many lines they are beyond the edge of

the plot. Thus, a 2 says that the point is on the second line beyond the lines now
printed.

4.7 Focusing Plots

Although the condensed plotting programs provide default choices of data
bounds, at times it is useful to override these choices. The plotting programs
can be focused on any region of the x-y plane by specifying minimum and
maximum values for each axis. If the data extremes are specified, the plot will
include all of the data points. If a small region is selected, this region will be
blown up to fill the entire plotting area, and points beyond the specified
borders of that region will be treated as outliers. This feature makes it possible
to focus on a portion of a complex display so as to better understand its fine
structure.

It is also possible to divide part of the x-y plane into equal-sized
rectangular regions and to generate condensed plots for each region (or just for
regions known to contain data points). These plots can then be pasted together
to obtain a highly precise montage display. If the regions are the same size, the
plots will have the same scale. With practice, the top and bottom plot lines,
which will fill with “outliers,” can be made superfluous by overlapping the
regions slightly. For example, five 10-line, 10-character plots can be used to
cover a smoothly increasing relationship by choosing regions placed diagonally
across the x-y plane. The resulting montage will have the same vertical
resolution as a 500-line printer plot—close to the resotution possible on many
graphics devices—yet the display will have taken only 50 lines and about 2
minutes (at 30 characters per second) to print,

4.8  Using the Programs

The condensed plot programs accept pairs of data values specified as corre-
sponding elements of two arrays. For example, the first element of one array
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and the first element of the other array make up the first (x, y) pair. The
number of lines and number of characters may be specified. If these are not
specified, the program uses 10 lines and 10 characters. In addition, a choice is
available between either plotting all the data or focusing only on data between
the adjacent values on both x and y; the latter choice is the default.
Alternatively, explicit bounds for x or y can be specified.

t 4.9 Algorithms

The design principles of the plotting algorithm are described in Appendix A,
which should be read at this time. This section uses the vocabulary established
in that appendix.

The programs accept data value pairs in arrays X() and Y{}. They find
the adjacent values for both Y and X and use them to establish scale factors for
each dimension. Because the scale factors are *“‘nice” numbers, the viewport
may extend beyond the adjacent values. The legend is printed first to identify
the region of the x-y plane being displayed. Data in X and Y are ordered on Y,
retaining the pairing. The programs then step through the p-values in much
the same way as in the stem-and-leaf programs.

The plot is printed one line at a time. First, the y-label is constructed
much as a stem, but with as many as four digits. Then, for the values on the
current line, a plot symbol and x-position are determined. If the determined
print position is already filled, the more extreme of the two plot symbols is
retained. When all the data values belonging on that line have been processed,
the line is printed. The programs note the print position of the rightmost point
on the line, so that the line can be printed efficiently.

The +00 and —00 lines are marked to indicate the location of y = 0 if
both positive and negative y-values are to be plotted and if the marked lines
are at least three lines from the nearer edge of the display. The zero
indicators

WAWY L e T .
sigy D BASIC in FORTRAN

are placed on the line first and replaced by any data points falling into those
plot positions.
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1 4.10 Alternatives

It is possible to produce plots that offer a compromise between precision and
graphic impact by choosing plotting symbols that themselves contribute to the
graphics. What is needed is a set of symbols that prints progressively higher on
the line. One possible set is {— - }. This scheme can easily go awry when the
programs can be used from many different output terminals. (The example set
given would become {— -{} on some devices—far from the intended impres-
sion.)

More palatable alternatives are available to users with high-quality
graphic devices. The resolution of many of these devices is 500 to 1000 vertical
plot positions, which is far better than we can achieve with a condensed plot of
reasonable size. Readers wishing to use such devices may want to use the
plot-scaling programs provided in this book (see Appendices A and B). These
programs can be modified easily to suit any plotting device, and they
incorporate several features valuable in exploratory analyses. Appendix A
discusses these features and their function in exploratory analysis.

+4.11 Details of the Programs

FORTRAN
The FORTRAN subroutine PLOT is invoked with the statement

CALL PLOT{Y, X, N, WY, WX, LINSET, CHRSET, XMIN, XMAX, YMIN, YMAX, ERR)
where

X()and Y() hold the N ordered pairs (Xii), Y(il};

N is the number of data values;

wXi}and WY{}  are N-long work arrays to hold the (x, y)
values sorted on y;

LINSET specifies the maximum number of lines to be
used in the body of the plot. (The scaling
routines may decide to use fewer lines.);
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CHRSET

specifies the number of subdivisions (charac-
ters) of each line. It can be no greater than
10. If either LINSET or CHRSET is zero, the
plot format defaults to 10 lines, 10 charac-
ters;

XMIN and XMAX  specify the range of x-values to be covered by

the plot;

YMIN and YMAX  specify the range of y-values to be covered by

ERR

BASIC

the plot;
For either pair of bounds, if the minimum
and maximum bounds are equal, the
program defaults to using adjacent values
on that dimension;
is the error flag, whose values are
0 normal
41 N < 5—too few points to plot
42 violates 5 = lines = 40 or
1 = characters < 10
44 all x-values equal; no plot possible
45 all y-values equal; no plot produced.

The BASIC subroutine is entered with N data pairs (X{i), Y{i}} in arrays X{} and
Y( ). The plot format is specified by the version number, V1:

Vi=1
V=2
Vi=13
Vi <0

6-line, 4-character (Andrews-Tukey) plot;

10-line, 10 character plot;

30-line, 1-character plot {ordinary computer plot);
asks for input to override all scaling options.

All of the pre-set plots are scaled automatically to the adjacent values in both
dimensions. The program builds each line of the plot in the P{) vector so that
overprints can be dealt with gracefully. Because the program stores the ASCII
values of characters and numerals, the check performed to select the more
extreme of two values falling at the same plot position depends on the ASCII
collating sequence. Programmers on non-ASCII systems should check the
indicated portions of the code to be sure the collating sequence that their
systems use is compatibie.
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On small computers, sorting on Y{} and carrying X{) can be time-
consuming. Time spent optimizing this subroutine for a particular machine
can significantly improve the speed of the plotting programs.

Reference

Andrews, David F., and John W. Tukey. 1973. “Teletypewriter Plois for Data
Analysis Can Be Fast: 6-line Plots, Including Probability Plots.” Applied
Staristics 22:192-202.

Programming Proceed.
?

Proceed.
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REM CONDENSED PLOTTING SUBROUTINE

REM PLOT Y() V5 X({)}, LENGTH N

REM ON EXIT DATA IS RESORTED ON X{) CARRYING Y().

REM VERSIONS: V1=1 : 6-LINE, 4-CHARACTER (ANDREWS-TUKEY} FPLOT
REM V1=2 : 10-LINE, 10-CHARACTER PLOT

REM V1=3 : 30~LINE, 1-CHARACTER PLOT (OLD-STYLE PLOT)

REM Vi< ASKS FOR INPUT TO OVERRIDE ALL SCALING OPTIONS.

LET L = 6

LET C = 4

IF V1 = 1 THEN 5330
LET L = 10

LET C = 10

IF V1 = 2 THEN 5330
LET L = 30

LET C =1

IF V1 = 3 THEN 5330
IF vl < 0 THEN 51%0
PRINT "ILLEGAL PLOT VERSION SPECIFIED:"

REM L=4§LINES,C=4CHRS,Q$=DATA BOUND MODE OF OLD,NEW,DEFAULT

PRINT TAB(MO);"#LINES, #CHRS";
INPUT L,C

PRINT "DATA BOUND MODE";
INPUT Q$

IF Q% = "DEFAULT"™ THEN 5330

REM STILL NEED TO SORT EVEN IF NOT AUTO SCALING.
REM SCRT ON Y CARRYING X

GOSUB 1400

GOSUB 1200

GOSUB 1400

IF 0% = "NEW" THEN 5530

IF 0% = "OLD"® THEN 5550

PRINT TAB(MO};"DATA BOUND MODE MUST BE OLD, NEW, OR DEFAULT"
GO TO 5210

REM GET DEFAULYT LIMITS FOR X-Y PLOT IN P1,P2,P3,P4
REM COPY X() TO W() AND SORT

GoOsue 3000
GOSUB 2500
LET P3 = A3
LET P4 = A4

IF P4 P3 THEN 5420
g%égT TAB(HB),'X*RANGE ZERO"

110
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5420

5430
5440
5450
5460
5470
5480
5490
5500
5510
5520
5530
5540
5550
5560
5570
5580

5590

5600
5610
5620
5630
5640
5650
5660
5670
5680
5690
5700

5710

5720
5730
5740
5750
5760
5770

5780

5790
5800
5810
3820
5830

REM SORT ON Y() CARRYING X() (UTILITY SCRT DOES THE REVERSE).

GOSUB 1400
GosuB 1200
GOSUB 1400
FOR I =1 TO N
LET W(I) = Y(I)
NEXT I
GOSuUB 2500
LET Pl = A4
LET P2 = A3
GO TO 5600
PRINT TAB{MO}; "DATA BOUNDS: TOP, BOTTCM, LEFT, RIGHT";
INPUT P1,P2,P3,P4
IF Pl > P2 THEN 5580
PRINT TAB{MO);"ILLEGAL BOUNDS"
GO TO 5190
IF P3 >= P4 THEN 5560

REM SET UP MARGINS

LET M = M9 - M0 - 5

IF M >= 22 THEN 5640

PRINT TAB{MO);"MARGIN BOUNDS ";MO;M9;" TOO SMALL A SPACE"
STOP

IF L > 0 TEEN 5670

PRINT TAB{MO};"1 TO 40 LINES, 1 TO 10 CHARACTERS"
GO TO 5190

IF L > 40 THEN 5650

IF C > 10 THEN 5650

IF C < 1 THEN 5650

LET C = INT(C)

REM FIND A NICE LINE HEIGHT

LET H1 = P1
LET L0 = P2
LET P9 = INT(L)
LET NS = 3

LET A8 = 1
GOSUB 1900

REM PRESERVE THE Y-DIRECTION UNIT

LET Ul = U

IF N4 <> 10 THEN 5850
LET N4 =1

LET N3 = N3 + 1

LET Ul = 10 "~ N3
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5840

5850
5860
5870
5880
5890
5900
5910
5920
5930
5940

5950
5960
5970

5980
5990

6000

6010
6020
6030

6040

6050
6060
6070
6080
6090

6100
6110
6120
6130

6140
6150
6160
6170
6180
6190
6200
6210
6220
6230

ABCs of EDA

REM L1=NICE LINE WIDTH,L=4LINES REQUIRED,L2=L/2 FOR FORMAT

LET L1 = P7

LET L = P8

LET L2 = INT(L / 2)
LET H1l = P4

LET LO = P3

LET P9 = M

LET A8 = 0

GOSUB 1900

LET M1l = P7?

LET M = P8

REM MI1=NICE WIDTH OF 1 CHARACTER IN X,M=NICE MARGIN REQUIRED
REM DETERMINE NICE DATA BOUNDS
REM FIND NICE PLOT EDGES--ROUND AWAY FROM CENTER OF PLOT

LET P2 = FNF(P2 / L1) * L1

LET Y4 = FNC(Pl / L1)

REM Y4 IS ¥ LINES FROM ZERO. IT IS USED TO CONSTRUCT LINE LABELS
SAFELY

LET Pl = Y4 * L1

LET P3 = FNF(P3 / Ml) * Ml

LET P4 = FNC(P4 / M1l) * Ml

REM NOW DATA BOUNDS ARE NICE

PRINT TAB(M / 2 - 11);L;" LINE, ®;C;"™ CHARACTER PLOT"
PRINT

PRINT TAB(MO);P2;"< ¥ <";Pl;%, STEP =";L1

PRINT TAB(MO)}:;P3;"< X <";P4;", STEP =";Ml

PRINT

REM INITIALIZE FOR PLOTTING:L5=LINE WIDTH MANTISSA FOR LABELS
REM Y2=CUT IN Y DIRECTION--STARTED ONE L1 TCO HIGH

REM Y3=EDGE OF LINE NEAREST 0,USED TO FIND CHARACTER

REM LB=LABEL;N7=POSITIVE FLAG;L9=LINE COUNT

LET L5 = L1 / U1
LET ¥2 = Pl
LET ¥3 = ¥2

IF Y2 >= 0 THEN 61%0
LET ¥3 = ¥2 + Ll

LET N7 =1

IF Pl >= 0 THEN 6220
LET N7 = 0

LET L% = 0

LET K =N + 1
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6240

6250
6260
6270
6280

6290

6300
6310
6320
6330

6340

6350
6360
6370

6380

6390
6400
6410
6420
6430
6440

6450

6460
6470
6480
6490

6500

6510
6520
6530
6540
6550
6560

6570

6580
6590
6600
6610
6620
6630

REM START A NEW LINE OF PLOT
FOR I =1 TOM
LET P(I) = ASC(" ™)
NEXT 1
LET P6 = 0
REM POINTER TO PRINTING CHARACTER

IF Y2 = 0 THEN 6320

LET Y3 = Y3 - L1
LET Y2 = Y2 - L1
LET L9 = L% + 1

REM PRINT THE LABEL TO START THE LINE

LET ¥4 = FNI(Y4 - 1)
LET L8 = Y4 * L5
ON SGN(Y4) + 2 GO TO 6390,6410,6670

REM - 0 +

PRINT TAB(MO);"-";

GO TO 6700

IF N7 = 0 THEN 6580
PRINT TAB(MO};"+ 00:";
LET N7 = 0

LET ¥4 = FNI(Y4 + 1}

REM MARK ZERO LINES SINCE CHARACTERS COUNT OTHER WAY PAST HERE

LET F3 = 0

IF C = 1 THEN 6720

IF L - L9 <= 2 THEN 6720
LET F3 =1

REM ASCII BACK SLASH IS 92
FOR I =1 T0 5

LET P(1) = 92
LET P(M — I + 1) = ASC("/")

NEXT I
LET P6 = M
GO TO 6720

REM ~00 LINE

PRINT TAB(MO);"- 00:";
IF F3 <> 1 THEN 6720
FOR I =1 TO 5
LET P(I} = AsSC("/™)
LET P{M - I + 1) = 92
NEXT I
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6640 LET P6 = M
6650 GO TO 6720

6660 REM POSITIVE LINE
6670 PRINT TAB(MO);™+";

6680 REM THE 3 MOST INTERESTING DIGITS ARE EITHER SIDE OF THE ONE
6690 REM POINTED TO BY THE UNIT., USE THEM FOR Y LABEL,

6700 LET L$ = STRS${ PNI{10 * ABS(L8)))
6710 PRINT TAB(MO + S - LEN(LS)});LS$;":";

6720 REM GET NEXT DATA POINT

6730 LET K =K - 1

6740 IF K <= 0 THEN 7200

6750 LET X7 = X(K)

6760 LET ¥7 = Y (K)

6770 IFP (1 + EO) * ¥7 > = Y2 THEN 6830

6780 REM LAST LINE SKIPS CHECK FOR NEXT LINE

6790 IF L9
6800 LET K

L THEN 6830
K +1

6810 REM NEED A NEW LINE--WRAP THIS ONE UP

6820 GO TO 7210

6830 REM GET CHARACTER FOR DETAIL ON Y POSITION

6840 LET Y0 = INT({ ABS({({l1 + EQ) * Y7 — ¥3) / L1) * C)
6850 REM YO0 IS THE NUMBER TO PRINT

6860 LET Y1 = ASC("0O") + YO0
6870 IF Y0 <= 9 THEN 6910
6880 LET Y1 = ASC("M")

6890 IF L9 = L THEN 6910
6900 LET Y1 = ASC("P%}

6910 REM GET X POSITION AND PLACE CHARACTER THERE

6920 LET X0 = FNI{{(X7 - P3) / M1} + 1
6930 IF X0 >= 1 THEN 6970
6940 LET Y1 = ASC("L")

6388 &67+8%7508

6970 IF X0 <= M THEN 7060
6980 LET Y1 = ASC("R"™)
6990 LET X0 = M
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7000

7010
7020

7030
7040
7050

7060
7070
7080
7090
7100
7110
7120
7130
7140

7150

7160
7170
7180
7190
7200

7210

7220
7230
7240
7250
7260
7270

7280

7290
7300

REM OUTLIER IN 1 OR 2 DIRECTIONS?

IF Y0 <= 9 THEN 7060
LET Y1 = ASC("*")

REM ALWAYS FAVOR THE MORE EXTREME VALUE
REM DONT OVERWRITE OUTLIERS
REM >>VERY ASCII-DEPENDENT CODE HERE

IF P(X0) = ASC("*"™) THEN 7200
IF Y1 = ASC("*") THEN 7110

IF P(X0) = 92 THEN 7110

IF P(X0) > ASC{™9") THEN 7150
IF P(X0) >= Y1 THEN 7200

LET P(X0) = Y1

IF P& >= X0 THEN 7200

LET P6 = X0

G0 TO 7200

REM EITHER L,R,M,0R P IN Y(X0) ALREADY

IF Y1 <= ASC("9") THEN 7200
IF Y1 = P(X0} THEN 7200

LET Y1 = ASC("*")

GO TO 7110

IF K > 1 THEN 6720

REM PRINT THE LINE

PRINT TAB(MO + 4);

FOR I =1 TO P6
PRINT CHRS(P({1));

NEXT I

PRINT

IF K > 1 THEN 6240

REM IF MORE TO PLOT, GO DQ IT. ELSE SORT ON X() AND RETURN

GOSuUB 1200
RETURN
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FORTRAN Programs

SUBROUTINE PLOT(Y+ Xy Ny WY, WXy LINSETy CHRSETy XMIN, XMAX,
1 YMIN, YMAX, ERR)

PLOT THE N CRDERED PAIRS (X(I}, Y(I))} USING A CONDENSED PLOT.
CONDENSED PLOTTING USES THE PLOTTING SYMBOL TO INDICATE THE FINE
DETAIL OF VERTICAL SPACING. AS A RESULT, MORE PRECISION CAN BE
CONVEYED IN FEWER LINES. MULTIPLE PDINTS FALLING AT THE SAME
PLOT POSITION ARE NOT INDICATED. HOWEVER —— THE MOST EXTREME
{IN Y} POINT WILL BE SELECTED FOR DISPLAY.
X{) AND Y{)} ARE NOT MODIFIED BY THE PRDGRAM. WORK 15 DONE USING
THE WORK ARRAYS WY() AND WX{) SUPPLIED BY THE CALLING PROGRAM.
THE DETAILS OF PLOT FORMAT ARE DETERMINED BY THE PARAMETERS IN THE
CALLING SEQUENCE. LINSET SPECIFIES THE MAXIMUM NUMBER OF LINES TO
BE USED. CHRSET SPECIFIES HOW MANY DIFFERENT CDDES CAN BE USED ON
EACH LINE. IF EITHER OF THESE IS ZERQ, THE PROGRAM DEFAULTS TO
10 LINES AND 10 CHARACTER CODES (0 THRU 9).
XMIN AND XMAX SPECIFY THE RANGE OF X-VALUES TO BE PLOTTED.
YMIN AND YMAX SPECIFY THE RANGE OF Y=-VALUES TO BE PLOTTED.
FOR EITHER PAIR, IF THEY ARE SET EQUAL BY THE CALL ING PROGRAM,
THE PROGRAM DEFAULTS TO USING THE ADJACENT VALUES IN EACH DIMENSION.
THIS OPTION IS ALMOST ALWAYS PREFERRED FOR EXPLDRATORY PLOTS.

TNTEGER Ny LINSET, CHRSET, EFR
REAL YE{N)y XUIN}y WYCN), WX{N)y XMIN, XMAX, YMIM, YMAX

COMMON /CHRBUF/ P, PMAX, PMIN, QUTPTR, MAXPTR, OUNIT
INTEGER P(130)s PMAX, PMIN, OUTPTR, MAXPTR, OUNIT

FUNCTIONS
INTEGER INTFN, FLOOR, WDTHOF
CALLS SUBRQUTINES NPOSW, PRINT, PSORT, PUTCHR, PUTNUM, YINFO
LOCAL VARIABLES
INTEGER CHLy CHM; CHP, CHR,y, CHOy CHSy CHPLUSy CHMIN
INTEGER CHRPAR, CHSTAR
INTEGER LINES: CHRS,y MAXL, XPOSNS, 1ADJL, TADJH, NN, LFTPSN
INTEGER LNSFRZ, LINENO, PTR, NWID, PROCM, OCHAR, DPOS, YCHAR
INTEGER DPOSXs LNFLOR, LABEL,y I
REAL HH, HL, MED, STEP, TOP, BOTTOM, LEFT, RIGHT
REAL ADJXL, ADJXH,s ADJYL., ADJYHy XFRACT, XUNIT. XNPW, YFRACT

REAL YUNIT, YNPW, YLABEL, XVAL, SYVAL. NICNOS{9)
LOGICAL NEGNDW, MARKZS
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DATA CHL, CHM,y CHP, CHR,s CHO, CHO9/12, 13, 16, 18, 27, 36/
DATA CHPLUS yCHMIN,CHSTARyCHRPAR/39, 40,4144/

DATA NN, NICNOS(1), NICNDS(2), NICNOS{3) /%9y 1.0+ 1.5, 2.0/
DATA NICNOS{&), NICNOS{(5)}y NICNOS(6) /2.5y 3.0y 4.0/

DATA NICNOS(7)s NICNOS(8), NICNOS(9) /5.0 7.0+ 10.0/

DATA MARKZS /.FALSE./

IF { N .GE. 5) GO TO 10
ERR = 41
GO TO 999
10 LFTPSN = PMIN + 6
LINES = 10
CHRS = 10
IFCLINSET .EQ. 0 .OR. CHRSET .EQ. 0} GO TO 30
LINES = LINSET
CHRS = CHRSET
ERR = 42
IFILTINES .LT. 5 L0OR. LINES .GT. 40) GO TO 999
IFICHRS 4LT. 1 .OR. CHRS .GT. 10) GO TO 999
ERR = 0

SET UP SCALES AND PLCT BOUNDARY INFORMATION

30 LFTPSN = PMIN + 6
PROCM = PMAX ~ LFTPSN + 1}
00 40 1 = 1, N
Wx(1} = xXti}
40 CONTINUE
IF{XMIN .GE. XMAX]) GD TO 45
CALL YINFO{WXy Ny MEDs HL, HH, ADJXL, ADJXH, 1ADJL, IADJH,
1 STEP, ERR)
IF(ERR .NE. 0} GO TO 999
IF(ADJXL .LT. ADJXH} GO TQ 50

IF X=-ADJACENT VALUES EQUAL,s TRY USING THE EXTREMES

45 ADJXL = WX{1)
ADJXH = WX(N)
ERR = 44
TIFLADJXL .GE. ADJXH) GO TO 999
ERR = 0
S0 CALL NPOSW{ADJXHy ADJXLs NICNOS, NN, PROOM, .FALSE., XPOSNS.
1 XFRACT, XUNIT, XNPW., ERR)
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C SCALE Y -=-SNRT {X, Y) PAIRED ON Y

c

[z XzNal

"
C
c

60

&5

68

F IND

70

DO SOOI =1, N
WX(I) = X{1)
WY{I) = Y{I)
CONTINVE
CALL PSORT(WY, WX, Ny, ERR)
IF{YMIN .GE. YMAX} GO TO 65
CALL YINFO(WY, Ny MED, HL, HH, ADJYL, ADJYH, 1ADJL, TADJH,
STEP, ERR}
IF{ERR .NE. Q) GO TO 999
GO TO &8
ADJYL = WY(1}
ADJYH = WYU(N)
ERR = 45
IF(ADJYL .GE. ADJYH} GO TO 999
ERR = ¢
MAXL = LINES
CALL NPODSW{ADJYH, ADJYL, NICNDS, NNy MAXL, .TRUE.s; LINES,
YFRACTy YUNIT, YNPW, ERR)
IF(ERR .NE. 0) GO TO 99%
IF (YFRACT .NE. 10.0) GO TO 70
YFRACT = 1.0
YUNIT = YUNIT*10.0

NICE PLOT EDGES =~ ROUND AWAY FROM CENTER OF PLOT

LNSFRZ = =FLOOR{-ADJYH/YNPW)

TOP = FLOAT{LNSFRZI) * YNPW

BOTTOM = FLOAT(FLOOR(ADJYL/YNPW)) * YNPW
LEFT = FLOATIFLOORLADJXL/XNPH)]} * XNPW
RIGHT = FLOAT(~FLOOR(-ADJXH/XNPWE}) * XNPW

PRINT SCRAWL

$070

c
c
C

9080

1

WRITE(OUNIY, S070) LINES, CHRS

FORMAT(15Xs 13, TH LINE, o I3, 15H CHARACTER PLOT)

WRITE(OUNIT, 90BO)BOTTOM, TOP, YNPW, LEFTsy RIGHY, XNPW
FORMAT{15X, B8H Y FROM , F12.6, 4H TO , Fl2.6s TH STEP , Fl2.6/
15Xy BH X FROM , F12.65 4H TO  Fl2.6y TH SYEP 4 Fl2.6//)

INITIALIZE FOR PLOTTING--ONE LINE TOD HIGH
LNSFRZ COUNTS # LINES AWAY FROM ZERQ~-+00 AND —-00 ARE O LINES AWAY.

80

YLABEL = FLOAT(LNSFRZ) * YFRALT
LNFLOR = LNSFR2Z

IF{TOP .GT. 0.0) GO TO 80
LNSFRZ = LNSFRZI + 1

NEGNOW = .TRUE.

LINEND = O

PTF = N+]



FORTRAN

N xE el [aEaly)

[xXzxEel

[aXaKe

START A NEW LINE OF THE PLOT

90 LNFLOR = LNFLOR = 1
LINEND = LINENG + )}
OPDS = PMIN

IFILNSFRZ .GT. O .0R. NEGNOW) GO TO 95

JUST WENT NEGATIVE

NEGNOW = .TRUE.
GO TO 97
95 LNSFRZ = LNSFRZ -~ 1
YLABEL = YLABEL ~ YFRACT
97 CONTINUE

PRINT THE LIME LABEL
IF{.NOT. NEGNOW) CALL PUTCHR(OPOS,

CHPLUS,

IF(NEGNOW) CALL PUTCHR(DOPOS, CHMIN, ERR])

IF(YLABEL .NE. 0.0} GO TO 120
OPOS = PMIN + 3

CALL PUTCHR(OPOSs CHO, ERR})
CALL PUTCHR(O, CHO, ERR)}

IF((CHRS .GT. 1) AND. ({LINES-LINENO) .GE.

OP0OS = PMIN + 5

CALL PUTCHR{OPOS, CHRPAR, ERR)

IF(.NOT. MARKZIS) GO TO 1i1l

D0 100 1 = 1,4 5
TFC.NOT. NEGNOW) CALL PUTCHR{O,
IF{NEGNOW) CALL PUTCHR(D, CHMIN,

100 CONTINUE
OPOSX = PMAX - 5
DO 110 0OPOS = OPOD3Xs PMAX

TF(+NOT. NEGNOW) CALL PUTCHR{Q, CHMIN,

IF(NEGNCW ) CALL PUTCHR{Q, CHMIN,
110 CONTINUE
111 CONT INUE
GO TO 125

PRINT NON-ZERO LABEL

120 LABEL = INTFN{10.0 * ABS{YLABEL) .
IF{ ERR «NE. 0} GO TO 999
NWID = WOTHOF{LABEL)
oPOS = PMIN + 5 = NWID

ERR)

3)) MARKZIS =

CHMIN, ERR}

ERR}

ERR)

ERR}

CALL PUTNUM(OPOS, LABEL, NWID, ERR)

1F {ERR .NE. 0} GO TO 999
GET NEXT DATA PLINTY

125 PTR = PTR = 1}
IF(PTR LLE. 0} GO TO 135
XVAL = WX{PTR)
SYVAL = WY(PTR} /YNPW

ERR)

119

«TRUE.
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TFUINTFNCSYVALy ERR) .GT. LNFLOR) GO TO 140
IFCINTEM(SYVAL,y ERR).EQ.UNFLOR LAND. SYVAL .GE. 0.0) GO 1O 140

TIME TO START NEXT LINE
IF THIS IS THE LAST LINE. PRINT IT ANYWAY AND USE "M% FOR LOW NO.

1320 TFILINEND .EQ. LINES) GO TO 140
BACK UP THE POINTER
PTR = PTR + 1}

WRAP UP LINE

GO0 OO0 OHOoOo

135 IFLERR LNE. Q) GO TO 999
CALL PRINT

AND START A NEW LINE
GO TQ 90
GET Y=CHARACTER

o000 o0

140 YCHAR = IFIX{ABS(SYVAL — FLOAT(LNSFRZ}) * FLOAT(CHRS})
OCHAR = CHO + YCHAR
IF(CCHAR .GE. CHD +AND. CCHAR .LE. CH9) GO TO 145
OCHAR = CHP
IF(LINENO -EQ. LINES) OCHAR = CHM

C GET X=POSITION

145 OPOS = PMIN + 5 + INTFN{{XVAL — LEFTI/XNPW, ERR}) ¢ 1
IF {(XVAL .GE. LEFT) GO TO 150
OPCS = PMIN + ¢
IF(OCHAR .LT. CHO .QR. OCHAR .GT. CHS9) GO TO 147
OCHAR = CHL
GO TO 140
147 OCHAR = CHSTAR
GO TO le0
150 IF(XVAL .LE. RIGHT) GO TO 160
OPOS = PMAX
1F(OCHAR LY. CHO .OR. DCHAR .GT. CH9)} GO TO 157
QCHAR = CHR
GO TO 160
157 OCHAR = CHSTAR
160 CONTINUE
CALL PUTCHRIOPOS, OCHAR, ERR)
IF(ERR J.NE. 0} GO TO 999
IF{PTR .GT. 1)} GO TO 125
CALL PRINT
999 RETURN
END
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response
Sfactor

Resistant Line

In Chapter 4 we focused our attention on flexible techniques for plotting a
response, y, against a factor, x. When the pattern of a plot suggests that the
value of y depends on the value of x, we often try to summarize this
dependence in terms of the simplest possible description—namely, a straight
line. We can represent any straight line with the equation

y=a+ bx

just by choosing values for @ and b. Once we have a and b, every pair of
numbers (x, ) that satisfies the relationship y = @ + bx will lie on a straight
line when plotted. In order to summarize any particular x-y data, we need
numerical values for @ and b that will make a line pass close to the data. This
chapter shows one way to find these values.

5.1 Slope and Intercept

slope

The numbers represented by a and b in the equation of a line have specific
meanings. The slope of the line, b, tells us how tilted the line is; more precisely,

121



122  ABCsof EDA

intercept

it teflls us the change in y associated with a one-unit increase in x. The
intercept, a, is the height (level) of the line when x equals zero—that is, the
value of y where the line crosses the p-axis.

The slope and intercept of any straight line can be found from any two
points on the line. For example, we can choose a point on the left with a low
x-value—Ilabeled (x,, y;) in Exhibit 5-1—and a point on the right with a high
x-value—labeled (xg, yz). The slope, b, is defined as the change in y divided
by the corresponding change in x. Writing this quotient precisely with our two
points gives

ychange yr -y,
x change x; — x;

One common way to describe the slope is “‘change in y per change in x.”’ For
example, the statement “sales have grown by 2500 dollars per year™ specifies a
slope.

When we know b, we can find the intercept by using either of
these points and specifying that the line must pass through it. For example,
y, = a + bx,, where we already know b. Solving for a, we get

a=y, — bx,.

Exhibit 5-1

Finding the Slope and Intercept of the Line y = ¢ + bx

intercept @ = value when v is 0

—_—

X,
R ¥

YR
(‘\'L . -VL) slopc b= x

Y
IL‘h:mgc (¥g.¥g)

L

X
change

Note: In this example yg is smaller than y, 50 ¥, — y, is negative and the slope, b, is also negative.



Resistant Line 1 2 3

We can equally well get

a=yp— bxp.

Exhibit 5-1 shows the geometry behind these calculations.

5.2 Summary Points

When we deal with a line itself, it doesn’t matter which two points we use to
calculate ¢ and & because every point we consider is exactly on the line.
However, we can’t expect real data to line up perfectly. While many points
may be near a line, few will lie exactly on it. Many different lines could pass
close enough to the data to be reasonable summaries. Consequently, we can’t
just pick any two points from the data and expect to find a good line. Instead
we want to find points that summarize the data well so that the line they
determine will be close to the data.

To get an estimate of the slope, we need to pick a typical x-value near
each end of the range of x-values but not so near as to risk being an
extraordinary x-value. We do this by dividing the data into three portions or
regions—points with low x-values (on the left), points with middle x-values,
and points with high x-values (on the right)—with roughly a third of the
points in each portion. Exhibit 5-2 illustrates this partitioning. If we can’t put
exactly the same number of points into each portion because n/3 leaves a
remainder, we still allocate the points symmetrically. A single “extra™ point
goes into the middle portion; when two *“extra” points remain, one goes into
each outer portion. Whenever several data points have the same x-value, they
must go into the same portion. Such ties may make it more difficult to come
close to equal allocation. When we work by hand, we can usually use our
judgment to resolve the problem of equal allocation. Precise rules to handle all
situations may be found in the programs at the end of this chapter.

Within each portion (or third) of the data, we forget about the pairing
between the x-value and the y-value in x-y data and summarize the x-values
and the y-values separately. In each portion, we first treat the x-values as a
batch {and ignore y) and find their median. We then treat the corresponding
y-values as a batch and find their median. Thus, we obtain an (x, y) pair of
medians in each of the three portions. The points that these median pairs
specify need not be original data points, but they may be. Nothing forces the
median x-value and the median y-value to come from the same data point,
even though the assignment of y-values to portions is determined entirely by
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Exhibit 5-2 Dividing a Plot into Thirds and Finding Summary Points
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the x-values. For example, when the data points lie very close to a line with a
steep siope, the y-value order of the points wiil be the same as their x-value
order, and the median x-value and median y-value will come from the same
data point.

Because these points are chosen from the middie of each third of the
data, they summarize the behavior of the batch in each region. Accordingly,

skmmary they are called summary points. If we label the thirds as left (L), middle (M),
points and right (R) according to the order of the x-values, the three summary points
can be denoted by
(xL 2V L)
(X56> Vr)

(xg, yr).
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Exhibit 5-2 shows the three summary points for one data batch. As we will
see, using the median in finding the summary points makes the line resistant
to stray values in the y- or x-coordinate of the data points.

3.3 Finding the Slope and the Intercept

Once we have found the summary points, we can easily calculate the values of
a and b. For the slope, b, we return to its definition and divide the change in y
between the outer summary points, vy, — y;, by the change in x between these
same points, Xz — x;. Thus we find

Yr— Vs

p2rR N

Xp— Xp

The intercept, a, should be adjusted to make the line pass, as nearly as
possible, through the middle of the data. We could make it pass through the
middle summary point by computing the needed adjustment from that point:

a= Y — bxy.

However, rather than allow the middle summary point alone to determine the
intercept, we use all three summary points and average the three intercept
estimates:

a, =y — bx,
Ay = Vi — bxy

ag = yp — bxg
and hence

a=("Y)a, + ay + ag) = (K)(¥e + yu + ya) — blxp + xp + xg)).
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5.4 Residuals

residuals

model

fit

resistant line

A fundamental step in most data analysis and in all exploratory analysis is the
computation and examination of residuals. While we usually begin to examine
data with some elementary displays such as those presented in Chapters 1
through 4, most analyses propose a simple structure or model to begin
describing the patterns in the data. Such models differ widely in structure and
purpose, but all attempt to fit the data closely. We therefore refer to any such
description of the data as a fir. The residuals are, then, the differences at each
point between the observed data value and the fitted value:

residual = data — fit.

The resistant line provides one way to find a simple fit, and its residuals, r, are
found for each data value, (x;, y,), as

rp=y; —{a + bx;).

A pessimist might view residuals as the failure of 2 fit to describe the
data accurately. He might even speak of them as “errors,” although a perfect
fit, which leaves all residuals equal to zero, would arouse suspicion. An
optimist sees in residuals details of the data’s behavior previously hidden
beneath the dominant patterns of the fit. Both points of view are correct. The
best fits leave small residuals, and systematically large residuals may indicate
a poorly chosen model. Nevertheless, even a good fit may do nothing more
than describe the obvious—for example, prices increased during the 1970s; the
population of the United States grew during the same period—and leave
behind the interesting patterns—for example, the Vietnam war affected the
U.S. economy; the birthrate dropped sharply.

Any method of fitting models must determine how much each point
can be allowed to influence the fit. Many statistical procedures try to keep the
fit close to every data point. If the data include an outlier, these procedures
may permit it to have an undue influence on the fit. As always in exploratory
data analysis, we try to prevent outliers from distorting the analysis. Using
medians in fitting lines to data provides resistance to outliers, and thus the
line-fitting technique of this chapter is called the resistant line.



Resistant Line 1 27

5.5 Polishing the Fit

Resistance to outliers has one price. The values found at first for the intercept,
a, and the slope, b, are often not the most appropriate ones. A good way to
check the values we have found is to calculate the residuals, treat the points

(x, residual) = (x;, y;: — (@ + bx;)),

as x-p data, and find summary points as before. If the slope, &, between the
outer summary points is zero (or very close to zero), we are done. If not, we
can adjust the original slope by adding the residual slope &' to it. We will, of
course, want to compute the new residuals to see whether their slope is now
close enough to zero.

Sometimes we will have overcorrected, and the new residuals will tilt
the other way. When we have two slopes, one too small (residuals have a
positive slope) and one too large (residuals have a negative slope), we know
that the correct slope lies between them. We can often improve the slope
estimate very efficiently by using the correction formula

Buw = by — b [(by — 1)/ (by - D)L
Here b, and b, are the two slope estimates, and &) and b3 are the slopes of the

residuals when &, and b, were tried. The example in the next section illustrates
this process and shows how still more corrections can be made if needed.

5.6 Example: Breast Cancer Mortality versus Temperature

In a 1965 report, Lea discussed the relationship between mean annual
temperature and the mortality rate for a type of breast cancer in women. The
data, pertaining to certain regions of Great Britain, Norway, and Sweden, are
listed in Exhibit 5-3 and are plotted in Exhibit 5-4.

In this example, # = 16 and n/3 = 5'A. To keep the thirds symmetric,
we want to allocate the spare data value to the middle third in order to have 5
poinis in the left third, 6 in the middle third, and 5 in the right third; because
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Exhibit 5-3 Mean Annual Temperature (in °F) and Mortality Index for Neoplasms of the

Female Breast

Mean Annual Temperature Mortality Index
51.3 102.5
49.9 104.5
50.0 100.4
492 9589
48.5 87.0
47.8 95.0
47.3 B8.6
45.1 89.2
46.3 78.9
42.1 84.6
44.2 81.7
43.5 72.2
42.3 65.1
40.2 68.1
318 67.3
340 52.5

Source: Data from A.J. Lea, *New Observations on Distribution of Neoplasms of Female Breast in Certain
European Countries,” British Medical Journal 1 (1965):488-490. Reprinted by permission.

no two x-values are the same, we can do exactly this. Ordering the (x, y)
points from lowest to highest wv-value and separating the thirds, we obtain the
first two columns of Exhibit 5-5. It is now a straightforward matter to find the
x- and y-components of the summary points;

Third Median x Median y

L 40.2 67.3
M 45.7 85.15
R 49.9 100.4

(In finding the summary values, we are reminded that the value or values that
determine median x and those that determine median y need not come from
the same data points.) Now the initial value of b is

b= VYo — Ve _ 1004 — 67.3
T oxg—x, 499 — 402

= 3.412,
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Exhibit 5-4 Mortality Index versus Mean Annual Temperature for the Breast Cancer Data of

Exhibit 5-3
X
X
100 - X
x x X
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X
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30 40 50

Mean Annual Temperature

and that of a is
a = "hl(ye + yu + ya) — blxg + xp + X))
= 4[(252.85) — 3.412 x (135.8)] = —70.17.
Thus the initial fitted line is
y=-—T7017 + 3.412x,

where y = mortality index and x = mean annual temperature. Now, at each
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Exhibit 5-5 Calculating Resistant Line for Breast Cancer Mortality Data of Exhibit 5-3

{x) {y) First Fourth Final
Temperature Mortality Residual Residual Residual
31.8 67.3 28.97 45.57 21.59
34.0 52.5 6.66 24.41 0.43
40.2 68.1 1.11 22.09 —1.89
42.1 84.6 11.12 33.10 9.12
42.3 65.1 -9.06 13.02 —-10.96
4315 72.2 -6.05 16.66 -7.32
44.2 81.7 1.06 24,13 0.15
45.1 89.2 5.49 29.03 5.05
46.3 78.9 —8.91 15.26 -8.72
473 88.6 -2.62 22.07 ~1.91
47.8 95.0 2.08 27.03 3.05
43.5 87.0 —8.31 17.00 —6.98
49.2 95.9 - 1.80 23.88 -0.10
49.9 104.5 4.41 30.46 6.48
50.0 100.4 -0.03 26.07 2.09
51.3 102.5 -2.37 24.41 0.43

first residuals

point we subtract the fitted value found by this line from the observed y-value,
according to y; — (@ + bx,). The subtraction yields the column of first residuals
in Exhibit 5-5 and completes the first iteration in the process of fitting a

resistant line to this set of data.

We can now compute the slope of these residuals. We find the median
of the first residuals in each portion and, from them, correction summary

points,
{40.2, 6.66)

(45.7, -0.78)
(49.9, —1.80),
and the slope of the residuals, |

—1.80 — 6.66

b= ——— = -0872,

49.9 — 40.2
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The second slope estimate is then
by, = 3.412 — 0.872 = 2.540.

The residuals from the line with this slope and the original intercept are the
“second residuals.” Their slope, b5, is found in the same way. Here it is 0.624.
We could adjust the intercept as well, but it is easier to wait until we have a
satisfactory slope estimate.

We now have two slope estimates, 3.412, and 2.540, which leave
residual slopes with opposite signs: —0.872 and 0.624. These are all we need to
apply the second correction formula. We compute a new slope estimate as

by = 2.540 — 0.624[(2.540 — 3.412)/(0.624 — (—0.872))] = 2.904,

We then compute the restduals from the line with slope b; and find their slope.
In this example, b3 = —0.024—much closer to zero than the previous residual
slopes.

Although a residual slope of —0.024 is small enough for most purposes,
we will try one more correction step. Because the final slope must lie between a
slope estimate that is too low (with positively sloped residuals) and one that is
too high (with negatively sloped residuals), we use the current best guesses for
these two estimates. Our latest estimate has negatively sloped residuals
(b = —0.024), so we use it and its residual slope in place of our former high
slope estimate, 3.412. This yields

By = 2.904 — (—0.024)[(2.904 — 2.540)/(—0.024 — 0.624)] = 2.890.
The residuals from the line with slope £, and the original intercept are in the
column of “fourth residuals™ in Exhibit 5--5. They have slope 0.0, so no further
adjustment is possible. Exhibit 5-6 summarizes these steps.

We can now compute the intercept using the summary points of the
fourth residuals. We find

a, = '4(24.41 + 23.10 + 24.41) = 23.98.
Thus the final fit is
y=(-70.17 + 2.890x) + 23.980ry = —46.19 + 2.890x.

We interpret this line as saying that mortality from this type of breast cancer
increases with increasing mean annual temperature at the rate of about 2.9
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Exhibit 5-6 The Resistant Line [terated to “Convergence” for the Breast Cancer Mortality Data

of Exhibit 5-3

Slope 1:3.412
Slope 2: 2.540
Slope 3: 2.904
Slope 4: 2.890
Fitted line: y = —46.2 + 2.890x

mortality index units per degree Fahrenheit. The intercept of the final ling has
no simple interpretation here except perhaps that if this trend held for colder
climates, the breast cancer mortality index would approach zero where the
mean annual temperature was 16.0° (because 2.890 x 16.0 = 46.2).

When we work by hand, we will usually stop with the second or third
slope estimate. When we can use a computer, a few more steps will often yield
the slope estimate with zero residual slope.

A few hints make the calculations easier: To use the second correction
formula, we need two slopes, one too high and one too low. If the slope of the
second residuals is not opposite in sign to the slope of the first residuals, we
must try larger corrections to the first slope estimate until the second residuals
tilt the other way. {This happens in a later example; see Exhibit 5-15.)

When we have two slope estimates and solve for the next estimate with
the formula

buew = by — B3[(b, — b)) /(b — b)),

it does not matter which slope is used for b, and which for b,. However, it is
usually best to choose as b, the slope estimate with smaller residual slope.

We can save computing in two ways. First, we need not find the
middle-third residuals until we have settled on a final slope. Second, we can
replace & by the difference between the right and left median residuals. A
little algebra shows that the divisor (xgz — x;) in the slope calculations cancels
out the formula for b,,,, so we can avoid dividing by it.

We always examine the residuals by displaying them in a stem-
and-leaf display and plotting them against x. Exhibits 5-7 and 5-8 show these
displays of the residuals, and Exhibit 5-5 lists the final residuals for compari-
son with earlier steps. The most noticeable feature in the plot of the residuals is
the high point at the left. We already noticed this deviant point in Exhibit 5-4,
and the residvals are now telling us that it did not twist the resistant line. A
closer look at Exhibit 5-8, along with an examination of the sign pattern of the
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Exhibit 5-7 Final Residuals from Exhibit 5-5
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Exhibit 5-8 Plot of Final Residuals against Mean Annual Temperature
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3.7 OQutliers

residuals in Exhibit 5-5, reveals an unusual pattern—four parallel diagonal
bands of points plus twa points at very low x-values and one at a high x-value.
Although no explanation for this pattern is evident, it may deserve further
attention.

In previous chapters, outliers were principally identified as data values that
are extraordinary on a single variable. By separating the data values into a fit
and a set of residuals, we are able to think about outliers in greater detail.
When we consider y-versus-x relationships, we must beware of points
that are extraordinary in p, in x, or in both simultaneously. Luckily, the
resistant line protects our analysis from most of the effects of such points.
Often the more interesting data points are those with extreme residuals. These
points are not well described by the fit and should therefore receive further
attention. They need not be outliers in either x or y alone. Exhibit 5-9 shows a
plot of age-adjusted mortality rate versus median education for the same 60
United States SMSAs considered in other examples. {See Exhibit 1-4 for the
data.) There is a clear trend: Higher median education is associated with lower
mortality rates. However, two SMSAs stand out as having a much lower
mortality rate than other SMSAs with similar median education levels. These

Exhibit 5-9

Age-Adjusted Mortality versus Median Education for 60 U.S. SMSAs
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two are York and Lancaster, Pennsylvania, which both contain many Amish,
who traditionally have expected a minimum amount of formal education of
their children. While these two SMSAs do have the lowest median education
levels of the 60 SMSAs reported, the median education levels are certainly not
extraordinary in themselves. What is remarkable is the large deviation of these
vatues from the general trend—a deviation that would show up as a large
residual from a resistant line.

Alternatively, it is possible for points exiraordinary in x and y to have
small residuals. This is likely when the x-value and y-value are naturally
extreme but not erroneous—that is, when the point is well described by the fit
but lies far from most of the data.

Data values with outlying residuals should be treated in much the same
way as simple outliers. We check for errors, and, if we cannot correct them, we
consider omitting these data values. If we believe the numbers to be correct,
we look for possible additional information to help explain their nonconformi-
ty. This search, in particular, is often well worth the effort because explainable
outliers often yield much valuable insight.

5.8 Straightening Plots by Re-expression

half-slopes

half-slope

ratio

A straight line is a desirable summary for an x-y relationship because of its
simplicity of form and of interpretation. However, the relationship between y
and x need not be linear. We can examine the shape of the relationship with an
x-y plot and look for more detailed information by plotting the residuals from
a resistant line against x. If either the original or residual plot shows a bend
and if the y-versus-x plot shows a generally consistent trend either up or down
rather than a cup shape, we may be able to straighten the y-versus-x
relationship by re-expressing one or both variables. Once again we will limit
our choice of re-expressions to the ladder of powers (see Section 2.4); and, as
before, we find that the ordering of powers also orders their effects.

We can get an idea of how straight the relationship between x and y is
by using the three summary points (Section 5.2). We approximate the slope in
each half of the data by computing the left and right kalf-siopes,

bL_yM“yL

_ bRSyR_yH
Xy — Xp

and ==,
Xp — Xu

and then we find the half-slope ratio, bp/b;. If the half-slopes are equal, then
the x-y relationship is straight and the half-slope ratio is 1. If the half-slope
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Exhibit 5-10 Patterns in x-y Relationships Point the Direction of Re-expressions on the Ladder of

Powers
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ratio is not close to 1, then re-expressing x or y or both may help. If the
half-slope ratio is negative, the half-slopes have different signs, and re-
expression will not help.

1f the half-slopes are not equal, the plotted line segment joining the left
and middle summary points will meet the line segment joining the middle and
right summary points at an angle, as shown in Exhibit 5-10. We can think of
this angle as forming an arrowhead that points toward re-expressions on the
ladder of powers that might make the relationship straighter. To determine
how we might re-express y, we ask whether the arrow points more upward—
toward higher y-values—or mor¢ downward—toward lower y-values. (The
half-slopes must have the same sign if re-expression is to help; so the arrow
cannot point directly to the right or to the left.) To determine how we might
re-express x, we ask whether the arrow points more to the right—toward
higher x-values—or more to the left—toward lower x-values. Exhibit 5-10
shows the four possible patterns.
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Thus, the rule for selecting a re-expression to straighten a plot is that
we consider moving the expression of y or x in the direction the arrow points.
That is, if the arrow points down, toward lower y, we might try re-expressions
of y lower on the ladder of powers. Recall that raw data is the 1 power; so,
moving down the ladder, we would try vy (!4 power), log(») (0 power), —1/vy
(-4 power), and so on. If the arrow points to the right, toward higher x, we
might try re-expressions of x higher on the ladder of powers, such as x? or x°.

As we saw when we re-expressed data to improve symmetry, the ladder
of powers orders re-expressions according to the strength of their effect. Thus,
if the half-slope ratio is well above 1 and the bend in the plot suggests moving
down the ladder of powers in y, vy will probably be straighter against x. If Jy
still shows a bend pointing toward lower y-values, then log(y) is likely to be
better. Of course, if we move far enough down the ladder of powers, the
half-slope ratio will eventually fall below 1, and the bend in the plot will point
the other way. Thus we can systematically seek a re-expression by examining
the half-slope ratio and letting it guide changes to stronger or less strong
re-expressions.

A little thought will reveal how re-expressing can straighten an x-y
relationship and why this mnemonic rule works. If the half-slopes point down
and to the right, as in part (a} of Exhibit 5-10, the higher y-values need to be
pulled together more to straighten the relationship. This is what re-expressions
lower than 1 on the ladder of powers do. For example, 0, 25, 100, and 225 are
made equally spaced by a square-root re-expression, and 1, 10, 100, and 1000
are made equally spaced by a log re-expression, If larger y-values grow more
rapidly than smaller y-values, re-expressing y by square roots or logs (or some
lower power) is likely to slow their growth and make the relationship
straighter.

An alternative interpretation of the “down and to the right” paitern is
to stretch out the higher x-values so that they grow as rapidly as their
corresponding y-values. Re-expressions above 1 on the ladder of powers do
this. For example, 0, 5, 10, and 15 are stretched to 0, 25, 100, and 225 by
squaring and to 0, 125, 1000, and 3375 by cubing.

Thus, re-expressions alter the shape of data by stretching or shrinking
the larger values differently from the smaller ones. Consequently, data
batches in which the larger values are many times larger than the smaller ones
will be more affected by re-expressing than will batches in which the largest
and smallest values are of about the same magnitude. Re-expressing data that
range from 10.3 to 13.8 is pointless, but data stretching from 3 to 3000 will
respond to even a small move along the ladder of powers.

The pair of half-slope lines meeting at the middle summary point will,
of course, suggest re-expressions for both x and y. We may choose to
re-express ¢ither y or x or both. Often the nature of the data will lead us to
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prefer re-expressing one or the other. Sometimes a particular re-expression for
x or y will be suggested by the units in which the data are measured or by some
other aspect of the data, but if re-expressing one of x and y does not straighten
the relationship sufficiently, we might try re-expressing the other. If either x
or y covers a much greater range of magnitude than the other, it will be more
affected by re-expression, so we might try to re-express it first and use the
other to “fine tune” the result. Finally, we often prefer to re-express y, simply
because we think of x as the circumstance or the base from which to predict or
describe y, and thus we prefer to have x in its original units,

When we work on a computer, we usually will not mind re-expressing
all of the x- or y-values, computing a new half-slope ratio, and drawing a new
plot. When we work by hand (or when getting the results from the computer
takes too long or costs too much), we can learn almost as much from the three
summary points alone. The summary points of re-expressed data can be found
by re-expressing the appropriate coordinates of the original summary points
because the summary points are defined in terms of the ordered data
values—first by using the ordered x-values to divide the data into thirds and
then by using the ordered x-values and ordering the y-values to find medians
within each third. We already have seen (in Section 2.4) that re-expressions on
the ladder of powers preserve order. Thus, the coordinates of the summary
points of the re-expressed data are simply the re-expressed coordinates of the
original summary points.

The half-slope ratio is computed from the summary points. Thus we
need not re-express all of the data; we can re-express the summary points alone
and compute a new half-slope ratio. We can then explore a variety of
re-expressions quickly and easily without having to re-express every data value
for each try. However, (as Section 2.4 warned) when two data values have
been averaged to compute a median for a summary point coordinate, we may
prefer to re-express each of them and then average so we can be more
accurate.

Example: Automobile Gasoline Mileage

Exhibit 5-11 reports mileage (in miles per gallon) and engine size (specifical-
ly, displacement in cubic inches) for thirty-two 1976-model automobiles. The
data are plotted in Exhibit 5~12. The plot clearly bends in a direction that
indicates a move down in the power of x or down for y. The half-slopes are
—0.083 and —0.022, and their ratiois 0.268. We could try to re-express x or y,
and the nature of the data suggests one re-expression. Gasoline mileage was
actually estimated by driving a measured course and observing the amount of
gasoline consumed—that is, by finding gallons used per mile. If we take the
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Exhibit 5-11 Gas Mileage and Displacement for Some 1976-Model Automobiles

Automobile mpg Displacement
Mazda RX-4 . 21.0 160.0
Mazda RX—4 Wagon 21.0 160.0
Datsun 710 228 108.0
Hornet 4-Drive 21.4 258.0
Heornet Sportabout 18.7 360.0
Valiant 18.1 225.0
Plymouth Duster 14.3 360.0
Mercedes 240D 244 146.7
Mercedes 230 22.8 140.8
Mercedes 280 19.2 167.6
Mercedes 280C 17.8 167.6
Mercedes 450SE 16.4 275.8
Mercedes 450SL 17.3 275.8
Mercedes 450SLC 15.2 275.8
Cadillac Fleetwood 10.4 472.0
Lincoln Continental 10.4 460.0
Chrysler Imperial 14.7 440.0
Fiat 128 324 78.7
Honda Civic 304 75.7
Toyota Corolla 339 71.1
Toyota Corona 21.5 120.1
Dodge Challenger 15.5 318.0
AMC Javelin 15.2 304.0
Chevrolet Camaro Z-28 13.3 350.0
Pontiac Firebird 19.2 400.0
Fiat X1-9 273 79.0
Porsche 914-2 26.0 120.3
Lotus Europa 304 95.1
Ford Pantera L 15.8 351.0
Ferrari Dino 197} 19.7 145.0
Maserati Bora 15.0 301.0
Volvo {42E 21.4 121.0

Source: From data et supplied by Ronald R. Hocking. Used with permission.



140

ABCs of EDA

_ —

A —_—

Exhibit 5-12 Gas Mileage versus Displacement for Some 1976-Model Automobiles
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reciprocal of the miles per gallon data (the —1 power), which is down the
ladder of powers, as we want, we obtain data in gallons per mile. This plot is
straighter—the half-slope ratio is 0.46—but not entirely straight (see Exhibit

5-13).

N

The shape of the plot of gallons per mile against displacement shown in

Exhibit 5~13 Gallons per Mile versus Displacement for Some 1976-Model Automobiles
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Exhibit 5-14 Gallons per Mile versus (Displacement) ~'/
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(Displacementy~1/3

Exhibit 5-13 indicates a move down in x. We might try gallons per mile and
Y(displacement), which is the 4 power. This pair of re-expressions yields a
half-slope ratio of 0.61—a value closer to 1.0 but still not satisfactory. If we
move to log(displacement), which is the zero power, the half-slope ratio is
0.81. One more step to 1/(displacement), which is the — 1 power, seems to go
too far: The half-slope ratio is 1.43. Thus we know that some power between
—1 and 0 (the log) should do a good job. After a few more trials, we find that
the reciprocal cube root, the —'; power, does quite well. The half-slope ratio
for (mpg)~' versus (displacement)~'” is 0.98—a value very close to the ideal
of 1.0. Displacement is measured in cubic inches; so the reciprocal cube root

Exhibit 5-15 Resistant Line for the Re-expressed Data of Exhibit 5-14

HALF-SLOPE RATIO = 1.0191
SLOPE 1: -.4063
SLOPE 2: -.3520
SLOPE 3: -.3752

SLOPE 4: -.3636
SLOPE 5: -.3751
FITTED LINE:

Y =12 +-35X
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Exhibit 5-16 Residuals versus (Displacement) */* for Line Fitted to Gailons per Mile

in Exhibit 5-15
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has simple units: 1/inches. Exhibits 5~14, 5-15, and 5-16 show the plot, the
resistant line, and the residuals, respectively.

This example illustrates an important aspect of re-expressing data.
Often, especially if both x and y are re-expressed, more than one pair of
re-expressions will make a plot reasonably straight. In these situations we
should use any available knowledge about the data to make a final choice. In
this example we considered how mileage is measured and the units of
displacement. Considerations of this nature keep us from automating re-
expression entirely, although if our only goal were a straight plot, that could be
done,

5.9 Interpreting Fits to Re-expressed x-y Data

While some re-expressions are easy to understand (*“gallons per mile” is as
natural as “miles per gallon™), often we have to take extra care in describing a
line fit to re-expressed x or y data values. We noted at the beginning of this
chapter that the intercept has the same units as the y-variable, and the slope is
in “units of y per unit of x.”” If either x or y is re-expressed, we need to use the
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re-expressed units in interpreting the slope and intercept. Thus in the gas
mileage example (Exhibit 5-15), the intercept could be interpreted as .12
gallons per mile, and the slope as —0.375 gallons per mile per reciprocal inch
of engine size. Because we have re-expressed both x and y, the units of the
slope are further away from the units of the original data. We can, however,
check that the sign of the slope is reasonable—a smaller engine would have a
larger reciprocal size and hence would use fewer gallons of gasoline per
mile—and it is still easy to use a new engine size in predicting gasoline
consumption.

When we have re-expressed y, an alternative interpretation can be
found by inverting the re-expression to obtain a fit for y in its original units.
Instead of the fitted linear equation vy = a + bx, we could consider the
equivalent form

y=(a+ bx) =a® + 2abx + b*x%

Instead of the fitted linear equation log(y) ~ a + bx, we could consider the
form y = 10¥**)_ Generally, whatever we gain by simplifying the expression of
¥, we lose by making the fitted equation more complex. We have, in the
resistant line, a convenient technique for fitting a line to an x-y relationship.
Re-expressions extend the power of this technique to cover a far wider range of
x-y relationships without the need for new fitting methods.

The residuals from a line fit to re-expressed y-values must be computed
in the re-expressed units. Thus the residuals in the gas mileage example are
found from

1

I S—— — isn)—19
observed mpg [0.12 — 0.375(disp) ']
and are in the re-expressed units, gallons per mile.

Sometimes, the first hint of a need to re-express y will be that the
residuals would look better after re-expression. For example, often larger
y-values are measured less precisely than smaller values. The residuals will
then show a wedge pattern when plotted against x—that is, they will be more
spread out at the x-values corresponding to large y-values, less spread out
where the y-values {and the measurement fluctuations) were smaller. Re-
expressing y by moving down the ladder of powers will often make the
measurement fluctuations more comparable and make the residuals more
evenly spread out. When a single re-expression of y both straightens the x-y
relationship and evens up the residual pattern, we might have additional faith
that it is a worthwhile re-expression, and we would rather use it to straighten
the relationship than re-express the x-variable.
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*5.10 Resistant Lines and Least-Squares Regression

The resistant line is one of many ways to fit a linear model to y-versus-x data.
The most common method is least-squares regression. Of course, these two
methods will generally not yield the same slope and intercept estimates, but
often the two sets of estimates will agree quite closely.

When our data contain outliers, or even when the distribution of the
residuals—from either fitted line-——has Jong tails, the resistant line is likely to
differ more markedly from the regression line. The primary reason for this
difference is that least-squares regression is not resistant to the effects of
outliers.

When the distribution of the residuals is close to Gaussian and the data
satisfy some other restrictions, least-squares regression permits us to make
statistical inferences about the line. The resistant line is not yet accompanied
by an inference procedure. However, if the data do not meet the conditions for
regression, it is dangerous to draw inferences from a least-squares line. In such
instances, the resistant-line technique is likely to provide a better description
of the data,

Most statistical computer packages include programs for least-squares
regression. When we are analyzing data with such a package, it is usually
worthwhile to At both a resistant line and a least-squares regression and
compare the two lines. If they are similar, the regression line might be
preferred for the inference calculations it allows. If the lines differ, the
residuals from the resistant line may reveal the reason.

When we work by hand, we will usvally prefer the resistant line
because of its simpler calculations. When we use a computer, it is often helpful
to fit a resistant line first. This allows us to (1) check that the y-versus-x
relationship is linear, (2) find a re-expression to straighten the relationship if
necessary, and (3) check the residuals for outliers. Once we are reassured that
the data are well-behaved in these ways, we can fit a least-squares regression
line.

5.11 Resistant Lines from the Computer

As we have seen, the computer can save us much calculating work in finding a
resistant line and can print the slope of the fitted line at each step of the
iteration. We must tell the programs whick variables to treat as x and y. In
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addition, we should specify where the residuals are to be put. These specifica-
tions may not be necessary in some implementations. They are automatic in
the BASIC programs.

The programs offer two modes of operation: verbose and silent. In
verbose mode—the recommended mode for exploring data—each iteration of
line polishing is reported. In silent mode, only the final fit is reported. As an
additional option, the programs can be told to limit the number of polish
iterations. The default limit is 10 iterations—usually more than enough. Some
peculiar x-p data (especially when ties among x-values drastically reduce the
size of the middle third) may require more iterations.

In addition to the resistant line and residuals, the programs also report
the half-slope ratio for assessing the straightness of the x-y relationship.
However, the program will attempt to fit a line even if the half-slope ratio
indicates nonlinearity. It is up to the data analyst to recognize and treat this
difficuley.

t 5.12 Algorithms

The programs begin by dividing the batch into thirds and finding summary
points. The algorithm to do this ensures that points with the same x-values will
be assigned to the same region and that no region will have too few points. (If
one of the outer regions has fewer than 3 points, the line will not be resistant.)
If only two distinct regions can be defined, the programs proceed with them. If
even this is impossible, the programs report the error. _

Resistant-line polishing iterates unti} the slope estimate is correct to at
least four digits. {The algorithm does this by keeping an upper and a lower
bound on the correct slope.) The user must supply a maximum for the number
of steps, in case the process fails to converge. If this happens, the programs
return the last bounds on the slope. Otherwise, they return the final slope

estimate and an intercept estimate chosen to make the median of the residuals
zero.

FORTRAN

The FORTRAN program for resistant line is a single subroutine, RLINE. When
in verbose mode (TRACE set .TRUE.), it writes a report of each iteration.
However, in both verbose and silent modes, the program returns the final fit
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without printing it. Thus the calling program is responsible for printing the
results. This makes it possible to use the resistant-line subroutine as a part of a
larger program. To request a resistant line for data values (x, ) in the parallel

arrays X{ } and Y{}, use the statement

CALL RLINE(X, ¥, N, RESID, WORK, NSTEPS, SLOPE, LEVEL, LLS, LUS, TRACE,

LHSLOP, RHSLOP, HSRTIC, ERR}

The arguments are as follows:

X{hy(}
N
RESID( }

WORK(}
NSTEPS

SLOPE, LEVEL

LLS, LUS

TRACE

LHSLOF, RHSLOF,
HSRTIO

ERR

BASIC

The BASIC program for resistant-line fitting expects N (x, p) pairs in the
parallel arrays X{) and Y{). It returns coefficients in B0 and B1, and residuals in

are N-long arrays holding the data pairs;

is the number of data values;

is an N-long array in which residuals are
returned;

is an N-long scratch array;

is the maximum number of polish iterations
permitted;

are REAL-valued variables, which return b
and a;

are the “last lower slope” and *last upper
slope”—return zero if the iteration has
converged, otherwise return the last
bounds on the slope;

is a LOGICAL variable, set .TRUE. to report each
iteration or .FALSE. to just pass back the
solution;

are the left half-slope, right half-slope, and
their ratio, RHSLOP/LHSLOP (returned by the
subroutine to aid in assessing straight-
ness);

is the error flag, whose values are

0 normal

51 N < 6—too few data values

52 NSTEPS = 0—no iteration requested

53 all x-values equal-—no line possible

54 split is too uneven for resistance.
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R(). Before the first fitting step, the program prints the half-slope ratio. For
version V1 = 1 the program requests a maximum iteration limit and reports
only the final fit; otherwise it reports the slope at each iteration. In this verbose
mode, the output format is modified to round the slope so that the last two
digits of the number printed are the only ones likely to have changed since the
previous iteration. This makes it easy to judge the precision of the slope
estimate as the iteration proceeds.

The program returns X{ ) and Y{) sorted on X() and returns the residuals
(also sorted on X{1) in R{). The program uses the defined functions, the pair
sorting subrouting, and the sorting subroutines.

Reference

Lea, A.J. 1965. “New Observations on Distribution of Neoplasms of Female
Breast in Certain European Countries.” British Medical Journal 1:488-490.

Programming Proceed.
?

Proceed.



5000
5010
5020
5030
5040

5050
5060
5070
5080
5090
5100
5110
5120
5130

5140
5150
5160

5170
5180
5190
5200
5210
5220

5230

5240
5250
5260
5270

5280

5290
5300
5310

5320

5330
5340
5350
5360

5370

5380
5190
5400

BASIC Programs

REM COMPUTE AND PRINT RESISTANT LINE ¥OR N PAIRS (X,Y)
REM 1IN X{), Y(). ON EXIT, X{() AND ¥Y{) HOLD ORIGINAL DATA
REM SORTED ON X{); R() HOLDS RESIDUALS SORTED ON X{).
REM IF V1>1 PRINTS APPROXIMATIONS AT EVERY STEP.
REM DEFAULT MAX#ITERATIONS=10, TOL = 1,0E-4
LET J9 = 10
LET T0 = 1,0E - 4 * 0,5
IF N > 5 THEN 5100
PRINT "N<¢=5"
RETURN
IF V1 > 0 THEN 5140
PRINT TAB(MO)};"MAXIMUM # ITERATIONS®;
INPUT J9
LET V1 = ABS({V1)
REM SORT ON X CARRYING Y
GOSUBR 1200
REM **PIND EDGES OF THE THIRDS**
LET E1 = {N + 1) / 2
LET E3 = El
LET M = FNN(E1)
FOR E1 = INT(El) TO 1 STEP - 1
IF X(E1) < M THEN 5250
NEXT E1l
REM ALL VALUES ARE TIED FROM MEDIAN TO LCW END
LET E1 = 0
FOR E3 = INT(E3 + .5) TO N
IF X(E3) > M THEN 5350
NEXT E3
REM ALL VALUES ARE TIED FROM MEDIAN TO HIGH END
IF E1 > 0 THEN 5320
PRINT TAB(MO);"X IS CONSTANT--NO FIT POSSIBLE®
RETURN
REM ONLY 2 GROUPS
LET E3 = E1 + 1
G0 TO 5380

IF E1 > 0 THEN 5380
LET E1 = E3 - 1

REM NOW PLACE THE THIRDS

IF El <= 3 THEN 5470
LET T1 = INT((N + 1) / 3)
LET X1 = X(T1)

148
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5410

5420
5430
5440
5450
54860

5470

5480
5490
5500
5510

5520

5530
5540
5550
5560

5570
5580

5590
5600
5610
5620
5630
5640
5650
5660
5670
5680
5690
5700
5710

5720

5730
5740
5750
5760
5770

5780

5790
S800
5810

REM 1IF Tl > E1 THEN LOOP IS SKIPPED AND El = E9

LET E9 = El
FOR El = Tl TCQ ES
IF X(El1 + 1) <> X1 THEN 5470
NEXT El
LET El1 = E9
REM PLACE HIGH THIRD

IF E3 >= N - 2 THEN S570
LET T3 =N - Tl + 1

LET X3 = X(T3)

LET E% = E3

REM IF T3 < E3 THEN LOOP IS SKIPPED AND E3 = E9

FOR E3 = T3 TO E9 STEP - 1

IF X{E3 - 1) <> X3 THEN 5570
NEXT E3
LET E3 = E9

REM **NOW E1 AND E3 ARE INNER EDGES OF OUTER THIRDS**

REM #*SET UP FOR FITTING?**

LET N1 = El

LET N3 =N -EJ +1
LET N2 = N - N1 - N3
LET N% = N

IF N2 < 2 THEK 5720

IF N1 > 2 THEN 5700

IF N3 > 2 THEN 5680

PRINT TAB(MO);"NOT ENOUGH DIFFERENT X-VALUES"
RETURN

LET E1 = E3 -1

GO TO 5720

IF N3 > 2 THEN 5780

LET E3 = E1l + 1

REM ONLY 2 GROUPS

LET N1 = El

LET N2 = ()

LET N3 = N - E3 + 1
LET X2 =0

LET ¥2 = ¢

REM CONTINUE

LET M1 = (N1 + 1) / 2
LET M2 = (N2 + 1) / 2
LET M3 = (N3 + 1) / 2
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5820

5830
5840
5850
5860
5870
5880
5890

5900

5910
5920
5930
5940
5950
5960
5970
5980
5990
6000
6010
6020
6030
6040
6050
6060

6070

6080
6090
6100
6110
6120
6130

6140

6150
6160
6170
6180
6190
6200
6210
6220
6230
6240
6250
6260
6270
6280
6290
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REM GET X-MEDIANS (STILL SORTED ON X)

LET X1 = FNN{Ml)}

LET X4 = X(El}

IF N2 = 0 THEK 5870
LET X2 = FNN{E1l + M2}
LET X3 = FNN{E3 + M3 - 1)
LET X5 = X{E3)

LET D8 = X3 - X1

REM GET Y-MEDIANS
LET N = N1

GOSUB 3300

LET Y1 = FNM(M1)

LET Y4 = W(l)
LET ¥5 = W(N]}
IF N2 = 0 THEN 6010
LET J1 = E1 + 1
LET J2 = E1 + N2
GOSUB 3340

LET Y2 = FNM{M2)
LET J1 = E3

LET J2 = N9
GOSUB 3340

LET ¥3 = FNM{M3)
LET ¥6 = W{l)
LET Y7 = W({N}

REM ON FIRST ITERATION, REPORT ON BEND

IF V1 < 2 THEN 6140

IF N2 = 0 THEN 6140

LET B6 = (Y3 - ¥2) / {X3 ~ X2)

LET B5 = (Y2 - ¥1} / {X2 - X1)

IF ABS(B5) <= EQ THEN 6140

PRINT TAB(MO);“HALF-SLOPE RATIO = ";B6 / BS

REM FPFIRST 2 STEPS OF POLISH TO START

LET B2 = (Y3 - Y1) / D8

GOSUB 7040

LET Bl = B2

LET D1 = D2

LET RO = 4

IF V1 < 2 GO TO 6220

PRINT TAB(MO);"SLOPE 1l: "; FNR{Bl)
LET B3 = B2

LET D6 = D2 / D8

IF ABS(D6) < EQ THEN 6850

LET B2 = B3 + D6
GOSUB 7040

IF SGN(D2) <> SGN(Dl) THEN 6320
LET D6 = D6 + D6
LET Bl = B2



LET Dl =

D2

GO TCO 6250
IF V1 < 2 THEN 6340

PRINT TAB(MQ};“SLOPE 2:

REM ITERATION BASED UPON ZEROIN (SEE FORSYTH, MALCCM, & MOLER)

LET J8 = 2

LET B3 = Bl

LET D3 = D1

LET B4 = B2 - Bl

LET B5 = B4

IF ABS{D3) >»= ABS(D2) GO TO €470
LET Bl = B2

LET B2 = B3

LET B3 = Bl

LET D1 = D2

LET D2 = D3

LET D3 = D1

IF J8 > J9 GO TO 6820

REM T1,T2,T3 USED FCR TOLERANCES FROM HERE ON

LET T1 =
LET Bé6 =

2 * EO * ABS(B2} + TO
0.5 * (B3 - B2)
IF ABS(B&) <= T1 GO TO 6850

IF D2 = 0 GO TO 6850

REM TRY AGAIN

LET D4 = D2 / D1

LET T2 = 2 * B6 * D4
LET T3 = 1 -~ D4

IF T2 < 0 GO TO 6590
LET T3 = - T3

LET T2 = ABS(T2)

IF 2 * T2 >= 3 * B§ *# T3 - ABS(T1 * T3) GO TO 6660
ABS (0.5 * BS * T3) GO TO 6660

IF T2 >=
LET BS =
LET B4 =

B4
T2 / T3

GO TO 6680

REM BISECT FOR NEXT TRY

LET B4 =
LET B5 =

B&
B4

REM SECANT RULE

LET B}l
LET D1
LET B2

IF ABS(B4) > Tl GO TO 6740
Bl + T1 * SGN(B6)}

LET B2 =
LET J8 =

B2
D2
B2 + B4

Jg + 1

BASIC 1 5 1
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6750

6760
6770
6780
6790
€800
6810
6820
6830

6840
6850

6860
6870
6880
6890
6900
6910
6920
6930
6940
6950
6560
6970
6980
6990
7000
7010
7020
7030

7040
7050
7060

7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180
71%0
7200
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REM REPORT STEP

IF V1 < 2 GO TO 6790

LET RO = - FNF( FNL(B6)) + 1

PRINT TAB(MO);"“SLOPE ";J8;:": "; FNR(B2)

Gosus 7070

IF SGN({D2) = SGN(D3} GO TO 6360

GO TO 6400

PRINT "FAILED TO CONVERGE AFTER ";J9;" ITERATIONS."
PRINT TAB(MO};B2;" <= B <= ™;B3

REM COMPUTE INTERCEPT AND RESIDUALS ANYWAY
REM EXIT -- PRINT FINAL EQUATION

LET N = N9

FOR I =1 TON
LET W(I) = ¥Y(I}) - B2 * X(I)
LET R{(I) = W(I}

NEXT I

GOsSuUB 1000

LET BO = FNM{(N + 1) / 2)

PRINT

PRINT TAB(MO):;"FITTED LINE:"
PRINT Y =%;
PRINT FHR(BO);
IF ABS(D2) > EQO THEN 6990
LET RO = 7
PRINT " + ™; FNR(B2};" X"
FOR I =1 TO N

LET R(I) = R(I} - BO
NEXT I
RETURN

REM SUBROUTINE TO FIND MEDIAN RESIDUALS AND THEIR DIFFERENCE.
REM ENTERED WITH TRIAL SLOPE IN B2
REM PUTS DIFFERENCE BETWEEN LEFT AND RIGHT MEDIAN RESIDS IN D2

LET N = N1
FOR I = 1 TO N1
LET W{(I) = Y{I) - X(I) * B2
NEXT I
GOSUB 1000
LET Z1 = FNM(M1)
LET N = 0
FOR I = E3 TO N9
LET N =N + 1
LET W(N) = Y(I) - X(I) * B2
NEXT I
GOSUB 1000
LET D2 = PNM(M3) - 21
RETURN
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FORTRAN Programs

SUBROUTINE RLINE{X, ¥, N, RES5ID, WORK, NSTEPS, SLOPE, LEVEL, LLS,
1 LUSy TRACE, LH5LOPs RHSLUTP, HSRTID, ERR)

INTEGER Ny NSTEFS: ERR

REAL X{N}, Y(NMN), RESIO(N}, WORKI{N), SLOPE, LEVEL. LLS, LUS
REAL LHSLODP, PHSLOP, HSRTIQ

LOGICAL TRACE

FOR THE ODATA (X{1l}s YIl))s aue o {(X(N}, Y{N))y, FIT THE STRAIGHT LINE
Y = LEVEL + SLOPE * X + RESID

By THE “RESISTANT LINE® TECHNIQUE.

ITERATES FOR NSTEPS STEPS OF UNTIL THE SLCOPE 15 CORRECTY 10 4

DIGITS. 1/TOL SPECIFIES THE NUMBER QF DIGITS REQUIRED.

1F CONVERGENCE NCT ATTAINED AFTER NSTERS STEPSs LLU AND LLS WILL

RETURN THE LAST LOWER AND UPPER BOUNDS ON THE CORRELT SLOPE.

OTHERWISE THEY WILL RETURN ZERQ.

THIS METHOD WILL NOT WORK FOR M .LE. S+ AND IT WILL NOT BE FULLY

RESISTANT FOR N JLE. 7. IF SEVERAL X-VALUES ARE TIEDs N SHOULD 6E

STILL LARGER TO GUARANTEE RESISTANCE.

THE PROGAAM ALSO COMPUTES THE APPROXTIMATE SLOPE OF THE LEFT HALF

AND OF THE RIGHT HALF OF THE DATA IN LHSLOP AND RHSLOP.

THEIR RATIO, RETURNED IN HSRTIO, IS A4 MEASURE OF THE S5TRAIGHTNESS

OF THE X=-Y RELATIONSHIP.

IF TRACE IS5 .TRUE. ON ENTRY, THE HALFSLOUOPE RATIO WILL BE PRINTED

AND A REPORT MWILL BE PRINTED AFTER EACH STEP OF THE ITERATION.

COMMON

COMMON /NUMBRS/ EPSI., MAXINT

REAL EPSI: MANINT

COMMON /CHRBUF/P, PMAX¢ PMIN, OUTPTR, MAXPTR, QUNIT
INTEGER PI130)y PMAX, PHMIN, OUTPTR, MAXPTR, OQUNIT

LOCAL VARIABLES

INTEGER I+ MPTLl, MPTZ2, MPT3, Nly N2y N3, L3RD, R2FD
INTEGER MXLO3, MNHI3, FROM, TO, STEPNO, MPTX, MPTY
REAL X1y X2, X3y Yl¢ V2, ¥3, X.ED, DSLOPE, TOL., TOLL
REAL SLOPELl, SLOPE2, SLOPE3, DELTX. DR]l. DRZ, DR3
REAL OLDOS, DOR, NUMTOR, DENCMs D502

FUNCTIONS
REAL RL3MED, DELTR, MEDIAN
1/TOL  SPECIFIES NUMBER OF RELJABLE SLOPE DIGITS REQUIRED

TOL = 1.0E-4
LLS = 0.0
Lus = 0.0

IFI{N .GT. §) GOTO 5
ERR = 51
GOTO 999
5 TF INSTEPS .GT. 0) GOTO 10
ERR = 52
GOTO 999

DIVIDE INTQO THIRDS ON X
FIRST CHECK FOR TIES

133
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10 CALL PSORT{X, ¥, N, ERR]}
IF {ERR .NE. 0} GOTD 9%9%

MPTZ2 = (N/2) +]
MPT1l = N = MPTZ + 1
XMED = (X(MPTL1) + X{MPT2)}/2.0

LOOK FOR FIRST VALUE NOT TIED WITH MEDIAN, IT IS THE MAX POSSIBLE
LOw THIRD CUT.

laReslaNal

MXLOD3 = MPTZ2
20 MXLOD3 = MXLD3 =)
IF(XIMXLO3) .NE. XMED) GOTO 30
IFt MxLO3 .GT. 1} GOTO 20
FALL THROUGH HERE IF ALL TIED FROM LOW END TO MEDIAN
MXLO3 = O

LONK FOR MINI™UM POSSIBLE HIGH THIRD CUT

SOt OO0

30 MNHI3 = MPTL

40 MNHI3 = MNHI3 + 1
TF{ X{MNHI3} ,NE. XMED } GOTD 60
IF { MNKI3 .LT. N ) GOTQ 40

FALL THROUGH HERE IF ALL TIED FROM MEDIAN TO HIGH END.

(xR el yl

MNHI3 = N+l
IF {MXLO3 .NE. 0 ) GOTO 50

ALL TIED WIGH TC LOW —- CANT FIND A SLOPE

[z Xalal

ERR = 53
GOTO 959

ONLY TwWO "THIRDS"

[aFuXel

50 MNHI3 = MXLO2 + |
GOTD 70
&0 IF[ MXLO2 .NE. 0 ) GOYO 7O

LOW THIRD EMPTY

[aNaNal

MXLO3 = MNHI2 -~ 1
70 CONTINUE

NOW PLACE THE THIRDS
GET FAVORED LOW SPLIT POINT

tMa®™

MPT1 = iN+1)/2
Xl = X{MPT1}

DONT SPLIT T1ES. FAVOR LARGER CUTER THIRDS.

[aXuXa]

L3RD = MXLO3
IF{ MPTL .GT. MXLO2) GOTD 90
L3RD = MPT]
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o0

(el gl

[zl xRzl (2 Xulakzl

[z ExXnl

[z ¥ EzxEalal Lol

80 L3RD = L3RD + )
IFL XIL3RD} .EQ. X1 } GOTC 80
L3RD = L3RD - 1

NOW THE HIGH THIRD

G0 MPT3 = N - MPTY + 1
X3 = X(NPY3)

DDONT SPLIT TIES. FAVOR LARGER OUTER THIRDS.

RIRD = MNHI3Z
IFC MPT3 .LE. MNHI3) GOTO 110
R3IRD = MPTI

100 RIRD = RIRD ~ 1
IF (X{R3RD) .EQ. X3 } GOTO 100
R3RD = R3RD + 1

110 CONTINUE

NOW L3RD AND R3PD POINT TO INNER EDGES OF CUTER THIRDS.
CHECK IF THIRDS ARE BIG ENDUGH FDR RESISTANCE.

N1l = L3RD

N3 = N - R3RD + 1

N2 = N - Nl - N3

IF {{N1l .6T. 2) .OR, (N3 LBT. 2)) GOTD 120

IF N = 7 AND SPLIT IS 2 - 2 - 2, STICK WITH IT.

IF (iN1 .EQ. 2) JAND. (N2 .EQ. 3) ANO. (N2 .EQ. 2}} GOTO 140
ERR = 54
GOTO0 999

120 IF {IN1l ,GTY, 2} AND. LN2 .GT. 2)) GOTO 140

DMLY 2 THIRDS ARE BIG ENDUGH ~-- REGROUP AND WORK WITH 2.

IF (N1 .LE. 2} L3RD = R3RD -~ 1

IF (N3 .LE. 2) R3RD = L3RD + 1
130 Nl = L3RD

N2 = O

N3 = N - R3RD + 1
X2 = 0,0
Y2 = 0.0

140 CONTINUE
SET UP FOR FITTING
GET X MEDIANS

MPTY = {N1+1}/2
MPT2 = {N2+))/2
HMPT3 = (N3+1)/2

MPTY = N1l - MPT1 + 1
XK1 = (XIMPTL) + X{HPTY) /2.0
MPTX = N1 + MFT2
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MPETY = N1l + N2 = MPTZ + 1

IF{NZ +NE. 0} X2 =z {(X{MPTX]) + X(MPTY))}/s2.0

MPTX = N1 + N2 + MPT3

MPTY = N -~ MPT2 + 1

X3 = (X{MPTX} + X{MPTY}))/2.0

DELTX = X3-X1

IF C(ABS(DELTX) .LT. EPSI} DELTX = SIGN(EPSI,« DELTX)

C
C Y ~ MEDIANS
C
¥1 = RLIMED(Y:s Ny 1+ L3RD, WORK,; ERR}
FROM = L3RD + |
TO = R3RD - ]
IFINZ .NE. 0) Y2 = RL3MED(Y. N, FROM, TO, WORK, ERR)
Y3 = RL3MED{Y, N, R2R80, N, WORK, ERR)
IF {ERR .NE. 01 GOTO 999
o
C COMPUTE HALF-S5LOPE RATID TC CHECK STRAIGHTNESS OF ¥ ON X.
C REPORT 1F TRACE IS5 LTRUE. ELSE JUST RETURN RESULYS.
C

IF{ N2 .EQ. O } GD TO 170
LHSLOP = (Y2 - Y1)/(X2 - X1)
RHSLOF = (Y3 - ¥2)/(X3 - X2}
IF (ABS{LHSLOP} ,GY. EPSI) GO TQ 1&0
HSRTIOD = Q.0
GD TO 170
160 HSRT IO = RHSLOP/LHSLOP
IF(TRACE) WRITE{OUNIT, 5002} LHSLOP, RHSLOP, HSRTIO
5002 FORMAT(1IX, I9HSTRATGHTNESS CHECK./1X, 18H LEFT HALF-SLOPE =,
2 Fl2.6, 19H RIGHT HALF-SLOPE =y F12.6/10X, 8H PATIO =, Fl2.6//)
170 CONTINUE
c
€ FIRST 2 SLOPES WITHOUT ITERATING
c
STEPNOD = 1
SLOPE1l = (¥3 - ¥Y1}/DELTX
DR1 = DELTF{X+ ¥Yr Ny RESID, L3RD, R3RD, SLOPEL, WORK, ERR]}
IF{ERR . NE. () GO TO 599
DSLOPE = DR1/OELTX
IF (TRACE) WRITE(OUMIT, 5000) STEPNO, 5LDPEL
5000 FORMAT{LX, &HSLOPE +13,2H: ,Fl2.6}
STEPNO = 2
SLGPEZ = SLOFEl + DSLOPE
SLOPE3 = SLOPEL
180 OR2 = DELTR(Xs ¥, Ny RESIDs L3R0D, P3RD, SLOPEZ, WORK, ERK}
IF{ERR .NE. Q) GO TO 999
IF(DRZ .EQ. 0.0) GO TO 290
€ FIND SECOND SLOFE WITH OPPOSITE-SIGN RESIDUAL DIFFERENCE
IF{SIGN(L1.0y DRZ) JNE. SIGN(1.0, DR1)) GO TO 190
SLOPEL = SLOPEZ
DR1 = ORZ
SLOPEZ = SLOPE3 + DSLOPE
DOSLOPE = DSLOPE + DSLOPE
GO TC 180
150 IF (TRACE) WRFITE(QUNIT, 5000) STEPNO, SLOPE2
ADR = ABS{DRZ]
C
€ ITERATION IS BASED UPOM THE ALGCRITHM ZEROIN {SEE FORSYTHE,
C MALCOM, AND MOLER Plél FF.)



FORTRAN 157

c

220 SLOPE3 = SLOPEL

230

[ Xxl o

240

[y X uNal

xR aXa

270

280

DR3 = DR1

DSLOPE = SLOPEZ - SLOPEL

OLDD5 = DSLOPE

IF{ ABSIDR3} .GE. ABS(DR2} } GO TO 240
SLOPEL = SLOPE2

SLOPEZ = SLOPE3

$LOPE3 = SLOPEL

DRl = DR2

OR2 = DR3

DR3 = DR

TEST CONVERGENCE

IF{ STEPNO .GE. NSTEPS } GO TOD 285

TOL1 = 2.0 * EPS] * ABS(SLOPEZ] + 0.5 * TOL
D502 = .5 * (SLOPE3 — SLOPE2)

IF{ABS{DSD2) .LE. TOL1) GO TO 290

IF{DRZ2 .EQ. 0.0) GO TO 290

TRY AGAIN

ODR = DR2/DRY

NUMTOR = 2.0 * DSD2 * DDR

DENCM = 1,0 = QDR

Ir{ NUMTOR .GT. 0.0 ) DENDM = =DENDM

NUMTOR = ABSU{NUMTOR]

IF{{2,0 * KUMIOR} ,GE. (3.0 » DSD2 * DENOM — ABS(TOLY * OENDMIL)
60 TO 270

IF{ NUMTOR .GE. ABS{0.5 * OLDDS * DENOM) ) GD TO 270

OLODS = DSLOPE

DSLOPE = NUMTCR/DENOM

GO TO 280

BISECT

O5SLOPE = DSD2
0L0DS = DSLOPE

SLOPELl = SLOPE2

DRl = DR2

IF{ ABSI(DSLOPE) .GT. TOL1 ) SLOPE2 = SLOPE2 + DSLOPE

1#{ ABSI(DSLOPE} .LE. ¥0OL1 ) SLOPE2 = SLOPEZ2 + SIGN{TOLL.DSDZ}
STEPNC = STEFND + 1

IF{TRACEL WRITE{QUMIT, 50001 STEPNO, SLOPEZ

DR2 = DELTRIXs ¥» Ny RESIDs L3RDy RZRDs SLOPEZ, WORK,ERR}

IF{ ER® .NE. Q) GO TD 999

IFL (DRZ2 * (DR3/ABS{(DR3))]) .GT. 0.0 } GO TO 220

G0 TO 230

C
C RAN OUT OF STEPS

285

C

LLS = AMINL(SLOPEl,+ SLOPE3}
LUS « AMAXL{SLOPELl, SLOPE3)
G0 TD 999

C EXIT
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290 SLOPE = SLOPE2
00 300 1 = 14 N
WORKI(I) = ¥Y{1) - SLOPE * X{I}
300 CONTINUE
CALL SORT( WORK., N, ERR)
IF{ERR .NE. Q) GO TO 999
LEVEL = MEDIANIWORK, N)
DO 310 T = 1+ N
RESIDII) = ¥Y(I) = SLOPE*X{(I) - LEVEL
310 CIONTINUE

999 RETURN
END
REAL FUNCTION RL3MEDCLY, N, FFOM, TO, WORK, ERP)
c
C RETURNS THE MEDIAN OF THE NUMBERS FROM Y({FROM) TO Y{TO), INCLUSIVE.
[
INTEGER My FRCHM. TO. ERR
REAL Y{Nl, WORK{N)
o
C LOCAL VARTABLES
C
INTEGER 14+ J
c
C FUNCTION
c
REAL MEDIAN
[
J =0
DO 10 I = FRCM, TO
J o= Jel
WORKE{N) = Y {1}
10 CONTINUE
CALL SORT(WORK, Js ERR}
IF (ERR .NE. 0 } GOTD 999
RL3IMED = MEDIANC(WORK, J}
999 RETURN
END
REAL FUNCTION DELT®{X, Y, N, RESID, L3RD, R3RD, SLOPE, WORK, ERR)
c
€ RETURNS THE DIFFERENCE BETWEEN THE MEDIAN RESIDUALS IN THE LEFT AND
C RIGHMT 3RDS OF THE DATA FOR A& LINE WITH SPECIFIED SLCPE.
c
INTEGER N, L2RD, R3RD, ERP
REAL XiNJ}; Y{N}+ RESID(N}, WORK(N}, SLOPE
c
INTEGER 1
C
¢ FUNCTION
C
REAL RL3IMED
c

Do 10 1 = 1, ®
RESIDII) = ¥Y{I} =~ SLOPE % X{I)
10 CONTINUE
DELTR = RL3MED{RESID, N, R3IRD; N+ WORK, EFR]
2 = RLIMED{RESIDy Ny 1, L3RD, WORK, ERR}
RETURN
END



Chagter 6

Smoothing Data

The two previous chapters have presented techniques for plotting y-versus-x
data and for summarizing such data with a resistant line. Often it is useful to
search for patterns much more general than a straight line. When the x-values
are equally spaced or almost equally spaced, we might ask only that y change
smoothly from point to point along the x-axis. This chapter presents
techniques for discovering and summarizing smooth data patterns.

6.1 Data Sequences and Smooth Summaries

data sequence

When the x-values are equally spaced, their structure is so simple and regular
that p often receives most of the attention. Lists of such data may even omit
the x-values in favor of reporting the interval at which the data were recorded.
We refer to such y-values as a data sequence. Examples are the monthly rate of
unemployment, the daily high and low temperatures at a weather station, and
the number of votes cast in each U.S. presidential election.

When the sequence comes about by recording a value for each

139
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time series

successive time interval, as in these examples, the y-values are known as a tinte
series. (Sometimes this term is reserved for such data sequences in which many
consecutive values are available.) However, the order of data values in a
sequence need not be defined by time. We might consider the sequence of
birthrates as mother’s age increases, heart-attack frequencies ordered by
patient’s weight, or the differences between low and high tide heights at points
along a shoreline ordered by latitude. Data sequences are thus a specialized
form of (x, y) data in which the values of x are important primarily for the
order they specify—in time, in space, or whatever. Nevertheless, the terminol-
ogy of time series is well suited to atemporal sequences as well. We might, for
example, refer to a data value “earlier than” or “previous to” another value
even if the ordering were not temporal. We therefore denote the order-defining
value by 7 rather than x and often write it as a subscript to the variable y. Any
data sequence can thus be represented as a sequence of values, y,, ordered
by ¢.

While the techniques in this chapter are usually applied to data whose
t-values are evenly spaced, the essential feature of data sequences is that their
t-values are in order. Sometimes we can take a fairly lax attitude toward the
details of the spacing, provided that the spacing is not too irregular. Thus, as
long as ¢ defines an order, we may be able to use these techniques.

The Smooth and the Rough

In Chapter 5 we found it useful to treat a resistant line as a simple description
of a y-versus-x relationship and to separate the data values into

data = fit + residual.

Such a separation can be useful even when the fit is not described by a
formula. All we require is that the fit be a simple, well-structured description
of the data and, ideally, that it capture much of the underlying pattern of the
data.

Usually cur attempts at a simple fit are smooth curves. When working
by hand, we might plot the sequence of y-values against their corresponding
x-values and sketch in a freehand curve. With such a curve we would try to
capture the large-scale behavior of the data sequence—that is, where the
sequence rises, where it falls, and whether it shows regularities or cycles (for
example, greater sales in December of every year). Small-scale fluctuations,
such as isolated data values out of lin¢ or small, rapidly changing oscillations,
would then appear in the residuals.
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data
smoothers

smooth
rough

However, if we want a simple fit to be reproducible or to be produced
by computer, we must define the operations precisely. These smoothing
operations usually summarize consecutive, overlapping segments of the
sequence defined by r—for example, the first five data values, then the second
through the sixth, and so on. Because the summarized segments overlap, the
summaries change smoothly. The data smoeothers discussed in this chapter use
medians and averages to summarize the overlapping segments. The fit that
these smoothers produce need not follow any specific formula; it is only
required to be smooth. Therefore, we call it the smooth. By contrast, we call the
residuals the rough. Thus we can write

data = smooth + rough,

The smooth and the rough, like the data values, are sequences ordered by 1.

Note that (as in fitting lines) we may be more interested in the
residuals, or rough, than in the fit, or smooth. One unfortunate consequence of
the tradition that names these techniques “data smoothers” is that it may
encourage some analysts to forget the importance of the rough.

Example; Daily Cow Temperatures

Exhibit 61 shows the body temperature of a cow measured at 6:30 AM. on 75
consecutive days by a telemetric thermometer. This device is implanted in the
cow and sends radio “chirps” to a nearby receiver. The higher the tempera-
ture, the faster the chirping. The data in Exhibit 6--1 are counts of chirps in a
5-minute interval on successive mornings. A dairy farmer might use a cow’s
temperature to help predict periods of fertility, which are usually associated
with temperature peaks. It is difficult to see any pattern in Exhibit 6-1. We
cannot tell whether the occasional high values are really at the peaks of
temperature cycles or are just odd data values.

Exhibit 6-2 plots the smoothed sequence using one of the smoothers
discussed in this chapter. The simplification is striking. In Exhibit 6-2, the
y-values clearly rise and fall in 15- to 20-day cycles. Some of the higher values
in Exhibit 6-1 do appear to be at peaks of cycles, but others just seem out of
line. Cycles of about 15 to 20 days are consistent with the typical bovine
reproductive cycle and may be related to changing hormone levels. Points out
of line in the smooth sequence may indicate important events in the fertility of
the cow or may simply have been recorded on a morning when the animal was
either unusually active or sluggish. The steady slow decline in chirp frequency
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Exhibit 6~1 Temperature of a Cow (in chirps per 3 minutes — 800) at 6:30 AM. on 75
Consecutive Mornings. (Chirping rate transmitted is proportional to temperature.)
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turns out to be due to the battery in the transmitter running down gradually.
The kind of display shown in Exhibit 6-2 is much more likely to be useful to
the farmer or veterinarian than is the display of the original data as in Exhibit
6-1. We will return to this example after learning more about how the
smoothing was done.

Exhibit 6-2 Cow Temperatures Smoothed
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6.2 Elementary Smoothers

running-
median
smoothers

The fundamental property of a smooth sequence is that each data value is
much like its neighbors; so changes do not take place suddenly. One simple
way to achieve this is to replace each y-value with the median of three
y-values—itself, its predecessor, and its successor. A y-value that is out of step
with its neighbors will be replaced by one or the other of them, whichever is
closer.

Running Medians

Because medians of three cannot correct for two outliers in a row, we may
choose to take in more of the data. We can base each median in the smooth on
five points instead of three by looking two points earlier and two points later
than the y-value being modified. These two methods are examples of running-
median smoothers, so named because we “run” along the data sequence and
find the median of the three or five data values near each point.

For medians of three, the initial data value in the sequence poses a
problem since it is not in the middle of three data values. For now, we just copy
it without any modification. Of course, the same is true of the final data value,
and we copy it for the smooth as well. For medians of five, the two data values
at each end of the sequence are difficult to smooth. We copy the end values,
but we use a median of three to smooth the second and next-to-last values.

After smoothing the rest of the sequence, we may want to modify the
end values rather than just copy them. Section 6.4 discusses one useful method
for smoothing the endpoints.

To show how running medians work, Exhibit 6-3 plots the first 30 days
of the cow-temperature sequence, and Exhibits 64 and 6-5 show smooths of
the data by running medians of three and five. While the smooth sequences are
similar, they differ in recognizable ways: Generally the medians of five are
more smooth but less like the original data sequence.

Each of these running-median smoothers can be computed easily by
hand, but both are fairly heavy-handed in their effects on data sequences.
Running medians of four consecutive data values are slightly gentler. Unlike
smoothers that select the middle-sized data value of three or five, a running
median of four values ignores the largest and smallest values in each segment
of four and averages the two middle-sized values, Note that the values selected
for averaging are of middle size in the sense that their y-values fall between
the other y-values. They need not be the middle two values according to the
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Exhibit 6~3 Thirty Days of Cow Temperatures
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order defined by t—indeed, they need not even be consecutive data points in
the sequence.

When using even-length running medians, we must average the ¢-
values as well. The median of an odd-length segment of a data sequence is
naturally recorded at the middle ¢-value of the segment. The natural center of
an even-length segment is not at a ¢-value, so we record the median in the gap
between the two middle values of . A pair of medians then flanks each original
t-value, We can align a new y-value with an original t-value by averaging the
running medians on either side. We might picture the operation like this:

data values e Ps Vs Yio o ¥ Yso Yo
smoothed by 4’s cv- Zas Zss Zgs Z1s Zss  Zgs
recentered by pairs “e. Zy 2 Z; Zg Zg Iy

Once again we postpone a detailed treatment of the ends of the sequence until
Section 6.4,

Of course, the recentering step is just a running median of two because
the median of two numbers is also their average. Algebraically, a running
median of four, recentered with a running median of two, replaces the data
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Exhibit 6-4 Smoothing Cow Temperatures by Running Medians of Three and Five

Smoothed Smoothed
Temperature by Running by Running
Day  (chirps/5 min. — 800} Medians of Three Medians of Five

| 60 60.0 60.0

2 70 60.0 60.0

3 54 56.0 60.0

4 56 56.0 66.0

3 70 66.0 56.0

6 66 66.0 66.0

7 53 66.0 70.0

8 95 70.0 69.0

9 70 70.0 69.0
10 69 69.0 70.0
1] 56 69.0 70.0
12 70 70.0 69.0
13 70 70.0 60.0
14 60 60.0 60.0
15 60 60.0 60.0
16 60 60.0 60.0
17 50 30.0 50.0
18 50 50.0 50.0
19 48 500 500
20 59 50.0 500
21 30 590 59.0
22 60 60.0 59.0
23 70 60.0 540
24 54 540 57.0
25 46 340 57.0
26 57 57.0 540
27 57 57.0 31.0
28 51 51.0 57.0
29 51 51.0 51.0
30 59 39.0 59.0

Source: Data from Enrique de Alba and David L. Zartman, “Testing Outliers in Time Series: An
Application to Remotely Sensed Temperatures in Catile,” Speciat Paper No. 130, Agricultural Experiment
Station, New Mexico State University, 1979. Reprinted by permission.
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Exhibit 6-5 Cow Temperatures Smoothed by (a) Running Medians of Three and (b) Running
Medians of Five

{a} Smooth by Running Medians of Three
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(b) Smooth by Running Medians of Five
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span

runiing
weighted
Average

value y, by

z, = '/2(medl.1"r—2s.V:-l»J"nyul} + med{y{nl!ylly!+]5yl+2})'

This equation uses five data values, y,_, through p,,,, but the first and last
values appear in only one of the two segments whose medians are averaged,
and thus they have about half the effect of any of the other points. Exhibits
6-6 and 6-7 show results of smoothing the cow temperatures by medians of
four and then by medians of two.

The number of data values summarized by each median is known as
the span of the smoother. We have thus far examined smoothers with spans of
2, 3, 4, and 5. Median smoothers with larger spans can resist more outliers.
Thus, a span-2 median will be affected by any extraordinary point. Span-3 and
span-4 median smoothers will be unaffected by single outliers. A span-3
median will follow an outlying pair, but a span-4 median will cut the size of
such a 2-point data spike roughly in half. A span-5 median will be completely
resistant to a 2-point spike.

A Shorthand Notation

In order to provide a compact notation for elementary smoothing operations,
we refer to them by one-character names. The name for a running median is
the single digit corresponding to its span, such as 3 or 5. When a running
median of span 4 is followed by the pair-averaging operation to recenter the
results, we use the notation 42. The two-digit name is appropriate because two
operations are involved. (In fact, a few sophisticated combinations insert other
elementary operations between a 4 and a 2.) Since we rarely use running
medians of more than 7 points, there is little chance of confusing 42 with a
running median of 42 data values. The concatenation of one-character names
will be especially convenient in Section 6.3, where we combine elementary
smoothing operations in order to gain better performance.

Hanning

We may want a smocthing operation still gentler than 42. For this we can use
a running weighted average. 1t is traditional to smooth data sequences by
replacing each data value with the average of the data values around it.
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A N S ——

Exhibit 6-6 Smoothing Cow Temperatures by 4 and Then by 2

Temperature
Day  (chirps/3 min. - 800) Smoothed by 4 Smoothed by 42
1 60 ggg 60.00
2 70 58-0 61.50
3 54 63.0 60.50
4 56 61'0 62.00
5 70 61'0 61.00
6 66 68.0 64.50
7 53 68.0 68.00
8 95 69-5 68.75
9 70 69.5 69.50
10 69 69-5 69.50
1 56 69‘5 69.50
12 70 65'0 67.25
13 70 65.0 65.00
14 60 60.0 62.50
15 60 60.0 60.00
16 60 55'0 57.50
17 50 50'0 52.50
18 50 50'0 50.00
19 48 50'0 50.00
20 59 54'5 52.25
21 50 59'5 57.00
22 60 57'0 58.25
23 70 57'0 57.00
24 54 55'5 56.25
25 46 55'5 55.50
26 57 54'0 54.75
27 57 54'0 54.00
28 51 54'0 54.00
29 51 55'0 54,50
30 59 ’ 59.00

59.0
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Exhibit 6-7 Cow Temperature Smoothed (a) by 4 and {(b) by 42

(a) Smooth by Running Medians of Four
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(b} Smooth by Running Medians of Four,
Followed by Running Medians of Two
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hanning

Sometimes the data values are multiplied in each averaging operation by
weights. Thus, for example, we might replace y, by

Zo= Yoy + Yoy + Yavin.

An unlimited number of running weighted averages are possible (all
we require is that the weights—here ', '4, Y4—sum to 1), but we limit
ourselves to this particular formula for most data exploration. This smoother is
called khanning, after Julius von Hann, who advocated its use, and it is denoted
by H. Any running weighted average will be badly affected by even a single
outlier, so we will generally use such smoothers only after outliers have been
smoothed away by a running-median smoother.

6.3 Compound Smoothers

resmoothing

While simple running medians will smooth a data sequence and can withstand
occasional extraordinary data values, the smooth sequences they produce may
describe the data only crudely. We can improve on the description—obtaining
data smoothers whose smooth sequences come closer to the data without losing
their smoothness—through the judicious combination of smoothing proce-
dures.

Resmoothing

Applying one smoother to the results of a previous smoother is known as
resmoothing. As with the name 42, we denote such a series of elementary
operations by concatenating their one-character names. If we are working
entirely by hand, we may choose to use only running medians of 3 and
resmooth repeatedly until further resmoothing yields no further changes. We
denote this repeated combination by 3R.

Reroughing

Running-median smoothers generally smooth a data sequence too much; they
remove interesting patterns. A complementary operation can be used to
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reroughing

twicing

recover smooth patterns from the residuals—that is, from the part called
“rough” in the formula

data = smooth 4+ rough.

We smooth the rough sequence and add the result {0 the smooth sequence. Qur
hope is that patterns that have been smoothed away by the first pass of
smoothing ¢an be recovered from the rough and used to make the smooth a
little more like the original data sequence. By analogy with resmoothing, this
operation is called reroughing.

Exhibits 6-8 and 6-9 show the span-5 median seen in Exhibit 6—4 as
reroughed by a span-5 median. We often use the same smoother in both
smoothing and reroughing, and we call this using a smoother swice. Thus this
example illustrates smoothing by 5,twice.

Reroughing is an example of an operation found in several exploratory
techniques that polish a fit. In the resistant line (Chapter 5), the “reroughing”
step involves fitting a line to the residuals and adding this line to the fit. We
will see a similar operation in Chapter 8 as the basis for median polish.

4253H

Compound smoothers often combine severat elementary smoothers by both
resmoothing and reroughing. The early steps in a compound smeother concen-
trate on protection from outliers in the data sequence. Later steps of resmooth-
ing can then employ a running weighted average. Curiously, running medians
of 3 or 5 can alter some rapidly oscillating sequences strangely. For example,
the infinite sequence . .., +1, —1, +1, =1, +1, —1, .. .is not modified at all
by a span-5 running median, although the sequence oscillates rapidly. Strang-
er still, a span-3 running median will invert the sequence, as if each value had
been multiplied by —1. Thus, even-span running medians are sometimes
preferred—especially when a computer is available to do all the averaging
they require.

Similar considerations arise in reroughing because the rough, by
design, will contain spikes reflecting the outliers present in the original data
and will generally oscillate rapidly. Therefore, the smoothers applied to the
rough must alse be resistant to these features.

One combination of smoothers that seems to perform quite well is
4253H. It starts with a running median of four, 4 recentered by 2. It then
resmooths by 5, by 3, and finally—now that outliers have been smoothed
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Exhibit 68 Cow Temperatures, Smoothed by § and Reroughed by §

Data Smoothed Rough Smoothed
Day  Data by s Rough by S 5, twice
1 60 60 0 0 60
2 70 60 10 0 60
3 54 60 -6 0 60
4 56 66 ~10 0 66
5 70 56 14 -6 50
6 66 66 0 0 66
7 53 70 -17 1 71
8 95 69 26 0 69
9 70 69 1 -1 68
10 69 70 -1 1 71
11 56 70 —-14 1 71
12 70 69 1 0 69
13 70 60 10 0 60
14 60 60 0 0 60
15 60 60 0 0 60
16 60 60 0 0 60
17 50 50 0 0 50
18 50 S0 0 0 50
19 48 50 -2 0 50
20 59 50 9 0 50
21 50 59 -9 1 60
22 60 59 1 1 60
23 70 54 16 -3 51
24 54 57 -3 1 58
25 46 57 -1 3 60
26 57 54 3 -3 51
27 57 51 6 0 51
28 51 57 —6 0 57
29 s1 51 0 0 51
30 59 59 0 0 59

away—by H. The result of this smoothing is often reroughed—or polished—
by computing residuals, applying the same smoother to them, and adding the
result to the smooth of the first pass. This produces the full smoother,
4253H , twice.

Exhibits 6—10 and 6-11 show an application of this 4253H,twice step
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Exhibit 6-9 Cow Temperatures Smoothed by 5,twice
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Day

by step. These exhibits make it easy to see how each step affects the data
sequence and why we are happy to let the computer do the work. Each column
labeled with the name of a smoother shows the result of applying that
smoother to the previous column. In Exhibit 6-10, column 7, labeled Rough 1,
contains the residuals after the first pass of 4253H, and the succeeding
columns smooth these residuals. In Exhibit 6-11, column 13, labeled Final
Smooth, is the sum of column 6, the first smooth by 4253H, and column 12,
the smoothed rough.

6.4 Smoothing the Endpoints

Thus far we have done little to smooth the initial and final values of a data
sequence. We cannot smooth these values in the same way as we have
smoothed the others because they are not surrounded by enough other values.
With a longer-span smoother like 5, we can forestall the problem by finding
shorter-span medians near the endpoints. Thus, for running medians of five,
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Exhibit 6-10 Smoothing Cow Temperatures by 4253H

(1) {2) (3) (4} {(5) {6) (7)
Temp. 4 2 5 JE)* H Roughl
60.0

60 65.0 60.00 60.00 60.00 60.0000 0.0000
70 58‘0 61.50 60.50 60.50 60.5000 9.5000
54 63.0 60.50 61.00 61.00 61.0000 —17.0000
56 61‘0 62.00 61.50 61.50 61.5000 —5.5000
70 61 '0 61.00 62.00 62.00 62,5000 7.5000
66 68'0 64.50 64.50 64.50 64.7500 1.2500
53 68.0 68.00 68.00 68.00 67.3125 —14.3125
95 69.5 68.75 68.75 68.75 68.7500 26.2500
70 69‘5 69.50 69.50 69.50 69.3125 0.6875
69 69'5 69.50 69.50 69.50 69.5000 —0.5000
56 69l5 69.50 69.50 69.50 68.9375 —12.9375
70 65-0 67.25 67.25 67.25 67.2500 2.7500
70 65’0 65.00 65.00 65.00 64.9375 5.0625
60 60.0 62.50 62.50 62.50 62.5000 —2.5000
60 60‘0 60.00 60.00 60.00 60.0000 0.0000
60 55'0 57.50 57.50 57.50 56.8750 3.1250
50 50'0 52.50 52.50 52.50 53.6875 —3.6875
50 50'0 50.00 §2.25 52.25 52.3125 —2.3125
48 50'0 50.00 52.25 52.25 52.2500 —4,2500
59 54’5 52.25 52.25 52.25 53.4375 5.5625
50 59'5 57.00 57.00 57.00 55.8125 —-5.8125
60 5?'0 58.25 57.00 57.00 57.0000 3.0000
70 5?'0 57.00 57.00 57.00 56.8125 13.1875
54 55’5 56.25 56.25 56.25 56.2500 —2.2500
46 55'5 55.50 55.50 55.50 55.5000 —9.5000
57 54'0 54,75 54,75 54,75 54.8750 2.1250
57 54'0 54.00 54.50 54.50 54.5625 2.4375
51 54'0 54,00 54.50 54.50 54.5000 —3.5000
51 55'0 54.50 54.50 54.50 54.5000 —3.5000
39 59’0 59.00 59.00 54.50 54,5000 4.5000

*E denotes the endpoint adjustment (Section 6.4).
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Exhibit 6-11 Reroughing of Cow Temperatures by 4253H

{13)
(8) (%) (10) (11) (12) Final

4 2 5 3E) H Smooth
3'.75000 0.00000 0.00000 0.00000 0.00000  60.00000
~2.75000 1.00000 0.00000 0.00000 —0.14063  60.35937
Loooog  0-87500  -0.56250  -0.56250 —~0.42188  60.57812
212500 056250  -0.56250  -0.56250  —0.56250  60.93750
“3l2sgp " X12500  -056250  -0.56250  -0.28906  62.21093
237500 1.12500 0.53125 0.53125 0.25781  65.00781
0.96875 2.67188 0.53125 0.53125 0.53125  67.84375
0.09375 0.53125 053125 053125 053125  69.28125
0.09375 0.09375 0.53125 0.53125 0.53125  69.84375
0.09375 0.09375 0.53125 0.53125 0.55078  70.05078

1 12500 0.60938 0.60938 0.60938 0.59375  69.53125
0.12500 0.62500 0.62500 0.62500 0.62109  67.87109
137500 0.75000 0.62500 0.62500 0.62500  65.56250
156250 1.46875 0.62500 0.62500 0.50781  63.00781
125000 0.15625 0.15625 0.15625  —0.06641  59.93359
T lseps 120313 -120313  -120313 - 1.08203 5579296
_3'00000 —2.07813 —-2.07813 —2.07813 —1.85938 51.82812
‘ —3.00000 -2.07813 —207813 —2.07813  50.23437
—3.00000 544063 207813 -207813  —2.04688 5020312
~3.28125 195313 _1.95313  —~195313 140234 5203515
'g'ggfgg 1.82813 0.37500 037500 —0.20703  55.60546
0.37500 2.32813 0.37500 0.37500 0.37500  57.37500
0.37500 0.37500 0.37500 0.37500 032031  57.13281
L 0.06250 0.15625 0.15625 0.15625 0.15625  56.40625
Coosaso 006250 —006250  -006250  —0.08594 5541406
Toegrse 037500 -037500  -037500 029688  54.57812
Togg7sp 068750 037500 037500 037500 5418750
Cosilps 060938 037500 037500 028516 5421484
050000 —001S63 001563 001563 0.07422  54.5742)

4.50000 4.50000 4.50000 0.70313 070313 35520312
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we take medians of three for the second and next-to-last values:

z, = med [J"h}'bys]
g | = med [}’,._z, Ya—1s yn}'

The end values, z, and z,, require a different approach. We have thus
far been content just to “copy-on”—that is, to use the end values without
changing them. We can do better than this by extrapolating from the
smoothed values near the end. We first estimate what the next value past the
end value might have been. We can’t use the end value itself in this estimate
because we haven’t smoothed it yet. A good, simple approach is to find the
straight line that passes through the second and third smoothed values from
the end and to place our estimated point on this line at the z-value it would
have occupied (see Exhibit 6—12). For equally spaced data with t-spacing At,
the line at the low end has slope

2 — I
At

We are extrapolating two z-intervals beyond z,, so the estimated vaijue is
Po =23 — 24A1(z; — 2;)/ At
= 322 - 223

where the z’s are the already smoothed values, Similarly, for the final point we

Exhibit 6-12 The Endpoint Extrapolation

X
}‘:__‘O‘ m)ég oo
o X g
X
1 | f 1 I } ! I | ——
O 1 2 3 4 5 6 71 8 d

¥ = data points
0= smoothed values
¥ = the extrapolated value at 1 = 0
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estimate the succeeding point as
Vuri = 32000 — 22,2

We then find the median of the extrapolated point, the observed endpoint, and
the smoothed point next to the end:

I = med[.i’o, Yis Zz}

2y = mcd [j}n‘-f-l’ Vs Z,,_]].

We will not bother with this adjustment every time, but we will usually
want to make it at least once at a late step in a compound smoothing. Thus, if
we denote this operation by E, we might use 4253EH,twice.

The smoother 42 has an additional end-value problem because it needs
to recenter the result of the first smoothing. When we smooth by running
medians of four, we obtain a sequence one point longer than the original data
sequence. We might denote this longer sequence by 2y, Z,./2, - - . Zusijee
Here the end values have been copied: z,,; = |, z,,,/2 = ¥,. The next values in
from each end are medians of two: z,, = mediy,, v,}, z iy = med{y,_;, Val-
The subsequent recentering by running medians of 2 restores the sequence to
its original length. Again, end values are copied: z; = z;;, (=1, 2o = Zps1p2
(=p.). All other values are averages of adjacent values; for example, z, =
med{z,_m, zz-uz} = (2l + Z2ap2)/2.

6.5 Splitting and IRSSH

When we smooth by hand, we may prefer compound smoothers, such as the
repeated running median 3R, that require fewer calculations, Unfortunately,
3R has a tendency to chop off peaks and valleys and to leave flat “mesas™ and
“dales” two points long. We use the special splitting operation named S at
each 2-point mesa and dale to improve the smooth sequence. We split the data
into three pieces—a two-point flat segment, the smooth data sequence to the
left of the two points, and the smooth sequence to their right. We then estimate
where either point in the flat segment ought to be by referring to the smooth
sequence on its own side.
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The estimation method is much the same as the endpoint rule discussed
in Section 6.4. If, in the smooth by 3R, the sequence

Yeers Yeers Yevns - - -

is to the right of the two-point flat segment

.}’f—lsyﬁ

we predict what y, , would have been if it were on the straight line formed by
Y71 and yr,o. As we found in extrapolating for the endpoints, we can predict

yf_| as
3V — Wpea

We now use this extrapolated value in a span-3 median centered at y,:

2y med [3J’f+1 - 2yf+z, Yo Y }

Note that all of the values in this operation have already been smoothed by 3R,
This is the only difference between this operation and the endpoint smoothing
operation, which uses both the unsmoothed end value and nearby smoothed
values.

We perform the corresponding operation on the other half of the
two-point flat segment; that is, we predict y, from the line through y,_;and y,_,
and use the predicted value in a span-3 median to calculate z,_,. After splitting
each two-point mesa and dale, we resmooth the entire sequence by 3R.
Although splitting is tedious by hand, we are likely to need it at only a few
places in a data sequence.

One good combination of these operations for smoothing by hand
repeats S (each time automatically followed by 3R). It is 3RSSH,twice.
Although it is primarily a hand smoothing technique, the computer programs
in this chapter provide 3RSSH,twice as an option. Exhibit 613 shows the
steps of 3RSSH applied to the cow temperatures of Exhibits 63 through
6-11.

6.6 Looking at the Rough

We are often as interested in the residual, or rough, sequence as we are in the
smooth. The rough can reveal outliers, as well as portions of the sequence that



Smoorking Data 179
Exhibit 6-13 Smoothing Cow Temperatures by IRSSH

Temp. 3R S (3R) s (3R) H
60 60 60 60 60 60 60
70 60 60 60 60 60 60
54 36 60 60 60 60 61.5
56 56 66 66 66 66 64.5
70 66 66 66 66 66 66
66 66 66 66 66 66 66
53 66 66 66 66 66 66
95 10 66 66 66 66 66.75
70 70 69 69 69 69 68.5
69 69 70 70 10 70 69.75
56 69 70 70 70 70 69,75
70 70 69 69 69 69 67
70 70 60 60 60 60 62.25
60 60 60 60 60 60 60
60 60 60 60 60 60 60
60 60 60 60 60 60 57.5
50 50 50 50 50 S0 52.5
50 50 50 S0 50 50 50
48 50 50 50 50 50 S0
59 50 50 50 50 S0 52.25
50 59 59 59 39 59 56.75
60 60 60 59 59 59 59
70 60 54 59+ 59 59 58.5
54 54 60 57 57 57 57.5
46 54 57 57 57 57 56.25
57 57 54 54 54 54 54
57 57 51 51 51 51 51.75
51 51 51 51 51 51 51
51 51 51 51 51 5t 51
59 51 51 51 51 51 51

MNote: Only the boldface entries are affecied by the smoothing operations for that column.
*This value requires two passes of 3.

seem to be subject to larger Auctuations. We illustrate this by smoothing a

sequence of birthrate data.

Exhibit 6—14 shows the number of live births per 13,000 23-year-old
women in the United States between 1917 and 1975 (from the data in Exhibit
4-1) and the smooth of that data by 4253H,twice. The large-scale trends in
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Exhibit 6-14 U.S. Birthrate for 23-Year-Old Women, 1917-1975, and Smooth by 4253H,twice
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(b) Smooth by 4253H twice
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birthrate—dropping through the Depression, rising from World War II, and
falling again after 1960—are clearly seen in the plot and are well known. The
rough sequence, shown in Exhibit 615, is more interesting. Birthrates were
unstable in the early 1920s, erratic during World War II, and unstable in the
1960s. At other times they have changed rather smoothly.
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Exhibit 6-15 Rough of Birthrate
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6.7 Smoothing and the Computer

Data smoothing is one of the more tedious EDA techniques to apply by hand.
This, combined with the improved performance of the slightly more difficult
smoothing methods, makes it a good technique to implement on the computer.
The programs in this chapter provide the building blocks of an unlimited
variety of data smoothers, but only two compound smoothers, 4253H,twice
and 3RSSH,twice, arc assembled. Other compound smoothers can be
constructed with a slight programming effort. (The details will depend on the
computer system used.) The compound smoothers provided here perform well
in a wide variety of applications and should be sufficient for most needs. If you
wish to experiment with other combinations, you should read some of the
technical references cited at the end of this chapter. They warn of some of the
pitfalls in constructing data smoothers from running medians and provide
some guidance.

To use one of the compound smoothers provided here, we need to
specify only the data sequence to be smoothed (the data values are assumed to
be in sequence order) and where the smooth and rough sequences should be
placed. The choice of smoother is the only option.
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T 6.8 Algorithms

Data smoothers are often constructed from several similar smoothing opera-
tions. The programs for data smoothing take advantage of the great similarity
among elementary smoothing operations. These programs, more than any
others in this book, are built of many smaller units. This structure makes it
easy to build compound smoothers with them.

Several individual algorithms are needed. The most general and most
complex is the running-median algorithm. This algorithm uses two temporary
work arrays. One of these arrays keeps a “snapshot™ of the region of the data
sequence surrounding the point to be smoothed. The size of this region is
specified by the span of the smoother. The data values are preserved in this
work area because each data value participates in the calculation of the
smooth values of its successors. Once a data value has been smoothed, its
unsmoothed value must be remembered for the subsequent smoothing calcula-
tions. The second work array holds the same local data values, but they are
sorted in order so that the median can be found.

These work arrays are (conceptually) slid along the data sequence so
that they can hold the succession of local regions of the data used in the
median operations. The smooth value at the current data point is found as the
median of the sorted work array. To compute the smooth value at the next
data point, the “earliest” data value is found at the beginning of the snapshot
work array. {The corresponding value in the data array has already been
replaced by its smooth value.) A matching value is then found by searching the
sorted work array. (If more than one of the local values is identical to the
earliest value, it doesn't matter which is found.) Both the earliest value and its
match in the sorted array are removed, and the next data value to be
considered as the local region slides along by one 7-value is then placed in each
work array. The sorted work array is re-sorted to find the new median, which
is the next smooth value.

The running-median program does not smooth at all near the
endpoints. Values not accompanied by at least (span — 1)/2 data values on
each side are left unmodified and must be dealt with separately.

Running medians of three are not computed with the same algorithm.
Instead, a special program computes them. The program simply compares the
three numbers to determine the median. In addition, it reports whether the
smooth value is the middle value according to the sequence ordering on t. This
information makes it easy to check the stopping condition of 3R.

The algorithms for hanning, smoothing endpoints, and splitting have
been specified in Sections 6.2, 6.4, and 6.5, respectively. They are imple-
mented as described in those sections.
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Subroutines for each smoothing unit are provided. Each one smooths
values near the end explicitly and calls the appropriate general smoothing
subroutine,

FORTRAN

The FORTRAN program for data smoothing consists of 13 subroutines: RSM,
$4253H, S3RSSH, 52, §3, 54, 55, HANN, S3R, ENDPTS, SPLIT, MEDOF3, and RUNMED. To
smooth a data sequence in Y{ ), use the FORTRAN statement

CALL RSMLY, N, SMOOTH, ROUGH, VERSN, ERR)

where
Y(} is the N-long data vector holding the sequence to
be smoothed;
N is the length of the sequence;
SMOOTH{ ) is an N-long array in which the smooth is
returned;
ROUGH( ) is an N-long array in which the rough is returned;
VERSN is a flag = 1 to smooth by 3RSSH, twice,
= 2 to smooth by 4253H,twice;
ERR is the error flag, whose values are
0 normal
61 N < T—sequence too short to smooth
62 insufficient work array room—span of
running median is greater than allocated
space
63 internal error—possibly an error in the
sort program—especially if another sort
program has been substituted for the on¢
provided. If so, this could result from
incorrect use of that program.
BASIC

The BASIC program for data smoothing consists of 13 subroutines divided in
the same way as the FORTRAN subroutines just named. The data sequence
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of N values to be smoothed is in Y{). The smooth sequence is returned in Y{) and
the rough sequence in R{). Arrays C{) and W{) are used as work arrays. The
array X{) is not changed because it is likely to be a useful x-axis for plotting the
smooth and the rough. The version number V1t selects the smoother: v1 = 1 for
3RSSH,twice, V1 = 2 for 4253H,twice. Programmers should pay special
attention to the use of variables S0 through $9 to save temporary copies of end
values.

The smoothing routines require the defined functions and the sorting
subroutines. They can ngst subroutine calls five deep and use defined functions
from the deeper levels. This may strain the capacity of some very small
computers.
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5000
5010
5020
5030
5040
5050
5060

5070
5080
5090
5100
5110
5120
5130
5140
3150
5160
5170
5180

5190

5200
5210

5220
5230
5240
5250
5260
5270
5280
5290
5300
5310

3320
3330

5340
5350

REM
REM
REM
REM
REM
REM
REM

BASIC Programs

SMOOTH Y{() BY 4253H,TWICE OR 3RSSH,TWICE

ENTERED WITH Y{} A DATA SEQUENCE IN ORDER (USUALLY

ASSUMED TO BE SORTED ON X() WHERE X() EXISTS, BUT NO

SORT IS PERFORMED HERE.

V1i=1 FOR 3RSSH,TWICE: V1=2 FOR 4253H,TWICE: V1<0 TO ASK.
USES C() AND W() POR TEMPORARY STORAGE AND WORKSPACE
RETURNS SMOOTH IN ¥(), AND ROUGH IN R(), DOESNT CHANGE X().

IF V1 > 0 THEN 5110

PRINT TAB({MD); "SMOOTHER VERSION: 1=3RSSH, TWICE,

INPUT V1
GO TO 5070
IF N > 6 THEN 5140

PRINT TAB{MO)};N;" DATA POINTS IS TOO FEW TC SMOOTH"

RETURN
FOR I =1 TON
LET C(I) = Y(I)
LET R{I) = Y (I)
NEXT I
IF V1 > 1 THEN 5230

REM 3RSSH

GOSUB 5520
GO TO 5250

REM 4253H
GOSUB 5420
REM TWICE (FOR EITHER)
FOR I =1 TO R
LET X1 = C(I} - ¥(I)
LET C(I) = ¥ (I}
LET Y{I}) = Xl
NEXT I
IF V1 > 1 THEN 5350
REM 3RSSH

GOSUB 5520
GO TO 5360

REM 4253H

GOSUB 5420

183

2=4253H, TWICE";
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5360
5370
5380
5390
5400
5410

5420
5430
5440

5450
5460
5470
5480
5490
5500
5510

5520
5530
5540
5550
5560
3570
5580
5590
5600
5610

5620

ABCs of EDA
REM TWICE
FOR I =1 TON
LET Y(I) = ¥Y(I) + C(I)
LET R(I) = R(I) ~ Y ({I)
NEXT I
RETURN
REM SUBROUTINE FOR 4253H

REM OTHER SMOQOTHERS CAN BE CONSTRUCTED EASILY BY CALLING THESE
REM SUBROUTINES IN ANOTHER ORDER.

GOSUB 5620
GOSUB 5700
GOSuUB 5760
GOSUB 6570
GOSUB 6020
GOSUB 5940
RETURN

REM SUBROUTINE FOR 3RSSH

GOSUB 6710

REM S8=0 ON EXIT FROM 3R, NOW DO S
GOSUB &780

REM IF NO CHANGE, THEN DONE

IF S8 = 0 THEN 5610

GOSUB 6710

GOSUB 6780

GOSUB 5940

RETURN

REM 4:54 IS KEPT FOR 2 LATER,Y(l) ISNT CHANGED--RESULTS IN
Y(2)-Y(N)

LET 84 = Y (N)

LET 81 = ¥(N - 1)

LET 59 = 4

GOSUB 6230

LET Y(2) = (Y{(1) + ¥(2)) / 2

LET Y(N) = (S1 + S4) / 2
RETURN

REM 2

FOR I = 2 TON -1
LET ¥{I) = {(Y(I) + ¥Y(I + 1)} / 2
NEXT 1
LET Y(N) = S4
RETURN



5760

5770
5780
5790
5800

5810

5820
5830
5840
5850
5860

5870

5880
5890
5900
2910
5920
3930

5940
5950
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REM 5

LET S0 = Y (3)

LET S1 = Y(N - 2)
LET S9 = 5

GOSUB 6230

REM MEDS OF 3 ON ENDS

LET Y1 = ¥Y({l)
LET Y2 = Y {(2)
LET Y3 = 50
GOSUB 6140
LET Y(2) = ¥2

REM NOW HIGH END
LET Y1 = Sl

LET ¥2 = ¥Y{(N - 1)
LET ¥3 = Y(N)
GOSUB 6140

LET ¥Y(N - 1) = ¥2
RETURN

REM HANN

LET S0 = ¥(1)

5960°"FOR I = 2 TON - 1

5970
5980
5990
6000
6010

6020

6030
6040
6050
6060
6070
6080
6090
6100
6110
6120
6130

LET S1 = Y(I)
LET Y(I) = (S0 + ¥Y(I + 1)) / 4 + ¥(I) / 2
LET S0 = 51

NEXT 1

RETURN

REM APPLY ENDPOINT RULE TO BOTH ENDS OF ¥()

LET Y1
LET Y2 Y (1}

LET ¥3 ¥(2)

GOSUB 6140

LET ¥{(1) = ¥2

LET Y1 = 3 * Y(N - 1) = 2 * ¥Y(N - 2}
LET ¥2 = Y(N - 1)

LET ¥3 = ¥Y(N)

GOSUB 6140

LET ¥Y(N) = ¥2

RETURN

3% ¥Y(2) - 2 * ¥{(3)
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6140 REM MEDIAN OF Y1,Y2,Y3 RETURNED IN Y2
6150 IF (Y2 ~ Y1) * (¥3 - Y2) >= 0 THEN 6220
6160 REM Y2 ISNT MEDIAN, COUNT CHANGES., SB IS CHANGE FLAG.

6170 LET 88 =58 + 1

6180 IF (Y3 — Y1) * (Y3 - ¥Y2) > 0 THEN 6210
6190 LET Y2 = Y3

6200 GO TO 6220

6210 LET ¥2 = Y1

6220 RETURN

6230 REM RUNNING MEDIAN OF LENGTH S9--NO END POINT ROUTINES

6240 REM S2=POINTER FOR ROTATING SAVE ARRAY,S7=POINTER TO NEXT NUMBER
6250 REM 53 POINTS TO WHERE THE RESULT GOES.

6260 REM SORTS IN Y USING W() FOR TEMPORARY S5TORAGE.

6270 FOR I = 1 TO S§%
6280 LET W(I) = ¥(I)
6290 LET W(59 + I) = Y(I}

6300 NEXT I

6310 LET S2 = 59 + 1

6320 LET S3 = FNI((S9 + 2) / 2)
6330 LET S5 = 52 / 2

6340 LET N9 = N

6350 LET N = 5%
6360 REM MAIN LOOP

6370 FOR S7 = 89 + 1 TO N9

6380 GOSUB 1000

6390 LET Y(53) = FNM(S5)

6400 LET W1 ="W(S2)

6410 FOR I = 1 TO S9

6420 IF W(I) = Wl THEN 6460
€430 NEXT I

6440 PRINT "SM ERROR"

6450 STOP

6460 LET W({I) = ¥(87)

€470 LET W(S2) = ¥ (587)

6480 LET 82 = 52 + 1

6490 IF S2 <= 2 * 59 THEN 6510
6500 LET 52 59 + 1

6510 LET S3 53 + 1

6520 NEXT S7

6530 GOSUB 1000

6540 LET Y(53) = FNM(S5)

6550 LET N = N9

6560 RETURN
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6570
6580
6590

6600
6610
6620
6630
6640

6650
6660
6670
6680
6690
6700
6710
6720
6730
6740
6750

6760
6770

6780
6790
6800
6810
6820
6830
6840
6850
6860
6870
6880
6890
6900

6910

REM SUBROUTINE FOR RUNNING MEDIAN OF LENGTH 3.
REM THIS IS FASTER THAN USING THE ABOVE ROUTINE FOR THIS SPECIAL
REM CASE, AND MAKES 3R EASIER.
LET Y0 = Y (1)
FOR I =2 TON -1
LET Y1 = YO
LET ¥2 = Y{I)
LET ¥3 = Y(I + 1)
REM FIND MEDIAN OF Y1,Y¥2,¥3--S8 WILL BE S8+l IF CHANGE IS MADE
GOSUB 6140
LET Y0 = ¥ (I)
LET Y{I) = ¥2
NEXT I
RETURN
REM SUBROUTINE FOR 3R. REPEAT 3 UNTIL NO CHANGE TAKES PLACE.
LET 88 = 0
GOSUR 6570
IF 58 > 0 THEN 6720
REM ABOVE LOOP MUST END. NOW DO ENDPOINTS
GOSUB 6020
RETURN
REM SPLIT 2-PLATEAUS

REM LOCATE PLATEAUS OF LENGTH 2 AND APPLY ENDPOINT RULES
REM IF S8=0 ON ENTRY, S8=0 ON EXIT IFF NO CHANGES MADE
REM THIS ROUTINE USES W(l)-W(G6) AS TEMPORARY STORAGE.

REM A SLIDING WINDOW ON Y{).

LET N2 =N - 2

REM INITIALIZE WITH FIRST 4 POINTS

FOR I =1 TO 4

LET W({I + 2) = Y(I)
NEXT I
REM Y(1) AND ¥{(2) ARE A PLATEAU IF OK ON RIGHT--FAKE THE LEFT

LET W{2) = Y {(3)
REM Il IS POINTER FOR Y()

LET Il = 1
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6920 REM HUNT FOR 2-PLATEAUS

6930 IF W(3) <> W(4) THEN 7100
6940 IF (W(3) - W(2)) * (W(5) - W(4)) >= 0 THEN 7100

6950 REM W{3)&W(4) (=Y(Il)&¥{Il+l)) ARE A PLATEAU
6960 REM APPLY RIGHT ENDPOINT RULE AT Il, IF WE CAN

6970 IF 11 < 3 THEN 7040

6980 LET Y1 = 3 * W(2) - 2 * W(1)
6990 LET Y2 = W(3}
7000 LET Y3 = W(2}

7010 GOSUB 6140
7020 LET Y(Il) = ¥2

7030 REM APPLY LEFT END POINT RULE AT Il+l IF WE CAN

7040 IF I1 >= N2 THEN 7100

7050 LET Y1 = 3 * W(5) - 2 * W(6)
7060 LET Y2 = W(4)

7070 LET ¥3 = W(S)

7080 GOSUB 6140

7090 LET Y(Il1l + 1} = ¥2

7100 REM SLIDE THE WINDOW

7110 FOR I =1 TO 5

7120 LET W(I) = W(I + 1)}
7130 NEXT I

7140 LET I1 = I1 + 1

7150 IF Il »= N2 THEN 7180
7160 LET W(6) = Y(I1 + 3)
7170 GO TO 6320

7180 REM LAST 2 POINTS ARE A PLATEAU IF OK ON LEFT--FAKE THE RIGHT
7190 LET W({6}) = W(3)

7200 IF Il < N THEN 6920
7210 RETURN
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FORTRAN Programs

SUBROUTINE RSMI{Y, Ny SMOOTH, ROUGH, VERSN, ERR}

INTEGER Ny VERSN, ERR
REAL Y{IN}, SMOOTH(N}, ROUGH{N)
MAIN PROGRAM FOR NOMLINEAR SMOOTHERS.

ON ENTRY:
Y(} IS A DATA SEQUENCE OF N VALUES
VERSN SPECIFIES THE SMOQOTHER TC BE USED

VERSN=]1 SPECIFIES 3RSSH, TWICE

VERSN=2 SPECIFIES 4253H, TWICE
ON EXIT:
SMOOTH{) AND PROUGHiI} CONTAIN THE SMDOTH AND ROUGH RESULTING FROM
THE SMOOTHING OPERATIOM. NOTE THAT

Y{I} = SMOOTH{I) + ROUGH(I)

FOR EACH I FROM 1 TO N.

LOCAL VARIABLE

INTEGER I

IF (N .GT. 6) GO TO 10
ERR = 61
G0 TO 999
10 D0 20 1 = }y N
SMOOTHII) = YII)
20 CONTINUE
IF (VERSN .EQ. 1)} CALL S3RSSHISMOOTH, N, ERR)
IF (VERSN .EQ. 2) CALL S54Z252H(SMOOTH, N, ERR}
IF (ERR .NE. 0} 60 10 999

COMPUTE ROUGH FROM FIRST SMOOTHING

DD 20 F = 1, N
ROUGH(I} = ¥Y{I} — SMDOTH(I)
30 CONTINUE

REARDUGH SMOOTHERS ("TWICING")

IF (VERSN LEQ. 1) CALL S3RSSH{ROUGH, N, ERR)
IF (VERSN .EQ. 2) CALL 54253H(ROUGH. N+ ERR)}
IF (ERR NE. 0 ) GO TCQ 999
DO 40 I = 14 N
SMOOTH{I) = SMOOTH(I) + ROUGH(I)
ROVGH(I) = Y{I)} = SMOOTH(I)
40 CONTINUE
999 RETURN
END
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SUBROUTINE S53RSSH{Ys N, ERR)

SMOOTH v{) BY 3RSSH, TWICE

INYEGER N,
REAL Y(N)

LOCAL VARIABLE

10
999

ERR

LOGICAL CHANGE

CALL S3R(Y,
CHANGE = .FALSE.
CALL SPLIT(Y,

IF (.NOT.

CALL 53R(Y,
CHANGE = .FALSE.
CALL SPLITU(Y,
IF (CHANGE) CALL S3R(Y, N)
CALL HANNI(Y: N}

RETURN
END

N}

NI

Ny CHANGE])

CHANGE) GO TO 10

N, CHANGE}

SUBROUTINE $4253H(Ys N, ERR}

SMOOTH BY 4253H

INTEGER N,
REAL YiN)

ERR

LOCAL VARIABLES

999

REAL ENDSAV, WORK{S5), SAVE(S}

NW .,y

INTEGER NW

LOGICAL CHANGE

DATA NW/S/

CHANGE =.FALSE.

CALL 54(Y, N, ENDSAV, WORK, SAVE, NWs ERR])
IF{ERR .EQ. 0) CALL S52(Y¥y N, ENDSAV)}
IF(ERR .EQ@. 0G) CALL 55(Y, N, WORK,; SAVE,
IF{ERR EQ. C) CALL 53(Y,; N, CHANGE)
IF(ERR .EQ. 0) CALL ENDPTSI(Y, N)

IF(ERR LEQ. 0) CALL HANNLY, N)

RETURN

END

ERR)



FORTRAN 193

OO O [aXxEpl

aNaNaNaXa

OO0

OO0

SUBROUTINE S4(Ys Ny ENDSAV, WORK, SAVE, NW, ERRIJ
SMOOTH BY RUNNING MEDIANS OF 4.

INTEGER N, NW,s ERR
REAL Y{N}, ENDSAV, WORKINW}, SAVE(NW)

LOCAL VARIABLES

REAL ENDM1, THWO
DATA THWO/2.0/

EVEN LENGTH MEDIANS OFFSET THE OUTPUT SEQUENCE TO THE HIGH END,
SINCE THEY CANNOT BE SYMMETRIC. ENDSAV IS LEFT HOLDING Y{(N} SINCE
THERE IS5 NO OTHER ROOM FOR IT. Y{(1l) IS UNCHANGED.

ENDSAV = Y{N)
ENOML = Y(N-1])
CALL RUNMED(Y,s Ny 4+ WORK, SAVE, NW, ERP)}

Yez) = (Y(1) + ¥Y{(2})}/TwWO

YIN) = (ENDML + ENDSAVI/THWO
999 RETURN

END

SUBRDUTINE 52(Ys N, ENDSAV)

SMOOTH BY RUNNING MEDIANS {(MEANS) OF 2.
USED TO RECENTER RESULTS OF RUNNING MEDIANS OF 4,
ENDSAV HOLDS THE ORIGINAL Y(N).

INTEGER N
REAL Y(N), ENDSAVY

LOCAL VARIABLES

INTEGER NMl, 1
REAL TwWO
DATA TWO/2.0/

NMl = N-1
00 10 I = 2, NM}
Y{I) = (Y (I+41)+¥YL{I))/TUO
10 CONTINUE
Y{N} = ENDSAV
999 RETURN
END
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SUBROUTINE S55{Ys N+ WORKs SAVE: NW,s ERR}
SMOOTH BY RUNNING MEDIANS OF 5.

INTEGER N, NW; ERR
REAL Y(N)y WORK{(NW}y SAVE{NN)}

LOCAL VARIABLES

LOGICAL CHANGE
REAL YMEDL, YMEDZ

CALL MEDOF3(Y(Ll), Y2}, Yi3), YMEDLl, CHANGE}
CALL MEDOF3(Y{N}, Y(N-1}, Y¥Y(N-2}, ¥YMEDZ, CHANGE)
CALL RUNMED(Y, Ny 54 WORKs SAVEe NWy ERR)

Y(2} = YMEDIL

Y{N=-1} = YMED2

999 RETURN

END

SUBROUTINE HANN(Y, N}

3=POINT SMOCTH BY MOVING AVERAGES WEIGHTED 1/4y 1/2,
THIS 1S CALLED HANNING.

INTEGER N
REAL Y{N)}

LOCAL VARIABLES

INTEGER 1. NM1
REAL Y1, Y2, Y3

NMl = N-1
Y2 = Y{(1}
¥3 = Y(2)

DO 10 1 = 2, NM1
¥l = ¥2
¥z = ¥3
Y2 = ¥Y{I+1)
Y{I) = (Y1l + Y2 + ¥Y2 + ¥31/4.0

10 CONTINUE
999 RETURN
END

1/4.
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SUBRDUTINE S53(Y, N, CHANGE)
C

C COMPUTE RUNNING MEDIAN OF 3 ON Y().
C SETS CHANGE .TRUE. [IF ANY CHANGE 1S MADE.
C

INTEGER N
REAL Y{N)
LOGICAL CHANGE

LOCAL VARIABLES

gNaNal

REAL ¥l, Y2, Y3
INTEGER NM1

¥Y2=¥({1}
Y3=Y{2)
NMl = N-1
DO 10 I = 24 NM]
¥Yl=Y2
¥2=¥Y3
Y3=¥(I+l)
CALL MEDOF3(Y¥l, ¥2: Y32, Y(1)y CHANGE)
10 CONTINMNUE
999 RETURN
END

SUBROUTINE S3R{Y: N)
C COMPUTE REPEATED RUNNING MEDIANS OF 3.
C

INTEGER N
REAL Y{NI]

LOCAL VARIABLE
LOGICAL CHANGE

O o000

10 CHANGE = .FALSE.
CALL S3(Y, N, CHANGE}
IF (CHANGE) 6C TO 10
CALL ENDPTS({Y. N)
999 RETURN
END
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SUBROUTINE MEODOF3(Xl, X2y X3, XMED, CHANGE)

PUT THE MEDIAN OF X1, X2, X3 IN XMED AND
SET CHANGE J.TRUE. 1F THE MEDIAN ISNT X2.

aFaNalel

REAL X1,y X2y X3, XMED
LOGICAL CHANGE

LOCAL VARTABLES

REAL Y1, Y2, ¥3

B OO0

¥i=Xx1
¥2=X2
¥3=X3

XMED = Y2
IF((¥2=-Y1l) * (¥3=Y2) .GE. 0.0 ) GO TO 999
CHANGE = L.TRUE.
XMED = Y1
IF ((Y3-Y1l}) * (Y3-Y2) .GT. 0.0 ) GO TO 999
XMED = Y3
999 RETURN
END

SUBROUTINE ENDPTS(Y,s N)

ESTIMATE SMOOTHED VALUES FOR BOTH END POINTS OF THE SEQUENCE IN Y()
USTNG THE END POINT EXTRAPOLATION RULE.
ALL THE VALUES IN Y{)} EXCEPT THE END POINTS HAVE BEEN SMOOTHED.

OO0

INTEGER N
REAL Y{N)

LOCAL VARIABLES

laNnXa)

REAL YO, YMED
LOGICAL CHANGE

CHANGE = .FALSE.
LEFT END

o O

YO = 3.0%¥{2) - 2.0%¥{3)
CALL MEDOF3(Y0, Y(1)s Y(2), YMED, CHANGE)
¥Y{1) = YMED
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RIGHT END

Y0= 3.0%Y{N-1)-2.0%Y(N=2)
CALL MEDOF3{YO, Y{N}, Y(N-1), YMED, CHANGE}
Y{N) = YMED
999 RETURN
END

SUBROUTINE SPLIT(Ys Ns CHANGE)
FIND 2-FLATS IN Y{} AND APPLY SPLITTING ALGORITHM.

INTEGER N
REAL Y(N)
LOGICAL CHANGE

LOCAL VARIABLES

REAL Wi6), Y1
INTEGER 11, !, NM2Z

W() IS5 A WINDOW & POINTS WIDE WHICH IS5 SLID ALONG Y{(}.

NMZ = N=2
DO 10 I = 1, 4
W(T+2) = YI(I)
10 CONTINUE

IF ¥{1l3=Y{(2} JNE. Y{3)y, TREAT FIRST 2 LIKE A 2-FLAT WITH END PY RULE

Wi{2)=y{(3)

I1 = 1
20 IF (W(3) .NE. Wi4}) GO TO 40

IF ( (W(3)=W(2}) » (WIS5)=-W(4)) .GE. 0.0 )} GO TO 40
W(3} AND Wi{4) FORM A 2-FLAT.

IF € 11 LT« 2} GO 1O 30

APPLY RIGHT END PT RULE AT I1

Yiz 3.0 * W(2) = 2.0 * Wll)

CALL MEDOF3({Y1l, W(3), W{2), Y(I1), CHANGE}
30 IF (I1 .GE. NMZ2) GO TD 40
APPLY LEFT END PT RULE AT 11+1

Y1 = 2.0%W(5) — 2.0%W(&)
CALL MEDOF3{Y1l, Wi4), WIS}, Y1141}, CHANGE)}
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SLIDE WINDOW

40 DO S50 I = 14 5
Wil = W{l+1)
50 CONTINUE
I1 = 11+]
IF (Il .GE. NM2) GO TQ 60
Wie) = Yi11+3)
60 TO 20

APPLY RULE TO LAST 2 POINTS IF NEEDED.

60 Wib)=W(3)
IF(I1 .LT. N ) GO TO 20

999 RETURN

END

SUBROUTINE RUNMED(Y, N, LEN, WORK, SAVE, NW, ERRI}
SMODYH Y() BY RUNNING MEDIANS OF LENGTH LEN.
NOTE: USE S3 FOR RUNNING MEDIANS OF 3 INSTEAD OF RUNMED.

INTEGER N+ LEN, NW, ERR
REAL Y(N), WORK(NW}, SAVE{(NW}

FUNCTION
REAL MEDIAN
LOCAL VARIABLES

REAL TEMP, THWO
INVYEGER SAVEPT, SMOPT, LENPLl, I, J

WORK{) IS A LOCAL ARRAY IN WHICH DATA VALUES ARE SORTED.
DATA TWO/2.0/
SAVE(} ACTS AS A WINDOW ON THE DATA.

IFULEN .LE. NW} GO TO 5
ERR = 62
GC TO 999
00 10 I=1. LEN
WORK(I) = Y({I)
SAVELI) = Y{1)
10 CONTINUE
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20

30

50

999

SAVEPT = 1
SMOPT = INT((FLOAT(LEN} + TWC)/TWO}
LENP1 = LEN + 1
DO 50 1 = LENPL, N
CALL SORT(WORK, LEN, ERR)
IF{ERR .NE. 0} GO TO 999
Y (SMOPT) = MEDIAN(WORK, LEN)
TEMP = SAVE (SAVEPT)
DO 20 J=1, LEN
1F (WORK(J) .EQ. TEMP ) GO TO 30
CONT INUE
ERR = 63
G0 10 999
WORK(J} = Y (1)
SAVE(SAVEPT) = Y(I)
SAVEPT = MOD{SAVEPT, LEN)+l
SMOPT = SMOPT + 1
CONTINUE
CALL SORT(WORK, LEN, ERR)
IF(ERR .NE. 0) GO TO 999
Y{SMOPT) = MEDIAN(WORK, LEN}
RETURN
END
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Coded Tables

We have examined data with several types of structure. In this chapter we
consider another data structure, the table. Tables of numbers are a common
way to organize data when each data value is related simultaneously to two
factors. For example, Exhibit 71 shows the death rates (in deaths per 1000
for men) reported in a British study of the health effects of smoking. Each row
of the table in Exhibit 7-1 reports a different cause of death, and each column
holds data for different amounts of smoking. Any number in the table can
easily be identified with its row and column labels. Thus, for example,
non-smokers died of chronic bronchitis at the rate of about .12 per 1000.

The kinds of patterns we might look for in tables are much the same as
those we have sought in other kinds of data, except that in tables we have three
things to keep track of: the row identity, the column identity, and the data
value in the cell. For example, if, as in Exhibit 7-1, the columns have a natural
order, we might look for trends as we move from left to right in the table.
These might be an overall trend—for example, men who smoke more die at a
greater rate than non-smokers—or trends in single rows—for example, this
trend is especially strong for lung cancer. Of course, if the rows had a natural
order (say, from top to bottom in the table), we might also look for trends
against this order.

201
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Exhibit 7-1 Standardized Death Rates (per 1000) for Men in Various Smoking Classes by Cause

of Death
Smoking Class
1-14 15-24 25+
Cause of Death None Grams Grams Grams
Cancers
Lung 0.07 0.47 + 0.86 1.66
Upper respiratory 0.00 0.13 0.09 0.21
Stomach 0.4] 0.36 0.10 0.31
Colon and rectum 0.44 0.54 0.37 0.74
Prostate 0.55 0.26 0.22 0.34
Other 0.64 0.72 0.76 1.02
Respiratory diseases
Pulmonary TB 0.00 0.16 0.18 Q.29
Chronic bronchitis 0.12 0.29 0.39 0.72
Other 0.6%9 0.55 0.54 0.40
Coronary thrombosis 422 4.64 4.60 5.99
Other cardiovascular 2.23 215 2.47 2.25
Cerebral hemorrhage 2.01 1.94 1.86 2.33
Peptic ulcer 0.00 0.14 0.16 0.22
Violence 0.42 0.82 0.45 0.90
Other diseases 1.45 1.81 1.47 1.57

Source: J. Berkson, “Smoking and Lung Cancer: Some Observations on Two Recent Reports,” Journal of
the American Statistical Association 53 (1958):28-38. Reprinted by permission.

Note: Rates are not age-adjusted.

In the table in Exhibit 7-1, the rows have no natural order. They
merely label categories for different causes of death. We might look for
differences among the categories—for example, fewer deaths from peptic
ulcer. At a slightly more sophisticated level, we might ask whether the
patterns we noted across columns change from row to row. In Exhibit 7-1 we
can see that they do. Lung cancer death rates show a strong trend with
increased smoking; death rates from “other respiratory” (non-cancerous)
diseases show a slight decrease as smoking increases.

Finally, as in every exploratory examination of data, we look for
outliers. In Exhibit 71 an entire row—coronary thrombosis—is prominent as
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the overwhelming major cause of death among men, and the cell for heavy
smokers in this row is substantially larger than the rest of the row.

7.1 Displaying Tables

Searching large tables for patterns is often tedious. Instead, we need a display
that will tame the clutter of numbers in large tables yet reveal the kinds of
patterns that we lock for in tables. The structure of a table encourages use of a

coded table display that preserves the row-by-column shape. The coded table does this job
neatly.

In a coded table we replace the data with one-character codes that
summarize their behavior. The scheme for assigning codes is much like the one
we used to construct boxplots in Chapter 3. Data values are identified as being
(1) in the middle 50% of the data, between the hinges (coded with a dot, .),
(2) above or below the hinges but within the fences (coded + or -), (3)
outside the inner fences (coded # for “double plus™ or = for “double minus™),
or (4) far outside (coded P for “PLUS” or M for “MINUS”). If a cell is
entirely empty, it is coded with a blank. Exhibit 7-2 shows the result of coding
the death rates of Exhibit 7-1. The patterns are now actually clearer because
we are no longer trying to read 60 numbers and can concentrate on the
patterns.

7.2 Coded Tables from the Computer

Coded tables of moderate size are easy to make by hand. Ail we need are the
hinges and fences, which are easy to find from a letter-value display. It is
natural to produce a coded table on the computer when the data are already in
the machine, but computer-produced coded tables have some additional
advantages. A coded table condenses a large table effectively. Only two spaces
are needed for each cell of the table rather than the six or more needed to print
the numbers. (If we need to print a bigger table, we can omit the space
between coding symbols.)
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When we have a table in which both rows and columns are ordered and
equally spaced, the coded table can serve as a rough contour plot. The codes
are chosen so that more extreme points are darker in order to enhance this
interpretation.

The computer allows us 10 make coded tables for more complicated
data than we might ordinarily analyze by hand. Some data tables, especially
from designed experiments, can have several numbers in each cell of the table.
Exhibit 7-3 shows an example in which test animals were given one of three
poisons and treated by one of four treatments. Four animals were assigned to
each combination of poison and treatment, and the table reports the number of
hours each animal survived. Two coded tables are useful here: a coded table of

Exhibit 7-2 Suminaries of the Male Death Rates of Exhibit 7-1, Including a Coded Table

STEM-AND-LEAF DISPLAY
UNIT = 1
1 2 REPRESENTS 1.2

12 +)= 000007111111

23 T 22222233333
{10} F 4444445555
21 § 667717

21 0- 889

18 1+ D

17 T

17 F 445

14 S6

13 1- 889

10 2= 01

8 T 223

5 Fa

Hl: 42, 46, 46, 59,

LETTER-VALUE DISPLAY

n=60

Depth Low High Mid Spread
M 305 .54 54
H 155 .24 1.52 .88 1.28
E 8 13 2,23 1.18 2.10
D 4.5 .08 3.345 1.7125 3.265
C 25 0 4.62 2.31 4.62
B 1.5 o 5.315 2.6575 5.315

1 1] 5.99 2.995 5.99
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Exhibit 7-2 (continued)

Coded Table

None 1-14 15-24 25+

Cancers
Lung — . . +
Upper sespiratory — - - _
Stomach . . _
Colon and rectum
Prostate . . -
Other .
Pulmonary TB — — _
Chronic bronchitis -
Other respiratory
Coronary thrombosis
Other cardiovascular
Cerebral hemorrhage
Peptic ulcer
Viclence
Other diseases . + . +

+ 4+ %
+ + # -
+ + %
+ + 0

Far outside low

Below low inner fence (outside)

Below lower hinge but within inner fence
Between hinges

Above upper hinge but within inner fence
Above high inner fence (outside)

Far outside high

]

U

the lowest value in each cell, and a coded table of the highest value in each cell.
For both tables the hinges and fences are determined by the entire data set of
all 3 x 4 x 4 = 48 numbers, although only 12 numbers are coded. Exhibit 7—4
shows the resulting coded tables. The table of maximum values warns of some
possible strays.

A third alternative is useful for displaying residuals from a median
polish-—a technique explained in the next chapter. In this table we display the
most extreme (largest in magnitude) number in each cell to highlight possible
outliers.

The coded table programs in this chapter require that tables be
represented in three arrays. One array holds the data values, a parallel array
holds the corresponding row numbers, and a third and also parallel array holds
the corresponding column numbers. Thus the simple table

10 20
30 40
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Exhibit 7-3 Survival Times of Each of Four Animals After Administration of One of Three
Poisons and One of Four Treatments (unit = 10 hours)

Treatment
Poison A B C D
I 0.31 0.82 0.43 0.45
0.45 1.10 0.45 0.71
(.46 0.88 0.63 0.66
0.43 0.72 0.76 0.62
I 0.36 0.92 0.44 0.56
0.29 0.61 0.35 1.02
0.40 0.49 0.31 0.71
0.23 1.24 0.40 0.38
| 0.22 0.30 0.23 0.30
0.21 0.37 0.25 0.36
0.18 0.38 0.24 0.31
0.23 0.29 0.22 0.33

Source: G.E.P. Box and D.R. Cox, “An Analysis of Transformations,” Journal of rhe Royal Sraiistical
Society, Series B 26 (1964):211-243. Reprinted by permission.

Exhibit 7-4 Coded Tables for Exhibit 7-3

Minimum Value in Each Cell
A B C D

- =+
n|- . . .
m|- - - -

Maximum Value in Each Cell

A 8 C D
rf- + + +
my - # - +

mi{- - - =
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would be described to the programs as

Data Row Column

10 1 !
20 1 2
30 2 1
40 2 2
While this structure uses slightly more space than other ways of storing a
table, it offers great flexibility. For example, it easily accommodates an empty
cell: The combination of its row and column numbers simply never appears.
Similarly, multiple data values in a cell are specified by repeating the cell’s
row and column numbers for each data value. When the table has more than

one data value in some cells, the programs must be told whether to code the
maximum, minimum, or most extreme value in the cell.

7.3 Coded Tables and Boxplots

Boxplots and coded tables display data in similar ways. Both describe overall
patterns in the data and highlight individual extraordinary data values, and
both use letter values as a basis for these descriptions. Therefore, it is not
surprising that these two displays complement each other well.

Coded tables preserve the row and column location of each data value.
This helps to reveal two-dimensional patterns but can be distracting when we
want to make comparisons among rows or columns alone. When that is our
goal, boxplots may do better.

Exhibit 7-5 shows a table of the U.S. birthrate (live births per 1000
women aged 15-44 years) recorded monthly from 1937 through 1947, and
Exhibit 7-6 shows a coded table for the same data. As we saw when we
smoothed annual birthrates in the Jast chapter (see Exhibits 6-14 and 6-15),
this period witnessed rapid changes in the U.S. birthrate due, in part, to World
War II. The monthiy data ailow us to examine these changes more closely.

The coded table in Exhibit 7-6 shows some of the patterns we would
expect: lower birthrates in 19371940 beginning to increase in the early 1940s,
decline in the late years of World War I1, and the sharp increase of the
postwar baby boom. We can now see that the increases in both 1942 and 1946
accelerated in July and August of those years.
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Exhibit 7-5 U.S. Birthrate (live births per 1000 women aged 1544 years) by Month, 1937-1947

January February March April May June
1937 75.62 78.36 78.58 75.18 74.90 75.87
1938 79.73 B1.62 80.27 77.85 76.80 77.54
1939 77.89 79.22 79.26 76.36 73.75 75.74
1940 77.74 80.48 79.15 77.04 77.44 79.25
194] 80.41 82.82 82.98 81.19 77.52 85.23
1942 86.28 88.60 87.23 83.07 81.97 £6.23
1943 99.45 99.59 96.76 92.30 89.63 93.83
1944 8865 89.69 85.69 82.68 83.37 89.35
1945 87.76 88.14 85.62 82.33 $2.21 85.88
1946 81.50 83.56 83.45 §3.28 85.22 91.35
1947 123.12 120.83 117.69 109.10 109.53 112.55

July  August  September  October  November — December

1937 80.73 83.10 82.06 75.77 73.59 74.26
1938 82.87 83.85 82.76 78.13 75.58 74.14
193% 80.79 82.01 82.21 77.60 73.60 72.19
1540 83.69 85.03 84.69 78.97 76.19 76.23
1941 01.45 89.51 86.72 80.84 80.43 81.43
1942 91.65 95.58 101.85 101.62 97.60 95.68
1943 97.87 98.71 98.12 92.13 87.93 86.31
1944 95.30 94,79 91.99 88.48 83.70 87.58
1945 89.15 89.92 90.30 85.31 83.17 81.94
1946 104.4! 113.96 122.52 123.61 124.90 123.21
1947 11479 11521 115.44 111.08 107.22 103.93

Source: U.S. Depariment of Health, Education and Wellare, Seasonal Variations of Births, U.5.
1933-1963, National Center for Health Statistics, Series 21, no. 9.

This pattern raises the question of whether birthrates, even in times of
rapid change, show a seasonal cycle. To answer this question, we need to
compare the columns of the table. Exhibit 7-7 shows the 12 boxplots of the
birthrates by month. There is clearly an annual cycle; birthrates are lowest in
April and May, are highest in the summer, and seem to cycle smoothly
month-to-month. The cycle is clear in the sequence of medians, in both the low
and high hinges, and even in the outliers (mostly values from 1946 and 1947).
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Exhibit 7-6 Coded Table of Monthly Birthrates 1937-1947 (from Exhibit 7-5)

J F M 4 M J I 4 S§ ©0 N D
1937 | - - - - - - . . . - - =
1938 . . - - - - . . . - - -
1939 - - - - — - . . . - - -
1940 | — . - - - = . . . - - -
1941 . . . . - .
1942 | . . . . + o+ o+ o+ 4+
1943  + + + + . + o+ o+ o+ .
1944 . . . . . . + o+
1945 . . . . . . . . . . . .
1946 . . . . . . + # # # # F
1947 # # # + + # # # # + O+ o+

We might have had some hints of this annual cycle from the coded table, but
we certainly could not see the cycle with this clarity.

It is easy to use the programs in this book to obtain boxplots by rows or
columns because tables are specified by separate arrays holding row numbers
and column numbers (see Section 7.2). We need only specify that either the
column-number array (as in the monthly birthrate example) or the row-
number array should be the group-identifying array for the boxplot program
(see Section 3.8). For some tables we might want 1o examine a coded table,
boxplots by columns, and boxplots by rows. If we want to go further in
analyzing the birthrate data, we might unravel the table to form a month-
by-month time series and apply the data-smoothing methods of Chapter 6. It
would probably be interesting to put the rough sequence back into an 11 by 12
table and look again at the coded table after the year-to-year trend and annual
cycle have been removed. The methods of the next chapter provide yet another
way to analyze this table.

t 7.4  Algorithms

The coded table programs accept data in the form described in Section 7.2.
First, the data array is copied and sorted to find the hinges and fences. Then,
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Exhibit 7-7  Boxplots of U.S. Birthrate by Month (from Data in Exhibit 7-5) —
S 0
Fo i i ,
Mar: S . 0
for T h i
oy 1 o
Jun 1+ 1 .

ol et

T
S
o S T —
Mo T .
57— .

the table is re-structured so that the cell in the top row and leftmost column
comes first, followed by the rest of the first-row cells in column-number order,
from left to right. If more than one value is found for a ceil, the maximum,
minimum, or most extreme value is kept, depending on which alternative has
been specified. The first-row values are followed by the values in the second
row, from left to right, and so on. The resulting array is said to be in row-major
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format. The programs use an internally determined code to mark any empty
cells. This code is not a missing-value code and is not used outside these
programs. The empty code is generated internally to ensure that it is unique.

The re-ordered table is now in the right order for generating the
coded table. Values are considered in turn, They are compared to the hinges
and fences, and their codes are printed a line at a time. Empty cells appear as
blank cells in the coded table.

FORTRAN

The FORTRAN program for coded tables is invoked with the statement

CALL CTBL (Y, RSUB, CSUB, N, NN, NR, NC, SORTY, CHOOSE, ERR)

where

Y() is the N-long vector of data values;

RSUBL }, CSUBL ) are N-long integer arrays of row and column
subscripts;

N is the number of data values and, hence, the
length of RSUB and CSUB as well;

NN is the length of SORTY{)—not less than the
larger of N and NR*NC;

NR is the number of rows in the table—the
integers in RSUB() thus count from 1 to
NR;

NC is the number of columns in the table—the
integers in CSUB{} thus count from 1 to
NC;

SORTY( } is an NN-long work array for sorting the
values in Yt )

CHOQSE is an integer flag to indicate selection when

there are multiple values in a cell:
1 choose most extreme value in cell,
2 choose maximum value, or
3 choose minimum value;
EAR is the error flag, whose values are
0 normal
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71 the table has a zero dimension (NR -
0 or NC = 0)

72 too many columns—will not fit on
page at current margins

73 insufficient room in SORTY{},

The FORTRAN program constructs each row of the coded table,
using PUTCHR to put symbols in the output line. Each line is printed as it is
completed.

BASIC

The BASIC subroutine for coded tables is entered with the N data values in
Y{), row subscripts in R(}, and column subscripts in C[). The data are first
sorted into the work array, W(), and hinges and fences are determined. The
hinges are placed in L2 and L3, the inner fences in F1 and F2, and the step
{= 1.5 x H-spr) in 81. The table is then copied in row-major form into W{).
The coded table is printed cell-by-cell as it is generated.

7.5 Details and Alternatives

One cbvious enhancement of a coded table is the use of color. Values above the
median might be given green codes, while values below the median might have
red codes. Users with more sophisticated graphics devices might prefer
another choice of codes. However, it is doubtful that increasing the number of
code alternatives would improve the coded table very much. Seven alternatives
seems to be a comfortable number for the human mind to work with. See, for
example, Miller (1956).

When the rows and columns have not only an order but also a natural
or estimated spacing, it can be useful to lay out the rows and columns of the
coded table according to that spacing. This is difficult to do well on a printer,
but is easily accomplished with more sophisticated graphics equipment. One
source of such a spacing is the row and column effects found by a median
polish of the table (see Chapter 8).
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5000
5010
5020
5030
5040
5050
5060
5070
5080

5090
5100
5110
5120

5130
5140

5150

5160
5170
5180
5190

5200
5210

5220
5230
5240
5250
5260
5270
5280
5290
5300
5310
5320

5330

5340
5350
5360
5370

BASIC Programs

REM CODED TABLE ROUTINE

REM PRINTS A 7-SYMBOL CODED TABLE OF THE MATRIX IN Y({)

REM WITH SUBSCRIPTS IN R{) AND C().

REM IF THERE IS MORE THAN ONE VALUE IN ANY CELL COF THE TABLE,
REM THE VALUE OF V1 DETERMINES WHICH SHALL DETERMINE THE CODE:

REM V1=l : THE LEAST VALUE IS CODED
REM V1=2 : THE MOST EXTREME {(GREATEST MAGNITUDE) VALUE,
REM V1=3 : THE GREATEST VALUE.
REM IN ALL CASES THE ENTIRE DATA SET IS USED TO FIND HINGES AND
FENCES
REM THE V1=2 VERSION IS THE USUAL DEFAULT, AND IS USED IF
REM V1<>1 AND V1 <> 3,
REM
REM SORT Y INTO W AND GET INFORMATION ABOUT IT
GOSUB 3300
GOSUB 2500
REM LOCAL MISSING VALUE IS ONE GREATER THAN MAX VALUE IN Y()
LET E1 = W(N) + 1
FOR K =1 TON
LET W{K) = El
NEXT K
REM COPY Y() TO W{() INTO ROW-MAJOR FORM

REM CHOOSING FROM MULTIPLE VALUES IN A CELL ACCORDING TO V1
FOR K =1 TO N

LET L =C9% * (R(K}) - 1) + C(K)
IF W(L) = E1 THEN 5350
LET W1l = W(L)
LET Yl = Y (K)
IF V1 <> 1 THEN 5300
IF W1 <= Y1 THEN 5360
GO TO 5350
IF V1 <> 3 THEN 5330
IF W1 >= Y1 THEN 5360
GO TO 5350
REM MOST EXTREME IS DEFAULT FOR ANY OTHER V1
IF ABS(W1l) >= ABS(Y1l) THEN 5360
LET W(L} = Y(K)
NEXT K
LET K = 0

214



BASIC

5380 REM CHARACTER SET FOR CODED TABLES IS #+.-=

5390 FOR I = 1 TO R9
PRINT TAB(MO);

1l TO

c9

LEFT K=K + 1
LET X1 = W(K)
<> E1 THEN 5470

5400

5410 FOR J =
5420

5430

5440 IF X1
5450 PRINT
5460 GO TO
5470 IF X1
5480 IF X1
5490 PRINT
5500 GO TO
5810 IF X1
5520 PRINT
5530 GO TC
5540 IF X1
5550 PRINT
5560 GO TO
5570 PRINT
5580 GO TO
5590 IF X1
5600 PRINT
5610 GO TO
5620 IF X1
5630 PRINT
5640 GO TO
5650 PRINT
5660 PRINT
5670 NEXT J
5680 PRINT
5690 NEXT I
5700 PRINT

5710 RETURN

" on,

L)
5660
> L3
< L2
‘-ﬁ;
5660
< F1

5660
< L2
LEL
5660
RHO;
5660
> F2
I+H;
5660
> L3
.'u;
5660
-P.;
| ] ",

r

THEN 5590
THEN 5510

THEN 5540

- 2 * S1 THEN 5570

THEN 5620

+ 2 * 51 THEN 5650

215
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FORTRAN Programs

SUBROUTINE CTBL{Y, R5UB, LS5UB, Ny NN, NR, NC, SORTY, CHOOSE, ERR)

INTEGER Ny NN, NR, NC, CHOOSE, ERR
INTEGER RSUBI(N]), CSUB(N}
REAL Y{N), SORTY{NN)

PRINT A CODED TABLE CF THE MATRIX IN Y{() WITH SUBSCRIPTS IN RSUB{()
AND CSUB(}. THIS FORM OF STORING A MATRIX ALLOWS MULTIPLE DATA
ITEMS IN A CELL. WHEN THERE ARE MULTIPLE DATA ITEMS IN A CELL, THIS
ROUTINE CONSULTS CHOCSE. IF CHOO3E = 1y THE MOST EXTREME VALUE WILL
BE USED. 1IF CHCOSE = 2y THE MAXIMUM VALUE WILL BE USED. IF
CHOOSE = 3y THE PINIMUM VALUE WILL BE USED. THE FIRST CHOICE IS
USUALLY BEST FCR RESIDUALS. THE SECOND AND THIRD TOGETHER CAM BE
VALUABLE FOR RAW DATA.

SORTY() MUST BE DIMENSTONED BIG ENOUGH TO CONTAIN AN ELEMENT FOR
EVEQY CELL OF THE TABLE INCLUDING EMPTY CELLS. THUS NN 1S .GE. N.

Ck#%x THE DIMENSIONING OF SORTY()} THIS WAY DIFFERS FROM THE DESCRIPTICN
C*#%* IN CHAPTER 7 COF ABCS QF EDA (FIRST PRINTING).

C
C
C

zNeXel

xR n X nEEE

COMMON BLOCKS

COMMON /JCHRBUF/ P, PMAX, PMIN, DUTPTR, MAXPTR, OUNIT
INTEGER P(130}, PMAX, PMIN, QUTPTR, MAXPTR, OUNIT

LOCAL VARIABLES
INTEGER I, J, K, 1ADJL, IADJH, NBIG
INTEGER CHPTy CHMIN, CHEQ. CHM, CHPLUS, CHX, CHP, CHBL
REAL MED, HL, HH., ADJL, ADJH, STEP, OFENCL, IFENCL, COFENCH
REAL IFENCH, EMPTY

DATA CHPT, CHMIN, CHEQy CHM/ &4&, 40, 38, 13/
DATA CHPLUS, CHX, CHP, CHBL/ 39, 24, 16, 37/

CHECK FOR RGDOM ON THE PAGE AND IN SORTY ()

IFI{PMAX LGE. PMIN + 2%NL) GO YO 5
ERR = 72
GO 10 999
S NBIG = MAXO(N, NR#NC)
TF{NBIG .LE. KN) GO TC 8
ERR = 73
xkk SORTY() DIMENSIONED TOD SMALL. THIS IS A NEW ERROR CODE.
GO TD 99¢

GET SUMMARY INFORMATION ABOUT DATA TN TABLE

8 TF{NR .GY. 0 ,ANC. NC .GT. Q) GO TO 10
ERR = 71
G0 TC 599
10 D2 20 K = 14y N
SORTYIK) = ¥(K]
20 CONTINUE
CALL YINFO{SORTY, N, MED, HLs HH, ADJL, ADJH: IADJL, lADJH, STEP,
1 ERR}
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o aEule

CTOOOno

1F {ERR .NE. 0) GC TO 999

OFENCL
TFENCL
OFENCH
IFENCH

HL — 2.0%STEP
HL ~ STEP
HH + 2.0%5TEP
HH + STEP

H e

SET INTERNAL EMPTY CCDE GREATER THAN THE LARGEST VALUE
TO BE SURE IT 15 UNIGUE. 1IF 7 IS NEGATIVE, SEY EMPTY POSITIVE.
EMPTY = ABS(SCRTY(N}) % 1,1 + 1.0
WE NO LCNGER NEED THE SORTED VEFSION, SO RE~USE THE SPACE IN SORTY()
DO 22 K = 1, MNBIG
SCRTYI(K) = EMPTY
22 CONTINUE

TRANSFER CATA FRCM Y() INTQO SCRTY{) IN ROW MAJOR FOPMAT =~ THAT IS,
ITEMS IN THE FIRST ROW FROM LEFT TO RIGHT, FOLLOWED BY THE SECOND
ROW {LEFT 70 RIGHT), AND S50 ON, IF TWO DATA ITEMS ARE FOUND IN THE
SAME CELL., KEEP THE ONE INDICATED BY CHONSE.

DO 30 K = 1, b

= NC # {(RSUB(K) =1) + CSUB(K}

IF{SORTY(1} .EQ. EMPTY) GO TO 25
IF(CHOCSE .EQ. 1 .AND., ABS{SORTY(T)})} .GE. ABS{Y(K}}} GO TO 20
IF{CHOOSE .EQ. 2 LAND. S5CRTY(J) .GE. Y{K)) GO TO 30
IF(CHODSE .EQ. 3 WAND. SORTY{(I} .LE. Y(K)} GO TO 30
rA- SORTYWAL) = YK}
30 CONTINUE

K =

0

DO 50 I = 14 KR
D0 40 J = 14 NC

as

K = K+]

IF(SORTY (K} LEQ. EMPTY) CALL PUTCHR{O:; CHBL, ERR)
IF{SORYY{K) .EQ. EMPTY)} O TC 35

IF(SORTY{K} .LT. OFENCL) CALL PUTCHR(O, CHM, ERR)
IF({SORTY (K} .GE. OFENCL]) .AND. (SORTY(K) .LT. IFENCL]})
CALL PUTCHR{O, CHEQ, ERR)

IF{ISORTYI(K) .GE. ITFEMCLE JAND. (SORTY{K) .LT. HLIJ}
CALL PUTCHRIO, CHMIN, ER%R)

IFI(SORTYILK) LGE. HL) AND, (SORTY(K) LLE. HH})

CALL PUTCHR{O0:; CHPT, ERRI}

IFI(SORTYI(K) .GT. HH) JAND. (SORTY{K) .LE. IFENCH})
CALL PUTCHR{D, CHPLUS, ERR}

IF((SOFTY(K) +GT. IFENCH} .AND. (SCRTY{K} .LE. OFENCH})
CALL PUTCHP(O, CHX, ERR)

IF{SORTY{K) .GT. OFENCH)} CALL PUTCHR{OQ, CHP, ERR}
CALL PUTCHR(O, CHBL+ ERR)

IF{ER® .NE. 0} GO TC 999

40 CONTINUVE
CALL PRINT
50 CONTINUE
CaLL PRINY
999 RETURN

END
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Median Polish

The coding technique of Chapter 7 displays two-way tables of data and reveals
patterns in these tables. Such graphical displays are important, but often they
invite us to analyze the data—to summarize the overall pattern simply and
examine the residuals it leaves behind. To summarize a pattern in a table, we
must find a way to characterize the patterns that we are likely to encounter in
two-way tables. Median polish is a simple method for discovering a common
type of pattern.

8.1 Two-Way Tables

Jactors

Patterns in two-way tables are often described in terms of differences among
entire rows or columns of data values. Thus, a row with larger-than-average
data values might be noted. We often label each data value in a cell of a
two-way table with the number of the row and the number of the column in
which the value appears, and we think of the row and column identities as
factors that help us to account for observed patterns. For example, the data

219
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value in the second row and third column of a table is denoted by y,;. More
generally, the data value in the ith row and jth column is denoted by y, ;.

While the rows and columns are the factors helping to describe the
data values in the table, the data values themselves are thought of as the

response response. This dichotomy is much the same as we saw for fitting lines in

Chapter 5—where x was the factor and y was the response—and for
smoothing in Chapter 6—where 7 was the factor and y was the response. In
each model we attempt to describe the response, y, using the factors, and we
know that the description cannot be expected to fit the observed data exactly.

The death rate table we examined in Chapter 7 provides a convenient
example. The data shown in Exhibit 7-1 are repeated in Exhibit §—1. Here the
response is the death rate, and the two factors are the cause of death and the
average amount of tobacco smoked. As the data are laid out, the rows
correspond to the causes, and the columns correspond to the extent of smoking.
We naturally expect some causes to be responsible for many more deaths than
others. The row medians in Exhibit 8-1 and the coded table in Exhibit 7-2
both reveal higher death rates from coronary thrombosis, other cardiovascular
diseases, and cerebral hemorrhage, and lower rates from upper respiratory
cancer, pulmonary TB, and peptic ulcer. In light of today’s knowledge, we
would expect smoking to affect the death rate for several causes. If this pattern
is present, it is not obvious, but we may be able to judge more clearly after
adjusting for the differences among the typical death rates for the various
causes.

8.2 A Model for Two-Way Tables

When we chose a model to describe x-p data in Chapter 5, we used a straight
line because of its simplicity. Two-way tables require a different kind of model
because they involve three components—the row factor, the column factor,
and the response—but we still aim for simplicity.

The straight line is a convenient model for y versus x because it fits
each y-value with the sum of two simple components: a constant intercept
value to anchor the line where x = 0 and a slope multiplied by x to account for
changes in y associated with changes ih x away from x = 0. Because these two
componenis are added in the fit, we can polish the resistant line by adding
adjustments to the slope and intercept.



Median Polish 22 1

L b —— e

Exhibi¢ 8-1

Male Death Rates per 1000 by Cause of Death and Average Amount of Tobacco
Smoked Daily

Amount of Tobacco Smoked

i-14 15-24 25+ Row
Cause of Death None  Grams Grams Grams Median

Cancers

Lung 0.07 0.47 0.86 1.66 665

Upper respiratory 0.00 0.13 0.09 0.21 A1

Stomach 0.41 0.36 0.10 0.31 335

Colon and rectum 0.44 0.54 0.37 0.74 49

Prostate Q.55 0.26 0.22 0.34 .30

Other 0.64 0.72 0.76 1.02 4
Respiratory diseases

Pulmonary TB 0.00 Q.16 0.18 0.29 A7

Chronic bronchitis 0.12 0.29 0.39 0.72 .34

Other (.69 0.55 0.54 0.40 .545
Coronary thrombosis 422 4.64 4.60 599 4.62
Other cardiovascular 2.23 2.15 2.47 2,25 2.24
Cerebral hemorrhage 2.01 1.94 1.86 2.33 1.975
Peptic ulcer 0.00 0.14 0.16 0.22 15
Violence 0.42 0.82 0.45 0.90 635
Other diseases 1.45 1.81 1.47 1.57 1.52

additive
model
common value
Yow effects
column
effects

Note: Rates are nol age-adjusted.

For two-way tables we use a similar additive model, which represents
each cell of the table as the sum of three simple components: a constant
common value to summarize the general level of y, row effects to account for
changes in y from row to row relative to the common value, and column effects
to account for changes in y from column to column relative to the common
value. Exhibit 8-2 shows an example that displays the three components of an
additive fit. As shown there, each component describes a table with very
simple structure—constant, or with constant stripes across rows, or with
constant stripes down columns.

The common term, 8 in Exhibit 8-2, describes the level of the data
values in the table as a whole. It can thus be thought of as describing a
two-way table that has the same constant value in each cell. Each row effect
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Exhibit 8-2 The Components of an Additive Model for a Two-Way Table

(a) Common Term

8 8 8
8 8 8
8 8 8
8 8 8
8 8 8
(b) Row Effects
6 6 6
=1 -1 -1
0 0 0
4 4 )
-8 -8 —8
(c) Column Effects
0 -3 0
0 -3 0
0 -3 0
0 -3 0
0 -3 0
14 11 14
7 4 7
8 5 8
12 9 12
0 -3 0
B =0

The common term fits a constant for each
cell of the table—in this case 8.

The row effects fit the difference between
each row and the common term. They fit a
table of adjustments that is constant across
each row.

The column effects fit the difference between
each column and the common term. They fit
a table of adjustments that is constant down

each column.

The full fit is the sum of tables a, b, and ¢
above. The value in row i and column j is
found from fit; = common + row; + col,.
Example: §,, =11 =8 + 6 + (—3).

describes the way in which the data values in its row tend to differ from the
common level. The collection of row effects thus describes a table that is
constant across each row. Similarly, the column effects describe the way in
which the data values in each column tend to differ from the common level.
They thus describe a table that is constant down each column. The sum of
these three components—common term, row effects, and column effects—can
be found by adding the three simple tables together. Each cell of this summed
table describes, or fits, the corresponding cell of the original table of data.
Thus the fit for the cell in row 7 and column j is

fit, = common term + row effect; + column effect;.
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An additive fit to an R-row and C-column table uses 1 commeon value,
R row effects, and C column effects to describe R x C data values. More
important than the use of fewer numbers, each of the components is likely to
show understandable regulanities.

The additive model provides a precise way of describing the patterns
that we look for in a coded table. For example, if the columns have a natural
order and the coding shows a trend across the columns, then the column effects
will describe this trend in numerical terms. If the rows have no natural order,
we may still want to examine the differences among them; and the row effects
would form the basis for this examination.

8.3 Residuals

Whenever we fit a model to data, we need to examine the differences between
the raw data and the values suggested by the fitted equation. For additive
models fitted to two-way tables, we can find these differences from

residual,; = data; — fit;

or, equivalently,
residual; = data; — (common + row effect; + column effect)).

We can rearrange the equation as

data; = common + row effect; + column effect; + residual,,.

There is a residual for each original data value, so the residuals themselves are
a table having the same number of rows and the same number of columns as
the original data table.

Exhibit 8—3 shows a two-way table of deaths from sport parachuting in
each of three vears according to the experience of the parachutist. The
additive model displayed in Exhibit 8-2 is, in fact, an additive fit for these
data. Exhibit 8-3c shows the residuals as the final component of the descrip-
tion of the data. The three components in Exhibit 8-2 form the fit, and the
table of residuals shows how well this fit describes the data. We see, for
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Exhibit 8-3 Deaths from Sport Parachuting

(a) The Data
Year
Number of Jumps 1973 1974 1975
1-24 14 15 14
25-74 7 4 7
75-199 8 2 10
200 or more 15 9 10
unreported 0 2 0
(b) The Fit (from Exhibit 8-2d)
14 11 14 B
7 4§ 1 =
8 5 8 0
12 9 12 .
0 -3 0 .
Ol =3 o e
(c) The Residuals
0 4 0 6
gkl
IR e 0
o Y T T
0 SRR S
0 -3 0 8

Source: Data from Metropolitan Life Insurance Company, Statistical Bulletin 60, no. 3 (1979). p. 4.
Reprinted by permission.

Note: data;, = common + row, + col, + resid,. Example: yy; = 15 =8 + 6 + (- 3) + 4

example, that the fitted value of 11 deaths for inexperienced parachutists in
1974 was too low by 4—actually there were 15 fatalities in that category that
year.

The residuals from an additive fit often reveal patterns that are not
readily apparent in the original data. A row or column that fails to follow a
general pattern established by other rows or columns will produce a prominent
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residual pattern. A single extraordinary value in the table will, when we fit the
model by median polish, leave a large residval. It is usually worthwhile to
examine a coded table of the residuals to look for patterns.

8.4 Fitting an Additive Model by Median Polish

There are many ways to find an additive model for a two-way table.
Regardless of the method, we must progress from the original data table to (1)
a common value, (2) a set of row effects, (3) a set of column effects, and (4) a
table of residuals, all of which sum to the original data values. Several
methods do this in stages, sweeping information on additive behavior out of the
data and into the common term, row effects, and column effects in turn. If
each stage ensures that the sum of the fit components and the residuals equals
the original data, then the result of several stages will also be additive.

In Chapters 5 and 6 we protected our fits from the cffects of
extraordinary data values by summarizing appropriate portions of the data
with medians. We can do the same for two-way tables, using medians in each
stage of the fitting process to summarize cither rows or columns, and sweeping
the information they describe into the fit.

For example, we can begin by finding the median of the numbers in a
row of the table, subtracting it from all the numbers in that row, and using it
as a partial description for that row. This operation sweeps a contribution from
the row into the fit. We do this for each row, producing a column of row
medians and a new table from which the row medians have been subtracted.
(Consequently, the median of each row in this new table is zero.) The
operation just described is portrayed in Exhibit 8-4a, where the first box
represents the data, and the arrows across the box indicate the calculation of
row medians. The subtraction of these row medians from the data values
completes Sweep 1 (Exhibit 8—4b). At this stage, the column of original row
medians serves as a partial row description and occupies the position of the row
effects—to the right of the main box.

Row medians for the death rate data were shown in Exhibit 8-1. The
results of Sweep 1 on the same data are shown in Exhibit 8-5, which repeats
the original column of row medians. We saw, in Exhibit 8-1, that, for
example, the death rate from stomach cancer among men who smoked an
average of 1-14 grams of tobacco per day (y,,) was 0.36. The median death
rate from stomach cancer across all four columns is .335. The residual in
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Exhibit 8-4 Median Polish as a Sequence of Four Sweeping Operations, Starting with the Rows
of the Data

(a)

Y

-
—————
—_— e

(c) —_

Sweep 3 l

!
[
(CI)1 - ‘ . 1!
[]
l
]

Sweep 4 i

(e)
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s

Exhibit 8-5 Result of Sweep 1, Removing Row Medians throughout Exhibit 8-1, also Showing
Column Medians

0 1-i4 15-24 25+ Part
—.595 —.195 195 995 665
11 02 - 02 .10 11
075 025 _ 235 — 025 335
- 05 .05 —12 25 49
25 -.04 — .08 04 30
~10 ~ .02 02 28 74
17 - .01 01 12 A7
-22 ~.05 05 38 34
145 .005 — 005 ~.145 545
- .40 02 ~.02 1.37 4.62
~.01 — 09 23 01 2.24
035 — 035 —115 355 1.975
-.15 ~0l 01 07 15
— 215 .185 —.185 265 635
- .07 29 —.05 05 1.52
Median —.10 —.01 .02 12 545

Exhibit 8-5, .025, is found as
0.36 — .335 = 025,

The column of row medians is labeled “Part” in Exhibit 8-5 because of its role
as a partial description. In preparation for the next operation, Exhibit 8-5 also
records the median of the numbers now in each column, as well as the median
of the column of row medians.

We turn next to the columns, acting now on the table of residuals left
by the first sweep. We find the median of each column (already recorded in
Exhibit 8-5). Then we subtract each column median from the numbers in its
column and use it as the partial description for that column, In addition, we
find the median of the column of row descriptions, subtract it from each row
description, and use this median as a partial common value. These steps
constitute Sweep 2 in the schematic diagram. Note that the rectangles
bordering the third main box in Exhibit 8-4 include two new parts, which
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occupy the positions of the column effects and the common value. For the
death rate data, Exhibit 8-6 shows the result of Sweep 2.

Continuing with the value in row 3, column 2, we now have the
column-2 effect of —.01 and a common term of .543, and the row-3 effect of
.335 has had the common term subtracted from it, yielding —.21. Removing
all of these components leaves a new residual of .035. The data value ys, is
then summarized at this step as

Y32 = common + row effect; + column effect, + residual;,

or
0.36 = .545 — 21 - 01 + 035,

We prepare for the next step by recording the median of each row in
Exhibit 86, including the row of partial column descriptions, at the right of
the table in the column headed “Median.” The —.015 at the intersection of the
“Part” row and the “Median” column is the median of the row of partial
column descriptions; it will be used to adjust the common term.

Exhibit 8-6

Result of Sweep 2, Removing Column Medians throughout Exhibit 8-35, also
Showing Row Medians

0 i-14 15-24 25+ Median Part
- 495 ~.185 215 875 015 A2
~.01 03 0 -.02 —.005 —.435
175 035 -.215 —.145 —.055 -.21
.05 06 -.10 13 055 — 035
A3 -.03 —.06 —.08 —.045 —.245
0 -0l 04 16 02 195
—.07 )] 03 0 0 -.375
-2 —.04 07 .26 015 —.205
.245 015 015 —.265 015 0
-.30 .03 0 1.25 015 4,075
09 -.08 .25 -.11 005 1.695
135 —-.025 - 095 235 055 1.43
—.05 0 03 -.05 —.025 —.395
—.115 195 —.165 145 015 09
.03 .30 —.03 -.07 0 975
Part —.10 —.01 -.02 A2 —.015 545
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At this stage, after a sweep across the rows and a sweep down the
columns, we could stop; but, because we are using the median, it will usvally
be possible to improve the partial descriptions of the data by performing
another sweep across the rows and another sweep down the columns. Earlier,
just after Sweep 1, each row in the remaining table of numbers had a median
of zero. However, this may not be true after Sweep 2; so sweeping the rows of
the table of residuals left after Sweep 2 yields some adjustments that will
improve the partial row descriptions and reduce the overall size of the
residuals. (Of course, not every residual will be made smaller. Some may grow
substantially. But overall, most residuals will be brought closer to zero by
performing additional sweeps.)

Sweep 3 repeats Sweep 1, except that the row medians found are added
to the previous row descriptions. Sweep 3 also finds the median of the column
descriptions, subtracts this median from each column description, and adds it
to the common value. Exhibit 8-7 demonstrates Sweep 3 lor the death rate
data.

Exhibit 8-7

——

Result of Sweep 3, Removing Row Medians throughout Exhibit 8-6, also Showing
Column Medians

0 1-14 15-24 254 Part
.51 —.20 20 86 135
—.005 035 005 —.015 — 44
23 09 ~.16 -.09 — 265
—.005 005 —.155 075 0
395 015 ~.015 —.035 —.29
-02 —.03 02 14 215
- .07 0 03 0 — 375
—135 —.055 055 245 ~.19
23 0 0 .28 015
- 315 015 ~.015 1.235 4.09
085 — 085 245 —.115 1.70
08 ~.08 —.15 18 1.485
-.025 025 055 —.025 — 42
~.13 A8 —.18 13 105
03 30 ~.03 — .07 975
Median —.005 005 0 0 015
Part — 085 005 —~.005 135 53
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Now, for example, the median of the numbers remaining in row 3 is
—.055. This median is subtracted from each number in row 3 and added to the
row effect ( —.21) to obtain a new row effect, —.265. The median of the row of
column medians, —.015, has also been subtracted from each column median
and added to the common term. The new description for y,, is

0.36 = 0.53 — .265 + .005 + .09.

(We note that although the residual in this cell is actually growing at each
step, the residuals in the table are generally getting smaller.)

Sweep 4 parallels Sweep 2, working again with the columns instead of
the rows. Exhibit 8-8 shows the result for the death rate data. This takes us to
the bottom in the schematic view of the process in Exhibit 8—4.

Only one detail remains: We find the median of the adjusted column

Exhibit 8-3

o]

Result of Sweep 4, Removing Column Medians throughout Exhibit 8-7 {completing
the standard median polish for these data)

None 1-i4 15-24 25+ Effect
Cancers
Lung —.505 —.205 .20 .86 A2
Upper respiratory 0 03 005 —.015 —.455
Stomach .235 085 -.16 -.09 —.28
Colon and rectum 0 0 —.155 075 —.015
Prostate 40 .01 —.015 —.035 —.305
Other —.01t5 —.035 .02 .14 20
Respiratory diseases
Pulmonary TB —.065 —.005 03 0 -.39
Chronic bronchitis -.13 - .06 055 .245 —.205
Other 235 —.005 0 -.28 0
Coreonary thrombosis —.31 01 -.015 1.235 4,075
Other cardiovascular .09 - 09 245 —.115 1.685
Cerebral hemorrhage .085 —.085 -.15 A8 1.47
Peptic ulcer -.02 .02 055 —.025 —.435
Violence —.125 A75 —-.18 13 09
Other diseases .035 295 -.03 -.07 96
Effect —-.09 .01 -.005 135 545

Note: In this example, the median of the (adjusted) partial column descriptions is zers (to working
accuracy), so they become the column effects,
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half-step
Sull-step

descriptions and add it to the common value. (In Exhibit 8-8, this adjustment
turns out to have no effect because, to the 2-decimal-place accuracy of the
data, the median of the column descriptions is zero.) This step ensures that the
column effects will have a median of zero. (The row effects were left with a
zero median by Sweep 4.) We could instead continue to sweep the rows and
the columns alternately, looking for further adjustments, but such adjustments
are generally much smaller than the ones found in Sweep 3 and Sweep 4, and
sometimes they are exactly zero and thus would not change the fit. Therefore,
the standard version of median polish stops after Sweep 4. The fit for some
tables may improve sufficiently with additional steps to make them worth-
while. Especially when we have a computer to do the work, we may choose to
try a few extra steps. One sweep across the rows or the columns is also known
as a half-step; and a pair of sweeps, working with both the rows and the
columns, constitutes a full-step.

Because we have swept the common term out of the partial row and
column descriptions at each stage, what we have left are adjustments relative
to the common term. They are thus the row and column effects we need for the
additive model.

For the death rate data, the calculations have brought us to the point
where, in Exhibit 8-8, we nced only affix the label “effect” to the partiai
descriptions for the rows and the columns. The numbers left in the table,
where the data values were originally, are the residuals. The pieces of the
additive fit are arranged around the edge of that table: an effect for each row,
an effect for each column, and the common value. Thus, the fitted death rate
from stomach cancer among men who smoked an average of 1-14 grams of
tobacco per day (the y,, value) is

545 + (-.28) + .01 = .275,
and the residual is
36 — 275 = 085,

We can easily check that in each cell of Exhibit 8-8 the fitted value and the
residual add up to the data value.

Now that we have the pieces of the fit, what do they tell us? The
common value is .545 deaths per 1000 men. This is not a death rate for the
population, but rather a typical death rate for these causes among men with
this range of smoking habits. The common value serves us primarily as a
standard against which to measure patterns.

The effect values for cause of death lead us to qualify our earlier
impression of substantial variation. Coronary thrombosis (at 4.075 deaths/
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1000 above the common level) is clearly a major killer. However, except for
the cardiovascular diseases, most causes show effects close to the common
level, (The largest remaining effect is for *“Other diseases,” which is clearly a
catchall and not a specific cause of death.) The effects for amount of smoking
are smaller and range only from —.09 to .135. It seems from these effects that
heavy smokers, 25+ grams per day, are somewhat more at risk than non-
smokers. We do not, however, expect smoking to have the same impact on
death rates for all causes. Indeed, we would be surprised if smoking had much
to do with death by viclence. If the effect of smoking on the death rate from a
particular cause does not conform to the overall pattern in the column effects,
this fact would have to show up in the residuals for its row of the table.

We uvsually look at the residuals to find such remaining patterns or any
unusval values, and we often construct a coded table such as Exhibit 8-9,
which displays the residuals from Exhibit 8-8. The strongest pattern is that of
lung cancer, which shows a steadily rising death rate with increased smoking.
This pattern indicates that the impact of smoking on death rates from lung
cancer is much stronger than the slight overall increase we observed in the
column effects. Even after allowing for higher death rates among smokers
across all causes, lung cancer death rates show a greater change—non-
smokers die from lung cancer less frequently than we might otherwise predict,
and heavy smokers die from lung cancer much more often.

The pattern for coronary thrombosis is similar, if less consistent.
However, here the coding in Exhibit 89 has partially hidden a truly
extraordinary residual. The residual for the death rate of heavy smokers from
coronary thrombosis is a remarkable 1.235 deaths per 1000 men—Ilarger than
any of the death rates from specific non-cardiovascular diseases. That is, the
death rate from coronary thrombosis is increased by heavy smoking over the
(already large) value we would predict for this cause of death (even after
allowing for generally higher death rates observed for heavy smokers), and the
amount of the increase is greater than the death rate from most diseases.

The other noteworthy positive residual is the residual for deaths from
prostate cancer among non-smokers. 1t might appear that we have discovered
a hazard of nor smoking, but another explanation seems more likely. Prostate
cancer is a disease generally afflicting older men. 1t is likely that, before they
reach the age at which prostate cancer is common, a larger number of smokers
have already succumbed to other disecases. Thus fewer smokers than non-
smokers remain to face the risk of dying from prostate cancer.

One major reason for using medians in finding the additive fit was to
protect our results from being distorted by extraordinary values. Although
some of the examples in earlier chapters have included exireme values that
seemed wrong or out of place, the data values in the death rates example are
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Exhibit 8-9 The Residuals (from Exhibit 8-8) of the Median Polish of Death Rates, Coded and
Displayed

None 114 I5-24 25+ Effect

Cancers
Lung = - + P 12
Upper respiratory . . . . — 455
Stomach + . - - -.28
Colon and rectum . . - . —.015
Prostate # . . . —.305
Other . . . + 30
Respiratory diseases
Pulmonary TB . —.39
Chronic bronchitis - + ~ 205
Other + - 0
Coronary thrombosis - . P 4.075
Other cardiovascular + - + - 1.685
Cerebral hemorrhage . - - + 1.47
Peptic ulcer . . . . —.435
Violence - + - + 09
Other diseases ' + - 96
Effect —-.09 .01 —~.003 135 545

more or less what we might expect, and the resistance of the median has
allowed the three large residuals to become prominent.

One last comment on median polish: We could have chosen to begin
median polish with columns instead of rows. The procedure is essentially the
same, but the resulting fit may be slightly different. For purposes of explora-
tion, the difference does not matter. When we can use a computer to do the
work, we may want to try both forms and compare the results.

8.5 Re-expressing for Additivity

Often a table that is not described well by an additive model can be made more
nearly additive by re-expressing the data values. When we used re-expression
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to straighten a bend in y versus x, it was easy to see the bend in a plot. In a
table, the simplest kind of “bending” that cannot be described by an additive
model is a twisting of the corners: one diagonally opposite pair of corners too
high and the other diagonally opposite corners too low, when the rows and
columns are in order according to their effects in an additive fit. We can return
to Exhibit 8-2 to see why such a pattern cannot be fit by an additive model. If,
for example, the two corners at the top of the table were high, the effects for
the top rows could be increased to make the additive model fit better.
However, a pattern of diagonally opposite high or low values cannot be
accounted for by any of the three components of the additive fit nor by any
additive combination of them.

When the data values follow such a “saddle” pattern, the diagonally
opposite corners of the table of residuals will have the same sign. Exhibit 8—10
shows the two possible types of saddle-shaped residual patterns. Here the signs
of the effects are shown in the borders of the table and used to partition the
table of residuals into four regions. The signs shown for these regions
summarize the signs of the residuals. Evidence of such a pattern—for
example, in a coded table of the residuals—suggests that a well-chosen
re-expression is likely to help. Later in this section we consider how to make
this choice simply.

Exhibit 8-11 reports the time taken by the winning runner in five

Exhibit 8-10 The Two Types of Residual Patterns that Suggest Re-expression to Promote

Additivity in a Two-Way Table

_|_ —
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Exhibit 8-11

Winning Time in Men’s Olympic Runs by Year and Distance (unit = .1 sec.)

Distance
Year 100m 200m 400m 800m 1500m
1948 103 211 462 1092 2298
1952 104 207 459 1092 2252
1956 105 206 467 1077 2212
1960 102 205 449 1063 2156
1964 100 203 451 1051 2181
1968 99 198 438 1043 2149
1972 101 200 447 1059 2163

[Fo—

Source: Data from The World Aimanac {New York: Newspaper Enterprise Association, Inc., 1973) p. 858.
Reprinted by permission.

men’s track events at the Olympic Games from 1948 to 1972. The five events
are the 100-, 200-, 400-, 800-, and 1500-meter runs. Although the length of
the run greatly influences a runner’s strategy for the race, we can begin by
analyzing winning time in relation to year and distance. Exhibit 8—11 presents
the data (in units of .1 second to eliminate the decimal pomnt and make
residuals easier to scan for patterns), and Exhibit 8-12 shows an analysis by
median polish. When we rearrange the rows of Exhibit 8—12 to put the years in

Exhibit 8-12

—_—

Median-Polish Analysis of Winning Times of Exhibit 8-11 (unit = .1 sec.)

Year 100m 200m 400m 800m 1500m Effect
1948 -10 -4 0 18 104 11
1952 -6 -3 0 21 61 8
1956 -1 -12 2 0 15 14
1960 0 1 -2 0 -27 0
1964 0 1 2 -10 0 -2
1968 10 7 0 -7 -2] -13
1972 3 0 0 0 —16 -4
Effect —-349 -247 0 612 1732 451
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comparison
value

the same order as their effects, the opposite-corners sign pattern of the
residuals is quite evident (Exhibit 8-13).

We can use the pieces of the additive fit to approximate the pattern of
the residuals. The negative residuals are generally associated with row effects
and column effects that have opposite signs, while the positive residuals are
associated with row effects and column effects that have the same sign. To
judge the strength of this pattern of association, we compute a comparison value
for each cell of the table:

(row effect;) x (column effect;)
COMmon )

i

A comparison value, c;, found in this way will generally have the same sign as
the corresponding residual because row and column effects with opposite signs
will generate negative comparison values, while same-sign effects will gener-
ate positive comparison values. Moreover, if the saddle-shaped pattern in the
residuals is more pronounced in the corners, where the effects have greater
magnitude, the more extreme comparison values will correspond to the more
extreme residuals.

As we saw in the death rates example, median polish can allow an
occasional extraordinary residual. Consequently, a resistant line is a good
choice for summarizing the relationship between residual; and ¢, since it will
not be influenced unduly by a few extraordinary residuals. Exhibit 8-14 gives
the table of comparison values corresponding to Exhibit 8-13. Exhibit 8-15
shows the plot of each residual against its comparison value, Several points in

i —
Exhibit 8-13 Rows of Exhibit 8-12 Rearranged to Put Row Effects into Order

Year 100m 200m 400m 800m 1500m Effect
1968 10 7 0 -7 -2 ~13
1972 3 0 0 0 -16 —4
1964 0 1 2 -10 0 -2
1960 0 1 -2 0 -27 0
1952 ~6 -5 0 21 61 8
1948 -10 -4 0 18 104 11
1956 ~11 -12 2 0 15 14
Effect -349 -247 0 612 1732 451
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Exhibit 8-14 Comparison Values Corresponding to the Residuals in Exhibit 8-13

i

_

Year 100m 200m 400m 860m 1500m
1968 10.1 7.1 0 -17.6 —-49.9
1972 3.1 22 0 —-54 —154
1964 1.5 1.1 0 -27 -1.7
1960 0 0 0 0 0
1952 -6.2 —4.4 0 109 30.7
1948 —8.5 -6.0 o 14.9 42.2
1956 —10.8 1.1 0 19.0 53.8

the plot stray noticeably, but a straight line with slope equal to 1 seems to be a
reasonable way to start summarizing the relation between residuals and
comparison values.

Because the plot suggests that, roughly,

residual = comparison value,

I

Exhibit 8-15 Plot of Residuals against Comparison Values for the Winning Times

Residual

100

50

-

X

X
N
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Comparison Value
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one very simple action is possible. We could add the comparison values to our
additive model (and subtract them from the residuals) to get a better
description of the data:

data;; = common + row effect; + column effect;
if !

N (row effect;) x (column effect;)
common

+ residualy;.

However, we usually use the line relating residuals to comparison values as a
guide for selecting a re-expression instead.

The extended model (in the previous equation) including the compari-
son values could be rewritten as

row eﬂ'ect,—) g (1 column effect,

) + residualy;.
common COmMmon

data; = common x (1 +

As we noted in Section 8.1, we prefer models in which the pieces add rather
than multiply; so we are led to try re-expressing by logarithms because

log(a x b x ¢) = log(a) + log(b) + log(c).

Exhibit 8-16 shows the logs of the Olympic runs data, and Exhibit 8—17 shows
the additive model and the residuals obtained by median polish. The analysis is
clearly improved; almost all the residuals are quite small. Thus we can focus
most of our attention on the fit. Because adding a constant to the logarithm of
a number is equivalent to multiplying the number by a constant, the additive
analysis for the log re-expression is not difficult to interpret. For example, the
column effects indicate that the winning time for the 1500m run is typically
about five times that for the 400m run. (Algebraically, log(1500m effect) =
log(400m effect) + .690 = log{400m effect) + log(4.9); so the 1500m effect is
roughly equal to the 400m effect times 4.9.) Beyond the fact that the column
effects increase steadily with the length of the race, the differences between
adjacent effects are almost constant. It would seem that a doubling of race
length leads to slightly more than a doubling of time. (Because log(2) = .301,
a constant effect difference of 301 for the first four races would have indicated
a doubling of time.) To look further, we might plot the column effect against
the log of the race length.

We might also plot the row effects against the year of the Olympiad.



Median Polish 239

Exhibit 8-16 Logarithm of Winning Time in Men’s Olympic Runs (unit = .001)

Distance
Year 100m 200m 400m 800m 1500m
1948 1013 1324 1665 2038 2361
1952 1017 1316 1662 2038 2353
1956 1021 1314 1669 2032 2345
1960 1009 1312 1652 2027 2334
1964 1000 1307 1654 2022 2339
1968 996 1297 1642 2018 2332
1972 1004 1301 1650 2025 2335

T

Note: Original data in Exhibit 811,

The pattern is a reasonably steady downtrend, but we would want to look
further into 1968 and 1972. (Perhaps the altitude or other conditions in
Mexico City, site of the 1968 Olympic Games, were responsible for the
remarkably fast races.)

The technique of plotting residuals against comparison values can
guide us to re-expressions other than the log. In general, once we find the
slope, b, relating the residuals to the comparison values, the quantity
(1 — b) = pis a good estimate of the power we should try. If the plot has zero

Exhibit 8-17

—

Median-Polish Analysis of Logarithm of Winning Time in Exhibit 816 (unit = .001)

Year 100m 200m 400m 800m 1500m Effect
1948 -6 4 0 0 6 11
1852 0 -2 -1 2 0 9
1956 8 0 10 0 -4 5
1960 1 3 -2 0 -10 0
1964 -3 3 5 0 0 -5
1968 0 0 0 3 0 -12
1972 0 -4 0 2 -5 -4

Effect - 646 ~345 0 373 690 1654
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slope (b = 0), then p = 1, and no re-expression is needed. In our example, &
was nearly 1; so p = 0, and we chose the log. (Recall from Section 2.4 that the
log plays the role of the zero power in the ladder of powers.) In finding the
slope, it is important to use judgment, as well as a technique such as the
resistant line (Chapter 5), which will not be affected by the large residuals
that median polish can leave when a data value is unusual. The combined
process—median polish, the plot of residuals against comparison values, and
then the resistant line—makes the search for a re-expression quite resistant to
outliers.

8.6 Median Polish from the Computer

Iterative techniques such as median polish are often easier to program for a
computer than to do by hand. The programs at the end of this chapter require
that the data table be specified in three parallel arrays: one array for data, one
for row numbers, and one for column numbers. (For a detailed description of
this format, see Section 7.3.) These programs compute the row effects, column
effects, common term, and residuals, but they do not print out any of these
results. The best methods for displaying the results as tables depend upon the
computer system being used; any simple programs provided here would have
had difficulty with large tables. Nevertheless, the array of residuals returned
by the programs is in an appropriate form for the coded-table programs
discussed in Chapter 7.

When we use the computer, we can consider analyzing more complex
tables. For example, the programs allow for empty cells in a table. The effect
for any row or column containing an empty cell is based on the remaining
non-empty cells. A fitted value can be found for an empty cell, but no residual
can be computed.

Although median polish is an iterative procedure, no convergence
check to stop the iteration automatically is included. Instead, users of the
programs must specify the number of sweeps or half-steps. For data explora-
tion, four half-steps seems adequate in most situations.

In addition, users must choose whether to remove medians from rows
or columns first. For some data, the final fit and residuals will differ when
these two starts are compared. Although it is quite rare for the gross structure
of the fitted models to differ in important ways, the availability of machine-
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computed median polish makes it practical to find both versions and compare
them.

* 8.7 Median Polish and ANOVA

Readers who are acquainted with the two-way analysis of variance (ANOVA)
will have noticed that median polish and two-way ANOVA both start with the
same data. The two-way ANOVA uses the same additive model as median
polish, but it fits this model by finding row and column means. The difference
between median polish and ANOVA is related to the difference between the
resistant line and least-squares regression (Section 5.10). The exploratory
techniques are resistant to outliers and require iterative calculations. However,
they do not as yet provide any hypothesis-testing mechanisms.

Statistically sophisticated readers may wish to compare the technique
of Section 8.5 with Tukey’s “one degree of freedom for non-additivity”
(Tukey, 1949) for selecting a re-expression to improve the additivity of a table.
The method given here is the natural exploratory analogue of that commonly
used technique.

* 8.8 Data Structure

We pause to note the advantages of three-array form as a data structure for
median polish. Empty cells, cells with several data values, and unbalanced
tables with different numbers of data values in each cell need no special
programming. One restriction is that the programs assume that row numbers
and column numbers are consecutive and start from 1. If a row or a column is
completely missing, the BASIC programs give an error message, and the
FORTRAN programs return a zero effect.

In addition, it is possible, through suitable bookkeeping in a driver
program, to make some analyses of three-way designs—that is, tables involv-
ing a response and three factors. The data structure permits a driver program
to maintain three arrays of subscripts—say, row, column, and layer—and pass
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any pair of these arrays to the median-polish program along with the data.
This will produce an analysis of the subtable formed by collapsing the table
along the un-passed dimension. In this way the *“main effects” can be
computed easily. (A more sophisticated driver program couid use the median-
polish routine to fit more complicated models to three- and more-than-
three-way tables.)

t 8.9 Algorithms

The programs work by stepping through rows or columns and copying them to
a scratch array so that the median can by found. The subscripts of cells from
which data values have been taken are preserved so that the newly found row
or column median can be subtracted from these cells efficiently. On exit, the
residual vector is in exactly the same order as the original data vector and uses
the same row and column subscripts. {In the BASIC programs the residuals
replace the data vector.)

Comparison values are placed in a vector exactly parallel to, and using
the same row and column subscripts as, the data and residuals. This arrange-
ment allows the vector of comparison values and the vector of residuals to be
passed as a set of (x, y) pairs to the x-y plot program or to the resistant-line
program without having to tell those programs about the subscript arrays.

FORTRAN

The FORTRAN programs for median polish are invoked with the
FORTRAN statement

CALL MEDPOL{Y, RSUB, CSUB, N, NR, NC, G, RE, CE, RESID, HSTEPS, START,
SORTY, SUBSAV, NS, ERR)

where

Y() the data array containing N items;

RSUB( }, CSUB(} integer arrays containing the N row and
column subscripts, respectively, of each
element of Y();
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NR, NC

G
RE(},.CE()
RESID{ )
HSTEPS

START

SORTY(}
SUBSAVI}

NS

ERR

is the number of data values;

are the number of rows and columns in the
table, respectively;

is a REAL variable to return the grand or
common level;

are REAL arrays dimensioned NR and NC,
respectively, to return row and column
effects;

is a REAL array to return the N residuals;

is the number of half-steps to be performed;

is a flag (START = 1 tells MEDPOL to start with
rows; START = 2, columns);

is a scratch array for sorting data values;

is an INTEGER scratch array that holds
subscripts;

is the dimension of SUBSAV!() (must be no less
than the larger of NR and NC);

is the error flag, whose values are

normal
81 the table has a zero dimension
(NR = 0OorNC =0)

82 no half-steps requested

83 START not equal to 1 or 2

85 the table is empty.

Two-way comparison values can be found with a subsequent call to the
subroutine TWCVS via the statement

CALL TWCVSIRESID, RSUB, CSUB, N, RE, NR, CE, NC, G, CVALS, ERR}

where all arguments have the same meanings as described for the subroutine

MEDPOL and where

CVALS

ERR

is an N-long array in which the comparison values
are returned;
is the error flag, whose values are
0 normal
88 common term = 0 (comparison
values cannot be computed).
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BASIC

The BASIC program for median polish is entered with the data in Y{) and row
and column subscripts in R{) and C{), respectively. On entry, N is the length of
Y(), R9 is the number of rows, €9 is the number of columns, and J9 is the
number of half-steps to be computed. The version number, V1, has the
following effects: V1 = 1 means skip initialization and continue polishing an
already polished table, V1 = 2 means initialize and do 4 half-steps starting
with rows, V1 = 3 means initialize and do J9 half-steps starting according to
the order switch. The order switch, 08, must be set to "ROW" to start the
iteration with rows and to “COL” to start the iteration with columns.

On return, Y(1) through Y{N) hold residuals, Y{R8 + 1} through Y{R8 + R9)
hold row effects, Y({C8 + 1} through YiC8 + C9) hold column effects and Y{G8)
holds the common or grand effect. The program sets €8 = N, R8 = N + €9, and
G8 = N + R9 + C9 + 1. In addition, the subscripts in R{ } and C{) are extended to
indicate that the column effects are in the R9 + 1 row, and the row effects are
in the C9 + 1 column. A program (not provided here) to print a table from Y{},
R( ), and Ct) would then place the effects correctly. Placing the effects in a new
row and a new column of the data vector is also appropriate for generalizing
the program to handle three- or four-way tables.

Reference

Tukey, J.W. 1949. “One Degree of Freedom for Non-additivity.” Biometrics 5:232—
242,

Programming Proceed.

Proceed.



5000
5010
5020
5030
5040
5050

5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170

5180
5190
5200
5210

5220

3230
5240
5250
5260
5270
5280

5290

5300
5310
5320
5330
5340
3380
5360
5370
5380

5390
5400

5410
3420

REM
REM
REM
REM
REM
REM

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

LET
LET

REM

cs
R8
LET G8
IF ABS(V1

BASIC Programs

MEDIAN POLISH
=$NUMBERS, RO9=#ROWS, C9=3COLS, J9=#ITERATIONS
Vi=l: SKIP INITIALIZATION TO DO ADDITIONAL POLISH
V1=2 DEFAULT: 4 HALF-STEPS, STARTS WITH ROWS, FROM SCRATCH.
V1>=3 FROM SCRATCH (INITIALIZES ALL EFFECTS TO ZERO).
0% = ORDER SWITCH; "ROW®™ TC START WITH ROWS, “COL* FOR
COLUMNS.
>>>>DESTROYS ORIGINAL DATA <<<<<<<
RETURNS: RESIDUALS IN Y(1) THRU Y(N)
ROW EFFECTS IN Y(R8+1) THRU Y{RB8+R9)
COL EFFECTS IN Y(C8+1) THRU Y (C84C9)
GRAND EFFECT 1IN Y(G8) AND G
WHERE C8=N, R8=N+C9, AND G8=N+RO+C9+1.
THIS PROGRAM USES SPARSE-MATRIX FORM WITH DATA IN Y(), ROW
SUBSCRIPTS IN R(), AND COLUMN SUBSCRIPTS IN C(). IT REQUIRES
N+R9+C9+]1 CELLS IN EACH OF X{), ¥Y(), R{), AND C{).
THIS PROGRAM CAN HANDLE MISSING CELLS AND UNEQUAL CELL COUNTS.
IF AN ENTIRE ROW OR COLUMN IS MISSING, ITS EFFCT WILL BE ZERO.

]

N
N
N
)

c9
R9 + C9 + 1
1 THEN 5390

N+ +

INITIALIZE COLUMN OF ROW EFFECTS

FOR I =1 TO RY
LET K =R8 + I
LET R(K) = I
LET C(K) = C9 + 1
LET ¥Y(K} = 0

NEXT 1

REM
FOR J

INITIALIZE ROW OF COL EFFECTS
=1 TO C9

LET K =C8 +J
LET R{(K}) = R9 + 1

LET C(K} = J
LET ¥Y(K} =
NEXT J
LET R(G8)
LET C{G8)
LET Y(GB)

REM

o o

R% + 1
cCa +1
0

SETUP AND CHECK

IF V1 <> 2 THEN 5430
LET J9 = 4
LET 05 = “ROW"

245
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5430
5440
5450
5460
5470
5480
5490
5500
5510
5520
5530
5540
5550
5560
5570
5580
5590

5600

5610
5620
5630
5640
5650
5660
5670
5680
5690
5700
5710
5720
5730

5740

5750
5760

5770

5780
5790
5800
5810
5820
5830
5840

5850
S860

S870
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IF V1 > 0 THEN 5460

PRINT TAB(MO);"HALFSTEPS, ‘'ROW' OR ‘COL'"™;
INPUT J9,08%

IF 0% = "ROW"™ THEN 5510

IP 05 = "COL™ THEN 5510

PRINT TAB{MOQ); "SPECIFY 'ROW' OR 'COL'";
INFUT 0%

GO TO 5460

IF J9 > 0 THEN 5560

PRINT TAB(MO);J9;" HALF-STEPS IS ILLEGAL."
PRINT TAB(MO);™ENTER $HALF-STEPS BETWEEN 1 AND 12%;
INPUT J9

GO TO 5510

IF J9 > 12 THEN 5520

LET J8 = 0

LET N7 = N

IF 0% = “COL"™ THEN 5930

REM MEDIYAN POLISH FOR ROWS

FOR I = 1 TO RS + 1

LET L =0

FOR K = 1 TO N7 + R9 + C9
IF R{K} <> 1 THEN 5690
IF C{K) > C9 THEN 5690
LET L =L +1
LET W(L) = Y(XK)
LET X(L}) = K

NEXT K

IF L > 0 THEN 5770

IF I <= R9 THEN 5740

PRINT TAB(MO);"ALL ROWS EMPTY"

STOP

REM FLAG EMPTY ROW

LET R(R8 + I) = R9 + 2
GO TO 5900

REM GET ROW MEDIAN AND ADJUST

LET N =L
GOSUB 1000
LET M5 = FNM((L + 1} / 2)
FOR J =1 TO L

LET Y(X(J)) = ¥Y(X(J)) - Mb
NEXT J
JF I = R9 + 1 THEN 5890

REM ADD MEDIAN TO ROW EFF
LET Y(R8 + I) = Y(R8 + I) + M5

GO TO 5900
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5880

5890
5900

REM IF ROW OF COL EFFS, ADD TO GRAND EFF INSTEAD
LET Y(G8) = Y(G8) + M5
NEXT I

5910 LET J8 = J8 + 1

5920

IF J8 >= J9 THEN 6250

5930 REM MEDIAN POLISH FOR COLUMNS

5940 FOR J = 1 TO C9 + 1

5950 LET L =0

5960 FOR K =1 TO N7 + R9 + C9

5970 IF C{K) <> J THEN 6020

5980 IF R(K) > R9 THEN 6020

5990 LET L =L +1

6000 LET W(L) = Y(K)

6010 LET X{L) = K

6020 NEXT K

6030 IF L > 0 THEN 6100

6040 IF J <= C9 THEN 6070

6050 PRINT TAB{MO):"ALL COLS EMPTY"
6060 STOP

6070 REM MARK MISSING COLUMN

6080 LET C(C8 + J) = C9 + 2

6090 GO TO 6220

6100 LET N =L

6110 GOSUB 1000

6120 LET M5 = FNM({(L + 1} / 2)

6130 POR I =1 TO L

6140 LET Y{X(I)}) = Y(X(I}) - M5
6150 NEXT I

6160 IF J = CS + 1 THEN 6200

6170 REM ADD MEDIAN TO COL EFF
6180 LET Y(C8 + J) = Y(C8 + J) + MS
6190 GO TO 6220

6200 REM IF COL OF ROW EFFS, ADD TO GRAND EFF
6210 LET Y(GB) = Y{(GB) + M5

6220 NEXT J

6230 LET J8 = J8 + 1
6240 IF J8 < J9 THEN 5600

6250 REM DONE
6260 LET N = N7
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6270

6260
6290
6300
6310
6320
6330
6340
6350
6360
6370
6380
6390
6400
6410
6420
6430
£440
6450
6460
6470

ABCs of EDA

REM MAKE SUBSCRIPTS OF MISSING EFFECTS LEGAL AGAIN

FOR I = 1 TO R9
IF R(R8 + I) <= R9 + } THEN 6320
LET R{R8 + I) I
LET Y{(R& + I) 0

NEXT I

FOR J =1 TO C9
IF C(C8 + J} <=
LET C{CB + J) =
LET Y(CB + J) =

NEXT J

LET N = N7

LET G = Y{(G8)

IF G <> 0 THEN 6430

PRINT TAR(MO);"GRAND EFFECT=0, CANNOT COMPUTE COMPARISON VALUES®

GO TO 6460

FOR K =1 TON
LET X(K) = (Y(R8 + R{K)} * Y(C8 + C(K))) / G

NEXT K

RETURN

END

C9 + 1 THEN 6370
J
0
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FORTRAN Programs

SUBPOUTINE MEDPOL{Y, RSUBs CSUB, N, NR, NCy Gs RE, CEs RESID,
1 HSTEPS, START, SORTY, SUBSAV, NS, ERR)

INTEGER Ny N%, NC, HSTEPS, START, NS, ERR

INTEGER RSUBIN}, CSUBIN}, SUBSAVINS)

REAL Y{N},s Gy RE(NR}, CE(NC}, RESID(N], SORTY(N)

ANALYZE THE TWO-WAY TABLE 1IN Y() BY MEDIAN POLISH,

THE TABLE HAS NR ROWS AND NC COLUMNS, BUT IS REPRESENTED IN
THREE ARRAYS: PRSUB{(I) AND CSUB(I) CONTAIN THE {ROW, CDL)
SUBSCRIPTS OF THE DATA VALUE IN v¥Y{l). THIS PERMITS MULTIPLE
OBSERVATIONS IN A CELL OF THE TABLE QR A COMPLETELY MISSING CELL
AND MAKES MANY MANIPULATIONS EASIER.

ON EXITy ¥{} IS5 UNCHANGED, G IS THE GENERAL TYPICAL (OR
CCMMON} VALUE, RE{) AND CE() ARE THE ROW EFFECTS AND COLUMN
EFFECTS, RESPECTIVELY. AND RESID() 1S THE TWO=-WAY TABLE OF
RESIDUALS TN THE SAME FORMAT AS Y() (USING RsUB(} AND CSUBL)).
THE RESIDUALS ARE DEFINED BY

RESID(I, J} = Y{I, 4} - 6 = RE{I) - CE{J}
AND ACTUALLY STRUCTURED AS
RESID(K]) = Y{(K) - 6 - RE(RSUBIK)) - CE(CSUB(K}}

ANY ROW OR COLUMN FOUND TO BE ENTIRELY MISSING IN THE ORIGINAL
DATA WiLL HAVE ITS EFFECT SET TO 2ZERO ON EXIT.

THE INPUT PARAMETERS HSTEPS AND START CONTROL THE
ITERATION PRCCESS. HSTEPS IS THE NUMBER DF HALF-STEPS TC BE
PERFORMED, AND START DETERMINES WHETHER THE FIRST STEP
OPERATES CN ROWS (START = 1} OR ON COLUMNS (START = 2).

THE INTEGER VECTCR SUBSAV() 15 USED TO STORE SUBSCRIPTS
TEMPORARILY. ITS DIMENSTON, NSy, MUST BE AT LEAST AS LARGE AS
THE LARGER DF NR AND NC.

FUNCTION
REAL MEDIAN
LOCAL VARIABLES
INTEGER 1+ Jy Ky L+ TROW, ICOL, ISTEP
REAL REFF, CEFF, EMPTY
DATA EMPTY/987.654/

EMPTY IS AN INTERMAL FLAG USED TGO MARK EMPTY ROWS OR COLUMNS.
THE VALUE YUSED HERE IS ARBITRARY.

249
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€ CHECK VALIDITY OF INPUT

IF(NR ,GT. O ANDs NC .GT. 0) GO TO &
ERR = 81
G0 TO 999
4 IF{HSTEPS .GT. 0O) GO TO &
ERR = 82
GO TO 999
B IF{START .EQ. 1 .0R. START .EQ. 2} GO 7O 10
ERR = 83
G0 TO 99¢9

INITIALIZE RE AND CE TO ZERO, RESID TGO ¥, AND ISTEP TO C.

[z Xz Xz

10 D0 20 I = 1y NR
RE(1I} = 0.0
20 CONTINUE-
DO 30 J = 1,y NC
CE(J) = 0.0
30 CONTINUE
DU 40 K = ty N
RESIDI(K) = Y{K)
40 CONTINUE
ISTEP = 0

BEGIN ON ROWS IF START=1ls ELSE BEGIN ON COLUMNS,
IF(START .EQ. 2} GO TO 130

FIND ELEMENTS OF EACH ROW, FIND ROW MEDIANS, ADD THEM TO ROW
EFFECTSy AND SUBTRACT THEM FROM PREVIOUS RESIDUALS.

(s RaFaXa N aNalal

50 IF(ISTEP .GE. HSTEPS) GO TO 210
DO 120 IROW = 1, NR
IF(RECIRDW) .EQ. EMPTY) GO TO 120
t =20

SEARCH FOR ANY MATCHING ROW SUBSCRIPT

OO0

D0 60 K = 1,4 N
IF{RSUB(K] «NE. IROW)} GO TO &0
L =L+l
SORTY{L)} = RESIOD{(K)
SuUBsAviL) = K
60 CONTINUE
IFLL «6T. 0} GO TO 70
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NO DATA IN TH1S ROW, MARK THE ROW EMPTY TOD AVQOID FUTURE SEARCHES

RECIRQW) = EMPTY
GO TO 120
70 IF{L .GT. 1) GO TO 80
REFF = SORTY(1)
60 TO 1060
80 IF{L +EQ. 2) GO TC 90
CALL SORT(SCRTY:. Ly ERR}
IF(ERR .NE. 0} GD TO 999
90 REFF = MEDIAN(SDAYY, L]}

ADJUST FOR ROW EFFECT NOW IN REFF

100 RE(IROW) = RE(IROW} + REFF
DO 110 1 = 1, L
J = SUBSAV(I)
RESID{(J) = RESID(J) - REFF
110 CONT INUE
120 CONTINUE
ISTEP = ISTEP + |

FIND ELEMENTS OF EACH COLUMN, FIND COLUMN MEDIANS, ADD THEM TO
COLUMN EFFECTSy AND SUBTRACT THEM FROM PREVIOUS RESIDUALS.

130 IF(ISTEP .GE. HSTEPS) GO YO 210
DO 200 ICOL = 1,y NC
IF(CE{ICOL) .EQ. EMPTY) GO TO 200
L =20

SEARCH FOR ANY MATCHING COLUMN SUBSCRIPT

DO 140 K = 14 N
TFICSUBLK) «NE. ICOL) GO TO 140
L =L+
SORTY(L) = RESIDI(K)
SUBSAV(L) = K
140 CONT INUE
IF{L .6GT. ) GO TO 150

NO DATA IN THI1S COLUMN, MARK I!T EMPTY TO AVOID FUTURE SEARCHES

CECICOL) = EMPTY
GO TO 200
1350 IF(L .6T. 1) GO TO 160
CEFF = SORTY{1l]
6C T0 180
150 IF({L .EQ., 2} GO TD 170
CALL SORT(SORTY, L, ERR)
IF(ERR .NE. 0) GO TO 999
170 CEFF = MEDIAN{SORTY, L)
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ADJUST FOR COLUMN EFFECT NOW IN CEFF.

el uly

180 CE(ICOL) = CE(ICOL)} + CEFF
DO 190 I = 1, L
J = S5UBSAV(I}
RESID(J) = RESID(J) - CEFF
190 CONTINUE
200 CONTINUE
ISTEP = ISTEP+]l
GO0 TO S0

NOW CENTER RCW EFFECTS AND COLUMN EFFECTS TO HAVE MEDYAM ZERO,
AND COMBINE THE CONTRIBUTIONS TO THE COMMON VALUE.

[aEnXalul

210 L =0
DO 220 I = 1, NR
IF(RE{1} .EQ. EMPTY)} GO TOD 220
L = L+l
SORPTYL{L) = RE(I]])
220 CONTINUE
IF(L .NE. 0} GO TO 220
ERR = 85
GO TO 999
230 CALL SORT{(SORTY,s L: ERR)
IF(ERR .NE. 0) GO TD 999
G = MEDIAN(SORTY, L)
DO 240 I = 1, NR
IF{RE{I) .NE. EMPTYJ) RE(I} = RE(I1) ~ G
C
C RETURN ZERQ FOR EFFECT OF EMPTY ROW
C
IFIRE{I} .EQ. EMPTY) RE{(I}) = 0.0
240 CONTINUE
L =20
DD 250 J = 14 NC
IF{CE{J) .EQ. EMPTY) GO TO 250
L = L+}
SORTY{(L) = CE(J)
250 CONTINUE
IF{L .NE. 0) GO TO 260
ERR = 85
GO TO 999
260 CALL SORT{(SORTY, L, ERR)
IF(ERR .NE. O) GO TO 999
CEFF = MEDIAN(SORTY, L)
G = G+CEFF
b0 270 J = 1,4 NC
IF{CE{J)} «NE. EMPTY) CE(J) = CE{J) -~ CEFF
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RETURN ZERC FOR EFFECT OF EMPTY COLS

IF{CE{J) .EQ. EMPTY}) CE{JS) = 0.0
270 CONTINUE

999 RETURN
END

SUBROUTINE TWLVSI(RSUB, CSUB, Ny REs NRy CEy NCy Gy CVALS,
1 ERR}

INTEGER NR, NCy» N, ERR
INTEGER RSUB(N),y CSUBIN)
REAL RE{NR), CE(NC},y Gy CVALSIN)

CALCULATES THE COMPARISON VALUES FODOR A TWO-WAY

TABLE. THE FIT ON WHICH THESE ARE BASED CONSISTS OF THE
ROW EFFECTSy RE{l)ses..+RE(NR) 4 THE COLUMN EFFECTS,
CE(1)s+<++CE(NC}) » AND THE COMMON VALUE, G . BY
DEFINITION, THE COMPARISON VALUE FOR CELL (1,4} IS

RE(I) * CE(J) /7 G .

CVALS() IS INDEXED BY THE ROW AND COLUMN SUBSCRIPTS
FOUND IN THE CORRESPONDING LOCATIONS IN RSUB{} AND CSUB().

253

THIS SUBROUTINE IDENTIFIES THE ROW AND COLUMN EFFECTS ASSOCIATED

WITH EACH RESIDUAL AND PUTS
THE CORRESPONDING COMPARTSON VALUES IN CVALS().

LOCAL VARIABLES
INTEGER Iy Jy K

IF{NR ,GT. O LAND. NC .GT. O) GO TO 10
ERR = 81
60 TO 99¢
10 IF(G .NE. 0.0) GO TO 20
ERE = g8
G0 TO 999

30 DO 50 K = 14N
I = RSUB({K)
J = CSUBIK}
CVALSIK) = RE(I) * CE(J} / G
S0 CONTINUE
999 RETURN
END
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bins

Rootograms

Batches of data are sometimes recorded by splitting the range of possible
values into intervals, or dins, and simply counting the data values that fall into
each bin. In a large batch, lack of room to construct a stem-and-leaf display
would lead us to use bins. If we had 500 data values, we would usually record
how many values fall on each line of the display instead of showing a leaf for
each data value.

Some variables almost always take this form. For example, ages of
adults seldom appear in more detail than the year (for most purposes five-year
or ten-year intervals are standard), so it is common to report age data as
counts of people at each age or in each age category. When the individual data
value is a count—especially a small count—there are often many repeated
values, and it is easiest to record the number of times each possible value
occurs. For example, from data on the number of traffic tickets that individual
drivers received in one year, we would record how many drivers received zero
tickets, how many received one ticket, and so on.

This chapter shows how to display such batches effectively, how to
compare them to standard shapes, and what residuals to calculate in these
comparisons. The exploratory techniques are known as the rootogram—for
basic display—and the suspended rootogram—for comparisons and residu-

als.
255
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Almost all introductory statistics texts discuss the “normal” distribu-
tion, and most imply that it is common for data in general—and especially for
data reported by bins—to be well-described by the “normal™ shape. A little
experience exploring data shows that the “normal” distribution is, in fact,
rather rare. (This is one reason the distribution has been called “Gaussian” in
this book.} Nevertheless, the Gaussian shape—a symmetric bell shape {Exhib-
it 9—1)—is a useful standard against which to compare the distribution of data
values in a batch. We do often observe many data values piling up in the
middle bins and fewer values in bins further from the middle, However, we
also often see skewed shapes or unusually full or empty bins. The methods
discussed in this chapter make it easy to find these and other deviations from
the Gaussian standard.

The exploratory methods in earlier chapters required no background in
mathematics or statistics. While the principle of the suspended rootogram is
easy to understand (compare Exhibits 9-12, 9-13, and 9-14), you will need to
know a little basic statistics to understand how to make one. Primarily, you
should be acquainted with the Gaussian (or normal) distribution and with the
idea that area under a demsity curve (the “bell-shaped” curve, for the
Gaussian distribution) can be interpreted as a probability. Most statistics texts
provide a table of these probabilities. We do not need such a table in this
chapter, but you may be able to use one in approximately checking some of the
calculations. If you lack this background in statistics, you can still read this
chapter, and you will certainly be able to use suspended rootograms, but you
may want to read lightly over the sections that discuss the method in detail.
Even readers who have the necessary background will still have to accept a few

Exhibit 9-1

The Frequency Curve of the Standard Gaussian Distribution

Relative Frequency
™
I
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statements without rigorous justification. Readers with more extensive statis-
tical background will find greater detail and relevant references in Section
9.7,

9.1 Histograms and the Area Principle

histogram

Jrequency
distribution

Histograms

If we want to see only skeletal detail in a stem-and-leaf display, we can trace
the outline of the lines of leaves. The result is a histogram, and it is customarily
presented with the data axis horizontal and the bars vertical. Exhibit 9-2
shows the histogram obtained by tracing a stem-and-leaf display for the
precipitation pH data in Exhibit 1-1. Here each line of the stem-and-leaf
display defines a bin.

Instead of a stem-and-leaf display, the data might take the form of a
set of counts as in Exhibit 9-3, which lists the intervals of pH value and the
number of data values that belong 1o each of them. (Other sets of intervals are
posstble; Exhibit 9-3 simply uses the ones established in the stem-and-leaf
display in Exhibit 1-2.) Another name for data in the form of Exhibit 9-3 is
frequency distribution; the tabulation shows how often the data values fall in
each interval.

s -

Exhibit 9-2 A Histogram for the Precipitation pH Data

10

Count
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Exhibit 9-3 A Frequency Distribution for the Precipitation pH Data of Exhibit 1-1

Number of
pH Precipitation Events

410-4.1%
4.20-4.29
4.30-4.39
4.40-4.49
4.50-4.59
4.60 - 4.69
4.70-4.79
4.80-4.89
4.50-4.99
5.00 - 5.09
5.10-5.19
5.20-5.29
5.30-5.39
5.40-5.49
5.50 - 5.59
5.60 - 5.69
530-579

(¥ )

area
principle

The Area Principle

To make a histogram for a large batch, where using digits for leaves in a
stem-and-leaf display would require too much space, we need only represent
each data value by the same amount of area. This is the area principle. This
principle is important in many displays because visual impact is generally
proportional to area.

Equal-Width Bins

In the simplest situation, all the bins span equal ranges of data values. Exhibit
9-3, for example, uses bins 0.10 pH-units wide for the precipitation pH data.
When all the bins have the same width, a histogram of the data will have bars
of equal physical width. Then, to make impact proportional to count, we
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simply give each bar of the histogram a height that is a constant multiple of
the count—that is, the number of data values—in its bin.

Exhibit 9-4 shows a larger example, the chest measurements of 5738
Scottish militiamen. The data have some historical significance because they
figured in a 19th-century discussion of the distribution of various human
characteristics. The source for these data is an 1846 book by the Belgian
statistician Adolphe Quetelet, but the data were first published about thirty
years earlier. These measurements were recorded in one-inch intervals; so all
the bins have the same width—one inch of chest measurement, centered at a
whole number of inches. Exhibit 9-5 shows a histogram based on Exhibit 9-4.
The constant of proportionality relating the height of each bar to the count in
the corresponding bin affects only the scale of the vertical axis; so we do not
have to calculate this constant explicitly. In Exhibit 9-5 we see a fairly
well-behaved shape: The middle bars are longest, and the bars regularly
become shorter as we move toward either end of the batch. (In Section 9.4 we

Exhibit 9-4 Chest Measurements of 5738 Scottish Militiamen

Chest (in.) Count
33 3
34 18
35 81
36 185
37 420
38 749
39 1073
40 1079
41 934
42 658
43 370
44 92
45 50
46 21
47 4
43 1

5738

Source: Data from A. Quetelet, Leftres 8 §.4.R. le Duc Régnant de Saxe-Cobourg ef Gotha, sur la Théarie
des Probabilites, Appliquée aux Sciences Morales et Politiques. (Brussels: M. Hayez, 1846) p. 400.
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Exhibi¢ 9-5 Histogram for the Chest Measurement Data in Exhibit 9—4
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bin
boundaries

bin counts

will summarize this shape and examine how the data depart from the
summary.)

Unequal-Width Bins

When the bins do not all have the same width, we must make the physical
width of their histogram bars reflect the bin widths and take these different
widths into account in order to preserve the area principle. Fortunately, we
need only make the height of each bar proportional to the count in its bin
divided by the width of that bin. A little more detailed discussion shows how
this process works.

We assume that the data set consists of a set of bin boundaries,

x[h Xy o v 9xk’
and a set of bin counts,
Ho, My o oo M Mgy,

where #; is the count in the bin whose right-hand boundary is x;. Thus, the first
and last bins are unbounded on one side: n; data values are below x, and 1,
data values are above x,. If unbounded bins do not arise, then #, = n,,, = 0,
and we do not have to worry about the problem of what bin width to use for the
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bin width

unbounded bins. When unbounded bins do arise, we must take care to depict
them fairly in any display of the data. The total count in the batch is ¥ = ny +
n + ...+ m, .. The bin widths are the differences between successive x;; that
S, Wy =X — Xoy oo o s Wi =X — X0

When the bin widths vary, the widths of the histogram bars will also
vary. We construct a histogram by choosing the width of each bar proportional
to the bin width and then choosing the height of each bar so that the area of
the bar is proportional to the bin count. These proportionality constants affect
only the scaling of the axes, and we omit them from the derivations. Thus, if
the bin widthis w; = x; — x;_, and the bar height is to be d;, we take

d'- = n,/w,-.

As defined in this equation, d; gives the density of data values in the
interval—that is, the number of data values per unit of bin width.

In a discussion involving nutrition, Huffman, Chowdhury, and Mosley
(1979) present data on two samples of women in Bangladesh. The height data
for one of their samples are shown in Exhibit 9-6, along with the width of each
bin and the calculated bar height, 4;. This set of data has an unbounded bin at
each end. Because we cannot be sure whether these end bins represent

Exhibit 9-6

A Frequency Distribution and the Histogram Calculations for the Heights of 1243
Women in Bangladesh

Number Bin Count
of Women Width per Width
Height {cm) (n:) fwi (d;)
< 140.0 71 ? ?
140.0 - 142.9 137 3 45.67
143.0 - 144.9 154 2 77.00
145.0 - 146.9 199 2 99.50
147.0- 1499 279 3 93.00
1500 -152.9 221 3 73.67
153.0-154.9 94 2 47.00
155.0 - 156.9 51 2 25.50
> 156.9 n ? ?
1243

Source; S$.L. Huffman, A.K.M. Alauddin Chowdhury, and W.H. Mosley, “Difference between Pastpartum
and Nutritional Amenorrhea (reply to Frisch and McArthur),” Science 203 (1979):922-923. Copyright
1979 by the American Association for the Advancement of Science. Reprinted by permission.
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intervals of width 2 or 3 or some other value, we do not attempt to find the
height of a histogram bar for them. (This will not, however, prevent us from
comparing this frequency distribution to a Gaussian distribution and calculat-
ing a residual in each bin, as we will see in Section 9.4.) Exhibit 9-7 shows the
histogram. Again, as in Exhibit 9-5, the pattern of bars looks quite regular.

The process of constructing a histogram involves nothing more than
the simple calculations that we have made so far. When we examine a set of
data closely, however, we often want to go beyond the histogram. After we
pick out the major features in the histogram, as we would do for a stem-
and-leaf display, we are then ready to compare the data to some standard of
behavior and look further for patterns in the residuals.

9.2 Comparisons and Residuals

When we compare a histogram 10 some expected pattern of behavior, we must
accept variability among data sets and among their histograms. If we studied a

Exhibit 9-7

Histogram for the Heights of Bangladesh Women (Data from Exhibit 9-6)

100~ —

50~

Count/Width

' T
140 150 160
Height (centimeters)
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large number of histograms from closely related sets of data—for example,
many samples of women’s heights in Bangladesh—we would generally find
that bar height varies more in bins with long bars than in bins with short bars.
Put in terms of the counts in the frequency distribution, the variability of the
counts increases as their typical size increases. This is hardly surprising. A
count that is typically 2 might often come out 1 or 0 or 3 or 4 in an observed
frequency distribution, but it would rarely come out 10. However, if the count
is typically 100, observed values of 90 or 110 would be quite commeon. Thus,
when we make direct comparisons and use residuals to look closer at patterns
of deviation, we must take into account the fact that variability is not constant
from one bin to another.

A re-expression can approximately remove the tendency for the vari-
ability of a count to increase with its typical size. The most helpful re-
expression is a familiar one: the square root. In addition to its helpful quality
of stabilizing variability, the square-root re-expression for counts has some
theoretical justifications. We consider some of these justifications in the next
section (and in Section 9.7).

9.3 Rootograms

rootogram

When we apply the square-root re-expression to a histogram, we obtain a
rootogram. The bin widths (w;,) have not changed; so we keep the same bar
widths as in the histogram, but we now use \/3, as the height of the bar for bin
i. The chest measurement data of Exhibit 9-4 provide a straightforward
example. Exhibit 9-8 gives the square-root calculations, and Exhibit 9-9
shows the rootogram. In the rootogram we see a regular pattern, just as we
found in the histogram (Exhibit 9-5). When we compare Exhibits 9-5 and 9-9
more closely, we find that the rootogram looks much more regular—almost
inviting us to drape a curve over it-—primarily because the square-root
re-expression has more impact on the longer bars in the middle than on the
shorter bars toward the ends. Just as we saw in earlier chapters, a suitable
re-expression can make data more regular and easier to look at.

Note that in using a rootogram we have abandoned the area princi-
ple—area is no longer proportional to count. As we move from display to
analysis, and so from examining the raw data to fitting a shape and examining
the residuals, it will be more important to stabilize the variability of fluctua-
tions than to picture the raw counts directly in terms of area.
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i—
Exhibit 9-8 Rootogram Calculations for the Chest Measurement Data of Exhibit 9—4 (w, = 1 for
all bins)
Chest (in.) Count (=d}} wffT,
33 3 1.73
34 18 4.24
35 g1 $.00
36 185 13.60
37 420 20.49
38 749 27.37
39 1073 32.76
40 1079 32.85
41 934 30.56
42 658 25.65
43 370 19.24
44 92 9.59
45 50 7.07
46 21 4,58
47 4 2.00
48 1 1.00

Exhibit 9-9 Rootogram for the Chest Measurement Data (All bins have width = 1)

va;

a0l

20

0F T J T
35 40 45
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donble-root
residual

Double-Root Residuals

When we compare a set of observed counts to the corresponding fitted counts,
we want to calculate and examine residuals. We could simply subtract fitted
from observed, but this would do nothing to make fluctuations roughly the
same size across all bins. Therefore, we will work with both observed counts
and fitted counts in a square-root scale. We can form residuals in this scale in
such a way that they behave approximately like observations from a standard
Gaussian distribution and hence are easy to interpret.
We could take

Jobserved — \ffitted

as the residual, but a slightly different re-expression avoids some difficulties
with small counts. First we replace the observed count by

y2 + 4 (observed) if observed # 0
1 if observed = 0

and we replace the fitted count by

J1 +4 (fitted).

Then we define the double-root residual (DRR) as the difference between these
two:

DRR = \/2 + 4 (observed) —_\ﬁ + 4 (fitted) if observed = 0
= 1 - 1 + 4 (fitted) if observed = Q.

These square-root re-expressions have the name “double root” because they
are close to two times the usual square root. We will socon see that, as a result,
the double-root residuals have an especially convenient scale.

The constants that have been added, 2 for observed and 1 for fitted,
help to relieve the compression imposed on small counts by the restriction that
counts always be greater than or equal to zero. Because fitted counts are
almost always greater than zero—although they can sometimes be small
fractions—we need not add as large a constant to fitted counts: 1 will do
instead of 2. (Section 9.7 provides some further background on double roots.)

Throughout this section we treat the fitted values as given; nothing has
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been said about how to calculate them because we would first need to choose a
specific model for a frequency distribution. (Section 9.4 describes one
technique for fitting a comparison curve to a histogram.)

Pollard {1973) examined the number of points scored per game by
individual teams in the 1967 U.S. collegiate football season and then grouped
the scores so that each bin corresponds, as nearly as possible, to an exact
number of touchdowns (one touchdown = 6 points). The grouped data are in
Exhibit 9-10. Pollard devised a model for these data that gives the fitted
counts shown in Exhibit 9-10. The corresponding double-root residuals are
computed in the last three columns of Exhibit 9-10. The last group, labeled
“74 & up,” actually contains three scores of 77 and one each of 75, 81, and 90;
so it combines what could have been three bins (74-80, 81-87, and 88-94).
The practice of combining bins or intervals in order to avoid working with
small fitted counts is widespread but is unnecessary when we use double-root
residuals.

None of the double-root residuals in the last column of Exhibit 9-10
seem especially large, but we must judge the size of such residuals according to

- — o

Exhibit 9-10 U.S. Collegiate Football Scores, with Fitted Counts and Double-Root Residuals

Number of

Number of Games
Points per
Game Observed Fitted 2 + 4 [observed) T + 4 (fiited] DRR

0- 5 272 2787 33.02 33.40 -0.39
6-11 485 490.2 44.07 44.29 -0.22
12-17 537 509.1 46.37 45.14 1.23
18 - 24 407 406.6 40.37 40.34 0.03
25-31 258 2759 32.16 3324 —1.08
32-138 157 1673 2510 25.89 -0.79
39-45 101 935 20.15 19.36 0.78
46 - 52 57 490 15.17 14.04 1.13
53-59 23 24.4 9.70 9.93 -0.23
60 - 66 8 11.7 5.83 6.91 -1.08
67-173 5 54 4.69 4,75 —0.06
74 & up _ 6 4.3 5.10 4,27 0.83
N = 2316

J—

Source: Data from R. Pollard, “Collegiate Football Scores and the Negative Binomial Distribution.”
Journal of the American Statistical Association 68 (1973);351-352. Reprinted by permission.
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some standard. Usually (as in Chapters 5 and 8) we examine residuals as a
batch to get an indication of their typical size and to identify any large
residuals. Double-root residuals, however, come with a built-in standard of
size. When the model fits the data well, an individual double-root residual
behaves approximately like an observation from the Gaussian (or normal)
distribution with mean 0 and variance 1. Thus, nearly 95 percent of the time a
DRR should be between —1.96 and +1.96. These limits can be found from the
table of the “normal” distribution given in most statistics texts. It is
convenient to define a large DRR as one below —2 or above +2. When the
fitted count is less than 1.0, the DRR may be less like a Gaussian observation;
so it may be wise to look more closely at any DRR below — 1.5 or above +1.5.

By these standards, Pollard’s model fits quite well (perhaps too well):
The largest DRR is 1.23. It would be interesting to fit the same model to data
from other collegiate football seasons.

In this section we have seen that rootograms stabilize the variability
from bar to bar while preserving the form of a histogram and that double-root
residuals provide an effective numerical way to compare data with fit. We now
turn to one technique for fitting smooth curves to counts in bins.

9.4 Fitting a Gaussian Comparison Curve

When a histogram summarizes a large batch in terms of a set of bins, it is
common practice to superimpose a smooth frequency curve on the histogram.
The most common curve for this purpose is the one belonging to the Gaussian
distribution. Its standard form (mean = 0, variance = 1) is given for all values
of z, positive and negative alike, by the mathematical function

1 ;
f(2) = Ee"”,

where = and e are common mathematical constants: m =~ 3.14159,
e = 2.71828. A graph of this function against z follows the bell shape shown in
Exhibit 9-1.

To match this standard curve to a batch of data, we can slide it until its
center matches the middle of the batch and stretch it (or compress it)
uniformly until its hinges match the hinges of the batch. Because the area
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beneath f(z) is 1, we must also multiply by N so that the curve represents the
same total count as the batch. The result is the curve

Qf(x _ m) = N e-(x—m)’;"(h’),
$ § Sy2x
whose mean, m, and standard deviation, s, can be calculated from the hinges

of the data. Specifically, if H, and H, are the lower and upper hinges, respec-
tively, we take

m=%(H, + Hy)
and
§s=(Hy — H))/1.349,

because any Gaussian distribution has its hinges at m — 0.6745s and m +
0.6745s and thus has an H-spr of 2 x 0.6745s = 1.349s5. We could use the data
in other ways to calculate m and s. For example, we might (as is often done)
use the sample mean for m and the sample standard deviation for 5. The
hinges, however, are resistant to the ill effects of outliers and are often
available in exploratory summaries such as the letter-value display. When we

cannot obtain the hinges from the complete data, we may still be able to
estimate them by interpolation.

Interpolated Hinges
When we must work from the bin boundaries,
Xos X1s e ooy Xy
and the bin counts,
Aoy Miy o v v s Py Misis
as in Section 9.1, we generally do not know the hinges of the data exactly.

Nevertheless, we can easily find the bins that contain the two hinges and then
estimate a value for each hinge by interpolation. From the total count, N, we
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know (Section 2.1) that the depth of the hinges is given by d(H) =
[(N + 1)/2 = 1)/2. The bins at which the sums of the bin counts (the »),
summing in from each end, first exceed or equal d(H) are the bins that
contain the hinges.

Let us suppose that the lower hinge lies in the bin whose boundaries are
x;_; and x; and whose observed count is #,. Then we interpolate by treating
the n; data values in the bin as if they were spread evenly across the width of
the bin. More specifically, we act as if the bin is divided into n, equal
subintervals of width w;/n;, each with a data value at its center. (Recall that
w; = X; — X;_;.) Thus, the leftmost spread-out value falls at

0.5w;,
X + v
ng
the next value comes at
1.5w,
Xp_ + N
ny

and so on. Thus if the depth of the hinge is d(H), we place the interpolated
lower hinge at

Xey +

dH) — (o ... +my ) =05

ny t
For the chest measurement data in Exhibit 9-4, we have IV = 5738, so

[(5739)/2 + 1]
2

d(H) = = 1435,

Summing the bin counts from the low end of the frequency distribution, we
find that

Mot ... +ns=0+3+ ...+ 420 =707

and

A+ ...+n=0+3+...+ 749 = 1456.



270 ABCs of EDA

cumulative
distribution
Junction

Thus, because w; = 1 for all the bins, we estimate the lower hinge as

1435 - 707 — 0.5
+

37.5 =29

x 1 =138.471.

Similarly, if the upper hinge lies in the bin whose boundaries are x,_,
and xy—that is, ny. + ... + My <d{H) = ny + ... + n,,—we place the
interpolated upper hinge at

_ d(H) — (an_] + ...+ n;_-_,_]) - 05

W
u (I8
By

Warning: If either hingé lies in a half-open bin—that is, to the left of x,
or to the right of x,—we will be unable to interpolate and hence unable to fit
the comparison curve from the interpolated hinges. (The computer programs
in this chapter check for this unlikely possibility and indicate an error
condition if it occurs.) Such a situation may require a re-expression of the
data.

Fitted Counts

Finally, from the fitted comparison curve, we must obtain a fitted count for
each bin. The fitted count is just the area beneath the fitted curve, (N/s) x
J((x — m)/s), between the bin boundaries. We could approximate this area
fairly closely by multiplying the bin width by the height of the curve at the
center of the bin, but we would have difficulty with the half-open bins (which
can have appreciable fitted counts even when their observed counts are zero).
Thus we employ, instead, the cumulative distribution function, F, for the
standard Gaussian distribution.

The camulative distribution function tells how much probability lies to
the left of any given value on the scale of the data. When we fit a Gaussian
shape, F(z) is the amount of probability to the left of z in the standard
Gaussian distribution. For the fitted Gaussian comparison curve,

NxF(x’_m)
5

is the total fitted count to the left of x;, We can thus begin with the left
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half-open bin and calculate its fitted count, #,, from

to= N F(2 )

and continue by calculating

and so on. In general,

bonlo(i5 ) - rfr)

except for the right half-open bin:

- r{2)

If we wish, we can sketch in the comparison curve as a background for a
rootogram, but we calculate double-root residuals from the #; and the ;.

The standard Gaussian cumulative function, F, has no simple formula
like that given earlier for the density function, f. Good approximatiens for F
are available, however, for computers or calculators. The programs at the end
of this chapter use a reasonably accurate simple approximation developed by
Derenzo (1977) for use on hand-held calculators: If |z| < 5.5, f(2) is
approximated by setting v = | z|, calculating

((83v + 351)v + 562
703 + 165y

p=expi—

and returning
F(z) =\hp ifz=0
F{z)=1—-p if z> 0.

When | z| > 5.5, the FORTRAN program uses another approximation from
Derenzo, while the BASIC program sets p to zero in the preceding equation
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for F(z). Because |z| > 5.5 corresponds to a probability smaller than
1/10,000,000, this difference between the programs is of no practical conse-
quence.

Example: Chest Measurements

To illustrate the steps in fitting a Gaussian comparison curve, we return to the
chest measurement data in Exhibit 9-4. The data are repeated, and the key
results of the fitting calculations are shown in Exhibit 9-11. Here, with N =
5738, we find the depth of the hinge: d(H) = [(5738 + 1)/2 + 1]/2 = 1435.
Adding up the #, from the low end, we find that

so that the lower hinge, H,, lies between x; = 37.5 and x; = 38.5. Interpolation
then gives

Hiwx,, + d(H) — (ny + ,., +n,_)— 035 W,
L

1435 — 707 — 0.5 1

= 37.
375 + 749

= 38.471.
Similarly, summing the n; from the high end yields
Mo+ ...+ R = 1196 <« 1435‘42130=n9+...+ﬂl7,

so that the upper hinge, Hy, lies between x; = 40.5 and x, = 41.5. Again,
interpolation gives

dHY —(ny + ...+ n,) —05
H, - x, - 20D = Gy = bt =05

1435 — 1196 — 0.5
=41.5 - 934 1

= 4].245.
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Exhibit 9-11 A Gaussian Comparison Curve for the Chest Measurement Data of Exhibit 9—4, with
Double-Root Residuals

i X; n; F{{x; — m)/s) i, DRR;

0 0 0.99 -1.23
325 00017

1 3 4.70 —-0.71
335 00099

2 18 20.57 -0.52
345 00458

3 81 71.35 1.13
355 01701

4 185 196.22 —0.79
36.5 05121

5 420 427.74 ~0.36
37.5 12575

6 749 738.85 0.38
385 25452

7 1073 1011.73 1.91
39.5 43084

8 1079 1100.38 —-0.64
40.5 62261

9 934 947.28 ~0.42
41.5 18770

10 658 647.75 0.41
42.5 50039

I 370 351.00 1.01
43.5 96176

12 92 150.73 —-5.34
44.5 98803

13 50 5131 -0.15
45.5 99697

14 21 13.85 1.76
46.5 99938

15 4 2.96 0.66
47.5 99990

16 1 0.50 0.71
48.5 99999

17 0 0.08 -0.14
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From the hinges it is then simple to find
m=\o(H, + Hy) =39.858 and s=(Hy— H;)/1.349 = 2.056.

We now use the approximation for F(z) to calculate the fourth column of
Exhibit 9-11, the values of F((x; — m)/s). The differences between adjacent
entries, multiplied by N = 5738, are the #. The column of double-root
residuals, calculated as in Section 9.3, completes the numerical work on this
example.

The double-root residuals now tell us how closely the comparison curve
follows the data. Immediately, our attention focuses on bin 12, where DRR =
—5.34. Surely something is amiss in Quetelet's data. The original source of the
data, published in 1817, gives the joint frequency distribution of height and
chest measurement in each of eleven militia regiments, It has a total count of
5732, and its bin counts differ by as much as 76—in bin 12, it turns out—from
the bin counts reported by Quetelet. It seems that Quetelet made some serious
copying errors in forming his frequency distribution, but he did not notice the
discrepancy that is so evident in Exhibit 9-11.

Except for bin 12, DRR values in Exhibit 9-11 indicate that the fit is
reasonable. If we look back at the rootogram in Exhibit 9-9, we may agree
that the bar for bin 12 looks a bit low. When we fit the Gaussian comparison
curve, however, the double-root residual makes it impossible for this isolated
problem to escape notice. We have gained considerably by looking at the fit in
this way.

Note also that, because we used the hinges to fit the comparison curve,
the one extraordinary bin—which involved a change of only about 1% of the
cases-—did not have an undue influence on the fit. Correcting the error would
change the comparison curve only slightly and thus would not alter the fit at
the other bins.

9.5 Suspended Rootograms

In the preceding sections, we concentrated on fitting a comparison curve to our
data and on finding the proper residuals. Qur approach was different from the
approaches we used for other data structures such as y-versus-x and two-way
tables, because we fitted the comparison curve to the raw data but caiculated
residuals in the square-root scale. However, Tukey (1971) describes a way of
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suspended
rootogram

fitting the comparison curve directly to the rootogram. We now bring the
fitted curve and the residuals together in a graphical display.

We recall that Exhibit 9-9, the rootogram for the chest measurement
data, tempted us to sketch in a comparison curve. Now that we have fitted a
Gaussian comparison curve to that set of data, we can superimpose the fitted
curve (actually, its square root, point by point) on the rootogram to produce
Exhibit 9-12. Superimposing the fitted curve is a common practice with
histograms, but the resulting display does nothing to help us see the residuals,
as we should.

We can identify simple *“rootogram residuals” in Exhibit 9-12. They
are the difference between the height of each bar and the height of the curve at
roughly the center of the bin. It is difficult to grasp the whole set of these
residuals, however, because we must look along the curve. We can make the
differences easier to see by forming the residuals: Writing

residual = data — fit

is equivalent to putting the comparison curve below the horizontal axis and
standing each bar of the rootogram on the curve, near the center of the bin.
The resulting display, called a suspended rootogram, appears in Exhibit
9-13. In Exhibit 9-12 the bars stand on the horizontal axis, and we have to
compare them to the curve to see residuals. Now the bars stand on the curve,
and the residuals are easily seen as bar-like deviations from the horizontal

Exhibit 9-12

Rootogram for the Chest Measurement Data, with Gaussian Comparison Curve as
Background

v,

40 |-

oF T T T
35 40 45
Chest Measurement (inches)
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Exhibit 9-13 Rootogram for Chest Measurement Data, Suspended on Gaussian Comparison Curve

t\a_;/

axis. Because a horizontal straight line is a very convenient standard of
comparison, we can easily spot large residuals and begin to look for patterns.
To examine the caleunlations in more detail, we recall (from Section
9.1) that d; = n,/w; and thus the height of the rootogram bar in bin  is \(-
Analogously, we use the fitted count, #;, to define d, = f;/w; so that the
rootogram residual in bin { is
- \[3',,

We judge the size of these residuals by converting the rule of thumb that we
use for double-root residuals: A DRR is “targe” if it is less than —2 or greater
than +2. Because 4; and &; have »; and #; as their numerators and w; as their
denominator, we begin with

.D.RRf- J2 + 4”‘ - Jl + 4hf,

neglect the constants 2 and 1, and multiply through by 1/(2+w,) to obtain

DRR, -\

Thus we regard the rootogram residual in bin 7 (that is, \/E, — \/Z) as large if it
is (roughly) less than —1/Vw;, or greater than +1/Jw,.

When all the bins (except the left-open and right-open ones) have the
same width, w, these limits for rootogram residuals can be shown as horizontal
lines on the suspended rootogram at —1/+w and + 1/ yw. Of course, when the
widths vary, we could show lines for each bin, but we seldom do.

Because we always want to study the residuals but seldom need to see
the comparison curve, we usually simplify a suspended rootogram and show
only the bars for the residuals (along with light lines at + 1/ +w when we have
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Exhibit 9-14 Suspended Rootogram, Showing only Rootogram Residuals, for Chest Measurement
Data (1/V¥w, = 1 for all bins)

equal-width bins). Exhibit 9-14 illustrates this display. The simplified version
is the preferred graphical display for comparing a set of counts and a fitted

curve. By showing only the rootogram residuals, Exhibit 9-14 makes better
use of plotting space than does Exhibit 9-13, and it is far more effective than a

histogram with a superimposed curve.

9.6 Rootograms from the Computer

A general-purpose display for counts in bins could wel} include several types of
information: (1) the bin boundaries, (2) the observed count in each bin, (3) the
fitted count in each bin, (4) the ordinary residual (n;, — 7)), (5) the double-root
residual (DRR), (6) the rootogram residual (\{E; - \/‘r?,), and (7) a suspended
rootogram. The constraint of being able to use simple computer terminals,
however, forces some compromises. The programs for this chapter display five

components:

+ the bin number, §

» the observed count, #;

» the ordinary residual, n, — #;

» the double-root residual, DRR;, and
[ ]

a suspended-rootogram display of the DRR,

as Exhibit 9-15 shows for the chest measurement data. From the observed
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Exhibit 9-15 Rootogram Display (based on a Gaussian comparison curve) for the Chest

Measurement Data

BIN COUNT RAWRES DRRES SUSPENDED ROOTOGRAM
1 0.0 -1.0 -1.23 ¢ mmmmeae
2 3.0 -1.7 -0.711 . e
3 18.0 -2.6 -0.52 . -
4 1.0 96 1.13 . P
5 186.0 -11.2 -0.79 . -
6 4200 -1.7 -0.36 - --
7 749.0 10.2 0.38 . ++ -
8 1073.0 61.3 1.9 . YT PR
9 1074.0 -214 ~-0.64 . R .
10 g34.0 -13.3 -0.42 . -
n §58.0 10.2 041 . et
12 310.0 19.0 1.01 . FONON
13 92.0 -58.7 -5.34 o
14 50.0 -1.3 -0.15 . - .
15 2‘-0 7¢2 ]a?G . LA L LR L LE L I
16 40 1.0 0.66 . e .
17 1.0 0.5 o.M . pyye
18 0.0 -0.1 -0.14 . -
IN DISPLAY, VALUE OF ONE CHARACTER 1§ .2 00

count and the ordinary residual (in the column headed RAWRES, for “raw
residual™) it is easy to reconstruct the fitted count, #;: #, = n, — RAWRES,.

In order to accommodate the half-open bin at each end, the
suspended-rootogram display is based on the double-root residuals rather than
the rootogram residuals. It appears as a compact display to the right of the
columns of numerical output and shows a (horizontal) bar for each bin on the
same line as the other infermation for that bin. The plotting character is the
sign of the double-root residual (DRRES), and each horizontal space has the
fixed value of .2. (This fixed amount of space suffices because the double-root
residvals have a natural scale.) Enough spaces are available to show DRR
values from —3 to + 3, and any value outside this range is marked with a * at
the tip of its bar. In Exhibit 9-15, bin 13 requires this mark. (We referred to
this bin as bin 12 earlier, when we numbered the bins from O to k+1. The
programsuse I = 1,..., k + 2.) Asan aid to drawing in a vertical axis for the
suspended rootogram, the OO in ROOTOGRAM lies where the line can pass
between the Os and is repeated in the same position below the display.

The programs check the number of spaces between the margins set for
the output line. Sixty-five spaces are required for the full display. If fewer than
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65 but at least 30 spaces are available, only the numerical columns are
printed.

FORTRAN

Two FORTRAN subroutines, RGCOMP and RGPRNT, handle the computations
and output for a rootogram display. RGCOMP, in turn, uses the function GAU,
which gives the value of the standard Gaussian cumulative distribution
function. Separating the computation from the display makes it easy to use the
fitted counts or the double-root residuals in other calcujations or displays.

For input, the vector X{} holds the bin boundaries, and the vector Y{)
holds the bin counts. (¥{} is REAL rather than INTEGER because some frequency
distributions include non-integer counts. The most common reason is that one
or more data values fell on a bin boundary and were counted as one half in
each of the bins that share the boundary.) As in Section 9.1, Y{l} is the count for
the bin whose right-hand boundary is X{ih. Now | runs from 1 to L (so that L =
k + 2 in the notation of Section 9.1), and again XiL} is not used. ¥{1) and YiL)
hold counts for the unbounded extreme bins and must be zero whenever the
data have no unbounded bins.

To fit a Gaussian comparison curve and calculate the double-root
residuals, use the following FORTRAN statement

CALL RGCOMPX, Y, L, MU, SIGMA, YHAT, DRR, MHAT, SHAT, ERR]

where
Xx{) is the vector of bin boundaries—X{L} is unused;
¥i) is the vector of observed counts;
L is the number of bins;
MU allows the user to specify the mean of the fitted

Gaussian distribution;

SIGMA  allows the user to specify the standard deviation of the
fitted Gaussian distribution (if SIGMA = 0.0, the
program ignores the values of MU and SIGMA);

YHAT{) is returned as the vector of fitted counts;

DRR({) s returned as the vector of double-root residuals;
MHAT  is returned as the mean of the fitted comparison
curve;

SHAT is returned as the standard deviation of the fitted
COMPArison curve;
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ERR is the error flag, whose values are
0 normal
91 too few bins (L < 3)
92 a hinge falls in a half-open bin (so that interpo-
lation is not possible).

Then, to produce the rootogram display using the observed counts, the fitted
counts, and double-root residuals just calculated, use the FORTRAN state-
menl

CALL RGPRNT (Y, L, YHAT, DRR, ERR}
where the parameters are as defined for RGCOMP and

ERR is the error flag, whose values are
0 normal
93 margins too narrow for numerical part of
display (< 30 spaces available)
94 margins wide enough for numerical columns but
not for graphical display, so graphical display
not printed (30 < spaces < 65).

Both of these subroutines assume that the data take the form of a
frequency distribution. When it is necessary to construct the frequency
distribution from a batch of data, the number of bins and the scaling used by
the stem-and-leaf display programs generally provide a good starting point.

BASIC

The BASIC program for suspended rootograms is entered with bin boundaries
in the array X() and bin counts in the array Y(). As in Section 9.1, Y} is the
count for the bin whose right-hand boundary is X{N. | runs from 1 to N (so that
N = k + 2 in the notation of Section 9.1), and X(N) is not used. Y{1) and Y{N) hold
the counts for the unbounded extreme bins and must be zero if the data have
no unbounded bins. The defined function FNG(2) is an approximate Gaussian
cumulative distribution function; it returns the probability below Z in a
standard Gaussian distribution {when |Z| < 5.5—see Section 9.4).

The program leaves X{} and Y{} unchanged and returns fitted counts in
C(} and double-root residuals in R{ ).
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* 97 More on Double Roots

This section briefly brings together several useful facts about double-root
residuals. The theoretical background for double-root residuals comes
primarily from work on transformations to stabilize the variance of Poisson
data. Bartleit (1936) discussed the use of Jx and x + 4 for counted data
generated by a Poisson distribution, and others subsequently investigated
modifications of these re-expressions. Generally, if the random variable X
follows a Poisson distribution with mean m, the re-expressed variable approxi-
mately follows a Gaussian distribution whose mean is a function of m and
whose variance is approximately Y4. The main points are that (1) the variance
after the re-expression depends only slightly on m and (2) the approximation
becomes better as m grows larger,

In order to do better for small values of m, Freeman and Tukey {1950)
suggested the re-expression

VX +xr L

As Freeman and Tukey (1949) point out (see¢ also Bishop, Fienberg, and
Holland, 1975), the average value of \f)—( + X + 11is well approximated for
Poisson X by

m + 1,

and its variance is close to 1. Tt is customary to substitute the estimated or
fitted count, #1, for the {unknown) average value, m. The resulting residuals,

Y+ 1 - Jam e,

are known as Freeman-Tukey deviates.

For the observed counts, x = 1, 2, ..., it is easy to check that Vx +
Jx + 1 and J4x + 2 are only very slightly different. Thus double-root
residuals and Freeman-Tukey deviates are essentially equivalent. (Recall that
1 replaces \J4x + 2 in the definition of the double-root residual when x = 0.
This is the main difference between using vx + x + 1 and using \4x + 2 =
2\x + !4 without special treatment of zero.} The approximate behavior of the
Freeman-Tukey deviate is the basis for treating individual DRR values as if
they were observations from a standard Gaussian distribution.

For descriptive and diagnostic purposes, we can treat the double-root
residuals from a fitted frequency distribution as if they were a Gaussian
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sample. Naturally, the DRR values are not all independent; the sum of fitted
cell counts must equal the sum of observed cell counts, and it is usually
necessary to estimate some parameters from the data—for example, m and s
for the Gaussian comparison curve—but this lack of independence is seldom a
serious problem.

Clearly, double-root residuals tell something about goodness of fit
between model and data. The almost universally used measure of goodness of
fit is the (Pearson) chi-squared statistic,

(x; — ﬁ‘f:)z
X1= —‘_A_-
Z n;

How might the double-root residuals be related to X?? Because of the
approximately Gaussian behavior of the DRR,;,

> DRR?

follows roughly a chi-squared distribution. The usual number of degrees of
freedom—that is, the number of d.f. appropriate for X>—takes into account
the dependence among the DRR; For example, from Exhibit 9-11, we get
ZDRR* = 42.48; and, because there are 18 bins and 2 estimated parameters
(besides the total), we should refer this sum to the xi; distribution. When we
do this, we are led to reject the hypothesis that the differences between the
observed and fitted bin counts are due 1o chance; in fact, p < .0005. The value
of X* for this same fit is 37.13, which is almost significant at the .001 level.
Both measures indicate strongly that the fit is not satisfactory. (Almost all the
difference between X* and SDRR? comes from the bin centered at 44 inches;
DRR? is 28.52, while the contribution to X? is 22.88.) The practice of
beginning by looking at the individual DRR; will call early attention to any bin
where the fit is poor. Forming SDRR? as a second step will then provide an
overall measure (in case the fit is generally poor but not unusually bad in any
one cell).

In using X2, it is customary to combine bins at either end of the
frequency distribution until every bin has a fitted count no smaller than 1.
While some further research is required, this restriction does not seem to be
necessary for double-root residuals. (Tukey suggests that we can make a
rather satisfactory allowance for small fitted counts by subtracting Z(1 — )%,
where only bins with #, < } contribute to the sum, from the conventional
number of degrees of freedom.)
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REM SUSPENDED ROOTOGRAM

REM ON ENTRY X() HOLDS BIN BOUNDARIES (N-1 OF THEM).

REM Y({) HOLDS BIN COUNTS (N OF THEM), N=§ OF BINS.

REM Y(1) AND Y(N) ARE ASSUMED TC HOLD COUNTS BELOW X (1)

REM AND ABOVE X(N), RESPECTIVELY. THEY MUST BE

REM SET TO ZERO IF THEY ARE NOT NEEDED.

REM FNG({X) IS ASSUMED TC BE DEFINED AS THE CUMULATIVE

REM PROBABILITY FUNCTION TO BE FIT (THE GAUSSIAN BY DEFAULT).
REM IF V1<0 REQUESTS VALUES FOR MEAN AND STANDARD DEVIATION
REM AND SKIPS FITTING PROCEDURE.

REM ON EXIT, X() AND Y{()} ARE UNCHANGED. THE FITTED COUNTS
REM ARE IN C(), AND THE DOUBLE-ROOT RESIDUALS ARE IN R{).
REM

IF N >= 3 THEN 5160
LET E9 = 91
RETURN

REM FIND TOTAL COQUNT

LET A
FOR I

LET
NEXT I
IF V1 >

TC N
A+ Y(I)

>0
o

=]

THEN 5290
REM GET USER-SUPPLIED PARAMTERS

PRINT TAB({MO); "MEAN, STANDARD DEVIATION";
INPUT L1,51

IF S1 > 0 THEN 5590

PRINT TAB(MO);"S.D. MUST BE > 0, RE~-ENTER ";
GO TO 5230

REM FIND HINGES

LET Al = { INT{({(A + 1) / 2) + 1) / 2
IF Al > Y(1) THEN 5330
PRINT TAB(MO);"HINGE IN LEFT-OPEN BIN IN ROOTOGRAM"
STOP
LET A2 = Y (1)
FOR I = 2 TON - 1
LET A2 = A2 + Y (I}
IF A2 >= Al THEN 5400
NEXT I
PRINT TAB(MO)}; "HINGE IN RIGHT-OPEN BIN 1IN ROOTOGRAM"
STOP

284
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5400
5410

5420
5430

5440
5450
5460
5470
5480
5490
5500
5510
5520

5530
5540

5550
5560

5570
5580
5590

5600
5610
5620
5630
5640
5650
5660
5670
5680

5690

5700
5710
5720
5730

5740
5750
5760

5770
5780
5790
5800

REM FIND LOW HINGE BY INTERPOLATION AND PUT IN L2

LET A2 = A2 - Y (I)

LET L2 = X{I - 1) + (X{(I) - X(XI - 1)) * (a1 - A2 - .5) / Y (I)
REM NOW FIND THE HIGH HINGE

IF Al <= Y(N) THEN 5380
LET A4 = Y (N)
FOR I =N -1T0 2 STEP - 1
LET A4 = A4 + ¥Y(I)
IF A4 »>= A) THEM 5510
NEXT I
GO TO 5310
LET A4 = A4 - ¥Y(I)
LET L3 = X{I) - (X{(I) - X(I - 1)) * (Al - A4 - .5) / Y(I)

REM L2 AND L3 ARE NOW THE HINGES. USE THE MIDHINGE AS A CENTER
REM AND HINGESPREAD/1.349 AS A SCALE IN GAUSSIAN,

LET L1 = (L2 + L3) / 2
LET 81 = (L3 — L2) / 1.349

REM C7 ACCUMULATES CUMULATIVE PROBABILITY
REM IS TOTAL COUNT. C{) GETS FITTED COUNT,
REM R{) GETS DOUBLE-ROOT RESIDUALS.

LET C7 = 0
FOR I =1TOR -1
LET C8 = FNG((X(I) - L1) / 81)
LET C{I) = A * (C8 - C7)
LET R(I) = SQR(2 + 4 * Y(I)}) - SOR(1 + 4 * C(I))
IF Y(I) > 0 THEN 5670
LET R{(I) = 1 - SOR(1 + 4 * C(I})
LET C7 = C8B
NEXT I

REM NOW HANDLE RIGHT-OPEN BIN

LET C(N) = A * (1 - C7)

LET R(N) = SQR(2 + 4 * Y(N)) - SOR(1 + 4 * C(N))
IF Y{N) > 0 THEN 5740

LET R{(N) = 1 - SOR{(1 + 4 * C(N))

REM
REM PRINT ROOTOGRAM RESULTS
REM

LET M1 = M9 - MO + 1
IF M1 > 30 THEN 5810

PRINT TAB(MO);"PAGE TOO WNARROW TO DISPLAY ROOTOGRAM RESULTS"
RETURN
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5810

5820
5830
5840
5850

5860
5870

5880
5890
5900
591¢
5920
5930
5240

5950

5960
5970
5980
5990
6000
6010
6020
6030
6040
6050
6060
6070

6080

6090
6100
6110
6120
6130
6140
6150
6160
6170
6180
6190
6200

ABCs of EDA

REM SET UP TABS

LET T1 = MO + 4
LET T2 = T1 + 8
LET T3 = T2 + 8
LET T4 = T3 + 8

REM R3 IS PRINTING FLAG: 0= PRINT TABLE,
REM )} = PRINT TABLE AND ROOTOGRAM, 2 = ROOTOGRAM ONLY

LET R3 =1

IF M1 >= 60 TREN 5910
LET R3 = 0

PRINT

PRINT TAB(MO);"BIN#"; TAB(T1 + 1);"COUNT"; TAB(T2); "RAW RES";
PRINT TAB(T3);"D-R RE5";
IF R3 = 0 THEN 5970

REM HEADING FOR ROOTOGRAM DISPLAY

PRINT TAB(T4 + 4);"SUSPENDED ROOTOGRAM";
PRINT
PRINT
FCR I =1 TO N
LET Rl = ¥(I) - C(I)
LET RO = 1
PRINT TAB{MO);I;
IF R3 = 2 THEN 6080
PRINT TAB{(T1); FNR(Y(I)); TAB(T2); FNR(R1l);
LET RO = 2
PRINT TAB{T3): FNR(R(I}};
IF R3 = 0 THEN 6420

REM PUT ONE LINE OF ROOTOGRAM IN P()

LET Ol = ASC(" ")
FOR J = 1 TO 32

LET P(J) = 0l
NEXT J
LET P{6) = ASC(".")
LET P(27)} = ASC(".")
LET J1 = 0
IF R{(I) = 0 THEN 6360
LET X1 = FNC(5 * ABS(R(I)))
JF X1 <= 15 THEN 6200
LET X1 = 15
IF R(I) > 0 THEN 6290
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6210
6220

6230
6240
6250
6260
6270
6280

6290

6300
6310
6320
6330
6340
6350
6360
6370
6380
6390
6400
6410
6420
6430

6440

6450
6460
6470
6480
6490
6500
6510

6520
6530

6540
6550

REM CONSTRUCT ROOTOGRAM LINE FOR RESIDUAL < 0
LET Jl = 16

FOR J = J1 TO J1 - X1 STEP - 1
LET P{(J) = ASC("-")

NEXT J

IF X1 < 15 THEN 6360

LET P(l} = ASC("*")

GO TO 6360

REM CONSTRUCT ROOTOGRAM LINE FOR RESIDUAL>O

LET J1 = 17 + X1
FOR J = 17 TO Jl
LET P(J} = ASC("+")
NEXT J
IF X1 < 15 THEN 6360
LET P(32) = ASC("*")
IF J1 >= 27 THEN 6380
LET J1 = 27
PRINT TAB(T4);
FOR J =1 TO Jl
PRINT CHR$ (P (J));
NEXT J
PRINT
NEXT I

REM GO BACK TO PFRINT ROOTOGRAM?

IF R3 >= 1 THEN 6510

LET R3 = 2

LET T4 = MD + 4

IF M1 > T4 + 30 THEN 5950

PRINT TAB({MO);"PAGE TOO NARROW FOR ROOTOGRAM"
GO TO 6550

PRINT

REM WRAPUP
PRINT TAE(T4 + 15);"/"; CHR$(92)

PRINT TAB(MO); "IN DISPAY, VALUE OF ONE SPACE IS .2"
RETURN
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FORTRAN Programs

SUBROUTINE RGCOMP{X, Y+ L+ MU, SIGMA, YHAT, DRR, MHAT, SHAT,

INTEGER L+ ERR
REAL X{L})s ¥Y{L)s YHAT(L), DRREL), MY, STGMaA, MHAT, SHAT

PERFORM THE COMPLTATIONS FOP A SUSPENDED RCOTOGRAM.
X013}y seay X{L) ARE THE BIN BOUNDARIES, AND Y1{l},
eeey YIL) ARE THE BIN COUNTS (I.E., CELL FREQUENCIES).
THE COUNT Y{!) CCRRESPONDS TO THE BIN WHOSE RIGHT
BOUNDARY IS X(I) . THE BIN WHOSE RIGHT

BOUNDARY 1S X(1) IS OPEN TC THE LEFT. ALSD

X{L) 15 NOT USED, SO THAT Y(L) COUNTS ALL DATA VALUES
TO THE RIGHT OF X{L-1}.

A GAUSSTAN COMPARISON CURVE 15 USED. AND I1TS CENTER
AND SCALE ARE DETERMINED BY THE HINGES DOF THE DATA
(FOUND 8Y LINEAR INTERPOLATICN).

ERR]

IF SIGMA IS NOT EQUAL TO ZERQ, THEN THE FITTING PROCESS 1S SKIFPED

AND THE VALUES CF MU AND SIGMA PASSED IN ARE USED FOR THE

COMPARISON CURVE, 1IF SIGMA 1S EQUAL TD ZERC, THE VAUES OF BOTH

MU  AND SIGMA ARE TGNORED.

ON EXIT, MHAT CONTAINS THE FITTED MEAN OF THE GAUSSIAN
COMPARTSON CURVE, AND SHAT CONTAINS THE FITTED STANDARD
DEVIAYION, VYHAT({) CONTAINS THE L FITTED COUNTS, AND
DRR{} CONTAINS THE DOUBLE-RCOT RESIDUALS.

LOCAL VARTABLES

INTEGER I+ Ky LPLl, LPLIMI
REAL Dy HLy HUs Py PLy T, TNy ¥YH

IF{L .GE. 2) GO TC 5
ERR = §1
GO TO 999
S K=L-1
TN = 0.0
Do 101 = 1, L
TN = TN + Y({1}
10 CONTINUE

IF MU AND SIGMA WERE SPECIFIED, OONT BOTHER TO FIT THEM FFOM THE

DATA., CUE 1S5 KNCN-ZERQO SIGMA,
IF{SIGMA .GT. 0.0} GO TC 80

D = 0.5 % (1.0 + AINTIO.5 * (TN + 1.0)))

288
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SO0
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IF LOWER HINGE FALLS IN LEFT-UPEN BIN, ERPOP.

IF(D .GT. Y(1)) GO TO 20
ERR = 97
GO TC 999
20 7 = ¥U1)
DO 30 1 = 2+ K
T=T+ v{l}
IF{T .GE. D} GO TO 40
30 CONTINUE

LOWER HINGE FALLS IN RIGHT=OPEN BIN —— ERRCR,

ERR = 52
G0 TO 99¢

FIND LOWER MINGE BY INTERPOLATION.

40 T = T = ¥{I)
HL = X{I-1}) + (X(1} - X(¢I-1)} * (D - T - 0.5) / ¥{(1)

NOW PERFORM SIMILAP CHECKS AND FIND UPPER HINGE.

IF(D .GT. Y(L)) GC TN 50

ERR = 92
G0 TO 999
50 T = YL}
LPl = L + ]
DO &0 I = 2, K
LPIMI = LPY - 1
T = T + YILPIMT)

IF{T .GE. D) GO TO 70
60 CONTINUE

ERR = 92
G2 TO 999
T0 T = T - Y(LP1WMI)
HUY = X{LPLMI) - (X{(LPIMI) = X{LP1MI=1}) * (D - T - 0.5} /
1 YILP1IMI)

USE MHAT = MID-HINGE FOR CENTERING AND SHAT =
{H=-5PREAD)/1.349 FOR SCALE. (SHAT IS AN ESTIMATE OF THE
STANDARD DEVIATICN FOR THE FITTED GAUSSIAN

COMPARISON CURVE.}

MHAT
SHAT

(HL + +U) / 2.0
{HU = HL} / 1.3249

GO TO 90
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SKIP TC HERE IF MU AND SIGMA WERE SPECIFIED

B0 MMAT = MU
SHAT = SIGMA

90 PL = 0,0
DO 100 1 = 1, K
NOGTE: SOME FORTRANS MAY WANT THE ARGUMENTY OF GAU() TC
BE A TEMPORARY REAL SCALAR,
P = GAUL{X{I) = MHAT) / SHAT)
YH = TN = (F - PL}
YHAT{(1) = YP¥
DRR{I} = SQRT(2.0 + 4.0 * Y{1)}) ~ SQRT{1.0 ¢« 4.0 * YH)
IFIY(;! «EQ. 0.0} DRRITI) = 1.0 - SQRT{1.0 + 4.0 * YH)
PL =
100 CUNTINUE
¥YH = TN * (1.0 - PL)
YHATIL) = YH
DRRIL) = SQRTI2.0 + 4,0 * Y{L}) - SORT(1.0 + 4,0 = YH)
TF{Y(L) .EQs 0.0) DRRIL} = 1.0 = SQRT(1.0 + 4,0 * YH)
2999 RETURN
END

SUBROUTINE RGPRNT(Y, L4+ YHAT, DRR, ERR)}

INTEGER L, ERR
REAL Y(L}, YHAT(L): DRR(L)

PRINT, BIN BY BIN, THE QOBSERVED COUNT, THE RAW
RESIDUALs THE DOUSLE-ROOT RESIDUAL, AND AN ABBREVIATED
DISPLAY OF THE DCUBLE-ROOT RESIBDUAL.

¥Y{l)s +eey Y{L} ARE THE BIN COUNTS.

YHAT CONTAINS THE FITTED COUNYS, AND

ORR  CONTAINS THE DDUBLE~-RODOT RESIDUALS.

LOCAL VARIABLES

INTEGER BL, BQ, DOT, 1, Js MIN, MBL, NMIN, NPL, PL, STAR
REAL RES

FUNCTION
INTEGER FLOCR

COMMON JCHRBUF/ P, PMAX, PMIN, QUTPTR, MAXPTR, OUNIT
INTEGER P{130)s PMAX, PMIN, OUTRTR, MAXPTR, OUNIT

DATA BL, DOV, MINs PL, STAR /1H 4 1lH.s lH=, 1H+, 1H%/
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<
C IS PRINY LINE WICE ENOUGH TO HOLD THE CODLUMNS OF NUMBERS,
C
IF{PMAX .GE. 30) GO 7O 10
ERR = 93
G0 TO 999
C
C PRINT LINE MAY BE ADEQUATE FOF NUMBERS BUT NDT DISPLAY.
C
10 IFIFMAX .GE. €5) GO TO 30
ERR = 94
C
€ PRINT ONLY THE OBSERVED CODUNTS AND THE YWO TYPES OF
C RESIDUALS.
C

WRITE(OUNIT, 5010}
5010 FORMAT{LX+3HBIN+AXsSHCOUNT, 3X,,6HRAWRES +3 X 5HORRES /)
C
DD 201 = 1, L
RES = Y(I) — YHATLT}
WRITELOUNIT, 50203 1, Y(1}, RES, DRRUI}
20 CONTINUE
5020 FORMATILIXs1342X,F6el+8X4F5.144X4F5.2)

c
G0 TO 999
c
C PRINT THE TABLE AND THE DISPLAY.
c

30 WRITE{QUNIT, 5030}
SO030 FORMATH{LX+3HBIN,3Xs SHCOUNT, 3X,6HRAWRESy4X s SHDRRES
1 7X,1SHSUSPENDED ROOTOGRAM/)
C
DO 120 I = 1, L
RES = Y{I} - YHAT(I)
IF(DRR(T} .RE. 0.0) GO TD 40
‘WRITE{OUNIT, 5040) 1., Y{1)ls FESs DRRI(I)}
5040 FORMATULX v I3+42XeFbelvaXsF5.144XsF5.2y8Xe1Hes20X41Ha)
GO TC 120
40 IFI{DRR{I} +GT. 0.0} GO VD 80

HANDLE LINES WITH NEGATIVE DRF,
THERE ARE FOUR CASES:
=S END IN * TO INDICATE OVERFLOW,
-5 OVERWRITE DOT BUT FIT ON LINE,
NO BLANKS BETWEEN DOT AND =5, AND
AY LEAST ONE BLANK BETWEEN DCT AND =5.

OOOCOO0O0

NMIN = = FLCOR{(5.,0 * DRE2{1])]}
IF{NMIN .GT. 10) GO TC 60
IFINMIN .LT. 10) GO TO 50
WRITE{QOUNIT, 5050) 1, ¥{I1), RES, DRR(1},
1 {BLeJ=1,5), DOT, {MIN, J=1,10), {BL, J=1,10), DOT
S50 FORMATIEIX Y 242X sFb. 1y AKX sFS5. 44X 4F5.243X43241)
GO TO 120
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50 NBL = 10 = NMIN
WRITE{OUNIT, 5050) 1, Y(I}, RES, DRR(I),
1l (BLy J21+5), DOT, (BLy J=x1oNBL)}sy (MIN,; J=xl, NMIN),
2 (BL, J=*1+10}, DOT
GC TO 120

60 BO = BL
IFINMIN JLE. 15) GO TO 70
NMIN = 15
BO = S5TAR

70 NBL = 16 = NMIN
WRITE(OUNIT, 5050} 1, Y{I), RES, DRR(1},

i (BOyJ=14NBL), (MIN,J=1l,NMIN}, (BL.+J=1,10), DOT

60 TO 120

HANDLE LTINES WITH POSITIVE DRR.
THERE ARE FDUR CASES:
+S END IN % TGO INDICATE OVERFLOW,
+5 OVERWRITE DOT BUT FIT ON LINE,
NO BLANKS BETWEEN DOT AND +5. AND
AT LEAST 1 BLANK BETWEEN DOT AND +5

(2R aNsRaNalalale

80 NPL = - FLOOR(-5.0 * DRR(I))
TFINPL .GT. 10} GO TO 100
TF(NPL .LT. 10) GO TO 90
WRITE(OUNIT, S050) I, Y(1)}, RESy DRR{I},
1 (BL,y J=1,+5)y DOT, (BL, J=1,10J)+ (PL, J=1.+10), DOT
GO TC 120

20 NBL = 10 - NPL
WRITE{OUNIT, 5050) [, Y(I), RES, DRR(I},
1 (BL+J=14+5), DOT, (BL+J=1,10)s (PL,J=1,NPL}, (BLsJ=1,NBL}, DOT
G0 T0 120

100 BO = BL
IF(NPL .LE. 15) GO TO 110
NPL = 15
BCQ = S5TAR
11¢ NBL = 16 — NPL
WRITE(OUNIT, 505Q0) 1, Y(I}, RES, DRR(I),
1 (BL+J=145), DOTy (BLeJ=1410)y (PL,J=1oNPL), (BO,J=],NBL)

120 CONTINYE

WRITE(OUNIT, 5060}
5060 FORMAT(/1Xs40HIN DISPLAY, VALUE OF ONE CHARACTEP 1S .2
1 TX42H00/}
C
999 RETURN
END



Aggendix A

Computer Graphics

Many exploratory techniques are graphical or have a graphical component.
Computer programs to produce displays must be able to accommodate widely
disparate batches of data and adjust the display parameters to show each
batch clearly. Decisions about display formats reflect the purposes of the
programs. Displays for exploratory data analysis often do best when format-
ting decisions are different from the decisions common to traditional practice
in computer graphics. This appendix discusses the philosophy, the default
display-formatting algorithms, and the technical details of the display

programs in this book.

A.1 Terminology

The vocabulary of computer graphics has developed from work in several
disciplines and is not standardized. This section defines one common terminol-

ogy for use in this appendix.

293
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page

data
coordinates
data space

plotter
coordinates

scale factor

semigraphic

viewport

data bounds

A graph or display of data is a representation of data values on some
surface—typically paper or the screen of a cathode ray tube (CRT). In this
appendix this surface is called the page regardless of its true physical form.
The type of display determines how the data structure and data values are
translated into spatial relationships and symbolic representation.

Most rudimentary graphs convey information only through the spatial
refationships of points on the page. Conceptually, these points have data
coordinates in a data space determined by the numeric values of the data items
or by their place in a data structure—for example, row or column number or
group identity. To construct a graph, data coordinates must be mapped on the
page into positions described in physical plotter coordinates. In printer plotting,
these plotter coordinates consist of a line specification and a character position
in that line. Data coordinates are translated into plotter coordinates by using a
scale factor for each coordinate dimension and by pairing at least one
data-space point—typically the plot origin, a corner of the plot, or the
margins—with a plotter-space position. For example, a simple x-y plot might
specify the upper-left character position on the page to be data coordinates
(0,100), each horizontal one-character print space as 5 x-units (x-scale), and
each vertical line space as 10 y-units ( y-scale}). A multiple boxplot might
specify the left margin of the page as x-value —S50, each horizontal one-
character space as 2 x-units, and each 3 lines as a group identity.

Exploratory displays are often semigraphic (Tukey, 1972)—that is,
they choose printed characters to augment the information conveyed by their
position on the page. When the character printed is selected from a set of
equally-spaced codes—for example, digits—an additional scale factor is
needed to map this spacing into data coordinates. At other times the character
can symbolize the nature of a data value—for example, that it is the
median—or an aspect of its identity—for example, which of five groups it
belongs to.

A display is realized on some region of the page. The plotter coordi-
nates of the edges of this region define the viewport. The programs in this book
use special symbols at the edges of the display to indicate data points that have
been mapped into plotter coordinates outside the viewport. In some displays a
corresponding decision is made to exclude or treat specially data values
beyond some data bounds. (The limits on displays are often called the *‘plot
window,” but the subtle difference between the data-space window (data
bounds) and the plotter-space window {viewport) can be lost.) For example, a
request for a 15-line condensed plot (see Chapter 4) is a viewport specification.
Deciding to display only the y-values between 0 and 50 is a data-bound
specification. Either or both could be valuable in tailoring a condensed plot to
a specific need.
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A.2 Exploratory Displays

Displays for exploratory data analysis should be modified for computer
generation in ways that reflect their use. The programs in this book follow
several rules to achieve effective exploratory displays:

1. Displays should be structured so that features of the data can be seen
easily.

2. Display scales and formats should be resistant to the effects of extraordi-
nary points but should clearly indicate such points when they are present.

3. Displays must be concise so that several can be produced on an interactive
computer terminal without lengthy delays. {30 seconds per plot at 30
characters per second is a reasonable maximum.)

Other common requirements of computer displays are less important
in exploratory work and have been sacrificed when necessary. For example,
the three rules just given contradict the common rule that every data point
must be displayed. Exploratory displays often exclude extraordinary points
from the main part of the display so that patterns in the main body of the data
stand out. (The programs in this book always allow the data analyst to
override this decision.) Features such as extensive axis labels and sophisticated
options for display titles are desirable in ordinary computer graphics but are
unnecessary here and have not been included in these programs. (Neverthe-
less, these features can be valuable if they are designed to be concise.
Implementors of these programs—and especially implementors adding them
to an existing high-level program— should consider adding these features.)

A.3 Resistant Scaling

A single plot-scaling algorithm serves all of the programs for displays in this
book. It uses the H-spread (see Chapter 2) as an estimate of the variability of a
batch. We first define a

step = 1.5 x H-spread.

The (inner) fences are then placed at one step beyond each hinge. (Chapter 3
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adjacent
value

nice numbers

nice position
width

discusses fences from a data analysis perspective.) The outermost data value
on each end that is not beyond the inner fence is called an adjacent value. The
high and low adjacent values provide a good frame for the body of a data
batch. Data values beyond the fences are treated as outliers. Data values
between the fences are displayed in ways that make their important features
clearly visible.

For easy comprehension, displays should be made in simple units.
Thus, for printer plots, the data-space size of one line or one character space
should be easy to understand and easy to count. We call numbers suitable for
this purpose aice numbers. Nice numbers have the form m x 10°, where eis an
integer and m is selected from a restricted set of numbers. These programs
select between two sets of numbers for m: {1, 2, 5, 10}and {1, 1.5, 2, 2.5, 3,4, 5,
7, 10}. The 1 is redundant, but including both 1 and 10 simplifies the
programs. These sets of numbers are chosen to be approximately equally
spaced in their logarithms while still being integers or half-integers. This
spacing limits the error introduced in approximating a number by a nice
number: In the first set, the approximation error is no more than about 40% of
the number; in the second set, it is no more than about 20% of the number.
(This error bound can be cut to 18% by including 1.25.)

Display scaling is accomplished by finding a nice position width for each
dimension of the dispiay. This is the largest data-space width of a plot position
(character space or line), chosen from a set of nice number choices, such that
the available number of plot positions (viewport) will accommodate all the
numbers between the data bounds. Some displays can have lines labeled -0,
which appear to the display scaling algorithm as extra plot positions. The
programs allow for these extra lines when they are needed. Because the width
of a plot position is approximated with a greater or equal nice value, the range
actually covered by a display will generally be slightly larger than that
indicated by the data bounds.

A.4 Printer Plots

All the displays in this book have been designed or modified to be produced on
a typewriter-style device and are intended to be used interactively. Both of
these constraints influence the design of display formatting decisions.

Each display is produced line by line, starting from the top of the page.
This may be different from the way the display would be drawn by hand or on
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a more sophisticated graphics device. All displays start at or near the left
margin, so little time is wasted on an interactive terminaj-spacing out to the
display. Axis labels are placed on the left to keep empty lines short .

Printer plots are inherently granular. Rounding each data-space coor-
dinate to one of, say, 50 character positions distorts a display, although this
rarely diminishes the display’s usefulness in an exploratory analysis. Printed
characters are usually taller than they are wide. As a result, the horizontal and
vertical scales of a plot may not be comparable; and, for example, the apparent
slope of a line may not be closely related to the actual slope value. The displays
in this book openly treat each axis differently.

These inconveniences are balanced by a wide choice of plotting
characters. Almost every display in this book takes advantage of this choice
either to report numbers with greater precision {stem-and-leaf display,
condensed plot} or to code important characteristics (boxplot, coded table).
The programming languages used here have dictated some choices of codes
(see Appendix C). Other choices would be reasonable in other languages.

The experienced programmer reading these programs will probably
find FORTRAN especially stifling in this respect. The FORTRAN language
has a very restricted character set and limited abilities in character manipula-
tion. Occasionally, our attempts to write clear, portable, easily understood
programs for graphics may have been stymied by the FORTRAN language,
and for this we ask the programming reader’s indulgence.

A.5 Display Details

Each of the exploratory displays considered in the text implements different
aspects of the methods described in this appendix. This section discusses each
display specifically. The discussion assumes knowledge of the displays them-
selves.

Stem-and-leaf displays (Chapter 1) bound the data strictly at the
adjacent values. Data values beyond these bounds appear on special HI and
L.O lines (even if they might have fit as the most extreme numbers on the final
stems) and do not affect the scale. The display scale is the smallest nice
number (with »1 chosen from the set {1, 2, 3, 10}) such that no more than 10 x
log,on lines are needed te display all data values between the fences. When
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both positive and negative numbers are in the batch, room is allocated for the
—0 stem. The selection of m determines the form of the display. Regardless of
the display scale, the character codes always have the same scale, 1 x 10, and
thus hold the next digit of each number after the last digit forming the stem.
The horizontal viewport is the line length specified by the line margins. Lines
overflowing the right margin end with a * to indicate the omission of points
falling beyond the viewport.

Boxplots {Chapter 3) do not bound the data at all because one of the
primary purposes of a boxplot is to display outliers. One horizontal character
position is scaled to the smallest nice number (using m ¢ {1, 1.5,2,2.5,3,4, 5,
7, 10D that accommodates the range of the data on the available line width.
Special codes are assigned to outliers, to the median, and to the hinges, as
detailed in Chapter 3. When multiple boxplots are generated, one or three
lines are allocated to each group depending upon the form of the boxpiot.

Condensed plots (Chapter 4) bound data in both dimensions implicitly
through the plot scaling. Scales in x and y are nice numbers with m ¢ {1, 1.5, 2,
2.5, 3, 4, 5, 7, 10}. The y-scale allows for a —0 line if positive and negative
p-values are present. The scales are the smallest nice numbers that accommo-
date the data between the adjacent values in each dimension within the
specified number of lines { y-scale) or allowed line width (x-scale). As a result,
fewer lines than the specified maximum may be needed, and data values
beyond the fences may fit within the viewport. Data values mapped outside the
viewport are indicated with special characters at the edges of the plot, as
described in Section 4.6. Character codes are scaled according to C, the
number of characters specified for the display. The vertical line size in
data-space units is divided into C equal intervals. Plot symbols starting with 0
and counting through successive integers are assigned outward from the edge
of the interval nearer to zero. Options allow the user to specify data bounds to
supplant the adjacent values in scale calculation, viewport (as number of
lines—the x-dimension viewport is defined by the line width), and number
of codes (as number of characters). These options allow the display to focus on
any segment of the data, enlarge it to any size, and magnify the vertical
precision up to 10 times by coding. The default settings of these options are
designed to produce the display most likely to be useful in an exploratory
analysis.

Coded tables {Chapter 7) require no scaling. The data structure
determines the format on the page. One line is allocated per row of the table.
Two character positions are allocated per column of the table. Codes are
scaled to identify data-value characteristics with respect to the data batch
based upon the hinges and fences as detailed in Section 7.1.
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Suspended rootograms (Chapter 9) need no special display scaling; the
numbers displayed are automatically well-scaled. One line is allocated to each
bin and contains both numeric and graphical output. The rootogram display
plots the double-root residuals, which, as computed, are expected to behave as
if drawn from a standard Gaussian distribution. The display allocates one
character position to a unit of .2 in data {double-root-residual) space.

Please turn to Chapter 3.

Programming
2

Proceed.






Appendix B

Utility Programs

B.1 BASIC

10
20
30
40
50
60
70
80
920
100
110
120
130

140

150
160

170

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

DEF

REM
REM

DEF

UTILITY PROGRAMS USED BY THE EDA PROGRAMS,

ALL VARIABLES ARE GLOBAL. UTILITY FUNCTION DEFINITIONS

COME FIRST (AS REQUIRED BY SOME BASIC IMPLEMENTATIONS).
CONVEMTIONS: X{(),Y() -~ DATA ARRAYS OF LENGTH N. W{) -~ WORK
ARRAY. R{) AND C{) HOLD ROW AND COLUMN SUBSCRIPTS WHEN Y ()
HOLDS A MATRIX, UTILITY SPACE OTHERWISE, P()--PRINT ARRAY,
1000 SORT W()1500 NICE NUMBER 3000 SORT X TO W 3800 SWAP Y&W.
1200 SORT X WITH ¥ 1900 NICE POSN WIDTH 3300 COPY ¥ TO W & SORT
1400 SWAP X&Y 2500 INFO ON W() 3600 COPY ¥ TO W SELECTIVELY
INITIALIZER

FUNCTION DEFINITIONS~—THESE ARE USED IN VARIOUS SUBROUTINES

NICE INTEGER PART FUNCTION--ROUNDS TOWARDS ZERO
FNI(X} = INT{{1 + ED) * ABS{X))} * SGN({X)

NICE FLOOR FUNCTION--ROUNDS DOWN: NOTE BASIC INT(X) IS5 A FLOOR
FUNCTION. IF IT ISN'T, FIX IT HERE.

FNF(X) = INT(X + EO)

301
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180
180
200
210
220
230
240
250
260
270

280
290

oo
310
320
330
340
350
360

370

380
390
400
41¢
420

430
440

ABCs of EDA

REM
REM
REM
DEF
REM
DEF
REM
DEF
REM
DEF

REM
REM

DEF
REM
DEF
REM
REM
REM
REM

CEF

REM

DEF

REM

REM

DEF

REM

DEF

BASE 10 LOG IN CASE NOT A SYSTEM FUNCTION

NOTE: LOG10{X)=LOG(X}/LOG({10)

NOTE PROTECTION FROM X<=0 BY ADDING EO0 AND ABS

FHNL(X) = LOG({ ABS(X) + (1 - ABS{ SGN(X))}) * E0) / LOG(10)
FUNCTION TO SELECT THE HIGH ORDER T8 DIGITS OF X

FNT(X) = FNF{(X / FNU{X)) * FNU(X)}

CLEAN POWER CF 10 FOR TRUNCATING

FNU{X) = 10 = ( FNF( FNL(X}) - T8 + 1)

ROUNDING FUNCTION. ROUND TO RO PLACES FROM DECIMAL POINT.
FNR(X) = FNI{ ABS(X) * 10 " RO + .5) / 10 © RO * SGN(X)

RETRIEVES THE X-TH ELEMENT OF W(),
AVERAGING IF X ISN'T AN INTEGER.

FNM(X) = (W{ INT{X)) + W({ INT(X + .5})) / 2

RETRIEVE THE Y-TH ELEMENT OF X(} JUST LIKE FHNM

FNN(Y) = (X( INT{Y¥)}) + X{ INT(Y + .5))) / 2

POSITION FUNCTION FOR PLOTTING.

CALLED WITH X-VALUE OF POINT TO BE PLOTTED. RETURNS THE

# OF CHARACTER POSITIONS LEFT OF LEFT MARGIN, OR 1 IF X<=0,
NEEDS LO=MIN X-VALUE ON PLOT, P7=NICE POSITION WIDTH.

FNP(X) = FNI({X - L0} / P7) * SGN( 5GN{ FNI((X - LO} / P7})) +
1) + 1

GAUSSIAN CUMULATIVE APPROXIMATION. PROB FROM -—INF TO X.

FNG(Z) = SGN( SGN(Z)}) - 1) + 1 - (2 * SGN{ SGN(Z} - 1) + 1) *
FND( ABS(Z))

APPROX HALF-GAUSSIAN CUMULATIVE. GOOD TO E-4 FOR 0<=Z<5,5
REF: DERENZO, MATH, COMP, 31 {(1977), 214-225,

FND(Z) = EXP( - ((83 * Z + 351) * Z + 562) * Z / (703 + 165 *
)y /2

CEILING FUNCTION,

FNC(X) = — FNF( - X)
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450
460
470

480
490

500
510

520
530

540
550

560
570

580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730

740
750

760

770
780

790

REM ***DIMENSIONS AND INITIALIZATION®**
REM TWO DATA ARRAYS, WORK ARRAY, ROW BSUBSCRIPTS ARRAY,
REM COLUMN SUBECRIPTS ARRAY, NICE NUMBER ARRAY, AND A PRINT ARRAY.

DIM X{200),Y{200),W({211),R(200),C{200),T(30),P(120)
REM EPSILON-- 1+E0>1, BUT JUST BARELY. SET EO0 ACCORDING TO MACHINE.

READ EOQ
DATA 1.0E-06

REM PRINTING DETAILS: LEFT MARGIN, RIGHT MARGIN
REM TAB(O) SHOULD BE LEFT MARGIN OF PAGE. IF NOT, SET MO>=1,

REAR MO,M9
DATA 0,72

REM NICE NUMBERS
REM N9 SETS READ SC THAT T(I) POINTS TO THE START OF SET I.

READ N9
LET K = N9 + 2
FOR I =1 TC N9
LET T(I) = K
READ J1
FOR J =1 T0 J1
READ T({K}
LET K = K + 1
NEXT J
NEXT I
LET T(N9 + 1) = K
DATA 3
DATA  3,1,5,10
DATA 4,1,2,5,10
para 9,1,1,5,2,2.5,3,4,5,7,10
LET NS = 2

REM VERSION:USUALLY V1l=l 15 BRIEF, V1=2 IS VERBOSE
REM V1<0 ALLOWS REQUEST FOR USER INPUT (THEREAFTER ABS{V1) USED)

LET V1 = 2

REM ABOVE INITIALIZATION LINES CAN BE DELETED FOR SPACE
REM GO FROM HERE TO COMMAND-LEVEL.

GO TO 4000
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1000

1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160

1200

1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390

1400

1410
1420
1430
1440
1450
1460

ABCs of EDA

REM SHELL SORT

LET Il =N -1

LET Il = INT{(Il1 - 2} / 3) + 1

FOR I2 = 1 TO N - Il
LET I0 = I2 + Il
LET W1 = W(IO0)
IF W(I2) <= W1 THEN 1140
LET J0 = 12
LET W{ID) = W(JO}
LET I¢ = JO
IF J0 < =TI1 THEN 1130
LET J0 = J0 - Il
IF W{J0) > Wl THEN 1080
LET W{(I0) = Wl
NEXT I2
IF I1 > 1 THEN 1020
RETURN

REM  SORT ON X() CARRYING Y()

LET 11
LET Il
FOR I2
LET IO
LET X1 X{I0)
LET Y1 Y({I0}
IP X(I2) <= X1 THEN 1370
LET JO = I2
LET X(I0) = X(JO)
LET ¥{IQ) = ¥Y{JO)
LET I0 = J0
IF J0 < = I1 THEN 1350
LET JO = JO - I1
IF X(JO) > X1 THEN 1290
LET X(I0} = X1
LET Y{ID) = Y1l
NEXT I2
IF I1 > 1 THEN 1220
RETURN

N -1

e

TON - Il
I2 + I1

REM SWAP X{) AND Y ()

FOR I0 =1 TO N
LET X1 = X(IO0}

LET X{(I0) = Y(IO)
LET ¥{I0) = X1
NEXT IO
RETURN

INT((I1 - 2) / 3} + 1
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1500
1910
1920
1930
1940

1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100

2110
2120

2130
2140

2150
2160
2170
2180
2190

2200
2210

2220
2230
2240
2250
2260
2270
2280
2290

REM SUBROUTIMNE TO FIND NICE POSITION WIDTH

REM H1,LO=DATA BOUNDS,N5 SELECTS NUMBER SET.P9=DESIRED
REM NUMBER OF POSITIONS,A8=1 IF “-0" OCCURS,ELSE 0

REM ON EXIT: N4=MANTISSA, N3I=EXPONENT, U=UNIT=10"N3

REM P8=NUMBER REQUIRED POSITIONS,FP7=NICE POSITION WIDTH

IF N5 <= N9 THEN 1980

PRINT TAB(MO);"ILLEGAL N5 IN NPW"
STOP

LET N1 = (Hl1 ~ LO} / P9

IF N1 > 0 GO TO 2020

PRINT TAB(MO);"HI <= LO IN NPW"
STOP

LET N3 = FNF( FNL(N1))

LET U = 10 " N3

LET N4 = N1 / U
FOR I0 = T{NS}) TO T(NS + 1) - 1
IF N4 <= T{I0} THEN 2090
NEXT IO
LET IO = T(NS + 1) - 1
LET N4 = T(10Q)
LET P7 = N4 * U
REM COMPUTE NUMBER OF CHARACTER POSITIONS REQUIRED

LET P8 = FNI(H1 / P7}) - FNI(LO / P7} + 1

REM IF -0 POSSIBLE AND (H1 AND L0 HAVE OPPOSITE SIGNS OR Hl=D)
REM WE'LL NEED THE -0 LINE

IF AB = 0 THEN 2210

IF Hl = 0 THEN 2180

IF HI * (L0 / U} >= 0 THEN 2210
IF P9 = ] THEN 2220

LET P8 = P8 + 1

REM NOW PS=POSITIONS REQUIRED WITH THIS WIDTH
REM CHECK RANGE COVERED AND ADJUST IF WIDTH IS TOO SMALL

IF P8 <= P9 THEN 2290

LET I0 = I0 + 1

IF IQ <= T(N5 + 1) - 1 THEN 2090
LET I0 =1

LET U =U * 10

LET N3 = N3 + 1

GO TO 2090

RETURN
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2500
2510
2520

2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
3000
3010

iozo
3030

3040

3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
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REM SUBROUTINE YINFO TO FIND SUMMARIES FOR N ORDERED VALUES IN W{)

REM L1,L2,L3=MEDIAN,LO HINGE, HI HINGE, S1=STEP=1,5*HSPREAD.

REM A3,A4 (Al,A2)=L0O AND HI ADJACENT VALUES (THEIR SUBSCRIPTS IN
W{))

IF N >= 3 THEN 2560

PRINT TAB(MO); "N TOO SMALL IN YINFO"

STOP

LET KO = (N + 1) / 2

LET L1 = FNM(KO)

LET KO = INT(KO + 1} / 2

LET K1 = INT{KO)

LET L2 = FNM(KO}

LET L3 = W(N -~ Kl + 1)

IF K1 = KO THEN 2640

LET L3 = (L3 + W{(N - K1)} / 2
LET S1 = 1.5 * (L3 - L2)
LET F1 = L2 - 51
LET F2 = L3 + 51
FOR Al = 1 TO Kl
IF Fl <= W(Al) THEN 2720
NEXT Al
PRINT TAB(MO); "W({)NOT SORTED IN YINFO"
STOP
FOR A2 =N TON - K1 + 1 STEP - 1

IF F2 >= W{A2) THEN 2760
NEXT A2
GO TO 2700
LET A3 = W(Al)
LET Ad = W(A2)
RETURN
REM SORT X() INTO W{} FROM J1 T¢ J2, USES J1, J2, 11, I
REM ENTRY POINT l: SORT FROM 1 TO N

1
N

LET J1
LET J2

REM ENTRY POINT 2: SORT FROM Jl TO J2

LET W = J2 - J1 + 1
IF N > 0 THEN 3090
PRINT TAB{MO); "ILLEGAL LIMITS IN COPYSORT"
STOP
LET Il = 0
FOR I = J1 To J2
LET Il = I1 + 1
LET W{Il) = X(I)
NEXT 1
GOSUB 1000

RETURN
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3300
3310

3320
3330

3340

3350
3360
3370
3380
3390
3400
3410

3600
3610
3640
3650

3660
3670

3680
3690

3700

3710
3720
3730
3740
3750
3800

3810
3g20
3830
Is4g
3850
3860
4000
4010
4015
4020
4030

4040
4050

40690
4070

REM SORT ¥{() INTO W() FROM J1 TO J2.
REM ENTRY POINT 1l: SORT FROM 1 TO N

LET J1 = 1
LET J2 = N

REM ENTRY POINT 2: SORT FROM J1l TO J2

LET N = J2 - J1l +1

IF N > 0 THEN 3390

PRINT TAB(MO)};"ILLEGAL LIMITS IN COPYSORT"
STOP

GOsuB 3710

GOSUB 1000

RETURN

REM COPY Y() FROM J1 TO J2 INTO W{) STARTING AT Il

REM USES J1,J2,I1,I0. LEAVES N=J2-J1+1
REM
REM ENTRY HERE COPIES FROM 1 TO N ON BOTH

LET I1 = ]

REM ENTRY HERE COPIES -FROM 1 TO N IN Y{) STARTS AT Il IN W()

LET J}
LET J2

1
¥
REM ENTRY HERE MEEDS J1,J2,I1 SET

FOR I0 = J1 TO J2
LET W(Il) = Y(ID)
LET I1 = I1 + 1
NEXT I0
RETURN
REM SWAP Y () AND W(), LENGTH N

FOR 10 = 1 TO N

LET X1 = W(ID)

LET W(I0) = ¥(ID)

LET ¥{10} = X1
NEXT IO
RETURN
REM SIMPLE DRIVER FOR SMALL INTERPRETER
INPUT (S
IF Q§ = “AGAIN™ THEN 4050
IF 0% <> "STOP" THEN 4040
STOP

REM <QVERLAY QS AT 5000 HOWEVER THE OPERATING SYSTEM ALLOWS)>

GOSUB 5000
PRINT
GC TO 4010
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B.2 FORTRAN

BLDCK DATA

CHARS CONTAINS THE SYMBOLS OF THE STANDARD FORTRAN CHARACTER SET,
AND CHA - CHPT ARE THE CORRESPONDING INDICES INTD CHARS.
PUTCHR IS5 THE PRIMARY USER OF THIS TRANSLATION VECTOR.

[aXaXeNaRul

COMMON /CHARYO/ CHARS, CMAX,

1 CHAy CHB, CHC, CHD, CH4E+ CHFy LHG, CHH, CHIy CHJ, CHK,

2 CHL, CHM, CHN, CHO, CHF, CHQy CHR, CHS, CHT, CHU, CHY,

3 CHWy CHXs CHY, CHZ, CHOy CHly CH2y CH3y CH&4sy CHS,y CHéb.

4 CH?, CHB, CHS, CHBL, CHEQ, CHPLUS: CHMIN, CHSTAR, CHSLSH,
5 CHLPAR,; CHRPAR: CHCOMA,: CHPY

INTEGER CHARS (46} CMAX

INTEGER CHAy CHBy CHC, CHDy CHE, CHF, CHG, CHH, CHI
INTEGER CHJy CHKy CHL, CHMy CHN, CHO, CHP, CHQ, CHR
INTEGER CHSy CHT, CHU, CHV, CHMW, CHX, CHY, CHZ

INTEGER CHO, CHl, CH2y CH3, CH&4y CHSy, CH&, CHT, CHB8, CHS
INTEGER CHBL, CHEQs CHPLUS, CHMIN, CHSTAR, CHSLSH
INTEGER CHLPARy CHRPARy CHCOMA, CHPT

DATA CHARSI( 1),CHARS{ 2):CHARSL 3),CHARS( 4) /IHA,1HB,1HC,.1HD/
DATA CHARS{ S5)},CHARSI 6)yCHARS( T),CHARS({ 8) /1HE,1HF,1HG,1HH/
DATA CHARS( 9),CHARS(10}),CHARS{11) ,CHARS(12) /1HI1HJ41HK,1HL/
DATA CHARSI13),CHARS{14)+CHARS{15),CHARS{16) /1HM,1HN,;1HO:1HP/
DATA CHARS(17);CHARS{18)CHARS{19) 4CHARS(20) 71HQs1HR41HS,1HT/
DATA CHARS(21},CHARS(22),CHARS(23) ;CHARS{ 24} /1lHU,L1HV 1HKW,1HX/
DATA CHARS(25),CHARS(2&6)+CHARS{27),CHARS{28]) /1HY,1HZ,1HOs1H1l/
DATA CHARS(29),CHARSIZ0),CHAFSI31),CHARSL(32) /1HZ2,:1H3,1H4,1HS/
DATA CHARS{33),CHARS(34),CHARS(35),CHARS(36) /1IHE6IHT1HB,1HI/S
DATA CHARS(3T7),CHARS(38),CHARS{39},CHARS{40} /1H +1H=41H+,1H-/
DATA CHARS(41),CHARST{42),CHARS{43) ,CHARS(44) J1H=,1H/41H(41H}/
DATA CHARS(45),CHARS(46) F1He 4 1H. /

DATA CMAX /Z4&/

DATA CHA,CHB,CHCyCHD,CHE,CHF F le 24 34 4y 5¢ &/

DATA CHG,CHH,CHI, CHJ,CHK, CHL /7 Ty By 9410411,12/

DATA CHMyCHNy CHQ, CHP, CHQy CHR F13,14415,16417+18/

DATA CHSCHT,y CHU, CHY s CHW, CHX F19420:21422+234 24/

DATA CHY+CHZCHOyCHL,,CHZ2,CH3 F25426¢2T428429430/

DATA CH4,CHS5,CH&64+CHTsLHByCHO 731432433,34,35,36/

DATA CHBL,CHEQ:CHPLUS,LHMIN JF3T43B439,40/

DATA CHSTARsCHSLSHyCHLPAR ,CHRPAR 741y 42443444/

DATA CHCOMA,CHPT 1455467
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SUBROUTINE CINIT(IOUNIT, IPMIN, TIPMAX, IEPSI, IMAXIN, ERR)

INTEGER IOUNIT, IPMIN, IPMAX, IMAXIN, EPR
REAL T£PS1]

INITIALIZATION, TO BE CALLED AT START OF ANY MAIN PROGRAM
WHICH CALLS ONE OF THE EDA SUBROUTINES (EITHER DIRECTLY OR
INDIRECTLY}.

IDUNIT IS THE NUMBER OF THE UNIT TO WHICH OUTPUT IS DIRECTED.
IPMIN 1S THE LEFT MARGIN.

IPMAX 15 THE RIGHT MARGIN.

IEPST 15 THE MACHINE-RELATED EPSILCN.

IMAXIN IS5 THE MAXIMUM PERMITYTED INTEGER VALUE

ERR IS5 THE (USUAL} ERROR FLAGs TO INDICATE WHETHER
THE ROUTINE EXECUTED SUCCESSFULLY.

COMMON /CHRBUF/ P+ PMAX, PMIN, QUTPTR, MAXPTR, OUNLT
COMMON /NUMBRS/ EPSIs MAXINT

INTEGER P{130), PMAX, PMIN, OUTPTR, MAXPTR, OUNIT
REAL EPSIs MAXINT

LOCAL VARTABLES

INTEGER BLANK, !
DATA BLANK /1H /

ERR = &

IF(IPMIN LT, 1) GO TO 999
IFCIPMAX .GT. 130) GO TO 999
IF(IPMAX .LE. IPMIN) GO TOD 999
ERR = ¥

IF{(1.0 + 1EPSI) WLE. 1.0) GO TO 999
ERR = O

QUNIT = JTOUNIT

PMIN = IPMIN

OUTPTR = IPMIN

MAXPTR = IPMIN

PMAX = IPMAX

EPSI = 1EPS1

MAXINT = FLOAT{IMAXIN)

pos0 I = 1y 130
P{I} = BLANK
50 CONTINUE

999 RETURN
END
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SUBROUTINE PUTCHR(POSNy CHARy ERR)
INTEGER POSNs CHAR, ERR

PLACE THE CHARACTER CHAR AT POSITION POSN IN

THE QUTPUT LINE P . IF POSN = 0 4 PLACE CHAR IN THE
NEXT AVAILABLE POSITION IN P . MAXPTR IS TO BE INITIAL-
IZED TO PMIN 4, AND PRINT MUST RESET IT.

COMMDN /CHARTIO/ CHARS, CMAX,

1 CHA, CHBy LHCy CHDy CHEs CHFy CHG, CHHy CHI, CHJy CHK,

2 CHML, CHM, CHNy CHDy CHP, CHQ, CHR, CHS,y CHT, CHU, CHV,

3 CHWs CHXy CHYy CHZ, CHO, CHl, CH2, CTH3, CH4, CH5, CHO,

4 CHT, CHB, CH9, CHBL, CHEQ, CHPLUS, CHMIN, CHSTAR,: CHSLSH,
S CHLPAR, CHRPAR, CHLOMA, CHPT

COMMON /CHRBUF/ P, PMAX, PMIN, OUTPTR, MAXPTR, OUNIT

INTEGER CHARS (46}, CHMAX

INTEGER CHA, CHBy CHCy CHDy CHE, CHFy CHG, CHH, CHI
INTEGER CHJ,y CHKy CHLy CHMy CHNy CHD, CHP; CHQ, CHR
INYEGER CHSy CHT, CHU, CHY, CHW, CHX, CHY, CHZ

INTEGER CHO, CHly CH2, CH3, CH4, CH5, CH&6, CH7, CHB, CH9
INTEGER CHBL, CHEQ.s CHPLUS, CHMIN, CHSTAR, CHSLSH
INTEGER CHLPAR, CHRPAR, CHCOMA, CHPT

INTEGER P{(130), PMAX, PMIN, CQUTPTR, MAXPTR, OUNIT

IF(CHAR .GT. 0 +AND. CHAR .LE. CMAX) GO TO 10
ERR = 4
RETURN
10 IF(POSN .NE. 0) OUTPTR = MAXQ(PMIN, POSN)
CUTPTR = MING(OUTPTR, PMAX)
P{OUTPTR} = CHARS{CHAR}
MAXPTR = MAXO(MAXPTR, CUTPTR)
DUTPTR = OUTPTR + 1
RETURN
END
INTEGER FUNCTION WDTHOF(I}
INTEGER [
FIND THE NUMBER OF CHARACTERS NEEDED TO PRINT I
INTEGER TA, 10, ND

1A = TABS(1)
ND = 1
IF{l .lT. O) ND = 2
10 1Q = 1A/10
IF(1Q LEQ. O) GO TO 20
1A = 1Q
ND = ND + 1
GO TO 110
20 WOTHCF = ND
RETURN
END
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SUBROUTINE PUTNUMIPOSNs N, Wy ERR)
INTEGER POSNs N, W, ERR

PLACE THE CHARACTER REPRESEMTATION OF THE INTEGER N
RIGHT-JUSTIFIED IN A FIELD W SPACES WIDE STARTING
AT POSITICN POSN 1IN THE OQUTPUT LINE P .

THE VARIABLES 1P, INUM, AND IW ARE INTERNAL VERSIONS
OF POSMN, Ny AND W . WE PROCEED BY EXTRACTING THE
DIGITS DF N, STARTING WITH THE LOW=-CRDER DIGIT,

AND STACKING THEM IN DSTK. ( ND COUNTS THE DIGITS.)
ONCE WE HAVE COLLECTED ALL THE DIGITS (AND KNOW THAT

W SPACES ARE SUFFICIENT), WE SKIP OVER ANY UNNEEDED
SPACES, PUT OUT A MINUS SIGN 1F NEEDED. AND THEN PUT QUT
THE DIGITS, STARTING WITH THE HIGH-ORDER ONE.

THIS ROUTINE CALLS PUTCHR AND DEPENDS ON HAVING DIGITS
¢ THROUGH 9 IN CONSECUTIVE ELEMENTS OF CHARS 1IN THE
COMMON BLOCK CHARIQ, STARTING AT CHO = 27, 17 ALSD
ASSUMES THAT THE MINUS SIGN IS AT CHMIN = 40 IN CHARS.

INTEGER CHOy CHO, CHMIN, DSTK(20), INUM, IP, 1Q, 1MW, ND

COMMON/CHRBUF/ Py PMAX, PMIN, OUTPTR, MAXPTR, OUNIT
INTEGER P{1301}, PMAX, PMIN, OUTPTR, MAXPTR, DUNIT

DATA CHO, CHMIN/Z2T. 40/

IW = W
IFIN 1T, 0) IW = IW - 1
INUM = TABS{N}

EXTRACT AND STACK THE DIGITS OF INUM, CHECKING
TO SEE THAT N FITS IN W SPACES.

ND 1
10 Ig INUM/10
DSTK(ND) = INUM - 1Q * 10
IF(ND .LE. 20 .AND. ND LLE. IW) GO TO 20
ERR = 2
GO TOQ 999
20 IF(1Q .EQ. 0} GO TO 30
INUM = IQ
ND = ND + 1
G0 TO 10

UNSTACK THE DIGITS FROM OSTK AND PUT THEM OQUT.

NOTE THAT WHEN N IS NEGATIVE, A MINUS SIGN MUST BE
INSERTED IN THE SPACE BEFORE THE FIRSY DIGIT. DECREASING
IW 8Y 1 1IN THE INITIALIZATION HAS PROVIDED A SPACE

FOR THE MINUS SIGN.
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a3 IP = PGSN
IF{IP .EQ. 0) If = DUTPTR
IP = IP + IW —~ ND
IF(N .GE. Q) GO' TO 40
CALL PUTCHR{IP, CHMIN, ERR)
IP = IP + 1
40 CHD = CHO+ DSTK{ND}
CALL PUTCHRLtIP, CHD, ERR)
IF(ND .EQ. 1) GO TD 50
ND = ND - 1
IP = IP +1
G0 TGO 40
50 CONTINUE

999 RETURN
END

SUBROUTINE PRINT
PRINT THE OUTPUT LINE P ON UNIT OUNIT (MAXPTR
INDICATES THE RIGHTMOST POSITION WHICH HAS BEEN USED
IN THIS LINE). THEN RESET P TO SPACES, AND MAXPYR AND
OUTPTR TO PMIN.
COMMON /CHRBUF/ P, PMAX, PMIN, OUTPTR, MAXPTR, OUNIT
INTEGER P(130). PMAX, PMIN, OUTPTR, MAXPTR, OUNIT
LOCAL VARIABLES
INTEGER BLANK, 1
DATA BLANK /1H /

WRITE(OUNIT, 10) (P(I)}y I=1+ MAXPTR}
10 FORMAT(1X, 130Al)

00 20 I = 1, MAXPTR
P(I) = BLAKNK
20 CONTINUE

OUTPTR = PMIN
MAXPTR = PMIN

RETURN
END
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SUBROUTINE SORT( Y, Ny ERR)

INTEGER Ny ERR
REAL Y(N)

SHELL SORT N VALUES IN YU{) FROM SMALLEST TO LARGEST.

NOTE THAT LOCAL SYSTEM SORT UTILITIES APE LIKELY TO BE
MORE EFFICIENT, AND SHOULD BE SUBSTITUTED WHENEVER POSSIBLE.

LOCAL VARIABLES

INTEGER I,y Jy J1s GAP, NMG
REAL TEMP

IF(N .GE. 1) GO TO 10
ERR =1
GO TO 999
10 IF(N .EQ. 1) GO TO 999

ONE ELEMENT 1S ALWAYS SORTED
GAP = N
20 GAP = GApP/2Z
NMG = N = GAF
DD 40 J1 = 1, NMG
1 = J1 + GAP
D0 J = Jl. 1, —GAP

4 = Jl
30 IF (Y{J4) +LE. Y(1)} GO TO 40

SWAP QUT-GF-ORDER PAIR

TEMP = ¥(I})
Y{I) = Y{JI
Y{J}) = TEMP

KEEP OLD POINTER FOR NEXT TIME THROUGH

I1 =4
J = J = GAP
IF {J .GE. L} GO TO 30
40 CONTINUE
IF (GAP .GT. 1} GO TD 20
999 RETURN
END
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SUBROUTINE PSORT( ON, wI1TH, N, ERR}

INTEGER N,y ERR
REAL ON{N}, WITH{N)

PAIR SHELL SORT N VALUES IN ON(} FROM SMALLEST TO LARGESY
CARRYING ALONG THE VALUES IN WITH{().

NOTE THAT LOCAL SYSTEM SORT UTILITIES ARE LIKELY TO BE
MORE EFFICIENT, AND SHOULO BE SUBSTITUTED WHENEVER POSSIBLE.

LOCAL VARIABLES

[pia¥elalalalxNalyl

INTEGER I, J» J1l+ GAPy NMG
REAL TON, TWITH

IF(N .GE. 1) GO TO 10
ERR = }
GO TC 999
10 IF(N +EQ. 1) GO TO 999

ONE ELEMENT 15 ALWAYS S0RTED

[aNaRal

GAP
20 GaP GAP/2
NMG N - GAP
DD 40 J1 = 1+ NMG
1 = JI + GAP

N

DD J = 41y 1, =GAP

OO

J = Jl
30 IF (CNGJ) JLE. ON{(I}) GO TD 40

SWAP CUT-CF-QORDER PAIR

GOG

TON = ON(D)

ONIT} ONCJ}
ON(J) TON

TWITH WITH(I)
WITHII) = WITH{J)
WITH(J) = TWITH

KEEP OLD POINTER FOR NEXT TIME THROUGK

IxEalyl

1 =4
J = J - GAP
IF (4 «GE. 1) GO TO 30
40 CONTINUE
IF {(GAP .GT. 1) GC YD 20
999 RETURN
END
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SUBROUTINE YINFOU(Y,
1 STEPy ERR}

Ny

MED,

HL,

GET GENERAL INFORMATION ABOUT v{(}.
SORTS ¥{) AND RETURNS 1T SORTED.

MED = MEDIAN
HL = LOW HINGE

HH

HHy ADJL. ADJH, IADJL, 1ADJH,

USEFUL FOR PLOT SCAL ING.
ALSO RETURNS

=H] HINGE

ADJL = LOM ADJACENT VALUE ADJH =HI ADJ VALUE
TADJL= 1TS INDEX (LOCATN) IADJH=ITS TNDEX

INTEGER N, 1ADJL: IADJH, EFR

REAL Y{N), MED, HL,
LOCAL VARIABLES

REAL HFENCE, LFENCE
INTEGER J+ K. TEMP]1,

CALL SORT(Y, Ny ERR)

HHy

ADJL

TEMPZ

1F {ERR .NE. 0) GO TO 999

K=N
J = (K/2)+]

TEMP1 = N+1-J

MED = (¥Y(J) + Y{(TEMPL)}) /2.0

K = (K+l)7/2
J = (K72} + 1
TEMPl = K+1~-J

HL = (Y{J} + Y(TEMP1))/2.0

TEMPY = N=K+J
TEMPZ = N+l-J

v+ ADJH, STEP

HH = {Y{TEMPl) + Y{(TEMP2))}/2.0

STEP = (HH = HL)*L.5
HFENCE = HH + STEP
LFENCE = HL - STEP

FIND ADJACENT VALUES

TADJL = O
20 TADJL = 1ADJL + 1

IF { Y{IADJL) .LE. LFENCE) GO TO 20

ADJL = YUIADJL)

TADJH = N+1
30 1ADJH = IADJH - 1

IF { YUIADJH) .GE. HFENCE) GO TO 30

ADJH = Y{IADJH)
999 RETURN
END
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SUBROUTINE NPOSW(HI, LO, NICNOS, NN, MAXP, MIERC, PTOTL, FRACT,
1 UNIT, NPW, ERR]}

FIND A NICE (1.E.» SIMPLE) DATA-UNITS VALUE TO ASSIGN TD ONE PLOT
POSITION IN ONE DIMENSION OF A PLOT. A PLOT POSITION IS TYPICALLY
ONE CHARACTER POSITION HOR JZONTALLY, OR ONE LINE VERTICALLY.

ON ENTRY:

Hl, LO ARE THE HIGH AND LOW EDGES OF THE DATA RANGE TO BE PLOTTED.

NICNOS IS A VECTOR OF LENGTH NN CONTAINING NICE MANTISSAS FOR
THE PLOT UNIT.

MAXP 1S THE MAXIMUM NUMBER OF PLOT POSITIONS ALLOWED IN THIS
DIMENSION OF THE PLOT.

MZERD IS «TRUE. IF A POSITION LABELED -0 US ALLOWED IN THIS
DIMENSION, .FALSE. OTHERWISE.

CN EXIT:

PTOTL HOLOS THE TOTAL NUMBER OF PLOT POSITIONS TC BE USED IN
THIS DIMENSION. (MUST BE .LE. MAXP,)

FRACT 15 THE MANTISSA OF THE NICE POSITION WIDTH. 1IT IS
SELECTED FROM THE NUMBERS IN NICNOS.

UNIT IS AN INTEGER POWER OF 10 SUCH THAT NPW = FFACT *» UNIT.

NPW IS THE NICE POSITION WIDTH., ONE PLOT PDSITION WIDTH
WIiLL REPRESENT A DATA~SPACE DISTANCE OF NPW.

[aEaXelalnlele o ulalala ol e RaNa R NalalaRaRaXyl

INTEGER NNy MAXP, PTOTL, ERR
REAL HIs LOy NICNOS(NN}, FRACT, UNIT, NPW
LDGICAL MZIERD

FUNCTIONS
INTEGER FLOOR, INTFN

LOCAL VARIABLES

om0 O6

INTEGER 1
REAL APRXW

IF (MAXP .GT. 0) GO TO 5
ERR = 8
G0 TO 999
S APRXW = {(HI = LO)/FLOATIMAXP)
IF{APRXW .GT. 0.0) GC TO 10

HI .LE. LO IS AN ERROR

SO0

ERR = ¢
G0 TO 999
10 UNIT = 10.0%*FLOOR(ALOG1O(APRXW) )
FRACT = APRXW/UNIT
DO 201 = 14 NN
IF(FRACT .LE. NICNOS(I)) GO TO 30
20 CONTINUE
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30 FRACT = NICNOS(I)
NPW = FRACT * UNIT
PTOTL = INTFN{HI/NPW.: ERR} = INTFN(LO/NPW, ERR} + 1
IFLERR .NE. 0) GO TO 999

IF MINUS ZERO POSITION POSSIBLE AND SGN(HI) JNE. SGN(LO}, ALLOW IT.
IF(MZERD .AND. {HI*LD .LT. 0.0 .0OR. HI .EQ. 0.0}) PTOTL=PTOTL+1
PTOTL POSITIONS REQUIPED WITH THIS WIDTH —- FEW ENOUGH?
IF(PTOTL .LE. MAXP) GO TO 999
TOO MANY POSITIONS NEEDEDy, SO BUMP NPW UP ONE NICE NUMBER
T = 1+1
IF(T .LE. NNJ GO 7O 30
1 =1
UNIT = UNIT * 10.0
GO TO 30
999 RETURN
END
INTEGER FUNCTION INTFN(X,s ERR)
FIND THE INTEGER EQUAL TO OR NEXT CLOSER TO ZERD THAN X.
CHECKS TO SEE THAT X IS5 NOT TOO LARGE TO FIT IN AN
INTEGER VARIABLE.
REAL X
INTEGER ERR
COMMDN /NUMBRS/ EPST, MAXINT
REAL EPSI, MAXINT
IF( ABS(X) .LE. MAXINT) GO TC 10
X 1S TOD LARGE IN MAGNITUDE YO FIT IN AN INTEGER.
RETURN THE LARGEST LEGAL INTEGER AND SET THE ERROR FLAG.
ERR = 3
INTFN = TFIX{ SIGN(MAXINT, X) )
GO TO 999
10 INTFN = INT{{1l.0 + EPSI) * X}
999 RETURN

END
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INTEGE® FUNCTICOK FLOOR (Y}
REAL ¥
FIND FLOOR(Y)y THE LARGEST INTEGER NOY EXCEEDING Y

FLOOR = IMT(Y)

IFLY 7. 0.0 +AND. ¥ JNE. FLOAT(FLOOR)} FLOOR = FLODR - 1]
RETURN

END

REAL FUNCTION MEDIAN(Y, N}
FIND THE MEDIAN CF THE SORTED VALUES Y{1l)s +ses Y(N}.
INTEGER N
REAL YUN)
LOCAL VARIABLES
INTEGER MPTR, MPTZ

MPTR = (N/2) + 1

MPT2 = N-MPTR+1

MEDIAN = {Y(MPTR) + Y{MPTZ})/2.0
RETURN

END

REAL FUNCTION GAULZ)
REAL Z
THIS FUNCTICN CALCULATES THE VALUE DF THE STANDARD
GAUSSIAN CUMULATIVE DISTRIBUTICN FUNCTION AT 2.
THE ALGORITHM USES APPROXTMATIONS GIVEN BY STEPHEN E. DERENZQ
IN MATHEMATICS OF COMPUTATION, V. 31 (1977)y PP. 214-225

LOCAL VARTABLES
REAL P, PI, X

X = ABS{(Z:
IF(X .GT. 5.5) GO TO 10
P = EXPI-1{83.0 * X + 351.0} * X + 562.0}) * X /
i (702.0 + 1£5.0 * X})
G0 1O 20

10 PI = 4,0 * ATAN(1.0)
P = SURT{2.,0/F1) #% EXP(-(X ® X/2.0 +
1 O.94/7(X %= X})) /7 X

THE APPROXIMATICNS YIELD VALUES OF THE HALF-NORMAL TAIL AREA.
TRANSLATE THAT INTO THE VALUE OF THE GAUSSTIAN C.D.F. AND
ALLOW FOR THE SIGN OF Z,

20 GAU = P/f2.0
IFIZ .GT. 0.0) GAU = 1.0 - GAU

RETURN
END



Appendix C
Programmi ng
Conventions

The programs in this book form two sets of routines, one in BASIC and one in
FORTRAN. This appendix discusses the structure and language conventions
adopted for these programs. The first part of the appendix covers the BASIC
programs. The second part deals with the FORTRAN programs.

C.1 BASIC

Environment

The BASIC programs in this book are written 1o run conveniently on
computers using an interactive BASIC interpreter. In particular, most mini-
and microcomputers should accept these programs with only minor modifica-
tions. Users of systems where BASIC is compiled rather than interpreted may
have to write a driver program to facilitate interprogram communication. This

319
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part of the appendix discusses the structure and conventions of the BASIC
programs and provides advice and guidelines for modifying the programs to
suit different computing environments,

In many implementations of BASIC, all variables are global and can
be modified and manipulated interactively by the user. The list of variable-
naming conventions in this section will enable users to take full advantage of
this feature. The complete set of programs is between 40K and 50K characters
long. However, the programs are organized into a segment of utility subrou-
tines and nine EDA subroutines. With some sort of mass storage under
program control (a tape or floppy disk is fine) and an OVERLAY instruction
(or DELETE and APPEND on some systems), each EDA routine can be
brought into core, used, and then replaced by another in turn. Without this
flexibility, individual programs can still be run in little memory, but it will be
more difficult to move among them while analyzing data. A sample elemen-
tary driver is included for illustration (starting at line number 4000 in
Appendix B). Systems with a CHAIN instruction can use it for interprogram
linkage, but programmers will need to pay attention to the communication of
variable values among routines.

The longest programs require about 12K bytes (characters) of core
memory plus room for data (16K is practical, and 24K is comfortable). Hints
on trading space for processing time appear later in this appendix.

Program Structure

The programs have the following structure:

Line Nos. Contents Comments
1090 Remarks Can be used for special control functions
such as user-defined keys on some com-
puters.
100—490 Function Some systems do not permit OVERLAY
definitions of function definitions, so they come
here,
500-800 Main initialization This could be a subroutine, but some sys-

tems do not permit OVERLAY of data
statements,
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Line Nos. Contents Comments
10004000 Utility Such operations as sorting and plot scal-
subroutines ing.

40004900 Driver program A sample elementary driver is included
for illustration.

5000- EDA subroutines All the EDA programs are written as sub-
routines which start at line 5000. An
OVERLAY 5000 instruction {or its
equivalent) is one possible way 1o bring
them into core.

Conventions

We have observed the following variable-naming conventions:

X1, Y{)
Wi}

R(Y, C()

T{)
P{)
EO
MO, M9

Vi

Vectors of length N, hold data. Y{) is the “depen-
dent” variable and is most often analyzed.

Workspace vector of length N + 11 (the extra eleven
locations are for the smoothing programs).

Vectors to hold row and column subscripts, respec-
tively. Some routines use R({) and C(} for extra
storage or return residuals in R{ ).

Internal vector, holds “nice numbers” for plot scal-

ing.

Print vector, holds one output line of characters.

Machine epsilon (see Epsilonics below).

Left and right margins—TABIMO) positions the
cursor at left margin.

Version number (to select among versions of an
analysis or display). Generally V1 = 1 calls for the
shortest printout, starkest display, or simplest
analysis; larger values of V1 call for more compli-
cated versions. A negative value of V1 signals that
the user will supply parameters interactively.
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Whenever possible, work is done in W(), and X() and Y{) are preserved or only
reordered. The design philosophy of the BASIC programs has favored
minimizing the space required for the storage of data. At times this requires
that X{) and Y() be destroyed or used to return a result. On systems with no
constraints on storage, extra arrays to preserve X{) and Y{) would be valuable
and could easily be introduced.

Space versus Speed

The most expensive operation commonly performed by these programs is
sorting. Users of microcomputers may find the sorting process noticeably stow.
A machine-language sorting program will significantly extend the size of data
batches that can be conveniently analyzed. Programmers who wish to optimize
this code for a specific machine should first provide a fast sorting program. No
other optimization will have nearly as great an effect.

To save space, programs may delete lines 480-790 after they have been
executed, Or, if permitted, initialization can be made a subroutine at line 5000
to be called first. Also, most of the EDA subroutines (and all the leng
subroutines) can be split into two or more segments to be executed in
sequence. Thus, for example, plot options could be checked in one program
segment; then a second segment could determine plot scaling; and finally, a
third segment could produce the plot.

Epsilonics

The decimal numbers with which humans customarily work cannot generally
be represented exactly in the binary (or, sometimes, hexadecimal) forms used
by most computers. For example, when written as a binary fraction, the
number 1/10Q is a repeating fraction (.000110011...in binary digits).
Because computers store real numbers in fixed-length words, their internal
representation will usually be only a very close approximation to the true
number. For example, LOG(1000) may be slightly different from 3.0. The
representation errors that occur in converting decimal numbers to binary and
the rounding errors that arise in subsequent arithmetic have a negligible effect
on most EDA calculations, but there are important exceptions. One of these is
the floor operation (the INT function in BASIC; see Rounding Functions,
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below), used especially in scaling plots and placing characters precisely for
displays. For example, INT(2.9999) yields 2.0. Thus, because LOG(1000)
may not be represented as exactly 3, INT(LOG(1000)) might come out 2
rather than 3. If we do not allow for these errors, small as they may be, many
programs will run into serious (and obscure) trouble. To correct this problem,
we introduce a machine-dependent constant, epsilon (EO in the BASIC
programs), which is the smallest number such that (in the computer’s
arithmetic) 1.0 + ¢ > 1.0. We use a slightly larger number for EQ. (1.0 E—6
works well on most machines which use 4 bytes to hold a number.) If E0 is too
small, many anomalous things can happen, including incorrect stem-and-leaf
displays and x-p plots.

Some BASIC implementations provide a user-adjusted “fuzz” factor
that will accomplish a similar function in computations. This feature may be
able to replace the epsilon in the defined functions FNF and FNI.

BASIC Portability

The BASIC programs in this book are written in a dialect of BASIC as close
to the ANSI minimal BASIC standard as possible. Since few BASIC
implementations are in fact ANSI-standard, we note here some specific
features that may require the attention of a programmer when installing these
programs. (Our reference for some of these notes is “BASIC REVISITED,
An Update to Interdialect Translatability of the BASIC Programming
Language” by Gerald L. Isaacs, CONDUIT, University of lowa, 1976.)

Variable Names. BASIC variable names are single letters or a single letter
followed by a single digit. Some implementations of BASIC permit longer
variable names, but a program using longer names would not be portable. We
have deliberately made some variable names mnemonic. Thus LO (L-zero) and
H1 (H-one) often hold the low and high data values of a batch. String variables
obey the same rules and end in §. We have restricted array names to single
letters. This is less general than the ANSI standard but required by some
BASIC implementations.

String Functions. Three string-related functions not in the ANSI standard
are used throughout the programs for displays. These are

LEN(AS) The number of characters in the string A$.
STR$IN) The numerals representing the number N. This
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function is needed to produce a numeral with no
blank spaces before or after it. One possible
substitute is a subroutine that constructs the
numeral string by selecting characters from a
string array or from the string 0123456789 by
using a substring operation.

Asct'Cc’y  The ASCII code value of the character “C”. This
function is used for ease of exposition and can
easily be replaced by the literal numeric value.
Non-ASCII systems should use the appropriate
character codes.

Some of these functions have different names on some systems.

String Variables. The programs occasionally use string variables and string
constants. String constants are enclosed in double quotes (). Numeric codes
can be substituted for many, but not all, string uses.

Loops. FOR loops are supposed to check the index variable at the top of the
loop. Thus FOR | = 10 TO 9 STEP 1 should skip the loop entirely (rather than
executing it once). Some versions of BASIC test the index variable at the end
of the loop instead. We have, therefore, provided special checks when
necessary before loops. Similarly, index variables are not defined reliably at
the end of loops. We have inserted an assignment statement after some loops
to ensure that the index variable is set correctly.

Margins. The left margin, MO, is usually set to zero. In some versions of
BASIC, TAB{0} is not the same as the first print position, so MO may need to be
set to 1.

Defined Functions. The programs include several user-defined functions,
but one-line defined functions are sufficient, provided that a defined function
can use a previously defined function in its definition. The ANSI standard
requires a single argument for defined functions and global access to alt
variables. If multiple-line or multiple-argument defined functions are avail-

able, programmers may wish to modify some of the functions for greater
efficiency and clarity.

Rounding Functions. The programs require a function that returns the
largest integer not exceeding its argument. This is commonly known as the
“floor function,” but it is called INT in BASIC. Rounding functions can be a
source of great confusion (and subtle bugs). We might round a number in four
ways, as shown in the table.
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Rounding Result for x =
Name Direction Symbol 2.4 -2.4
floor down [x] 2 -3
int(eger in, toward [x] 2 -2
part) ZEro
ceiling up Ix} 3 -2
“outt” out, away Ix[ 3 -3
from zero

The “outt” function is rarely discussed (and our name and notation for it are
fanciful), but the operation is used in these programs to set display boundaries
to the next integer value outside some bounds. Each rounding operation could
include some epsilonics (as discussed earlier) to avoid problems introduced by
representation and rounding errors. Each of these functions can be defined in
one line from some of the others {plus the absolute value function, abs(x), and
the signum function, sgn(x), which returns +1, 0, or —1 when x is positive,
Zero, or negative, respectively); for example:

floor(x) = int{x) + sgn(sgn{x—int(x))+1)-1
int(x) = sgn(x) * foor(abs(x))

ceiling(x) = — floor(—x)

outt(x) = sgn(x) * ceiling(abs(x))

Note again that INT{X) in BASIC is floor(X).
Errors. Because the BASIC programs will usually run interactively, they
report errors immediately and stop execution, When the programs are run on

an interpreter, the user will have a chance to correct the error and restart from
that point.

C.2 FORTRAN

We hardly need to explain our decision to provide programs in FORTRAN—
it is the most nearly universal of all scientific programming languages. We
cannot, however, pretend that developing these programs was a labor of love.
A reader who examines them carefully will find segments that are awkward or



326

ABCs of EDA

tedious because FORTRAN is iil-suited to the programming needs of modern
data analysis. For example, the output capabilities of FORTRAN are far too
rigid for the graphic and semi-graphic displays that are common in explor-
atory data analysis. On the whole, however, the advantages of making these
programs as widely available as possible outweighed the difficulties of
FORTRAN.

If programs are to be widely used, they must be portable. That is, it
must be possible to move them from one computing environment to another
with an absolute minimum number of changes. Fortunately for us, others have
laid substantial groundwork in developing portable (or, strictly speaking,
semi-portable) FORTRAN programs. As a result, a number of practices that
facilitate portability are well-established, and computer software to support
the most valuable of them is available. In this part of the appendix we briefly
describe the practices we have followed and the role they have played in the
development of our programs.

Consistency of style is also important for any set of programs that are
intended to be used (and read) together. Thus we also describe the particular
conventions we have chosen to follow. These range from simple choices that
affect only the appearance of the printed programs to overall decisions that
affect the structure and interrelations among all the programs in this book.

Related to interconnections is the question of just how one might
customarily use these programs. We briefly discuss and illustrate two
approaches to this. '

And finally there are the utility routines, which perform a variety of
essential services for the data analysis routines presented in Chapters 1
through 9. Listings for the utility routines appear in Appendix B.

Portability

A fully portable program or subroutine can be moved gracefully from one
computing machine to another. And even though the computers are of
different manufacture and have different systems software, the program
compiles without errors, executes without errors, and produces identically the
same results on both. This is the ideal situation. Unfortunately, it can rarely be
attained in practice; but with reasonable effort a good approximation to it is
possible. The two primary obstacles to overcome are differences among
dialects of the FORTRAN language and differences in characteristics of the
arithmetic hardware. (One must also contend with variations in system
conventions, but these are generally less serious.)
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The solution to the problem of dialects is conceptually quite simple:
One uses only a subset of FORTRAN that is handled in the same way by
essentially all known systems. In practice it is all too easy to slip back
unknowingly into using some facility or construction which is acceptable in
one's own environment but unacceptable in certain others. To avoid this, we
have restricted our FORTRAN to a particular subset known as PFORT. This
is an attractive solution because this subset of FORTRAN is supported by a
piece of software, the PFORT Verifier (Ryder 1974), that takes a
FORTRAN program as input and reports on all its departures from this
subset of the language. Especially valuable is the Verifier’s ability to process a
main program and all associated subroutines and to identify potential difficul-
ties of communication among them, including misuse of COMMON.

When a particular construction is acceptable in many (but not all)
dialects of FORTRAN, it is tempting to use it—especially when it would
make the programs easier to understand—and then to announce, “The
programs conform to PFORT, except for. . . .” For example, subscript expres-
sions of the form N + 1 — I are common (as in LVALS, MEDPOL, and RGCOMP),
but the strict FORTRAN definition of subscript expressions is too restrictive
to permit this form. We have decided to avoid such complications and adhere
to PFORT. Thus we can state that all the FORTRAN programs in this book
have been processed by the PFORT Verifier without any warning messages.

The problem of arithmetic hardware characteristics is somewhat more
difficult than the problem of language dialects. Fortunately, EDA techniques
generally involve much less numerical computation than one finds in maost
mathematical software. In fact, our programs need only two machine-related
constants: an epsilon, whose role was described earlier, and the REAL value of
the largest valid integer. We have isolated these as the variables EPS! and
MAXINT in the COMMON block NUMBRS so that they can be set once at
injtialization. The initialization subroutine, CINIT, takes care of this.

CINIT, which should be called before any of the other FORTRAN
routines in this book, also sets several other variables that may vary from
installation to installation or from run to run:

OUNIT  the FORTRAN unit number for output (often unit 6),
PMIN the left margin in the output line,
PMAX the right margin in the output line.

In CINIT, the corresponding subroutine arguments all begin with the letter | to
indicate that they are initialization values. CINIT performs several basic checks
on these and then completes the initialization process. In the course of a
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OO0 0000

o0

SUBROUTINE CINIT{IOUNIT, IPMIN, IPMAX, IEPSI, IMAXIN, ERR)

INTEGER JOUNIT, IPMIN, IPMAX, IMAXIN, ERfR
REAL IEPSI

INITIALIZATION, TO BE CALLED AT START OF ANY HMAIN PROGRAM
WHICH CALLS OME OF THE EDA SUBROUTINES (EITHER DIRECTLY OR
INDIRECTLY).

JTOUNIT IS THE NUMBER OF THE UNIY TO WHICH DUTPUT IS DIRECTED.
IPNIN IS THE LEFT MARGIN.

1PMAX 15 THE RIGHT MARGIN.

IEPSI 15 THE MACHINE-RELATED EPSILCN.

IMAXIN 1S THE MAXIMUM PERMITYTED INTEGER VALUE

ERR 15 THE (USUAL) ERROR FLAGy TO INODICATE WHETHER
THE ROUTINE EXECUTED SUCCESSFULLY.

COMMON /CHRBUF/ P+ PMAX, PMIN, OUTPTR, MAXPTR, OUNIT
COMMON /NUMBRS/ EPS1, MAXINT

INTEGER P(120), PMAXy PMIN, OUTPTR, MAXPTR,s OUNIT
REAL EPS1, MAXINT

LOCAL VARIABLES

INTEGER BLANK, 1
DATA BLANK /1H /

ERR = &

IFCIPMIN .LT. 1) GO TO 999
IFCIPMAX .GT. 130) GO TO 999
IFCIPMAX .LE. IPMIN) GD TO 999
ERR = 7

IF{{1.0 + TEPSI) .LE. 1.0) GO TO 999
ERR = ©

ODUNIT = IOQUNIT

PMIN = IPMIN

QUTPTR = IPMIN

MAXPTR = IPMIN

PMAX = IPMAX

EPS] = [EPSI

MAXINT = FLOAT{IMAXIN)

D S0 1 = 1, 130
P(I) = BLANK
50 CONTINUE

999 RETURN
END
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sequence of analyses, using several of the programs in this book, a user may
reset the initialization variables by again calling CINIT. Of course, this causes
the previous values of these variables to be lost, and it causes the output line to
be set to all blanks, but it has no other side effects.

Stream Output

FORTRAN requires that the programmer specify the contents and format of
a line of output, essentially when the program is written. (While it is possible
for a running program to read a format specification or to construct one, it is
extremely difficult to program this in a portable way.) Because EDA displays,
such as the boxplot, depend heavily on the data, we usually can be no more
specific about the output format than to say that a line will contain a number
of characters—some digits, some symbols, and some blank spaces. As the
program executes, it must determine the format for a line and the character
that occupies each position on the line. For example, stem-and-leaf displays
come in three different formats, and each requires different characters in
special positions on the line. Thus the program needs to build each output line
a few characters at a time.

This style of output—allowing the program to determine the format
and contents of the output line as it goes along—is known as stream output.
Because such output capabilities are not a part of the FORTRAN language,
we have written special subroutines to simulate (in a rudimentary but portable
way) the features that we need to produce our EDA displays. Often, we have
used standard FORTRAN cutput.

The important variables for our stream output subroutines reside in the
COMMON block CHRBUF. At the heart of our simple stream output is the array P,
in which we construct a line of output. Qur initialization routine, CINIT, sets P to
all blanks. Any routine needing to construct an output line can do so by storing
characters (alphabetic, numeric, or special symbols) in P; this is usually done
with the subroutines PUTCHR and PUTNUM. When the line is complete, the
routine PRINT writes out the contents of P and resets P to blanks.

The routine PUTCHR places a character in P, either at the position
specified by the argument POSN or at the next available position (if POSN is
zero). PUTCHR keeps track of the last print position used and the rightmost
non-blank position in the line.

The routine PUTNUM places into P the characters for an integer, N. The
calling program must specify the width, W, of the field (number of characters)
where the number shouid appear, and its starting position on the line. PUTNUM
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translates the integer into the appropriate sequence of numerals and uses
PUTCHR to place them in P. Applications of PUTNUM include placing the depth
counts and the stems on each line of a stem-and-leaf display.

Finally, the integer function WDTHOF receives an integer, I, and returns
the number of characters (including a minus sign if 1 is negative) required to
print it. We use this information in printing the depth counts and stems in a
stem-and-leaf display.

Conventions

To promote clarity of these programs and to preserve their portability, we have
followed several conventions. None of these has especially sweeping conse-
quences, but we list them here so that they will be clear to the reader and
user.

Input{Output. Our subroutines do no input. Reading of data is the responsi-
bility of the user, wheo is in the best position to deal with features of the input
process that may depend on the particular version of FORTRAN or on the
devices where data are stored. It is customary to isolate output operations so
that they do not appear in computational subroutines. We have done this
where appropriate; but, of course, it makes no sense when the EDA technique
is primarily a display (as in stem-and-leaf, boxplot, condensed plotting, and
coded tables).

Scratch Storage. When a technique uses temporary storage whose size
depends on the number of data values, our routines are structured so that the
user supplies this storage through the argument list. (PLOT, for example,
requires two work arrays of length N because it must sort the data points into
order on y while preserving the (x,p) pairs.) In this way we avoid any built-in
restriction on the amount of data that can be handled, and we make it
straightforward to accommodate the storage limitations that the user’s system
may impose.

Characters. When we must work with characters, we store them, one
character to the word, in INTEGER variables or arrays. This may waste a certain
amount of space, but it is strongly preferable to dealing with heavy depen-
dence on the number of characters that can be stored in a word on the user’s
particular machine. It further avoids the arithmetic that would be required to
pack and unpack characters stored several to the word. The character set that
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we have used is the bare minimum FORTRAN character set: the 26 letters,
the 10 digits, the 9 symbols = + — * / (), . and the blank space. This
facilitates portability, but it is not much to work with in building displays. In
BASIC we are able to assume the much larger ASCII character set, and the
advantages are evident when one compares the BASIC and FORTRAN
versions of the displays.

Dimensioning in Subroutines. 'When a subroutine argument is an array, our

declaration for it uses its actual dimensions, as in “REAL Y{N), . .." in STMNLF.
We have not used “dummy” dimensions, as in “REAL A{1}” seen in some
programs.

Errors. We attempt to detect a variety of errors that a user might make, and
we communicate information on them through the INTEGER variable ERR, which
appears as the last argument of many of the subroutines. If no esrror condition
exists, ERA has the value 0. Otherwise, a positive value identifies the error
condition. {These error numbers are defined in Exhibit C-1.)

Exhkibit C-1 FORTRAN Program Error Codes

Code Subroutine Meaning
1 SORT N = 0; nothing to sort
2 PSORT N = 0; nothing to sort
3 INTFN X > MAXINT; argument passed is too large to be
*“fixed” as an integer variable
4 PUTCHR Illegal character code
5 PUTNUM Number won’t fit in space provided
6 CINIT Violated 0 < IPMIN < IPMAX < 130 in setting page
marging
7 CINIT EPSI too small; 1.0 + ePSI = 1.0
3 NPOSW No room allowed for plot
9 NPOSW HI < LOW
11 STMNLF N=1
12 STEMP Bad internal value—bad nice numbers?
13 STMNLF Page tco narrow for display
21 LVALS Violated 2 = N = 24576
22 LVPRANT Violated 3 =< NLV = 15; too many letter values

23 LVPRNT Page width < 64 positions, not enough room
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Exhibit C-1 (continued)

Code Subroutine Meaning

3 BOXES N=1

41 PLOT N<S5

42 PLOT Violated 5 = LINES = 40
or [ <CHRS < 10

44 PLOT XMIN = XMAX

45 PLOT YMIN = YMAX
—Errors 44 and 45 are possible if incorrect
plot bounds have been specified in the
subroutine cali.

51 RLINE N<6

52 RLINE No iterations specified

53 RLINE All x-values equal; no line possible

54 ALINE Split is too uneven for resistance

61 RSM N<7

62 RUNMED Insufficient workspace room

63 RUNMED Internal error—error in sort program?
This error can occur if a system sort utility is
substituted for the supplied S0RT subroutine,
but used incorrectly.

71 CTBL Zero dimensions for tabie

72 CTBL Too many columns to fit on page

81 MEDPOL. or TWCVS Zero dimensions for table

82 MEDPOL No half-steps specified

83 MEDPOL lllegal start parameters

85 MEDPOL Table is empty

88 TWCVS Zero grand effect; can't compute comparison
values

9] RGCOMP t = 2; too few bins

92 RGCOMP One of the hinges falls in the left-open bin or in
the right-open bin

93 RGPRNT . Page too narrow for rootogram table

94 RGPRNT \ Room for rootogram table but not for graphic

display
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Exits. Each of our subroutines has a single exit, the RETURN statement
immediately preceding the END statement. In most subroutines this RETURN
bears the statement number 999.

Output FORMAT statements. We place each FORMAT statement immedi-
ately after the first WRITE statement that uses it. For our programs, which do
not use the same FORMAT statement in many different and widely separated
WRITE statements and often rely on the stream output routines described
earlier, this leads to much better readability than if we grouped all FORMAT
statements at the end of the subroutine.

Declared Identifiers. We do not rely on “implicit typing” to determine
{according to its first letter) whether an identifier is INTEGER or REAL. Instead,
we explicitly declare all the identifiers used in each subprogram, except for the
standard FORTRAN functions. We strongly endorse this practice, which a
few FORTRAN compilers support by issuing a warning message for any
undeclared identifier, because it aids greatly in eliminating misspelled names.
(The PFORT Verifier, for example, lists all the identifiers in each program
unit, so that such errors stand out.)

Indentation. We find that it is generally easier to follow the logic of a
program when statements within a DO loop or following an IF statement are
indented slightly, and we have used this device throughout our programs.

Reference

Isaacs, Gerald L. 1976. “BASIC REVISITED, An Update to Interdialect Translat-
ability of the BASIC Programming Language.” CONDUILT, The University of
Towa, lIowa City.

Ryder, B.G. 1974. “The PFORT Verifier.” Software—Practice and Experience
4:359-377.

Glance at Appendix B
and turn to Chapter 2.

Proceed






Appendix D
T Minitab lmplementation

The FORTRAN programs presented in this book have been incorporated into
the Minitab statistics package. This appendix gives the syntax of the Minitab
commands for exploratory data analysis techniques. It assumes a familiarity
with the Minitab package. Readers unfamiliar with Minitab should read the
Minitab Student Handbook, (Ryan, Joiner, and Ryan, 1976) or the Minitab
Reference Manual (Ryan, Joiner, and Ryan, 1981).

The commands given here may change slightly as the Minitab system
changes. For details of the current status of the system, use the Minitab HELP
command or refer to the latest edition of the Minitab Reference Manual.

Minitab is an excellent environment for exploratory data analysis
computing, especialily when used interactively. Minitab works with data kept
in a computer worksheet, where the data values are stored in columns
designated C1, C2, . .., or in matrices designated M1, M2, . . . . Single numbers
can be stored in constants designated K1, K2, . ... Although variables in the
worksheet may have names (which are surrounded by quotes, like 'INCOME’ or
"RACE"), the command syntax usually shows the generic names € for column, K
for constant, and M for matrix. Thus, the command specified as

335
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STEMC

indicates a command in which C is to be replaced by any column identifier {for
example, C2, C17, 'MONEY").

When portions of a Minitab command line are optional, we enclose
these portions in square brackets. Some commands allow subcommands that
modify the main command. When a subcommand follows the main command
line, Minitab requires that the main command line end with a semicolon. Each
subsequent subcommand line ends with a semicolon, up to the final subcom-
mand, which ends with a period.

Minitab command lines may contain free text, which further describes
the operation performed but has no effect on Minitab. The command descrip-
tions in this appendix take advantage of this feature to include brief explana-
tions of the commands and subcommands, Only the portions of the command
descriptions in boldface are actually required.

References

Ryan, Thomas A., Brian L. Joiner, and Barbara F. Ryan. 1976, Minitab Student
Handbook. Boston: Duxbury Press.

Ryan, Thomas A., Brian L. Joiner, and Barbara F. Ryan. 1981. Minitab Reference
Manual. University Park, Pennsylvania: Minitab Project, The Pennsylvania
State University.
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D.1 Stem-and-Leaf Displays

STEM-AND-LEAF DISPLAYQFC, ... ,C
Gives a separate stem-and-leaf display for each column named.

Optional Subcommands
TRIM OUTLIERS (default)
Scale to the adjacent values.
NOTRIM
Scale to the extremes of the data—no HI or LO stems.
Examples
STEM 'RAINPH’
STEM "HC' “JANTMP’

STEM 'HC";
NOTRIM.,

D.2 Letier-Value Displays

LVALS OF C [PUT LETTER VALUES IN CIMIDS IN C[SPREADS IN Cl]}
This command prints a letter-value display. Optionally, the letter
values, mids, and spreads can be stored in specified columns. The
column of letter values will be roughly twice as long as the columns of
mids and spreads, and will start with the low extreme and proceed in
order to the high extreme.

Examples
LVALS OF ‘NJCOUNT’

LVALS OF ‘MSPRAIN’ PUB IN C1, ‘MIDS’, ‘SPREADS'
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D.3 Boxplots

BOXPLOTS FOR C [LEVELSIN C]

The levels column is the same length as the data column. Tt labels each
data value with an integer that identifies the level, subscript, group, or
cell to which the value belongs. A boxplot will be produced for the data
in each level, all on the same scale. If no levels column is specified, a
single boxplot is produced.

Levels. The levels must be integers between — 1000 and 1000. Up to
100 distinct levels are allowed.

Optional Subcommands

The following subcommands control the plots.

LINES = K

K is the number of lines used to print a box. K can be 1 or 3. If LINES is
not specified, K is assumed to be 3.

NOTCH THE BOXPLOTS TO INDICATE CONFIDENCE INTERVALS FOR THE MEDIAN
NONOTCH (default)

LEVELSK. ..., K[FORC]

This specifies what subscript levels (cells, group numbers) are to be
used, and in what order. This subcommand can be used (a) to arrange
the groups in a certain order, (b) to get boxplots for only some groups,
or (¢) to include (empty) boxplots for groups which are theoretically
possible but are not present in the sample.

Example

BOXPLOTS FOR ‘IRSAUDIT, LEVELS IN 'REGION';
NOTCH.
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D.4 Condensed Plotting

CPLOTYINCVSXING
This command produces a condensed plot.

Optional Subcommands

LINES = K
Specifies how many lines (up to 40) the plot should take. (Default is
10.)

CHARACTERS = K

Specifies how many codes should be used, and thus how many subdivi-

sions each line is to be cut into. K can be between 1 and 10. (Default is
10.)

XBOUNDS K TOK

Specifies the range in the x direction of the data to be plotted. Data
values beyond the specified range will appear as outliers in the plot.

YBOUNDS K TOK
Specifies the range in the p direction of the data to be plotted.

Plot Width

The width of the plot can be changed by using the Minitab QUTPUT-
WIDTH command prior to the CPLOT command.

Examples
CPLOT 'BIRTHS' BY "YEAR';
LINES = 40;
CHARACTERS = 1.

CPLOT 'BIRTHS' BY "YEAR',
LINES = 10:
YBOUNDS 1940 TO 1860.
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D.5 Resistant Lines

ALINE Y IN €, X IN € {PUT RESIDS INTO C [PRED INTO € [COEFF INTO C] ] )
Fits a resistant line to the data.

Optional Subcommands

MAXITER = K
Specifies the maximum number of iterations. (Default is 10.)

HALFSLOPES STORED, LEFT HALFSLOPE IN K, RIGHT HALFSLOPE IN K
REPORT EACH ITERATION (default)

NOREPORT
Minitab will print only the final solution; it will not report each
iteration.

Missing Data

If either x or y is equal to the missing value code, #, for an observation,
the observation is not used in fitting the line. If x is missing, the
predicted value and residual are set to #. If x is not missing and y is
missing, the predicted value is computed as usual, and the residual is
set to *. Note: At least 6 (non-missing) data points are needed.

Examples
RLINE "CANCR’ VS "“TEMP’ RESIDS IN ‘RESID;
MAXITER = 20.

RLINE ‘MPG’ ON "DISP* RESIDS IN C1, PRED IN C2;
HALFSLOPES K1 K2,
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D.6 Resistant Smoothing

RSMOOTH C, PUT ROUGH [N C, SMOOTH IN €
Applies a resistant smoother to sequence data. The rows are assumed to
be in sequence order. (Note that the order in which the storage columns
are specified corresponds to the residuals and predicted values in
regression, resistant line, median polish, and so on.)
Note: This command produces no output. The smooth and rough may
be plotted with the Minitab TSPLOT command.

Optional Subcommands

SMOOTH 3RSSH, TWICE (specifies this smoother)
SMOOTH 4253H, TWICE (default)

Missing Data

Missing observations are allowed at the beginning and end of the series
only. That is, missing values cannot come between valid data values.

The results (both smooth and rough) for rows corresponding to missing
data are set to the missing value.

Examples
ASMOOTH "COWTMP’ PUT ROUGH IN ‘ROLY, SMDOTH IN "SMO’

RSMOOTH 'COWTMP';
SMOOTH 3RSSH,
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D.7 Coded Tables

CTABLE OF DATA IN C, ROWLEVELS IN C, COLUMN LEVELS INC

Prints a coded table of the data. The levels columns specify rows and
columns of the table.

Levels. Levels must be integers between —1000 and 1000. Each
levels column can contain up to 100 distinct values.

Optional Subcommands

LEVELSK, ..., KFORC

This subcommand allows reordering of the specified column of row or
column levels. The table will be printed with the specified levels in the
prescribed order. Note that a level value that does not appear in the
specified column of levels may be specified in a LEVELS subcommand. It
will cause an empty row or column to appear in the table. Two LEVELS
subcommands may be used, one to specify an order for rows, and one to
specify an order for columns.

MAXIMUM OF MULTIPLE VALUES IN A CELL SHOULD BE CODED
MINIMUM OF MULTIPLE VALUES IN A CELL SHOULD BE CODED
EXTREME CF MULTIPLE VALUES IN A CELL SHOULD BE CODED

These three subcommands may be used when two or more data values
have the same row and column numbers—that is, when a cell of the
table contains more than one data value. The subcommands specify
what feature of the cell is to be coded. The default is EXTREME.

Examples

CTABLE OF ‘MORT", LEVELS IN ‘CAUSE’, "SMOKE'

CTABLE OF "SURVTIME’, LEVELS IN "POISON’, ‘TREAT";
LEVELS 2, 3, 1IN ‘TREAT';
MAXIMUM.



Minitab Implementation 343

D.8 Median Polish

MPOLISH €, LEVELS IN C, C [RESIDS INTO C [PRED INTO Ci]
Uses median polish to fit an additive model to a two-way table.
Levels. Levels must be integers between — 1000 and 1000. Each
levels column can contain up to 100 distinct values.

Optional Subcommands

ROWS FIRST (default)
Begin by finding and subtracting row medians.

COLUMNS FIRST

ITERATIONS = K
Number of half-steps to be performed. (Default is 4.)

COMPARISON VALUES INTG C
EFFECTS STORED, COMMON IN K, ROW EFFECTS IN C, COLUMN EFFECTS INC

LEVELSK, .... KFORC
This subcommand reorders the levels or specifies which rows or
columns of the table are to be analyzed. Its use is similar to the LEVELS
subcommand of CTABLE or BOXPLOT.

Output

The MPOLISH command prints a table of residuals bordered on the right
by row effects and on the bottom by column effects, with the common
term at the lower right. In addition, the fitted values can be printed
using the TABLE command in Minitab. The residuals might be displayed
in a coded table by using the CTABLE command, or they might be plotted
against the comparison values and fitted with a resistant line.

Example
MPOLISH 'DEATHS' BY "SMOKE' AND ‘CAUSE', RESIDS IN C1, PRED IN C2;
ITERATIONS = 6;
COMPARISON VALUES IN ‘COMP;
EFFECTS IN K9. ‘REFF’. "CEFF’.
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D.9 Suspended Rootograms

ROOTOGRAM [FOR DATA IN C [USING BIN BOUNDARIES IN C]]
Prints a suspended rootogram for the data. If no bin boundaries are
specified, the program determines them by a method similar to the
scaling algorithm of the stem-and-leaf display. If bin boundaries are
specified, the program computes bin counts by counting the number of
data values less than the smallest bin boundary, between the first and

second boundaries, ..., greater than the largest bin boundary. Each
bin but the last contains numbers less than or equal to its upper
boundary.

Optional Subcommands to Store Results

BOUNDARIES STORED IN C
If bin boundaries have been determined automatically, this subcom-
mand stores them in the specified column.

DRRS STORED INC
Stores the double-root residuals.

FITTED VALUES STORED INC

Stores the fitted bin counts (which need not be integers) in the specified
column.

COUNTS STORED INC
Stores the observed bin counts in the specified column,

Optional Subcommand to Use Bin Frequencies

FREQUENCIES IN C [FOR BINS WHOSE BOUNDARIES ARE IN C]
This subcommand specifies a data column of bin frequency counts and
the corresponding bin boundaries. It should be used when the data are
available as frequencies recorded bin by bin. (This subcommand does
not use columns specified in the main command line. Minitab will warn
of an error if the FREQUENCIES subcommand is used when columns are
specified in the main command line.) The first bin count is assumed to
be for the half-open bin below the lowest bin boundary, and must be
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zero if no data values fall below the lowest bin boundary. The last count
corresponds to the half-open bin about the highest bin boundary. The
last count must be zero if no data values fall above the highest bin
boundary. Thus the column of bin frequencies has one more entry than
does the column of bin boundaries. If no bin boundaries are specified,
the frequencies are assumed to be for bins of equal width, and the bin
width is arbitrarily taken to be 1.

Optional Subcommands to Control the Fitted Shape

MEAN = K
This subcommand overrides the automatic estirnation of the mean of
the data and uses the specified mean in fitting the Gaussian compari-
s0n curve,

STDEV =K
This subcommand overrides the automatic estimation of the standard
deviation of the data and uses the specified standard deviation in fitting
the Gaussian comparison curve.

These two subcommands can be used together to specify a
particular Gaussian distribution for calculating the fitted counts. This
may be useful if there are theoretical or other reasons for wishing to
compare the data to that particular Gaussian distribution.

Note: The rootogram output will be affected by the OUTPUT-
WIDTH command in Minitab. If the available output width is less than
65 spaces, the observed and fitted values and the double-root residuals
will be printed, but the rootogram will not be displayed.

Example
ROOTOGRAM;
FREQUENCIES IN ‘SOLDRS" BY "CHEST".
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Special symbols come first, in an order similar to the order established by the
ASCII character set. These are followed by the numeric symbols associated with

resistant smoothing.

Page numbers in boldface indicate the definition of a term or concept or the

full tabulation of a data set.

# to code high outside values, 203
():

as notches, 76
to mark middle stem, 6

as boxplot outside value, 76

as point beyond x-y plot, 104

in stems, 7

to indicate line overflow, 18,
278, 298

as median in boxplot, 76
to code values, 203

as boxplot whisker, 76
to code values, 203
tomark y = Oin plot, 103

in stems, 7
to code middie values, 203
/X tomark y = 0in plot, 103
= to code low outside values, 203
[>]« as notches in boxplot, 76
as boxplot hinges, 76
greatest integer, 43, 325
outt function, 325
2, 167
3,167
3R, 170,177-178, 182
IRSSH,twice, 178, 181, 184
4, 167
42, 167
4253H, 171-173
4253H,twice, 172, 179-181, 184
5, 167
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A (letter value), 44-45

Acid rain. See data, precipita-
ticn pH

additive model, 221, 225, 233,
238, 241

additivity, re-expressing for,
233-240

adjacent value, 68-69, 106,
296-298

analysis of variance, 241

area principle, 14, 258-263

array, 93, 205, 240-241

ASCII, 71, 102-103, 109, 331

B (letter value), 44-45
Bangladesh. See data, women’s
heights
BASIC:
ANSI standard, 323
ASC, 324
boxplots, 71, 74, 77-78, 82-86
coded table, 212, 214-215
condensed plot, 102-103,
109-115

defined functions, 301-302, 324

environment, 319-320

epsilonics, 322-323

error handling, 325

initialization, 303, 320, 322

LEN, 323

letter-value display, 57, 59-60

loops, 324

margins, 324

median polish, 243-248

nice position width, 305

optimizing, 322

portability, 323

program structure, 320-321

resistant line, 146—152

rounding functions, 324

smoothers, 183-190

sort programs, 304

stem-and-leaf display, 19-26

STRS, 324

string functions, 323-324

string variables, 324

suspended rootogram, 280,
284-287

variable-naming conventions,
321-323
version flag (V9), 77, 109, 146,
184, 243-244, 321
YINFO, 306
batch, 1
bimodal, 13,
multimodal, 13
skewed, 13
symmetric, 13
unimeodal, 13
bell-shaped curve. See Gaussian
distribution
bimedal, 13
bin, 255
boundaries, 260, 268, 277
counts, 260, 268, 277
unbounded, 260-261, 270
width, 261, 263
bins:
combining, 266
equal-width, 258-260, 276
unequal-width, 260-262, 276
boxplot, 69
algorithm, 75-76
and coded table, 203, 207-210
from computer, 71
in comparing batches, 71-75
in Minitab, 338
notched, 73-75, 77, 79-81
1-line, 71, 74, 77
scaling, 298
skeletal, 66
3-line, 71, 74, 77
variable-width, 78

C (letter value), 44-45
cathode ray tube (CRT), 75, 294
ceiling function, 325
center {of batch). See median
chi-squared, 281-282
circumstance, 138
coded table, 203
algorithm, 209-211
and additive model, 223
and boxplots, 207-210
from computer, 203-207
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in Minitab, 342
of residuals, 232, 240
codes, equally-spaced, 294, See
ailso plot symbols
color (in coded table}, 212
column:
in Minitab, 335
in 2-way table, 201-203
of numbers, 93
column effect, 221, 225, 236
common value, 221, 225, 231, 236
comparison curve, Gaussian,
267-271, 281
comparison valuye, 236-238, 242
compound smoothers, 170-173,
182
computer graphics, 293
condensed piot, 96—-100
algorithm, 106
and stem-and-leaf display,
100-163
in Minitab, 339
legend, 100
contour plot, 204
ceordinates:
data, 294, 297
plotter, 294
capy-on, 176
correction formula (slope), 127
count, 255, 257
fitted, 265, 270-274, 277
observed, 265, 277
small, 265-266, 282
CRT. See cathode ray tube
cumulative distribution function,
270
approximation for Gaussian, 271

D (letter value), 4445
d(E) = ([d(H)] + 1)/2,43
d{H) = ([d(M)] + 1)/2,43
d(M)Y={(n+ 1)/2,42
data;
birthrate by month, 208-210
birthrate by year, 94-95, 97, 99,
100, 178--181, 207
breast cancer mortality, 127,
128-134

chest measurements, 259-260,
264, 269-270, 272-278
cow temperatures, 161-162,
164-166, 168-169, 172-175
football scores, 266267
gasoline mileage, 138, 139-143
male death rates, 201-202, 204~
205, 220-221, 227-233
Minneapolis precipitation, 51-53
New Jersey counties, 43—44, 46,
66-67
Olympic runs, 235-239
poisons by treatments, 206
precipitation pH, 34
as batch, 4-6, 257-258
by day, 101-102
outliers, 69-70
pulse rates, 14
sport parachuting deaths, 223,
224
tax returns, 72-73, 75
U.S8. SMSAs:
age-adjusted mortality, 8-9,
134-135
kydrocarbon pollution poten-
tials, 8-9, 10, 12, 103
January temperatures, 8-9,
11-12, 103
median education, 8-9,
134-135
women's heights, 261-262
data bounds, 77, 104, 294, 298
data coordinates, 294, 297
data sequence, 159
data smoother, 1611
data space, 294
degrees of freedom, 282
density (in bin), 261, 263
density curve, 256
dependence, 121
depth, 6, 17-18, 42-45
diagnostic plot, 236-240
digits, leading, 2
digits, trailing, 2, 8
display, 1, 293, 326
details, 297-299
exploratory, 295
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display {continued)
montage, 105
semigraphic, 294
distribution:
Gaussian, 53, 79, 144, 256, 267
normal, 256
Poisson, 280
tails of, 13, 48
double-root residual, 265-267, 271,
274,277-278
double roots, 280-282
DRR, 265
DRRES, 278

E (for eighth), 43

E (endpoint smoothing), 177
effects, 221, 225, 231, 236
eighths, 43

empty cell, 207, 211, 240-241
endpoints, smoothing, 173-177
epsilonics, 322-323

E-spread, 47

exiremes, 42, 66

F (four, five in stems), 7
factor, 121, 138, 201, 219
column, 220
row, 220
far outside, 68-69
P and M to code, 203
fences, 104, 203, 209
inner, 68-69
outer, 68-69
first residuals, 130
fit, 126, 142-143, 160, 222, 231,
267,274
5-number summary, 66
floor function, 325
FORTRAN, 325~326
BLOCK DATA, 308
BOXES, 76-77, 87-88, 332
BOXP, 76-77, 89-91
boxplot, 76-77
BOXTOP, 76-77, 91-92
character set, 71, 74, 78, 103,
106, 297
CHRBUF, 329
CINIT, 309, 327-329, 331

coded table, 211-212

COMMON, 327

condensed plot, 107-108

CTBL, 211, 216-217, 332

DELTR, 158

DEPTHP, 19, 32-34

dialects, 326

ENDPTS, 183, 196-197

error codes, 331-332

FLOOR, 318

GAU, 318

HANN, 183, 194

initialization, 327-329

INTFN, 317, 331

letter-value display, 56

LVALS, 56, 61-62, 331

LVPRNT, 56, 62-63, 331

MEDIAN, 318

medizn polish, 242-243

MEDOF3, 183,196

MEDPOL, 242, 249-253, 332

NPOSW, 316-317, 331

NUMBRS, 327

OUNIT, 327

OuUTLYP, 19, 31-32

output, 326, 327, 329-330

PLOT, 107, 116-120, 332

PLTPOS, 76-77, 92

PMAX, 327

PMIN, 327

portability, 326-329

PRINT, 312, 329

programming conventions,
330-333

PSORT, 314, 331

PUTCHR, 212, 310, 329-33]

PUTNUM, 311-312, 329-331

resistant line, 145-146

RGCOMP, 279, 2R8-290, 332

RGPRNT, 279, 200-292, 332

RL3MED, 158

ALINE, 145-146, 153158, 332

rootogram, 279-280

RSM, 183, 191, 332

RUNMED, 183, 198-199, 332

52, 183, 193

53,183,195

S3R, 183,195
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S3RSSH, 183,192

84, 183,193

S4253H, 183, 192

$5, 183, 194

SLTIT, 19, 37-39

smoothers, 183

SORT, 313, 331

SPUT, (83, 197-198

stem-and-leaf display, 19

STEMP, 19, 35-36, 331

STMNLF, 19, 27-31, 331

stream gutput, 329-330, 333

subscripts, 327

TWCVS, 243, 253, 332

utility routines, 309-318, 326

WDTHOF, 310, 330

YINFO, 315
fourths (=hinges), 43
Freeman-Tukey deviate, 281
frequency distribution, 257-258
full-step, 231

Gaussian distribution, 53, 79, 144,
256, 267
c.d.f. approximation, 271-272
frequency curve, 236, 267
hinges, 268
standard, 53, 267, 281
Gaussian shape, 256, 270
goodness of fit, 281-282
granularity, 14-15, 96, 297
graph paper, 96
groups, comparing, 75,77

H (for hinge}, 43
H (for hanning), 170
half-open bin. See bin, unbounded
half-slope, 135
half-slope ratio, 135
half-step, median polish, 231, 240
hanning, 170
HI, 14, 18, 69, 297
hinges, 43, 46
and outliers, 68
in boxplot, 66, 69, 71, 76, 298
in coding table, 203, 209-211,
298

in fitting comparison curve,
267-270
in scaling, 295
interpolated, 268-270
histogram, 13, 257-263
H-spr (=H-spread), 47, 68, 74,
79, 295

I {as boxpiot hinges), 76
“improper” characters
(in condensed plot}, 104
inner fences, 68—69, 203, 295, 298
integer part {[ ]). 43
intercept, 122, 1235, 127, 142, 145
intervals (bins), 255, 257
int function, 325
iterative refinement. See polish-
ing and reroughing

L (for left):
in condensed plot, 104
in resistant line, 124
ladder of powers, 48-49, 135-136,
239-240
leaf, 4, 17, 100
least squares, 143-144, 24|
legend (in condensed plot),
99-104, 106
letter-vaiue display, 41, 46-48,
337
letter values, 41, 42, 44-46
algorithm, 55-56
depths of, 42-45
LEVELS, 338, 342, 343. See also
groups
line:
—0, 296, 298
—00 and 400, 102, 106
resistant, 123-127, 143144, 240
straight, 121, 127, 135, 220
LO, 13, 18, 69, 297
location, measures of. See mean
and median
logarithm, 48—49, 238

M:
for median, 42
for middie, 124
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M: (continued)
for MINUS:
in coded tables, 203
in condensed plots, 104
margins, 278, 321, 324, 327
mean, 241, 267-268
median, 42
as letter value, 46—47
in boxplot, 66, 69
in notched boxplot, 74, 19
in resistant line, 123-124, 126
in smoothing, 161, 163
in stem-and-leaf display, 6
in two-way table, 225
running, 163-167, 171, 182
median polish, 225-233, 240-241,
343
algorithms, 242
from computer, 240
mid, 46, 49
middle (of batch), 1, 42, 47, 65,
267
midE (=mideighth}, 47
midextreme, 47
midH (-=midhinge), 47
midrange, 47
midsummary, 47, 48
Minitab, xiv, 335, 345
mode, 1, 13
maodel, 126
additive, 221, 225, 233, 238,
241
montage display, 105
multimodal, 13
multiplicity, 74, 81

nice numbers, 296-298
nice position width, 76, 296
non-additivity, 234-240, 241
normal distribution, 256. See also
Gaussian distribution
notch {in boxplot), 73-74, 79-81,
318
NPW (=nice position width},
76, 296
numbers, nice, 296

O as boxplot far outside value, 76
ODOFFNA, 241

ordered pair, 93
outer fences, 68-69, 203-205
outliers, 67. See also stray values
in boxplot, 71
in sequences, 171, 178
in two-way table, 202, 232-233,

236

in y-versus-x data, 134-135,
144

resistance to, 126-127, 268,
295-296

outside, 68-69, 203
outt function, 328

P (for PLUS)
in coded tables, 203
in condensed plots, 104
page, 294
patterns (in data), xv. See also
Te-expression
in batches, 1, 13, 41, 47, 65
in frequency distributions, 256

in paralle! batches, 72-75, 207-210

in residuals, 126, 1 78-181,
224-225, 234
in sequences, 159-160
in tables, 201, 219-223
in y-versus-x data, 93, 121
PFORT, 327, 333
plot:
computer terminolopy, 294
condensed, 98, 294, 297
contour, 204
focusing, 105
printer, 296-297
schematic, 69
6-line, 100, 109
x-y, 93
plot bounds, 104, 294
plot scaling, 17-19, 106, 294-296
plot symbols. See #, (), », +,
—a =, P, []' Ls M»
P, R, semigraphic displays
priority of, 76, 106
plotter coordinates, 294
plotting characters, 98-102, 297-
298
plot window, 294
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PLUS-one fit, 238
Poisson distribution, 280
polishing, 127, 131, 145, 172,
225-233
portability of programs, 323,
326-327
powers, ladder of, 48-49, 135-1136,
239-240
printer plots, 96100, 296—287
probability, 256
programmer’s thread, xvii, 17
programming conventions,
321-323, 330-333
program options, 16
boxplot, 74-75, 77-78, 338
coded table, 203-207, 211-212,
342
condensed plot, 105-106,
107-109, 339
letter values, 55-57, 337
median polish, 240, 241-244, 343
resistant ling, 144-147, 340
rootogram, 277-280, 344346
smoothing, 181, 183-184, 341
stem-and-leaf, 19-20, 337

quarters (=hinges), 43
quartiles, 43
Quetelet, Adolphe, 259, 274

R (for right):
in condensed plot, 104
in tesistant line, 124
range, 47
RAWRES, 278
receniering even smooths,
164-167, 177
re-expression, 47-50, 270
for additivity, 233-240, 241
for straightness, 135-143
for symmetry, 50-53
of counts, 263, 280-282
regression, 143-144, 241
representation error, 322
reroughing, 170-171
residuals, 126
and re-expression, 143, 234, 263
double-root, 265-267, 271, 274,
277-278

first, 130
for rootogram, 255, 263,
265-267,274-277
in sequences, 160-161
in two-way table, 223-225,
231-232, 234
in y-versus- x data, 126-127,
134-135, 144
residual slope, 127, 131
resistance, xv, 126127, 240,
274, 295-296
resistant line, 123-127, 340
algorithm, 145
and regression, 143-144, 241
for diagnostic plot, 236, 240
from computer, 144-145
resistant smoothing in Minitab,
341. See also smoothing
resmoothing, 170
response, 121, 220
rootogram, 255, 263
suspended, 255-256, 275-277
rootogram display, 277-279, 299
rootogram residuals, 275-277
rough, 161, 171, 178
rounding, 7-8, 17
rounding error, 322
row, 201-203, 219-220
row effect, 221, 225, 236
row-major format, 210-211
renning-median smoother,
163-167,171, 182
running weighted average,
167-170

S (for six and seven in stems), 7

S (for splitting in smoothing),
177-178

scale factor, 294, 297-298

schematic plot, 69. See also
boxplot

semigraphic display, 14, 96-100,
294, 297, 326

sequence, data, 159

signpost. See programmer’s thread

skewness, 47, 50-53

slope, 121-122, 125, 127, 142

of diagnostic plot, 239-240
smooth, 161, 178
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smooth curves, 160

smoother, compound, 170-173, 182

smoothing:
algorithms, 182
by computer, 181
sorting, 41-42, 57-58, 109, 322
span {of smoother), 167, 182
sparse-matrix representation,
207, 241
splitting, 177-178
spread, 41, 47-49, 53-55, 66
square root, 49, 263, 265, 274
standard deviation, 53-54, 74,
79-81, 268
standard Gaussian distribution,
53, 267, 281
start (for re-expression), 50
stem, 3-4,7, 17, 100
—Q, 11-13, 18,298
stem-and-leaf display, 1-20, 100-
103, 132, 255, 257, 280,
297.-298, 337
—0stem, 11, 18, 102, 298
+0stem, 11, 18, 102
algorithm, 17-19
and histograms, 13-15
construction, 2-3
5-line, 7
from computer, 15
heading, 6, 18
line overflow (*), 18
number of lines, 18
squeezing together, 7
stretching out, 6
2-line, 7
step, 295
straight line, 121, 127,135, 220
straightness, re-expressing for,
135-143
stray values, 1, 7, 12-13, 65-66,
205. See also outliers
stream output, 329-330, 333
summary points, 123-125
suspended rootogram, 256,
275-2717, 299, 344-345
from computer, 277-278
sweeping, 225, 226

symmetry, 1, 13, 47, 66
re-expressing for, 50-53

T (for two and three in stems), 7
table:
three-way, 241
two-way, 201-203
coded, 203-209, 223
replicated, 205
unbalanced, 241
thirds, 123-124, 145
three-array form {of matrix). See
sparse-matrix representation
three-way table, 241
tilt. See slope
time series, 160
transformation. See re-expression
truncation, 7-8
twicing, 171
two-way table, 201-203, 219-223
typical value. See median

unimodal, 13
unit (in display), 6, 18
simple, 296

variability, 41, 4749, 53-55,
178-181, 207
of counts, 263, 280-282
of median, 79-81
viewport, 106, 294, 298

W (letter value), 44-45
whisker, 69

X (letter value), 44-45
x-axis, 95

xSTEP, 100, 294, 298

x-y plot. See condensed plot

Y (letter value), 44-45
y-axis, 95

ySTEP, 100, 294, 298
y versus x, 220

Z (letter value), 44-45
z-score, 79
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