LIST OF FIGURES

1.1 Molecular structures of various polyesters
1.2 Repeating units of amylose and amylopectin fractions
 of starch
1.3 Effect of processing on starch granules
1.4 Maleic Anhydride compatibilization of starch and polyester
1.5 Extrusion polymerization of starch-PCL blends
1.6 Novel reactive extrusion process for starch-PCL blends
2.1 Structure of modified montmorillonite organoclay
2.2 Reactive species from hydrogen peroxide
2.3 Starch-PCL compatibilization
2.4 Starch-PCL blend morphology by SEM
2.5 X-ray diffraction of starch-PCL blends
2.6 Damping of starch-PCL blends
2.7 Storage modulus of starch-PCL reactive blends
2.8 X-ray diffraction of starch-PCL blends derived from various starch
 sources
3.1 Simplified reaction scheme for starch oxidation and starch-PCL
 cross-linking
3.2 End-pressure losses in capillary rheometry
3.3 Bagley plots for 100% PCL and starch-PCL blends
3.4 Viscosity-shear rate plots for 100% PCL and starch-PCL
 non-reactive composite
3.5 Tensile stress-strain behavior of reactive blends
4.1 Photographs of micro-extruder and Wenger TX-52
4.2 Re-circulation pathways in micro-extruder
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3 Dimensions of conical micro-extruder</td>
<td>93</td>
</tr>
<tr>
<td>4.4 A schematic of Wenger TX-52 continuous extruder</td>
<td>95</td>
</tr>
<tr>
<td>4.5 Screw configurations used in TX-52</td>
<td>97</td>
</tr>
<tr>
<td>4.6 Die shape and dimensions in TX-52</td>
<td>101</td>
</tr>
<tr>
<td>4.7 Effect of feed rates on extrudates</td>
<td>105</td>
</tr>
<tr>
<td>4.8 Dispersion of clay particle into individual sheets</td>
<td>111</td>
</tr>
<tr>
<td>4.9 X-ray diffraction of TX-52 extrudates</td>
<td>112</td>
</tr>
<tr>
<td>4.10 TX-52 screw configurations for 2-step extrusion foaming process</td>
<td>115</td>
</tr>
<tr>
<td>4.11 Digital and SEM Pictures of foam sheets from TX-52</td>
<td>117</td>
</tr>
</tbody>
</table>
LIST OF TABLES

1.1 Loose-fill properties from starch and polystyrene 3
1.2 Comparative properties of starch-PCL blends from different technologies 14
2.1 Starch-PCL reactive blend (RB) formulations 26
2.2 Tensile Properties of starch-PCL blends 30
2.3 Effect of catalyst level on tensile properties of RB’s 32
2.4 Tensile properties of RB’s without any catalysts 38
2.5 PCL crystal properties in reactive blends 42
2.6 Glass transitions in reactive blends 45
2.7 Starch oxidation levels in reactive blends 47
2.8 Tensile properties of RB’s derived from various starch sources 50
2.9 PCL crystal properties in RB’s from various starch sources 51
3.1 Formulations for different RB’s 60
3.2 Tensile properties of RB’s from reactive extrusion 62
3.3 Power law relationship between apparent wall shear rate and true wall shear stress 72
3.4 Comparison of apparent and true wall shear rates 72
3.5 Power law model for 100% PCL and RB’s 73
3.6 Specific mechanical energies in micro-extrusion and capillary flow 74
3.7 True shear viscosities of RB’s 80
4.1 Specifications of micro-extruder and TX-52 89
4.2 Tensile properties of RB’s from micro-extrusion 91
4.3 Experimental design of the scale-up process 99
4.4 Effect of various TX-52 experimental plans on extrudate properties 104
4.5 Effect of varying nanoclay levels in experiment#4 107
4.6 TX-52 filling ratios at 40 rpm and low/high feed rates 109
4.7 Comparison of optimal extrusion parameters on TX-52 113
4.8 Tensile and PCL crystal properties of extrudates from 116
1st extrusion step in a 2-step extrusion foaming process
4.9 Calculated and experimental foam densities of STPCLPER-6 118
at two levels of SC-CO2