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The information flow problem is concerned with
controlling the transmission of information in computer
systems. This thesis addresses this problem by developing
an axiomatic logic that captures the information flow
Semantics of a program. Using this technique the scope of
information flow analysis is extended from terminating
sequential programs to parallel programs 1in which non-
termination, synchronization and deadlock are possible.
Once the information flow generated by a program has been
determined, it is easy to check whether or not the program

satisfies a given security policy.

The main contribution of the thesis is an axiomatic proof
system for determining the flow of information produced by
sequential or parallel programs. Just as proofs of
correctness capture the effect of program execution upon the
values in variables, proofs of information flow capture the
effect of program execution upon the information in

variables. An advantage of this approach 1is that once a



flow proof of a program has been generated, various security
policies, such as high water mark or final value, can be

verified readily.

Although flows in parallel programs need to be determined
S0 that confidentiality in shared systems can be maintained,
current lnformation flow techniques are limited to
terminating sequential programs. The thesis addresses this
problem by capturing the flows generated by programs.
containing independent processes that synchronize with each
other. The practicability of the method is demonstrated by

developing the flow semantics for Concurrent Pascal.
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Chapter 1
Introduction

The proliferation of multi-programmed, multi-user
computer systems has 1increased the need for ersuring the
security of programs and data. To provide for the privacy
of objects and information, protection mechanisms have been
developed. 1If users can access objects and information only
through the protection mechanisms, and if these mechanisms
maintain the required degree of privacy, the computer system
is said to be secure. Determining whether a computer system
is secure has emerged as an important and difficult problem
in operating system research [33,44,49,57,60].

In this thesis we consider the problem of ensuring the
internal security of computer systems. We assume that they
are ex;ernally secure, by which we mean that the computer

installation exhibits two properties:

(1) the identities of users cannot be forged;
(2) any access to the computer facilities can only be
accomplished through the use of system-defined

commands.

In particular, we assume that the authentication of users
upon entering the system 1is infallible and that the
mechanism for restricting access to the physical machine and

its peripherals {s impenetrable. Although the problem of
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ensuring external computer security is an important one, it
is beyond the scope of this thesis. The interested reader
can find discussions of external security in [29,55]. In
the remainder of this thesis we will use the term "security"
to denote "internal computer security".’

. There are three main aspects of security within multi-
user computer systems; First, access to objects must be
controlled so that only authorized forms of sharing can
occur. Second, transmission (or flow) of i{nformation must
be controlled so that the privacy of 1nformation can be
maintained. The first problem 1is that of access control
whereas as the second 1is known as information control.
Third, the programs that implement protection mechanisms
must be correct. In this thesis, we focus on information
control and present a new approach that synthesizes and
extends much of the previous work in this area.

A security policy specifies to what extent sharing of
information is permitted within a particulaf computer
system. The goal in information control is to prevent
transmission of information unless it is authorized by the
policy. Our approach is to prevent the execution of any
program which could violate the security constraints. This
approach is feasible only if the flow of information
produced by a program can be ascertained. In this area we

present four main contributions:
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(1) An axiomatie logie for reasoning about information
flow.

(2) The application of this logic to both parallel and
sequenttial programs.

(3) A method for information control that can be utilized
independent of any particular security policy.

(3) The combination of security certification and program

. verification into a powerful mechanism for

information control.

In addition, we extend the scope of information flow to
include programs that may not terminate. Our techniques are
applicable to programs that may deadlock as well ~as those
that contain possibly undounded repetition.

The thesis is organized as follows. In Chapter 2 we
review computer security in general and information control
in particular. In addition, we review program veriftication
and discuss its‘relation to computer security.

In Chapter 3 we introduce an axiomatic proof system for
information control. The notions of information states,
direct, indiréct and covert flows of information, " and
security certification are discussed within this formal
framework. 'We then 1incorporate these notions into an
information flow proof system for a simple sequential
programming language. Several example proofs are presented

to 1illustrate the use of axiomatic logic in information



control. In addition, we compare our certification
technique to others that have appeared in the literature. -

The focus of Chapter & is on information flow in parallel
programs. We begin the chapter by discussing the additional
paths of information flow that exist in parallel programs,r
including shared variables, process synchronization, and
process deadlock. We then examine a 1argé number of
parallel programming constructs and develop axioms and rules
of inference that specify the flow of information produced
by each of these constructs. Examples demonstrating both
the use of these rules and the relationships among several
synchronization primitives are presented at the eﬂd of the
chapter.

In Chapter 5, we investigate the relationship between
proofs of functional correctness and proofs of information
flow. After demonstrating the differences between these two
systems, we produce a composite system in which theorems
concerning both functional correctness and information flow
can be produced. We discover that there are theorems that
can be proved in this composite system that cannot be proved
in the information flow proof system alone.

The techniques and concepts of the previous chapters are
applied to the programming language Concurrent Pascal in
Chapter 6. As a consequence, additional language contructs,

such as encapsulation mechanisms (capsules within a single



process, monitors for sharing between processes), are
investigated. The éhapter concludes by considering an
example proof‘that demonstrates the proof rules for monitors
and processes and captures flows of information that arise
from process synchronization.

In Chapter 7 we summaﬁize our réSults and contributions,
and analyze their limitations. In addition, we indicate

some areas for future research.



Chapter 2
Overview of Computer Security

There are three main aspects of computer security.
First, computer systems .must control access to objects so
that only permissible forms of sharing can occur; this is
kﬂown as access control. Second, secure systems must not
divulge private information stored within the system; this

is known as information control. Third, the programs that

implement access and {information control must do so

accurately; this 1is known as program correctness. In this

chapter we first present an overview of these . . three
components of computer security and discuss the
relationships among them; we then focus specifically on

information control.

2.1 Access Control

Access control 1is concerned with controlling the

execution of operations by subjects on objects stored within

a computer system. Objects are the entities' that can ibe
manipulated and that ma} contain information; typically. they
include user files and‘program variables. Subjects are the
entities that may' manipulate objects; users, programs,
processes, and procedures are comhon examples' of ‘subJects.

In addition to subjects and objects, computer protection
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systems specify a set of access rights that are used to
control the invocation of operations. Associated with every
operation p is a set of rights Rp. A subject s can perform
operation p on object o if and only if for every right r
specified in Rp, s has the right r for object o.

An access control policy specifies for each subject-
object pair the set of rights that the subject may have for
the object. Lampson introduced the access matrix concept as
a means for representing the access policy [44]). In this
scheme the rows of the matrix represent the subjects, the
columns represent the objects, and the entries contain
access rights. The (s,0) entry of the access matrix
contains the system-defined right r if and only if subject s
is permitted to have right r for object o. A graphical
representation of the access matrix concept is presented in
Figure 2.1.

Access security mechanisms are needed to control access
to protected objects. In addition, they are a necessary
prerequisite to achieving information security. Information’
flow mechanisﬁs can be easily subverted by illegitimate
access to objects containing protected information.
Accordingly, no information security policy can be

successfully maintained unless access security is provided.



-8 -
Figure 2.1 A Graphical Representation of an Access Matrix
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2.2 Information Control

Although access control 1is an .1mportant element of
computer security, it is not the only area of concern. It
is often the case that information within an object should
remain private, even if a subject has legitimate access to
the object. The most common examples of this phenomenon are
service procedures provided by operating systems, and
programming languages that allow users to view complicated
input/output functions as primitive operations. Although
access control mechanisms can ensure legitimate access, they

cannot prevent a subject from making a copy of an object



that it can read. This was first recognized by

Lampson [41], who called it the confinement problem. In

this section, we present three approaches for solving the
confinement problem. The first is domain restriction, which
ensures confinement by limiting a subject to an environment
in which only permissable copying is permitted. The second
is flow detection, in which illegal copying is detected and
eliminated during execution. The last is program
certification, in which programs that contain unauthorized

copying are discovered prior to execution.

2.2.1 Domain Restriction

The domain restriction approach to information control is
based upon the idea that we can utilize the same techniques
for information control that we use so successfully for
access control. In access control the extent of sharing is
iimited so that no unauthorized access can occur. In domain
restriction the subject's environment, or domain, is limited
even further to ensure the privacy of information.

Domain restriction is an attempt to control information
by 1limiting the amount of sharing permitted within the
system. The most extreme variation of domain restriction is
to ensure the privacy of information by eliminating all
sharing of objects. In this case each subject executes as

if it were on 1{ts own dedicated machine. This form of
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information control is extremely restrictive and is. not
Ppractical for most computer systems. However it has been
used in some military computer installations [1].

Some secure sharing is permitted in the UNIX system by
permitting users to differentiate between public and private
files [56]. Access control is maintained by differentiating
between users. Although in the default mode every file is
accessible to every wuser, users can selectively specify
which files are to remain private. Some information control
can be maintained through ~the use of the set user-id
feature. This feature enables a user to make public a
program which manipulates a private file without necessarily
divulging the contents of the file. However, no more
general form of information control, other than the
elimination of sharing, is possible in the UNIX system.

More flexible forms of information control can be
obtained by classifying information into security classes.
Military security systems typically use the classes
unclassified, confidential, secret, and top secret, along

with the linear ordering:
unclassified < confidential < secret < top secret.

In this scheme a < b indicates that information of
classification a {s less sensitive than information of

classification b. Bell and LaPadula have used this
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classification scheme in devising a mechanism for
controlling the transmission of information [8). In their
approach a distinction is made between objects from which
information is extracted and objects to which information is
transmitted. In addition to requiring access security (that
every allowed access {is authorized), Bell and LaPadula
require what they have termed the ¥-property. A program
satisfies the P-property if and only if for every object v
viewed (read) by the program and every object m modified by

the program, the security classification of v is less than

or equal to the security classification of m. The
%®_property ensures that the military's security
classification system cannot be violated. Similar

approaches to information control and the confinement
problem may be found in Andrews [3] and Jones [39)].

Although the domain restriction technique ensures the
secure control of informatioh, it 13 not clear whether this
technique can be applied in practice. It is a real
possibility that the class of programs that exhibit the ’
®_property is not sufficiently rich to permit the
construction of usable systems. For example, programs that
manipulate c¢lassified information and indicate their
progress (eg. completion) on a system 1log violate the
®-property unless the system log is as classified as any

information in the system. In addition, the domain
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restriction approach to information control makes the
unrealistic assumption that the classification of the
information contained in an object remains constant. In
many applications the «classification of the information
contained in files changes dynamically as the result of

program execution.

2.2.2 Run-time Flow Detection

In order to relax the constraints imposed by the domain
restriction approach to information control, it is necessary
to ensure that although a program has the. access
capabilities to transmit information iilegally, it does not
do so. One approach to do this is to monitor program
execution and guarantee that no undesirable flows occur.

Fenton's data-mark machine is an application of run-time
monitoring ([30,31]. In his abstract machine, each memory
location ceontains a static mark that indicates the
classification of the information that is permitted to
reside there. The hardware of the proposed machine is such

that instructions of the form
MOVE a TO b

are not legal if the data cell a is marked with a
classification that is higher than the data-mark of b.

Fenton also noticed that information could be transmitted
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indirectly as a result of conditional execution. For

example, the statement
IF a = O THEN b := 0

transmits information about a to b. To handle flows that
result from conditional execution, Fenton included a data
mark for the machine program counter. This mark indicates
the classification of the information that is transmitted by
the very fact that the current instruction is executed; it
indicates the information that allowed the current execution
path to be taken.

Although Fenton was able to handle flows resulting from
conditional execution, he was unable to allow the
classification of data cells to vary dynamically [30]). This
is an undesirablé restriction, especially for machines that
have high speed registers. Using the data mark approach,
the classification of each register must be fixed, so it is’
difficult to program efficient computations. (1f all
registers were of the same classification then all modified’
variables ‘would have to be at least that <classified). In
addition, the classification of the program counter
indicates the entire execution path, whereas 1t may be
impossible to determine which sub-path was taken. For

example, in the program
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IF a = O THEN b :=

c = 1

there is no information transmitted from a to ¢, despite the
fact that there is a conditional branch (which is executed
only if a = 0) prior to the the assignment to c.

. Denning extended the results of Fenton to high 1level
programming 1languages in which security classes changed
dynamically. She developed a run-time technique for systems
in  “which the classification scheme forms a lattice.
Unfortunately, her proposal requires significant
modifications to both the run-time and compile-time support
of programming languages.

As a.result of dynamically changing classes, code must be
introduced into programs to capture the effect of

conditional execution. In the program segment

b = 1
IF a

O THEN b := 0

there is a flow of information from a to b even if the
assignment b ::= is not executed. In Fenton's static
protection system this was automatically handled, since if a
is classified and b is not then the assignment b :z 0 will
never be executed. However, in a dynamic system there is no
notion of security violation associated with the flow from a

to b; rather the classification of b must simply be updated.
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Denning's solution is to insert into the code generated by

the compiler the instruction
"update the class of b with the class of a",

This ensures that the flow from a to b is indicated in the
data mark of b, even if the assignment b := 0 is not
executed.

In addition, Denning introduces a hardware stack to
facilitate the computation of flow from conditional
execution. Her technique is to push onto the stack. the
classification of conditions that control execution. Thus
when an IF statement is encountered, the classification of
the guard (boolean expression) of the statement is pushed
onto the special hardware stack. The effect of assignment
is to mark the modified cell to indicate the transmission of
information from both the expression and the hardware
condition stack. When the scope of a condition is exited,
the stack is popped to indicate that information concerning
the guard i{s no longer implicitly available. Unfortunately,
this scheme incorrectly curtails the flow of information

from guards of WHILE loops. In the statement sequence

WHILE a = 0 DO NULL
b :=0

there is a flow of information from a to b as a result of
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the conditional termination of the WHILE 1loop. In the
Denning system ¢this flow 1is disregarded and the hardware
condition stack is popped after the loop is exited.

In a related work, Jones and Lipton [40) present a
surveillance mechanism for flow-chart programs. Progranm
transformations are performed at compile-time to add
security checks to compiled programs. In thi; scheme, all
conditional flow 1is considered globél so that the
classification of a program counter, such as employed by
Fenton, is sufficient. Jones and Lipton show how to prevent
the transmission of information through the program's
running time by terminating the program with an errér notice
as soon as a sensitive guard is evaluated. Their scheme,
like Denning's, is an 1improvement over Fenton's in that
security classes of objects are permitted to vary
dynamically.

In addition, Jones and Lipton postulate the observability
principle. Programs are viewed as functions from a set of
inputs to a set of outputs. The observability principle
states that the output of a program must encode 2ll of the
available information concerning the inputs. This principle
requires that security system designers to precisely state
any assumptions that have been made in the construction of
the system. A typical assumption made by designers is the

inability to transmit infcrmation across hidden, or covert,
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channels. Some of the covert channels usually disregarded
include: power consumption, disk head movement, paging rate,
and program execution time. The observability principle is
an important consideration in evaluating the applicability

of security mechanisms.

2.2.3 Compile-time Security Certification

The main deficiency in run-time information flow
detection is the cost in program size and execution speed.
These difficulties arise from the fact that not executing
program statements és well as executing them can cause flows
of information. As a result, the run-time approach requires
the use of program transformations, which increases program
size considerably. 1In addition, considerable care must be
taken. in producing security violation notices since these
notices may themselves transmit information.

Compile-time certification of information security is an
attempt to relax the constraints of the domain restriction
approach without resorting to run-time monitoring. This

approach has the advantages that:

(1) security violation notices do not transmit sensitive

information,
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(2) programmers have assistance from the system in
debugging programs with security violations, since
these violations occur during compilation rather
than during execution, and

(3) program size and execution time are unaffected by

the security mechanism.

By analyzing programs and determining how information is
transmitted, a larger class' of programs can be validated
using a compile-time certification technique than by domain
restriction. Although certification mechanisms are more
restrictive than run-time monitoring, it 1is reasonable to
prevent programs that specify illegal flows of infofmation
from executing. It is the job of the programmer to specify
only those flows that are desired and to eliminate programs
that could cause a breach of information security.

Denning has developed a compile-time approach where the
security classifications of system objects remain static and
form a lattice [22,24]. In this approach, compile-time
checks are performed to ensure that source programs do not
specify a flow of information from a to b unless the static
security binding of a is less than or equal to b. Programs
which violate this static binding policy are prohibited from
executing.

London [48) has devised a technique to ascertain the flow

of information specified by a program in a system where the
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security classifications of objects vary.dynamically. It is
an extension of the graphical approach proposed by
Moore [51] to determine the flow of information from input
variables to output variables. This approach, like that of
Denning, assumes the transmission of information as a result
of conditional execution is limited in scope. Thus both of
these techniques cannot capture the effects of program non-
termination. In addition, both approaches are closely tied
to a particular type of security policy; the Denning
approach is only valid for systems in which a static binding
policy (classifications of objects are permanent) is
followed, whereas the London approach 1is of use only in
systems where a final value policy (only the final
classifications are of interest) is employed.

Cohen has taken a slightly different view of information
control (18]). His information theoretic approach can be
summarized as follows. Let p(S) denote the - final state
produced by running program p with an initial S. Then a
flow of information from a to b is said to occur if and only
if there exist initial states S1 and S2 such that S1 and S2
differ only in the value of a but p(S1) and p(S2) differ 1in
the value of b. The advantage of this view is that
impossible execution paths are not considered so that the
potential flow, rather than the specified flow, 1is

determined. Unfortunately this approach leads to



- 20 -

undecidability problems and does not seem applicable to a
programming language environment.

Although these compile-time approaches have many
practical advantages over the domain restriction and
execution monitoring techniques, there remain some serious
drawbacks. First, each of these approaches is applicable
for only a particular class of security polici;s. Second,
flows from conditional execution are considered to be local
in nature even when a programming language construct
provides the power of non-termination. This 1is a very
serious flaw, since it permits the certification of programs
that may transmit classified information directly through
program variables. Finally, these approaches have been of
limited use in parallel programs in which independent
computations communicate through some form of process
synchronization. Our view is that the main application of
information control is in large shared systems where
parallellism and synchronization are the rule rather than
the exception. Therefore, we feel that the compile-time
approaches to information control need to be extended to

programming languages that provide for parallel execution.

2.3 Data Integrity and Program Correctness

Access and information security can be ensured only if

the programs that control access to objects and transmission

















































































































































































































































































































































































































































































