
A Simple Bivalency Proof that

t-Resilient Consensus Requires t + 1 Rounds∗

Marcos Kawazoe Aguilera and Sam Toueg

aguilera@cs.cornell.edu sam@cs.cornell.edu

Department of Computer Science

Upson Hall, Cornell University

Ithaca, NY 14853-7501, USA.

Keywords: distributed computing, fault tolerance, consensus, synchronous system, bivalency

September 1, 1998

Abstract

We use a straightforward bivalency argument borrowed from [2] to show that in a synchronous
system with up to t crash failures solving consensus requires at least t + 1 rounds. The proof
is simpler and more intuitive than the traditional one: It uses an easy forward induction rather
than a more complex backward induction which needs the induction hypothesis several times.

1 Background

A fundamental result of distributed computing is that solving consensus in a synchronous system
with up to t process crashes requires at least t + 1 rounds. The traditional proof of this result pro-
ceeds by a rather complex backward induction that uses the induction hypothesis several times [3].

In this note, we provide a much simpler proof based on a standard bivalency argument.
In the following, we consider systems where processes proceed in synchronized rounds: in each

round, every process sends messages to other processes, receives all the messages sent to it in that
round, and changes state accordingly. When a process crashes in a round, it sends a subset of the

messages that it intends to send in that round, and does not execute any subsequent rounds. A
correct process is one that never crashes.

In the consensus problem, every process starts with some initial value and must make an
irrevocable decision on a value such that:

Agreement: No two correct processes decide differently.

Validity: If some correct process decides v, then v is the initial value of some process.

Termination: Every correct process must eventually decide some value.

∗Research partially supported by NSF grants CCR-9402896 and CCR-9711403, by ARPA/ONR grant N00014-96-
1-1014, and by an Olin Fellowship.

1



2 The Proof

We now show that any consensus algorithm that tolerates t crashes requires t + 1 rounds. Roughly

speaking, the proof proceeds by contradiction as follows. Suppose there is a consensus algorithm
A that tolerates up to t crashes and always terminates in t rounds. We first show that in any
run of A, the configuration at the beginning of round t must be univalent. We then obtain a

contradiction by constructing a run of A that is bivalent at the beginning of round t. This run
is obtained by starting from a bivalent initial configuration and extending it one round at a time,

while maintaining bivalency. Each one-round extension may require the killing of a process.

Theorem 1 Consider a synchronous round-based system S with n processes and at most t crash

failures such that at most one process crashes in each round. If n > t+1 then there is no algorithm

that solves consensus in t rounds in S.

The proof is by contradiction. Suppose there is an algorithm A that solves consensus in t rounds

in S. Without loss of generality, we can assume that A is loquacious, i.e., at every round, each
process is supposed to send a message to every process.

We consider the configuration of the system S at the end of each round (this is also the con-
figuration of the system just before the start of the next round). Such a configuration is just the

state of each process (which also indicates the current round number and whether it has crashed in
a previous round). Informally, a configuration C is 0-valent [1-valent] if starting from C the only

possible decision value of correct processes is 0 [1]; C is univalent it is either 0-valent or 1-valent;
C is bivalent if it is not univalent.

In the following, a k-round partial run rk denotes an execution of algorithm A up to the end

of round k. Consider the configuration Ck at the end of round k of partial run rk. We say that
rk is 0-valent , 1-valent, univalent, or bivalent if Ck is 0-valent, 1-valent, univalent, or bivalent,

respectively.
We proceed by proving three lemmata. The third one contradicts the first and thus completes

the proof of the theorem.

Lemma 1 Any (t − 1)-round partial run rt−1 is univalent.

Proof: The proof is by contradiction. Suppose there is a bivalent (t − 1)-round partial run rt−1.
Let r0 be the t-round run obtained by extending rt−1 by one round such that no process crashes in

round t. Without loss of generality assume that all correct processes decide 0 in r0. Since partial
run rt−1 is bivalent, there is at least one t-round run r1 that extends rt−1 such that all correct

processes decide 1. Note that in round t of r1: (a) exactly one process p must crash (recall that in
each run at most one process crashes per round), and (b) p must fail to send a message to at least

one correct process, say c.
Construct run r0,1 which is identical to r1, except that p sends its message to c. Let c′ be

a process that does not crash in r0,1 and is different from c. Such a process must exist since
n > t + 1 implies that there are at least two correct processes in the system. Note that: (a) c

cannot distinguish between r0,1 and r0; (b) c′ cannot distinguish between r0,1 and r1. By (a),

c decides 0 in r0,1, while by (b) c′ decides 1 in r0,1 — a violation of the agreement property of
consensus.

�

Lemma 2 There is a bivalent initial configuration.

Proof: (Same as in [2].) Suppose, for contradiction, that every initial configuration is univalent.
Consider the initial configurations C0 and C1 such that all processes have initial value 0 and 1,

2



respectively. By the validity property of consensus, C0 is 0-valent and C1 is 1-valent. Clearly,
there are two initial configurations that differ by the initial value of only one process p, such that

one is 0-valent and the other is 1-valent. We can easily reach a contradiction by crashing p at the
beginning of round 1 (before it sends any messages to any process).

�

Lemma 3 There is a bivalent (t − 1)-round partial run rt−1.

Proof: We show by induction on k that for each k, 0 ≤ k ≤ t − 1, there is a bivalent k-round
partial run rk.

Basis: By Lemma 2, there is some bivalent initial configuration C0. For k = 0, let r0 be the
0-round partial run that ends in C0.

Induction Step: Suppose 0 ≤ k < t− 1. Let rk be a bivalent k-round partial run. We now show
that rk can be extended by one round into a bivalent (k + 1)-round partial run rk+1. Assume, for

contradiction, that every one-round extension of rk is univalent.
Let r∗k+1

be the partial run obtained by extending rk by one round such that no new crashes
occur. Partial run r∗k+1

is univalent. Without loss of generality assume it is 1-valent. Since rk is

bivalent, and every one-round extension of rk is univalent, there is at least one one-round extension
r0
k+1

of rk that is 0-valent.

Note that r∗k+1
and r0

k+1
must differ in round k +1 (and only in that round). Since round k +1

of r∗k+1
is failure-free, there must be exactly one process p that crashes in round k+1 of r0

k+1
(recall

that in each run, at most one process crashes per round). Since p crashes in round k + 1 of r0
k+1

it
may fail to send a message to some processes, say to q1, q2, . . . , qm, where 0 ≤ m ≤ n.1

Starting from r0
k+1

, we now define (k+1)-round partial runs r1
k+1

, . . . , rm
k+1

as follows. For every

j, 1 ≤ j ≤ m, r
j
k+1

is identical to r
j−1

k+1
except that p sends a message to qj before it crashes in

round k + 1. Note that for every j, 0 ≤ j ≤ m, r
j
k+1

is univalent. There are two possible cases:

1. For all j, 0 ≤ j ≤ m, r
j
k+1

is 0-valent. So rm
k+1

and r∗k+1
are 0-valent and 1-valent, respectively.

The only difference between rm
k+1

and r∗k+1
is that p crashes at the end of round k+1 in rm

k+1
,

while p is correct up to and including round k + 1 in r∗k+1
. Consider the following run r

extending r∗k+1
. Process p crashes at the beginning of round k + 2 (before it sends any

messages in that round), and there are no more crashes. Since r∗k+1
is 1-valent, all correct

processes decide 1 in run r. For every process except p, run r is indistinguishable from the run

r′ that extends rm
k+1

such that no process crashes after round k + 1. But all correct processes
decide 0 in r′ (because rm

k+1
is 0-valent) — a contradiction.

2. There is a j, 1 ≤ j ≤ m, such that r
j−1

k+1
is 0-valent while r

j
k+1

is 1-valent. Extend partial

runs r
j−1

k+1
and r

j
k+1

into runs r and r′, respectively, by crashing process qj at the beginning of

round k + 2 (before it sends any message in that round),2 and continuing with no additional
crashes. Note that (a) no process except qj can distinguish between r and r′, and (b) all

correct processes must decide 0 in r and 1 in r′ — a contradiction.

�

3 Related Work

[4] and [1] have independently come up with a proof that is similar to ours. The bivalency argument

used in this note originally appeared in [2] to show a different result, namely that consensus cannot

1It is possible that in round k + 1 of r0
k+1 process p sends a message to every process, and then crashes at the end

of this round. In this case, m = 0.
2If qj already crashed before round k + 2, we don’t crash it in round k + 2.

3



be solved in asynchronous systems subject to failures. As far as we know, [5] were the first to use
the bivalency argument of [2] in the context of synchronous systems. The traditional proof that

t-resilient consensus requires t + 1 rounds is in [3].

Acknowledgements

We thank Bernadette Charron-Bost for her comments on an earlier draft.

References

[1] Ziv Bar-Joseph and Michael Ben-Or, August 1998. Private communication.

[2] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

[3] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.

[4] Yoram Moses and Sergio Rajsbaum. The unified structure of consensus: a layered analysis
approach. In Proceedings of the Seventeenth ACM Symposium on Principles of Distributed

Computing, pages 123–132, June 1998.

[5] Nicola Santoro and Peter Widmayer. Time is not a healer. In B. Monien and R. Cori, editors,
Proceedings of the 6th Annual Symposium on Theoretical Aspects of Computer Science, volume
349 of LNCS, pages 304–313, Berlin, February 1989. Springer.

4


